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Abstract

Over 100 C integer vulnerabilities have been publicly identified to date, some of which have resulted in
serious disasters such as rocket malfunction. C integer vulnerabilities can arise when one integer type is
cast to another incompatible integer type. The rules which determine integer cast safety are cumbersome,
lengthy, and sometimes unintuitive. As a result, it is common to find thousands of potentially unsafe casts
in even moderately sized programs. Despite the importance of writing safe and secure programs, the burden
of correctly using (often necessary) integer casts is placed squarely on developers.
We show that well-known sub-typing theory commonly found intype-safe languages can effectively an
automatically be applied to protect against most integer casting vulnerabilities in C. We implement our
techniques in a tool called PICK which statically detects potential integer vulnerabilities and inserts the
necessary dynamic checks to prevent exploits. Our experiments (a) confirm potentially unsafe integer oper-
ations are rampant in source code, indicating the potentialnumber of vulnerabilities is great, (b) show the
introduced checks protect vulnerable programs, (c) show nomanual modifications are needed in most cases,
and (d) the inserted checks do not introduce measurable overhead. Thus, our approach and techniques pro-
vide a practical, efficient, and automatic method for protecting against integer vulnerabilities for even large
programs written in C.

This work is supported by grants from the National Science Foundation.



Keywords: computer security, integer vulnerability, integer overflow, integer conversion error, software
security



1 Introduction

The semantics of integer operations in C are complex and unintuitive to many, leading to insidious bugs
and vulnerabilities due to ignored or misunderstood boundary and conversion conditions. An integer cast
converts between different integer types, and when misusedcan cause serious vulnerabilities. Although there
is a body of literature offering sage advice on how to programsecurely by avoiding pitfalls with integer
operations, there has been very little being done toautomaticallysecure existing C programs. The 179
known integer-based vulnerabilities [15] — most of which are integer casting bugs — serve as a testament
to the clear need for techniques that defend against integervulnerabilities. Integer casting bugs have even
been responsible for huge disasters, such as the Ariane 5 rocket explosion which was caused by a conversion
from a 64-bit floating point to a 16-bit signed integer [14]. The number of known vulnerabilities is likely
the tip of the iceberg; our experiments indicate that potentially unsafe integer casts are rampant in programs.
Of our tested programs (Section4), the number of potentially unsafe casts range from 600 to almost 5000.
Automatic techniques are clearly required to handle potentially unsafe casts found at this scale.

Motivating situation. A system administrator has downloaded an open-source application he would
like to install. The administrator is unlikely to be familiar with the details in the code, but wants to protect
his system from exploitation in case their are bugs in the code. For example, the system administrator can
compile the code with stack-guard to protect from buffer overruns [4]. We wish to provide a similar tool
for protecting against integer vulnerabilities. Our goal is to allow the administrator to protect his system
from integer vulnerabilities in the application while requiring little if any code changes (the typical system
administrator is likely not an expert programmer) nor sacrificing performance.

Possible approaches.One approach to fixing integer vulnerabilities is to raise a compile-time warning
for each potential vulnerability and let the programmer fix each one. However, this approach seems im-
practical due to the sheer number of warnings. Another approach is to translate the C code into a type-safe
variant, e.g., Cyclone [11] or CCured [18]. However, this option may not be practical in many settings,
such as for performance-critical applications or when the user isn’t intimately familiar with the code. Yet
another approach is to try and weed out warnings for safe code. Our evidence suggests that the number of
actual bugs is an order of magnitude less than the number of warnings. However, any tool that finds all bugs
must be conservative, thus will generally have a high false positive rate in which a programmer will again
be faced with a large number of warnings. Ultimately, manually fixing bugs is unavoidable. However, it
would be useful in many situations to have anefficientandautomaticapproach forprotectingagainst (not
just detecting) anypotentialvulnerability.

Integer vulnerabilities. As mentioned, most integer vulnerabilities are due to unsafe casts. However,
previous work does not adequately address protecting against unsafe casts. There are two casting categories:
sign conversionswhere a signed integer can be converted to an unsigned integer (or vice-versa), and integer
precision conversionswhere the number of bits used to represent the integer is changed. At a high level,
the problem with sign conversions is the sign bit of a signed integer becomes the most significant bit in an
unsigned integer (and vice-versa). As a result, negative signed integers become large unsigned integers (and
vice-versa), leading to unintended program behavior. Precision conversions can cause a loss of precision via
truncation when converting a value of a larger precision type to a smaller precision type, again leading to
unintended behavior.

There are about a dozen rules in the ANSI C99 [1] standard determining the effects of a conversion via
integer casting1. These rules define the semantics of a conversion based upon an integer ranking system. In

1Many of the C99 rules appear in paragraph form instead of as precise statements, so it is difficult to judge the exact numberof
rules.
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many scenarios, these rules are complex and thus easily misunderstood. For example, it is easy to confuse
whether5U − 15 is −10 or 4294967286 based upon the ranking rules (the answer is the latter for reasons
detailed in Section2.1). In other scenarios, a given conversion is defined as implementation-specific. For
example, these rules define when an integer type is convertedto another integer type where the value cannot
be represented by the new type, the result is a signed integerthat is implementation-defined. Unfortunately,
this implementation-defined behavior can also lead to bugs and vulnerabilities.

This paper. We protect against integer casting vulnerabilities by rewriting unsafe casts as dynamic
safety checks. As we will see, integer vulnerabilities are either overflow vulnerabilities or casting vulner-
abilities, the former of which are already addressed by modern compilers (Section3). At a high level, we
address the larger problem of casting vulnerabilities by using sub-typing relationships to define integer cast
safety. For example, up-casting an integer from a smaller-precision type to a larger-precision type is a safe
sub-typing relationship since a larger precision integer can always represent the smaller precision integer.
Down-casting from a larger to smaller precision violates the typing rules, and thus is not safe. However,
down-casting (and other potentially unsafe type conversions) are rampant in source code, and therefore it
would be naive to believe developers will manually address each potential unsafe integer cast. Therefore, we
introduce formal rewrite rules which enable automatic source-to-source translation where unsafe casts are
rewritten as safe dynamic checks. The dynamic checks raise an error only when a cast is unsafe at runtime.

Contributions. Our main contribution is we demonstrate automatic techniques for defending against a
wide class of integer vulnerabilities in a formal framework. We show that by applying sub-typing theory we
can detectand protectagainst a large class of integer vulnerabilities. We have implemented a tool called
PICK to validate that our light-weight approach is practical and prevents integer vulnerabilities.

Specifically, we:

• Provide formal semantics for safe C integer casts. Our semantics replace the cumbersome and unin-
tuitive C99 specifications with 2 simple sub-typing rules.

• Introduce rewrite rules that turn type unsafe (and semantically unsafe) casts into type-safe dynamic
checks. The correct check to insert does not require expensive analysis, and thus scale to any size
program.

• Implement a prototype called PICK (Preventive Integer Checks) to evaluate our approach and tech-
niques.

• Demonstrate through experiments that potentially unsafe integer casts are rampant in source code,
indicating the number of known vulnerabilities may be the tip of the iceberg.

• Show the introduced checks for unsafe casts protect vulnerable programs. The resulting program is se-
mantically equivalent to the original program. Our experiments confirm our approach and techniques
prevent real exploits against real vulnerabilities from working.

• Show our approach is fully automatic in most cases. 1 manual modification was needed out of thou-
sands of automatically inserted checks. The 1 modification was needed because the programmer had
inserted a similar check which handled the unsafe cast in an application-specific manner.

• Show the inserted checks do not introduce any measurable overhead, and are therefore practical to
apply to production code.

• Additionally, our techniques uncover and protect against many portability bugs.

2 Integer Security Vulnerabilities

In this section we begin by providing a description of integer operations, focusing on the ANSI C99 specifi-
cation. As we will see, the complexity of the C99 specification contrasts with the simplicity of our approach

2



using sub-typing. We then outline integer vulnerabilities. Our work applies to both explicit casts and implicit
casts (coercions) inserted by the compiler.

Notation: Instead of using basic C type names such as “unsigned” and “signed long long”, we adopt
the more descriptive C99 syntax for clarity, shown in Table6 in AppendixA, throughout this paper.

2.1 Integer Representations and Conversion

The representation for all integers except for uint8t is implementation specific. Note char is a type of integer,
and can be signed or unsigned. Values of type uint8t are represented with a single byte in binary notation.
Most PC architectures use 2’s complement to represent all other integer types. Different representations
may cause portability bugs, e.g., in 1’s complement representation there is both +0 and -0 which may not be
correctly handled by the code.

An unsigned type uintn t can represent any value between 0 and2n − 1. Theprecisionof an integer is
the number of bits for representing a value excluding the sign bit (and any padding bits), and is simplyn for
an unsigned integer (page 39 [1]). The width of an integer is the precision plus any sign bits. A signed type
intn t can represent any value between−2n−1 and2n−1 − 1. The precision for signed integers isn − 1,
while the width isn, e.g., the precision of a int8t is 7 bits, although 8 bits are used to represent any value.
Maximum and minimum values for all signed integers are defined in limits.h.

Often programmers will convert from one integer type to another via acast. A compiler will also insert
implicit casts (coercions) whenever the types in an expression or statement do not agree. Our techniques are
applied after all casts have been inserted, including thoseautomatically inserted by the compiler. According
to C99, the semantics of a cast between two different integers relies on therank of the integer. In particular,
C99 defines about a dozen rules for determining the rank of an integer, a summary of which is (page 42 [1]):

• No two signed integer types shall have the same rank, even if they have the same representation.
• The rank of a signed integer type with greater precision is higher than signed integer types with less

precision.
• The rank of an unsigned integer type is the same as the corresponding signed integer type.
• Ranking is transitive: if T1 has rank greater than T2 has rankgreater than T3, then T1 has rank greater

than T3.

A precision conversioncast may increase or decrease the precision of an integer. C99 defines an integer
promotion, commonly calledup-casting, as a cast from a lower precision type to a higher precision type
(without changing the sign type). Similarly, we define an integerdown-castas a cast from a higher precision
to a lower precision type. Demotion is defined in C99 as implementation-specific, and is usually carried out
via truncation.

An integersign conversionoccurs when a signed integer type is cast to an unsigned type,or vice-versa.
In each case the integer value bit pattern is preserved across casting. As a result, a negative integer type
results in a very large unsigned integer, since the sign bit is set. Similarly, a large positive unsigned value
may become negative. Although the bit pattern is preserved and no data is lost, sign conversions result in
vulnerabilities when programmers do not anticipate these corner-case effects. For example, a programmer
may cast a signed integerx to an unsigned integery, and then later test ify is greater than some value. The
programmer may not anticipate the case wherex < 0 leads to a largey value.

Precision and sign conversions may be either explicit (via an explicit cast operation in the code) or
implicit. The rules for conversion in C99 (page 45 [1]) are as follows:

1. If both operands have exactly the same type, no conversionis necessary.
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2. If both operands are of the same integer kind (both signed or both unsigned), then the type with a
smaller rank is promoted, i.e., up-casted.

3. If an operand with the unsigned type has rank greater (i.e., greater precision) than the signed type, the
result is the type of the unsigned integer. Conversely, if the signed type has greater rank, the unsigned
operand is converted to the type of the signed operand.

4. Otherwise, both operands are converted to the unsigned integer type.

C99 leaves many behaviors implementation-specific, such asdown-casting. In general, C99 has this to
say about conversions:

“When a value with integer type is converted to another integer type other thanBool, if the
value can be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtract-
ing one more than the maximum value that can be represented inthe new type until the value is
in the range of the new type.

Otherwise, the new type is signed and the value cannot be represented in it; either the result is
implementation defined or an implementation-defined signalis raised.” [1]

For example, the expression5U-15 is not −10, but 4294967286 because15 is (implicitly) cast to
an unsigned integer (rank rule 3 above), the result type willbe unsigned,−10 mod 232 = 4294967286
(paragraph 2 from C99 above).

2.2 Security Vulnerabilities with Integer Types

C integer vulnerabilities can be divided into two categories: integer wrapping vulnerabilities and integer
casting vulnerabilities. Wrapping occurs when the result of an arithmetic operation produces a value that
is greater (resp. less than) than can be stored in the fixed-width register. Wrapping vulnerabilities caused
by arithmetic operations are already handled by popular compilers such as gcc (compiled with the optional
-ftrapv flag) and Visual C++ (via the /RtCc flag).2

Therefore, we focus on the remaining previously unaddressed case of casting vulnerabilities, which fall
into two categories: integer sign casts and integer precision casts3. Most known integer vulnerabilities
are casting vulnerabilities, including the OpenSSH integer vulnerability [31] which has led to thousands of
compromised machines. Indeed, many wrapping vulnerabilities are only symptomatic of an earlier unsafe
down-cast which our approach would protect against.

Integer Sign Conversion Vulnerabilities. Integer sign conversions may result in vulnerabilities when
(1) a negative signed integer is cast to unsigned, becoming alarge value, or (2) a large positive unsigned
integer is cast to a signed integer, becoming negative. Consider the following code (discovered by our
analysis in bash-1.14.6), which ironically attempts to be asafe version ofmalloc by always checking
whether memory allocation was successful:

cha r ∗ xmal loc ( i n t 3 2 t b y t e s ){
cha r ∗ temp = ( cha r ∗ ) ma l loc ( b y t e s ) ;
i f ( ! temp ) m e m o ry e r ro r a n d a b o r t ( ) ;
r e t u r n ( temp ) ; }

2 We are unaware of a compile flag that will issue a warning for all types of integer casting bugs. Neither the default gcc’s
compile flags, nor -Wall or -pedantic, detect many simple casting bugs.

3Adding rewriting rules that check for overflow and underflow in a single coherent system is trivial using our approach and
infrastructure. We do not duplicate previous work, thus do not discuss these checks.
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The relevant detail ismalloc takes auint32 t argument, but is here provided with a signedint32 t
argument. This particular case may lead to a denial of service because when called with a negative value
a huge amount of memory is allocated. Another common examplewhich often leads to a vulnerability is
memcpy, whose prototype is:

vo id ∗memcpy( vo id ∗ des t , c o n s t vo id∗ s rc , uns igned i n t l e n ) ;

If a signed integer with a negative value is passed in aslen, it will become a large positive number. This will
lead to a buffer overflow whendest is not large enough to hold the convertedlen bytes ofsrc. Notable
examples of integer overflows involvingmemcpy include PuTTY [27] and Apache modauth radius [26].

Integer Down-cast Vulnerabilities. An integer cast may increase (up-cast) or decrease (down-cast)
the precision of the representation. Increasing the precision is always safe, and usually accomplished by
zero-extending the casted value. However, decreasing the number of bits is potentially unsafe. An example
of a typical down-casting vulnerability is:

1 u i n t 1 6 t l e n = s t r l e n ( s t r i n g ) :
2 cha r ∗bu f = mal loc ( l e n ) ;
3 s t r c p y ( buf , s t r i n g ) ;

On line 1,strlen returns a 32-bit integer, which is down-cast to a 16-bit integer. As a result, a string
of length216 will result in len = 0. Thestrcpy on line 3 can then be exploited with a standard stack-
smashing attack. Again, such vulnerabilities often appearwhen trying to secure software, such as in the
OpenSSH CRC32 vulnerability where a down-casting error leads to a vulnerability, ironically in code meant
to detect certain types of cryptographic attacks [31].

3 Our Approach: Strong Integer Typing

We define integer casting in terms of sub-typing rules, wheresafe casts are well-typed and unsafe casts are
not well-typed. Intuitively, sub-typing allows us to succinctly express when one integer type can safety be
cast as another integer type. We use 2 sub-typing rules to express the dozen or so C99 rules. Unsafe integer
expressions are statically rewritten (via formal rewriting rules) as well-typed dynamic safety checks. Each
dynamic check makes sure the cast is value-preserving, i.e., the value of the variable before the cast is the
same as the value after the cast. We check all casts: both those implicitly inserted by the compiler (i.e.,
coercions) and explicitly provided.

This section introduces the formalism needed in order to rigorously define when and which safety checks
to insert, as well as the safety they afford. We begin by introducing our typing rules, and discuss our types
for basic integer operations. We then introduce our dynamicchecks for potentially unsafe casts. Then, we
discuss more complex types such as structures and pointers.

3.1 C Integer Sub-typing Rules for Safe Integer Casts

Table3.1 contains our typing rules for safe integer operations. Eachrule is read as an implication: when
the preconditions on the top of the bar are satisfied, the formula on the bottom of the bar is true. A safe
expression has a valid type, i.e., a type that can be derived via the rules. An unsafe integer expression has
an invalid type.
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Γ ⊢ t : σ σ <: τ

Γ ⊢ t : τ
T-SUB

σ <: σ T-REFL
σ <: υ υ <: τ

σ <: τ T-TRANS

Γ ⊢ s.i : σ σ <: τ

Γ ⊢ s.i : τ
T-FIELD

Γ ⊢ t : τ
Γ ⊢ &t : Ref τ

T-REF
Γ ⊢ t : Ref τ
Γ ⊢ ∗t : τ

T-DEREF

unsigned<: uint8 t <: uint16 t <: uint32 t <: uint64 t
T-UNSIGNED

signed<: int8 t <: int16 t <: int32 t <: int64 t
T-SIGNED

Γ ⊢ e : σ σ <: τ

Γ ⊢ (τ)e : τ
(T-UPCAST)

Table 1: Our typing rules for safe C integer operations.

3.1.1 Basic Sub-typing Relationships:T-SUB, T-REFL, T-TRANS

The intuition in our setting behind a sub-typing relationship, written σ <: τ , is any value described by
typeσ is also described by typeτ . In our formulation, we have sub-types such asuint8 t <: uint16 t
because{0...28 −1} ⊂ {0...216 −1}. In general, smaller precision integers are sub-types of larger precision
integers since a larger precision can express any value of a smaller precision.

T-SUB in Table3.1 introduces the sub-typing relationship to C. Here,Γ is the typing store that maps a
variable name or expression to a type.4 The ruleT-SUB is the basic sub-typing rule, and says if our typing
storeΓ says variablet is of typeσ, andσ is a subtype ofτ , thent is also of typeτ . We also add the standard
reflexive (T-REFL) and transitive (T-TRANS) rules.

3.1.2 Sub-typing Rules for Safe Casts:T-UNSIGNED, T-SIGNED, T-UPCAST

Our approach defines two basic types:unsignedandsigned. Different precisions within a type become sub-
types. We express casts in terms of sub-typing where smallerprecisions are sub-types of larger precisions.
T-UNSIGNED and T-SIGNED in Table 3.1 express the base sub-typing relationship for integers, while T-
UPCASTstates that we can up-cast (ascribe) to an expressione of typeσ a super-typeτ . For example:

/ / Cast e x p l i c i t o r i m p l i c i t l y i n s e r t e d by t h e comp i le r
u i n t 8 t b ; u i n t 1 6 t a = ( u i n t 1 6 t ) b ;

is safe because it is well-typed:

Γ ⊢ b : uint8 t uint8 t <: uint16 t T-UNSIGNED

Γ ⊢ (uint16 t)b : uint16 t
T-UPCAST

Note T-SIGNED and T-UNSIGNED, along with T-UPCAST eloquently replace the dozen or so rules for
determining the rank and result of rank conversion that appear in C99. We believe this simplicity makes our
approach appealing. Also note that T-TRANS can be applied for two or more up-casts, e.g.,uint8 t being
up cast touint32 t.

3.2 C Integer Rewriting Rule for Unsafe Casts

Down-casts and sign conversions are not within the type system, and therefore potentially unsafe. We rewrite
potentially unsafe casts as runtime safety checks on the operands. The resulting expression with the safety

4The types inΓ are built via the declared C types.

6



Γ ⊢ e : σ (τ)e σ 6<: τ e e′

(τ)e (τ)let x : σ = e′ in CHECK(τ)σ(x)
R-UNSAFE

Γ ⊢ e : σ (τ)e σ <: τ e e′

(τ)e (τ)e′
R-SAFE

σ 6<: τ τ <: σ

CHECKτ,σ(x) ≡ if τmin ≤ x ≤ τmax thenx else error
D-CHECK

σ 6<: τ signed<: σ unsigned<: τ

CHECK(τ)σ(x) ≡ if 0 ≤ x ≤ τmax then x else error
S-U-CHECK

σ 6<: τ unsigned<: σ signed<: τ

CHECK(τ)σ(x) ≡ if x ≤ τmax then x else error
U-S-CHECK

Table 2:R-UNSAFE rewrites unsafe casts by inserting dynamic checks:U-S-CHECK for unsigned to signed
casts,S-U-CHECK for signed to unsigned casts, andD-CHECK for down-casts.R-SAFE is added for com-
pleteness: it leaves safe expressions as-is.

check is well-typed.5 The particular check depends upon whether the unsafe cast isa sign conversion cast
or a down-cast. Table2 gives our rewriting and safety check rules.

3.2.1 General Rewriting Rule for All Unsafe Casts:R-UNSAFE

We introduce rewrite rules for potentially unsafe casts of expressions. Suppose in(τ)e, e is of the typeσ
which is not a subtype of the cast typeτ , i.e.,σ 6<: τ . For example, when assigning an unsigned to signed
integer, the signed integer isσ and is cast to type unsigned integerτ . We translatee to an expression that
performs the proper safety check during evaluation.

R-UNSAFE in Table2 states that an unsafe cast(τ)e : σ wheree evaluates to some other expression
e′ is rewritten statically to another cast wheree is evaluated to a valuex, which is checked viaCHECKτ,σ.
CHECKτ,σ is a function which returns the valuex or calls anerror() function. The check functions
(S-U-CHECK, U-S-CHECK, and D-CHECK) are different for each type of unsafe cast: unsigned to signed
conversions, signed to unsigned conversions, and down-casts. R-SAFE is included for completeness: for
safe casts, no rewrite is necessary.

3.2.2 SpecificCHECKτ,σ : D-CHECK, U-S-CHECK, and S-U-CHECK

Down-casts. A down-cast from an expressione of typeσ of higher precision toτ of lower precision (e.g.,
uint32 t to uint16 t) requires a check if the value ofe when evaluated is preserved with the smaller precision
type τ , i.e., the value ofe “fits” inside the typeτ . A down-cast is essentially a sub-typing relationship
backward:σ 6<: τ but τ <: σ.

CHECK(τ)σ for down-casting is given asD-CHECK in Table2. The rule states that an error is raised if the
valuex of e is larger than the maximum valueτmax or smaller than the minimum valueτmin of integer type

5For brevity, we omit several uninteresting rules that are technically needed to show this.
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τ . The pre-conditionσ 6<: τ andτ <: σ are needed to ensure we only apply this rule when the precision is
changed, but not the sign (sign changes are handled by S-U-CHECK and U-S-CHECK).

For example, consider the code:

u i n t 3 2 t b ;
u i n t 1 6 t a = ( u i n t 1 6 t ) b ;

Hereσ = uint32 t and τ = uint16 t. Sinceuint32 t 6<: uint16 t, the rewriting ruleR-
UNSAFE applies:

Γ ⊢ b : uint32 t uint32 t 6<: uint16 t b b′

(uint16 t)b (uint16 t) let x : uint32 t = b in CHECK(τ)σ(x)
R-UNSAFE

Further, since the sub-typing is backward, we use theD-CHECK rule:

uint32 t 6<: uint16 t uint16 t <: uint32 t T-UNSIGNED

CHECK(τ)σ(x) ≡ if 0 ≤ x < 216 − 1 then x else error
D-CHECK

The rewriting of the example given the formal rules is then:

u i n t 3 2 t b , c ;
u i n t 3 2 t x = b ;
i f (0 <= x && x <= 216 − 1 ) x ; e l s e e r r o r ( ) ;
u i n t 1 6 t a = ( u i n t 1 6 t ) b ;

In our implementation, we output the equivalent:

u i n t 3 2 t b ;
i f ( b > 216 − 1 ) e r r o r ( ) ;
u i n t 1 6 t a = ( u i n t 1 6 t ) b ;

Sign conversion casts. The sign bit must be checked for conversions between signed and unsigned inte-
gers. We dividecheck(τ)σ for sign conversions into two cases as shown in Table2: S-U-CHECK where a
signed integer is cast to an unsigned integer, and U-S-CHECK where an unsigned integer is cast to a signed
integer.

U-S-CHECK is similar to D-CHECK with the exception thatτ is signed andσ is unsigned, while in
D-CHECK both are either signed or unsigned. Although the resulting check is the same, we find it useful to
logically separate out unsigned to signed conversions fromdown-casts. The signed to unsigned conversion
check S-U-CHECK need only check that the sign bit is not set, i.e.,x ≥ 0.

For example, theS-U-CHECK andU-S-CHECK will rewrite the following:

i n t 3 2 t i 32 ; u i n t 3 2 t u32 ;
i 32 = u32 ;
u32 = i32 ;

as:

i n t 3 2 t i 32 ; u i n t 3 2 t u32 ;
i f ( u32 > 231 − 1 ) e r r o r ( ) ; / / U−S−CHECK
i32 = ( i n t 3 2 t ) u32 ;
i f ( i 32 < 0) e r r o r ( ) ; / / S−U−CHECK
u32 = ( u i n t 3 2 t ) i 32 ;
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A formal derivation showing this rewriting for each cast is similar to that given for down-casts above,
where the main difference is the preconditions forS-U-CHECK and U-S-CHECK are satisfied instead of
D-CHECK.

3.3 Dynamic Safety Error Detection:error()

Our translation results in anerror() when a cast for a particular value will be unsafe. Runtime checks
have a long history; for example, in Java the sub-typing rulefor arrays of subclasses is unsafe, which is
handled by introducing dynamic safety checks [21]. In Java, run-time safety violations cause an exception,
which results in termination unless caught. Another example is divide-by-zero errors in C++, which cause
uncaught runtime exceptions in most programs.

At a high level, when an unknown error is encountered there are two choices: attempt to correct the error
or abort execution. The user can defineerror() to implement either of these choices. Of course manually
fixing the bug is the best choice, but not an option in many situations. Others have explored aborting the
current function [29] or returning a random result [22] when an error is encountered, which allows the
program to continue executing. However, both these approach are not fail-safe, and thus not useful in many
security-conscious scenarios.

Since integer vulnerabilities often lead to privilege escalation, e.g., an integer vulnerability due to casting
in OpenSSH leads to remote root access [31], we believe the safest action is forerror() to abort the
program. Although aborting may lead to denial of service attacks, it does prevent more serious problems
such as privilege escalation, arbitrary code execution, etc., and is the approach taken by similar safety tools,
e.g., stack-guard [4]. Therefore, we currently abort the program when a safety violation is detected. We
could easily change this to print out a warning, or throw an exception (via a signal and signal-handler).
Warnings are unsafe because they do not prevent the error. Exceptions may be interesting in some scenarios
since it could be used to trigger additional analysis or to “hack” around known conversion problems.

3.4 Complex Types

Structures. T-FIELD in Table3.1handles integral fields within structures in the obvious way: if the type of
field i is σ, andσ <: τ , then via sub-typing,i is also of typeτ .

For example, in

s t r u c t { u i n t 3 2 t u32 ; u i n t 1 6 t u16 ; } foo ;
f o o . u 3 2 = ( u i n t 3 2 t ) f o o . u 1 6 ;
f o o . u 1 6 = ( u i n t 1 6 t ) f o o . u 3 2 ;

In the first assignment,foo.u16 is of typeuint16 t, thus the assignment is a safe up-cast. However, in
the second assignmentuint32 t 6<: uint16 t, and a down-cast check must be inserted.

Note unions can be handled in a manner similar toT-FIELD: each union field member is declared with a
type. The sub-typing relationships then range over that declared type.

References and Dereferences.For each integral typeτ , Refτ denotes the type of a pointer to typeτ .
Integral reference and dereferences are handled via generic typing rulesT-REF andT-DEREF, respectively.

T-DEREF in Table3.1 states that if we have a pointer to an integer type, then a dereference yields an
object of the pointed-to type, e.g., ifp is of typeuint16 t *, then*p is of typeuint16 t. Therefore:

u i n t 8 t v ; u i n t 1 6 t ∗p ;
v = ∗p ;

is not safe, and rewritten as:
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i f ( ∗p > 28 − 1 ) e r r o r ( ) ;
v = ∗p ;

Pointers. The above rules check that pointer reads and writes are correct with respect to the declared
type, i.e., if the programmer writes with one type and reads with another compatible type, we assume it is
intentional. For example, we assume:

u i n t 3 2 t ∗u32 ; u i n t 1 6 t ∗u16 ;
. . . .
∗u32 = ∗u16 ;

is correct sinceuint16 t is a sub-type ofuint32 t.
The above assumption does not necessarily hold, i.e., the programmer could simply have mixed up their

types. Safe pointer assignmentcouldbe handled by adding the standard type safety rule:

σ <: τ τ <: σ
Refσ <: Ref τ T-REFSUB∗

This rule states that a reference of typeσ is a subtype of a reference to typeτ if τ andσ are sub-types of
one another, i.e., in our semanticsτ = σ.

However, we find the standard type safety rule too restrictive compared to the benefit of strict integer
type safety for typical C programs. For example, T-REFSUB∗ would disallow the following typical code:

1 u i n t 1 6 t ∗u16 = mal loc ( 1 0 ) ;
2 . . .
3 u i n t 3 2 t ∗u32 = u16 + 9 ;
4 u i n t 8 t v a l = ∗u16 ;

Clearly line 4 is potentially unsafe since the 8-bitvalmay be too small for the 16-bit*u16. Our semantics
without T-REFSUB∗ will insert a proper check on this line. However, line 3 is also unsafe. For example, a
subsequent write throughu32 is 4-bytes long due to its type, whileu16+9 only has 2-bytes available. If
we want complete safety and accept T-REFSUB∗, then line 3 is also unsafe.

We have found that even without implementing T-REFSUB∗ all integer vulnerabilities we know of are
protected. An informal analysis of known integer vulnerabilities indicates they arise primarily when integers
are used as indexes or to determine the size of allocated memory, both of which are checked with our rules
during dereference. The overall intuition is integer vulnerabilities arise because the integer value is not what
was expected in a localized computation.

Since T-REFSUB∗ is overly restrictive and breaks many legitimate programs,we do not currently imple-
ment it. For example, the above rule would break typical networking code found in many of our examples:

1 u i n t 1 6 t ∗bu f ; u i n t 1 6 t u16 ; i n t 8 t i 8 ;
2 . . . .
3 ∗ bu f = i 8 ; / / a i n t 8 t = 1 by te i s w r i t t e n
4 . . .
5 u16 = ∗bu f ; / / bu t u i n t 1 6 t = 2 b y t e s a re read

Here,buf is intended to be an uninterpreted 2-byte buffer, where reads are writes are of the correct though
mis-matched packet field type.

It appears very difficult to ensure type safety in this code without tagging each memory write with the
corresponding type, and checking each subsequent read. This tagging would likely incur a huge overhead
with what appears little additional value. Even if this overhead was acceptable, it would likely be impossible
to derive a generic rule that works for all programs. For instance, in the above example on line 5 the
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programmer may have wanted to read 2uint8 t’s concatenated together on line 5, or may have wanted to
read 1uint8 t and cast it to auint16 t.

We therefore do not use T-REFSUB∗ by default, but leave it as an optional extension. We leave asan area
for further research a light-weight check that will preventinteger vulnerabilities that arise through pointer
casts. We remark that any such research would also have to handle casts fromvoid * to be complete since
malloc, read, write, etc. all returnvoid * which are then cast to the “right” type.

3.5 Where Checks Are Inserted

A pre-processing step identifies all expressions in which a cast is needed. This step is already performed by
the compiler: the type of each expression is needed to generate the proper code. If the cast is not explicitly
provided by the programmer, an implicit cast is inserted (i.e., coerced) by the compiler. We then perform a
typing derivation to determine which casts are safe, and which are unsafe. Unsafe casts are rewritten via the
R-UNSAFE rule.

Note that function call sites act as an assignment from actuals to formals, thus may also need a check.
For example, in:

1 vo id f ( u i n t 8 t v ) { v++ ; }
2 vo id foo ( ){
3 u i n t 1 6 t u16 ; i n t 8 t i 8 ; i n t 1 6 t i 16 ; u i n t 3 2 t u32 ;
4 f ( u16 ) ;
5 i 8 = ( ( u16 ∗ u32 ) + i16 ) ; }

We insert checks on line 5 to make sure the cast ofu16 from auint16 t to auint8 t is safe. We will
also check the sub-expression on line 5. Note that on line 5 the right-hand side has a mix of unsigned and
signed integers.foo is rewritten as:

. . .
i f ( u16 > 28 − 1 ) e r r o r ( ) ;
f ( u16 ) ;
i f ( ( ( u16 ∗ u32 ) + i16 ) > 27 − 1 ) e r r o r ( ) ;
i 8 = ( i n t 8 t ) ( ( ( u i n t 3 2 t ) u16 ∗ u32 ) + ( u i n t 3 2 t ) i 16 ) ;

4 Implementation and Evaluation

4.1 Implementation

We have implemented a tool called PICK (Preventive Integer Checks) which automatically inserts the
necessary checks to prevent integer casting vulnerabilities. PICK is implemented using CIL [16, 17], a C
analysis and source-to-source translation framework written in OCaml. CIL takes as input the source code
to a program, performs several semantic-preserving simplifications, and then produces a typed intermediate
representation (IR). Our analysis is performed on the IR, which is then “unparsed” by CIL and written to a
file. The resulting file is C source code containing the necessary checks, which can then be compiled with
any standard C compiler.

We use the type symbol table provided by CIL to decide when to insert the appropriate checks as given
by the rules in Section3. Note our analysis is at the expression level, and thereforedoes not require intra
or inter-procedural analysis, i.e., we do not need to merge all files together. As a result, the overhead for
analyzing the code and introducing the proper checks is negligible. The steps taken by PICK are:
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Name Vuln # S-U-CHECK # U-S-CHECK # D-CHECK # Full # Total
Apache 2.0.35 Y 2058 1120 368 368 3914
Bash 1.14.6 Y 160 370 92 5 627
Coreutils 5.0 Y 461 252 113 34 860
MLTerm 2.9.1 Y 853 1143 417 442 2855
OpenSSH 2.2.0p2 Y 320 281 33 43 677
Gzip 1.2.4 N 203 270 36 97 606
OpenSSL 0.9.7 N 2647 1124 826 373 4997

Table 3: S-U-CHECK (U-S-CHECK) is the number of signed to unsigned (unsigned to signed) checks
inserted. D-CHECK is the number of down-cast checks inserted. Full is the number of places both a sign
check and down-cast check are inserted. This experiment shows potential integer vulnerabilities are rampant
in code.

1. Pre-process the input, e.g., inline#include statements, expand macros, etc. CIL performs this step
automatically by invoking the C pre-processor.

2. Create a typing store which maps all expressions and statements to a type. Insert implicit casts when
necessary, e.g., in an expression of mixed types, a statement where the type of the lhs is different from
that of the rhs, etc. CIL performs this step automatically.

3. For each cast, both explicit or implicit, perform the following steps:

(a) In cast(τ)e, τ is the cast type and letσ be the type of the expressione.

• If σ 6<: τ , create a checkc. Insert the check just prior to the evaluation ofe (e.g., on the line
beforee).

• If σ <: τ , do nothing.

• If e e′ wheree′ is some sub-expression, then recurse and apply typing ruleson e′.

4. Insert theerror() function, which in our implementation callsexit(-42).

We perform all our tests under Linux, using gcc 3.4, though CIL and our transformations work also under
other operating systems and compilers such as MSVC under Windows. Our CIL module is approximately
500 lines of OCaml.

4.2 Evaluation

We perform two quantitative experiments: measuring the number of checks that need to be inserted in
various programs, and measuring the overhead of the inserted checks. We also provide qualitative evidence
of the type of common unsafe and unportable integer expressions within code.

4.2.1 Number of checks inserted

We ran PICK on a number of programs to measure how frequently potential integer vulnerabilities occur.
Table3 lists our results. The table includes the program name, whether there is a previously known vul-
nerability or not, and the number of down-casts and sign conversion checks that were inserted. We include
non-vulnerable programs into the analysis to get a sense of how many checks need be inserted for many
different kinds of software. The S-U-CHECK column indicates the number of signed-unsigned checks,
U-S-CHECK the number of unsigned-signed checks, and D-CHECK the number of down-casting checks.
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The last column is the total number of checks. The “Full” column indicates the number of full range checks
where both a down-cast and a sign conversion take place in thesame instruction.

A “Full” check occurs when the typing rules are recursively applied resulting in both a sign check and a
down-cast check. As a result, a full check may require two comparison with both an upper and lower bound
of the resulting integer type. For example:

u i n t 8 t u8 ; i n t 1 6 t i 16 ;
u8 = i16 ;

A full check is needed here becausei16 may be signedor too large for typeuint8 t. The full check is
i16 > 0 && i16 < 28 − 1.

Our experiments indicate that potential integer vulnerabilities and bugs are rampant in source code.
These numbers also support the idea that issuing compile-time warnings is not practical due to the sheer
number of casts, supporting our run-time check approach.

4.2.2 Error Analysis

For vulnerable programs, we confirmed that the checks prevented all vulnerable programs from being ex-
ploitable, i.e., zero false negatives. This is expected since our approach results in type-safe integer opera-
tions. Most vulnerabilities seem to be due to down-casts, while most portability bugs seem due to signedness
conversions. Our analysis uncovered 11 additional portability bugs in OpenSSH, and 1 in gzip. One com-
mon problem we found is programmers expect type char to be analogous to a byte. However, C99 specifies
only unsignedchar’s are analogous to a byte (Section2.1). This particular problem is cited by others such as
[7, 6, 25] , often as a member of the top 20 in C bugs. In each case we modified the source code to remove
otherwise implicit and compiler-specific casts6.

In all our experiments, we only found 1 example of a false positive – a check inserted that fails at runtime
but was not needed – in bash 1.14.6. The relevant code is:

1 vo id r e m o v e t r a i l i n g w h i t e s p a c e ( cha r∗ u s e r s t r ) {
2 i n t i = s t r l e n ( u s e r s t r )− 1 ; / / s t r l e n r e t u r n s an uns igned i n t e g e r
3 wh i l e ( i > 0 && w h i t e s p a c e ( s t r i n g [ i ] )
4 i−−; . . .

The salient detail isstrlen returns an unsigned integer, causing the arithmetic operation of line 3 to be
signed = unsigned - signed. C99 dictates the result is therefore an unsigned integer. Therefore,
whenuserstr is empty,strcpy returns 0 and the expression results in0 − 1 = 4294967295, which
when cast to a signed integer results in−1. This is exactly the sort of casting that causes vulnerabilities.
Therefore, at runtime we raise an error exception.

The code, in a convoluted manner, performs a similar check. As mentioned, the rhs expression on
line 3 will be 4294967295 unsigned, which equals−1 signed. On line 4, the conditioni > 0 guards
against executing the loop on such a casting error. Therefore, the net effect is the check is not needed and
subsequently the run-time exception is an error. We believeugly code such as this should be rewritten
anyway because the reliance on corner cases results in difficult to maintain code.

It is easy to imagine many cases where our approach may insertchecks that are already handled more
gracefully by the existing code. Our experiments suggest these are rare in real code, however. Therefore,
annotating such casts with an attribute that indicates the check should not be performed seems the best
solution.

6This problem is so wide-spread that gcc supported a -funsigned-char flag that will make all char’s unsigned by default. Inter-
estingly, gcc does not seem to support a flag that reports these portability errors.
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GCC PICK

No Opt. 15.473s 15.556s (+0.536%) 15.474s (+0.006%)
-O4 Opt. 2.967s 5.586s (+88.27%) 2.971s (+0.134%)

Table 4: Micro-benchmark measuring the running time (averaged over 5 runs) in seconds for a tight loop
executing a cast fromuint32 t to int16 t.

Additional modifications. Recall that C99 states that during a cast(τ)e whereτ is an unsigned integer,
the value ofe will be repeatedly added or subtracted until it is within theprecision ofτ (Section2.1). In
other words,(τ)e = e mod 2t wheret is the precision ofτ , i.e., a truncation. However, a similar cast when
τ is of a signed type is implementation defined.

The current version of PICK follows the type-checking rulesand ignores this nuance of the C99 stan-
dard: unsigned and signed truncation are both treated in exactly the same. The reason we made this decision
is truncation errors are an artifact of the programmer not protecting against corner cases, and this also seems
like a corner case likely to be abused. Although changing this behavior is trivial, we believe relying on im-
plicit truncation is a dangerous practice at best. We found 2and 6 places in gzip and OpenSSH respectively
that relied on this nuance of the standard and had to be manually changed. For example, when OpenSSH
reads in a packet it processes it byte by byte can be modified:

u i n t 8 t by te ; u i n t 1 6 t v a l ;
by te = v a l ; / / o r i g i n a l code r e l y i n g on t r u n c a t i o n o f uns igned b y t e s
by te = v a l & 0 x f f ; / / mod i f i ed code e x p l i c i t l y s p e c i f i e s t h e tr u n c a t i o n

We stress the changes are required because of an implementation decision that could easily be changed
if warranted.

4.2.3 Performance

Micro-benchmarks. In order to gain a better understanding of the cost of PICK ’ing code, we ran several
micro-benchmarks and tests. First, we manually inspected the assembly code generated by PICK . An
example of a check and the corresponding x86 disassembly is given in AppendixB Figure1. Each check is
only a few extra instructions, which are unlikely to make a measurable difference given the speed of modern
processors.

Second, we created a small program which executes a tight loop casting auint32 t to aint16 t
(therefore performing both a U-S-CHECK and a D-CHECK) about 2 billion times. The results are shown
in Table4. The table shows three scenarios: a base case where the code is compiled directly with gcc,
the case where the code is compiled with PICK , and finally the case where the code is ran through CIL
without inserting checks and compiled with gcc. For each scenario, we tested compiling the code with no
optimizations and full optimizations (gcc -O4), and reportthe average over 5 runs. We found that sim-
ply running the code through CIL changed the performance slightly, indicating CIL’s default simplifying
(though semantic-preserving) transformations can alter the run-time characteristics of code. Running the
code through PICK without optimization incurred a negligible overhead: only .5%.

When compiled with full optimizations, PICK ’ed code incurred about an 88% overhead. The PICK checks
constitute about 1/3 of the code statements. It appears thatmost of the degradation is not due to the extra in-
structions: they can be pipelined with the rest of the loop body, but that the introduced checks interfere with
loop optimizations. Our micro-benchmark stresses this corner case. Regular programs rarely exhibit such
tight loops consisting entire of cast operations, thus are unlikely to have a similar performance degradation.
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Name Vuln Size Diff Performance
gzip-1.2.4 N +4.6% 0.44% faster
openssh-2.2.0p1 Y +0.9% 7.08% faster

Table 5: There is no measurable overhead performance for thedynamic safety checks.

Macro-benchmarks. We measured the performance of PICK ’ed code to determine (a)the run-time
overhead of the inserted checks and (b) the increase in the size of the binary on real code. Table5 shows our
results. The reported numbers are averages over 5 independent runs.

The performance checks do not appreciably increase the sizeof the compiled code. In fact, table5
shows that PICK ’ed code actually ran faster than the original source code. We initially found this very
peculiar: why should code with the extra check instructionsrun faster? We double checked our experiments
several times, each with about the same result. In the end, wefind there are two contributing factors. First,
modern processors do not simply run code sequentially instruction by instruction. Instead, they have an
entire optimization engine that dynamically optimizes running code through pipelining, thread speculation,
cache layout optimizations, etc. For example, adding a few additionalno-ops can drastically change the
timing characteristics of code [3] – both for the better and for the worse. Second, CIL performsvarious
simplifying transformations that may affect performance,i.e., code that has been run through CIL without
any transformations then compiled with gcc may run faster orslower than code compiled directly with gcc.

Overall, PICK ’ing code should not affect performance significantly. Each check is only a few instruc-
tions, can easily be pipelined, and uses operands already locally referenced. Therefore, except in extreme
cases, PICK should only have negligible impact on performance.

5 Related Work

Our techniques are drawn directly from type theory. A good introduction to type theory is provided in [21],
which discusses several of the issues in type conversions such as down-casting. Using dynamic checks when
static type safety cannot be discerned also appears in otherlanguages such as in Java [21]. However, we are
the first to show these techniques are practical for securingexisting C programs.

Cyclone [11] and CCured [18] are type-safe versions of C. Our work differs from such approaches by
only considering a subset of C – namely integer operations – and rewriting the program in terms of C instead
of a safe alternative. Since Cyclone and CCured are much moreambitious, many different problematic C
constructs may have to be manually translated. Our limited application is more appropriate for securing
existing programs against only integer vulnerabilities, e.g., possibly in combination with other approaches
for combating buffer overflows, format string errors, etc.

Our analysis creates checks for all potentially unsafe integer operations. However, in security one may
only be concerned with unsafe operations under the attackers control. Taint analysis [10, 28, 12] could be
used to isolate only those potentially unsafe operations along “tainted” program paths that may be under an
attackers control.

There are several static checkers such as Splint [9] and meta-compilation [8] which can be used to find
integer casting bugs by writing appropriate rules. We coulduse these tools to locate potential integer vulner-
abilities. However, these tools do not introduce checks that will protectagainst exploits of the vulnerability.

Many C integer vulnerabilities are subsequently exploitedvia buffer overflow attacks, on which there is
a wide-body of research. Static checks for detecting such attacks include [4, 13, 24]. Stack smashing attacks
can also be detected dynamically, such as with [2, 5, 19, 20, 23, 30]. Interestingly, it appears detecting
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integer exploits themselves dynamically is troublesome due to the lack of type information at the x86 level,
i.e., it may be impossible to tell whether a cast is occurring. Overflow attacks, on the other hand, can be
detected dynamically. However, not all integer overflows are necessarily malicious. For example, the x86
instruction set actually has ajo instruction for jumping on overflow which some compilers take advantage
of in legitimate code transformations and layouts.

6 Conclusion

We have presented an approach using well-known type theory for eliminating integer casting vulnerabili-
ties. Our experiments re-confirm that potentially unsafe integer operations are a real problem. Our imple-
mentation and evaluation shows that integer casting vulnerabilities can be fixed by automatically inserting
light-weight checks in the code, and that the resulting fixesdo not effect performance. Our techniques pro-
tect against previously unaddressed integer vulnerabilities. The widespread application of our techniques
are realistic in production compilers such as gcc, and wouldresult in eliminating a large class of integer
vulnerabilities.
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Our Syntax (Unsigned) Equiv. Base Type Our Syntax (Signed) Equiv. Base Type

uint8 t unsigned char int8 t signed char, char
uint16 t unsigned short int16 t signed short, short
uint32 t unsigned, unsigned int,

unsigned long
int32 t int, signed int, singed

long, long
uint64 t unsigned long long int64 t signed long long, long

long

Table 6: The C99 notation, which we use for clarity. The corresponding base C type is also given.
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[31] Michael Zalewski. Ssh1 crc-32 compensation attack detector vulnerability.
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2001.

A Types

Table 6 shows a correspondence from integer types commonly found inC and the integral types used
throughout this paper and in C99 [1].

B Disassembly of Inserted Check

Figure1 shows the disassembly of one of the inserted checks. Note that it is only a few instructions long,
references only variables in the expression anyway, thus can be easily pipelined.
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/* int32_t a; */
/* uint8_t b; */
/* if(a < 0 || a > USHRT_MAX) */
8048384: cmpl $0x0,0xfffffffc(%ebp)
8048388: js 8048395 <main+0x2d>
804838a: cmpl $0xffff,0xfffffffc(%ebp)
8048391: jg 8048395 <main+0x2d>
8048393: jmp 804839f <main+0x37>
/* exit(1); */
8048395: sub $0xc,%esp
8048398: push $0x1
804839a: call 80482b0 <exit@plt>
/* b = a; */
804839f: mov 0xfffffffc(%ebp),%eax
80483a2: mov %al,0xfffffffb(%ebp)

Figure 1: Disassembly of a sign and width check. Instructions 804839f and 80483a2 perform the assign-
ment. The check is 5 instructions (8048384-8048393).
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