Really Truly TrackerlessBitTorrent

CharlesP. Fry! Michael K. Reiter?

August 2006
CMU-CS-06-148

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

!Electrical & Computer Engineering Department, CarnegididneUniversity, Pittsburgh, PA,
USA;cfry@ce. cnu. edu

2Electrical & Computer Engineering Department, and CompBitéence Department, Carnegie
Mellon University, Pittsburgh, PA, USA;ei t er @ mu. edu

This work was partially supported by NSF award number CCE4@22

Keywords: peer-to-peer systems, expander graphs, random walks

Abstract

BitTorrent is a peer-to-peer protocol used for collabemtiownloading. It allows peers to ex-
change blocks of the file they are downloading with each otfa¢er then obtaining them from
a central server. Despite the decentralized nature of thteqol, BitTorrent has traditionally re-
lied on a centralized tracker, which bootstraps the systepraviding new clients with a random
set of peers. The tracker has previously been perceived ascalgart of BitTorrent systems,
and efforts to make it more fault-tolerant have focused anokier replication and on tracker im-
plementations using Distributed Hash Tables, which haen leatitled “Trackerless BitTorrent”.
The tracker’s sole responsibility, whether implemented aentralized or distributed manner, is to
allow peers to randomly select other peers to connect taj ieffart to construct a robust graph.
We propose completely removing the tracker and replacimgtit a set of distributed protocols
based on random walks, accomplishing the work of the traskidrout explicitly tracking every
peer in the system. We use expansion as a measure by whicmfmmoe the quality of the graphs
generated by distributed, trackerless algorithms to tlaplys generated by a centralized tracker.
We also explore the implications of various design decsimtated to the random walks which
are the key component of our proposal.

1 Introduction

BitTorrent is a distributed protocol by which multiple cament clients eers) can download the
same file by sharing blocks of that file with each other rathantobtaining it from a central loca-
tion. In order to bootstrap the protocol, a new client mustdver other peers who are currently
downloading the file of interest. To accomplish this, a caitedtracker explicitly tracks all peers
who are currently downloading a file. When contacted by a rimmtg the tracker adds that client’s
address to the list of current downloaders, collectivelgwn as aswarm, and selects a random
set of peers from the swarm to provide to the joining cliertie Tlient then contacts these peers,
attempting to establish connections with them. Clients @h@ connected together ameighbors,
and as long as they remain connected they regularly attengxichange blocks of the file they are
downloading with each other.

Unfortunately, the distributed network formed by BitTartgeers is far more robust and scal-
able than the centralized tracker. If a tracker goes offtimeremaining clients are able to continue
exchanging blocks of the file being downloaded only untilttese their current neighbors, and
it is impossible for new peers to join the swarm. To remedg,thie propose the removal of the
tracker, replacing its functionality with a distributedjaftithm based on random walks through the
swarm. In our approach, no party keeps track of all membeteeobwarm, and peers need not
notify others of their departure or continued presenceh&aeach peer simply maintains connec-
tions to a bounded set of neighbors, which it must alreadyoddilé block exchange. Each peer’s
neighbors are selected by walking randomly in the existimgrsn, and can be refreshed similarly
(e.g., if a peer loses neighbors due to departures or fajluidese walks are conducted either by
entry pointsor by joining nodes starting from peers provided by entnnpgithough we stress that
an entry point does not track the swarm membership more tmataer peer does. In facny
peer can act as an entry point—possibly simultaneouslyatitars, and possibly transiently—with
no further information than it already has by participatimghe swarm as a peer.

Within this general framework, we evaluate several difiéidesign alternatives and their im-
pact on the swarm, with particular attention to how the ramaealk algorithm affects the swarm
quality. The measure of “quality” that we employvertex expansion, i.e., the minimum ratio
between the number of peers neighboring a set and the sibataget, for all sets up to a certain
size, such as half of the swarm. Expansion, and the low demtleat it implies [10], have long
been recognized as important properties in peer-to-paeronies [14, 17, 21, 23]. High vertex
expansion implies that a network is robust, in that a partits highly improbable [4]; it ensures
that there are a relatively large number of communicatidhgpbeaving each set of nodes in the
network, maximizing the aggregate bandwidth of the netyarld it also allows rare blocks to
rapidly expand through the swarm, minimizing the risk tihatytdisappear from the network.

We conduct our evaluations using trace-driven simulatidrise traces we utilize are a well-
known 5-month RedHat tracker log [20] and a more recent 5tmtog of the Debian tracker.
Using these traces, we demonstrate several random wallthlgs that yield similar, and in some
casedetter, expansion than a centralized tracker, for the same degresdraints imposed in the
default BitTorrent configuration. This suggests that wioile approach has merit in eliminating
fragility due to the use of a tracker, it also does so withoytairing block exchange.

2 Related Work

Here we place our contributions in the context of relatedkwnam BitTorrent specifically (Sec-
tion 2.1) and on the distributed construction of random gsapore generally (Section 2.2).

2.1 BitTorrent

The traditional centralized tracker has long been recegh&s a single point of failure in BitTor-
rent systems. The first efforts to remove this single poirfaibfire involved instantiating multiple
tracker replicas, and defining the order in which they shbeldccessed [19]. A more successful
strategy, at least in terms of client adoption, for remowuimg dependency on a single centralized
tracker involved support for distributed trackers. Whhe ttoncept was originally pioneered by
unofficial clients, BitTorrent recently added official suppfor a distributed tracker, naming the re-
sultant system “Trackerless BitTorrent” [12]. Under thisakel, each client becomes a “lightweight
tracker,” using the Distributed Hash Tabl@HT) Kademlia [26] to store the identities of all peers
in the torrent.

While storing tracker information in a DHT removes the sengbint of failure present with
a centralized tracker, the construction and maintenandbeoDHT requires that in addition to
the neighbors with which it communicates as part of the Bidiat protocol, each peer must also
maintain an orthogonal set of neighbors within the DHT, aaglfhe communication cost of main-
taining the DHT in the face of high rates of churn [22]. Thiggbehe question of whether the
distributed tracker could be combined with the existingIBitent neighbor infrastructure, and
even whether a tracker of any kind, whether centralized siriduted, is really necessary at all.
Here we show that it is not.

While not supported by the official client, Peer Exchangq [@®art of many BitTorrent im-
plementations. Introduced as a mechanism for reducing doaithe tracker, Peer Exchange is a
gossip protocol by which peers tell each other about otherspm the swarm. Although Peer
Exchange fails to entirely eliminate the tracker, it doesidestrate that peers can viably discover
new peers by sharing peer information with each other, rakiaa being completely dependent on
the tracker.

2.2 Random graphs

The algorithmic techniques we employ here derive from workhie distributed construction of
random graphs, the vast majority of which seeks to build eamdegular graphs; in particular,
a random regular graph is a good expander with high prolaljilb]. Bourassa and Holt [8]
proposed a protocol for the distributed construction oflan regular graphs, for which a bound
on mixing time (see Section 3) was proved by Cooper et al.. [ERjwever, when nodes depart
ungracefully a broadcast must be made over the entire gsgglking other nodes which are also
under-connected; we avoid such large-scale broadcasta. abhd Siu [21] similarly construct
random regular graphs, though at the cost of maintaining ill@mcycles over the graph; this
approach was subsequently optimized by Gkantsidis et @luding insights due to Gillman [16].
Unfortunately the Hamilton cycle constructions are undbléeal with large numbers of nodes

2

leaving the network, requiring periodic regeneration & ¢inaph. Other works construct random
regular graphs from other graphs through graph transfaomste.g., [25, 30]. While introducing
new randomness via these approaches could benefit BitTgraohs, we focus on the quality of
the graphs which are initially constructed.

While random regular graphs possess desirable propertibshigh probability, such as low
diameter and high expansion, the BitTorrent tracker do¢sowstruct regular graphs, but rather
bounded degree graphs. We follow this goal to more closetyiathe behavior of the tracker, and
because irregular graph constructions tend to be simptelesms intrusive when new connections
are added, as it is never necessary to destroy existing chong. They also are more tolerant of
node departures, as they do not attempt to maintain the samiear of neighbors at each node.

Within this space, Pandurangan et al. [28] proposed a pgrtisstributed, bounded degree
graph construction protocol which relies on a centralizadhe of a constant number of nodes.
While this model is directly applicable to the BitTorrenadker, it does require a central server,
and is thus insufficient for the trackerless case. Coopdr g4 propose an algorithm where each
peer contributegm tokens to the graph, which circulate in random walks unglytlare picked
up, m at a time, by new nodes joining the network; the new node odsrte them peers that
contributed the tokens it picked. The resultant graph isvshtm maintain diameter logarithmic
in the total number of nodes in the graph, and to be robushag#ie adversarial deletion of
both edges and vertices. One disadvantage of this protedbht the tokens in the graph must
be constantly circulated in order to ensure that they arémwiled. Moreover, the rate at which
new nodes can join the system is limited, as they must wailevthe existing tokens mix before
they can use them, a potential problem in the face of flashasavhich BitTorrent can otherwise
handle so gracefully [6].

Vishnumurthy and Francis [31] evaluate various types ofloam walks for use in random
neighbor selection in the construction of peer-to-peewagks according to a desired degree dis-
tribution. Unbiased walks are unfit for constructing graplith fixed degree distributions, and so
Vishnumurthy and Francis explore various biased haltirglaased forwarding heuristics through
simulation. While BitTorrent graphs are irregular, theyrax require a prescribed degree distribu-
tion, but rather impose a lower and upper bound on degree.

Arthur and Panigrahy [2] define a generative random grapheinafdBitTorrent graphs which
they use to model and analyze block distribution. Their nhdd@wvever, is incomplete in that it
doesn't account for the neighbor replacement which maymoeben nodes leave the graph. They
also propose a slight modification to BitTorrent graph cartion where initial neighbor selection
is biased towards newer nodes, which ends up improving Egckange.

3 Preliminaries

In this section we introduce key concepts that underlie ¢éneainder of our discussion. We repre-
sent a BitTorrent swarm at any point in time as a simple gi@ph (V, E) whereV = {1,...,n}

is the set of peers anfl C V' x V is the set of neighbor relations, i.¢7, j) € FE iff i andj are
connected to one another. Note that the neighbor relatisgriametric. Letl'(i) = {j € V :
(i,7) € E} be the neighbors afe V, and letl’(S) = ;.4 I'(j). Letdeg; = |I'(4)].

jes

As discussed in Section 1, our primary measure of qualithisfdraph is its/ertex expansion,

i.e.,
()]

1<|S|<n/2 | S|

While measuring the expansion of a graph is co-NP-compl8tetliere is a close relationship
between a graph’s expansion and the second smallest eilgenwaf the graph’s Laplacian matrix.
More specifically, a graph of maximum degredeg has vertex expansion of at Ieaz-§{fr§—deg [1].
Whenever we claim to compute the expansion of a graph, iisddiver bound that we report.

A random walk algorithm is defined by anx » transition probability matri¥ where each row
P; € [0,1]™ is a distribution (i.e., its components sum to one) &yd> 0 only if j € I'(¢) U {i}.
A step of a random walk currently at nodesamples a nodg¢according to the distributioR; and
transitions to node, making it the new current node. A random walk is then the sege of nodes
visited by repeating such steps, starting from a node chaseording to an initial distribution
mo € [0,1]". A stationary distribution for the random walk algorithm is a distributiane [0, 1]"
that satisfiesr = 7P. For the random walk algorithms we consider here, the statiodistribution
is unique (if it exists) with high probability (where the fability is taken over the selection of the
graphG induced by our algorithms), and so we treat it as such hereenftexists, themixing
time is the numbet of steps needed to “reach” the distributieror, informally, the minimum
such thatr ~ myP! for all initial distributionsm,. For some of the random walk algorithms that
we consider here, the mixing time is known totbe O(logn). However, since the random walk
algorithms that we study here do not utilizas a parameter, the fact that the mixing time is not
established for a particular algorithm does not precluslase.

4 TrackerlessBitTorrent

We propose a modification to the BitTorrent protocol whiamoses its dependence on the tracker.
The tracker’s sole responsibility is to provide peers wighghbors randomly selected from the en-
tire swarm. This currently happens both when a node firssjthia swarm, and thereafter whenever
its neighbor count falls below a certain threshatdpNeighbors. The tracker accomplishes its job
by maintaining a global list of all peers currently in the smaand then selecting random sets
of sampleSize peers for distribution as potential neighbor sets. Each péeinitiate connec-
tions to up tomaxInitiate other peers, and then cache any extra peers that the tratdérabout.
Peers accept connections from other peers as long as theydsasvthamaxNeighbors neighbors.

In the current official BitTorrent implementation, the vetuof these configuration variables are
minNeighbors = 20, maxInitiate = 40, sampleSize = 50, andmaxNeighbors = 80.

While maintaining a global list of peers allows for rapid dam selection among them, it is by
no means the only mechanism by which random nodes can beesklém appealing alternative
is the use of random walks, which have long been used to ralydmiect nodes from graphs [24].
Simply performing an unbiased random walk of sufficient anghe mixing time) and selecting
the last node in the walk will select each node in the graph wibbability proportional to its
degree. In order to select each node from an irregular gragphuniform probability, bias can be
added to the direction (biased forwarding) or length (kdasa&iting) of the random walk [3, 31].

4

Such biased random walks could be used in BitTorrent botlelecsinitial neighbors for joining
nodes and to replace failed neighbors, removing any depeedm the tracker.

Most of the random walk algorithms that we consider requisewalking node to randomly
select an element df(j) wherej € I'(i) according to some distribution. This could be imple-
mented either by querying; to obtainI'(j) and then choosing frori(;) itself, or by askingj to
select an element frorfi(j) according to the proper distribution and return that elenen If 4
must be able to select froin(j) even afterj has failed (e.g., to replageby a neighbor ofj), then
it should obtairl’(7) upon connecting tg and ask thaj keep it notified of any changes.

4.1 Entry Points

Although BitTorrent can function properly without a tracke any kind, it is still necessary for
new nodes to somehow discover other nodes in the swarm. Vdengadish this through the use
of entry points that help joining nodes to obtain an init@hdom set of neighbors. In purpose,
entry points serve the same role as the tracker; the keydiitn is in how they perform this role.
Both centralized and decentralized trackers, as their narpkes, explicitly keep track of every
node currently in the swarm. Each entry point, on the othedhe& only aware of its neighbors
in the swarm. Each node in the swarm can act as an entry peiping joining nodes to discover
new neighbors. While entry points are not strictly requitedbe members of the swarm, swarm
membership does have the advantage of helping entry peimain connected to the swarm.

Because entry points can be implemented in a manner thaigsfreesembles a tracker, we
emphasize some of the key differences between the two. abker holds a distinguished role
which cannot be arbitrarily shared; even DHT tracker impatations rely on a small number
of nodes to store the membership of the swarm. Our entry goamnt the other hand, can be any
arbitrary nodes inside or outside the swarm. No commumnasi required between multiple entry
points; they can all operate independently and in pardfielally, entry points proactively explore
the swarm and thus do not need to be notified of join and leagateynor do nodes need to
regularly announce their presence as required by the tracke

4.2 Initial Neighbor Selection

There are various ways in which random walks can be used by paints in order to provide
joining nodes with an initial random neighbor set. The mashjtive strategy would be for either
the entry point or the joining node to perform a well-mixirapdom walk in order to select each
new neighbor. Regardless of who performs the walks, thistieol has the disadvantage of
requiring that the walk be advanced by at least the mixing t{see Section 3), so that the last
node of the walk is selected from the desired stationaryidigion. Having entry points perform
these walks allows new nodes to more rapidly join the swasigrg as the join rate through any
given entry point is not too high. The advantage of requinegly joining nodes to perform their
own random walks is that it reduces the amount of work thatygrints are required to perform
for each node that joins the swarm.
It is not actually necessary for the walk to be newly advarmeds full mixing time for each

join. By applying the technique of Gillman [16], first introded in a peer-to-peer context by

5

Gkantsidis et al. [17], entry points can maintaimpleSize perpetual random walks which are
extended by only steps for each selection of a random néde.

The use of perpetual random walks requires that the entntgtiiemselves extend the random
walks in order to avoid repeatedly distributing the sameo$eteighbors to every joining node.
While it is not strictly required, we recommend that entryni® perform their perpetual random
walks on their own neighbor set as this removes the need totanaia separate set of nodes for
block exchange and for random walks. This also has the beefide-effect of automatically
refreshing entry point’s neighbors, ensuring that theyrarelomly spread throughout the entire
graph. As a practical measure, entry points should notskefteeir neighbors with whom they
are actively exchanging blocks; this is not difficult to avas peers can have uprtaxNeighbors
neighbors, but only need perfosampleSize random walks.

4.3 Failed Neighbor Replacement

BitTorrent clients have traditionally relied on the tracke provide additional randomly selected
nodes whenever their neighbor count drops betowNeighbors (or evenmaxlnitiate, though with
less urgency). In a truly trackerless system peers canmessarily return to their original entry
point to request additional neighbors, as entry points n@ynecessarily remain in the swarm
during the entire lifetime of the peers which they help toeerthe swarm. However, since any
node can serve as an entry point, a peer in need of additiengtloors could acquire them from
any other node in the swarm.

5 Trace-Driven Simulations

We compare graphs generated by our approach to those clsatieel centralized tracker through
trace-driven simulation using actual logs generated bydistinct trackers, both covering periods
of around five months. Using the tracker logs we determinewiugles joined and left the swarm,
and use this information to drive our simulator, which carteend disconnects nodes according
to the various algorithms which we examine. The resultamineativity graph is periodically
analyzed in order to compare the quality of the graphs gésebtay different algorithms.

The first log which we analyze is the RedHat tracker log firsineded by Izal et al. [20],
covering a period from April to August of 2003. This trace aegvith a flash crowd which rapidly
grew to over 4000 simultaneous clients during the first 16ré§oand then dropped almost as
rapidly over the next few days, ultimately stabilizing aband 100 simultaneous clients within
two weeks. The second log which we analyze is from the cubebian tracker, covering a period
from December 2005 to May 2006. As no new Debian release wake maring that time, the
number of simultaneous clients remains fairly constanttdiating around 2000.

We begin our tracker log analysis by extracting client airand departure times. More specif-
ically, we determine from the log when the tracker learned néw client joining the swarm, and

1Gkantsidis et al. [17] let = 1 in the case of regular graphs, and similar results would Ipeeed with biased
forwarding on irregular graphs. The case of biased haltiagldiobviously require larger values af

when the tracker assumed that a client had left. Under nommodles of operation, clients explic-
itly notify the tracker of their arrival and departure, haxgein practice we found that this was not
always the case. When the log indicated interaction fromeaicivhich was not currently known
to be in the swarm, this was recorded as a join, whether tbatakequest claimed to be a join or a
periodic announcement.

Determining when nodes left the swarm is more involved ifyte not exit cleanly by noti-
fying the tracker of their departure. Trackers tell clieldsv often they are expected to announce
themselves, and if clients go for too long without doing $ertthey are assumed to have left the
swarm. In the official BitTorrent implementation, cliente asked to announce themselves every
30 minutes, and are removed from the tracker’s list of swaemivers if they are not heard from
for 45 minutes. We thus recorded a client’s unclean depadsrtaking place 45 minutes after its
last interaction with the tracker, in cases where it did it @eanly. In practice, the node likely
left at an earlier time, and the tracker incorrectly assuthatlit was still part of the swarm. For the
sake of our simulation, however, we pretend that nodes reedan the swarm until the moment
when the tracker would have assumed they had left. In doirvgeserr in favor of the centralized
tracker, who otherwise would distribute stale nodes aspiaieneighbors. Because random walks
actively explore the swarm, they are far less likely to fgldeelieve that a departed node is still in
the swarm.

When using a tracker, peers request new neighbors fromdbketr every five minutes if they
have less thaminNeighbors neighbors, and every half hour if they have less thaxInitiate
neighbors. While such long waits between obtaining newhisgs is entirely unnecessary when
using entry points, we again err in favor of the centralizeadker, imposing these delays between
new neighbor requests across all algorithms that we study.

Just as the tracker can distribute nodes that are not abvears it suggest neighbors that are
already full, and thus will be unwilling to accept new conti@as. The tracker accommodates this
error by handing out groups eimpleSize neighbors even though onhgaxInitiate will ever be
used at one time. While entry points could (and probably Eh@void distributing full nodes, our
simulation currently selects the node that is walked tondigas of its degree, again erring in favor
of the centralized tracker.

With the arrival and departure times of clients from actuatker logs we are able to simulate
the dynamic construction and evolution of the BitTorrenasw under various algorithms. While
the simulator has a notion of the times at which nodes joinleaxk, it completely processes each
join and leave event, including the addition and removallbé&ssociated neighbor connections,
serially in the order in which they occur in the logs. Follagithe precedent of Vishnumurthy
and Francis, we justify this because the random nature ddltfegithms we consider make them
impervious to the order and timing of events [31].

We thus process the tracker logs for each algorithm evalueteording the vertex expansion
of a snapshot of the swarm taken at regular intervals. Indke of the tracker, whether centralized
or distributed, new neighbors are randomly selected frorolad swarm membership list. Entry
points, on the other hand, use random walks to dynamicapiioes the swarm, randomly selecting
peers encountered on their walks.

In order to minimize the number of random walk steps takereémh joining node, our entry

expansion

expansion
&

w

T T T T T
04 B
0.35 - 4
03 4
0.25 ! L L L L

Feb Mar Apr May

L
May Jun Jul Aug Jan

(a) RedHat (b) Debian

Figure 1: Centralized Tracker

points performsampleSize perpetual random walks, each of which is extended by a ssigleto
select new neighbors for every joining node. As a resultntfighbor sets of two successive nodes
i andj that join through the same entry point will be connected, I¢j) C T'(T'(7)). While this
relationship between successive random walk samples isxpeicted to be problematic [16, 17],
we perform our simulations with all nodes joining throughilage entry point to ensure that
we observe any negative impact this correlation could havexpansion. For the same reason,
whenever a node needs additional neighbors it requestsftbemthe single entry point.

5.1 Centralized Tracker

As we are evaluating the feasibility of replacing the cdittea tracker, we begin by measuring the
expansion over time of graphs generated by the centraliaeler. This will serve as a baseline
to which other algorithms can be compared. Figure 1 showextpansion of graph snapshots
taken once per day over the lifetime of both the RedHat anddbdbgs, when processed by our
centralized tracker simulator.

As illustrated in Figure 1(a), the expansion of the RedHatta primarily oscillates between
0.45 and 0.55. During the rise and fall of the initial flashvedp expansion hovers at the low end
of this spectrum, rapidly rising as the total number of naflasreases to 100.

The steady-state expansion of the Debian torrent is far negrdar, primarily varying between
0.43 and 0.44 as seen in Figure 1(b). The occasional periodsro expansion reflect gaps in
the tracker logs, which could be due either to tracker dowretor to errors archiving the logs.
Regardless of the original cause, our simulator deals vefsdpy allowing all nodes in the swarm
to expire, and then rebuilds the swarm graph from scratck tmelog resumes. This is obviously
pessimistic, as it is likely that even if the tracker was tenapily down that the swarm still stayed
together and did not need to be reconstituted from scratolweMer, it does create artificial flash
crowds which allow us to observe the effect they have on therdhms that we study.

5.2 Simple Random Walks

With this understanding of the expansion of the graphs geeéiby the centralized tracker, we now
turn to an examination of the expansion of graphs generatatious random walk algorithms
that could be employed by entry points. The first type of ranaealk which we examine uses the

8

normalized expansion

0.1

0.05 -

-0.1

0 -xrf‘%ﬁ%] TR 5 »&QXX XK
R T R MR TR
-0.05 |- i

¥

R TR ST e A s
e A

centralized tracker
unbiased walk --—+--- |

X Me!ropolis—Hastings. walk ---%---

(a) RedHat

Jul

Aug

normalized expansion

-0.05 -

-0.1

centralized tracker
unbiased walk ---+-- |
.Metropolis—Hastir]gs walk ---x---

L
Feb

(b) Debian

Apr May

Figure 2: Normalized Simple Random Walks

classical Metropolis-Hastings algorithm [27, 18] whickoals approximately uniform sampling
from an irregular graph [9, 3], thus closely mimicking thehbeior of the centralized tracker.
In order to determine the advantage obtained by the biaseoMétropolis-Hastings walk, we
also evaluate the performance of unbiased walks, that asudt select nodes with probability
proportional to their degree.

The transition probabilities (see Section 3) for the undsasndom walk are:

punb _ 1/deg, if j € I'(:)
Y 0 otherwise

The transition probabilities for the Metropolis-Hastirgadom walk are:

1 - . .
max{deg;,deg} if JE F(Z)
1= er PN ifi=

0 otherwise

mh __

Figure 2 shows the expansion from both the Metropolis-iHgstrandom walks and the un-
biased random walks normalized against the expansion afdhtalized tracker in order to un-
derscore the relationship between these algorithms ancktitealized tracker. In the case of the
RedHat torrent, shown in Figure 2(a), both random walk ailgors perform slightly worse than
the centralized tracker, with Metropolis-Hastings peariorg better than unbiased random walks.
The Metropolis-Hastings algorithm is just a hair below tleatcalized tracker in the Debian tor-
rent, shown in Figure 2(b), while the unbiased random waikperform the centralized tracker at
almost every point in time.

It is somewhat surprising that such good expansion is obthwmhen random nodes are se-
lected by the use of unbiased random walks, as they seleesneih probability proportional
to their degree. It is thus interesting to observe that wtie uniform random sampling of the
centralized tracker and the approximately uniform randamging of the Metropolis-Hastings
random walks both create graphs with good expansion piiepeguch uniformity in sampling is
not a prerequisite for obtaining such results.

5.3 Degree-Biased Random Walks

The success of the unbiased random walks suggests the iptysgit other types of walk bias
which sample peers non-uniformly may also be reasonabldidates for replacing the centralized
tracker. In their exploration of biased random walks, Vistmurthy and Francis proposed walks
where steps were taken with probability proportional to de® outdegree (the number of con-
nections that it initiated) and inversely proportional taale’s degree [31]. This is an appealing
prospect, as it allows priority to be given to low degree rsodden establishing new neighbor
connections. We also note that Cooper et al.’s token-basedqwl circulates one token for each
connection a node is willing to accepbgxNeighbors), resulting in neighbor selections which are
biased according to the residual degree of each mode., maxNeighbors — deg, [13]. Finally,
Arthur and Panigrahy[2] bias new neighbor selection towardunger nodes to improve block
exchange.

Our initial evaluation of degree-biased random walks gsleeighbors to walk to with proba-
bility proportional to their residual degree, and then vathbability inversely proportional to their
degree. Note that as we don't distinguish between inbouddatbound connections, our inverse
degree bias is slightly different than that of Vishnumuréimd Francis. We do, however, follow
their model of applying the bias locally to each random wa#ps which does not necessarily
result in the global selection of nodes with probability ekaproportional to residual or inverse
degree.

We define the residual degree for a nadesrdeg, = maxNeighbors — deg,. The transition
probabilities for the residual degree random walk are:

rdeg ; P .
P;e; = > ker() rdess i JE F<Z>
’ 0 otherwise
The transition probabilities for the inverse degree randaik are:

minNeighbors/deg ; oL .
va — Zker(z’) minNeighbors;degk If] 6 F(,L)
ij]
0 otherwise

Figure 3 shows the normalized expansion which results fioese walks (as well as some
others which shall be discussed shortly). As seen in Fig{&g 8n the RedHat torrent the residual
walk performs slightly better than the centralized tracked the inverse walk, slightly worse. The
inverse walk is also subpar to the centralized tracker or#t@an torrent, shown in Figure 3(b),
but in this case the residual walk yields expansion sigmitigehigher than the centralized tracker
most of the time.

There are, however, occasional drops in the normalizedreskpa for residual walks on the
Debian torrent that were not seen for other algorithms. ¢, hese drops all occur immediately
after periods of zero expansion where there were no noddseiswarm. In other words, the
residual degree walk is slow to grow graphs with good exmambm scratch. This is best seen
in Figure 4, which zooms in on the first two and a half days ofDedian torrent, showing non-
normalized expansion for all algorithms measured hourgead of daily. The residual walks
initially create graphs with relatively low expansion, véxpansion rising to its steady-state levels

10

normalized expansion

0.1
005 F ,i § e -0.05
c !
g : ,,
01 f ; E é 01 §
¢ [} d
i 3 H
01k b E 2 015 ! 0
£ i i ;
S i i H
02 fF g T 02 % ® | E
) i)
-0.25 - b -0.25 b
centralized tracker ! centralized tracker
o3 vl 2 i vl 2
residual"s walk ---o--- i residual"s walk ---o---
inverse"5 walk ---<--- ; o inverse”5 walk ----¢---
035 L L L L 035 L L L L i
May Jun Jul Aug Jan Feb Mar Apr May
(a) RedHat (b) Debian
Figure 3: Normalized Degree-Biased Random Walks
0.55 T T
05 ,g,ere,o<>oQ,Q‘o,&ée,ooog020000—6900(}’
00, 00707 2 e g ?999 \EDSEE'E\DEEEE
8
2
g
3

02fF ? centralized tracker 7]

] unbiased walk
Metropolis-Hastings walk ---
015 | residual walk
° inverse walk

residual"5 walk
X inverse”5 walk ----

0.1 L
Dec 16 Dec 17

Figure 4: Debian Startup

11

over a slightly longer period of time than the centralizedker. The likely reason for this behavior
is that the older a node is, the more chances it has of beiegtedl by a random walk, even if the
walk is biased against high degree nodes. As a result, oldsitehd to have higher degree than
new nodes, and degree-biased walks are more likely to sgeciger nodes. Vishnumurthy and
Francis made a similar observation about their biaseddnting random walks, and suggested
periodically refreshing neighbors in order to introducesfr randomness. In fact, they note that
churn has the same impact on the graph as refreshing, whigt partially explain why the low
expansion initially experienced by some of our algorithmptioves dramatically with the passage
of time [31].

The success of the residual walk led us to experiment witkrotariations of degree-biased
walks. We started by making the bias proportional to the sxjpéthe residual degree and the
inverse degree, respectively. As this improved expansiar the simple residual and inverse
degree, we also evaluated raising the residual and inveggees to powers greater than two. Due
to space restrictions we only report on the results of power fvhich we denote bxesidual® and
inverse®, as they generally tended to outperform the other powers.

The transition probabilities for thesidual® random walk are:

(rdeg ;) L .
PESS —] Srero e if 5 € T(i)
0 otherwise

The transition probabilities for theverse® random walk are:

Pinv5 B { (minNeighbors/deg ;)® Ifj c F(Z)

> ker(i) (minNeighbors /deg;,)
otherwise

These results are shown in Figure 3 and Figure 4 next to tlhitsed the original (power one)
residual and inverse walks. Both significantly outperformp ather algorithm yet examined during
most periods of stability, but take even longer to reactr thteady-state behavior.

There is one anomaly in the expansion of graphs generatédasitual®, which is best seen
in Figure 4. While all of the other algorithms rise continyand then level off at their steady-
state residual® rises (albeit slower than any other algorithm), levels offdn extended period of
time at expansion levels inferior to the centralized trackad then unexpectedly jumps to levels
significantly higher than the centralized tracker, on pahwieinverse® algorithm. At least that
is what happens most of the time. However, during the montlantiary in the Debian trace, the
residual® algorithm never made the second jump, and remained at ther lst@ady-state until the
next period of zero expansion. We leave the analysis of tiosnaly to future study.

We hypothesize that the reason for which most of the degiaset random walks yield higher
expansion during their steady-state than other algoritisnh&cause they more closely approach
random regular graphs, which are known to have good expampsaperties with high probabil-
ity [15]. This hypothesis is supported by the fact that theximaim degree of graphs generated
across all algorithms is strongly negatively correlateéxpansion, with a correlation coefficient
of -0.93 for graphs generated across all algorithms witiRéeéHat trace, and -0.73 for the Debian
trace.

12

median mean std dev

algorithm expansion expansion expansipn
residual® walk 0.5411 0.5400 0.0310
inverse® walk 0.5337 0.5334 0.0290
residual walk 0.5067 0.5077 0.0298
centralized tracker 0.4956 0.4977 0.0326
inverse walk 0.4884 0.4926 0.0323
Metropolis-Hastings walk| 0.4846 0.4861 0.0345
unbiased walk 0.4558 0.4659 0.0357

Table 1: RedHat Expansion

median mean std dev

algorithm expansion expansion expansipn
inverse® walk 0.4816 0.4506 0.1136
residual® walk 0.4731 0.4248 0.1371
residual walk 0.4513 0.4325 0.0987
unbiased walk 0.4376 0.4430 0.0577
centralized tracker 0.4292 0.4333 0.0621
inverse walk 0.4259 0.4282 0.0651
Metropolis-Hastings walk| 0.4272 0.4326 0.0605

Table 2: Debian Expansion

5.4 Discussion

We summarize the results of Section 5 in a single table fdn eathe torrent logs which we used to
drive our simulations. Tables 1 and 2 show the median, meahst@ndard deviation in expansion
for the RedHat and the Debian torrents respectively. Theyarted by the median expansion, as
this represents their steady state behavior. The slow rgnab some of the algorithms is reflected
in a higher standard deviation, and in a relatively low megpaasion compared to the median
expansion for that algorithm.

All of our experiments involved multiple iterations, yet ¢or surprise we found that the ex-
pansion of the graphs generated by multiple iterations @fstme algorithm only had negligible
differences in their expansion (the average standard tilewim expansion between iterations was
0.0075 for the RedHat trace, and 0.0036 for the Debian tracepther words a fixed series of
node joins and departures determines with high precisierexfpansion of the constructed graph,
at least in the case of the node selection algorithms whicktugy. We also experimented with
extending each perpetual random walk by more than a singpefst each new neighbor selection,
but found that this did not have a noticeable effect on expansalidating the perpetual random
walks which we adopt from Gkantsidis et al. [17].

13

diameter

55

45

35

25

15

+
++++++

Frtttrttt + o

1
0.1

1
0.2

1
0.3
expansion

(a) RedHat

1
0.5

1
0.6

diameter

55

45

35 F

25 F

15

1
0.3
expansion

(b) Debian

1
0.5

1
0.6

Figure 5: Diameter by Expansion

It is well known that expansion and diameter are two closelgted graph parameters. Indeed,
they can both be bound from above and below using the secoaliestreigenvalue of the Lapla-
cian [10]. In order to provide an intuition as to the relatiagport of observed deltas between
measured levels of expansion, we show in Figure 5 the obd@meelation between expansion
and diameter in the graphs generated by the algorithms wirchtudy. Each point on the plot
shows the average diameter for all graphs of the given expansith expansion being truncated
at two decimal places. Note that there are never more thardismoeter values observed for a
given expansion value, thus an average diameter of 4.7%jwvducurs for expansion values of .04
in the Debian graphs, indicates ti3att of the graphs were of diameter five, and the remainder of
diameter four.

Our first observation about Figure 5 is that while the aldpon$ we studied yield graphs with
various levels of expansion, they all have the same diamsast of the time. Our second observa-
tion is that even graphs with low expansion still have re&si low diameters. We leave as future
work an analysis of the negative implications of low expansiespecially when combined with
relatively low degree, though we expect it to reveal itselfie form of graph fragility in the face
of churn (e.g., fragmentation), inaccessible blocks, aswehsed aggregate bandwidth.

While we have examined the initial graphs produced by variamdom walk algorithms, ex-
pansion could be improved in many cases by regularly reifngsteighbor sets [31]. This could
be done by expiring neighbors after a fixed period of time, d&aydomly removing neighbors at
a slow rate, or by performing regular random walks on one’s owighbor set (which happens
automatically on entry points). A good refresh algorithralddikely make up for poor expansion
resulting from a sub-par graph construction algorithmne¥é was executed only by a fraction
of the peers in the swarm.

Finally, we would like to obtain the high levels of stabletstexpansion enjoyed by the degree-
biased walks without paying the currently high startup aogtoor expansion. Perhaps this could
be accomplished by a mixed-algorithm walk, either comlgmultiple walks from several differ-

14

ent algorithms, or varying the algorithm applied with eatgpgaken, or both. Alternatively, some
of the BitTorrent constants which we purposefully did notdifip in our experiments could be
altered to put tighter bounds on node degrees, another misah&y which regular graphs could
be more closely approximated.

6 Conclusion

BitTorrent has traditionally relied on a tracker, which kegly tracks every peer in the swarm, to
provide randomly selected neighbors both to joining nodelda nodes with less thaninNeighbors
(or even less thamaxlInitiate) neighbors. We have proposed the replacement of the tragkame
or more entry points, where any peer in the swarm can serve@stey point. Rather than tracking
every peer, these entry points use multiple perpetual ranslalks to randomly select nodes. Be-
cause they don’t maintain any global state, entry pointsesarbitrarily replicated and replaced.

Entry points perform random node selection without tragkafi nodes in the swarm by per-
forming multiple perpetual random walks. The bias of theatkesdetermines the distribution from
which nodes are randomly sampled. Using trace-driven sitiauns, we compared the graphs gen-
erated by a centralized tracker to those generated using goints with various types of biased
random walks. We used vertex expansion as a means by whictatdity the quality of the graphs
generated by each algorithm, and showed that random watkbecased to generate graphs with
expansion properties very similar, and sometimes sup¢odhose found in graphs generated by
a tracker.

In addition to the ability of entry points to completely rapé the tracker, they can also serve a
valuable role when used alongside existing trackers. Famgke, one or more entry points could
be added to a swarm that was actively managed by a trackawiad] future peers to join even if
the tracker went offline. They can also be used by nodes teehgtieplace failed neighbors in a
manner that preserves the swarm’s expansion without gelymthe tracker.

Acknowledgments

Thanks to David O’Hallaron for his Internet Services cousech first got us thinking about the
possibility of removing the tracker from BitTorrent. Thanto Stan Bielski for his help with a
class project where we initially explored trackerless Bité€nt. Thanks to the Debian Project for
making their tracker logs available for analysis.

References

[1] N. Alon. Eigenvalues and expanders. Combinatorica:832)96, 1986.

[2] D. Arthur and R. Panigrahy. Analyzing BitTorrent andated peer-to-peer networks. ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2006.

15

[3] A. Awan, R. A. Ferreira, S. Jagannathan, and A. GramatriDiged uniform sampling in
unstructured peer-to-peer networks. Hawaii Internati@@nference on System Sciences
(HICSS), 2006.

[4] A. Bagchi A. Bhargava, A. Chaudhary, D. Eppstein, and €heideler. The effect of faults
on network expansion. ACM Symposium on Parallelism in Aidons and Architectures
(SPAA), 2004.

[5] A. Beygelzimer, R. Linsker, G. Grinstein, and I. Rish.dmving network robustness by edge
modification. Physica A, 357(3-4), 593—-612, November 2005.

[6] A. R.. Bharambe, C. Herley, and V. N. Padmanabhan. Aniatyand improving a BitTor-
rent network’s performance mechanisms. IEEE Conferenc€Eanputer Communications
(INFOCOM), 2006.

[7] M. Blum, R. M. Karp, O. Vornberger, C. H. PapadimitrioydaM. Yannakakis. The com-
plexity of testing whether a graph is a superconcentrabdor mation Processing Letters,
13(4/5):164-167, 1981.

[8] V. Bourassa and F. Holt. SWAN: Small-world wide area natks. International Conference
on Advances in Infrastructure (SSGRR), 2003.

[9] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing Markdaim on a graphSIAM Review,
46(4):667-689, 2004.

[10] F.R.K. Chung. Spectral graph theory. AMS Publicatid97.

[11] B. Cohen. Incentives build robustness in BitTorrenbrkéhop on Economics of Peer-to-Peer
Systems (P2PECON), 2003.

[12] “Experimental draft: BitTorrent trackerless DHT poobl specifications v1.0.” [Online].
Available:htt p: //ww. bittorrent. org/ Draft _DHT_pr ot ocol . ht m

[13] C. Cooper, M. Dyer, and C. Greenhill. Sampling regulaapis and a peer-to-peer network.
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005.

[14] C. Cooper, R. Klasing, and R. Radzik. A randomized atpar for the joining protocol in
dynamic distributed networks. In submission. Septemb8620

[15] J. Friedman. On the second eigenvalue and random waledom d-regular graph€om-
binatorica, 11(4):331-362, 1991.

[16] D. Gillman. A Chernoff bound for random walks on expandeaphs. SIAM Journal on
Computing, 27(4), 1203-1219, August 1998.

[17] C. Gkantsidis, M. Mihail, and A. Saberi. Random walkspeer-to-peer networks. IEEE
Conference on Computer Communications (INFOCOM), 2004.

16

[18] W. Hastings. Monte carlo sampling methods using Markbeins and their applications.
Biometrika, 57:97-109, 1970.

[19] J. Hoffman. Multitracker metadata entry specificatidnline]. Available:ht t p: / / wwww.
bi t t or nado. conf docs/ nul titracker-spec. txt

[20] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber,. Al Hamra, and L. Garcs-Erice.
Dissecting BitTorrent: five months in a torrent’s lifetinfeassive and Active Measurements
Workshop (PAM), 2004.

[21] C. Law and K.-Y. Siu. Distributed construction of ramd@xpander networks. IEEE Confer-
ence on Computer Communications (INFOCOM), 2003.

[22] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. Mil&\ performance vs. cost frame-
work for evaluating DHT design tradeoffs under churn. IEEEh{@rence on Computer Com-
munications (INFOCOM), 2005.

[23] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-tietio analysis of structured peer-
to-peer systems: routing distances and fault resilien€MAConference on Applications,
Technologies, Architectures, and Protocols for Computem@unications (SIGCOMM),
2003.

[24] L. Lovasz. Random walks on graphs: a sun@ymbinatorics, Paul Erdosis Eighty, 2:1-46,
1993.

[25] P. Mahlmann and C. Schindelhauer. Peer-to-peer n&shmsed on random transformations
of connected regular undirected graphs. ACM Symposium oalleasm in Algorithms and
Architectures (SPAA), 2005.

[26] P. Maymounkov and D. Mazieres. Kademlia: a peer-ta-pgermation system based on the
XOR metric. International Workshop on Peer-to-Peer Syst@RITPS), 2002.

[27] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. TeJleand E. Teller. Equation of state
calculation by fast computing machindsChem. Physics, 21:1087-1092, 1953.

[28] G. Pandurangan, P. Raghavan, and E. Upfal. Buildingdameter peer-to-peer networks.
|EEE Journal on Selected Areas in Communications, 21(6), 995-1002, August 2003.

[29] “Peer exchange.” [Online]. Available: htt p://azureus.aelitis.com w ki/
I ndex. php/ Peer Exchange

[30] M. K. Reiter, A. Samar, and C. Wang. Distributed constian of a fault-tolerant network
from a tree. IEEE Symposium on Reliable Distributed SystéaRDS), 2005.

[31] V. Vishnumurthy and P .Francis. “On heterogeneouslayazonstruction and random node
selection in unstructured P2P networks.” IEEE Conferent€&€omputer Communications
(INFOCOM), 2006.

17

