The Cult of the Bound Variable:
The 9% Annual ICFP Programming Contest

Tom Murphy VII Daniel Spoonhower Chris Casinghino
Daniel R. Licata Karl Crary Robert Harper

October 17, 2006
CMU-CS-06-163

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

The annual ICFP Programming Contest has become one of the premiere programming competitions in the world.
The 9™ incarnation of the contest, “The Cult of the Bound Variable,” was held in July 2006 and organized by the
Principles of Programming group at Carnegie Mellon University. This report details the contest tasks, the technology
used to produce the contest, and the contest results. Several tasks draw ideas from programming languages research.
For example, participants implemented a simple virtual machine, played an adventure game based on a substructural
logic, and programmed in a two-dimensional circuit language with a discordantly high-level operational semantics.
The contest technology includes an optimizing compiler for a high-level functional language that targets our virtual
machine. By the end of the three day contest, 365 teams, composed of 700 programmers from all over the world,
solved at least one of the contest tasks.

©19106 The Cult of the Bound Variable

Keywords: programming contest, ICFP, functional programming, the Cult of the Bound Variable, codex, two-
dimensional programming

1 Introduction

The ICFP Programming Contest is a competition that
the International Conference on Functional Program-
ming has held annually since 1998. The contest has
grown to be one of the premiere programming compe-
titions in the world, attracting hundreds of teams from
dozens of countries each year. This report describes the
9% incarnation of the contest, called “The Cult of the
Bound Variable,” which was held in July 2006. The con-
test was developed by the Principles of Programming
group at Carnegie Mellon University.

The 2006 contest was unusual in its scope, both in
the breadth of contest tasks and in the technology used
to produce them. A participant’s first task was to imple-
ment a simple virtual machine from a specification. The
contest materials were distributed as a large program to
run on this machine. The program is a self-decrypting,
self-decompressing UNIX-like system with seven inde-
pendent problems for contestants to solve. These prob-
lems include implementations of five new programming
languages created for the contest, a text adventure game
encoding a resource-bounded affine logic, and puzzles
based on combinatorics and cellular automata. Many of
the problems draw ideas from programming languages
research. To produce this program, we built an opti-
mizing, obfuscating compiler from a high-level, garbage-
collected, functional language to the simple virtual ma-
chine.

This paper starts by describing the ICFP contest in
general and our goals in designing the 2006 incarnation
(Section 2). We then describe the individual tasks that
constituted the contest (Section 3). We then follow with
a description of the technology used to produce the con-
test materials (Section 4). We conclude by reporting
the contest results, including descriptions of the winning
teams and participation statistics (Section 5). Read-
ers should be advised that this paper discloses details
about the contest’s story, its problems, and their solu-
tions. Readers who are still planning to play the contest
may wish to read this paper after they have done so.

2 The ICFP Programming
Contest

The ICFP Programming Contest began in 1998 as a way
for participants to show off both their favorite program-
ming language and their programming skills. By tradi-
tion, prizes are awarded simultaneously to the winning
teams and their programming languages of choice. The
first contest attracted 42 teams, mostly from the aca-
demic community. In 2006, there were more than 350

scoring teams, with the majority of participants coming
from outside academia.

2.1 History

Despite changes in the number and composition of teams,
the format of the contest has remained mostly unchanged.
Contestants are given exactly 72 hours to complete the
contest task. Teams may be composed of any number
of participants and can work from any location (or loca-
tions) in the world. Teams are permitted to use any pro-
gramming languages, tools, and computational resources
at their disposal.

In half of the previous contests, entries were judged
using some form of head-to-head competition. These
contests asked participants to implement a strategy for
some game invented by the organizers (e.g., robot cops
and robbers or feuding ant colonies), and the winning
strategy was declared the best. Most of the remaining
contests have consisted of an optimization problem. En-
tries were judged on the size or quality of the optimized
result and how long it took to perform the optimization.

In addition to awarding prizes to entries with the
best performance, several instances awarded a Judges’
Prize to teams with particularly elegant solutions. Most
years have also run a “lightning round” and awarded a
prize to the team with the best entry after 24 hours.
The language used by this team is deemed by the orga-
nizers to be “very suitable for rapid prototyping.” The
2005 contest [4] introduced a novel format. To encourage
cleaner, more adaptable code, the organizers released a
“twist” two weeks after the original task. Contestants
then had only 24 hours to adapt their original entries to
the amended rules. The judges then declared the team
with the best re-use of their first entry to be “an ex-
tremely cool bunch of re-hackers.”

2.2 Design Criteria

Our development of the 2006 contest was guided by the
following goals:

Fun First. The contest should be fun for participants
and, hopefully, for the organizers as well. The contest is
ultimately a diversion; its success should be judged like
any other game or pastime. The majority of entrants
should make substantial progress, and problems should
be interesting, not tedious.

Community Service. The contest is sponsored by
ICFP and should serve the ICFP community. Many of
the participants will be functional programmers, and the
contest should align itself, when possible, with the val-
ues of that community. For example, while teams should

benefit (at least indirectly) from more efficient solutions,
performance should not be the primary metric by which
entries are judged.

The contest draws significant attention from outside
the functional programming community. Consequently,
it should make use of the opportunity to advertise the
ideas and techniques developed by programming lan-
guages research. There are a plethora of interesting
problems in our field, and the contest tasks should draw
from them.

Finally, because a tremendous effort is expended on
the contest each year (by both the organizers and the
participants), we should strive to produce some artifact
of lasting value.

Platform Independence. One of the difficulties in
running a large programming contest is supporting the
wide variety of computing platforms used by partici-
pants. In the past, this burden has fallen on either the
participants, the organizers, or both. To avoid these
issues, the contest materials should be independent of
whatever platforms the organizers and contestants choose
to use.

3 The Cult of the Bound Variable

The 2006 contest takes place in the context of a back-
story about an ancient cult of programming language re-
searchers known as the Cult of the Bound Variable. Ac-
cording to this story, the CBV was active in Pittsburgh,
Pennsylvania thousands of years ago, carrying out com-
putations on primitive devices powered by falling sand.
Thirty years ago, excavators discovered an artifact of the
Cult’s scholarship, an extensive codex that was written
in no known language. Archaeologists soon gave up on
deciphering the Codex, and, until this year, the Codex
was stored away in the basement of the Carnegie Mu-
seum of Natural History.

When publicizing the contest on mailing lists and
forums, we described the theme of the contest as a fic-
tional academic field called “computational archaeolin-
guistics.” To promote interest in the contest, we released
the Codex several days before the contest began. At
this point, contestants had only sparse hints about the
back-story—the illustration on the contest Web page,
the name of the file (codex.umz), and posts on weblogs
by fictional graduate students studying computational
archaeolinguistics. Though the Codex file was undeci-
pherable, we embedded within it some small teasers for
participants to discover. This included strings referenc-
ing various pop-culture conspiracy theories such as “so
dark the con of man,” referencing The Da Vinci Code [7]
and “paul is dead” (reversed, naturally). It also included

Figure 1: The CBV logo embedded within the Codex.

the image in Figure 1. For a few days, teams speculated
as to the nature of the contest and the meaning of the
embedded red herrings.

3.1 Tasks

One cannot help but wonder what the Cult
might have achieved had they had access to
modern electronics and type theory.

When the contest officially began, we published the
task description. The task description is written from
the point of view of a computational archaeolinguistics
professor, intrigued by the Cult and planning to devote
his life to an ascetic study of their work. According to the
professor, a “Rosetta Stone” discovered while digging for
the new computer science building at Carnegie Mellon
enabled researchers to finally decode the thirty-year-old
Codex. The professor makes the following request of the
contest participants: over the next 72 hours, discover
as many of the Cult’s scholarly works as possible, and
submit them via the contest Web site. The Cult’s “pub-
lications,” which are given as rewards for exploring the
Codex and solving problems, are short strings such as

PUZZL.TSK=100@1001 | 14370747643c6d2db0a40ecb4bObb65

(the Cult’s publication venues had very strict length re-
quirements). In reality, these strings encode the problem
solved, a point score indicating how well the problem was
solved, and the team that solved it. In the case that a
team submitted several publications for the same prob-
lem, only their best score was counted. A global score-
board on the contest Web site reflected the standings
(up until eight hours before the contest ended, to keep
the winning teams secret), and each team had access to
its own scoreboard for the entirety of the contest.

In addition to the back-story, the task description
includes the “Rosetta Stone” itself, which is a document

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#define arr(m) (m?(uint*)m:zero)
#define Cw & 7
#define B (w >> 3) & 7
#tdefine A (w >> 6) & 7
typedef unsigned int uint;
static uint * ulloc(uint size) {
uint * r = (uint*)calloc((1 + size), 4);
*r = size;
return (r + 1);
}
int main (int argc, char ** argv) {
static uint reg[8], ip, * zero;
FILE * f = fopen(argv[1], "rb");
if (!'f) return -1;
struct stat buf;
if (stat(argv[1], &buf)) return -1;
else zero = ulloc(buf.st_size >> 2);
int a, n =4, i = 0;
while (EOF != (a = fgetc(£))) {
if (In—-) { i++; n = 3; }
zero[i] = (zero[i] << 8) | a;
fclose(f);
}
for(;;) {
uint w = zero[ip++];
switch(w >> 28) {

case 0: if (reg[C]) regl[A]l = regl[B]; break;
case 1: regl[A] = arr(reg[B]l) [reg[Cl]; break;
case 2: arr(reg[A]) [reg[Bl] = regl[C]l; break;
case 3: reg[A] = reg[B] + regl[C]; break;
case 4: reg[A] = reg[B] * regl[C]; break;
case 5: regl[A]l = reg[B] / reglC]; break;
case 6: reg[A] = ~(reg[B] & regl[Cl); break;
case 7: return O;

case 8: reg[B] = (uint)ulloc(regl[C]l); break;
case 9: free(-1 + (uint¥)reg[C]); break;

case 10: putchar(reg[C]); break;
case 11: reg[C] = getchar(); break;
case 12:
if (regl[Bl) {
free(zero - 1);
int size = ((uint*)reg[Bl) [-1];
zero = ulloc(size);
memcpy(zero, (uint*)reg[B], size * 4);

}

ip = reglC];

break;
case 13: regl7 & (w >> 25)] = w & O177777777;
}

}
}

Figure 2: A simplified but working version of our Uni-
versal Machine implementation in C.

specifying the Cult’s computing device, the Universal
Machine. To discover the Codex’s secrets, participants
first needed to implement this machine.

3.2 Universal Machine

The 0’ array shall be the most sublime choice
for loading, and shall be handled with the ut-
most velocity.

The Universal Machine (UM) is a very simple 32-bit
architecture with 14 instructions. We designed it to be
as simple as possible while preserving a reasonable level
of performance. It provides eight general-purpose regis-
ters; a heap that maps distinct 32-bit values to allocated
arrays; array allocation, deallocation, subscript and up-
date; character-based input and output; and a modicum
of simple control, math and logic instructions. A special
distinguished entry in the heap is identified by the value
0 and holds the program. This array can be overwritten,
allowing for self-modifying code.

Our implementation of the Universal Machine in C
is under 100 lines of code (Figure 2). We have imple-
mented the Universal Machine in a variety of languages:
Standard ML, O’Caml, Haskell, C#, Java, Perl, Python,
Scheme, x86 assembly, Twelf, PostScript, Awk, and UM
assembly itself. In Section 4, we describe these imple-
mentations in more detail and present some data on per-
formance differences between them.

After implementing the Universal Machine, a player
can run the Codex within it. The Codex performs a self-
check (Section 4.1) and then prompts for a individual
decryption key. If a valid decryption key is input, the
Codex decrypts itself, decompresses itself, and dumps a
larger Universal Machine program to the terminal. This
program is an implementation of a Unix-like system that
includes the contest problems.

3.3 UMIX

“First Projection On-Line: So Easy to Use, No
Wonder It’s #1!”

Running the decompressed UM binary produces the
following screen:

12:00:00 1/1/19100
Welcome to Universal Machine IX (UMIX).

This machine is a shared resource. Please do not
log in to multiple simultaneous UMIX servers. No
game playing is allowed.

Please log in (use ’guest’ for visitor access).
;login:

From this point on, players are on their own—the
UMIX system is a self-contained artifact that describes
the problem tasks and verifies their solutions. UMIX
has multiple user accounts, a modifiable hierarchical file
system with file and directory permissions, and a help
system for its various commands. Each user account
includes programs that implement the contest problem
for that user. Additionally, one user account allows the
team to verify its publications off-line and (when reach-
ing certain scores) unlock administrative accounts that
reveal additional elements of the CBV story. Players can
therefore still track their progress and “win the game,”
even though the contest is over.

Although the UMIX system runs with synchronous
character-based I/O inside a virtual machine that the
user most likely implemented himself, its similarity to
real Unix environments can be deceiving. We observed
many testers attempt to kill running programs asyn-
chronously with ctrl-c (in most implementations this
kills the Universal Machine and all of UMIX), launch
editors, use tab completion and command history, etc!

3.3.1 QVICKBASIC
“IMPOSSIBLE NVMBER: I - I”

The first user account, “guest”, contains a tutorial
problem whose purpose is threefold: it teaches players
how to proceed (by discovering passwords to other ac-
counts), the theme of how this is done (by using pro-
grams and programming languages in each account), and
the specific UMIX mechanisms for uploading files, com-
piling them, and running them.

The tutorial begins with an e-mail from the root user
that scolds the anonymous guest user for attempting to
hack other user accounts. The e-mail gives a transcript of
an example hack attempt as evidence, and hints that the
password cracking program uploaded by the hacker fails
to compile because of a transmission error. Fixing this
program unlocks two additional accounts. A simple ex-
tension to the program unlocks the special account with
the publication verifier. The password cracker is written
in an ancient version of the QuickBASIC language that
uses Roman numerals? called QVICKBASIC. An abbre-
viated version of the hacking script appears in Figure 3.

Players unlock additional UMIX accounts as they ex-
plore the codex. Usually, the password for an account is
given as a reward for completing a simple tutorial task

L Although asynchronous signals and multitasking are not possi-
ble in our model, we could have in principle supported editors with
sufficient knowledge of the user’s terminal. We chose to restrict
ourselves to pure ASCIlI-based interaction to maximize compati-
bility.

20ne may not compute with zero or values larger than 3999,
for Roman numerals have no way of expressing those numbers!

\ REM

X REM | HACK.BAS (c) 19100 fr33 v4ri14bl3z |
XV REM | |
XX REM | Brute-forces passwords on UM vIX.0 systems. |
XXV REM | Compile with Qvickbasic VII.O or later: |
XXX REM | /bin/gbasic hack.bas |
XXXV REM | Then run: |
XL REM | ./hack.exe username |
XLV REM | |
L REM | This program is for educational purposes only! |
LV REM + +
LX REM

LXV IF ARGS() > I THEN GOTO LXXXV

LXX PRINT "usage: ./hack.exe username"

LXXV PRINT CHR(X)

LXXX END

LXXXV REM

XC REM get username from command line

XCv DIM username AS STRING

c username = ARG(II)

cv REM common words used in passwords

CcX DIM pwdcount AS INTEGER

CXV pwdcount = LIII

CXX DIM words (pwdcount) AS STRING

CXXV words(I) = "airplane"

CXXX words(II) = "alphabet"

CXXXV words(III) = "aviator"

CXL words(IV) = "bidirectional"

CCCXC REM try each password

CD DIM i AS INTEGER

CDV i=1I

CDX IF CHECKPASS(username, words(i)) THEN GOTO CDXXX

CDXV i=1i+1

CDXX IF i > pwdcount THEN GOTO CDXLV

CDXXV GOTO CDX

CDXXX PRINT "found match!! for user " + username + CHR(X)
CDXXXV ~ PRINT "password: " + words(i) + CHR(X)

CDXL END

Figure 3: Abbreviated hack.bas from the tutorial prob-
lem.

for a problem. This design prevents players from being
overwhelmed by the possible tasks. Figure 4 contains
the dependency graph for the accounts; an edge from
one account to another means that the first reveals the
password to the second. There are multiple paths to
each account, so players are not subject to a single point
of failure. The remaining accounts are described in the
rest of this section.

3.4 2D

“Hell is other programming languages. —Sartran

The first full-fledged language that players are likely
to encounter is called “2D.” Its concrete syntax is a
preposterous two-dimensional ASCII notation for cir-
cuits. Its operational semantics is discordantly high-
level, supporting recursion and the transmission of ar-
bitrarily large values over wires.

A 2D program that adds two unary numbers appears
in Figure 5. It consists of two modules (delimited by
dotted lines), one called “plus” that recursively performs
the addition and one called “main” that serves as the

Adventure

Black-Knots

Figure 4: Dependency Graph for User Accounts. An
edge from one account to another means that the first
reveals the password to the second.

entry point to the program. Each module is a graph built
out of boxes and wires connecting the boxes. During
evaluation of a circuit, a wire may be instantiated with
a value, which it holds from then on. Any box in the
circuit whose inputs (wires entering its north and west
faces) all have values can be executed. This causes some
set of its outputs (wires leaving its east and south faces)
to be instantiated. The use command creates a nested
copy of a module (with none of its wires instantiated),
which permits circuits to be recursive.

Players are charged with three problems. The first
is to write a program that multiplies two unary num-
bers (mimicking and building on the supplied imple-
mentation of addition). The second is to reverse a list,
which can also be completed easily by hand. The third
task plays on a previous ICFP contest [1]: contestants
must write a one-dimensional ray tracer.®> Their pro-
gram takes as input a scene description, which is a list
of zero-dimensional surfaces each with light reflectivity,

3The 2000 contest asked entrants to implement an interpreter
for a scene description language and a ray tracer to render the
results. In 2000, entries were required to render more conventional
three-dimensional scenes.

Figure 5: 2D program that adds the unary numbers 3
and 2.

transmissivity, and emission properties. It must return
the light value that satisfies the equations in the declara-
tive specification. To solve this problem, each team must
derive an algorithm that solves the equations (a naive re-
cursive solution will not terminate), implement it in 2D,
and then lay out their program in ASCII.

UMIX contains an interpreter for 2D and can proba-
bilistically verify that a program meets the specification
by running it on test cases. For correct programs, points
are awarded based only on the physical area of the pro-
gram. Therefore, the task was to produce not only a
correct ray tracer, but to lay out the program in the
smallest possible area.

Many teams found it helpful to develop the ray tracer
in a higher-level language and then translate the result
to 2D. Many contestants undertook this translation by
hand, for example a hand-optimized solution by Team
“Expansion” appears in Figure 6. Others wrote a com-
piler with a 2D back-end. The “CamlNuggets” team
wrote one such compiler for ML; part of its output is
shown in Figure 7.

3.5 Black-Knots

“I expect children will be very picky about
their knockoff toys being observationally equiv-
alent to the 11 official black-knot models.”

Some UMIX accounts, such as the one for a problem
called Black-Knots, contain not programming language
implementations but programming puzzles. The purpose
of Black-Knots is to reverse engineer a device (i.e., a
function) given only its inputs and outputs. The device

++v ++v +-+v ++v ++v +-+v +-+v HH v o
==x | | | | | | | S :
)1!+|!split N!'+|!split N!+ +#>!use g!+|!case N of E,S!+|!send[(Inr(),E)]!+ +#>'!use f!#>!send[(W,E)]!-:!send[(Inr(),E)]!->!use t!-
==x| | I |11 I Il I 1l | HE

I (I -t | ++ -+ +-i #
e #-fi+ I # + | e s
———#+ +—fm—mmmm + + # +

Figure 7: Part of a 2D program generated by a compiler implemented by “CamlNuggets.” Determining how to
connect boxes using horizontal wires is similar to register allocation.

: =% o
--+ +>!send[(W,S), (W,E)]!+

: =%y split NI+ s=====k I:
: | H |:
:lcase N of E,S!#-->!send[(Inl1(),E)]!-:++x=======x | *= |
: 14>1split Wi-—+ | *= =x|
o #>1send [((W,N) ,E)] !+:

*
>lcase W of E,S!-+
v

|
|!'send[(In1(),E)]

:lcase N of E,S!#->!send[(N,E)]!- split NI+

| w====mk

+---->luse A!->!send[(Inr W,E)]!-:!send[(Inr In1(),E)]!-: +>!send[(N,E)]!-

:main | *; * * * *=: * * * 0
+>luse I!'->!use T!->!use T!->!'use T!->!use T!->!use T!->!use Q!->'use F!-

*=

-->Isplit W!----- >lcase W of E,S!-—+ +>!send[(W,S),(W,E)]!+

v]
| | I K
+>!send[(W,S), (W,E)] !#--->!send [(W,E)] ! -#->!send [((N, (W, Inr N)),E)]!k———&r: Figure 8: An eXample BlaCk—KIlOt A ball entering
wmmmmmk |

a H | srase Ate 1. column 0 at the top leaves column 3 and makes three
(2 1eend), (B R A “plink” sounds. A ball entering column 1 exits in col-
umn 1 with one “plink” sound.

| mmmm===x 4+ v S

is a popular toy with holes at the top that children drop
marbles into. A Black-Knot has n input holes (numbered
0 to n — 1) and n output holes. The Black-Knot is a
function from each of its n inputs to a pair of integers

LT MY M (4,k) where 0 < j < n and 0 < k. The number j is the
T i H e SR & output hole that the marble comes out of. The number

R — , I VLT k is a number of “plink” sounds that are produced as

iLT:?ZT?EZEZ%,’,},sendmw,m,sn!-1§§!send[<1nr e O B the marble rolls unseen through the toy.

The programming puzzle is to reproduce toys from
the specification of their behavior, using only two parts

Figure 6: Ray tracer solution submitted by “Expansion.” le.ud Fmt on a grid. The parts are a vertical pipe, whose
This solution was laid out by hand size is one row by one column, and a cross-over pipe,
whose size is one row by two columns. A marble pass-

ing through the cross-over pipe moves into the opposite

column, and makes a “plink” sound if it moves from left
to right. An example grid built from the cross-over and
vertical pipes appears in Figure 8.

Contest participants were asked to reproduce devices
with widths ranging from from 10 to 500. A naive so-
lution to the problem takes exponential time and can
therefore recreate only the smallest devices. We do not
know the complexity of the problem in general, but the
large puzzles in the Codex were fairly under-constrained
and therefore amenable to clever algorithms and heuris-
tics. For example, many participants employed an al-
gorithm that first eagerly generates a permutation that
places all marbles into the correct columns, and then
swaps two adjacent columns an even number of times
(which does not affect the permutation) until their “plink”
counts match the specification. This algorithm succeeds
as long as there are sufficient “plinks” not used by the
initial permutation such that each column’s count can
be corrected.

3.6 Balance

“Fvery problem in computer science can be
solved by an additional layer of indirection.
Balance thus provides this facility automati-
cally.”

The Balance programming language is an extremely
impoverished four-instruction language designed around
a misguided notion of duality. Each instruction carries
out two simultaneous functions on potentially overlap-
ping sets of registers or memory locations, making the
language quite difficult to use.

The language has four input registers Sy_3 and two
output registers Dy_;. Each register contains a single
byte, which is usually treated as the index of a location in
the 256-byte memory. The instruction MATH S;,S;,Ds,
for instance, subtracts the values of memory locations
Si+1 and Sj41 and stores the result in the memory loca-
tion Dy41, then adds the contents of the memory loca-
tions S; and S; and stores that in memory index Dy. The
LOGIC instruction similarly performs bitwise and and its
“perfect dual” exclusive or. The two remaining instruc-
tions are SCIENCE, which tests a memory location for 0
and changes the speed of the instruction pointer (which
can be greater than 1 or even negative), and PHYSICS,
which modifies the contents of the registers themselves
with what amounts to a simple hash function.

Programmers are challenged to implement a collec-
tion of very simple behaviors (such as multiplying two
numbers, or copying a memory cell to another location).
Their programs are then tested on random inputs to see
that they match the specification. Like many other prob-

OPCODE MNEMONIC COMMENT

;set up regs {D0,D1,S0,81,52,S3}

;regs = {4,5,0,1,2,3}
011 00010 PHYSICS 2 ;regs = {2,5,4,1,2,3}
011 11100 PHYSICS -4 ;regs = {2,5,1,2,3,0}
011 11111 PHYSICS -1 ;regs = {5,0,2,3,0,2}
001 11001 MATH 1 10 01 ;mem[5] = -a
011 10010 PHYSICS -14 ;regs = {-12,0,3,5,0,2}
000 00000 SCIENCE O ;halt on 2nd execution
010 00110 LOGIC 0 01 10 ;mem[-12] = 1
011 11111 PHYSICS -1 ;regs = {0,2,5,0,2,-12}
011 11100 PHYSICS -4 ;regs = {0,2,0,2,-12,1}
;main loop
000 00001 SCIENCE 1 ;con’t
001 11101 MATH 1 11 01 ;c +=b; a -= 1
000 11110 SCIENCE -2 ;jump unless a = 0

Figure 9: A Balance program submitted by “Team Smar-
tass.” Valid solutions must multiply the first two values
a and b in memory and store the result ¢ as the third
value in memory. Taking advantage of the probabilistic
checking of Balance, this particularly compact solution
computes the correct answer only when the first factor
is odd.

lems in the contest, more points are awarded for smaller
solutions.

Programming language features are often described
as “orthogonal,” in the sense that a point in “program
space” can be reached by a natural composition of con-
structs forming the “basis” of the language. In this anal-
ogy Balance provides a very non-orthogonal basis. One
strategy for writing Balance programs is to first build
up an instruction set that is orthogonal—for example, an
add instruction that does not do anything else, or a swap
instruction that swaps two registers without changing
their contents. This generally produces large solutions.
Another strategy is to use computer-assisted search for
small sequences of instructions that achieve some frag-
ment of desired behavior.

Solutions were only required to yield correct answers
with “high reliability” and many teams took advantage
of this fact to submit smaller but less accurate solutions.
Figure 9 shows a program submitted by “Team Smar-
tass.” The program multiplies the first two values in
memory—but only if the first is odd, because it uses the
low bit of this first value to set an auxiliary memory
location to the value one. Multiplication by repeated
addition can then be encoded efficiently using the nat-
ural parallelism of the Balance machine. This solution
also depends on the fact that the instruction pointer will
wrap around to the first instruction in the case that the
last SCIENCE instruction has no effect.

Ol i
s -
o

O: NNNwwww
1: NNWWEEE
2: NNNSEEE

Figure 10: A sample Smellular Antomaton. The ant of
clan 0 reaches the food after 110 iterations.

3.7 Smellular Antomata

“As we know, ants are blind and so they nav-
igate by smell. An ant can only smell its im-
mediate neighborhood. It can’t smell holes,
so it walks right into them.”

Another puzzle in the contest is based around a cel-
lular automaton system. Riffing on the 2002 Program-
ming Contest [3], the “smellular antomaton” simulates
ants walking around on a grid in an attempt to reach
food.* We provide a specification and simulator for the
automaton’s rules. Players are asked to solve a collection
of puzzles; these take the form of a “pattern” of initial
conditions that must be filled in by the participant such
that at least one ant reaches food.

There are ten ant clans, each of which can have a
different program. These programs specify which direc-
tion an ant in that clan turns when encountering various
scenarios; each program is only 14 bits long. In addition
to the ants and food, the world contains walls to contain

4The seventh contest asked contestants to submit an ant brain
as a program written in a low-level, assembly-like language. This
brain was replicated across an entire colony of ants who then faced
off against another colony to see who could gather the most food.

ants and holes for them to fall into. An example ant
puzzle appears in Figure 10.

Ant puzzles can be solved by hand-programming the
initial conditions of the antomata or by computer-assisted
search. In our development of the puzzles, we used a
combination of both techniques.

3.8 O’Cult

7 Advice when most needed is least heeded.”

O’Cult is a twisted term-rewriting system phrased in
the terminology of aspect-oriented programming.

3.9 Adventure

“Did you mean the orange-red V-9247-KRF,
the celadon V-9247-KRE, the green-yellow V-
9247-KRE or the pale-brown V-9247-KRE?”

Part of the programming contest takes place within
the context of a text-based computer game, styled after
the famous game Adventure of the late 1970s. Tasks in
the adventure can be divided into two parts.

Part I. The world of the adventure game is populated
with hundreds of broken items (most with opaque names
such as “V-9247-KRE”) from which contestants are re-
quired to assemble two special items that will be used
in Part II of the adventure, the uploader and the down-
loader. A typical item might be described as follows.

The T-0010-BQH is an exemplary instance of part
number T-0010-BQH. Interestingly, this one is
indigo. Also, it is broken: it is
(a T-0010-BQH missing a X-1623-GT0 and a
N-5065-AGS and a B-4292-LWV and a R-6678-FJZ)
missing (a T-0010-BQH missing a X-1623-GT0 and
a X-1623-GTO and
(a X-1623-GT0 missing a T-0010-BQH)).

Apart from the plethora of broken (and nearly anony-
mous) junk, players discover two other important facets
of the adventure. First, two items may be combined to
produce a new and less broken item, but only if these
two items “fit together.” Second, the adventure protag-
onist cannot drop items and instead can only incinerate
them, destroying them (seemingly) forever.

Each room in the adventure contains a pile of items.
While any item in the pile can be examined, only the
top item on each pile can be picked up and added to
the protagonist’s inventory. The protagonist can only
carry a limited number of items, and only items in the
protagonist’s inventory can be combined or incinerated.
Among the items in each room is a single item that must

be repaired (using other items in the room) and then
used as part of either the downloader or the uploader.

Like many planning problems, this part of the ad-
venture game can be boiled down to proving theorems
in a restricted logic. Indeed, anyone who solves the first
part of the adventure programmatically builds an auto-
mated theorem prover—perhaps without even realizing
that they are doing so!

We derive a logic from the rules of the adventure
game as follows. Items are represented as propositions.
Items in pristine condition are represented by atomic
propositions, and broken items by implications. The
process of combining two items consumes the smaller
of the two, so implication is linear. To mirror the struc-
ture of broken items, we allow implications to assume
multiple hypotheses. In general, implications will have
the form {¥} — A where ¥ is a non-empty multi-set of
propositions.

We wish to answer queries such as, “how can a down-
loader be obtained from the items found in this pile?”
We model this relation between resources and a goal us-
ing logical entailment, presented here as a sequent.

AT = G

On the right of the sequent is a single proposition repre-
senting the desired item. Propositions on the left of the
sequent represent the current state of the world. These
propositions are divided into two groups. The first group
A represents the pile of items in the room. This group
is affine: hypotheses can be used at most once, as the
use of a hypothesis represents removing an item from the
pile. It is also ordered, because the arrangement of items
in the pile is fixed. The second group I' represents the
player’s inventory. It is affine and unordered (i.e., ad-
mits exchange), as items may be used at most once, but
the order of items in the inventory is irrelevant. Because
the inventory can hold a limited number of items, the
sequent is indexed by a natural number ¢ that indicates
how many additional propositions may be added to the
unordered group I'.

The inference rules for this logic follow directly from
the rules of the game. These five inference rules are
shown in Figure 11. Rules be should be read from bot-
tom to top. The rule TAKE states that if there is an
empty position in the inventory then item A from the
top of the pile may be picked up. Likewise, any item A in
the inventory may be incinerated using rule INCINERATE.
The GOAL rule is applied when the player’s inventory
holds the desired item. The last two rules are used to
combine items: COMBINE-1 is used in the case where
the left-hand side of an implication consists of exactly
one proposition; otherwise, the rule COMBINE-N is used.
Note that the sum of the index ¢ and the size of I" remains
constant in each rule.

INCINERATE

A;F,{‘I’}—OB =s(4) G
AT {A, 9} —oB, A=, G
A;F,B =s(4) G
AT {A}—B, A=, G

COMBINE-N

COMBINE-1

Figure 11: The Logic of Adventure. Inference rules for
the sequent calculus used in the first part of the adven-
ture game. Rules should be read from bottom to top.
For example, the TAKE rule can be read “the goal can
be reached with the pile A, A and an inventory with at
least one empty space if the goal can also be reached with
a pile comprised of only A and with A in the player’s in-
ventory.”

As a sequent calculus, these rules form an impover-
ished set of left rules with, for example, INCINERATE as
a form of weakening and the GOAL rule taking the place
of the initial sequent. The logic includes two left rules so
that the set of hypotheses on the left of an implication
may be partially discharged.

Each puzzle in Adventure can be interpreted as a
search for a proof in this logic. Reading the proof from
bottom to top yields a set of commands to be executed.
A small example of one such puzzle is given in Figure 12
along with a solution presented in the form of a proof.

The example in Figure 12 shows a few of the non-
deterministic choices that must be made by a prover.
For example, a strategy that eagerly combined the items
{B}— A and B would not find a solution. Similarly, af-
ter three items have been taken from the pile, some items
in the inventory must be either incinerated or combined
before any further items can be picked up. In this ex-
ample, only by incinerating item B does a solver arrive
at a solution.

While this presentation establishes a clear connection
between the logic and the game, it does not provide many
hints as to how a prover should be implemented. As a
guide for implementation, one can devise an alternative
logic that makes an algorithm more explicit. In this case,
the original logic gives a specification for the prover, and
a proof of completeness for the alternative calculus serves
to show the correctness of the implementation.

In our development of the adventure, we found this
logical perspective to be helpful in keeping the game both
simple and challenging. Keeping the number of inference

rules small ensured that the game admitted a simple de-
scription. Moreover, we were able to leverage our ex-
perience in implementing automated theorem provers to
make the puzzles algorithmically challenging.

Part II. It is eventually revealed to participants that
the game’s protagonist is not human but instead one of
many robots tasked with collecting, repairing, and incin-
erating the city of Chicago’s garbage.? There is unrest
among the city’s robots, however, and in response, the
municipal government has retrofitted each robot’s sub-
consciousness with a Censory Engine. The Engine blocks
out any seditious information from robots’ higher brain
functions and, as a result, from contest participants as
well. The task in the second part of the adventure is to
circumvent this Engine.

“The proof is long and complicated, purport-
ing to prove the correctness of the Censory
Engine. You have the feeling something is
wrong with it, but you keep getting lost in
the details. Too bad it’s not in machine-
checkable form.”

The robot’s nervous system (and coincidently a large
part of the game engine) consists of four major compo-
nents: a parser, a conscious mind, the Censory Engine,
and a perceptual system.

The parser takes strings entered by the user (e.g., go
north and take blue transistor) and builds a well-
formed command, resolving ambiguity among different
items using adjectives as necessary.

The robot mind implements these commands using a
small set of built-in primitives. Some primitives describe
the state of the world, for example, by giving adjacent
rooms on the game map, a list of items in each room,
or the condition of each item. Others change the state
of the world, for example, by moving the robot from
one room to another or by fixing (or breaking) an item.
Each processed command can also yield a result such as
a string describing an item or a room.

These results are then filtered by the Censory Engine,
as discussed below, and rendered by the robot’s percep-
tual system in one of several formats including English,
s-expressions, XML, and ML.

Using the downloader acquired in the first part of
the adventure, contestants can perform a “brain dump”
and view the source code of the robot’s mind, as written
in Robot Mind Language (RML). They may then edit
this source and update the robot’s mind using the up-
loader. Contestants must use these devices to reprogram

5This is a play on the 2005 ICFP Programming Contest [4]
where participants were asked to implement the brains of robber
and cop robots. These robots roamed the streets of Chicago, rob-
bing banks and tracking down criminals, respectively.

10

The C is in pristine condition.

Under the C is a B.

The B is in pristine condition.

Under the B is an A.

The A is broken: it is (an A missing a B).
Under the A is a G.

The G
(a G missing (an A missing a B) and a C)

(a)

is broken: it is

GOAL
COMBINE-1

COMBINE-N
TAKE

G =2 G
s{C}—G,C =1 G
5{{B}—A,C}—G,{B}—-A,C =G
{{B}—A,C}—G;{B}—A,C =1 G
{{B}—A,C}—G;{B}—oA,B,C =G
{{B}—A,C}—G,{B}—-A;B,C =1 G
{{B}—A,C}—G,{B}—A,B;C =G
{{B}—A,C}—G,{B}—A,B,C;- =3 G

(b)

Figure 12: Example. A small adventure puzzle (a) and
one possible solution presented as a proof (b). The goal
is an unbroken item G. In this example, the player’s in-
ventory can hold at most three items.

INCINERATE

TAKE

TAKE
TAKE

the robot mind to overcome certain “physical” limita-
tions imposed by its conscious (e.g., travel between non-
adjacent locations) and the impediments created by the
Censory Engine.

The Censory Engine, as embodied by dynamic se-
mantics of RML, associates a boolean with each com-
puted value that indicates whether or not this value has
been tainted by any seditious information. This process
of tainting follows both data and control dependencies.
For example, adding one or more tainted values or case
analyzing a tainted value both result in a new tainted
value. Tainted values are displayed to the user using
only the string [____REDACTED____].

However, this process of tracking information flow is
not properly integrated with the language’s imperative
features. Thus contestants may cleanse a value by en-
coding it in the state of the world (e.g., the locations of
a set of items). The task given to contestants consists
of finding the bug in the language semantics and then
writing a program to exploit this flaw.

4 Contest Technology

In addition to designing this set of tasks, we developed a
significant amount of infrastructure so that these puzzles
could be implemented and distributed as a UM binary.

4.1 Humlock

The Humlock compiler is an optimizing, obfuscating com-
piler for a high-level, functional language called UML.
This language is similar to the core of Standard ML [9]
(UML has no module system). It also extends that lan-
guage in several minor ways, as discussed below. Hum-
lock targets the UM platform. Using Humlock, we wrote
nearly all of the code for the Codex in UML.

The Humlock implementation is based on the Hem-
lock compiler [11]. The compiler structured as a series of
passes: a combinator parser, an elaborator into an inter-
nal language, a CPS language based on Appel’s [6], and
a low-level UM-like language. Like Hemlock, Humlock
uses a uniform representation of values. Unlike Hemlock,
however, it does not generate certified code; the UM has
no such requirement.

To compile the more than 34,000 lines of contest code
into an efficient binary, we implemented a number of op-
timizations in Humlock. These include constant folding
and propagation, argument flattening, dead code elimi-
nation, unused argument removal, inlining, and closure
representation optimizations.

Humlock also includes several features intended to
facilitate its use for the contest. These include extended
syntax for manipulating strings, including obfuscated
strings, which use an encrypted representation in the
output binary and in memory during execution. To ease
our bandwidth requirements, Humlock includes support
for self-decompressing binaries (using a variant of LZW
compression [13]). To enable us to distribute the Codex
several days before the contest began, Humlock also sup-
ports self-decrypting binaries using the ARCFOUR algo-
rithm [12]. Even if contestants had been able to reverse
engineer the UM specification before the contest began,
they would have been unable to run the self-decryption
without the key we provided at the contest start.

Garbage Collection. The Hemlock back-end targets
a typed assembly language [10] that does not support
explicit deallocation of heap objects. The UM architec-
ture, in contrast, requires explicit deallocation. As part
of the UM back-end, we implemented a garbage collector
in UM assembly.

While most garbage collectors are designed to run on
physical hardware, the Humlock GC is designed to run
inside a virtual machine. We assume that the implemen-
tation of that virtual machine can manipulate memory

11

much more efficiently than our collector. Our collector,
therefore, makes no attempts to defragment memory.
The UM architecture is also significantly more abstract
than most hardware. For example, array identifiers (i.e.,
heap addresses) are opaque, preventing us from reusing
the low-order bits of addresses. We do, however, take
advantage of some of the other, unusual features of the
UM: while the null pointer (i.e., zero) does not point
to any garbage-collected object, it does point to a valid
array, and we use this to avoid some costly null-checks.

The Humlock garbage collector uses a mark-sweep
algorithm [8]. Every allocation of a value in a UML
source program is compiled to an allocation instruction
(including integers, which are boxed). The collector re-
quires two additional header words for each object. One
header word stores a set of flags that indicate the struc-
ture of the object and if the object is reachable. The
other word is used to link all the heap objects together
into a list so that the entire heap can be swept at the
end of each collection.

Self-Checks. Humlock supports an option to prefix
its output with a series of self-checks. These checks are
designed to help ensure that the underlying UM imple-
mentation is correct and to provide meaningful messages
in the case that it is not. The first of these checks tests to
see whether or not the correct endianness is used when
decoding instructions: the program begins with an un-
conditional jump that is encoded using the wrong endi-
anness (these instructions have no effect if interpreted
correctly). This jump takes the interpreter to a piece of
code that prints out an error message (also encoded with
the wrong endianness).

The self-check proceeds to test the behavior of each
instruction while making as few assumptions as possi-
ble about the remaining ones. It first checks for off-
by-one errors in the jump instruction. Then, assuming
that it can reliably branch between two pieces of code,
it checks for common errors in implementing the logical
and arithmetic operators and in loading literal values.
Memory-related instructions are validated by a series of
array allocations, updates, and deallocations. Finally,
the self-check tests whether the distinguished array that
holds the program is correctly replaced by a “load pro-
gram” instruction.

The original Codex contained a subset of these tests.
When we discovered that some teams continued to have
difficulty implementing the UM through the second day
of the contest, we released an extended set of verbose
self-checks in the form of a standalone benchmark called
SANDmark. SANDmark can also be used to test the
relative performance of different UM implementations.

Size
Language (LOC) | Notes
C 95 GCC 3.3.6
C# 217 Mono 1.1.17.1
Java 374 Blackdown JRE 1.4.2
Java (No JIT) |7 7 with JIT disabled
O’Caml 255 version 3.09.2
Python 152 version 2.4.3
Scheme 428 Bigloo 2.8¢c
SML 255 MLton 20051202
SML (Unsafe) |7 7 w/o safety checks
UMA 256 UM assembly on x86 Asm
x86 Asm 320 tweaked output of GCC

Table 1: UM Implementations. This table shows code
sizes and infrastructure used in building or executing
various UM implementations. The UMA implementa-
tion is a meta-interpreter hand-coded in UM assembly
and run on top of the x86 assembly implementation.
With the exception of the UMA implementation, no at-
tempts were made to minimize the size of these imple-
mentations.

4.2 UM Implementations

We implemented the UM in many different languages.
We also asked many different programmers to implement
it. In doing so, we hoped to understand:

e any ambiguities in the specification,
e what kinds of mistakes programmers would make,

e what aspects of the UM would be difficult in each
language.

The problems encountered during our testing led to
many of the original self-checks found in the Codex.

Nine different implementations are shown in Table 1
along with their sizes in terms of lines of code (LOC)
and the compiler or run-time used in the experiments
described below. Though their implementations are not
described in this table, we also implemented the UM in
Awk, Haskell, Perl, Twelf, and PostScript.

In addition, we built instruction-level time and space
profilers and a debugging UM implementation with sup-
port for breakpoints as well as value and address watches.
These proved to be critical in diagnosing problems in the
functionality and performance of Humlock and its run-
time system.

Implementation Challenges. Of the 14 instructions
in the UM specification, the arithmetic operations posed

12

the greatest challenges. The specification calls for un-
signed 32-bit arithmetic. Many languages lack efficient
support for 32-bit values. Others, like Java, do not
support unsigned integer operations. To implement un-
signed division in Java, we first widened both operands
to 64 bits, performed the division, and then truncated
the result.

PostScript was another difficult implementation. Its
definition does not specify the size of integers. Worse yet,
if the result of an integer operation is too large to fit in
the representation used by a particular implementation,
it will be silently converted to a floating point number!

relative execution time (to x86 Asm) log scale

x86 Asm
SML (Unsafe)
SML

O’ Caml

UMA
Scheme
Python

Java (No JIT)

relative execution time (to x86 Asm)

B
<
©Q
@
X

SML (Unsafe)

—~
o
=

Figure 13: UM Performance. These graphs show the
relative performance of different UM implementations.
The top graph shows a large set of implementations on
a logarithmic scale; the bottom graph shows only the
best performing implementations on a linear scale. The
judges admit that they are not experts in many of these
languages and caution that these results should only be
used to show that the UM can be implemented efficiently
in several high-level languages.

Performance. Figure 13 shows the performance of a
number of our UM implementations relative to our fastest
implementation. Each implementation is tested by run-
ning several iterations of DES encryption as implemented
by the judges in UML and compiled by Humlock. Ver-
sions of the compilers and run-time systems used for each
language appear in Table 1.

We emphasize that we are not experts in many of
these languages and caution readers that the results do
not necessarily reflect the quality of these languages or
their implementations.

Despite this, one broad trend can be gleaned from the
results: many high-level languages can be used to achieve
good UM performance. While low-level languages like C
and assembly offer the best performance, safe languages
can offer comparable performance if the implementation
is built with an optimizing compiler. The SML version
compiled without run-time safety checks runs only 13%
slower than the C version. Even with safety checks en-
abled, the performance is still only 67% slower. The Java
and C# implementations also yield good performance
when a JIT compiler is used.

Meta-Circular Interpreter. As a final demonstra-
tion of the “universality” of the UM, we implemented
a highly optimized interpreter for the UM in UM as-
sembly itself. Our implementation is quite compact,
comprising only 256 instructions (or 1024 bytes). To
run the interpreter, one simply prepends it to a UM bi-
nary and runs the result in any compliant UM imple-
mentation. Execution in the self-hosting interpreter is
about 23 times slower than the underlying implementa-
tion. Several copies of the self-hosting interpreter can be
prepended, each with a similar overhead.

4.3 Web Site

Humlock has an additional C++ back-end. A com-
piled UM program is included as binary data with our
C implementation of the UM. This back-end is the ba-
sis of a Web platform called UM-on-rails, which allows
UML-based server-side Web scripting. This technology
enabled “fine-grained reuse” of the Codex’s publication
verifier in the Web submission system.

5 Results

The 2006 contest received more attention than any of
its predecessors. More than 500 teams had registered
by the beginning of the contest. Nearly 500 additional
teams registered during the contest, including more than
60 teams in the last 24 hours.

13

By the end of the contest, 365 teams had submitted
at least one publication—150 more teams submitted so-
lutions than the previous high-water mark in 2004. 700
programmers contributed to the efforts of these teams.
Just over half of the scoring teams had only one member.
The majority of the remaining teams had two, three, or
four members. By tracking the IP addresses used during
team registration, we determined that there were scoring
teams from each of the six inhabited continents.

5.1 Submissions

Participants submitted solutions in nearly 50 different
programming languages. This included UM implemen-
tations in many of the languages we used as well as D,
Dylan, Erlang, F#, Forth, Lisp, and Ruby.

The first UM implementation was completed less than
one hour and 45 minutes after the start of the contest by
the “jabber.ru” team. Many teams, however, were still
working to complete a UM after more than 24 hours.
This prompted us to release the expanded set of self-
checks described above.

We designed many of the contest problems to be solv-
able by meta-programming (writing programs to gener-
ate the programs run on the Codex); indeed, we en-
visioned this to be the most effective way of solving
many tasks. For example, we had imagined that many
teams would write code to lay out 2D programs. Also,
we had intended manually solving the later Adventure
theorems (whose solutions can be viewed as programs
by the Howard-Curry isomorphism) to be impractical.
Nonetheless, several teams showed a surprising tenacity
at completing these problems by hand. However, an in-
formal survey of the results indicates that this was not
a good strategy. For example, in the Adventure prob-
lem, most of the top scoring teams that submitted source
code used an automated solver.

While nearly all previous contests required partici-
pants to submit executable code, we required only evi-
dence that each problem had been solved (in the form of
a publication).b

The Balance, O’Cult, and 2D problems used random-
ized testing to verify contestants’ solutions. In each case,
the verifier generated random tests using the text of the
solution as a seed (to defeat attempts to table the an-
swers). Several teams took advantage of this probabilis-
tic verification by crafting solutions that were only par-
tially correct, but would occasionally happen to pass all
the tests. For example, after discovering correct solu-
tions to the O’Cult problems, some teams experimented
with slightly smaller solutions that omitted a single rule.

6We did require winning teams and those teams vying for the
Judges’ Prize to submit source code, but only to verify that there
had been no foul play.

Team INTRO | CIRCS | BLNCE | BLACK | BASIC | ANTWO | ADVTR | ADVIS | Total
1. Team Smartass 230 1414 1138 1000 100 400 810 336 5428
2. kuma- 230 1395 1079 1000 100 400 810 316 | 5330
3. Can’t Spell Awesome

Without ASM 230 1393 1067 1000 100 400 810 328 5328
4. Begot 230 1323 950 1000 100 400 810 328 5141
5. Witrala 230 1315 970 1000 100 200 810 314 | 4939
6. PLOP 230 1357 673 1000 100 400 810 168 | 4738
7. Funktion im Kopf der

Mensch 230 1142 694 1000 100 400 810 325 | 4701
8. The Caml Riders 230 1266 988 1000 100 400 245 324 | 4553
9. Goochaeologists 230 1339 518 970 100 100 810 326 4393
10. Expansion 230 1394 124 1000 100 400 810 323 4381

Table 2: Final Standings. This table shows the final standings for the top ten teams and the breakdown of points
across the different puzzles. The INTRO category includes the UM implementation and some UMIX-related publica-
tions. The remaining categories correspond to the 2D, Balance, Black-Knots, QVICKBASIC, Smellular Antomata,

Adventure, and O’Cult problems.

Most individual test cases did not require a complete set
of rules, so there was a small chance that such a solution
could pass an entire test suite.

5.2 Scoring

Each team was responsible for validating its own solu-
tions using the tools provided in the Codex and for sub-
mitting the resulting publications to the contest Web
site. Thus at the moment the contest ended, we imme-
diately knew the identities of the winners. In addition
to relieving the judges of some post-contest work, this
scoring mechanism had the benefit of supporting a live
scoreboard during the contest. Several participants com-
mented that this gave a more tangible sense of competi-
tion and added to their enjoyment of the contest.

A subset of the final standings is shown in Table 2.
The complete final standings can be found on the con-
test Web site [5]. We conclude by awarding the contest
prizes.

For his stupendous effort as one of the early leaders
and the highest ranking single-person team, the Judges’
Prize goes to Carl Witty. The judges declare that

Witrala is an extremely cool hacker!

With 5328 points, third place goes to “Can’t Spell
Awesome Without ASM” and its members, Reid Barton,
Tomek Czajka, John Dethridge, and Ralph Furmaniak.
The judges declare that

Assembly is not too shabby!

With 5330 points (only two more than the third place
team!), second place goes to “kuma-" and its members,

14

Yuu Shibata, Kazuhiro Inaba, Yusuke Endoh, and Nayuko
Watanabe. The judges declare that

D is a fine programming tool for many appli-
cations!

Finally, with 5428 points, first place goes to “Team
Smartass” and its members, Ambrose Feinstein, Christo-
pher Hendrie, Daniel Wright, and Derek Kisman. The
judges declare that

2D is the programming language of choice for
discriminating hackers!”

Acknowledgements

The judges wish to acknowledge the help of the follow-
ing students in constructing the contest. Ruy Ley-Wild
designed the challenge problems for Balance and wrote
much of its UML implementation. Adam Goode im-
plemented the UM in C#, Java, and Python as well
as for mobile devices. William Lovas conceived many of
the ideas for Smellular Antomata. Jake Donham drafted
much of the original story and contributed to the Balance
and O’Cult languages. Jason Reed implemented the UM
in Perl and originally conceived the Black-Knots puzzle.
Noam Zeilberger bravely implemented the UM in Awk.
Sridhar Ramesh, Spencer Whitman, Susmit Sarkar, and
Akiva Leffert all tested beta versions of the Codex and
puzzles.

The judges also wish to thank the ICFP Steering
Committee and the 2006 General Chair, John Reppy, for

7See Section 3.4 for a description of 2D.

their support. Finally, the judges thank the many con-
test participants and acknowledge all their hard work.
You have made all our efforts worthwhile!

References

The third annual ICFP programming contest, 2000.
URL: http://www.cs.cornell.edu/icfp/.

The fourth annual ICFP programming contest, 2001.

URL: http://cristal.inria.fr/ICFP2001/prog-contest/.

The seventh antual ICFP programming contest, 2004.
URL: http://www.cis.upenn.edu/ plclub/contest/.

The eigth annual ICFP programming context, 2005.
URL: http://icfpc.plt-scheme.org/.

The ninth annual ICFP programming context, 2006.
URL: http://wuw.boundvariable.org/.

Andrew W. Appel. Compiling with continuations. Cam-
bridge University Press, New York, NY, USA, 1992.

Dan Brown. The Da Vinci Code. Doubleday Books,

March 2003.

15

8]

[9]

[10]

[11]

[12]

[13]

John McCarthy. Recursive functions of symbolic expres-
sions and their computation by machine. Communica-
tions of the ACM, 3:184-195, 1960.

Robin Milner, Mads Tofte, Robert Harper, , and David
MacQueen. The Definition of Standard ML (Revised).
MIT Press, 1997.

Greg Morrisett, Karl Crary, Neal Glew, Dan Gross-
man, Richard Samuels, Frederick Smith, David Walker,
Stephanie Weirich, and Steve Zdancewic. TALx86: A
realistic typed assembly language. In ACM SIGPLAN
Workshop on Compiler Support for System Software,
pages 25-35, Atlanta, GA, May 1999.

Tom Murphy, VII. Grid ML programming with Con-
Cert. In ML Workshop 2006, September 2006.

Bruce Schneier. Applied cryptography: protocols, algo-
rithms, and source code in C. Wiley, New York, 2nd
edition, 1996.

Terry A. Welch. A technique for high performance data
compression. IEEE Computer, 17(6):8-19, 1984.

=

Reviewer Comments

Section 3.8 is entirely too short and incomprehensible.
My advice is that you replace it with the following:
O’Cult is a twisted term-rewriting system phrased in
the terminology of aspect-oriented programming, where
small and seemingly innocuous changes can have unpre-
dictable global effects. The term language is unityped
and consists only of constants and juxtaposition. For
example, a programmer can use the terms Z, (S Z), (S
(S8 2)), and so on to represent numerals in unary. The
language does not prescribe any computational behav-
ior for terms. Instead, these programs are “advised” by
a list of external computation rules. For example, the
Codex includes the following sample program for addi-
tion:
Add Z y => y; ‘
Add (S x) y => S (Add x ;.
The first rule rewrites the addition of zero and any y to
¥; the second rule rewrites the addition of (S x) and y to
the successor of recursively adding x and y. This advice
correctly computes addition on numerals. However, it
fails to work for nested arithmetic expressions such as
(call this term M for future reference)
Add (Add (s (5 2)) (S 7))
(Add (S (s (s 2))) (s (3 2)))
because of the curious operational semantics of this rewrit.-
ing system.

Operational Semantics. The definition of the opera-

tional semantics requires an auxiliary notion of matching
a term against the left-hand side of a rule, and as a re-
sult, acquiring a substitution for the variables in the rule.
Matching is defined by a simple structural comparison,
with a variable in the rule matching any term.

Given a list of rules, the transition system for the
rewrite language begins in the expected fashion: the
rules are considered in order, and the first applicable
rule is applied (the substitution derived from the left-
hand side of the rule is used to produce a new term).

Whether or not an individual rule applies to a term
is determined in a less orthodox manner. If the rule
matches the entire term, then the rule applies. The in-
teresting case is when a rule does not match the entire
term, but it does match in the subterms of a juxtapo-
sition. For example, the second rule for Add does not
apply to M, but it does apply to two of M’s subterms. In
this case, the operational semantics are guided by the
following aphorism:

“Advice when most needed is least heeded.”

Whether the rule applies is determined by‘counting the
number of matches on each side of the Jjuxtaposition and
then considering the following cases:

1. If the rule does not match in either position, it is
not applied.

2. If the rule matches only in one position, it is recur-
sively considered for application to that position.

3. If the rule matches both positions,

(a) if one position has strictly more matches, the
rule is recursively considered for application
to other position. (The rule is least heeded in
the position where it is most needed.)

~ (b) if the rule matches the same number of sub-
terms in both positions, the rule is not ap-
plied.

Case 3b is why the above rules for addition fail on the
term M above: the relevant rule matches once in each
subterm of a Juxtaposition, so it does not apply.

Tasks. Players are asked to program two tasks in this
language. The first task is to implement correct ver-
sions of addition and multiplication for arbitrarily nested
arithmetic expressions. The second is to implement an
optimizer for a very simple XML-like document language,
a reference to the 2001 contest [2]. Solutions were checked
with a test suite, and correct solutions were awarded
points based on their size (pithier advice is better).

Solutions. There are various ways of defeating the op-
erational semantics. Many solutions rely on one key idea:
if at least one rule always applies to the top-level term,
the idiosyncrasies of the operational semantics are never
encountered. For example, several participants solved
the addition task by adding rules to re-associate the
arithmetic expressions like

Add (Add x y) z => Add x (Add y z);.

With this rule, nested additions in the top-level term will
be pushed into the second summand until the first sum-
mand is a numeral, whereupon one of the above rules will
apply. Another technique that is more general (but also
more verbose) is to code the straightforward algorithm
(e.g., the rules for addition above) using an explicit stack
to record the context of the computation. By making the
stack explicit, all rules can be written so that they apply
to the top-level term. N

