
Modeling the Global Critical Path in
Concurrent Systems

Girish Venkataramani∓ Tiberiu Chelcea†
MihaiBudiu‡ Seth Copen Goldstein†

August 2006
CMU-CS-06-144

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∓Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
†School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
‡Microsoft Research, Mountain View, CA, USA

This research is supported by grants from the National Science Foundation ITR Scalable Molecular Electronics,
under contract number CCR0205523.

Keywords: Performance modeling, critical path analysis, high-level synthesis

Abstract

We show how the global critical path can be used as a practical tool for understanding, optimizing
and summarizing the behavior of highly concurrent self-timed circuits. Traditionally, critical path
analysis has been applied to DAGs, and thus was constrained to combinatorial sub-circuits. We
formally define the global critical path (GCP) and show how it can be constructed using only local
information that is automatically derived directly from the circuit. We introduce a form of Pro-
duction Rules, which can accurately determine the GCP for a given input vector, even for modules
which exhibit choice and early termination.
The GCP provides valuable insight into the control behavior of the application, which help in for-
mulating new optimizations and re-formulating existing ones to use the GCP knowledge. We have
constructed a fully automated framework for GCP detection and analysis, and have incorporated
this framework into a high-level synthesis tool-chain. We demonstrate the effectiveness of the
GCP framework by re-formulating two traditional CAD optimizations to use the GCP—yielding
efficient algorithms which improve circuit power (by up to 9%) and performance (by up to 60%)
in our experiments.

1 Introduction
An effective method for focusing optimization effort on the most important parts of a design is to
examine those elements on the critical path. The critical path is defined as the longest path in a
directed acyclic graph (DAG). In synchronous circuits, for example, critical path usually refers to
the longest path in the combinational logic (which is a DAG) between two clocked registers. This
“local” notion of critical path has been the backbone of many CAD techniques, e.g. static timing
analysis [9, 15], retiming [25, 3] and fault simulation [1]. In this paper we formalize the concept
of a global critical path (GCP) that generalizes the critical path to encompass the entire execution
of an arbitrarily complex circuit for a given input data set.

Our work is based on the methodology proposed by Fields et. al. [12], which analyzes the
performance of superscalar processors. To extrapolate the notion of local criticality, Fields de-
composes a circuit into black-box modules and shows informally how an approximation of the
GCP can be computed by aggregating local last-arrival inputs using a simple algorithm (described
in Section 2.2). The main approximation made in that work is to equate the last-arrival input to
a module to the one that enables its output, something which we show to be inadequate in real
circuits that exhibit choice [30].

1.1 A Formal Definition
In this section we construct the formal machinery to define the the Global Critical Path. The GCP
summarizes the complete time-evolution of a circuit. Let the circuit to be analyzed be a graph
G = (V, E), which may include cycles (V are vertices, and E ⊆ V × V are edges). Time is
denoted by T , and time steps by ti ∈ T . A timed graph [16], G× T , is a sequence of “snapshots”
of the state of the circuit elements of G over time. The nodes of G × T are pairs (n, ti), where
n ∈ V . The edges of the graph G× T are elements of the set E × T .

The set of signal transitions is denoted by E ⊆ E × T . If there is a signal transition leaving
node n1 at t1 and reaching node n2 at t2—where (n1 → n2) ∈ E—then (n1, t1) → (n2, t2) is an
element of E.

The timed graph G × T is acyclic, since t1 < t2 for every edge (n1, t1) → (n2, t2). We assign
to each signal transition edge a length, which is the time difference between the two events:

||(n1, t1) → (n2, t2)||
def
= (t2 − t1) > 0.

Finally, we define the Global Critical Path (GCP) as the longest path of events E in the timed
DAG G × T . This path is a sequence of edges (n1, t1) → (n2, t2) → . . . → (nk, tk), and is the
longest chain of events in the execution of the circuit. The nodes and edges on this path are critical.

To compute the GCP, we describe an algorithm in Section 2, which constructs the GCP by
observing G at run-time and collects only local information for each node in V (the information
called “last arrival events” by Fields et. al [12]). The algorithm we present is based on a simple
model for the behavior of each node of the graph. The model is versatile and can describe all types
of choice semantics [30]. In the presence of nodes with choice, the Fields’ black-box model pro-
duces wrong results, since the local information is incorrectly classified. We show how our model

1

overcomes such problems, while maintaining the simplicity of the Fields model. In Section 2.2,
we show how the node model is automatically inferred for a given design, and how we could auto-
matically compile it into Verilog instrumentation code, which is correct by construction, and which
produces gate-level monitoring code for the GCP extraction, without any manual intervention.

In Section 3 we analyze the topologies of GCPs for asynchronous circuits based on four-phase
handshake protocols. We show that there are very few possible classes of critical paths, and every
critical path is a concatenation of only two kinds of subpaths. We show how using the notion of
these paths can simplify traditional optimizations such as pipeline balancing (Section 4). Con-
versely, we optimize gates outside of the GCP using gate-sizing (to improve power) in Section 5.
The GCP has both strengths and limitations. One strength of our approach is that the GCP is
computed deterministically, not employing any heuristics or approximations. Our methods are
fully integrated into an automated high-level synthesis flow [6], and the detection of GCP is light-
weight (less than 6% overhead in simulation time). A weakness, common to any profiling-based
approach, is that the results are data-specific: changing the input data may result in a different
GCP. On circuits synthesized from kernels in the Mediabench suite [19], the GCP-based pipeline
balancing optimization improves performance by up to 60%, and GCP gate sizing reduces dynamic
power by up to 9% (with minimal change in performance).

2 System Modeling
This section describes how we model the performance behavior of self-timed circuits to capture
the GCP. We restrict ourselves to the class of asynchronous circuits implementing a 4-phase, fully-
decoupled, bundled data handshake protocol [13]. In this protocol, each communication channel
has two control signals, req and ack. When the sender places new data on the channel, it raises the
req signal. After consuming this data, the receiver raises the ack signal, after which both signals
are lowered in the same order. Thus, data transfers are controlled by local flow-control instead of
a global clock.

The key to efficiently modeling the GCP is to monitor a subset of the circuit’s control signals.
Our system model captures dependence relations at the pipeline stage granularity, i.e., between
events that control the state of pipeline registers in the system. This is achieved by describing the
dependence relation between the handshake events at the input and output of a given stage. Signals
internal to stages are generally subsumed by the model abstraction, thereby reducing the problem
size.

Fig. 1 describes a high-level overview of the model. An event, e ∈ E, represents a transition
on a control signal in the circuit. It is alive when the equivalent circuit transition has fired. The
set of all live events is given by M , and M0 is the set of events initially alive. A behavior, b ∈ B,
defines how an event becomes alive. It is associated with some input events (In : B 7→ 2E), and
generates some output events (Out : B 7→ 2E). It is satisfied when all its input events are alive
(In(b) ⊆ M). In the absence of choice, a behavior can fire once it is satisfied, and this will make
all its outputs alive.

We define a relation, R : E 7→ E, which specifies how an event becomes dead; an event e ∈ M
is removed from M when R(e) becomes alive. For example, the rising transition of a circuit signal

2

E : e ∈ E is a transition on a control signal.
M ⊆ E : set of live events.
M0 ⊆ E : set of events initially live.
B : b ∈ B defines how an event becomes live.
In(b) ⊆ E : set of input events to behavior b ∈ B.
Out(b) ⊆ E : set of output events to behavior b ∈ B.
R ⊆ (E × E) : defines how an event becomes dead.
X(b) ⊆ B : defines behaviors mutually exclusive with b ∈ B.

Figure 1: High-level description of the system model.

r1

ST
O

R
A

G
E

E
L

E
M

E
N

T

HS
cntrl en

2r

1d 2d
1a 2a

odor

o1a o2a

Delay
1r

2r

1d

2d

1a

2a

or

od

o2a

o1a

+

Pipe−stage
Adder

C

CU

C

FU

Figure 2: A typical asynchronous pipeline stage.

will render the falling transition of the same signal as dead.
We will now provide an example that captures the behavior of the simple, asynchronous adder

in Fig. 2, assuming a fanout of two. The (req, ack) signals along the input channel i are referred to
as ri and ai respectively, and the req of the output channel is ro and ack signals from the output are
ao1 and ao2 . Now, we define the model for the adder as:

E = {r1↑, r1↓, r2↑, r2↓, a1↑, a1↓, a2↑, a2↓,
ro↑, ro↓, ao1↑, ao1↓, ao2↑, ao2↓}

B = {b1, b2, b3} X = ∅
In(b1) = {r1↑, r2↑, ao1↓, ao2↓}, Out(b1) = {ro↑, a1↑, a2↑}
In(b2) = {ao1↑, ao2↑}, Out(b2) = {ro↓}
In(b3) = {r1↓, r2↓}, Out(b3) = {a1↓, a2↓}
M0 = {e↓ | e ∈ E} ∀e ∈ E, R(e↑) = e↓, R(e↓) = e↑

Behavior b1 describes how the adder functions. Once its input data channels are valid (indicated
by r1↑ and r2↑), and its previous output has been consumed (i.e., ao1↓ and ao2↓), the adder can
process its inputs, generate a new output (ro↑), and acknowledge its inputs (a1↑ and a2↑). Behaviors
b2 and b3 describe the reset phase of the handshake as shown in Fig. 2c. Notice that the sets In
and Out only specify the input and output handshake signals of the pipeline stage interface. Thus,

3

behaviors in the model are essentially control events (handshake events, in particular), implying
that internal events, implementation details and datapath logic are abstracted away. This not only
leads to a large reduction in the model size, but also decouples system modeling from system
implementation.

2.1 Modeling Choice
Our model can handle all types of choice semantics (e.g., conditional control and arbitration) [30].
This is done by allowing multiple behaviors to fire the same events, i.e., ∃b1, b2 ∈ B, s.t., Out(b1)∩
Out(b2) 6= ∅.
Unique Choice. In the presence of unique choice, an event may be generated by multiple behav-
iors, but we are guaranteed that the choice is deterministic. This is described by the invariant:
∀b1, b2, In(b1)∪ In(b2) 6⊂ M . Thus, there can be, at most, one out of several behaviors (generating
a unique choice event), which is satisfied at any given instant in time. The following example
describes a pipeline stage implementing a 1-hot multiplexor as shown in Fig. 3a. The multiplexor
exhibits unique choice due to leniency, [6], i.e., the stage can generate an output if one of its predi-
cate inputs is true and the corresponding data input has arrived, even if the other inputs have not
yet arrived. The mux is modeled as:

E = {r1↑, r1↓, r2↑, r2↓, rp1↑, rp1↓, rp2↑, rp2↓, dp1↑, dp2↑,
dp1↓, dp2↓, a1↑, a1↓, a2↑, a2↓, ap1↑, ap1↓, ap2↑, ap2↓,
ro↑, ro↓, ao↑, ao↓}

B = {b1, · · · , b9}, X = ∅
In(b1) = {r1↑, dp1↑, ao↓}, Out(b1) = {ro↑}
In(b2) = {r2↑, dp2↑, ao↓}, Out(b2) = {ro↑}
In(b3) = {r1↑, rp1↑, dp1↓, r2↑,

rp2↑, dp2↓, ao↓}, Out(b3) = {ro↑}
In(b4) = ao↑, Out(b4) = {ro↓}
In(b5) = {r1↑, r2↑, rp1↑,

rp2↑, ao↓}, Out(b5) = {a1↑, a2↑, ap1↑, ap2↑}
In(b6) = {r1↓}, Out(b6) = {a1↓}
In(b7) = {r2↓}, Out(b7) = {a2↓}
In(b8) = {rp1↓}, Out(b8) = {ap1↓}
In(b9) = {rp2↓}, Out(b9) = {ap2↓}
M0 = {e↓ | e ∈ E} ∀e ∈ E, R(e↑) = e↓, R(e↓) = e↑

The {r1(2), a1(2)} and {rp1(2), ap1(2)} events are the handshake events for the data, Inp1(2),
and predicate, Pred1(2), channels respectively. The dp1(2) events are control signals that specify
the value of the predicate input, when it is valid (i.e., when the corresponding rp1(2)↑ is alive).
When, the data is invalid (i.e., rp1(2)↓∈ M), the dp1(2)↓ events are live. The Mux (Fig. 3a) outputs
data received on either channel Inp1(2), as selected by predicates received on ports Pred1(2). This
Mux is lenient: it can output data when predicate 1(2) is true and the corresponding data, inp1(2),
has arrived (behaviors b1 and b2), even if it has not yet received data on inp2(1). In addition, the
Mux must output a (possibly stale) data item when all predicates are false [6] (b3). Behavior b5

4

Out

M
U

T
E

X

Inp1

Inp2

req_inp1

req_inp2

grant1

grant2

Inp1

Out
Inp2
Pred2

Pred1 1−Hot
Mux

(a) (b)

Arbiter

Figure 3: A Mux (a) and an Arbiter (b) pipeline stages. For the arbiter, the input requests are fed
into a mutex, which outputs the winner of arbitration on “grant1”/“grant2”.

specifies that the inputs, however, are not acknowledged leniently, i.e., all inputs must arrive before
any input can be acknowledged. Notice the modeling of unique choice: behaviors, (b1, b2, b3), all
generate the ro↑, but it is guaranteed that only one of them can be active at any point in time.
Arbitration Choice. Arbitration choice is modeled by specifying mutually exclusive behaviors,
X : B 7→ 2B. Consider the example in Fig. 3b, which shows an arbitrator stage. This stage arbi-
trates between two concurrent requests to a shared resource. The concurrent requests go through a
“Mutex” (mutual exclusion element) which grants access to only one of the requests [26], whose
data is transferred to the output port. This is described as:

E = {r1↑, r1↓, r2↑, r2↓, a1↑, a1↓, a2↑, a2↓,
ro↑, ro↓, ao↑, ao↓}

B = {b1, · · · , b9} X = { {b1, b2} }
In(b1) = {r1↑}, Out(b1) = {g1↑}
In(b2) = {r2↑}, Out(b2) = {g2↑}
In(b3) = {g1↑, ao↓}, Out(b3) = {ro↑, a1↑}
In(b4) = {g2↑, ao↓}, Out(b4) = {ro↑, a2↑}
In(b5) = {r1↓}, Out(b5) = {g1↓}
In(b6) = {r2↓}, Out(b6) = {g2↓}
In(b7) = {g1↓}, Out(b7) = {a1↓}
In(b8) = {g2↓}, Out(b8) = {a2↓}
In(b9) = {ao↑}, Out(b5) = {ro↓}
M0 = {e↓ | e ∈ E} R = {∀(e↑, e↓) | e ∈ E}

Notice, first, that choice is once again modeled by multiple behaviors (b3, b4) firing the same
event (ro). Non-determinism due to arbitration choice is modeled by set X , which describes mutu-
ally exclusive events. A member (X(b) ⊆ B) is a set of behaviors which may be satisfied simulta-
neously, but their outputs are mutually exclusive. Thus, b fires iff: ∀b′ ∈ X(b),Out(b′) ∩ M = ∅.
If two members of X(b) are satisfied in the same instant, then one of them is probabilistically
chosen to fire, reflecting the non-deterministic firing semantics of arbitration behaviors. If b is a
non-choice or unique choice behavior, X(b) = ∅. Thus, we can summarize the firing semantics of
a behavior as follows:

A behavior b ∈ B fires its outputs, depositing all events in Out(b) into M , iff:
1. b is satisfied, i.e., In(b) ⊆ M, and
2. ∀b′ ∈ X(b), Out(b′) ∩M = ∅.

Firing a behavior is an atomic operation, in that two behaviors cannot fire simultaneously. If two

5

Figure 4: Toolflow for automatically creating and using the global critical path from source-level
specifications. The “feedback path” is used to automatically improve the synthesis results based
on the critical path estimated from a previous simulation run.

behaviors members of an xi ∈ X are satisfied in the same time instant, then one of them is chosen
to fire arbitrarily, modeling non-determinism.

2.2 Model Analysis and GCP Construction
Performance can be analyzed by associating a delay, D(b), with every behavior b in the model.
This is the expected execution latency through the micro-architectural block that b represents.
Depending on the system and the environment, these delays may be deterministic or stochastic.
The model can now be analyzed by simulating the firing behavior of events and behaviors — at a
given time step, if the firing semantics of a behavior are satisfied, then it fires after its associated
delay, and generates its output events, which in turn fire other behaviors.

This analysis is similar to techniques proposed for analyzing event-rule systems [7], marked
graphs [22, 21, 18], finite-state machines [23], and Petri-Nets [29, 16, 10]. As in all these tech-
niques, a complete and accurate analysis requires a complete state space exploration through reach-
ability analysis, although some techniques have been proposed to take advantage of the repetitive-
ness [18, 22]. The weaknesses of all these techniques, however, are their inability to scale when
analyzing large problem sizes (on the order of thousands of events and beyond), and their inability
in handling systems with choice. In fact, in the presence of choice, it has been shown that the
system can only be analyzed stochastically through simulation-based approaches [29].

To overcome these difficulties, we employ a trace-based simulation technique to focus the
analysis on the most commonly expected input vectors, and choice decisions. Since there is a one-
to-one correspondence between events and signal transitions, and between behaviors in the model
and micro-architectural blocks in the circuit, we leverage commercial CAD tools to simulate the
equivalent circuit. Synthesizing the circuit using a standard-cell library, also provides us with
realistic delay models for timing annotations.

We have incorporated the modeling and analysis steps into a fully automated toolflow that pro-
duces asynchronous circuits from applications specified in ANSI-C [6]. The methodology is de-
picted in Fig. 4. The Verilog back-end automatically infers event model and encodes it in the form
of Verilog PLI (Programming Language Interface) calls. During post-layout simulation, the PLI

6

All Circuit brel ≥ 0.1
Bench- Gates |E| |B| Pipe. Gates |B| Pipe.
mark Stages Stages
adpcm d 41563 1218 761 191 10537 52 33
adpcm e 51140 1493 912 230 9153 43 27
g721 e 23472 576 567 161 12688 38 36
g721 d 23472 576 567 161 12688 38 36
gsm d 36666 865 582 144 17352 49 37
gsm e 34018 816 552 137 10594 33 25
jpeg e 162131 1962 2006 397 3103 17 5
mpeg2 d 137240 2298 2489 431 4183 31 9
pgp d 25274 684 752 134 10791 40 24
pgp e 25274 684 752 134 10791 40 24

Table 1: Model sizes for Mediabench kernels. First four columns show the number of gates, events,
behaviors, and pipeline stages for the entire circuit, while the last three columns show the same for
behaviors with a GCP frequency above the 10% percentile.

calls are invoked as signal transitions occur. Since signal transitions correspond directly to events
in the model, the state update is light-weight and simple, with about a 6% simulation overhead, on
average. The analysis results can then be used, through a feedback path, by the the compiler to
improve the quality of the synthesized circuit.

The model described in Section 2 represents the untimed (static) graph G = (V, E), described
in Section 1. Conceptually, edges in G are control signals at the pipeline stage interface 1. Nodes
in G are pipeline stage controllers, that describe a function on these signals. Simulation described
in Fig. 4, produces a timed graph of execution. This corresponds to graph G × T , which is the
fully unrolled version of G, where choice decisions (e.g., which behavior fired each event in the
execution) are known and explicit.

From this graph we can compute the following quantities:

Slack For a given behavior, b ∈ B; if b fired (Nb) times in G × T , then, for the kth firing, slack
relations for the inputs of b is given as follows: if its inputs (assuming that |IN(b)| = m)
arrived at times t1 ≤ ti ≤ tm, then slack on event, ei is given by Slackk(ei, b) = (tm − ti).
This implies that event ei arrived Slackk(ei, b) time units earlier than the arrival of the last
event that satisfied b. We define Crit(b) = em, with the least slack, to be the locally critical
event at b.

GCP If blast is the last behavior to fire in the execution, then we can compute the GCP as a path
through the behavior sequence 〈b1, .., bi, ..blast〉. For any two consecutive behaviors, (bi, bi+1)
in the GCP, Out(bi) = Crit(bi+1), i.e., the GCP is computed in reverse, starting from blast,
and tracing back recursively, along locally critical inputs. This is essentially the algorithm

1Except in the rare cases, where the signal describes non-determinism internal to a stage.

7

described by Fields et. al [12]. GCP is the longest path in the execution, and can also be
represented as the event sequence, 〈e1, . . . , elast〉, s.t., ei = Crit(bi).

Recall that slack and GCP are structures on the timed graph, G×T . A path on the timed graph
〈(ei, ti)〉i may contain multiple instances of a given edge ei ∈ E . We often summarize summarize
slack and GCP by projecting them on the untimed graph G, by discarding the time component ti:

• If a given b fires Nb times, then in the untimed graph, G, we associate with each input of b,
the average slack across all firings, Slack(ei, b) = (

∑Nb

j Slackj(ei, b))/Nb.

• A projection of the GCP, 〈b1, . . . , blast〉, on G is an edge histogram: for each edge e ∈ E we
can associate a count: Histogram(e) =

∑last
j=1(Crit(bj) == e); i.e., we add 1 every time e is

locally critical on the GCP. Fig. 5 shows exactly such a histogram: numbered edges display
the GCP, and the number shows the corresponding count (Histogram(e)). Correspondingly,
for behavior b, Histogram(b) =

∑
e′∈Out(b)(Histogram(e′)), keeps count of the number of

times that b falls on the GCP.

In order to normalize the counts, we define Freq(e) to be the behavior that most frequently
fired e. Finally, fmax = MAX∀b∈B(Histogram(b)), refers to the maximum frequency of oc-
curence on the GCP for any behavior in the system, and for a given behavior, b with GCP fre-
quency Histogram(b), we associate, in G, its relative frequency of occurence on the GCP as
brel = Histogram(b)

fmax
. Summarizing GCP and slack in this manner leads to some information loss,

but such an approximation lets us focus on the most important (frequent) events.
Constructing the GCP in this way overcomes the weaknesses in the Fields model [12]. For

example, their model would view the multiplexor in Fig. 3a as a black-box, and the last arriving
input is always assumed to be the locally critical input. Consider the case when behavior, b1 fires
before the arrival of the other input, r2↑. Then ro↑ is generated leniently, but, if r2↑ arrives just
before ro↑ is produced, then the black-box model would incorrectly record r2↑, the last arriving
event, as the locally critical event. However, in our model, only behavior b1 would be satisfied, and
since r2↑6∈ In(b1), it will never be recorded as locally critical input.

Table 1 summarizes the size of the model for circuits we synthesized (from the Mediabench
suite [19]), in terms of total number of behaviors, events, pipeline stages and nand2-equivalent
gates. The last three columns represent the fraction of the circuit that is most often on the GCP.
In particular, the penultimate column reports on the number of behaviors with brel ≥ 0.10. The
fraction of behaviors that fall in this category, range from about 0.2% for jpeg e to about 6% for
g721 d. This is good news from the point of view of optimization, because it implies that the
fraction of critical circuit elements, on which performance optimization would focus, is extremely
low. Conversely, the opportunity for power optimization is also large since a majority of the circuit
can be de-optimized for power.

We illustrate the construction of GCP using a simple example. Consider the C code fragment
(referred to as sum ex) below.

int i, sum = 0;
for(i = 0; i < 10; i++)

8

channel

init: 0 init: 0

+

req

ack

req

ack

Criticality Legend

return

sum:e

!

isum

i

<10

9

9

10

10 9

sum:l

+

+

1

1

A B

1

D C

E

F

G

H

J L

K

M

N

Figure 5: An example of GCP extraction. The loop iterated 10 times. The GCP is
〈reqAD↑ →[reqDE↑ →reqEG↑ →ackGC↑ →reqCE↓ →ackED↓]9 →reqDE↑ →reqEG↑ →reqGM↑
→reqMN↑〉. Numbers on edges indicate how many times each edge occurs on the GCP.

sum += (i + i);
return sum;

Fig. 5 shows a simplified RTL view of the automatically synthesized asynchronous circuit for
this code fragment, annotated with critical events and their Histogram(e) values, which are their
frequency of occurrence in the GCP. For simplicity, the behavior and event information is folded
into this RTL graph. For example, each adder in the figure implicitly contains 6 behaviors as de-
scribed in Section 2. A channel in the figure represents a bundled data channel, and implicitly
contains four events (req↑,req↓,ack↑,ack↓). If any of these events falls on the GCP, we have ex-
plicitly shown only the critical events with bold, specially formatted edges. A unformatted edge
(without a numerical annotation) in the figure implies that no event of the channel is ever critical.

Nodes C and D are loop-entry nodes whose functionality is similar to the CALL element in [26].
Nodes J, L, and M are loop-exit nodes that implement a conditional output function—an output is
produced only if the predicate input is true. The output of J, for example, is the value of sum for
the next loop iteration, while the output of M is the value of sum at the end of the loop’s execution.
Since the latter is controlled by the complement of the predicate input to the former, J produces an
output in the first nine iterations of the loop, while M produces an output in the last iteration. More
details on the behavior of these circuit elements can be found in [5].

The last behavior in the GCP produces req↑ event from node M. The source of this event is
traced back to the req↑ output of node G in the last iteration. The locally critical event at G is traced
back to the output of node D. However, this output cannot be generated until the same output event
from the previous iteration is acknowledged. When G generates this ack↑ event to node C, the
return-to-zero (RTZ) phase of the handshake completes, after which D generates the next iteration
output. For this output, the RTZ handshake events are critical in the last nine iterations of the loop,
while the input event (req↑) from node A is critical in the first iteration. The GCP indicates that
to substantially improve performance, we have to focus our optimization effort in other areas—

9

iack ireq

oreq oack oack req oack

(b) (c) (d)(a)

a
u x

orv
a

v y

r
u y

r
a x

a

ira
irv

x y

u v

control synchronization delaydata production delay
(e)

ireq iack ireq

b
1 b

1

b
3

b
2

Figure 6: Meaning of a critical edge sequence. In (a)-(d), the causes due to which each of
{req↑,ack↑,ack↓,req↓} events are critical, are analyzed; (e) is the typical GCP topology for a 4-
phase handshake circuit.

removing the synchronization bottleneck in this case. In Section 4, we show how a GCP-based
pipeline balancing optimization can achieve this.

3 GCP Topology
Once the GCP is constructed, its topology provides valuable information to better understand the
circuit behavior. We have observed that we can derive certain properties for all circuits that use a
particular handshake protocol. In this section, we examine the class of circuits implementing the
4-phase, fully-decoupled, bundled-data handshake protocol.

The key to understanding the GCP is to determine the cause-and-effect relationships between
the handshake control signals. Using the model, we can reason about what event could have been
critical before a given event, and what it means to have a sequence of these two events on the GCP.
Fig. 6 illustrates this for the behaviors described for the adder model in Section 2: in (a), the only
input event types to the b1 producing the oreq↑ event, are ireq↑ and oack↓. Similarly, the only input
event to b3 generating iack↓ is ireq↓ (c), and so on.

Based on these event patterns, we know that if an ack↓ event is critical, then it is always
the last event of the sequence ack↑ → req↓ → ack↓; this sequence is the reset phase of the 4-
phase handshake, and if ack↓ is critical, then this sequence must also exist in the GCP. The event
preceding this sequence may be another ack↓ or a req↑ (Fig. 6b). If a req↑ event is critical, then
the event preceding it on the GCP may be another req↑ event or an ack↓ event (Fig. 6a). Thus, for
any circuit implementing this handshake behavior, the topology of the GCP can be expressed as
the following regular expression:

pathdata =< req↑ > ∗
pathsync =< ack↑ → req↓ → ack↓ > ∗
GCP =< pathdata → pathsync > ∗

A pathdata sequence on the GCP reflects a condition where data production is slow and con-
sumers are waiting for data to arrive; we refer to one or more consecutive pathdata sequences as a
data-delay path. A pathsync sequence on the GCP reflects a synchronization bottleneck: the ack↑
event indicates that the consumer is not ready to accept a newly produced data item. We refer to

10

one or more consecutive pathsync sequences as a sync-delay path. The GCP can thus be summa-
rized as a sequence of data-delay paths that are stitched together by sync-delay paths, as shown
in Fig. 6e. Consider the sum ex example in Fig. 5 that shows this condition. The GCP can be
summarized as: p1 : < reqAD↑ >

p2 : < reqDE↑ → reqEG↑ >
p3 : < ackGC↑ → reqCE↓ → ackED↓ >
p4 : < reqGM↑ → reqMN↑ >
GCP : < p1 → p2 → [p3 → p2]

9 → p4 >

Event reqPQ↑ above represents a req↑ event from node P to node Q. Path p3 is a sync-delay path,
while the rest are data-delay paths. The sequence p3 → p2 occurs nine times consecutively in
the GCP. Given our understanding of the GCP topology, we can reason about the optimization
opportunities available. For example, one optimization goal may be to eliminate sync-delay paths
from the GCP. Thus, the GCP would be constructed of only one type of event, req↑. In the next
section, we present an optimization with this goal, and show how p3 can be eliminated from the
example above.

In general, GCP analysis provides the circuit designer and the synthesis system with valuable
information about the behavior and performance of the circuit. New CAD optimizations can be
formulated and existing ones re-formulated to use this GCP knowledge. In the following two sec-
tions, we demonstrate two simple optimizations that use the GCP to perform local transformations
that impact performance and power.

4 Sync-Delay Elimination
We now present a performance improving optimization that uses the GCP framework to eliminate
critical sync-delay paths. These paths occur due to re-convergent paths that are unbalanced. In
Fig. 5, for example, there are two paths between nodes C and G: C-E-G and C-G. Balancing these
paths by inserting buffers or empty pipeline stages along the shorter path eliminates the sync-delay
path. This optimization is referred to as pipeline balancing [14, 20], or slack matching [2, 24].

A sync-delay path arises at the re-convergence point where the longer path arrives late, resulting
in a delayed generation of the ack↑ event to the shorter path. We observe that inserting buffers can
eliminate this sync-delay if there is non-zero slack on the req↑ event whose corresponding ack↑
event is critical. A buffer inserted on this channel will have only a single input fan-in, and thus can
return the ack↑ event as soon as it receives the req↑ event. The generation of the critical ack↑ will
then be hastened by the amount of slack available on the req↑ event prior to buffer insertion. This
will reduce the length of the GCP, resulting in a performance improvement. Thus in sum ex, a
buffer inserted along channel C-G would speed up the the arrival of the critical ackGC↑ event by
the amount of slack available on the reqCG↑ event. The number of buffers to be inserted depends
on the number of independent waves of computation that can collide, causing the sync-delay paths.

We have devised a new iterative pipeline balancing algorithm, radically different from other
proposals in the literature; our algorithm is driven by the GCP, and automatically determines the
buffer-insertion locations for a given circuit, such that all pathsync segments can be eliminated
from the GCP. We only briefly describe here the algorithm, using the sum ex example; for a more

11

channel

init: 0 init: 0

+

req

ack

req

ack

Criticality Legend

return

sum:e

!

isum

i

<10

10

10

sum:l

+

+

1

1

9

9

B

1

D C

E X

F

G

H
LJ

K

M

N

A

Figure 7: sum ex circuit from Fig. 5 after pipeline balancing. The dark-colored box is the in-
serted buffer. The critical path path is reqAD↑→reqDE↑→reqEG↑→[reqGJ↑→reqJD↑→reqDE↑
→reqEG↑]9 →reqGM↑ →reqMN↑.

thorough treatment, see [28]. Given a pathsync segment (p3 in sum ex) on the GCP, the algorithm
looks upstream from the ack↓ event of the pathsync segment, and enumerates all the potential
pathsync segments that could still make this ack↓ event critical. In sum ex, looking upstream
from ackED↓ reveals that events ackED↑, ackEC↑, ackGC↑ and ackFC↑ can all mark the beginning
of a potential sync-delay path that could end in ackED↓. Our algorithm automatically enumerates
these paths, and then performs a thorough slack analysis of these potential pathsync segments to
determine the req↑ events, whose slack can be harnessed by inserting buffers. In sum ex, the
algorithm harnesses the slack on reqCG↑ by inserting a buffer along channel C-G. Fig. 7 shows the
effect of this optimization; the inserted buffer is represented by the dark-colored box. The GCP for
sum ex is now < reqAD↑→ reqDE↑→ reqEG↑→ [reqGJ↑→ reqJD↑→ reqDE↑→ reqEG↑]9 →
reqGM↑ → reqMN↑ >. The result is a 17% speedup.

We evaluated this optimization on circuits synthesized from C kernels in the Mediabench
suite [19], listed in Table 2. The table shows the size of each design, and the number of buffers that
were inserted by the algorithm. Since the algorithm considers only slack properties, it naturally
adapts to different circuit topologies; while the first nine rows of Table 2 show designs containing
loops, the last row represents an acyclic design. Optimizing acyclic designs are important if they
are incorporated in a streaming application.

The algorithm was applied to each of these designs, and Fig. 8 shows the boost in performance
and energy delay due to the optimization. Performance boost represents the improvement in end-
to-end execution time for the first nine kernels, while it represents throughput improvement in
the last (acyclic) design. The results are very encouraging — up to 60% performance boost is
begotten with the insertion of just a handful of buffers. The last (acyclic) benchmark required
more buffers because we streamed inputs into the design as soon the circuit was able to accept
it; thus, it was loaded to maximum capacity, making the importance of pipeline balancing even
more crucial. Power generally increases after the optimization since the same circuit activity now
occurs in a shorter time span, and also because additional buffers are added to the design. However,
the energy-delay product, which summarizes performance and power into a single metric, shows

12

Figure 8: Performance and energy-delay improvements after slack matching. The benchmarks are
numbered in order of their listing in Table 2.

improvements that track the performance boost.

5 Gate Sizing
In the previous section, we improved performance by optimizing modules that fall on the GCP.
In contrast, this section shows how we can reduce dynamic power consumption in modules off
the GCP. In particular, we apply a well known circuit transformation: replacing non-critical gates
with their low-power versions from the same gate library. However, this transformation cannot
be applied indiscriminately, since the low-power modules may change the GCP. We conducted
a preliminary limit study of Mediabench kernels: all nodes off the GCP were replaced by low-
power implementations. As a result, power consumption improved by 50%, but the overall system
performance decreased by 240%, which is clearly unacceptable.

Our solution is a straightforward generalization of slack analysis methods presented in [27, 11].
We build a power-optimization directed acyclic graph PG = (N, sink, source, E), where N is
the set of all non-critical pipeline stages, sink and source are two special nodes, and E refers to
channels between between pipeline stages. Nodes on the GCP either become the source if they
send data to a non-critical node, or the sink, if they received data from a non-critical node. For
each node n in PG we define Incr(n) = δlowpower − δnormal, where δ is the latency through the
node. Each edge is labeled with the average slack, as computed in Section 2.2.

The algorithm has three steps in the optimization loop. It first computes the global slack (Gn)
for each node n (using formulas from [11]), and then selects a node for optimization. Currently,
the algorithm chooses the node with the largest positive difference between Gn and Incrn. Note
that resizing nodes for which Incr(n) <= Gn holds, would leave the GCP unchanged. Finally, all
local slacks around the optimized node n are recomputed. The algorithm stops when there are no
candidates for optimization or all nodes have been inspected.

We have conducted a preliminary study of the power optimization algorithm on the Mediabench

13

Id Bench Kernel Events Buffers
inserted

1 adpcm d adpcm decoder 1218 5
2 adpcm e adpcm coder 1493 5
3 gsm d LARp to rp 575 5
4 gsm d Short term synthesis filtering 865 2
5 gsm e Long term analysis filtering 2061 1
6 gsm e Coefficients 27 39 469 1
7 gsm e Short term analysis filtering 816 5
8 mpeg2 d form component prediction 6114 1
9 mpeg2 e pred comp 5924 1
10 Huffman coding HammingBitwise 570 22

Table 2: List of kernels optimized by pipeline balancing. The last column shows the number of
buffers inserted.

kernels, and Table 3 presents those that show some benefit. The low-power implementations are
only 0.03–5.6% slower than the normal implementations (as opposed to 240% in the limit case),
and the power savings range from 3.2% to 8.6%. The two exceptions (jpeg e and mpeg2 d) exhibit
more switching activity in an important part of the circuit (the memory interface) which is not
currently optimized by our method.

The proposed method optimizes between 24% and 46% of the nodes, but the overall power
savings are modest. There are two reasons for this. First, nodes are selected for optimization based
only on latency metrics (slack, latency increase); by using energy metrics, nodes which can save
more energy can be optimized first. Second, PG is built by breaking loops at loop-exit nodes,
which often prevents a number of nodes inside the loop from being optimized since the global
slack estimation is too crude. We are currently addressing these limitations.

6 Related Work
In the synchronous world, critical path analysis has been traditionally used in the context of a DAG
that represents the combinational logic between clocked registers [17, 25, 3, 9, 15, 1]. Global criti-
cal path analysis have been addressed previously in [12, 4], but they both use an ambiguous notion
of local criticality. Our model is motivated by the black-box model described by Fields, et.al. [12].
Like their model, the firing rules for events are described by black boxes (which are behaviors in
our model) with strict firing semantics. This allows us to abstract away several low-level imple-
mentation details, thereby shrinking the problem size in large designs. Unlike the Fields model,
our model naturally handles all types of control choice semantics, is a complete and formal speci-
fication, and specifies an RTL abstraction of the design (as opposed to an architectural abstraction
in [12]). This allows us to accurately infer the GCP and slack properties of the design.

Performance analysis in asynchronous circuits typically starts with Petri-net or marked graph
representations, and attempts to infer time separation between events (TSE) in the system. The

14

Benchmark Speed Power % Opt.
Decr. Improv Ops

adpcm d 5.59 7.95 40.43
adpcm e 2.21 5.69 35.77
g721 d 3.96 7.06 24.84
g721 e 3.96 7.06 24.84
gsm d 1.33 3.63 39.88
gsm e 0.03 3.26 35.80
jpeg e 0.13 -11.61 30.98
mpeg2 d 0.53 -12.55 29.00
pgp d 1.60 8.61 46.27
pgp e 1.60 8.13 46.27

Table 3: Power Optimizations for Mediabench Benchmarks. The columns indicate the speed de-
crease the power improvement, and the % nodes made low-power.

objective is to find bounds on TSEs in the presence of runtime variability, which cannot be statically
predicted. Burns [7] uses weighted averages to address variability, while others [8, 16] find worst-
case bounds for TSEs. All these techniques, however, involve a state exploration of a timed Petri-
net. The state explosion problem that consequently arises for large-scale circuits is somewhat
alleviated with the use of Markovian analysis [18] and symbolic techniques [29], but a complete
timed state space exploration is still necessary. A recent approach [21] mitigates the state explosion
problem in Markovian analysis by capitalizing on the periodicity of asynchronous systems, but can
only handle decision-free systems. Xie et. al. [30] notes that random simulation is the only known
method for obtaining TSEs for large-scale, complex systems. They use random simulation to find
average TSEs, and use statistical methods like Monte-Carlo and standardized time series to address
the issue of runtime variability.

Our model is similar to these techniques in that it describes the dependence relations between
control events in the system. However, it leverages the power of abstraction by modeling only
a small subset of all control events, i.e., handshake events; control events internal to a pipeline
stage are modeled only in the presence of arbitration choice. This implies that the internal func-
tional behavior of a given controller is abstracted; thus, unlike other timing models applied to
asynchronous circuits, e.g., event-rule systems [7], Petri-nets [10], the model cannot be used to
synthesize an asynchronous control circuit. On the contrary, the model is generally inferred from
a given asynchronous controller. Because of this property, there is a direct correlation between
events in the model and signal transitions in the circuit, which enables us to take advantage of
trace-based analysis techniques (as described in Section 2.2). However, the downside of inferring
the model from the synthesized circuit is that it cannot be used in formal verification.

15

7 Conclusions
The GCP is a remarkably effective tool for analyzing complex concurrent circuits, much more than
we can illustrate in the confines of this document. Here, we have described a formal model to cap-
ture an abstraction of event dependencies in a self-timed circuit implementing a 4-phase bundled
data handshake, and to unambiguously construct the GCP. We have shown how the GCP topology
can provide valuable insights into the circuit control behavior by observing the handshake protocol
behavior. We have demonstrated how the GCP can be used in rethinking existing optimizations
and believe that it can inspire new ones as well. There is nothing intrinsic in our approach that
would prevent us from adapting the model for other asynchronous handshake protocols.

The strengths of our methodology are: it can be computed completely automatically; its defi-
nition is completely unambiguous, since it does not depend on heuristics or approximations; and
it completely characterizes the set of events which influence the end-to-end delay of a particular
computation. Moreover, by summarizing slack for an untimed execution, can focus on the circuit
structures which are the most important source of bottlenecks. We believe we have uncovered a
tool with a tremendous potential for the analysis and optimization of digital circuits.

References
[1] M. Abramovici, P. R. Menon, and D. T. Miller. Critical path tracing - an alternative to fault

simulation. In DAC, pages 214–220, Piscataway, NJ, USA, 1983. IEEE Press.

[2] P.A. Beerel, M. Davies, A. Lines, and N. Kim. Slack matching asynchronous designs. In
ASYNC, pages 30–39. IEEE, March 2006.

[3] E. Bozorgzadeh, S. Ghiasi, A. Takahashi, and M. Sarrafzadeh. Optimal integer delay budget-
ing on directed acyclic graphs. In DAC, pages 920–925, New York, NY, USA, 2003. ACM
Press.

[4] Mihai Budiu, Pedro V. Artigas, and Seth Copen Goldstein. Dataflow: A complement to
superscalar. In ISPASS, pages 177–186, Austin, TX, March 20-22 2005.

[5] Mihai Budiu and Seth Copen Goldstein. Pegasus: An efficient intermediate representation.
Technical Report CMU-CS-02-107, Carnegie Mellon University, May 2002.

[6] Mihai Budiu, Girish Venkataramani, Tiberiu Chelcea, and Seth Copen Goldstein. Spatial
computation. In ASPLOS, pages 14–26, Boston, MA, October 2004.

[7] Steven M. Burns. Performance Analysis and Optimization of Asynchronous Circuits. PhD
thesis, California Institute of Technology, 1991.

[8] Supratik Chakraborty and David L. Dill. Approximate algorithms for time separation of
events. In ICCAD. IEEE Computer Society Press, 1997.

16

[9] Hsi-Chuan Chen, David H. C. Du, and Li-Ren Liu. Critical path selection for performance
optimization. In DAC, pages 547–550, New York, NY, USA, 1991. ACM Press.

[10] T. Chu. Synthesis of self-timed vlsi circuits from graph-theoretic specifications. Technical
report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1987.

[11] Brian Fields, Rastislav Bodı́k, and Mark D.Hill. Slack: Maximizing performance under
technological constraints. In ISCA, pages 47–58, 2002.

[12] Brian A Fields, Shai Rubin, and Rastislav Bodı́k. Focusing processor policies via critical-path
prediction. In ISCA, 2001.

[13] S.B. Furber and P. Day. Four-phase micropipeline latch control circuits. IEEE Transactions
on Very Large Scale Integration Systems, 4-2:247–253, 1996.

[14] Guang R. Gao. A Pipelined Code Mapping Scheme for Static Data Flow Computers. PhD
thesis, MIT Laboratory for Computer Science, 1986.

[15] Soha Hassoun. Critical path analysis using a dynamically bounded delay model. In DAC,
pages 260–265, New York, NY, USA, 2000. ACM Press.

[16] Henrik Hulgaard, Steven M. Burns, Tod Amon, and Gaetano Borriello. Practical applications
of an efficient time separation of events algorithm. In ICCAD, pages 146–151, November
1993.

[17] Zia Iqbal, Miodrag Potkonjak, Sujit Dey, and Alice Parker. Critical path minimization using
retiming and algebraic speed-up. In DAC, pages 573–577, New York, NY, USA, 1993. ACM
Press.

[18] Prabhakar Kudva, Ganesh Gopalakrishnan, Erik Brunvand, and Venkatesh Akella. Perfor-
mance analysis and optimization of asynchronous circuits. In ICCD, pages 221–224, 1994.

[19] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. MediaBench: a tool
for evaluating and synthesizing multimedia and communications systems. In MICRO, pages
330–335, 1997.

[20] Ruibing Lu and Cheng-Kok Koh. Performance optimization of latency insensitive systems
through buffer queue sizing. In ICCAD, 2003. 3D.3.

[21] P.B. McGee and S.M. Nowick. Efficient performance analysis of asynchronous systems based
on periodicity. In CODES+ISSS, New York, September 2005.

[22] Christian D. Nielsen and Michael Kishinevsky. Performance analysis based on timing simu-
lation. In DAC, pages 70–76, 1994.

[23] Wuxu Peng and Kia Makki. On reachability analysis of communicating finite state machines.
In ICCCN. IEEE, 1995.

17

[24] Piyush Prakash and Alain Martin. Slack matching quasi delay-insensitive circuits. In ASYNC,
pages 30–39. IEEE, March 2006.

[25] Vijay Sundararajan, Sachin S. Sapatnekar, and Keshab K. Parhi. A new approach for integra-
tion of min-area retiming and min-delay padding for simultaneously addressing short-path
and long-path constraints. TODAES, 9(3):273–289, 2004.

[26] Ivan Sutherland. Micropipelines: Turing award lecture. CACM, 32 (6):720–738, June 1989.

[27] Steve Unger. The Essence of Logic Circuits. John Wiley & Sons, 1997.

[28] Girish Venkataramani and Seth C. Goldstein. Leveraging protocol knowledge in slack match-
ing. In ICCAD, San Jose, CA, November 5-9 2006.

[29] Aiguo Xie and Peter A. Beerel. Symbolic techniques for performance analysis of timed
systems based on average time separation of events. In ASYNC, pages 64–75, April 1997.

[30] Aiguo Xie, Sangyun Kim, and Peter A. Beerel. Bounding average time separations of events
in stochastic timed Petri nets with choice. In ASYNC, pages 94–107, April 1999.

18

	1 Introduction
	1.1 A Formal Definition

	2 System Modeling
	2.1 Modeling Choice
	2.2 Model Analysis and GCP Construction

	3 GCP Topology
	4 Sync-Delay Elimination
	5 Gate Sizing
	6 Related Work
	7 Conclusions

