
Really Truly Trackerless BitTorrent

Charles P. Fry1 Michael K. Reiter2

August 2006
CMU-CS-06-148

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1Electrical & Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA,
USA; cfry@ece.cmu.edu
2Electrical & Computer Engineering Department, and Computer Science Department, Carnegie
Mellon University, Pittsburgh, PA, USA;reiter@cmu.edu

This work was partially supported by NSF award number CCF-0424422

Keywords: peer-to-peer systems, expander graphs, random walks

Abstract

BitTorrent is a peer-to-peer protocol used for collaborative downloading. It allows peers to ex-
change blocks of the file they are downloading with each other, rather then obtaining them from
a central server. Despite the decentralized nature of the protocol, BitTorrent has traditionally re-
lied on a centralized tracker, which bootstraps the system by providing new clients with a random
set of peers. The tracker has previously been perceived as a critical part of BitTorrent systems,
and efforts to make it more fault-tolerant have focused on tracker replication and on tracker im-
plementations using Distributed Hash Tables, which have been entitled “Trackerless BitTorrent”.
The tracker’s sole responsibility, whether implemented ina centralized or distributed manner, is to
allow peers to randomly select other peers to connect to, in an effort to construct a robust graph.
We propose completely removing the tracker and replacing itwith a set of distributed protocols
based on random walks, accomplishing the work of the trackerwithout explicitly tracking every
peer in the system. We use expansion as a measure by which to compare the quality of the graphs
generated by distributed, trackerless algorithms to the graphs generated by a centralized tracker.
We also explore the implications of various design decisions related to the random walks which
are the key component of our proposal.

1 Introduction

BitTorrent is a distributed protocol by which multiple concurrent clients (peers) can download the
same file by sharing blocks of that file with each other rather than obtaining it from a central loca-
tion. In order to bootstrap the protocol, a new client must discover other peers who are currently
downloading the file of interest. To accomplish this, a centralizedtracker explicitly tracks all peers
who are currently downloading a file. When contacted by a new client, the tracker adds that client’s
address to the list of current downloaders, collectively known as aswarm, and selects a random
set of peers from the swarm to provide to the joining client. The client then contacts these peers,
attempting to establish connections with them. Clients that are connected together areneighbors,
and as long as they remain connected they regularly attempt to exchange blocks of the file they are
downloading with each other.

Unfortunately, the distributed network formed by BitTorrent peers is far more robust and scal-
able than the centralized tracker. If a tracker goes offline,the remaining clients are able to continue
exchanging blocks of the file being downloaded only until they lose their current neighbors, and
it is impossible for new peers to join the swarm. To remedy this, we propose the removal of the
tracker, replacing its functionality with a distributed algorithm based on random walks through the
swarm. In our approach, no party keeps track of all members ofthe swarm, and peers need not
notify others of their departure or continued presence. Rather, each peer simply maintains connec-
tions to a bounded set of neighbors, which it must already do for file block exchange. Each peer’s
neighbors are selected by walking randomly in the existing swarm, and can be refreshed similarly
(e.g., if a peer loses neighbors due to departures or failures). These walks are conducted either by
entry points or by joining nodes starting from peers provided by entry points, though we stress that
an entry point does not track the swarm membership more than any other peer does. In fact,any
peer can act as an entry point—possibly simultaneously withothers, and possibly transiently—with
no further information than it already has by participatingin the swarm as a peer.

Within this general framework, we evaluate several different design alternatives and their im-
pact on the swarm, with particular attention to how the random walk algorithm affects the swarm
quality. The measure of “quality” that we employ isvertex expansion, i.e., the minimum ratio
between the number of peers neighboring a set and the size of that set, for all sets up to a certain
size, such as half of the swarm. Expansion, and the low diameter that it implies [10], have long
been recognized as important properties in peer-to-peer networks [14, 17, 21, 23]. High vertex
expansion implies that a network is robust, in that a partition is highly improbable [4]; it ensures
that there are a relatively large number of communication paths leaving each set of nodes in the
network, maximizing the aggregate bandwidth of the network; and it also allows rare blocks to
rapidly expand through the swarm, minimizing the risk that they disappear from the network.

We conduct our evaluations using trace-driven simulations. The traces we utilize are a well-
known 5-month RedHat tracker log [20] and a more recent 5-month log of the Debian tracker.
Using these traces, we demonstrate several random walk algorithms that yield similar, and in some
casesbetter, expansion than a centralized tracker, for the same degree constraints imposed in the
default BitTorrent configuration. This suggests that whileour approach has merit in eliminating
fragility due to the use of a tracker, it also does so without impairing block exchange.

1

2 Related Work

Here we place our contributions in the context of related work on BitTorrent specifically (Sec-
tion 2.1) and on the distributed construction of random graphs more generally (Section 2.2).

2.1 BitTorrent

The traditional centralized tracker has long been recognized as a single point of failure in BitTor-
rent systems. The first efforts to remove this single point offailure involved instantiating multiple
tracker replicas, and defining the order in which they shouldbe accessed [19]. A more successful
strategy, at least in terms of client adoption, for removingthe dependency on a single centralized
tracker involved support for distributed trackers. While the concept was originally pioneered by
unofficial clients, BitTorrent recently added official support for a distributed tracker, naming the re-
sultant system “Trackerless BitTorrent” [12]. Under this model, each client becomes a “lightweight
tracker,” using the Distributed Hash Table (DHT) Kademlia [26] to store the identities of all peers
in the torrent.

While storing tracker information in a DHT removes the single point of failure present with
a centralized tracker, the construction and maintenance ofthe DHT requires that in addition to
the neighbors with which it communicates as part of the BitTorrent protocol, each peer must also
maintain an orthogonal set of neighbors within the DHT, and pay the communication cost of main-
taining the DHT in the face of high rates of churn [22]. This begs the question of whether the
distributed tracker could be combined with the existing BitTorrent neighbor infrastructure, and
even whether a tracker of any kind, whether centralized or distributed, is really necessary at all.
Here we show that it is not.

While not supported by the official client, Peer Exchange [29] is part of many BitTorrent im-
plementations. Introduced as a mechanism for reducing loadon the tracker, Peer Exchange is a
gossip protocol by which peers tell each other about other peers in the swarm. Although Peer
Exchange fails to entirely eliminate the tracker, it does demonstrate that peers can viably discover
new peers by sharing peer information with each other, rather than being completely dependent on
the tracker.

2.2 Random graphs

The algorithmic techniques we employ here derive from work in the distributed construction of
random graphs, the vast majority of which seeks to build random regular graphs; in particular,
a random regular graph is a good expander with high probability [15]. Bourassa and Holt [8]
proposed a protocol for the distributed construction of random regular graphs, for which a bound
on mixing time (see Section 3) was proved by Cooper et al. [13]. However, when nodes depart
ungracefully a broadcast must be made over the entire graph,seeking other nodes which are also
under-connected; we avoid such large-scale broadcasts. Law and Siu [21] similarly construct
random regular graphs, though at the cost of maintaining Hamilton cycles over the graph; this
approach was subsequently optimized by Gkantsidis et al. [17] using insights due to Gillman [16].
Unfortunately the Hamilton cycle constructions are unableto deal with large numbers of nodes

2

leaving the network, requiring periodic regeneration of the graph. Other works construct random
regular graphs from other graphs through graph transformations, e.g., [25, 30]. While introducing
new randomness via these approaches could benefit BitTorrent graphs, we focus on the quality of
the graphs which are initially constructed.

While random regular graphs possess desirable properties with high probability, such as low
diameter and high expansion, the BitTorrent tracker does not construct regular graphs, but rather
bounded degree graphs. We follow this goal to more closely mimic the behavior of the tracker, and
because irregular graph constructions tend to be simpler and less intrusive when new connections
are added, as it is never necessary to destroy existing connections. They also are more tolerant of
node departures, as they do not attempt to maintain the same number of neighbors at each node.

Within this space, Pandurangan et al. [28] proposed a partially distributed, bounded degree
graph construction protocol which relies on a centralized cache of a constant number of nodes.
While this model is directly applicable to the BitTorrent tracker, it does require a central server,
and is thus insufficient for the trackerless case. Cooper et al. [14] propose an algorithm where each
peer contributescm tokens to the graph, which circulate in random walks until they are picked
up, m at a time, by new nodes joining the network; the new node connects to them peers that
contributed the tokens it picked. The resultant graph is shown to maintain diameter logarithmic
in the total number of nodes in the graph, and to be robust against the adversarial deletion of
both edges and vertices. One disadvantage of this protocol is that the tokens in the graph must
be constantly circulated in order to ensure that they are well-mixed. Moreover, the rate at which
new nodes can join the system is limited, as they must wait while the existing tokens mix before
they can use them, a potential problem in the face of flash crowds which BitTorrent can otherwise
handle so gracefully [6].

Vishnumurthy and Francis [31] evaluate various types of random walks for use in random
neighbor selection in the construction of peer-to-peer networks according to a desired degree dis-
tribution. Unbiased walks are unfit for constructing graphswith fixed degree distributions, and so
Vishnumurthy and Francis explore various biased halting and biased forwarding heuristics through
simulation. While BitTorrent graphs are irregular, they donot require a prescribed degree distribu-
tion, but rather impose a lower and upper bound on degree.

Arthur and Panigrahy [2] define a generative random graph model of BitTorrent graphs which
they use to model and analyze block distribution. Their model, however, is incomplete in that it
doesn’t account for the neighbor replacement which may occur when nodes leave the graph. They
also propose a slight modification to BitTorrent graph construction where initial neighbor selection
is biased towards newer nodes, which ends up improving blockexchange.

3 Preliminaries

In this section we introduce key concepts that underlie the remainder of our discussion. We repre-
sent a BitTorrent swarm at any point in time as a simple graphG = (V, E) whereV = {1, . . . , n}
is the set of peers andE ⊆ V × V is the set of neighbor relations, i.e.,(i, j) ∈ E iff i andj are
connected to one another. Note that the neighbor relation issymmetric. LetΓ(i) = {j ∈ V :
(i, j) ∈ E} be the neighbors ofi ∈ V , and letΓ(S) =

⋃

j∈S Γ(j). Let degi = |Γ(i)|.

3

As discussed in Section 1, our primary measure of quality of this graph is itsvertex expansion,
i.e.,

min
1≤|S|≤n/2

|Γ(S)|

|S|

While measuring the expansion of a graph is co-NP-complete [7], there is a close relationship
between a graph’s expansion and the second smallest eigenvalueλ of the graph’s Laplacian matrix.
More specifically, a graph of maximum degreemdeg has vertex expansion of at least2λ

2λ+mdeg
[1].

Whenever we claim to compute the expansion of a graph, it is this lower bound that we report.
A random walk algorithm is defined by ann×n transition probability matrixP where each row

Pi ∈ [0, 1]n is a distribution (i.e., its components sum to one) andPij > 0 only if j ∈ Γ(i) ∪ {i}.
A step of a random walk currently at nodei samples a nodej according to the distributionPi and
transitions to nodej, making it the new current node. A random walk is then the sequence of nodes
visited by repeating such steps, starting from a node chosenaccording to an initial distribution
π0 ∈ [0, 1]n. A stationary distribution for the random walk algorithm is a distributionπ ∈ [0, 1]n

that satisfiesπ = πP. For the random walk algorithms we consider here, the stationary distribution
is unique (if it exists) with high probability (where the probability is taken over the selection of the
graphG induced by our algorithms), and so we treat it as such here. Whenπ exists, themixing
time is the numbert of steps needed to “reach” the distributionπ or, informally, the minimumt
such thatπ ≈ π0P

t for all initial distributionsπ0. For some of the random walk algorithms that
we consider here, the mixing time is known to bet = O(log n). However, since the random walk
algorithms that we study here do not utilizet as a parameter, the fact that the mixing time is not
established for a particular algorithm does not preclude its use.

4 Trackerless BitTorrent

We propose a modification to the BitTorrent protocol which removes its dependence on the tracker.
The tracker’s sole responsibility is to provide peers with neighbors randomly selected from the en-
tire swarm. This currently happens both when a node first joins the swarm, and thereafter whenever
its neighbor count falls below a certain threshold,minNeighbors. The tracker accomplishes its job
by maintaining a global list of all peers currently in the swarm, and then selecting random sets
of sampleSize peers for distribution as potential neighbor sets. Each peer will initiate connec-
tions to up tomaxInitiate other peers, and then cache any extra peers that the tracker told it about.
Peers accept connections from other peers as long as they have less thanmaxNeighbors neighbors.
In the current official BitTorrent implementation, the values of these configuration variables are
minNeighbors = 20, maxInitiate = 40, sampleSize = 50, andmaxNeighbors = 80.

While maintaining a global list of peers allows for rapid random selection among them, it is by
no means the only mechanism by which random nodes can be selected. An appealing alternative
is the use of random walks, which have long been used to randomly select nodes from graphs [24].
Simply performing an unbiased random walk of sufficient length (the mixing time) and selecting
the last node in the walk will select each node in the graph with probability proportional to its
degree. In order to select each node from an irregular graph with uniform probability, bias can be
added to the direction (biased forwarding) or length (biased halting) of the random walk [3, 31].

4

Such biased random walks could be used in BitTorrent both to select initial neighbors for joining
nodes and to replace failed neighbors, removing any dependence on the tracker.

Most of the random walk algorithms that we consider require the walking nodei to randomly
select an element ofΓ(j) wherej ∈ Γ(i) according to some distribution. This could be imple-
mented either byi queryingj to obtainΓ(j) and then choosing fromΓ(j) itself, or by askingj to
select an element fromΓ(j) according to the proper distribution and return that element to i. If i
must be able to select fromΓ(j) even afterj has failed (e.g., to replacej by a neighbor ofj), then
it should obtainΓ(j) upon connecting toj and ask thatj keep it notified of any changes.

4.1 Entry Points

Although BitTorrent can function properly without a tracker of any kind, it is still necessary for
new nodes to somehow discover other nodes in the swarm. We accomplish this through the use
of entry points that help joining nodes to obtain an initial random set of neighbors. In purpose,
entry points serve the same role as the tracker; the key distinction is in how they perform this role.
Both centralized and decentralized trackers, as their nameimplies, explicitly keep track of every
node currently in the swarm. Each entry point, on the other hand, is only aware of its neighbors
in the swarm. Each node in the swarm can act as an entry point, helping joining nodes to discover
new neighbors. While entry points are not strictly requiredto be members of the swarm, swarm
membership does have the advantage of helping entry points remain connected to the swarm.

Because entry points can be implemented in a manner that strongly resembles a tracker, we
emphasize some of the key differences between the two. The tracker holds a distinguished role
which cannot be arbitrarily shared; even DHT tracker implementations rely on a small number
of nodes to store the membership of the swarm. Our entry points, on the other hand, can be any
arbitrary nodes inside or outside the swarm. No communication is required between multiple entry
points; they can all operate independently and in parallel.Finally, entry points proactively explore
the swarm and thus do not need to be notified of join and leave events, nor do nodes need to
regularly announce their presence as required by the tracker.

4.2 Initial Neighbor Selection

There are various ways in which random walks can be used by entry points in order to provide
joining nodes with an initial random neighbor set. The most primitive strategy would be for either
the entry point or the joining node to perform a well-mixing random walk in order to select each
new neighbor. Regardless of who performs the walks, this solution has the disadvantage of
requiring that the walk be advanced by at least the mixing time (see Section 3), so that the last
node of the walk is selected from the desired stationary distribution. Having entry points perform
these walks allows new nodes to more rapidly join the swarm, as long as the join rate through any
given entry point is not too high. The advantage of requiringnewly joining nodes to perform their
own random walks is that it reduces the amount of work that entry points are required to perform
for each node that joins the swarm.

It is not actually necessary for the walk to be newly advancedby its full mixing time for each
join. By applying the technique of Gillman [16], first introduced in a peer-to-peer context by

5

Gkantsidis et al. [17], entry points can maintainsampleSize perpetual random walks which are
extended by onlyc steps for each selection of a random node.1

The use of perpetual random walks requires that the entry points themselves extend the random
walks in order to avoid repeatedly distributing the same setof neighbors to every joining node.
While it is not strictly required, we recommend that entry points perform their perpetual random
walks on their own neighbor set as this removes the need to maintain a separate set of nodes for
block exchange and for random walks. This also has the beneficial side-effect of automatically
refreshing entry point’s neighbors, ensuring that they arerandomly spread throughout the entire
graph. As a practical measure, entry points should not refresh their neighbors with whom they
are actively exchanging blocks; this is not difficult to avoid as peers can have up tomaxNeighbors

neighbors, but only need performsampleSize random walks.

4.3 Failed Neighbor Replacement

BitTorrent clients have traditionally relied on the tracker to provide additional randomly selected
nodes whenever their neighbor count drops belowminNeighbors (or evenmaxInitiate, though with
less urgency). In a truly trackerless system peers cannot necessarily return to their original entry
point to request additional neighbors, as entry points may not necessarily remain in the swarm
during the entire lifetime of the peers which they help to enter the swarm. However, since any
node can serve as an entry point, a peer in need of additional neighbors could acquire them from
any other node in the swarm.

5 Trace-Driven Simulations

We compare graphs generated by our approach to those createdby the centralized tracker through
trace-driven simulation using actual logs generated by twodistinct trackers, both covering periods
of around five months. Using the tracker logs we determine when nodes joined and left the swarm,
and use this information to drive our simulator, which connects and disconnects nodes according
to the various algorithms which we examine. The resultant connectivity graph is periodically
analyzed in order to compare the quality of the graphs generated by different algorithms.

The first log which we analyze is the RedHat tracker log first examined by Izal et al. [20],
covering a period from April to August of 2003. This trace began with a flash crowd which rapidly
grew to over 4000 simultaneous clients during the first 16 hours, and then dropped almost as
rapidly over the next few days, ultimately stabilizing at around 100 simultaneous clients within
two weeks. The second log which we analyze is from the currentDebian tracker, covering a period
from December 2005 to May 2006. As no new Debian release was made during that time, the
number of simultaneous clients remains fairly constant, fluctuating around 2000.

We begin our tracker log analysis by extracting client arrival and departure times. More specif-
ically, we determine from the log when the tracker learned ofa new client joining the swarm, and

1Gkantsidis et al. [17] letc = 1 in the case of regular graphs, and similar results would be expected with biased
forwarding on irregular graphs. The case of biased halting would obviously require larger values ofc.

6

when the tracker assumed that a client had left. Under normalmodes of operation, clients explic-
itly notify the tracker of their arrival and departure, however in practice we found that this was not
always the case. When the log indicated interaction from a client which was not currently known
to be in the swarm, this was recorded as a join, whether the client request claimed to be a join or a
periodic announcement.

Determining when nodes left the swarm is more involved if they do not exit cleanly by noti-
fying the tracker of their departure. Trackers tell clientshow often they are expected to announce
themselves, and if clients go for too long without doing so, then they are assumed to have left the
swarm. In the official BitTorrent implementation, clients are asked to announce themselves every
30 minutes, and are removed from the tracker’s list of swarm members if they are not heard from
for 45 minutes. We thus recorded a client’s unclean departure as taking place 45 minutes after its
last interaction with the tracker, in cases where it did not exit cleanly. In practice, the node likely
left at an earlier time, and the tracker incorrectly assumedthat it was still part of the swarm. For the
sake of our simulation, however, we pretend that nodes remained in the swarm until the moment
when the tracker would have assumed they had left. In doing sowe err in favor of the centralized
tracker, who otherwise would distribute stale nodes as potential neighbors. Because random walks
actively explore the swarm, they are far less likely to falsely believe that a departed node is still in
the swarm.

When using a tracker, peers request new neighbors from the tracker every five minutes if they
have less thanminNeighbors neighbors, and every half hour if they have less thanmaxInitiate

neighbors. While such long waits between obtaining new neighbors is entirely unnecessary when
using entry points, we again err in favor of the centralized tracker, imposing these delays between
new neighbor requests across all algorithms that we study.

Just as the tracker can distribute nodes that are not alive, so can it suggest neighbors that are
already full, and thus will be unwilling to accept new connections. The tracker accommodates this
error by handing out groups ofsampleSize neighbors even though onlymaxInitiate will ever be
used at one time. While entry points could (and probably should) avoid distributing full nodes, our
simulation currently selects the node that is walked to regardless of its degree, again erring in favor
of the centralized tracker.

With the arrival and departure times of clients from actual tracker logs we are able to simulate
the dynamic construction and evolution of the BitTorrent swarm under various algorithms. While
the simulator has a notion of the times at which nodes join andleave, it completely processes each
join and leave event, including the addition and removal of all associated neighbor connections,
serially in the order in which they occur in the logs. Following the precedent of Vishnumurthy
and Francis, we justify this because the random nature of thealgorithms we consider make them
impervious to the order and timing of events [31].

We thus process the tracker logs for each algorithm evaluated, recording the vertex expansion
of a snapshot of the swarm taken at regular intervals. In the case of the tracker, whether centralized
or distributed, new neighbors are randomly selected from a global swarm membership list. Entry
points, on the other hand, use random walks to dynamically explore the swarm, randomly selecting
peers encountered on their walks.

In order to minimize the number of random walk steps taken foreach joining node, our entry

7

 0.45

 0.5

 0.55

 0.6

 0.65

May Jun Jul Aug

ex
pa

ns
io

n

(a) RedHat

 0.25

 0.3

 0.35

 0.4

 0.45

Jan Feb Mar Apr May

ex
pa

ns
io

n

(b) Debian

Figure 1: Centralized Tracker

points performsampleSize perpetual random walks, each of which is extended by a singlestep to
select new neighbors for every joining node. As a result, theneighbor sets of two successive nodes
i andj that join through the same entry point will be connected, i.e., Γ(j) ⊆ Γ(Γ(i)). While this
relationship between successive random walk samples is notexpected to be problematic [16, 17],
we perform our simulations with all nodes joining through a single entry point to ensure that
we observe any negative impact this correlation could have on expansion. For the same reason,
whenever a node needs additional neighbors it requests themfrom the single entry point.

5.1 Centralized Tracker

As we are evaluating the feasibility of replacing the centralized tracker, we begin by measuring the
expansion over time of graphs generated by the centralized tracker. This will serve as a baseline
to which other algorithms can be compared. Figure 1 shows theexpansion of graph snapshots
taken once per day over the lifetime of both the RedHat and Debian logs, when processed by our
centralized tracker simulator.

As illustrated in Figure 1(a), the expansion of the RedHat torrent primarily oscillates between
0.45 and 0.55. During the rise and fall of the initial flash crowd, expansion hovers at the low end
of this spectrum, rapidly rising as the total number of nodesdecreases to 100.

The steady-state expansion of the Debian torrent is far moreregular, primarily varying between
0.43 and 0.44 as seen in Figure 1(b). The occasional periods of zero expansion reflect gaps in
the tracker logs, which could be due either to tracker down time or to errors archiving the logs.
Regardless of the original cause, our simulator deals with gaps by allowing all nodes in the swarm
to expire, and then rebuilds the swarm graph from scratch once the log resumes. This is obviously
pessimistic, as it is likely that even if the tracker was temporarily down that the swarm still stayed
together and did not need to be reconstituted from scratch. However, it does create artificial flash
crowds which allow us to observe the effect they have on the algorithms that we study.

5.2 Simple Random Walks

With this understanding of the expansion of the graphs generated by the centralized tracker, we now
turn to an examination of the expansion of graphs generated by various random walk algorithms
that could be employed by entry points. The first type of random walk which we examine uses the

8

-0.1

-0.05

 0

 0.05

 0.1

May Jun Jul Aug

no
rm

al
iz

ed
 e

xp
an

si
on

centralized tracker
unbiased walk

Metropolis-Hastings walk

(a) RedHat

-0.1

-0.05

 0

 0.05

 0.1

Jan Feb Mar Apr May

no
rm

al
iz

ed
 e

xp
an

si
on

centralized tracker
unbiased walk

Metropolis-Hastings walk

(b) Debian

Figure 2: Normalized Simple Random Walks

classical Metropolis-Hastings algorithm [27, 18] which allows approximately uniform sampling
from an irregular graph [9, 3], thus closely mimicking the behavior of the centralized tracker.
In order to determine the advantage obtained by the bias of the Metropolis-Hastings walk, we
also evaluate the performance of unbiased walks, that as a result select nodes with probability
proportional to their degree.

The transition probabilities (see Section 3) for the unbiased random walk are:

Punb
ij =

{

1/degi if j ∈ Γ(i)
0 otherwise

The transition probabilities for the Metropolis-Hastingsrandom walk are:

Pmh
ij =







1
max{degi,degj}

if j ∈ Γ(i)

1 −
∑

k∈Γ(i) Pmh
ik if i = j

0 otherwise

Figure 2 shows the expansion from both the Metropolis-Hastings random walks and the un-
biased random walks normalized against the expansion of thecentralized tracker in order to un-
derscore the relationship between these algorithms and thecentralized tracker. In the case of the
RedHat torrent, shown in Figure 2(a), both random walk algorithms perform slightly worse than
the centralized tracker, with Metropolis-Hastings performing better than unbiased random walks.
The Metropolis-Hastings algorithm is just a hair below the centralized tracker in the Debian tor-
rent, shown in Figure 2(b), while the unbiased random walks outperform the centralized tracker at
almost every point in time.

It is somewhat surprising that such good expansion is obtained when random nodes are se-
lected by the use of unbiased random walks, as they select nodes with probability proportional
to their degree. It is thus interesting to observe that whilethe uniform random sampling of the
centralized tracker and the approximately uniform random sampling of the Metropolis-Hastings
random walks both create graphs with good expansion properties, such uniformity in sampling is
not a prerequisite for obtaining such results.

9

5.3 Degree-Biased Random Walks

The success of the unbiased random walks suggests the possibility that other types of walk bias
which sample peers non-uniformly may also be reasonable candidates for replacing the centralized
tracker. In their exploration of biased random walks, Vishnumurthy and Francis proposed walks
where steps were taken with probability proportional to a node’s outdegree (the number of con-
nections that it initiated) and inversely proportional to anode’s degree [31]. This is an appealing
prospect, as it allows priority to be given to low degree nodes when establishing new neighbor
connections. We also note that Cooper et al.’s token-based protocol circulates one token for each
connection a node is willing to accept (maxNeighbors), resulting in neighbor selections which are
biased according to the residual degree of each nodei, i.e., maxNeighbors − degi [13]. Finally,
Arthur and Panigrahy[2] bias new neighbor selection towards younger nodes to improve block
exchange.

Our initial evaluation of degree-biased random walks selects neighbors to walk to with proba-
bility proportional to their residual degree, and then withprobability inversely proportional to their
degree. Note that as we don’t distinguish between inbound and outbound connections, our inverse
degree bias is slightly different than that of Vishnumurthyand Francis. We do, however, follow
their model of applying the bias locally to each random walk step, which does not necessarily
result in the global selection of nodes with probability exactly proportional to residual or inverse
degree.

We define the residual degree for a nodei as rdegi = maxNeighbors − degi. The transition
probabilities for the residual degree random walk are:

Pres
ij =

{

rdegj
P

k∈Γ(i) rdegk
if j ∈ Γ(i)

0 otherwise

The transition probabilities for the inverse degree randomwalk are:

Pinv
ij =

{

minNeighbors/degj
P

k∈Γ(i) minNeighbors/degk
if j ∈ Γ(i)

0 otherwise

Figure 3 shows the normalized expansion which results from these walks (as well as some
others which shall be discussed shortly). As seen in Figure 3(a), on the RedHat torrent the residual
walk performs slightly better than the centralized tracker, and the inverse walk, slightly worse. The
inverse walk is also subpar to the centralized tracker on theDebian torrent, shown in Figure 3(b),
but in this case the residual walk yields expansion significantly higher than the centralized tracker
most of the time.

There are, however, occasional drops in the normalized expansion for residual walks on the
Debian torrent that were not seen for other algorithms. In fact, these drops all occur immediately
after periods of zero expansion where there were no nodes in the swarm. In other words, the
residual degree walk is slow to grow graphs with good expansion from scratch. This is best seen
in Figure 4, which zooms in on the first two and a half days of theDebian torrent, showing non-
normalized expansion for all algorithms measured hourly instead of daily. The residual walks
initially create graphs with relatively low expansion, with expansion rising to its steady-state levels

10

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

May Jun Jul Aug

no
rm

al
iz

ed
 e

xp
an

si
on

centralized tracker
residual walk
inverse walk

residual^5 walk
inverse^5 walk

(a) RedHat

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

Jan Feb Mar Apr May

no
rm

al
iz

ed
 e

xp
an

si
on

centralized tracker
residual walk
inverse walk

residual^5 walk
inverse^5 walk

(b) Debian

Figure 3: Normalized Degree-Biased Random Walks

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

Dec 16 Dec 17

ex
pa

ns
io

n

centralized tracker
unbiased walk

Metropolis-Hastings walk
 residual walk
inverse walk

residual^5 walk
inverse^5 walk

Figure 4: Debian Startup

11

over a slightly longer period of time than the centralized tracker. The likely reason for this behavior
is that the older a node is, the more chances it has of being selected by a random walk, even if the
walk is biased against high degree nodes. As a result, old nodes tend to have higher degree than
new nodes, and degree-biased walks are more likely to selectyounger nodes. Vishnumurthy and
Francis made a similar observation about their biased-forwarding random walks, and suggested
periodically refreshing neighbors in order to introduce fresh randomness. In fact, they note that
churn has the same impact on the graph as refreshing, which could partially explain why the low
expansion initially experienced by some of our algorithms improves dramatically with the passage
of time [31].

The success of the residual walk led us to experiment with other variations of degree-biased
walks. We started by making the bias proportional to the square of the residual degree and the
inverse degree, respectively. As this improved expansion over the simple residual and inverse
degree, we also evaluated raising the residual and inverse degrees to powers greater than two. Due
to space restrictions we only report on the results of power five, which we denote byresidual5 and
inverse5, as they generally tended to outperform the other powers.

The transition probabilities for theresidual5 random walk are:

Pres5

ij =

{

(rdegj)
5

P

k∈Γ(i)(rdegk)5
if j ∈ Γ(i)

0 otherwise

The transition probabilities for theinverse5 random walk are:

Pinv5

ij =

{

(minNeighbors/degj)
5

P

k∈Γ(i)(minNeighbors/degk)5
if j ∈ Γ(i)

0 otherwise

These results are shown in Figure 3 and Figure 4 next to the results of the original (power one)
residual and inverse walks. Both significantly outperform any other algorithm yet examined during
most periods of stability, but take even longer to reach their steady-state behavior.

There is one anomaly in the expansion of graphs generated with residual5, which is best seen
in Figure 4. While all of the other algorithms rise continually and then level off at their steady-
state,residual5 rises (albeit slower than any other algorithm), levels off for an extended period of
time at expansion levels inferior to the centralized tracker, and then unexpectedly jumps to levels
significantly higher than the centralized tracker, on par with the inverse5 algorithm. At least that
is what happens most of the time. However, during the month ofJanuary in the Debian trace, the
residual5 algorithm never made the second jump, and remained at the lower steady-state until the
next period of zero expansion. We leave the analysis of this anomaly to future study.

We hypothesize that the reason for which most of the degree-biased random walks yield higher
expansion during their steady-state than other algorithmsis because they more closely approach
random regular graphs, which are known to have good expansion properties with high probabil-
ity [15]. This hypothesis is supported by the fact that the maximum degree of graphs generated
across all algorithms is strongly negatively correlated toexpansion, with a correlation coefficient
of -0.93 for graphs generated across all algorithms with theRedHat trace, and -0.73 for the Debian
trace.

12

median mean std dev
algorithm expansion expansion expansion

residual5 walk 0.5411 0.5400 0.0310
inverse5 walk 0.5337 0.5334 0.0290
residual walk 0.5067 0.5077 0.0298

centralized tracker 0.4956 0.4977 0.0326
inverse walk 0.4884 0.4926 0.0323

Metropolis-Hastings walk 0.4846 0.4861 0.0345
unbiased walk 0.4558 0.4659 0.0357

Table 1: RedHat Expansion

median mean std dev
algorithm expansion expansion expansion

inverse5 walk 0.4816 0.4506 0.1136
residual5 walk 0.4731 0.4248 0.1371
residual walk 0.4513 0.4325 0.0987
unbiased walk 0.4376 0.4430 0.0577

centralized tracker 0.4292 0.4333 0.0621
inverse walk 0.4259 0.4282 0.0651

Metropolis-Hastings walk 0.4272 0.4326 0.0605

Table 2: Debian Expansion

5.4 Discussion

We summarize the results of Section 5 in a single table for each of the torrent logs which we used to
drive our simulations. Tables 1 and 2 show the median, mean, and standard deviation in expansion
for the RedHat and the Debian torrents respectively. They are sorted by the median expansion, as
this represents their steady state behavior. The slow ramp up of some of the algorithms is reflected
in a higher standard deviation, and in a relatively low mean expansion compared to the median
expansion for that algorithm.

All of our experiments involved multiple iterations, yet toour surprise we found that the ex-
pansion of the graphs generated by multiple iterations of the same algorithm only had negligible
differences in their expansion (the average standard deviation in expansion between iterations was
0.0075 for the RedHat trace, and 0.0036 for the Debian trace). In other words a fixed series of
node joins and departures determines with high precision the expansion of the constructed graph,
at least in the case of the node selection algorithms which westudy. We also experimented with
extending each perpetual random walk by more than a single step for each new neighbor selection,
but found that this did not have a noticeable effect on expansion, validating the perpetual random
walks which we adopt from Gkantsidis et al. [17].

13

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 0.1 0.2 0.3 0.4 0.5 0.6

di
am

et
er

expansion

(a) RedHat

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 0.1 0.2 0.3 0.4 0.5 0.6

di
am

et
er

expansion

(b) Debian

Figure 5: Diameter by Expansion

It is well known that expansion and diameter are two closely related graph parameters. Indeed,
they can both be bound from above and below using the second smallest eigenvalue of the Lapla-
cian [10]. In order to provide an intuition as to the relativeimport of observed deltas between
measured levels of expansion, we show in Figure 5 the observed correlation between expansion
and diameter in the graphs generated by the algorithms whichwe study. Each point on the plot
shows the average diameter for all graphs of the given expansion, with expansion being truncated
at two decimal places. Note that there are never more than twodiameter values observed for a
given expansion value, thus an average diameter of 4.75, which occurs for expansion values of .04
in the Debian graphs, indicates that3/4 of the graphs were of diameter five, and the remainder of
diameter four.

Our first observation about Figure 5 is that while the algorithms we studied yield graphs with
various levels of expansion, they all have the same diametermost of the time. Our second observa-
tion is that even graphs with low expansion still have relatively low diameters. We leave as future
work an analysis of the negative implications of low expansion, especially when combined with
relatively low degree, though we expect it to reveal itself in the form of graph fragility in the face
of churn (e.g., fragmentation), inaccessible blocks, and decreased aggregate bandwidth.

While we have examined the initial graphs produced by various random walk algorithms, ex-
pansion could be improved in many cases by regularly refreshing neighbor sets [31]. This could
be done by expiring neighbors after a fixed period of time, by randomly removing neighbors at
a slow rate, or by performing regular random walks on one’s own neighbor set (which happens
automatically on entry points). A good refresh algorithm could likely make up for poor expansion
resulting from a sub-par graph construction algorithm, even if it was executed only by a fraction
of the peers in the swarm.

Finally, we would like to obtain the high levels of stable-state expansion enjoyed by the degree-
biased walks without paying the currently high startup costin poor expansion. Perhaps this could
be accomplished by a mixed-algorithm walk, either combining multiple walks from several differ-

14

ent algorithms, or varying the algorithm applied with each step taken, or both. Alternatively, some
of the BitTorrent constants which we purposefully did not modify in our experiments could be
altered to put tighter bounds on node degrees, another mechanism by which regular graphs could
be more closely approximated.

6 Conclusion

BitTorrent has traditionally relied on a tracker, which explicitly tracks every peer in the swarm, to
provide randomly selected neighbors both to joining nodes and to nodes with less thanminNeighbors

(or even less thanmaxInitiate) neighbors. We have proposed the replacement of the trackerby one
or more entry points, where any peer in the swarm can serve as an entry point. Rather than tracking
every peer, these entry points use multiple perpetual random walks to randomly select nodes. Be-
cause they don’t maintain any global state, entry points canbe arbitrarily replicated and replaced.

Entry points perform random node selection without tracking all nodes in the swarm by per-
forming multiple perpetual random walks. The bias of these walks determines the distribution from
which nodes are randomly sampled. Using trace-driven simulations, we compared the graphs gen-
erated by a centralized tracker to those generated using entry points with various types of biased
random walks. We used vertex expansion as a means by which to quantify the quality of the graphs
generated by each algorithm, and showed that random walks can be used to generate graphs with
expansion properties very similar, and sometimes superior, to those found in graphs generated by
a tracker.

In addition to the ability of entry points to completely replace the tracker, they can also serve a
valuable role when used alongside existing trackers. For example, one or more entry points could
be added to a swarm that was actively managed by a tracker, allowing future peers to join even if
the tracker went offline. They can also be used by nodes to actively replace failed neighbors in a
manner that preserves the swarm’s expansion without relying on the tracker.

Acknowledgments

Thanks to David O’Hallaron for his Internet Services coursewhich first got us thinking about the
possibility of removing the tracker from BitTorrent. Thanks to Stan Bielski for his help with a
class project where we initially explored trackerless BitTorrent. Thanks to the Debian Project for
making their tracker logs available for analysis.

References

[1] N. Alon. Eigenvalues and expanders. Combinatorica 6(2):83–96, 1986.

[2] D. Arthur and R. Panigrahy. Analyzing BitTorrent and related peer-to-peer networks. ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2006.

15

[3] A. Awan, R. A. Ferreira, S. Jagannathan, and A. Grama. Distributed uniform sampling in
unstructured peer-to-peer networks. Hawaii International Conference on System Sciences
(HICSS), 2006.

[4] A. Bagchi A. Bhargava, A. Chaudhary, D. Eppstein, and C. Scheideler. The effect of faults
on network expansion. ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2004.

[5] A. Beygelzimer, R. Linsker, G. Grinstein, and I. Rish. Improving network robustness by edge
modification. Physica A, 357(3–4), 593–612, November 2005.

[6] A. R.. Bharambe, C. Herley, and V. N. Padmanabhan. Analyzing and improving a BitTor-
rent network’s performance mechanisms. IEEE Conference onComputer Communications
(INFOCOM), 2006.

[7] M. Blum, R. M. Karp, O. Vornberger, C. H. Papadimitriou, and M. Yannakakis. The com-
plexity of testing whether a graph is a superconcentrator.Information Processing Letters,
13(4/5):164–167, 1981.

[8] V. Bourassa and F. Holt. SWAN: Small-world wide area networks. International Conference
on Advances in Infrastructure (SSGRR), 2003.

[9] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing Markov chain on a graph.SIAM Review,
46(4):667–689, 2004.

[10] F.R.K. Chung. Spectral graph theory. AMS Publications, 1997.

[11] B. Cohen. Incentives build robustness in BitTorrent. Workshop on Economics of Peer-to-Peer
Systems (P2PECON), 2003.

[12] “Experimental draft: BitTorrent trackerless DHT protocol specifications v1.0.” [Online].
Available:http://www.bittorrent.org/Draft DHT protocol.html

[13] C. Cooper, M. Dyer, and C. Greenhill. Sampling regular graphs and a peer-to-peer network.
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005.

[14] C. Cooper, R. Klasing, and R. Radzik. A randomized algorithm for the joining protocol in
dynamic distributed networks. In submission. September 2005.

[15] J. Friedman. On the second eigenvalue and random walks in random d-regular graphs.Com-
binatorica, 11(4):331–362, 1991.

[16] D. Gillman. A Chernoff bound for random walks on expander graphs. SIAM Journal on
Computing, 27(4), 1203–1219, August 1998.

[17] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks inpeer-to-peer networks. IEEE
Conference on Computer Communications (INFOCOM), 2004.

16

[18] W. Hastings. Monte carlo sampling methods using Markovchains and their applications.
Biometrika, 57:97–109, 1970.

[19] J. Hoffman. Multitracker metadata entry specification. [Online]. Available:http://www.
bittornado.com/docs/multitracker-spec.txt

[20] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber, A. Al Hamra, and L. Garcs-Erice.
Dissecting BitTorrent: five months in a torrent’s lifetime.Passive and Active Measurements
Workshop (PAM), 2004.

[21] C. Law and K.-Y. Siu. Distributed construction of random expander networks. IEEE Confer-
ence on Computer Communications (INFOCOM), 2003.

[22] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil. A performance vs. cost frame-
work for evaluating DHT design tradeoffs under churn. IEEE Conference on Computer Com-
munications (INFOCOM), 2005.

[23] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-theoretic analysis of structured peer-
to-peer systems: routing distances and fault resilience. ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM),
2003.

[24] L. Lovasz. Random walks on graphs: a survey.Combinatorics, Paul Erdos is Eighty, 2:1–46,
1993.

[25] P. Mahlmann and C. Schindelhauer. Peer-to-peer networks based on random transformations
of connected regular undirected graphs. ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2005.

[26] P. Maymounkov and D. Mazieres. Kademlia: a peer-to-peer information system based on the
XOR metric. International Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[27] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of state
calculation by fast computing machines.J. Chem. Physics, 21:1087–1092, 1953.

[28] G. Pandurangan, P. Raghavan, and E. Upfal. Building low-diameter peer-to-peer networks.
IEEE Journal on Selected Areas in Communications, 21(6), 995–1002, August 2003.

[29] “Peer exchange.” [Online]. Available: http://azureus.aelitis.com/wiki/
index.php/Peer Exchange

[30] M. K. Reiter, A. Samar, and C. Wang. Distributed construction of a fault-tolerant network
from a tree. IEEE Symposium on Reliable Distributed Systems(SRDS), 2005.

[31] V. Vishnumurthy and P .Francis. “On heterogeneous overlay construction and random node
selection in unstructured P2P networks.” IEEE Conference on Computer Communications
(INFOCOM), 2006.

17

