Towards Automatically Eliminating Integer-Based
Vulnerabilities

David Brumley Dawn Song Joseph Slember

March 2006
Revision of original paper from December, 2005
CMU-CS-06-136

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Over 100 C integer vulnerabilities have been publicly idfeedt to date, some of which have resulted in
serious disasters such as rocket malfunction. C integerevabilities can arise when one integer type is
cast to another incompatible integer type. The rules whigleminine integer cast safety are cumbersome,
lengthy, and sometimes unintuitive. As a result, it is comntmfind thousands of potentially unsafe casts
in even moderately sized programs. Despite the importahegiting safe and secure programs, the burden
of correctly using (often necessary) integer casts is placgiarely on developers.

We show that well-known sub-typing theory commonly foundtype-safe languages can effectively an
automatically be applied to protect against most integstirmg vulnerabilities in C. We implement our
techniques in a tool called PICK which statically detectteptial integer vulnerabilities and inserts the
necessary dynamic checks to prevent exploits. Our expatsr(@) confirm potentially unsafe integer oper-
ations are rampant in source code, indicating the potentiaiber of vulnerabilities is great, (b) show the
introduced checks protect vulnerable programs, (c) shomawoual modifications are needed in most cases,
and (d) the inserted checks do not introduce measurabl&éesdr Thus, our approach and techniques pro-
vide a practical, efficient, and automatic method for pridtgcagainst integer vulnerabilities for even large
programs written in C.

This work is supported by grants from the National Sciencaréation.
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1 Introduction

The semantics of integer operations in C are complex anduitik® to many, leading to insidious bugs
and vulnerabilities due to ignored or misunderstood bogndad conversion conditions. An integer cast
converts between different integer types, and when miscaedause serious vulnerabilities. Although there
is a body of literature offering sage advice on how to progseuurely by avoiding pitfalls with integer
operations, there has been very little being donautomaticallysecure existing C programs. The 179
known integer-based vulnerabilitie$q] — most of which are integer casting bugs — serve as a testamen
to the clear need for techniques that defend against intageerabilities. Integer casting bugs have even
been responsible for huge disasters, such as the Arian&étrexplosion which was caused by a conversion
from a 64-bit floating point to a 16-bit signed integdd]. The number of known vulnerabilities is likely
the tip of the iceberg; our experiments indicate that péadiptunsafe integer casts are rampant in programs.
Of our tested programs (Sectid, the number of potentially unsafe casts range from 600rtmat 5000.
Automatic techniques are clearly required to handle patytunsafe casts found at this scale.

Motivating situation. A system administrator has downloaded an open-sourcecapplih he would
like to install. The administrator is unlikely to be familiith the details in the code, but wants to protect
his system from exploitation in case their are bugs in theecdtbr example, the system administrator can
compile the code with stack-guard to protect from bufferrawes 4]. We wish to provide a similar tool
for protecting against integer vulnerabilities. Our gaako allow the administrator to protect his system
from integer vulnerabilities in the application while rédpg little if any code changes (the typical system
administrator is likely not an expert programmer) nor dagrig performance.

Possible approachesOne approach to fixing integer vulnerabilities is to rais@mpile-time warning
for each potential vulnerability and let the programmer facle one. However, this approach seems im-
practical due to the sheer number of warnings. Another agras to translate the C code into a type-safe
variant, e.g., Cyclonelll] or CCured [L8]. However, this option may not be practical in many settings
such as for performance-critical applications or when therusn't intimately familiar with the code. Yet
another approach is to try and weed out warnings for safe.cOde evidence suggests that the number of
actual bugs is an order of magnitude less than the numberroings. However, any tool that finds all bugs
must be conservative, thus will generally have a high fatsstiye rate in which a programmer will again
be faced with a large number of warnings. Ultimately, malyufking bugs is unavoidable. However, it
would be useful in many situations to have efficientandautomaticapproach foiprotectingagainst (not
just detecting) anpotentialvulnerability.

Integer vulnerabilities. As mentioned, most integer vulnerabilities are due to unsakts. However,
previous work does not adequately address protecting sigansafe casts. There are two casting categories:
sign conversiongvhere a signed integer can be converted to an unsigned ir{tagéce-versa), and integer
precision conversiongvhere the number of bits used to represent the integer isggtanAt a high level,
the problem with sign conversions is the sign bit of a sigm#dger becomes the most significant bit in an
unsigned integer (and vice-versa). As a result, negatieesi integers become large unsigned integers (and
vice-versa), leading to unintended program behavior. iBi@tconversions can cause a loss of precision via
truncation when converting a value of a larger precisioretigna smaller precision type, again leading to
unintended behavior.

There are about a dozen rules in the ANSI C8pstandard determining the effects of a conversion via
integer casting. These rules define the semantics of a conversion based npoteger ranking system. In

IMany of the C99 rules appear in paragraph form instead of esige statements, so it is difficult to judge the exact nurober
rules.



many scenarios, these rules are complex and thus easilydesstood. For example, it is easy to confuse
whether5U — 15 is —10 or 4294967286 based upon the ranking rules (the answer is the latter faorea
detailed in Sectior2.1). In other scenarios, a given conversion is defined as imgeation-specific. For
example, these rules define when an integer type is convierabther integer type where the value cannot
be represented by the new type, the result is a signed intlegteis implementation-defined. Unfortunately,
this implementation-defined behavior can also lead to bndsvalnerabilities.

This paper. We protect against integer casting vulnerabilities by remg unsafe casts as dynamic
safety checks. As we will see, integer vulnerabilities dtleee overflow vulnerabilities or casting vulner-
abilities, the former of which are already addressed by modempilers (Sectior3). At a high level, we
address the larger problem of casting vulnerabilities bggisub-typing relationships to define integer cast
safety. For example, up-casting an integer from a smatecigion type to a larger-precision type is a safe
sub-typing relationship since a larger precision integer always represent the smaller precision integer.
Down-casting from a larger to smaller precision violates typing rules, and thus is not safe. However,
down-casting (and other potentially unsafe type convesji@re rampant in source code, and therefore it
would be naive to believe developers will manually addresheotential unsafe integer cast. Therefore, we
introduce formal rewrite rules which enable automatic settio-source translation where unsafe casts are
rewritten as safe dynamic checks. The dynamic checks raiserar only when a cast is unsafe at runtime.

Contributions. Our main contribution is we demonstrate automatic techesdor defending against a
wide class of integer vulnerabilities in a formal framewovke show that by applying sub-typing theory we
can detectind protectagainst a large class of integer vulnerabilities. We havelemented a tool called
PICK to validate that our light-weight approach is pradtmad prevents integer vulnerabilities.

Specifically, we:

e Provide formal semantics for safe C integer casts. Our seosamreplace the cumbersome and unin-
tuitive C99 specifications with 2 simple sub-typing rules.

e Introduce rewrite rules that turn type unsafe (and semalhticinsafe) casts into type-safe dynamic
checks. The correct check to insert does not require expemrsialysis, and thus scale to any size
program.

e Implement a prototype called PICK (Preventive Integer ®egto evaluate our approach and tech-
niques.

e Demonstrate through experiments that potentially unsatfeger casts are rampant in source code,
indicating the number of known vulnerabilities may be tipedf the iceberg.

e Show the introduced checks for unsafe casts protect viliteepgiograms. The resulting program is se-
mantically equivalent to the original program. Our expegitts confirm our approach and techniques
prevent real exploits against real vulnerabilities fronrkiog.

e Show our approach is fully automatic in most cases. 1 manuodifination was needed out of thou-
sands of automatically inserted checks. The 1 modificatias meeded because the programmer had
inserted a similar check which handled the unsafe cast irpplication-specific manner.

e Show the inserted checks do not introduce any measurablaead and are therefore practical to
apply to production code.

e Additionally, our techniques uncover and protect againahyrportability bugs.

2 Integer Security Vulnerabilities

In this section we begin by providing a description of integeerations, focusing on the ANSI C99 specifi-
cation. As we will see, the complexity of the C99 specificationtrasts with the simplicity of our approach



using sub-typing. We then outline integer vulnerabiliti€sur work applies to both explicit casts and implicit
casts (coercions) inserted by the compiler.

Notation: Instead of using basic C type names such as “unsigned” agdéedilong long”, we adopt
the more descriptive C99 syntax for clarity, shown in Tabla AppendixA, throughout this paper.

2.1 Integer Representations and Conversion

The representation for all integers except for uibiSimplementation specific. Note char is a type of integer,
and can be signed or unsigned. Values of type uird& represented with a single byte in binary notation.
Most PC architectures use 2's complement to represent adir ahteger types. Different representations
may cause portability bugs, e.g., in 1's complement reptagien there is both +0 and -0 which may not be
correctly handled by the code.

An unsigned type uimt_t can represent any value between 0 aid- 1. Theprecisionof an integer is
the number of bits for representing a value excluding the big(and any padding bits), and is simplyfor
an unsigned integer (page 38)} The width of an integer is the precision plus any sign.bitsigned type
intn_t can represent any value betwee@”! and2”~! — 1. The precision for signed integersris— 1,
while the width isn, e.g., the precision of a intBis 7 bits, although 8 bits are used to represent any value.
Maximum and minimum values for all signed integers are définé i m ts. h.

Often programmers will convert from one integer type to &eotvia acast A compiler will also insert
implicit casts (coercions) whenever the types in an exprass statement do not agree. Our techniques are
applied after all casts have been inserted, including taagematically inserted by the compiler. According
to C99, the semantics of a cast between two different insagies on theank of the integer. In particular,
C99 defines about a dozen rules for determining the rank afteger, a summary of which is (page 42)[

No two signed integer types shall have the same rank, evhryftiave the same representation.

The rank of a signed integer type with greater precision ghéi than signed integer types with less
precision.

The rank of an unsigned integer type is the same as the comdsy signed integer type.

Ranking is transitive: if T1 has rank greater than T2 has gekter than T3, then T1 has rank greater
than T3.

A precision conversiolast may increase or decrease the precision of an integ@rd€fthes an integer
promotion, commonly calledip-casting as a cast from a lower precision type to a higher precisiqe ty
(without changing the sign type). Similarly, we define arggrdown-casts a cast from a higher precision
to a lower precision type. Demotion is defined in C99 as imletation-specific, and is usually carried out
via truncation.

An integersign conversioroccurs when a signed integer type is cast to an unsigned dypée-versa.

In each case the integer value bit pattern is preserved acasing. As a result, a negative integer type
results in a very large unsigned integer, since the sigrskset. Similarly, a large positive unsigned value
may become negative. Although the bit pattern is preserneldna data is lost, sign conversions result in
vulnerabilities when programmers do not anticipate thesaar-case effects. For example, a programmer
may cast a signed integerto an unsigned integer, and then later test if is greater than some value. The

programmer may not anticipate the case where 0 leads to a large value.

Precision and sign conversions may be either explicit (visegplicit cast operation in the code) or
implicit. The rules for conversion in C99 (page 48)[are as follows:

1. If both operands have exactly the same type, no conveisioecessary.



2. If both operands are of the same integer kind (both sigmdabth unsigned), then the type with a
smaller rank is promoted, i.e., up-casted.

3. If an operand with the unsigned type has rank greater @greater precision) than the signed type, the
result is the type of the unsigned integer. Conversely,afdigned type has greater rank, the unsigned
operand is converted to the type of the signed operand.

4. Otherwise, both operands are converted to the unsigitegentype.

C99 leaves many behaviors implementation-specific, suclowgs-casting. In general, C99 has this to
say about conversions:

“When a value with integer type is converted to another iatelype other thanBooal, if the
value can be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is conddayerepeatedly adding or subtract-
ing one more than the maximum value that can be representbe imew type until the value is
in the range of the new type.

Otherwise, the new type is signed and the value cannot besepted in it; either the result is
implementation defined or an implementation-defined signaised.” [1]

For example, the expressidsiJ- 15 is not —10, but 4294967286 becausel5 is (implicitly) cast to
an unsigned integer (rank rule 3 above), the result type allunsigned—10 mod 23?2 = 4294967286
(paragraph 2 from C99 above).

2.2 Security Vulnerabilities with Integer Types

C integer vulnerabilities can be divided into two categsrienteger wrapping vulnerabilities and integer
casting vulnerabilities. Wrapping occurs when the restiiroarithmetic operation produces a value that
is greater (resp. less than) than can be stored in the fixdthwegister. Wrapping vulnerabilities caused
by arithmetic operations are already handled by populamiiens such as gcc (compiled with the optional
-ftrapv flag) and Visual C++ (via the /RtCc flag).

Therefore, we focus on the remaining previously unaddresase of casting vulnerabilities, which fall
into two categories: integer sign casts and integer pratisasts’. Most known integer vulnerabilities
are casting vulnerabilities, including the OpenSSH integénerability [31] which has led to thousands of
compromised machines. Indeed, many wrapping vulnerasiliire only symptomatic of an earlier unsafe
down-cast which our approach would protect against.

Integer Sign Conversion Vulnerabilities. Integer sign conversions may result in vulnerabilities whe
(1) a negative signed integer is cast to unsigned, becomlagga value, or (2) a large positive unsigned
integer is cast to a signed integer, becoming negative. iGenghe following code (discovered by our
analysis in bash-1.14.6), which ironically attempts to bgate version ofral | oc by always checking
whether memory allocation was successful:

char x xmalloc (int32t bytes){
char xtemp = (char x)malloc (bytes);
if ('temp) memoryerror.and.abort ();
return (temp); }

2 We are unaware of a compile flag that will issue a warning fotygles of integer casting bugs. Neither the default gcc's
compile flags, nor -Wall or -pedantic, detect many simpleingugs.

3Adding rewriting rules that check for overflow and underflawa single coherent system is trivial using our approach and
infrastructure. We do not duplicate previous work, thus dodiscuss these checks.
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The relevant detail isal | oc takes aui nt 32_t argument, but is here provided with a sigrieuit 32 _t
argument. This particular case may lead to a denial of sefvecause when called with a negative value
a huge amount of memory is allocated. Another common exampieh often leads to a vulnerability is
nmencpy, whose prototype is:

void xmemcpy(void xdest, const void«src, unsigned int len);

If a signed integer with a negative value is passed ineas, it will become a large positive number. This will
lead to a buffer overflow whedest is not large enough to hold the converteen bytes ofsr c. Notable
examples of integer overflows involvingentpy include PuTTY R7] and Apache modauthradius R6].

Integer Down-cast Vulnerabilities. An integer cast may increase (up-cast) or decrease (dosth-ca
the precision of the representation. Increasing the pretis always safe, and usually accomplished by
zero-extending the casted value. However, decreasinguimder of bits is potentially unsafe. An example
of a typical down-casting vulnerability is:

1 uintl6é_.t len = strlen(string):
2 char xbuf = malloc(len);
3 strcpy (buf, string);

On line 1,strl en returns a 32-bit integer, which is down-cast to a 16-bitgete As a result, a string
of length 26 will result in | en = 0. Thest r cpy on line 3 can then be exploited with a standard stack-
smashing attack. Again, such vulnerabilities often appé#aen trying to secure software, such as in the
OpenSSH CRC32 vulnerability where a down-casting erratdda a vulnerability, ironically in code meant
to detect certain types of cryptographic attack$|

3 Our Approach: Strong Integer Typing

We define integer casting in terms of sub-typing rules, wisafe casts are well-typed and unsafe casts are
not well-typed. Intuitively, sub-typing allows us to succily express when one integer type can safety be
cast as another integer type. We use 2 sub-typing rules t@sxhe dozen or so C99 rules. Unsafe integer
expressions are statically rewritten (via formal rewgtirules) as well-typed dynamic safety checks. Each
dynamic check makes sure the cast is value-preservingthtieevalue of the variable before the cast is the
same as the value after the cast. We check all casts: botb imgsicitly inserted by the compiler (i.e.,
coercions) and explicitly provided.

This section introduces the formalism needed in order wragsly define when and which safety checks
to insert, as well as the safety they afford. We begin by thicing our typing rules, and discuss our types
for basic integer operations. We then introduce our dynashacks for potentially unsafe casts. Then, we
discuss more complex types such as structures and pointers.

3.1 C Integer Sub-typing Rules for Safe Integer Casts

Table 3.1 contains our typing rules for safe integer operations. Hatdis read as an implication: when
the preconditions on the top of the bar are satisfied, thedtaron the bottom of the bar is true. A safe
expression has a valid type, i.e., a type that can be deriiethe rules. An unsafe integer expression has
an invalid type.
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Table 1: Our typing rules for safe C integer operations.

3.1.1 Basic Sub-typing RelationshipsT-SuB, T-REFL, T-TRANS

The intuition in our setting behind a sub-typing relatiopshwritten ¢ <: 7, is any value described by
type o is also described by type In our formulation, we have sub-types suchuasit 8.t <:ui nt 16t
becausg0...2% — 1} ¢ {0...2!6 —1}. In general, smaller precision integers are sub-typesrgétgrecision
integers since a larger precision can express any valuernbes precision.

T-suB in Table3.1introduces the sub-typing relationship to C. Hdrds the typing store that maps a
variable name or expression to a typelhe ruleT-Sus is the basic sub-typing rule, and says if our typing
storel says variablé is of typeo, ando is a subtype of, thent is also of typer. We also add the standard
reflexive (T-ReFL) and transitive (T-RANS) rules.

3.1.2 Sub-typing Rules for Safe CastsT-UNSIGNED, T-SIGNED, T-UPCAST

Our approach defines two basic typessignedandsigned Different precisions within a type become sub-
types. We express casts in terms of sub-typing where snpaleisions are sub-types of larger precisions.
T-UNSIGNED and T-SIGNED in Table 3.1 express the base sub-typing relationship for integers|ewi
UPCASTstates that we can up-cast (ascribe) to an expregsidiype o a super-typer. For example:

/I Cast explicit or implicitly inserted by the compiler
uint8_.t b; uintl6.t a = (uintl6.t) b;

is safe because it is well-typed:

T-UNSIGNED

I'Eb:uint8t uint8.t <: uintl6t T-UPCAST

'k (uintl6.t)b : uintl6t

Note T-SGNED and T-UNSIGNED, along with T-UPCAST eloquently replace the dozen or so rules for
determining the rank and result of rank conversion that apjpeC99. We believe this simplicity makes our
approach appealing. Also note that RANS can be applied for two or more up-casts, eug.nt 8_t being
up cast taui nt 32t .

3.2 C Integer Rewriting Rule for Unsafe Casts

Down-casts and sign conversions are not within the typesystind therefore potentially unsafe. We rewrite
potentially unsafe casts as runtime safety checks on thege. The resulting expression with the safety

“The types il are built via the declared C types.
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F'Fe:o (e o<:T e~eé
/

(T)6 = (e R-SAFE

oL:T T<.O
CHECK; () = if Tmin < = < Tmaxthenz else error

D-CHECK

o £: 7 signed<: o unsigned<: T
- S-U-CHECK
CHECK(T)U(:E) = if 0 < z < mhaxthen x else error

o £: 7 unsigned<: o signed<: T
- U-S-CHECK
CHECK(1),(7) = if © < Tmax then x else error

Table 2:R-UNSAFE rewrites unsafe casts by inserting dynamic checks-CHECK for unsigned to signed
casts,s-U-CHECK for signed to unsigned casts, andcHECK for down-casts.R-SAFE is added for com-
pleteness: it leaves safe expressions as-is.

check is well-typed® The particular check depends upon whether the unsafe casiigsm conversion cast
or a down-cast. Tabl2 gives our rewriting and safety check rules.

3.2.1 General Rewriting Rule for All Unsafe Casts:R-UNSAFE

We introduce rewrite rules for potentially unsafe castsxgiressions. Suppose (fr)e, e is of the typeo
which is not a subtype of the cast typei.e.,o £: 7. For example, when assigning an unsigned to signed
integer, the signed integer isand is cast to type unsigned integerWe translate: to an expression that
performs the proper safety check during evaluation.

R-UNSAFE in Table2 states that an unsafe cdstle : ¢ wheree evaluates to some other expression
¢’ is rewritten statically to another cast wherés evaluated to a value, which is checked vi@HECK; ;.
CHECK,, is a function which returns the value or calls anerror () function. The check functions
(s-U-CHECK, U-S-CHECK, andD-CHECK) are different for each type of unsafe cast: unsigned toesign
conversions, signed to unsigned conversions, and dows:-C&SAFE is included for completeness: for
safe casts, no rewrite is necessatry.

3.2.2 SpecificcHECK; ;. D-CHECK, U-S-CHECK, and s-U-CHECK

Down-casts. A down-cast from an expressi@of type o of higher precision te- of lower precision (e.g.,
uint32.t to uint16t) requires a check if the value efwhen evaluated is preserved with the smaller precision
type 7, i.e., the value ok “fits” inside the typer. A down-cast is essentially a sub-typing relationship
backward:oc £: 7 butt <: 0.

CHECK(,), for down-casting is given as-CHECK in Table2. The rule states that an error is raised if the
valuez of e is larger than the maximum valug,,x or smaller than the minimum valug,, of integer type

SFor brevity, we omit several uninteresting rules that achtécally needed to show this.



7. The pre-conditiorr £: 7 andr <: o are needed to ensure we only apply this rule when the precisio
changed, but not the sign (sign changes are handled by S+tzCand U-S-GIECK).
For example, consider the code:

uint32_t b;
uintlé.t a = (uintl6.t) b;

Hereoc = uint 32t andr = ui nt 16_t. Sinceui nt 32t <£: ui nt 16_t, the rewriting ruler-
UNSAFE applies:

I'Fb:uint32t uint32t «£: uintlet b~ bV
(Uint16.t)b ~ (Uintl6t) let x : UINt32t = b in CHECK(,,(X)

R-UNSAFE

Further, since the sub-typing is backward, we usebtfeHECK rule:

UINE32t £: Uintl&t UGt <: uint3zt | O NSIGNED
D-CHECK

CHECK(;), (z) = if 0 < 2 < 2! — 1 then x else error

The rewriting of the example given the formal rules is then:

uint32_t b, c;

uint32_.t x = b;

if (0 <= x & x <=2%—-1) x; else error();
uintlé_.t a = (uintl6.t) b;

In our implementation, we output the equivalent:

uint32_t b;
if (b > 2%—-1) error();
uintlé_.t a = (uintl6.t) b;

Sign conversion casts. The sign bit must be checked for conversions between signédiasigned inte-
gers. We dividecheck., for sign conversions into two cases as shown in Tabl&-U-CHECK where a
signed integer is cast to an unsigned integer, and UH&€& where an unsigned integer is cast to a signed
integer.

U-S-CHECK is similar to D-CHECK with the exception that is signed andr is unsigned, while in
D-CHECK both are either signed or unsigned. Although the resulthmeck is the same, we find it useful to
logically separate out unsigned to signed conversions ftomn-casts. The signed to unsigned conversion
check Su-cHECK need only check that the sign bit is not set, ke 0.

For example, the-u-CHECK andu-s-CHECK will rewrite the following:

int32_t i32; uint32_.t u32;
i32 = u32;
ul32 = i32;

as:

int32_t i32; uint32.t u32;

if(u32 > 231 —1) error(); // U-S-CHECK
i32 = (int32_.t) u32;

if(i32 < 0) error(); // SU-CHECK
u32 = (uint32t) i32;



A formal derivation showing this rewriting for each cast im#ar to that given for down-casts above,
where the main difference is the preconditions $su-CHECK and u-s-CHECK are satisfied instead of
D-CHECK.

3.3 Dynamic Safety Error Detection:er r or ()

Our translation results in a@r r or () when a cast for a particular value will be unsafe. Runtimeckbe
have a long history; for example, in Java the sub-typing fatearrays of subclasses is unsafe, which is
handled by introducing dynamic safety checR§][ In Java, run-time safety violations cause an exception,
which results in termination unless caught. Another exanipldivide-by-zero errors in C++, which cause
uncaught runtime exceptions in most programs.

At a high level, when an unknown error is encountered thexévap choices: attempt to correct the error
or abort execution. The user can deferer or () to implement either of these choices. Of course manually
fixing the bug is the best choice, but not an option in manyasibms. Others have explored aborting the
current function 29| or returning a random resul2p] when an error is encountered, which allows the
program to continue executing. However, both these appraee not fail-safe, and thus not useful in many
Security-conscious scenarios.

Since integer vulnerabilities often lead to privilege éatian, e.g., an integer vulnerability due to casting
in OpenSSH leads to remote root acce3y,[we believe the safest action is fer r or () to abort the
program. Although aborting may lead to denial of servicackts, it does prevent more serious problems
such as privilege escalation, arbitrary code executian, ahd is the approach taken by similar safety tools,
e.g., stack-guard4]. Therefore, we currently abort the program when a safetyation is detected. We
could easily change this to print out a warning, or throw anegtion (via a signal and signal-handler).
Warnings are unsafe because they do not prevent the erroepEgns may be interesting in some scenarios
since it could be used to trigger additional analysis or @achi around known conversion problems.

3.4 Complex Types

Structures. T-FIELD in Table3.1handles integral fields within structures in the obvious wathe type of
fieldi is o, ando <: 7, then via sub-typing; is also of typer.
For example, in

struct { uint32_t u32; uintl6t ul6; } foo;
foo.u32 = (uint32t) foo.ul6;
foo.ul6 = (uintl6t) foo.u32;

In the first assignmenf,00. ul6 is of typeui nt 16t , thus the assignment is a safe up-cast. However, in
the second assignmeni nt 32t <: ui nt 16_t , and a down-cast check must be inserted.

Note unions can be handled in a manner similar-toeLD: each union field member is declared with a
type. The sub-typing relationships then range over thabaded type.

References and Dereferences-or each integral type, Refr denotes the type of a pointer to type
Integral reference and dereferences are handled via gegping rulest-REF and T-DEREF, respectively.

T-DEREF in Table 3.1 states that if we have a pointer to an integer type, then daterece yields an
object of the pointed-to type, e.g.,pfis of typeui nt 16t =, then*p is of typeui nt 16_t . Therefore:

uint8_t v; uintl6_t xp;
vV = xp;

is not safe, and rewritten as:



if(xp > 28—1) error();
V = xp;

Pointers. The above rules check that pointer reads and writes areatosith respect to the declared
type, i.e., if the programmer writes with one type and readk another compatible type, we assume it is
intentional. For example, we assume:

uint32_.t xu32; uintl6t =xul6;
xU32 = xul6;
is correct sinceali nt 16_t is a sub-type olii nt 32_t .

The above assumption does not necessarily hold, i.e., tgganmer could simply have mixed up their
types. Safe pointer assignmeduld be handled by adding the standard type safety rule:

o<:T T<.O

Refo <: Refr T-REFSUB”

This rule states that a reference of typés a subtype of a reference to typaf = ando are sub-types of
one another, i.e., in our semantics= o.

However, we find the standard type safety rule too restectiwmpared to the benefit of strict integer
type safety for typical C programs. For example, EHSuB* would disallow the following typical code:

1 uintl6_t *xul6 malloc (10);
2 ...

3 uint32.t xu32 = ul6 + 9;

4 uint8.t val = xul6;

Clearly line 4 is potentially unsafe since the 84él may be too small for the 16-bitu16. Our semantics
without T-RerSuB™ will insert a proper check on this line. However, line 3 isaalmsafe. For example, a
subsequent write through32 is 4-bytes long due to its type, whilel6+9 only has 2-bytes available. If
we want complete safety and accept EASUB*, then line 3 is also unsafe.

We have found that even without implementing E#SuB™* all integer vulnerabilities we know of are
protected. An informal analysis of known integer vulneliéibs indicates they arise primarily when integers
are used as indexes or to determine the size of allocated mebwh of which are checked with our rules
during dereference. The overall intuition is integer vuiislities arise because the integer value is not what
was expected in a localized computation.

Since T-REFSUB* is overly restrictive and breaks many legitimate programesdo not currently imple-
ment it. For example, the above rule would break typical ehng code found in many of our examples:

1 uintlé_t xbuf; uintl6.t ul6; int8.t i8;

2 ...

3 xbuf = i8; // a int8.t = 1 byte is written
4

5

ulé = xbuf; // but uintl6t = 2 bytes are read

Here,buf is intended to be an uninterpreted 2-byte buffer, whereseae writes are of the correct though
mis-matched packet field type.

It appears very difficult to ensure type safety in this codthaut tagging each memory write with the
corresponding type, and checking each subsequent read.tagging would likely incur a huge overhead
with what appears little additional value. Even if this dvead was acceptable, it would likely be impossible
to derive a generic rule that works for all programs. Foranse, in the above example on line 5 the
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programmer may have wanted to readi2nt 8_t 's concatenated together on line 5, or may have wanted to
read 1ui nt 8_t and castitto ai nt 16t .

We therefore do not use TEHRSUB* by default, but leave it as an optional extension. We leaenasea
for further research a light-weight check that will prevéamteger vulnerabilities that arise through pointer
casts. We remark that any such research would also have dtehaasts fronvoi d * to be complete since
mal | oc,read,wite,etc. all returnvoi d * which are then cast to the “right” type.

3.5 Where Checks Are Inserted

A pre-processing step identifies all expressions in whichst is needed. This step is already performed by
the compiler: the type of each expression is needed to genti@ proper code. If the cast is not explicitly
provided by the programmer, an implicit cast is inserteel. (icoerced) by the compiler. We then perform a
typing derivation to determine which casts are safe, anakvaie unsafe. Unsafe casts are rewritten via the
R-UNSAFE rule.

Note that function call sites act as an assignment from &ctodormals, thus may also need a check.
For example, in:

1 void f(uint8.t v) { v++; }

2 void foo (){

3 uintlé_t ul6; int8.t i8; intl6_t i16; uint32.t u32;
4 f(ul6);

5 i8 = ( (ul6é x u32) + il6 ); }

We insert checks on line 5 to make sure the castld from aui nt 16t to aui nt 8_t is safe. We will
also check the sub-expression on line 5. Note that on line Bigiht-hand side has a mix of unsigned and
signed integerst. 00 is rewritten as:

if(ule > 28 —-1) error();

f(ule);

if( ((ulé * u32) + i16) > 2"—1) error();

ig8 = (int8.t) (( (uint32.t) ulé * u32) + (uint32t)il6);

4 Implementation and Evaluation

4.1 Implementation

We have implemented a tool called PICK (Preventive Integeedks) which automatically inserts the
necessary checks to prevent integer casting vulneraiilitPICK is implemented using CIL§, 17], a C
analysis and source-to-source translation frameworkewritn OCaml. CIL takes as input the source code
to a program, performs several semantic-preserving sfitgiions, and then produces a typed intermediate
representation (IR). Our analysis is performed on the IR¢hvis then “unparsed” by CIL and written to a
file. The resulting file is C source code containing the neagsshecks, which can then be compiled with
any standard C compiler.

We use the type symbol table provided by CIL to decide whengert the appropriate checks as given
by the rules in SectioB. Note our analysis is at the expression level, and therefoes not require intra
or inter-procedural analysis, i.e., we do not need to meligiles together. As a result, the overhead for
analyzing the code and introducing the proper checks isgibl. The steps taken by PICK are:
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Name Vuln | # S-U-CHECK | # U-S-CHECK | #D-CHECK | # Full | # Total
Apache 2.0.35 Y 2058 1120 368 368 3914
Bash 1.14.6 Y 160 370 92 5 627
Coreutils 5.0 Y 461 252 113 34 860
MLTerm 2.9.1 Y 853 1143 417 442 2855
OpenSSH 2.2.0p2 Y 320 281 33 43 677
Gzipl.2.4 N 203 270 36 97 606
OpenSSL0.9.7 | N 2647 1124 826 373 4997

Table 3. S-U-GIECK (U-S-CHECK) is the number of signed to unsigned (unsigned to signedgkshe
inserted. D-CHECK is the number of down-cast checks inserted. Full is the nurabplaces both a sign
check and down-cast check are inserted. This experimentsshotential integer vulnerabilities are rampant
in code.

1. Pre-process the input, e.g., inliiencl ude statements, expand macros, etc. CIL performs this step
automatically by invoking the C pre-processor.

2. Create a typing store which maps all expressions anchséaiis to a type. Insert implicit casts when
necessary, e.g., in an expression of mixed types, a statevherne the type of the Ihs is different from
that of the rhs, etc. CIL performs this step automatically.

3. For each cast, both explicit or implicit, perform the @lling steps:

(@) Incast(7)e, 7 is the cast type and let be the type of the expressien
e If 0 £: 7, create a check Insert the check just prior to the evaluationedqk.g., on the line
beforee).
e If 0 <: 7, do nothing.
e If ¢ ~ ¢’ wheree’ is some sub-expression, then recurse and apply typing oule’s

4. Insert theer r or () function, which in our implementation cakéxi t (-42).

We perform all our tests under Linux, using gcc 3.4, though&id our transformations work also under
other operating systems and compilers such as MSVC undadda¥is. Our CIL module is approximately
500 lines of OCaml.

4.2 Evaluation

We perform two quantitative experiments: measuring the lmemof checks that need to be inserted in
various programs, and measuring the overhead of the imselniecks. We also provide qualitative evidence
of the type of common unsafe and unportable integer exmnessvithin code.

4.2.1 Number of checks inserted

We ran PICK on a number of programs to measure how frequentigngial integer vulnerabilities occur.
Table 3 lists our results. The table includes the program name, lvendhere is a previously known vul-
nerability or not, and the number of down-casts and sign emiwn checks that were inserted. We include
non-vulnerable programs into the analysis to get a sensewfrhany checks need be inserted for many
different kinds of software. The S-U-CHECK column indicathe number of signed-unsigned checks,
U-S-CHECK the number of unsigned-signed checks, and D-CKE®@ number of down-casting checks.
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The last column is the total number of checks. The “Full” cotuindicates the number of full range checks
where both a down-cast and a sign conversion take place sathe instruction.

A “Full” check occurs when the typing rules are recursivebpked resulting in both a sign check and a
down-cast check. As a result, a full check may require twoganson with both an upper and lower bound
of the resulting integer type. For example:

uint8_t u8; intl6.t i16;
u8 = il16;

A full check is needed here becaus&6 may be signear too large for typeui nt 8_t . The full check is
i16 >0 & i16 <28 1.

Our experiments indicate that potential integer vulndités and bugs are rampant in source code.
These numbers also support the idea that issuing compiketvarnings is not practical due to the sheer
number of casts, supporting our run-time check approach.

4.2.2 Error Analysis

For vulnerable programs, we confirmed that the checks ptedeal vulnerable programs from being ex-
ploitable, i.e., zero false negatives. This is expectedesur approach results in type-safe integer opera-
tions. Most vulnerabilities seem to be due to down-castdewmost portability bugs seem due to signedness
conversions. Our analysis uncovered 11 additional pdityalhiugs in OpenSSH, and 1 in gzip. One com-
mon problem we found is programmers expect type char to blegmas to a byte. However, C99 specifies
only unsignedchar’s are analogous to a byte (Sectibf). This particular problem is cited by others such as
[7, 6, 25], often as a member of the top 20 in C bugs. In each case we madife source code to remove
otherwise implicit and compiler-specific casts

In all our experiments, we only found 1 example of a falsetpasi- a check inserted that fails at runtime
but was not needed — in bash 1.14.6. The relevant code is:

1 void removetrailing_.whitespace( charxuserstr) {

2 int i = strlen(userstr)— 1; /Il strlen returns an unsigned integer
3 while (i > 0 & whitespace(string[i])
4 i—;

The salient detail ist r | en returns an unsigned integer, causing the arithmetic dperatf line 3 to be
si gned = unsi gned - signed. C99 dictates the result is therefore an unsigned intedezrefore,
whenuser st r is empty,st r cpy returns 0 and the expression resultir 1 = 4294967295, which
when cast to a signed integer results—. This is exactly the sort of casting that causes vulnetssli
Therefore, at runtime we raise an error exception.

The code, in a convoluted manner, performs a similar check. m&ntioned, the rhs expression on
line 3 will be 4294967295 unsigned, which equals-1 signed. On line 4, the conditioh > 0 guards
against executing the loop on such a casting error. Thexetbe net effect is the check is not needed and
subsequently the run-time exception is an error. We belieylg code such as this should be rewritten
anyway because the reliance on corner cases results iruttificnaintain code.

It is easy to imagine many cases where our approach may ictsecks that are already handled more
gracefully by the existing code. Our experiments suggessdhare rare in real code, however. Therefore,
annotating such casts with an attribute that indicates teelc should not be performed seems the best
solution.

®This problem is so wide-spread that gcc supported a -fuesigar flag that will make all char's unsigned by defaultetn
estingly, gcc does not seem to support a flag that reports thasability errors.

13



| GCC | PICK |

No Opt. | 15.473s| 15.556s (+0.536%) 15.474s (+0.006%)
-O4 Opt.| 2.967s | 5.586s (+88.27%) | 2.971s (+0.134%)

Table 4: Micro-benchmark measuring the running time (ayedaover 5 runs) in seconds for a tight loop
executing a cast fromi nt 32_t toi nt 16_t .

Additional modifications. Recall that C99 states that during a caste wherer is an unsigned integer,
the value ofe will be repeatedly added or subtracted until it is within firecision ofr (Section2.1). In
other words(7)e = e mod 2! wheret is the precision of, i.e., a truncation. However, a similar cast when
7 is of a signed type is implementation defined.

The current version of PICK follows the type-checking rudesl ignores this nuance of the C99 stan-
dard: unsigned and signed truncation are both treated tlgxhe same. The reason we made this decision
is truncation errors are an artifact of the programmer notgating against corner cases, and this also seems
like a corner case likely to be abused. Although changing blehavior is trivial, we believe relying on im-
plicit truncation is a dangerous practice at best. We fouad@®6 places in gzip and OpenSSH respectively
that relied on this nuance of the standard and had to be mgrenged. For example, when OpenSSH
reads in a packet it processes it byte by byte can be modified:

uint8_.t byte; uintl6t val;
byte val; // original code relying on truncation of unsigatebytes
byte val & Oxff; // modified code explicitly specifies thertincation

We stress the changes are required because of an implemeratision that could easily be changed
if warranted.

4.2.3 Performance

Micro-benchmarks. In order to gain a better understanding of the cost of PICK tnde, we ran several
micro-benchmarks and tests. First, we manually inspedtedassembly code generated by PICK . An
example of a check and the corresponding x86 disassembiyeis i AppendixB Figurel. Each check is
only a few extra instructions, which are unlikely to make saswgable difference given the speed of modern
processors.

Second, we created a small program which executes a tightdasting aui nt 32_t to ai nt 16t
(therefore performing both a U-SHECK and a D-GiECK) about 2 billion times. The results are shown
in Table4. The table shows three scenarios: a base case where thescodepiled directly with gcc,
the case where the code is compiled with PICK , and finally #s=avhere the code is ran through CIL
without inserting checks and compiled with gcc. For eactmade, we tested compiling the code with no
optimizations and full optimizations (gcc -O4), and repibie average over 5 runs. We found that sim-
ply running the code through CIL changed the performanagh8yi, indicating CIL's default simplifying
(though semantic-preserving) transformations can alterrtin-time characteristics of code. Running the
code through PICK without optimization incurred a negligibverhead: only .5%.

When compiled with full optimizations, PICK 'ed code incedrabout an 88% overhead. The PICK checks
constitute about 1/3 of the code statements. It appearsibsitof the degradation is not due to the extra in-
structions: they can be pipelined with the rest of the loogybbut that the introduced checks interfere with
loop optimizations. Our micro-benchmark stresses this@ocase. Regular programs rarely exhibit such
tight loops consisting entire of cast operations, thus afiely to have a similar performance degradation.
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Name Vuln | Size Diff | Performance
gzip-1.2.4 N +4.6% 0.44% faster
openssh-2.2.0pl Y +0.9% 7.08% faster

Table 5: There is no measurable overhead performance fatyth@mic safety checks.

Macro-benchmarks. We measured the performance of PICK ’ed code to determinthéajun-time
overhead of the inserted checks and (b) the increase inzb@sthe binary on real code. Taldeshows our
results. The reported numbers are averages over 5 indemtemnohes.

The performance checks do not appreciably increase theo$itee compiled code. In fact, table
shows that PICK ’ed code actually ran faster than the originarce code. We initially found this very
peculiar: why should code with the extra check instructiansfaster? We double checked our experiments
several times, each with about the same result. In the enfindi¢here are two contributing factors. First,
modern processors do not simply run code sequentiallyuastm by instruction. Instead, they have an
entire optimization engine that dynamically optimizesrimg code through pipelining, thread speculation,
cache layout optimizations, etc. For example, adding a f#siti@nal no- ops can drastically change the
timing characteristics of code] — both for the better and for the worse. Second, CIL perfouasous
simplifying transformations that may affect performanie,, code that has been run through CIL without
any transformations then compiled with gcc may run fastesl@wver than code compiled directly with gcc.

Overall, PICK ’'ing code should not affect performance digantly. Each check is only a few instruc-
tions, can easily be pipelined, and uses operands alreadiyioeferenced. Therefore, except in extreme
cases, PICK should only have negligible impact on perfocaan

5 Related Work

Our techniques are drawn directly from type theory. A goddoiduction to type theory is provided i2]],
which discusses several of the issues in type conversiatsasudown-casting. Using dynamic checks when
static type safety cannot be discerned also appears inlatigages such as in Jad]. However, we are
the first to show these techniques are practical for secexigging C programs.

Cyclone [L1] and CCured 18] are type-safe versions of C. Our work differs from such apghes by
only considering a subset of C — namely integer operatiomsawriting the program in terms of C instead
of a safe alternative. Since Cyclone and CCured are much amlgtious, many different problematic C
constructs may have to be manually translated. Our limifgulieation is more appropriate for securing
existing programs against only integer vulnerabilitieg). gpossibly in combination with other approaches
for combating buffer overflows, format string errors, etc.

Our analysis creates checks for all potentially unsafgget@perations. However, in security one may
only be concerned with unsafe operations under the attada@rtrol. Taint analysislp, 28, 12] could be
used to isolate only those potentially unsafe operatiomsggitainted” program paths that may be under an
attackers control.

There are several static checkers such as S@jrarjd meta-compilationd] which can be used to find
integer casting bugs by writing appropriate rules. We caugd these tools to locate potential integer vulner-
abilities. However, these tools do not introduce checksuililh protectagainst exploits of the vulnerability.

Many C integer vulnerabilities are subsequently exploitedbuffer overflow attacks, on which there is
a wide-body of research. Static checks for detecting suelkks include4, 13, 24]. Stack smashing attacks
can also be detected dynamically, such as w&hs] 19, 20, 23, 30]. Interestingly, it appears detecting
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integer exploits themselves dynamically is troublesome tduthe lack of type information at the x86 level,
i.e., it may be impossible to tell whether a cast is occurri@yerflow attacks, on the other hand, can be
detected dynamically. However, not all integer overflowe mecessarily malicious. For example, the x86
instruction set actually hasjao instruction for jumping on overflow which some compilerséadvantage
of in legitimate code transformations and layouts.

6 Conclusion

We have presented an approach using well-known type theorgliminating integer casting vulnerabili-
ties. Our experiments re-confirm that potentially unsafeger operations are a real problem. Our imple-
mentation and evaluation shows that integer casting vahilitfies can be fixed by automatically inserting
light-weight checks in the code, and that the resulting fd@®ot effect performance. Our techniques pro-
tect against previously unaddressed integer vulnerisilitThe widespread application of our techniques
are realistic in production compilers such as gcc, and woeddlt in eliminating a large class of integer
vulnerabilities.
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A Types

Table 6 shows a correspondence from integer types commonly found and the integral types used
throughout this paper and in C99]]

B Disassembly of Inserted Check

Figure 1 shows the disassembly of one of the inserted checks. Naté isaonly a few instructions long,
references only variables in the expression anyway, thadeaasily pipelined.
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[+ int32_t a; =*/

[+ uint8 t b; =*/

[+ if(a <0 || a > USHRT_MAX) =/
8048384: cnpl $0x0, Oxfffffffc(%ebp)

8048388: |s 8048395 <nmmi n+0x2d>
804838a: cnpl $Oxffff,Oxfffffffc(Yebp)
8048391: jg 8048395 <mmi n+0x2d>

8048393: jnp 804839f <mai n+0x37>

[+ exit(1l); =/

8048395: sub $0xc, Y%esp

8048398: push  $0x1

804839a: call 80482b0 <exit @lt>

[ b = a; */

804839f: nov oxfffffffc(%bp), Y%eax
80483a2: nov %al , Oxfffffffb(%bp)

Figure 1. Disassembly of a sign and width check. Instrusti864839f and 80483a2 perform the assign-
ment. The check is 5 instructions (8048384-8048393).
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