
Symbolic Approaches for Finding
Control Strategies in Boolean Networks

Christopher James Langmead∗†,
Sumit Kumar Jha∗

October 2007
CMU-CS-07-155

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA 15213.
† Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA 15213

E-mail: cjl@cs.cmu.edu

This research is supported by a Young Pioneer Award from the Pittsburgh Lifesciences Greenhouse and a CA-
REER award from the U.S. Department of Energy.

Keywords: Systems Biology, Model Checking, Control, Boolean Networks

Abstract

We present algorithms for finding control strategies in Boolean Networks (BN). Our approach
uses symbolic techniques from the field of model checking. We show that despite recent hardness-
results for finding control policies, a model checking-based approach is often capable of scaling
to extremely large and complex models. We demonstrate the effectiveness of our approach by
applying it to a BN model of embryogenesis in D. melanogaster with 15,360 Boolean variables.

1 Introduction
Computational cellular and systems modeling is playing an increasingly important role in biology,
bioengineering, and medicine. The promise of computer modeling is that it becomes a conduit
through which reductionist data can be translated into scientific discoveries, clinical practice, and
the design of new technologies. The reality of modeling is that there are still a number of unmet
technical challenges which hinder progress. In this paper, we focus on the specific problem of
automatically devising control policies for Boolean Networks (BN). That is, given a BN model
with external controls, we seek a sequence of control signals that will drive the network to a pre-
specified state at (or by) a pre-specified time.

Recently, it has been shown that finding control strategies for arbitrary BNs is NP-hard [1],
but that polynomial-time algorithms exist for deterministic BNs if the network topology forms a
tree. In this paper, we consider a more general family of BNs with arbitrary network topologies.
Our algorithm uses techniques from the field of model checking [14]. Model checking refers to
a family of algorithms and data structures for verifying systems of concurrent reactive processes.
Historically, model checking has been used to verify the correctness and safety of circuit designs,
communications protocols, device drivers, and C or Java code. Abstractions of these systems can
be encoded as finite-state models that are equivalent to Boolean networks. We show that existing
model checking algorithms can be used to find control strategies for BNs.

Two important features of model checking algorithms are that they are exact and scale to real-
world problem instances. For example, model checking algorithms for finite-state systems have
been able to reason about systems having more than 1020 states since 1990 [8], and have been
applied to systems with as many as 10120 states [7]. More recently, model checking techniques
have been created for stochastic systems [5]. These algorithms can be either exact or approximate,
and have also been shown to scale to systems with as many as 1030 states [16]. In this paper,
we will show that model checking can be used to devise control strategies for very large Boolean
networks (up to 15,360 nodes) within seconds or minutes. These techniques are useful in their
own right, but will also lay the groundwork for future techniques for finding control strategies in
models with asynchronous and stochastic dynamics.

2 Boolean Networks
A BN is a pair, B = (G,Ψ), where G = {V,E} is a directed graph, and Ψ = {ψ1, ψ2, ..., ψ|V |} is a
set of Boolean functions. Each vertex, vi ∈ V , represents a Boolean random variable. The state of
variable vi at discrete time t is denoted by vi(t). The state of all vertices at time t is denoted by v(t).
The directed edges in the graph specify causal relationships between variables. Let Pa(vi) ⊂ V
be the parents of vi in the directed graph and let ki = |Par(vi) ∪ {vi}|. A node can be its own
parent if we add a self-edge. Each Boolean function ψi : {0, 1}ki 7→ {0, 1} defines the dynamics
of vi from time t to t + 1 based on the state of its parents at time t. Thus, the set Ψ defines the
dynamics of the entire BN. An example BN is shown in Figure 1-A. Notice that a BN is simply a
compact encoding of a transition relation over V (Fig 1-B).

This basic model can be extended to define a BN with external controls by augmenting our

1

V1

V2 V3

ψ1 ≡ V1(t+1) = V1(t) Æ V2(t)
ψ2 ≡ V2(t+1) = ¬V3(t)
ψ3 ≡V3(t+1) = V1(t) Æ V2(t)

time t time t + 1
V1 V2 V3 V1 V2 V3

0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 1 0
0 1 1 0 0 0
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 1 1 1
1 1 1 1 0 1

Figure 1: (Left) A Boolean Network (BN). A BN consists of a graph and a set of Boolean functions. The
vertices of the graph correspond to Boolean variables and the edges describe functional dependencies. The
Boolean functions describe the evolution of the model from time t to t + 1. The functions can contain any
combination of Boolean connectives. (Right) A transition relation encoding the same dynamics as the BN.
Notice that the BN is a compact encoding of the transition relation.

V1

V2 V3

ψ1 ≡V1(t+1) = V1(t) Æ V2(t) Ç ¬C2(t)
ψ2 ≡V2(t+1) = ¬V3(t) Æ C1(t)
ψ3 ≡V3(t+1) = V1(t) Æ V2(t) Æ C2(t)

C1

C2

V1 V2 V3

Start (t=0) 0 0 0
Goal(t=3) 1 0 0

t V1 V2 V3 C1 C2

0 0 0 0 1 0

1 1 1 0 0 1

2 1 0 1 0 0

3 1 0 0

Figure 2: (Left) A BN with two control nodes (C1 and C2). (Right top) An initial state and time-sensitive
goal. (Right bottom) A control policy (last two columns) that achieves the goal at the specified time.

graph with special control nodes, G = {V,C,E}. Each control node, ci, is connected to one or
more nodes in V by a directed edge going from ci to vj (Fig. 2). The control nodes themselves are
externally manipulated. That is, there is no ψi that defines the dynamics of ci.

Consider a set of initial states, I , for the nodes in V specified in terms of a Boolean expression.
For example, the expression I = (v1 ∧ ¬v2 ∧ v3) defines the set {(1, 0, 1)}, and I = (v1 ∧ v3)
defines the set {(1, 0, 1), (1, 1, 1)}. We define a set of goal states, F , in a similar fashion. A control
policy, Γ = 〈c(0), c(1), ..., c(t)〉, is a set of Boolean vectors that defines a sequence of signals to
be applied to the control nodes. The BN control problem is to find a control policy that drives the
BN such that v(0) = I and v(t) = F . Our goal in this paper is to algorithmically generate Γ for a
given, B, I , F , and t, or to indicate that no such policy exists.

2

3 Model Checking
The term model checking [14] refers to a family of techniques from the formal methods community
for verifying systems of concurrent reactive processes. The field of model checking was born from
a need to formally verify the correctness of hardware designs. Since its inception in 1981, it has
expanded to encompass a wide range of techniques for formally verifying finite-state transition sys-
tems, including those with non-deterministic (i.e., asynchronous) or stochastic dynamics. Model
checking algorithms are simultaneously theoretically very interesting and very useful in practice.
Significantly, they have become the preferred method for formal verification in industrial settings
over traditional verification methods like theorem proving, which often need guidance from an
expert human user. A complete discussion of model checking theory and practice is beyond the
scope of this paper. The interested reader is directed to [14] for a detailed treatment of the subject.

3.1 Modeling Concurrent Systems as Kripke Structures
An atomic proposition, a, is a Boolean predicate referring to some property of a given system. Let
AP be a set of atomic propositions. A Kripke structure, M , over AP is a tuple, M = (S,R, L).
Here, S is a finite set of states, R ⊆ S × S is a total transition relation between states, and
L : S 7→ 2AP is a labeling function that labels each state with the set of atomic propositions that
are true in that state. Variations on the basic Kripke structure exist. For example, if the system
is stochastic, then we replace the transition relation, R, with a stochastic transition matrix, T
where element T (i, j) contains either a transition rates (for continuous-time Markov models) or a
transition probability (for discrete-time Markov models).

It is easy to see that, in principle, BNs can be encoded as Kripke structures. The state space,
S, corresponds to the 2|V ∪C| possible states of the BN . We will use the atomic propositions to
reveal the state of each variable in the model. That is, |AP | = |V ∪ C| and the propositions will
be of the form: “is the state of vi 1?” The labeling function, L, can thus be used to define the
set of initial states, I , and goal states, F (see Sec. 2). The transition relation, R, corresponds to
the table in Figure 1-B. Alternatively, a stochastic transition matrix, T , can be used to encode the
stochastic dynamics of the PBN. Naturally, it is generally not possible to explicitly instantiate the
Kripke structure for an arbitrary BN because the state space is exponential in the number of nodes.
In the next section, we discuss how Kripke structures can be efficiently encoded symbolically.

3.2 Symbolic Encodings of Kripke Structures
The basis for symbolic encodings of Kripke structures, which ultimately facilitated industrial appli-
cations of model checking, is the reduced ordered Binary Decision Diagrams (BDDs) introduced
by Bryant [6] (Fig. 3). BDDs are directed acyclic graphs that symbolically and compactly repre-
sent binary functions, f : {0, 1}n 7→ {0, 1}. While the idea of using decision trees to represent
boolean formulae arose directly from Shannon’s expansion for Boolean functions, two key exten-
sions made by Bryant were i) the use of a fixed variable ordering, and ii) the sharing of sub-graphs.
The first extension made the data structure canonical, while the second one allowed for compres-
sion in its storage. A third extension, also introduced in [6], is the development of an algorithm

3

x1 x2 x3 f
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

X1

X2 X2

X3 X3 X3 X3

1 0 0 1 0 0 1 1

X1

X2 X2

X3 X3

0 1

(A) (B) (C)

Figure 3: (A) A truth table for the Boolean function f(x1, x2, x3) = (¬x1∧¬x2∧¬x3)∨(x1∧x2)∨(x2∧x3)
(B) A Binary Decision Tree of the truth table in (A). A dashed edge emanating from variable/node xi

indicates that xi is false. A solid edge indicates that xi is true. (C) A Binary Decision Diagram of the truth
table in (A). Notice that it is a more compact representation that the Binary Decision Tree.

for applying Boolean operators to pairs of BDDs, as well as an algorithm for composing the BDD
representations of pairs of functions. Briefly, if f and g are Boolean functions, the algorithms
implementing operators APPLY(f ,g,op) and COMPOSE(f ,g) compute directly on the BDD rep-
resentations of the functions in time proportional to O(|f ||g|), where |f | is the size of the BDD
encoding f . In this paper, BNs and the desired behaviors are encoded symbolically using BDDs.
Model checking algorithms, which call APPLY and COMPOSE as subroutines, are then used to find
a valid control strategy, or prove that none exists.

In practice, the construction of the BDDs is done automatically from a high-level language
describing the finite-state system and its behavior. In this paper, we use the specification language
used in the symbolic model checking tool NUSMV [12].

We note that BDDs can be generalized to Multi-terminal BDDs [13] (MTBDD), which encode
discrete, real-valued functions of the form f : {0, 1}n 7→ R. Significantly, MTBDDs can be used
to encode real-valued vectors and matrices, and algorithms exist for performing matrix addition
and multiplication over MTBDDs [13]. These algorithms play an important role in several model
checking algorithms for stochastic systems [5] which, in turn, we have used to develop algorithms
for finding control strategies in BNs with stochastic behaviors. We will focus on algorithms for
deterministic BNs in this paper.

3.3 Temporal Logics
Temporal logic is a formalism for describing behaviors in finite-state systems. It has been used
since 1977 to reason about the properties of concurrent programs [23]. There are a number of
different temporal logics from which to chose, and different logics have different expressive pow-
ers. In this paper, we use a small subset of the Computation Tree Logic (CTL). CTL formulae can
express properties of computation trees. The root of a computation tree corresponds to the set of
initial states (i.e., I) and the rest of the (infinite) tree corresponds to all possible paths from the
root. A complete discussion of CTL and temporal logics is beyond the scope of this paper. The
interested reader is directed to [14] for more information.

4

The syntax of CTL is given by the following minimal grammar:

φ ::= a | true | (¬φ) | (φ1 ∧ φ2) | EXφ | E[φ1Uφ2]

Here, a ∈ AP , is an atomic proposition; “true” is a Boolean constant; ¬ and ∨ are the normal
logical operators; E is the existential path quantifier (i.e., “there exists some path from the root in
the computation tree”); and X and U are temporal operators corresponding to the notions of “in
the next state”, and “until”, respectively. Given these, additional operators can be derived. For
example, “false” can be derived from “¬true” and the universal quantifier, AXφ, can be defined
as ¬EX¬φ.

Given some path through the computation tree, π = 〈π[0], π[1], . . . 〉, the semantics of a CTL
formula are defined recursively:

π |= a iff a ∈ L(π[0])

π |= true, ∀π
π |= ¬φ iff π 6|= φ

π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2

π |= EXφ iff π[1] |= φ

π |= E[φ1Uφ2] iff ∃i ≥ 0, π[i] |= φ2 ∧ ∀j < i, π[j] |= φ1

Here, the notation“π |= α” means that π satisfies α.

3.4 Model Checking Algorithms
A model checking algorithm takes a Kripke structure, M = (S,R, L), and a temporal logic for-
mula, φ, and finds the set of states in S that satisfy φ: {s ∈ S | M, s |= φ}. The complexity of
model checking algorithms varies with the temporal logic and the operators used. For the types of
formulas used in this paper (see Sec. 4), an explicit state model checking algorithm requires time
O(|φ|(|S|+ |R|)), where |φ| is the number of sub-formulas in φ ([14] p. 38).

Of course, for very large state spaces, even linear time is unacceptable. Symbolic model check-
ing algorithms operate on BDD encodings of the Kripke structure and CTL formula. Briefly, the
temporal operators of CTL can be characterized in terms of fixpoints. Let P(S) be the powerset
of S. A set S ′ ⊆ S is a fixpoint of a function τ : P(S) 7→ P(S) if τ(S ′) = S ′. Symbolic model
checking algorithms define an appropriate function, based on the formula, and then iteratively find
the fixpoint of the function. This is done using set operations that operate directly on BDDs. The
fixpoint of the function corresponds exactly to {s ∈ S | M, s |= φ}. The interested reader is
encouraged to read [14], ch. 6 for more details.

The symbolic model checking algorithms used in this paper are exact. We note that there are
also approximation algorithms for model checking (e.g., [27]), which employ sampling techniques
and hypothesis testing. Such algorithms provide guarantees, in terms of the probability of the
property being true, and can scale to much larger state spaces. These do not use BDDs, but rather
operate on the high-level language description of the finite-state model.

5

MODULE BN
VAR

V1: boolean; // variable node 1
V2: boolean; // variable node 2
V3: boolean; // variable node 3
C1: boolean; // control node 1
C2: boolean; // control node 2
COUNTER: 0 .. T+1;// counter

ASSIGN
init(V1) := 1;
init(V3) := 1;
next(V1) := (V1 & V2) | !C2 ;
next(V2) := ! V3 & C1 ;
next(V3) := V1 & V2 & C2 ;
next(COUNTER) := COUNTER+1 ;

Figure 4: Pseudocode based on the language used in the symbolic model checking program NUSMV. This
code implements the BN in Figure 2. The code consists of a module with variable declaration statements,
“init” statements that initialize the variables, and ”next” statements that implement each φi and increment a
counter.

4 A Symbolic Model Checking Approach to Finding Control
Policies

The use of model checking algorithms for finding control strategies requires three steps:
First, the BN must be encoded using a high level language for describing finite-state mod-

els. Different model checking software use different modeling languages. In Figure 4, we show
pseudo-code for encoding the BN in figure 2. This pseudo-code is based on the language used
in the model-checking tool NUSMV. The code contains a block of variable definitions. In the
example, we declare Boolean variables for v1, v2, v3, c1,and c2. The set of initial states, I , is en-
coded using “init” statements. The update rules, Ψ, are encoded using “next” statements. A single
variable COUNTER is declared that marks the passage of time. A “next” statement for COUNTER

updates the counter.
Second, a CTL formula must be written. In this paper, we are concerned with CTL formulae

that ask whether it is possible to end up in the goal state(s), F , at time t. Let φF be a formula
describing the goal state. This formula can describe any subset of the variables in the BN. For
example, φF := v1 ∧ ¬v2 ∧ v3 or φF := v1 ∧ v3 are both valid formulas. The former chooses to
specify the state of each variable, the latter does not. Let φt :=COUNTER= t be a Boolean formula
that evaluates to true if the variable COUNTER is t. The formula φ := E[¬φF U(φF ∧ φt)] can be
used to find a control policy. In English, this formula says: “There exists a path that enters state
F for the first time at time t”. Alternatively, if we wish to relax the restriction that the BN cannot
enter state F before time t, we would use the formula φ′ := E[trueU(φF ∧ ψt)], which translates
as “In the future, the model will be in F at time t.” Temporal logics are very expressive and can
encode a number of complex behaviors. For example, it is possible to specify particular milestones
through which the model should pass en route to the final goal. That is, one can construct formula
that say that the BN should enter state X1 before X2, must enter X2 by time t1, and must reach
the goal state at exactly time t2. This expressive power is one of the key advantages of a model

6

checking based approach to the design of control policies.
Finally, we apply an appropriate symbolic model checking algorithm to find a control policy.

If a control policy exists (i.e., if φ is true), then we ask the model checking algorithm for a witness,
πw, to the formula. The control policy, Γ, is then simply extracted from πw by reading off the
values of 〈c(0), c(1), ..., c(t)〉1.

5 Related Work
Boolean Networks have been used extensively to model complex biological systems (e.g., [2, 3, 17,
18]). The design of control strategies for Boolean networks and related models has been considered
by a number of different authors (e.g., [1, 11, 15, 24]). Akutsu and co-workers [1] were the first to
show that the design of control policies is NP-hard. They also provide a polynomial-time algorithm
that works on the special case where the topology of the BN forms a tree. The primary difference
between our work and these is that our method is based on symbolic model checking and we place
no restriction on the topology of the network. We will show in the next section that despite the fact
that the problem is NP-hard, in practice model checking based approaches to control policy design
can scale to very large models. Of course, the hardness result implies that our approach will not
apply to every BN.

Recently, there has been growing interest in the application of formal methods, including model
checking to biology. Most applications of model checking in biology have been directed to mod-
eling biochemical and regulatory networks, (e.g., [4, 9, 10, 19, 22]), although not for the design of
control policies. In our own work, we have applied model checking [20], and a related technology
based on decision procedures [21] to the protein folding problem.

6 Results
We present results from two kinds of experiment. The first experiment is designed to highlight the
scalability of a model checking based approach to control policy design. The second experiment
applies our approach to an existing BN model of embryo development in drosophila.

6.1 Scalability
We have performed a large-scale study on randomly generated BNs in order to characterize the
scalability of our approach. In total, we considered 13,400 separate BNs. We considered several
different network topologies, which are shown in Figure 5. These topologies are meant to reflect
different kinds of networks ranging from simple feedback loops (chains), feedback loops with
complex topologies (random chains), loosely coupled modules (modular), to a dense network
(small diameter). Within each network category, we performed separate experiments randomly
generating graphs by varying: a) the number of non-control variables over the interval [10,640]; b)
the average number of parents for each node over the interval [2, 8]; c) the number of control nodes

1Equivalently, as we performed in our experiments, we can request a counterexample to ¬φ.

7

CHAIN

RANDOM CHAIN

v v v v v v v v v

c cc

v v v v v v v v v

c cc

MODULAR

SMALL DIAMETER

v v v v v v v v v

c cc

v v v v v v v v

v v v v v v v v v

c cc

v v v v v v v v

Figure 5: Network topologies used in our experiments on scalability. Chain describes a model where the
variables form a circular chain. Random Chain describes a model where the variables form a circular chain,
but a random number of “long-range” edges are added. Modular describes a model with coupled modules.
Each module is outlined. Small Diameter describes a model where a graph has a small diameter. In each
case, the placement of the control nodes is random.

over the interval [2,64]; d) the number of variables specified in the goal state, F , over the interval
[4,80]; and e) the target time, t, over the interval [1,32]. For each combination of parameters,
we generated 100 BNs randomly, constructed a CTL formula, and identified a control strategy
using NUSMV. Each experiment took less than 12 minutes on a single Pentium 3 processor with 2
GB of memory. The mean and median runtimes were 2 and 0.6 seconds, respectively. The longest
runtime (693 seconds) was on a random chain topology model with 80 nodes, an average in-degree
of 4, 4 control nodes, a target specifying the state of 4 variables, and a time of 32. These results
suggests that a model checking approach to policy design scales well to randomly generated BNs.

6.2 Application To D. Melanogaster Embryo Development
To test our approach on a BN for a real biological process, we applied it to the task of finding con-
trol policies to an existing model of fruit fly embryo development [3]. Briefly, Albert and Othmer
have developed a BN model of the segment polarity gene network in D. Melanogaster (Fig. 6-left).
The model comprises 5 RNAs: (wingless (wg); engrailed (en); hedgehog (hh); patched (ptc); and
cubitus interruptus (ci)), and 10 proteins: (WG; EN; HH; PTC; CI; smoothened (SMO); sloppy-
paired (SLP); a transcriptional repressor, (CIR), for wg, ptc, and hh; a transcriptional activator,
(CIA) for wg and ptc; and the PTC-HH complex, (PH)). Each molecule is modeled as a Boolean
variable and the update rules are Boolean formulas that take into account both intra-cellular state,
and inter-cellular communication. The Albert and Othmer research did not consider the question
of control policy design.

Albert and Othmer have demonstrated that the Boolean model accurately reproduces both wild-
type and mutant behaviors. In their experiments, they consider a 1-dimensional array of cells
initialized to the experimentally characterized cellular blastoderm phase of Drosophila develop-
ment, which immediately precedes the activation of the segment-polarity network. The purpose of

8

EN FZFZ

Cell 1 Cell 2

SLP
WGWG

PTCPTC

SMO

CIACIR

CI

en

wg

ptc

smo

ci
hh HHHH

PH PH

Figure 6: (Left) The drosophila segment polarity BN from Albert and Othmer. The figure shows one cell
in detail (large grey box), and the inter-cellular signals (WG and HH) between two adjacent cells. See text
for more details. (Right) Expression pattern of wg in wild-type (top) and a “broad-stripe” mutant embryo
(bottom).

the segment-polarity network is to maintain a pattern of expression throughout the life of the fly
that defines the boundaries between parasegments, small linear groupings of adjacent cells. Two
possible parasegment boundary expression patterns are shown in Figure 6-(right)2. In the Albert
and Othmer work, the parasegments are four cells wide. We note that the steady-state expression
patterns of different sub-populations of cells differ due to inter-cellular communication — this is
precisely the mechanism by which the parasegment boundaries are maintained. That is, the fate of
every cell is not the same, even though each cell is running the same regulatory network.

In our experiment, we modified the Albert and Othmer BN in two ways. First, we considered a
32x32, two-dimensional array of cells of dimension, instead of the 1x12 one-dimensional array of
cells considered in [3]. We believe that this extension to a two-dimensional model is the first of its
kind; we also believe that the 15,360 Boolean variables in our model is the largest ever considered
for the purpose of control policy design. Topologically, this network most closely resembles the
“modular” network in Figure 5. Adjacent cells in the network can communicate, which introduces
loops in overall topology of the BN for the 16x16 array of cells. Second, we modified the network
such that the RNAs wg and hh becomes a control node in the network. In principle, one could
control RNAs through RNA-silencing or micro RNAs. We used our methods to design two control
policies for hh. The first is designed to drive the system to either the wild-type expression pattern
(Fig. 6-A (top)) and the other to a “broad-stripe” pattern (Fig. 6-A (bottom)). Our algorithms
successfully found the two control policies in 6.1 and 6.2 minutes, respectively. The computation
was dominated by the time to construct the BDDs. We believe these results strongly suggest that
our approach can be used to find control signals for biologically relevant BNs of substantial size.

2The images in Fig. 6-A are taken from http://www.fruitfly.org (top) and [26] (bottom)

9

7 Conclusions and Future Work
We have introduced an effective means for automatically discovering control sequences for Boolean
networks based on techniques from the field of model checking. Our approach scales to very large
BNs, having as many as 15,360 nodes, and runs in seconds to minutes. We note that, due to the
inherent computational complexity of finding control policies in BNs [1], we cannot claim that our
approach will scale to every BN of large size. Rather, our results suggest that the modular design of
“real” biological networks may reduce the possibility of encountering worst-case instances. This
is an interesting question and we believe it is related to the phenomenon of canalizing functions
and other generic properties of BNs (e.g., [25]).

BNs have been used widely to model a range of biological phenomena. However, the fact that
BNs made strong assumptions about the binary nature of each variable (i.e., active or inactive),
the synchronous nature of the updates, the assumption that time unfolds in discrete steps, and the
assumption that the dynamic are deterministic. Ultimately, these assumptions limit the overall
applicability of BNs. We note that our approach to control policy design can be adapted for use to
a much broader range of models including those with continuous-valued variables, asynchronous
updates between variables, continuous time, and stochastic transitions. We are presently pursuing
these goals as part of ongoing research.

Acknowledgments
This research was supported by a U.S. Department of Energy Career Award (DE-FG02-05ER25696),
and a Pittsburgh Life-Sciences Greenhouse Young Pioneer Award to C.J.L.

Acknowledgments
We thank Dr. Edmund Clarke for helpful discussions on this topic. This research was supported by a U.S.
Department of Energy Career Award (DE-FG02-05ER25696), and a Pittsburgh Life-Sciences Greenhouse
Young Pioneer Award to C.J.L.

References
[1] T. Akutsu, M. Hayashida, W.K. Ching, and M. Ng. On the complexity of finding control

strategies for boolean networks. Proc. 4th Asian Pacific Bioinf. Conf., pages 99–108, 2006.

[2] T. Akutsu, S. Miyano, and S. Kuhara. Inferring qualitative relations in genetic networks and
metabolic pathways. Bioinformatics, 16(8):727–734, 2000.

[3] R. Albert and H. G. Othmer. The topology of the regulatory interactions predics the expres-
sion pattern of the segment polarity genes in drosophila melanogaster. Journal of Theoretical
Biology, 223:1–18, 2003.

10

[4] M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Model building and model checking for
biochemical processes. Cell Biochem Biophys., 38(3):271–286, 2003.

[5] C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan. Symbolic
model checking for probabilistic processes. Proc. 24th International Colloquium on Au-
tomata, Languages and Programming (ICALP’97), 1256:430–440, 1997.

[6] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
put., 35(8):677–691, 1986.

[7] J.R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic model
checking for sequential circuit verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 3(4):401–424, 1993.

[8] J.R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic Model
Checking: 1020 States and Beyond. Proc. Fifth Ann. IEEE Symposium on Logic in Computer
Science, pages 428–439, 1990.

[9] M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton. Analysis of signalling pathways using
the PRISM model checker. Proc. Computational Methods in Systems Biology (CMSB’05),
pages 179–190, 2005.

[10] N. Chabrier and F. Fages. Symbolic Model Checking of Biochemical Networks. Proc 1st
Internl Workshop on Computational Methods in Systems Biology, pages 149–162, 2003.

[11] P. C. Chen and J. W. Chen. A markovian approach to the control of genetic regulatory
networks. Biosystems, 90(2):535–45, 2007.

[12] A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, P. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking. CAV ’02:
Proceedings of the 14th International Conference on Computer Aided Verification, pages
359–364, 2002.

[13] E.M. Clarke, M. Fujita, P. C. McGeer, J.C.-Y. Yang, and X. Zhao. Multi-terminal binary de-
cision diagrams: An efficient datastructure for matrix representation. IWLS ’93 International
Workshop on Logic Synthesis, 1993.

[14] E.M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge, MA,
1999.

[15] A. Datta, A. Choudhary, M. L. Bittner, and E.R. Dougherty. External control in markovian
genetic regulatory networks. Mach. Learn., 52(1-2):169–191, 2003.

[16] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic model check-
ing of concurrent probabilistic processes using MTBDDs and the Kronecker representation.
Proc. 6th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’00), 1785:395–410, 2000.

11

[17] S.E. Harris, B.K. Sawhill, A. Wuensche, and S. Kauffman. A model of transcriptional reg-
ulatory networks based on biases in the observed regulation rules. Complex., 7(4):23–40,
2002.

[18] S. A. Kauffman. The Origins of Order: Self-Organization and Selection in Evolution. Oxford
University Press, 1993.

[19] M. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn, J. Heath, and E. Gaffney. Simu-
lation and verification for computational modelling of signalling pathways. WSC ’06: Pro-
ceedings of the 38th conference on Winter simulation, pages 1666–1674, 2006.

[20] C.J. Langmead and S. K. Jha. Predicting protein folding kinetics via model checking. Lecture
Notes in Bioinformatics: The 7th Workshop on Algorithms in Bioinformatics (WABI), pages
252–264, 2007.

[21] C.J. Langmead and S. K. Jha. Using bit vector decision procedures for analysis of protein
folding pathways. Fourth Workshop on Constraints in Formal Verification, page in press,
2007.

[22] C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, and B. Mishra. Algorithmic
Algebraic Model Checking I: Challenges from Systems Biology. 17th Internl Conf. on Comp.
Aided Verification (CAV), pages 5–19, 2005.

[23] A. Pnueli. The temporal logic of programs. Proceedings of the 18th IEEE. Foundations of
Computer Science (FOCS), pages 46–57, 1977.

[24] P. Ranadip, D. Aniruddha, L. Bittner, and R. Dougherty. Intervention in context-sensitive
probabilistic boolean networks. Bioinformatics, 21(7):1211–1218, 2005.

[25] I. Shmulevich, H. Lhdesmki, E. R. Dougherty, J. Astola, and W. Zhang. The role of certain
post classes in boolean network models of genetic networks. Proc Natl Acad Sci U S A,
100(19):10734–10739, 2003.

[26] T. Tabata, S. Eaton, and T. B. Kornberg. The drosophila hedgehog gene is expressed specif-
ically in posterior compartment cells and is a target of engrailed regulation. Genes Dev.,
6(12B):2635–2645, 1992.

[27] H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event systems
using acceptance sampling. CAV ’02: Proceedings of the 14th International Conference on
Computer Aided Verification, pages 223–235, 2002.

12

	1 Introduction
	2 Boolean Networks
	3 Model Checking
	3.1 Modeling Concurrent Systems as Kripke Structures
	3.2 Symbolic Encodings of Kripke Structures
	3.3 Temporal Logics
	3.4 Model Checking Algorithms

	4 A Symbolic Model Checking Approach to Finding Control Policies
	5 Related Work
	6 Results
	6.1 Scalability
	6.2 Application To D. Melanogaster Embryo Development

	7 Conclusions and Future Work

