
A Separate Compilation Extension to Standard ML
(Revised and Expanded)

David Swasey Tom Murphy VII Karl Crary
Robert Harper

September 17, 2006
CMU-CS-06-104R

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present an extension to Standard ML, called SMLSC, to support separate compilation. The
system gives meaning to individual program fragments, called units. Units may depend on one
another in a way specified by the programmer. A dependency may be mediated by an interface
(the type of a unit); if so, the units can be compiled separately. Otherwise, they must be com-
piled in sequence. We also propose a methodology for programming in SMLSC that reflects code
development practice and avoids syntactic repetition of interfaces. The language is given a formal
semantics, and we argue that this semantics is implementable in a variety of compilers.

This material is based on work supported in part by the National Science Foundation under grant 0121633
Language Technology for Trustless Software Dissemination and by the Defense Advanced Research Projects Agency
under contracts F196268-95-C-0050 The Fox Project: Advanced Languages for Systems Software and F196228-91-
C-0168 The Fox Project: Advanced Development of Systems Software. Any opinions, findings, conclusions and
recommendations in this publication are the authors’ and do not reflect the views of these agencies.

This report supersedes CMU-CS-06-104.

Keywords: Standard ML, separate compilation, incremental compilation, types

Introduction

We propose an extension to Standard ML called SMLSC. SMLSC supports separate compilation in
the sense that it gives a static semantics to individual program fragments, which we call units. A
unit may depend on other units, and can be type-checked independently of those units by specifying
what it expects of them. These expectations are given in the form of interfaces for those other
units. When unit A is checked against another unit B via a mediating interface, we need not have
access to B at all. Therefore we say that A is separately compiled (SC) against B.

It is also useful to allow unit A to depend on another unit B without specifying an interface for
B. In this case, the only way to derive the context necessary to check A is to first check B and read
off its actual interface. In this scenario we say that A is incrementally compiled (IC) against B.

Units may be compiled and then linked together to satisfy dependencies. The compiled form of
a unit or set of linked units is called a linkset. A linkset may be further linked with other linksets.
If a linkset has no remaining dependencies, then it can be transformed into an executable program.

The goal of this work is to consolidate and synthesize previous work on compilation manage-
ment for ML into a formally defined extension to the Standard ML language. The extension itself is
syntactically and conceptually very simple. A unit is a series of Standard ML top-level declarations,
given a name. To the current top-level declarations such as structure and functor we add an
import declaration that is to units what the open declaration is to structures. An import declara-
tion may optionally specify an interface for the unit, in which case we are able to compile separately
against that dependency; with no interface we must compile incrementally. Compatibility with ex-
isting compilers, including whole-program compilers, is assured by making no commitment to the
precise meaning of “compile” and “link”—a compiler is free to limit compilation to elaboration and
type checking, and to perform code generation as part of linking.

Sections 1 and 2 summarize our main design principles, and provide an overview of the system.
In Section 2 we give a small example of its use. (We give a larger example in Appendix G.) The
semantics, formulated in the framework of the Harper-Stone semantics of ML [12, 13], is given in
Section 3. We give an alternative semantics in the framework of The Definition of Standard ML [16]
in Section 4. Some implementation issues are discussed in Section 5. We conclude with a discussion
of related work in Section 7.

1 Design Principles

A language, not a tool. We propose an extension to the Standard ML language to support
separate compilation, rather than a tool to implement it. The extension is defined by a semantics
that extends the semantics of Standard ML to provide a declarative description of the meanings of
the language constructs. The semantics provides a clear correctness criterion for implementations
to ensure source-level compatibility among them.

Flexibility. A compilation unit consists of any sequence of top-level declarations, including sig-
nature and functor declarations.1 However, since Standard ML lacks syntactically expressible
principle signatures, some units cannot be separately compiled from one another. We therefore
support incremental, as well as separate, compilation for any unit. This means that the interface
of a unit can either be inferred from its source (incremental compilation) or explicitly specified
(separate compilation) at the programmer’s discretion.

1Consequently, units cannot be identified with Standard ML structures.

1

Simplicity. The design provides only the minimum functionality of a separate compilation sys-
tem. It omits any form of compilation parameters, conditional compilation directives, or compiler
directives. We leave for future work the specification of such additional machinery.

Conservativity. The semantics of Standard ML should not be changed by the introduction of
separate compilation. In particular, we do not permit “circular dependencies” or similar concepts
that are not otherwise expressible in Standard ML. This ensures that compilers should not be
disturbed by the proposed extension beyond what is required to implement the extension itself.

Explicit dependencies. The dependencies among units are explicitly specified, not inferred.
The chief reason for this is that dependencies among units may not be syntactically evident—for
example, the side effects of one unit may influence the behavior of another. There are in general
many ways to order effects consistently with syntactic dependencies, and these orderings need not
be equivalent. A lesser reason is that supporting dependency inference requires restrictions on
compilation units that are not semantically necessary, reducing flexibility.

Environment independence. The separate compilation system is defined independently of any
environment in which it might be implemented. The design speaks in terms of linguistic and
semantic entities, rather than implementation-specific concepts such as files or directories.

Separation of units from modules. The separate compilation system is designed as a proper
extension to Standard ML so as to ensure backward compatibility of source code. It is tempting to
identify compilation units with modules, but to do so would require that functors, signatures, and
fixity declarations be permitted as components of modules. Permitting such an extension is not
entirely straightforward; for example, permiting signature declarations in modules and their types
can lead to undecidability of type checking [10].

2 Overview

Units and Interfaces

The SMLSC extension is organized around the concept of a unit. A unit consists of top-level
declarations, which include declarations of signatures, structures, and functors. Each unit is given
a name by which the unit is known throughout the program. One unit may refer to the components
of another using an import declaration, which records the dependency of the importing unit on the
imported unit, and opens it for use within the importing unit. This is the only means by which
one unit may refer to another; we do not support “dot notation” for accessing the components of a
unit. An import declaration is a new form of top-level declaration. (This is the only modification
that we make to an existing syntactic category of Standard ML.)

The compilation context for a unit is entirely determined by its imports. That is, all depen-
dencies of a unit on another unit must be explicitly indicated using import declarations. The
dependency of one unit on another is mediated by an interface, the type of a unit. The interface of
an imported unit can be specified in one of two ways, either implicitly or explicitly, corresponding
to incremental or separate compilation.

An import declaration of the form import unitid : intexp specifies an explicit interface for the
imported unit. This permits the importing unit to be compiled independently of the implementation
of unitid, relying only on the specified interface. This is called separate compilation, or SC for

2

srcunit ::= unit unitid = unit topdec end unit declaration
topdec ::= import impexp open units

strdec structure-level declaration
sigdec signature declaration
fundec functor declaration
local topdec1 in topdec2 end local declaration
topdec1 topdec2

impexp ::= unitid 〈: intexp〉 open unit unitid
impexp1 impexp2

intexp ::= intf topspec end interface expression
topspec ::= spec structure-level specification

functor funspec functor specification
topspec1 topspec2

funspec ::= funid(strid : sigexp) : sigexp′ 〈and funspec〉

Figure 1: SMLSC concrete syntax

short. An import declaration of the form import unitid specifies that the interface for unitid is to
be inferred from its source code. This is called incremental compilation, or IC for short.

The concrete syntax for units and interfaces in SMLSC is given in Figure 1. We extend topdecs
to add import and local. The import declaration (like open) allows multiple units to be simulta-
neously imported. Interfaces are topspecs; this is the syntactic class spec of Standard ML, with the
addition of a specification form for functors. The local declaration limits the scope of imports,
just as the structure declaration of the same name.

Projects and Linksets

A linkset consists of several compiled units, called its exports, together with the names and inter-
faces of its imports, the units on which it depends (following Cardelli [5]). A project consists of a
linearly ordered sequence of source units and linksets. The ordering of the components in a project
is significant, both because it specifies the order of identifier resolution, and because it specifies the
order of computational effects when executed. Compilation of a project consists of processing the
source units in the specified order to obtain linksets, and then knitting them together to resolve
dependencies.

Linking consists of resolving inter-unit dependencies by binding exports to imports among
linksets. When all references have been resolved, the resulting linkset can be completed to form an
executable.

We do not give a concrete syntax for linksets, as we do not intend for programmers to write
them, nor do we expect compatibility of linksets across implementations. Rather, they are left
as implementation-specific concepts (such as object files), which are modeled here by the abstract
semantic objects described in Sections 3 and 4.

Examples

We begin with a few simple examples to illustrate the features of the system.
Suppose that we have a library of data structures whose name is Collections. It is natural to

place this library in a unit. Let’s assume it contains only the queue data structure:

3

unit Collections =
unit
signature QUEUE =
sig

type ’a queue
val empty : ’a queue
val push : ’a * ’a queue -> ’a
val pop : ’a queue -> ’a * ’a queue

end

structure Queue :> QUEUE =
struct (* · · · *) end

end

A client of the Collections library can import it using IC easily:

unit Scheduler =
unit
import Collections

structure Sched =
struct
type job = (* · · · *)
val readyqueue =
ref Queue.empty : job Queue.queue ref

(* · · · *)
end

end

In these examples we use link to stand for the semantic operation of compiling and linking a list
of source units and linksets. We can compile and link this program as

L = link(Collections, Scheduler)

or we can compile the library and then the client

L0 = link(Collections)
L1 = link(L0, Scheduler)

but the Scheduler unit may not be compiled on its own.
Incremental compilation is convenient when we have source or a compiled linkset for the

Collections unit. We may prefer to use separate compilation, or may be forced to because
the implementation for Collections is not available. A client with an SC import looks like this:

4

unit Scheduler2 =
unit
import Collections :
intf
structure Queue :
sig
type ’a queue
val empty : ’a queue
val push : ’a * ’a queue -> ’a
val pop : ’a queue -> ’a * ’a queue

end
end

structure Sched =
struct
type job = (* · · · *)
val readyqueue =
ref Queue.empty : job Queue.queue ref

(* · · · *)
end

end

This allows Scheduler2 and Collections to be compiled separately:

L0 = link(Scheduler2)
L1 = link(Collections)
L2 = link(L1, L0)

However, writing the SC import this way forces an undesirable repetition of code. If more than one
client uses Collections—which we would expect—each client repeats the interface for its import
of the unit. A further problem is that this style asks the client to supply the interface of the library,
but the interface of a library is usually provided by the library author, not the client. Fortunately,
a combination of SC and IC allows us to use the system in a much cleaner way.

Handoff Units

A programmer who wishes his code to be available for separate compilation can provide a handoff
unit which supplies the interface. Starting from scratch, the handoff unit contains an SC import:

unit Collections =
unit
signature QUEUE =
sig

type ’a queue
val empty : ’a queue
val push : ’a * ’a queue -> ’a
val pop : ’a queue -> ’a * ’a queue

end

5

import CollectionsImpl :
intf
structure Queue : QUEUE

end
end

The implementation of the collections library is imported from the unit CollectionsImpl.2

Because the import declaration opens the imported unit, all of the contents of CollectionsImpl
are available in the Collections unit. Clients wishing to make use of the library simply import the
handoff unit using IC, avoiding the need to specify an interface, but instead sharing the common
interface provided by the handoff unit.

unit Scheduler3 =
unit
import Collections

structure Sched = (* · · · *)
end

This additionally has the benefit that the clients only need to know the name of the handoff
unit, not the implementation unit. A few such clients can be linked with the handoff unit:

L0 = link(Collections, Scheduler3, OtherClient)

The result can later be linked with the implementation of the Collections library:

L1 = link(CollectionsImpl, L0)

Definite References

In the terminology of Harper and Pierce [11] an import of one unit in another is interpreted as a
definite reference—that is, as a free variable that refers to a single, specific unit through an interface
for it, either inferred or specified. This ensures that if two separate units import a common unit,
such as a well-known library, these units share a common understanding of the abstract types
exported by that unit.

In contrast, the fully functorized style is to λ-abstract a module over all of the modules on
which it depends. Because functors may, in principle, be applied to many different arguments, its
parameters are indefinite references. As such sharing relationships among components are lost,
because they need not be true in every instance. To avoid this, one must explicitly specify the
intended sharing constraints; this can be quite burdensome.

The handoff methodology in SMLSC facilitates programming with definite references. Two
pieces of code that import the same unit using separate compilation may only be linked if they
import that unit at equivalent interfaces. The imports are then consolidated into a single import,
ensuring that type equations hold. When the same handoff unit is used to create the two imports,
these interfaces will always be equivalent. In corner cases such as skew between versions of a
library’s handoff unit, the programmer may manually consolidate two imports. We discuss this
further in Section 6.

2If unit CollectionsImpl also needs signature QUEUE, it can be placed in its own unit QUEUESIG and both
CollectionsImpl and Collections can incrementally compile against QUEUESIG. Appendix G exemplifies this ap-
proach.

6

3 Semantics extending the Harper-Stone semantics of ML

In this section, we give a semantics to SMLSC by extending Harper and Stone’s Typed Seman-
tics (TS) for Standard ML [13]. At a high level the typed semantics consists of an elaboration
relation from an external language, called TSEL, into an internal language, called TSIL. The ex-
ternal language is a slight extension of the abstract syntax of Standard ML. The internal language
is a typed λ-calculus based on the Harper-Lillibridge type theory for modules [10]. Elaboration
comprises type inference, pattern compilation, equality compilation, identifier resolution, and in-
sertions of coercions for signature matching. The result of elaboration is a well-formed program in
the TSIL, to which a dynamic semantics is given to provide an execution model. The semantics of
SMLSC is an extension of the Harper-Stone semantics that elaborates units into linksets that can
be completed for execution.

The TSIL. We begin with a brief review of the structure of the TSIL. The TSIL consists of a
core level and a module level. The core level includes expressions exp, constructors con, and kinds
knd . Kinds classify constructors. Constructors of kind Ω are types; they classify expressions. The
module level includes modules mod and signatures sig , which classify modules. We write {} to
denote the empty record, and mod .lab to denote the projection of a component named lab from the
structure mod . The semantics works mainly with modules, ultimately elaborating units to TSIL
structures.

Declaration lists serve as contexts in the TSIL static semantics. A declaration list decs =
dec1, . . . , decn declares expression (var :con), constructor (var :knd〈=con〉), and module (var :sig)
variables. A structure declaration list sdecs has the form

lab1Bdec1, . . . , labnBdecn

associating a label with each declaration. The structure declaration list labBdec, sdecs binds the
variable declared by dec with scope sdecs. We write [sdecs] to denote the signature of a structure
containing fields described by sdecs. Variables express dependencies between components in a
structure signature and may be freely alpha-varied. Labels name components for external reference
and may not be renamed without changing the meaning of the signature. Consider the declaration
of a structure m containing an opaque type component T and value component X of that type:

m : [TBt:Ω, XBx:t].

We can systematically rename the bound variables t and x. A path is a module variable followed
by a list of labels, serving a role similar to SML long identifiers. The paths m.T (a constructor)
and m.X (an expression) refer to m’s components.

A bnd binds a variable to an expression (var=exp), constructor (var=con), or module (var=mod).
A structure binding list sbnds has the form

lab1Bbnd1, . . . , labnBbndn.

A structure is written [sbnds]. The module syntax is closed under the formation of functors:
dependently typed functions from modules to modules.

We shall use the TSIL judgements given in Figure 2. These judgements have the following
meaning.

• decs ` sdecs ok. No label is used twice and every declaration is well-formed. For example,

` TBt:Ω, XBx:t ok.

7

Judgement . . . Meaning . . .
` decs ok decs is well-formed
decs ` sdecs ok sdecs is well-formed
decs ` sig : Sig sig is well-formed
decs ` sig ≡ sig ′ : Sig signature equivalence
decs ` sbnds : sdecs sbnds has declaration list sdecs
decs ` mod : sig mod has signature sig

Figure 2: TSIL judgements (summary)

Judgement . . . Meaning . . .
Γ ` strdec sbnds : sdecs structure declaration elaboration
Γ ` sigexp sig : Sig signature elaboration
Γ ` spec sdecs specification elaboration
Γ `ctx labs path : class context lookup
decs `sub path : sig0 � sig mod : sig ′

coercion compilation

Figure 3: TS elaboration judgements (summary)

• decs ` sig : Sig. The signature sig is well-formed.

• decs ` sig ≡ sig ′ : Sig. The signatures sig and sig ′ declare the same components, in the same
order, with the same labels, and corresponding type components are equivalent.

• decs ` sbnds : sdecs. The structure binding list sbnds matches the structure declaration list
sdecs. Corresponding labels must agree and each bound expression, constructor, or module
in sbnds must match its declaration in sdecs. For example, the judgement

decs ` (labBvar=mod , sbnds) : (labBvar :sig , sdecs)

holds if decs ` mod : sig and decs, var :sig ` sbnds : sdecs.

• decs ` mod : sig . The module mod has signature sig . The signature sig may or may not be
fully transparent. For example, we may derive both

m : [TBt:Ω, XBx:t] ` m : [TBt:Ω=m.T,XBx:t]

and
m : [TBt:Ω, XBx:t] ` m : [TBt:Ω, XBx:t].

The former signature is said to be selfified with respect to the variable m.

TS elaboration. Harper and Stone give a semantics to Standard ML by elaboration of TSEL
into TSIL. Elaboration is performed in a context Γ consisting of a structure declaration list (sdecs)
that, due to shadowing, may have duplicate labels. We shall use the TS elaboration judgements
given in Figure 3. These judgements have the following meaning.

8

• Γ ` strdec sbnds : sdecs. Elaborate the TSEL structure declaration strdec to the structure
binding list sbnds : sdecs. Since the TSEL permits functors within structures, this includes
elaboration of functor declarations.

• Γ ` sigexp sig : Sig. Elaborate the TSEL signature expression sigexp to the signature sig .
The TSEL does not include signature declarations; we treat them as abbreviations for TSIL
signatures, recording them in linksets and expanding them during elaboration.

• Γ ` spec sdecs. Elaborate the TSEL specification spec to the structure declaration list
sdecs. This includes elaboration of functor specifications.

• Γ `ctx labs path : class. Perform identifier resolution in the context Γ. The input is a list of
labels, which is derived from an SML long identifier; the output is a path classified by the type,
kind, or signature class. Some labels in the context are annotated with a star, indicating that
they are “open” (in the sense of the SML open declaration). Identifier resolution searches Γ
from right to left, descending into structures with starred labels. For example, we may derive

TBt1:Ω, TBt2:Ω={} ` T t2 : Ω={}

and
XBx1:{}, 1?Bm:[TBt:Ω, XBx2:t] ` X m.X : m.T.

• decs `sub path : sig0 � sig mod : sig ′. Perform transparent signature ascription. The
inputs are a signature sig0, a path having that signature, and a target signature sig. The
output is a module mod : sig ′, where sig ′ has the same shape as sig but is fully transparent
relative to path.

Elaboration maps TSEL identifiers to TSIL labels using a function · . To implement identifier
“shadowing,” elaboration employs a function sbnds++sbnds ′ : sdecs++sdecs ′ that concatenates
sbnds : sdecs and sbnds ′ : sdecs ′, renaming labels in the left hand sides that appear in the right
hand sides. The function chooses fresh labels that do not correspond to TSEL identifiers. For
example, if

sbnds : sdecs = TBt1={} : TBt1:Ω={}
sbnds ′ : sdecs ′ = TBt2=Int : TBt2:Ω=Int,

then sbnds++sbnds ′ : sdecs++sdecs ′ might be

(labBt1={}, TBt2=Int) : (labBt1:Ω={}, TBt2:Ω=Int)

where lab is not in the range of the · function.

3.1 Linking

We define linking for the TSIL by giving rules for deriving the linking judgements in Figure 4. A
linkset

sdecs0 → sbnds : sdecs;S

comprises imports sdecs0, exports sbnds : sdecs, and signature abbreviations S.

9

Judgement . . . Meaning . . .
decs ` L ok L is well-formed
decs ` S ok S is well-formed
L exp : {} L completes to exp
decs ` L++L′ L′′ L and L′ merge to L′′

Figure 4: Linking judgements

L ::= sdecs0 → sbnds : sdecs;S linkset
S ::= ·

S, sigid = sig top-level
S, unitid = S′ declared by unitid

Figure 5: Linkset syntax

• The imports sdecs0 describe the TSIL structures on which the linkset depends; they must be
well-formed in the ambient context. For example, the imports

sdecsAB = ABa:[TBt:Ω, XBx:t],
BBb:[YBy:a.T]

express dependency on structures labelled A and B.

Imports specify assumptions to be satisfied by linking. A linkset with imports sdecsAB
assumes structure B binds (at least) a value Y : a.T but can be linked with (a linkset
exporting) a structure B providing more components.

• The exports sbnds : sdecs are the TSIL code associated with the linkset. They may make
reference to the linkset’s imports. Continuing our example, the exports

sbndsZR : sdecsZR = ZBz=b.Y,RBr=a.T :
ZBz:a.T,RBr:Ω=a.T

reference the imports sdecsAB to bind an expression Z of the imported type and an equivalent
type R.

• The signature abbreviations S are used during elaboration. They may make reference to the
linkset’s imports and exports. Continuing our example, the signature abbreviations

SSIG = SIG=[MBm:Ω=r]

specify that elaboration should treat the signature identifier SIG as an abbreviation for a
TSIL signature referencing the exported type R.

The dynamic semantics for SMLSC is very simple. The completion judgment L exp : {}
translates a linkset

· → sbnds : sdecs;S

with no imports to a TSIL expression

[sbnds, labBvar={}].lab : {}

10

where lab and var are fresh. Under the TSIL dynamic semantics, the resulting expression evaluates
the linkset’s exports from left to right for their side-effects. Evaluation terminates when an uncaught
exception is raised or when every export has been evaluated.

We give the full syntax for linksets in Figure 5 and the rules in Appendix A. The remainder of
this section explains the rules for linkset merge.

Notation. We write decs, sdecs to extend a context decs, implicitly dropping the labels in sdecs.
We define the domain of a structure declaration list, dom(sdecs), by

dom(lab1Bdec1, . . . , labnBdecn) = {lab1, . . . , labn}.

We write {var/var ′}L for the capture-free substitution of var for free occurrences of var ′ in L.3

Linkset merge. The rules for linkset merge decs ` L1++L2 L3 combine L1 and L2 to produce
L3. The rules presuppose that L1 is well-formed with respect to decs but permit L2 to make
reference (via free TSIL variables) not only to decs but to the imports and exports of L1. Formally,
the rules satisfy the following property.4

If L1 = sdecs1 → sbnds : sdecs
and decs ` L1 ok
and decs, sdecs1, sdecs ` L2 ok,
and decs ` L1++L2 L3,
then decs ` L3 ok.

If a linkset is well-formed, then it neither imports nor exports the same label twice (although it
may both import and export a particular label).

The rules process the imports in L2 from left to right. If L2 has no imports, then the following
rule applies.

L = sdecs0 → sbnds : sdecs

decs ` L++(· → sbnds ′ : sdecs ′)
sdecs0 → sbnds++sbnds ′ : sdecs++sdecs ′

L3 imports what L1 does and exports what L1 and L2 do. To ensure that L3 is well-formed, the
rule uses the TS function ++ to concatenate the exports in L1 with the exports in L2, renaming
labels exported by L1 that are also exported by L2.

Otherwise, the rules examine the first import labBvar :sig in L2 and distinguish three mutually
exclusive cases:

• L1 exports lab.
sdecs = sdecs ′′, labBvar ′:sig ′, sdecs ′′′

decs, sdecs0, sdecs `sub var ′:sig ′ � sig mod :sig ′′

sbnd := 1Bvar=mod sdec := 1Bvar :sig ′′

L := sdecs0 → sbnds++sbnd : sdecs++sdec
decs ` L++(sdecs1 → sbnds ′ : sdecs ′) L′′

decs ` (sdecs0 → sbnds : sdecs)++
(labBvar :sig , sdecs1 → sbnds ′ : sdecs ′) L′′

3Linkset bound variables and scopes are discussed in Appendix A.
4In this description of linkset merge, we suppress all details related to signature abbreviations.

11

The first premise picks out the L1 export labBvar ′:sig ′ for lab; there can be at most one
since L1 is well-formed. The second premise calls the TS coercion compiler to match the
export var ′:sig ′ to the import signature sig . Linking fails if no match is possible; otherwise,
sig ′′ has the same “shape” as sig , but is fully transparent relative to the variable var ′. The
structure binding sbnd : sdec is constructed using the coercion module mod at the signature
sig ′′, maximizing type sharing. The linkset L has the same imports as L1, and exports those
of L1 plus the result of the preceding coercion. To ensure that L is well-formed—in particular,
that it exports nothing more than once—the rule uses ++ to construct its exports.

• L1 imports lab but does not export it.

lab 6∈ dom(sdecs)
sdecs0 = sdecs ′′, labBvar ′:sig ′, sdecs ′′′

decs, sdecs0, sdecs ` sig ≡ sig ′ : Sig
L′ := {var ′/var}(sdecs1 → sbnds ′ : sdecs ′)
decs ` (sdecs0 → sbnds : sdecs)++L′ L′′

decs ` (sdecs0 → sbnds : sdecs)++
(labBvar :sig , sdecs1 → sbnds ′ : sdecs ′) L′′

The first premise ensures L1 does not export lab. The second premise picks out the L1 import
labBvar ′:sig ′. Linking fails if sig and sig ′ are not equivalent; otherwise, L′ is constructed by
changing references in the remainder of L2 to use the import in L1.

• L1 neither imports nor exports lab.

lab 6∈ dom(sdecs) ∪ dom(sdecs0)
decs, sdecs0, sdecs ` sig ≡ sig ′ : Sig

decs, sdecs0 ` sig ′ : Sig
L := sdecs0, labBvar :sig ′ → sbnds : sdecs

decs ` L++(sdecs1 → sbnds ′ : sdecs ′) L′′

decs ` (sdecs0 → sbnds : sdecs)++
(labBvar :sig , sdecs1 → sbnds ′ : sdecs ′) L′′

The first premise ensures that L1 neither imports nor exports lab. The next two premises
choose a signature sig ′ equivalent to sig but well-formed without reference to the exports of
L1. Linking fails if no such signature exists—when opaque types exported by L1 occur in sig .
Otherwise, L is constructed by adding a new import to the imports in L1.

3.2 Elaboration

We define a semantics for SMLSC by giving rules for the elaboration judgements in Figure 6. We
give the abstract syntax for SMLSC in Figure 7. The elaboration rules appear in Appendix B.
These judgements have the following meaning.

• project L. Elaborate project , using linkset merge to accumulate a resulting linkset L. A
source unit is elaborated in a context Γ that declares the imports and exports in L.

• Γ ` srcunit L. Elaborate the topdec in srcunit to the linkset

sdecs0 → sbnds : sdecs;S.

12

Judgement . . . Meaning . . .
project L project elaboration
Γ ` srcunit L unit elaboration
Γ ` topdec L top-level declaration elaboration
Γ ` impexp L import expression elaboration
Γ ` sigbind S signature binding elaboration

Γ `ctx sigid sig : Sig signature lookup
Γ `ctx unitid S
Γ ok Γ is well-formed

Figure 6: Elaboration judgements

project ::= · empty
project , srcunit source unit
project , L compiled unit(s)

srcunit ::= unit unitid = topdec unit declaration
topdec ::= import impexp open units

strdec
signature sigbind
local topdec1 in topdec2 end
topdec1 topdec2

impexp ::= unitid 〈: intf spec end〉 open unitid
impexp1 impexp2

sigbind ::= sigid = sigexp 〈and sigbind〉

Figure 7: SMLSC abstract syntax

13

The imports sdecs0 arise from the import declarations in topdec. The exports sbnds : sdecs
arise from the structure declarations in topdec. The signature abbreviations S arise from the
signature declarations in topdec. The result, L, exports a single module

unitidBvar=[sbnds] : unitidBvar :[sdecs].

• Γ ` topdec L. Elaborate topdec using linkset merge and identifier resolution.

• Γ ` impexp L. Elaborate impexp using identifier resolution and spec elaboration.

• Γ ` sigbind S. Elaborate sigbind using signature elaboration.

4 Semantics extending The Definition of Standard ML

In this section, we give a semantics to SMLSC by extending The Definition of Standard ML (TD) [16].
TD gives a semantics to SML by relating it to semantic objects—mathematical sets, functions, and
so on. We refer to these semantic objects collectively as the internal language (TDIL) and to
SML as the external language (TDEL). The TDIL is partitioned into static and dynamic semantic
objects. TD’s static semantics specifies type checking and type inference using the static TDIL.
TD’s dynamic semantics gives the TDEL a big-step, call-by-value operational semantics using the
dynamic TDIL.

A unit declaration list udecs is a list of source units srcunit1, . . . , srcunitn (see Figure 8). In
Section 4.1 we review TD’s static semantics and extend it to unit declaration lists. In Section 4.2 we
do the same for TD’s dynamic semantics. We define linksets and linking in Section 4.3. A linkset
contains source code—a unit declaration list—and static TDIL: Separate compilation corresponds
to separate type checking. In Section 4.4 we give a semantics to SMLSC through an elaboration
into linksets.

4.1 Static Semantics

We shall use the TD static semantic judgements given in Figure 9. These judgements have the
following meaning.

• B ` strdec ⇒ E. The structure declaration strdec is well-typed and declares the structure,
type, and value identifiers in environment E.

• B ` sigdec ⇒ G. The signature declaration sigdec is well-formed and declares the signature
identifiers in signature environment G.

• B ` fundec ⇒ F . The functor declaration fundec is well-typed and declares the functor
identifiers in functor environment F .

• B ` sigexp ⇒ Σ. The signature expression sigexp is well-formed and specifies the components
in signature Σ.

udecs ::= · empty
udecs, srcunit unit declaration

Figure 8: Unit syntax

14

Judgement . . . Meaning . . .
B ` strdec ⇒ E structure declaration elaboration
B ` sigdec ⇒ G signature declaration elaboration
B ` fundec ⇒ F functor declaration elaboration
B ` sigexp ⇒ Σ signature expression elaboration
B ` spec ⇒ E specification elaboration

Σ ≥ E using ϕ signature instantiation
E1 � E2 enrichment

Figure 9: TD’s static semantic judgements (summary)

• B ` spec ⇒ E. The specification spec is well-formed and specifies the components in E.

• Σ ≥ E using ϕ. The environment E is an instance of the signature Σ using the realization ϕ.

• E1 � E2. The environment E1 may have more components than E2, it may be less polymor-
phic, and it may change the status of constructors/exceptions to values.

One subtlety in these judgements pervades our semantics: They account for TDEL type sharing
by stamping TDIL types with type names and TDEL type generativity by using state-passing to
track the set of type names that “have been generated”. Two TDIL types share if they are stamped
with the same type name. To see how state-passing works, consider the judgement

B ` strdec ⇒ E.

The basis B = T, F,G,E′ comprises a context and a state. The context F,G,E′ assigns static
TDIL to those identifiers that may occur free in strdec. The state T is a set of type names. Rules
that generate types (e.g., the rule for datatype declarations) choose type names not in T : Types
stamped with such names do not share with any types in B.

TDEL signature matching complicates the tracking of type names. The rule for opaque signa-
ture ascription strexp :> sigexp generates types after elaborating strexp and sigexp. Consider the
following structure declaration.

structure A = struct type a = int type b = a end
:> sig type a type b = a end

Types A.a and A.b share but neither shares with int. At the level of the TDIL, A.a must be
stamped with a new type name and A.b must be stamped with the same type name. To handle
the book-keeping, a TDIL signature Σ = (T)E comprises a set T of bound type names (induced
by abstract type specifications) and an environment E describing its components. The example
elaborates as follows.

1. The inner structure expression “struct type a = int type b = a end” elaborates to an
environment E mapping type constructors a and b to types stamped with tint (where tint is
the type name associated with int in the ambient basis).

2. The signature expression elaborates to a signature Σ = (T)E′ where T = {t} binds one type
name and E′ maps the type constructors a and b to types stamped with t.

15

uspecs ∈ UnitSpecs =
⋃
n≥0 UnitSpecsn

unitid :Υ1, . . . , unitid :Υn ∈ UnitSpecsn = (UnitId×UnitSig)n

Υ or (T)(F,G,E) ∈ UnitSig = TyNameSet× (FunEnv × SigEnv × Env)
Γ or B,U ∈ UnitBasis = Basis×UnitEnv

U ∈ UnitEnv = UnitId fin→ Basis
unitid ∈ UnitId (unit identifiers)

Figure 10: Static TDIL for unit declaration lists

3. The opaque ascription (a structure expression) elaborates to E′ after the bound type name in
Σ is systematically renamed so that it differs from all type names in the ambient basis (e.g.,
t 6= tint).

4. The structure declaration elaborates to an environment EA mapping the structure identifier
A to the environment E′ obtained in (3). Thus the types A.a and A.b in EA are stamped
with a fresh type name as required.

The rule for transparent signature ascription strexp : sigexp induces sharing after elaborating strexp
and sigexp. Consider the following structure declaration.

structure B = struct type a = int type b = a end
: sig type b end

Types B.b and int share. To induce sharing, TD uses capture-avoiding substitution from type
names to types: The rule chooses and applies a realization ϕ. This example elaborates as follows.

1. The inner structure expression elaborates as in the preceding example.

2. The signature expression elaborates to a signature Σ′ = (T ′)E′′ where T ′ = {t′} binds one
type name and E′′ maps the type constructor b to a type stamped with t′.

3. The transparent ascription elaborates to ϕ(E′′) where ϕ(·) can be applied to any semantic
object A to substitute tint (the type name associated with b in E) for free occurrences of t′

in A.

4. The structure declaration elaborates to an environment EB mapping the structure identifier
B to the environment ϕ(E′′). Thus the type B.a in EB is stamped with tint as required.

Both ascription rules employ the signature instantiation and enrichment relations to define TDEL
signature matching in terms of TDIL environments and signatures.

Unit Static Semantics In Figure 10 we extend the static TDIL for unit declaration lists. These
TDIL categories—disjoint from all others—build on TD’s categories TyNameSet, FunEnv, SigEnv,
Env, and Basis (see Appendix C). When specifying TDIL we use the following notation.

• A×B denotes the cartesian product of A and B.

• A ∪B denotes the disjoint union of A and B.

• A fin→ B denotes the set of partial functions from A to B with finite domain.

16

Judgement . . . Meaning . . .
Γ ` udecs : uspecs udecs has specification list uspecs
Γ ` topdec : B topdec has basis B
Γ ` impexp : F,G,E impexp has components F,G,E

B ` intexp ⇒ Υ interface expression elaboration
B ` topspec ⇒ F,E top-level specification elaboration
B ` funspec ⇒ F functor specification elaboration

Γ ok Γ is well-formed
Γ ` Υ : Sig Υ is well-formed
Γ ` uspecs ok uspecs is well-formed

E : Σ using ϕ signature matching
Σ ≡ Σ′ using ϕ signature equivalence
Υ ≡ Υ′ using ϕ interface equivalence
F,G,E : Υ using ϕ interface matching

Figure 11: Unit static semantics

• An denotes a sequence of length n ≥ 0 whose range is a subset of A.

A unit signature (or interface) Υ = (T)(F,G,E) describes a unit. Υ specifies the components
in environments F , G, and E, binding type names T with scope (F,G,E).

A unit specification list unitid1:Υ1, . . . , unitidn:Υn describes a unit declaration list. Writ-
ing BT(Υ) for the type names bound in Υ, a unit specification list binds BT(Υi) with scope
unitid i+1:Υi+1, . . . , unitidn:Υn for each 1 ≤ i < n.

A unit basis Γ = B,U (where B = T, F,G,E) comprises a state T and a context F,G,E,U .
The unit environment U is a finite map from unit identifiers to bases: If U(unitid) = T ′, F ′, G′, E′,
then T ′ ⊂ T records the type names generated by unitid and the environments F ′,G′,E′ describe
its components.

We give a static semantics to unit declaration lists by giving rules for the judgements in Fig-
ure 11. The rules appear in Appendix C. These judgements have the following meaning.

• Γ ` udecs : uspecs. The unit declaration list udecs matches the unit specification list uspecs.
Corresponding unit identifiers must agree and each source unit in udecs must match its
specification in uspecs. For example, the judgement

Γ ` (unit unitid = unit topdec end, udecs) : (unitid :(T)(F,G,E), uspecs)

holds if Γ ` topdec : T, F,G,E and Γ + T + {unitid 7→ T, F,G,E} ` udecs : uspecs.5

• Γ ` topdec : B. The top-level declaration topdec has basis B = T, F,G,E: It generates type
names T and declares the components in F,G,E.

• Γ ` impexp : F,G,E. The import expression impexp imports the components in F,G,E from
Γ.

5The notation Γ + T + {unitid 7→ T, F,G,E} extends the state then the context in Γ (see Appendix C).

17

• B ` intexp ⇒ Υ. The interface expression intexp specifies the components in Υ. Since
interface expressions do not describe signature declarations, the signature environment G in
Υ must be empty.

• B ` topspec ⇒ F,E. The top-level specification topspec specifies the components in F,E. No
identifier may be specified twice.

• B ` funspec ⇒ F . The functor specification funspec specifies the components in F . No
identifier may be specified twice.

• Γ ok. The unit basis Γ = (T, F,G,E), U is well-formed: T contains the free type names in
F,G,E,U .

• Γ ` Υ : Sig. The interface Υ = (T)(F,G,E) is well-formed: No type name t ∈ T occurs in
Γ’s state T ′ and T ∪ T ′ contains the free type names in F,G,E.

• Γ ` uspecs ok. The unit specification list uspecs is well-formed. For example, the judgement

Γ ` unitid :Υ, uspecs ok

holds if Γ ` Υ : Sig and Γ + BT(Υ) ` uspecs ok.

• E : Σ using ϕ. The environment E matches the signature Σ using the realization ϕ.

• Σ ≡ Σ′ using ϕ. The signatures Σ = (T)E and Σ′ = (T ′)E′ specify the same components and
E = ϕ(E′).

• Υ ≡ Υ′ using ϕ. The interfaces Υ = (T)(F,G,E) and Υ′ = (T ′)(F ′, G′, E′) specify the same
components and F,G,E = ϕ(F ′, G′, E′).

• F,G,E : Υ using ϕ. The environments F,G,E match the interface Υ and the realization ϕ
induces the requisite sharing: If the semantic object A refers to type names bound in Υ, then
the semantic object ϕ(A) refers to corresponding types employed by F,G,E.

4.2 Dynamic Semantics

We shall use the TD dynamic semantic judgements given in Figure 9.6 These judgements have the
following meaning.

6In many cases, static and dynamic TDIL categories have the same names and employ the same metavariables.
No confusion can result since the static and dynamic semantics are separate.

Judgement . . . Meaning . . .
s,B ` strdec ⇒ E, s′ structure declaration evaluation
B ` fundec ⇒ F functor declaration evaluation
IB ` sigdec ⇒ G signature declaration elaboration
IB ` sigexp ⇒ I signature elaboration
IB ` spec ⇒ I specification elaboration

Inter B = IB interface basis extraction
E ↓ I = E′ signature ascription

Figure 12: TD’s dynamic semantic judgements (summary)

18

• s,B ` strdec ⇒ E/p, s′. In state s and context B, the structure declaration strdec evaluates
to state s′ and either an environment E or an exception packet p.

• B ` fundec ⇒ F . The functor declaration fundec evaluates to the functor environment F .
State is not involved: F maps functor identifiers to functor closures.

• IB ` sigdec ⇒ G. The signature declaration sigdec declares the signature identifiers in
signature environment G.

• IB ` sigexp ⇒ I. The signature expression sigexp specifies the components in structure
interface I.

• IB ` spec ⇒ I. The specification spec specifies the components in I.

• Inter B = IB. The interface basis IB is the value-free part of the basis B. (Values are not
needed by the signature elaboration judgements.)

• E ↓ I = E′. The environment E′ is the environment E cut down to match the structure
interface I.

The dynamic semantics is defined for mostly type-erased TDEL. Types, type ascriptions, and
type qualifications are erased. Signatures are not erased. Both signature ascription and functor
application limit the “view” of a structure in case it is opened. Consider the following declarations.

structure A = struct val x = 1 val y = 2 end
: sig val x : int end

val y = 3
open A

The value of y is 3 not 2. A related example employs functors:

functor F(S : sig val x : int end) =
struct
val y = 3
open S

end
structure B = F(struct val x = 1 val y = 2 end)

The value of B.y is 3 not 2. The dynamic semantics uses structure interfaces to cut down en-
vironments when evaluating signature ascriptions and functor applications. To obtain structure
interfaces, the dynamic semantics re-elaborates signatures. This “dynamic elaboration” tracks only
the status of identifiers, making it simpler than the elaboration performed by the static semantics.
For example, it is stateless.

In the evaluation judgement
s,B ` strdec ⇒ E/p, s′,

the states s and s′ track a set of generated exception names and a memory graph for references.
The dynamic semantics accounts for the generativity of exception bindings by stamping exception
values with exception names—two TDIL exceptions are equal if they are stamped with the same
name. The rules propogate raised exceptions explicitly, referring to them as exception packets p.
(Compound metavariables like E/p range over the disjoint union of two TDIL categories.)

19

UI or FI, I ∈ UnitInt = FunIntEnv× Int

FI ∈ FunIntEnv = FunId fin→ Int× Int
Γ ∈ UnitBasis = Basis×UnitEnv

U ∈ UnitEnv = UnitId fin→ Basis

Figure 13: Unit dynamic semantic objects

Unit Dynamic Semantics. In Figure 13 we extend the dynamic TDIL for unit declaration lists.
These TDIL categories—disjoint from all others—build on TD’s dynamic TDIL categories Basis
and Int (see Appendix D).

As with TDEL signatures, interface expressions are not erased prior to evaluation. An SC
import declaration import unitid : intexp is analagous to a TDEL signature ascription and an
open declaration: It limits the “view” of the imported unit. We shall give a dynamic semantics
that uses (dynamic) unit interfaces to cut down bases when elaborating SC imports.

A unit interface UI = FI, I describes a unit. The structure interface I describes structure, type,
and value components. The functor interface environment FI describes functor components using
functor interfaces. A functor interface I, I ′ comprises argument and result structure interfaces.
Both are necessary. Consider the following unit declaration list.

unit U1 =
unit
functor F(S : sig end) = struct open S val x = 1 val y = 2 end

end,

unit U2 =
unit
import U1 :
intf
functor F(S : sig val x : int end) : sig val x : int end

end
structure A = F(struct val x = 3 end)
val y = 4
open A

end

The values of x and y in U2 are, respectively, 1 and 4 rather than 3 and 2.
A unit basis Γ = B,U serves as an evaluation context. The unit environment U is a finite map

from unit identifiers to bases: If U(unitid) = F,G,E, then the environments F,G,E record the
values obtained by evaluating unitid .

We give a dynamic semantics to unit declaration lists by giving rules for the evaluation judge-
ments in Figure 14. The rules appear in Appendix D. These judgements have the following
meaning.

• s,Γ ` udecs ⇒ Γ′/p, s′. Evaluate the unit declaration list udecs to a unit basis Γ′ or an
exception packet p.

• s,Γ ` topdec ⇒ B/p, s′. Evaluate the top-level declaration topdec to a basis B or an exception
packet p.

20

Judgement . . . Meaning . . .
s,Γ ` udecs ⇒ Γ′/p, s′ unit evaluation
s,Γ ` topdec ⇒ B/p, s′ top-level declaration evaluation
Γ ` impexp ⇒ B import expression evaluation
IB ` topspec ⇒ UI top-level specification elaboration
IB ` funspec ⇒ FI functor specfication elaboration

Figure 14: Unit evaluation judgements

• Γ ` impexp ⇒ B. Evaluate the import expression impexp to the basis B.

• IB ` topspec ⇒ UI. The top-level specification topspec specifies the components in the unit
interface UI.

• IB ` funspec ⇒ FI. The functor specification funspec specifies the components in the functor
interface environment FI.

4.3 Linking

We define linking for SMLSC by giving rules for deriving the judgements in Figure 15. A linkset

uspecs0 → exps

comprises imports uspecs0 and exports exps. Exports may take two forms—a unit declaration list
udecs : uspecs or a static TDIL basis B.

• The imports uspecs0 describe the units on which the linkset depends; they must be well-
formed in the ambient context and no unit may be described twice. For example, the imports

uspecsAB = A:ΥA, B:ΥB

express dependency on units A and B.

Imports specify assumptions to be satisfied by linking. A linkset with imports uspecsAB
assumes unit B declares (at least) the components described by the interface ΥB but can be
linked with (a linkset exporting) a unit B providing more components.

• The exports exps = udecs : uspecs are the code associated with the linkset. They may make
reference to the linkset’s imports (via free unit identifiers and type names).

Judgement . . . Meaning . . .
Γ ` L ok L is well-formed
Γ ` exps ok exps is well-formed
L⇒ udecs L completes to udecs
Γ ` L++L′ ⇒ L′′ L and L′ merge to L′′

Γ ` exps++exps ′ ⇒ exps ′′ exps and exps ′ merge to exps ′′

Figure 15: Linking judgements

21

L ::= uspecs → exps linkset
exps ::= udecs : uspecs units

B top-level components

Figure 16: Linkset syntax

• The exports exps = B arise during elaboration and record typing information for the top-level
declaration associated with the linkset. They may make reference to the linkset’s imports
(via free type names).

The dynamic semantics for SMLSC is very simple. The completion judgment L ⇒ udecs
translates a linkset

· → udecs : uspecs

with no imports to the unit declaration list udecs. Under the dynamic semantics for units given
in Section 4.2, the resulting unit declaration list evaluates the linkset’s exports from left to right
for their side-effects.7 Evaluation terminates when an uncaught exception is raised or when every
export has been evaluated.

We give the full syntax for linksets in Figure 16 and the rules in Appendix E. The remainder
of this section explains the rules for linkset merge.

Notation. We define the extension of a unit basis by a unit specification list, Γ + uspecs, by8

Γ + · = Γ
Γ + (unitid :(T)(F,G,E), uspecs) = (Γ + T + {unitid 7→ T, F,G,E}) + uspecs.

We define the type names bound by a unit specification list, BT(uspecs), by

BT(unitid1:Υ1, . . . , unitidn:Υn) = BT(Υ1) ∪ · · · ∪ BT(Υn).

We define the domain of a unit specification list, dom(uspecs), by

dom(unitid1:Υ1, . . . , unitidn:Υn) = {unitid1, . . . , unitidn}

and the domain of a linkset’s exports, dom(exps), by

dom(udecs : uspecs) = dom(uspecs)
dom(B) = ∅.

Linkset merge. The rules for linkset merge Γ ` L1++L2 ⇒ L3 combine L1 and L2 to produce
L3. The rules presuppose that L1 is well-formed with respect to Γ but permit L2 to make reference
not only to Γ but to the imports and exports of L1.

The rules process the imports in L2 from left to right. If L2 has no imports, then the following
rule applies.

Γ ` exps++exps ′ ⇒ exps ′′

Γ ` (uspecs0 → exps)++(· → exps ′)⇒ uspecs0 → exps ′′

7The unit declaration list udecs obtained by completion may be evaluated in the initial state s0 and the unit basis
Γ0 = B0, {}, where s0 and the initial dynamic basis B0 are given in TD [16, Appendix D].

8Please see Appendix C for a summary of TDIL notation, including definitions of Γ + T , Γ + U , and Γ(unitid).

22

L3 imports what L1 does. The rules for Γ ` exps++exps ′ ⇒ exps ′′ ensure that L3 exports what L1

and L2 do.
Otherwise, the rules examine the first import unitid :Υ in L2 and distinguish three mutually

exclusive cases:

• L1 exports unitid .

unitid ∈ dom(uspecs)
(Γ + uspecs0 + uspecs)(unitid) = T ′, F ′, G′, E′

F ′, G′, E′ : Υ using ϕ
L′ := ϕ(uspecs1 → udecs ′ : uspecs ′)

Γ ` (uspecs0 → udecs : uspecs)++L′ ⇒ L′′

Γ ` (uspecs0 → udecs : uspecs)++(unitid :Υ, uspecs1 → udecs ′ : uspecs ′)⇒ L′′

The first premise ensures L1 exports unitid . The second premise picks out the L1 export
unitid : (T ′)(F ′, G′, E′) for unitid . The third premise matches the exported environments
F ′, G′, E′ to the imported interface Υ. Linking fails if no match is possible; otherwise, L′ is
constructed by changing references to the type names bound by Υ in the remainder of L2 to
the types employed by L1.

• L1 imports unitid but does not export it.

unitid 6∈ dom(exps)
uspecs0 = uspecs ′′, unitid :Υ′, uspecs ′′′

Υ′ ≡ Υ using ϕ
L′ := ϕ(uspecs1 → exps ′)

Γ ` (uspecs0 → exps)++L′ ⇒ L′′

Γ ` (uspecs0 → exps)++(unitid :Υ, uspecs1 → exps ′)⇒ L′′

The first premise ensures L1 does not export unitid . The second premise picks out the L1

import unitid :Υ′; there can be at most once since L1 is well-formed. Linking fails if Υ and
Υ′ are not equivalent; otherwise, L′ is constructed by changing references to the type names
bound by Υ in the remainder of L2 to the type names bound by Υ′.

• L1 neither imports nor exports unitid .

unitid 6∈ dom(exps) ∪ dom(uspecs0)
Υ′ ≡ Υ using ϕ

Γ + BT(uspecs0) ` Υ′ : Sig
L := uspecs0, unitid :Υ′ → exps
L′ := ϕ(uspecs1 → exps ′)

Γ ` L++L′ ⇒ L′′

Γ ` (uspecs0 → exps)++(unitid :Υ, uspecs1 → exps ′)⇒ L′′

The first premise ensures that L1 neither imports nor exports unitid . The next two premises
choose an interface Υ′ equivalent to Υ but well-formed without reference to the exports of
L1. Linking fails if no such interface exists—when type names exported by L1 occur in Υ.
Otherwise, L is constructed by adding a new import to the imports in L1 and L′ is constructed
by changing references to the type names bound in Υ in the remainder of L2 to the type names
bound in Υ′.

23

Judgement . . . Meaning . . .
project ⇒ L project elaboration
Γ ` srcunit ⇒ L unit elaboration
Γ ` topdec ⇒ L top-level declaration elaboration
Γ ` impexp ⇒ L import expression elaboration

Figure 17: Elaboration judgements

4.4 Elaboration

We define a semantics for SMLSC by giving rules for the elaboration judgements in Figure 17. We
give the abstract syntax for SMLSC in Figure 18. The elaboration rules appear in Appendix F.
These judgements have the following meaning.

• project ⇒ L. Elaborate project , using linkset merge to accumulate a resulting linkset L. A
source unit is elaborated in a unit basis Γ that declares the imports and exports in L.

• Γ ` srcunit ⇒ L. Elaborate the topdec in srcunit to the linkset

udecs0 → T, F,G,E.

The imports udecs0 arise from the import declarations in topdec. The type names T arise from
the types generated by topdec. The environments F,G, and E arise from the declarations in
topdec. The result, L, exports a single unit:

L = udecs0 → srcunit : (T)(F,G,E).

• Γ ` topdec ⇒ L. Elaborate topdec using linkset merge.

• Γ ` impexp ⇒ L. Elaborate impexp using context lookup and intexp elaboration.

5 Implementation

The semantics of SMLSC avoids commitment to the meaning of “compilation,” “linking,” and
“completion” to ensure compatibility with various implementation strategies. These phases may
be implemented using classical methods (code generation during compilation, object code weaving
during linking, and writing an executable for completion), or in other, more novel, ways (such as
type checking during compilation, and code generation during linking). The design is, as far as we
know, implementable in all current Standard ML compilers without requiring radical changes to
their infrastructure.

project ::= · empty
project , srcunit source unit
project , L compiled unit(s)

Figure 18: SMLSC abstract syntax

24

Parallel Build. A compiler can exploit interfaces to support parallel compilation in order to
speed up system build times. A unit can be compiled once interfaces have been inferred for its
IC imports. The TILT compiler, which implements an earlier version of the present extension,
implements such a strategy. Moreover, it also implements cut-off incremental recompilation [1],
where it is able to interrupt the normal cascade of recompilation when a source change does not
cause a unit’s interface to change.

Parsing. This presentation of SMLSC provides concrete and abstract syntax, but does not for-
malize parsing. The only issue that entangles separate compilation and parsing is fixity declarations.
To support fixity declarations at parse-time, we include a parsing context in the concrete repre-
sentation of linksets (object files). A source unit that is incrementally compiled against a linkset
is parsed using that linkset’s included parsing context. We do not permit fixity specifications in
user-specified interfaces, and therefore they do not affect interface matching or any other part of
the semantics.

Note that a library may specify fixity information by placing appropriate declarations in the
handoff unit. For example, to describe a matrix library that supplies an infix ** operator for
multiplication, we may write the following handoff unit:

unit Matrices =
unit
import MatricesImpl :
intf
type matrix
val ** : matrix * matrix -> matrix
(* · · · *)

end
infix **

end

6 Multiple Interfaces for the Same Import

In Section 2 we presented the programming methodology of handoff units. As long as two linksets
that import the same unit identifier do so by using the same handoff unit, they will always agree
on the interface for that unit and so can be linked together. However, in some situations it may
be useful to permit two clients to import the same unit, each with a different interface. Since
interface matching, like signature matching, is coercive, this complicates the methodology of definite
references by introducing “views” of the same underlying unit.

For example, suppose that two linksets L1 and L2 import the same unit MathLib at disparate
interfaces I1 and I2. This may happen because the developers of L1 and L2 compiled using different
versions of the handoff unit for MathLib, or because the developers wrote their import interfaces
by hand. The link

link(L1, L2)

fails because the linksets are required to agree on the interfaces of their common imports. Aside
from recompiling the two linksets to use the same interface, the programmer has several options
for resolving this situation. First, she can satisfy the imports by providing the implementation of

25

Figure 19: The linkset Lglue imports MathLib at interface I and then exports it to satisfy the
imports in L1 and L2 at disparate interfaces I1 and I2.

MathLib:
L′1 = link(MathLib, L1)
L = link(L′1, L2)

The first step satisfies the SC import of MathLib in L1, as long as the actual interface of MathLib
matches the import interface I1. The result L′1 does not import MathLib, so it does not conflict with
the import of MathLib in L2. L′1 does export MathLib, so if the actual interface of MathLib matches
I2, then the second link succeeds. Because linking is left-associative, L = link(MathLib, L1, L2)
accomplishes the same thing.

Any implementation of MathLib that satisfies both I1 and I2 will suffice. Because we do not re-
quire unit names to be globally unique, this implementation of MathLib might even import MathLib
(again) and then contain some glue code to make it compatible with the two given interfaces I1

and I2 (Figure 19). We expect such cases to be uncommon, the preferred methodology being to
use a single handoff unit for all clients.

7 Related Work

There are several closely related systems that influenced the design of SMLSC.
The notion of linkset in SMLSC comes from Cardelli’s investigation of separate compilation

and type-safe linking in the simply-typed λ-calculus [5]. Our formalization of linking extends these
ideas to support the Standard ML module system including signature subtyping, abstract types,
and module and type definitions in structures.

Harper and Pierce [11] discuss language design for module systems, including separate compi-
lation. Particularly relevant to the current work is their discussion of sharing of abstract types.
They describe the use of definite references to avoid the coherence problems (and excess sharing
specifications) that arise from aliasing.

The notion of a handoff unit bears some resemblance to the use of .h files in C. The presence of
function prototypes in a .h file provides an interface for application code that includes that header
file. Code that references a prototyped function triggers a link-time demand for that function. The
degree of link-time type-checking varies accross C implementations. Usually, type correctness is
assured by programming conventions.

Glew and Morrisett [8] describe separate compilation for Typed Assembly Language [19]. Their
language, MTAL, permits type definitions, abstract types, and polymorphic types in interfaces and
supports recursive linking.

Jim [14] describes a λ-calculus P2 with rank 2 intersection types that has principal typings.
The principal typings property means that from a term M , one can infer both Γ and τ such that
any typing derivation Γ′ ` M : τ ′ is an instance of Γ ` M : τ . In a system with principal typings,
program fragments can be separately compiled without context information, meaning that SC
imports need not even specify interfaces. Standard ML, however, does not have principal typings.

26

It remains an open problem to design a type system that supports principal types for features such
as abstract and recursive types, and type definitions in modules.

Objective Caml. The separate compilation system of Objective Caml (O’Caml) [15] is similar
in many regards to SMLSC. The declaration of a unit U is an O’Caml module stored within a file
called U.ml. The interface for U may optionally be given in a file called U.mli. If the interface is
present, other units depending on U can compile even if the implementation is not available, just
as in SMLSC. Because the filename of an interface indicates the unit that it describes, O’Caml
interfaces play the role of handoff units in SMLSC. Additionally, O’Caml’s use of the filesystem to
provide a canonical location for each unit and interface means that all unit references are definite.

On the other hand, O’Caml’s dependence on the filesystem means that the language is not
independent from its environment. For instance, unit names are limited to valid filenames on the
host system, and restructuring a project on disk may force changes to the code. Another significant
difference is that O’Caml conflates the notions of units and modules. This earns O’Caml some
conceptual economy, but it makes it impossible to separate the notions of top-level declarations and
structure components. This makes it necessary to support signature and functor definitions within
structures, so such a choice would not be compatible with our design principle of conservativity
over Standard ML. Finally, unlike SMLSC, O’Caml and its separate compilation system are defined
informally in terms of their implementation.

Moscow ML. The Moscow ML [20] compiler for Standard ML supports a separate compilation
system nearly identical to Objective Caml’s. Moscow ML extends the Standard ML module system
to allow (among other things) functor and signature declarations in structures and specifications
for them in signatures. Then, like O’Caml, units are structures. In contrast, SMLSC does not
require any changes to the Standard ML module language.

Other Standard ML implementations include mechanisms for breaking programs up into com-
pilation units. None support separate compilation in the sense we use it here; they use the term to
mean cut-off incremental recompilation (recall Section 5).

SML/NJ CM. The Compilation Manager for Standard ML of New Jersey (CM) [3] is a tool for
compiling Standard ML programs spread across many source files. CM permits a program to be
divided into a hierarchy of libraries [4]. A library comprises a list of imported libraries, Standard
ML source files, and a list of symbols exported by the library. Dependencies between libraries
are explicit but dependencies among the source files in a library are inferred [2, 9]. CM provides
control over the identifiers visible to a source file, and supports conditional compilation, parallel
compilation, and cut-off incremental recompilation. CM provides no way for the programmer to
write interfaces nor to compile against unimplemented units. SMLSC is not a replacement for CM;
we believe that dependency analysis and recompilation tools are useful, and that SMLSC provides
a good linguistic target for such tools.

ML Basis. The MLton compiler [18] and ML Kit [17] implement a language called ML Basis. A
“basis” in their terminology is what we call a unit. An ML Basis program is a series of declarations,
including a binding construct for bases and an open construct for basis identifiers. These are
analogous to SMLSC’s unit declaration and IC import declaration. Like SMLSC, the order of
compilation entities is explicit, and thus each program has unambiguous meaning. ML Basis is
given a formal semantics [6] in terms of The Definition of Standard ML. The implementation

27

of ML Basis in the ML Kit supports cut-off incremental recompilation based on Elsman’s thesis
work [7]. Like CM, ML Basis does not provide a way for programmers to write down interfaces or
separately compile against unimplemented bases.

8 Conclusion

We have presented an extension to Standard ML for separate compilation called SMLSC. Its focus is
the unit, a program fragment that can depend on other program fragments through either separate
or incremental compilation. Via the programming idiom of handoff units—that uses both separate
and incremental compilation—we limit the number and complexity of linguistic mechanisms while
supporting a convenient programming style. Our formal and abstract definition of the language
ensures that it is unambiguously specified, and admits a variety of implementation strategies.

Acknowledgements

We thank Matthew Fluet and Carsten Varming for their comments on drafts of this manuscript.

References

[1] Rolf Adams, Walter Tichy, and Annette Weinert. The cost of selective recompilation and
environment processing. ACM Transactions on Software Engineering and Methodology, 3(1):3–
28, January 1994.

[2] Matthias Blume. Dependency analysis for Standard ML. ACM Transactions on Programming
Languages and Systems, 21(4):790–812, 1999.

[3] Matthias Blume. CM: The SML/NJ compilation and library manager (for SML/NJ version
110.40 and later) user manual, 2002. http://www.smlnj.org/doc/CM/new.pdf.

[4] Matthias Blume and Andrew W. Appel. Hierarchical modularity. ACM Transactions on
Programming Languages and Systems, 21(4):813–847, 1999.

[5] Luca Cardelli. Program fragments, linking, and modularization. In Proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 266–277.
ACM Press, 1997.

[6] Henry Cejtin, Matthew Fluet, Suresh Jagannathan, and Stephen Weeks. Formal specification
of the ML Basis system, January 2005. http://mlton.org/MLBasis.

[7] Martin Elsman. Program Modules, Separate Compilation, and Intermodule Optimisation. PhD
thesis, Department of Computer Science, University of Copenhagen, January 1999.

[8] Neal Glew and Greg Morrisett. Type-safe linking and modular assembly language. In Proceed-
ings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 250–261. ACM Press, 1999.

[9] Robert Harper, Peter Lee, Frank Pfenning, and Eugene Rollins. Incremental recompilation for
Standard ML of New Jersey. Technical Report CMU-CS-94-116, School of Computer Science,
Carnegie Mellon University, February 1994.

28

[10] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules
with sharing. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 123–137. ACM Press, 1994.

[11] Robert Harper and Benjamin C. Pierce. Design considerations for ML-style module systems. In
Benjamin C. Pierce, editor, Advanced Topics in Types and Programming Languages, chapter 8,
pages 293–346. MIT Press, 2005.

[12] Robert Harper and Christopher Stone. An interpretation of Standard ML in type theory.
Technical Report CMU-CS-97-147, School of Computer Science, Carnegie Mellon University,
June 1997.

[13] Robert Harper and Christopher Stone. A type-theoretic interpretation of Standard ML. In
Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and Interaction:
Essays in Honour of Robin Milner. MIT Press, 2000.

[14] Trevor Jim. What are principal typings and what are they good for? In Proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press,
1996.

[15] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. The
Objective Caml system release 3.09: Documentation and user’s manual, 2005. http://caml.
inria.fr/pub/docs/manual-ocaml/index.html.

[16] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

[17] MLKit web site. http://www.itu.dk/research/mlkit/index.php/Main_Page.

[18] MLton web site. http://mlton.org/.

[19] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed assembly
language. ACM Transactions on Programming Languages and Systems, 21(3):527–568, 1999.

[20] Sergei Romanenko, Claudio Russo, and Peter Sestoft. Moscow ML owner’s manual version
2.00, June 2000. http://www.dina.kvl.dk/~sestoft/mosml/manual.pdf.

A TS Linking Rules

The typed semantics defines a closed structure modbasis :sigbasis serving as an initial basis for the
TSIL. The elaborator assumes Γ declares basis:sigbasis , which includes components such as the
built-in Match exception. This basis structure is introduced in Rule 6 for completion and Rule 12
for elaboration of source units in projects.

We use the following definitions and notation.

• Writing BV(dec) for the variable declared by dec, we define the bound variables of a structure
declaration list, BV(sdecs), by

BV(lab1Bdec1, . . . , labnBdecn) = {BV(dec1), . . . ,BV(decn)}.

A linkset
L = sdecs0 → sbnds : sdecs;S

29

binds variables BV(sdecs0) with scope sbnds : sdecs;S and variables BV(sdecs) with scope
S. We write BV(L) for BV(sdecs0) ∪ BV(sdecs).

• For readability, we sometimes elide variables in structure bindings and declarations. It should
be immediately obvious how to consistently restore these with fresh variables.

• We assume that unit identifiers are disjoint from all other identifier classes.

• We assume that the TS overbar injection · maps identifiers of different classes to different
labels and that there are infinitely many labels not in its range.

We assume that its range includes neither the distinguished label basis, nor the labels chosen
fresh in the rules.

• Structure declaration lists sdecs, signature abbreviations S, and so on specify lists of elements.
We adopt the following notation for lists.

– We denote by (·, ·) the operation of syntactic concatenation; for example, S, S′.

– We sometimes use pattern matching at the left end of a list, writing sigid=sig , S to
match the first binding in the list.

– We usually omit the initial ·; for example,

sigid1=sig1, . . . , sigid1=sig1.

• We define the domain of a signature abbreviation, dom(S), by

dom(·) = ∅
dom(S, sigid=sig) = dom(S) ∪ {sigid}
dom(S, unitid=Su) = dom(S) ∪ {unitid}.

• We define the function S++S′ by

(·++S′) = S′

((sigid=sig , S)++S′) ={
sigid=sig , S′′ if sigid 6∈ dom(S′′)
S′′ otherwise

where S′′ = S++S′

((unitid=Su, S)++S′) ={
unitid=Su, S′′ if unitid 6∈ dom(S′′)
S′′ otherwise

where S′′ = S++S′.

It concatenates S and S′, making the result well-formed by dropping signature abbreviations
if dom(S) ∩ dom(S′) 6= ∅.
• We write both “=” and “:=” in side-conditions. Interpreting the rules algorithmically, the

former pattern-matches inputs, and the latter specifies an output.

30

decs ` L ok

decs ` sdecs0 ok
decs, sdecs0 ` sbnds : sdecs
decs, sdecs0, sdecs ` S ok

sdecs0 = lab1Bvar1:[sdecs1], . . . , labnBvarn:[sdecsn]

decs ` sdecs0 → sbnds : sdecs;S ok

(1)

Rule 1: Imports are restricted to structures. The elaborator in Appendix B needs nothing else.

decs ` S ok

` decs ok

decs ` · ok
(2)

decs ` sig : Sig decs ` S ok sigid 6∈ dom(S)

decs ` sigid=sig , S ok
(3)

decs ` S′ ok decs ` S ok unitid 6∈ dom(S)
S′ = (sigid1=sig1, . . . , sigidn=sign)

decs ` unitid=S′, S ok

(4)

L exp : {}

lab 6∈ dom(sdecs)

· → sbnds : sdecs;S [sbnds, lab={}].lab : {} (5)

Lbasis := · → basis=modbasis : basis:sigbasis ; ·
` Lbasis++L L′ L′ exp : {}

L exp : {}
(6)

decs ` L++L′ L′′

L = sdecs0 → sbnds : sdecs;S

decs ` L++(· → sbnds ′ : sdecs ′;S′)
sdecs0 → sbnds++sbnds ′ : sdecs++sdecs ′;S++S′

(7)

sdecs = sdecs ′′, labBvar ′:sig ′, sdecs ′′′

decs, sdecs0, sdecs `sub var ′:sig ′ � sig mod :sig ′′

sbnd := 1Bvar=mod sdec := 1Bvar :sig ′′

L := sdecs0 → sbnds++sbnd : sdecs++sdec;S
decs ` L++(sdecs1 → sbnds ′ : sdecs ′;S′) L′′

decs ` (sdecs0 → sbnds : sdecs;S)++
(labBvar :sig , sdecs1 → sbnds ′ : sdecs ′;S′) L′′

(8)

31

lab 6∈ dom(sdecs)
sdecs0 = sdecs ′′, labBvar ′:sig ′, sdecs ′′′

decs, sdecs0, sdecs ` sig ≡ sig ′ : Sig
L′ := {var ′/var}(sdecs1 → sbnds ′ : sdecs ′;S′)
decs ` (sdecs0 → sbnds : sdecs;S)++L′ L′′

decs ` (sdecs0 → sbnds : sdecs;S)++
(labBvar :sig , sdecs1 → sbnds ′ : sdecs ′;S′) L′′

(9)

lab 6∈ dom(sdecs) ∪ dom(sdecs0)
decs, sdecs0, sdecs ` sig ≡ sig ′ : Sig

decs, sdecs0 ` sig ′ : Sig
L := sdecs0, labBvar :sig ′ → sbnds : sdecs;S

decs ` L++(sdecs1 → sbnds ′ : sdecs ′;S′) L′′

decs ` (sdecs0 → sbnds : sdecs;S)++
(labBvar :sig , sdecs1 → sbnds ′ : sdecs ′;S′) L′′

(10)

32

B TS Elaboration Rules

We change the TS elaborator to expand signature abbreviations. First, we modify every TS elabo-
ration judgement and rule using a TS elaboration context sdecs to use sdecs;S. A context sdecs;S
binds variables BV(sdecs) with scope S. We define BV(Γ) by BV(sdecs). Second, we extend the
syntax for TSEL signature expressions:

sigexp ::= . . .
sigid signature identifier

Finally, we extend the TS judgement Γ ` sigexp sig : Sig, adding the rule

Γ `ctx sigid sig : Sig

Γ ` sigid sig : Sig

to elaborate signature identifiers.
We use the following definitions and notation.

• To extend an elaboration context Γ = sdecs;S, we write

Γ, dec for sdecs, 1Bdec;S,
Γ, sdecs ′ for sdecs, sdecs ′;S, and
Γ, S′ for sdecs;S, S′.

We also define a function R(sdecs) that renames the labels in sdecs to make them inaccessible
to identifier resolution:

R(lab1Bdec1, . . . , labnBdecn) = 1Bdec1, . . . , 1Bdecn.

• We define a function U(sdecs) that drops the labels in sdecs:

U(lab1Bdec1, . . . , labnBdecn) = dec1, . . . , decn.

• When an elaboration context Γ = sdecs;S appears in a judgement requiring an IL context
decs, we implicitly coerce Γ to U(sdecs).

• We define the substitution function σ(var , sdecs, S) by

σ(var , ·, S) = S
σ(var , (labBdec, sdecs), S) =
{var .lab/BV(dec)}σ(var , sdecs, S)

where {path/var}S denotes the capture-free substitution of path for free occurrences of var
in S. Rule 14 uses σ to elaborate source units.

project L

· (· → · : ·; ·) (11)

33

project L basis 6∈ BV(L)
L = sdecs0 → sbnds : sdecs;S

Γ := basis:sigbasis , R(sdecs0), sdecs;S
Γ ` srcunit L′ var 6∈ BV(L′)

sdecs ′1 → sbnds ′ : sdecs ′;S′ := {var/basis}L′
sdecs1 := basisBvar :sigbasis , sdecs ′1

` L++(sdecs1 → sbnds ′ : sdecs ′;S′) L′′

project , srcunit L′′

(12)

Rule 12: The side-condition basis 6∈ BV(L) can always be achieved by renaming bound variables
in L.

project L
BV(L) ∩ BV(L′) = ∅ ` L′ ok ` L++L′ L′′

project , L′ L′′
(13)

Γ ` srcunit L

Γ ` topdec L
L = sdecs0 → sbnds : sdecs;S

var 6∈ BV(Γ) ∪ BV(L)
sbnds ′ := unitidBvar=[sbnds]
sdecs ′ := unitidBvar :[sdecs]
S′ := unitid=σ(var , sdecs, S)

Γ ` unit unitid = topdec
sdecs0 → sbnds ′ : sdecs ′;S′

(14)

Γ ` topdec L

Γ ` impexp L

Γ ` import impexp L
(15)

Γ ` strdec sbnds : sdecs

Γ ` strdec · → sbnds : sdecs; · (16)

Γ ` sigbind S

Γ ` signature sigbind · → · : ·;S (17)

34

Γ ` topdec sdecs0 → sbnds : sdecs;S
var 6∈ BV(Γ) ∪ BV(sdecs0)

Γ, R(sdecs0), 1?Bvar :[sdecs], S ` topdec′ L′

L := sdecs0 → 1Bvar=[sbnds] : 1Bvar :[sdecs]; ·
Γ ` L++L′ L′′

Γ ` local topdec in topdec′ end L′′

(18)

Γ ` topdec L
L = sdecs0 → sbnds : sdecs;S

Γ, R(sdecs0), sdecs, S ` topdec′ L′

Γ ` L++L′ L′′

Γ ` topdec topdec′ L′′

(19)

Γ ` impexp L

Γ `ctx unitid var : sig
Γ `ctx unitid S var ′ 6∈ BV(Γ)

L := unitidBvar ′:sig → 1?=var ′ : 1?:sig ;S

Γ ` unitid L

(20)

Rule 20: Rules 12, 18, and 19 use R(·) to hide imported units from IR imports. The signature sig
should be fully selfified.

Γ ` spec sdecs var ′ 6∈ BV(Γ)
Γ, var ′ : [sdecs] ` var ′ : sig

L := unitidBvar ′:[sdecs]→ 1?=var ′ : 1?:sig ; ·
Γ ` unitid : intf spec end L

(21)

Rule 21: The signature sig should be fully selfified.

Γ ` impexp L Γ ` impexp′ L′

BV(L) ∩ BV(L′) = ∅ Γ ` L++L′ L′′

Γ ` impexp impexp′ L′′
(22)

Γ ` sigbind S

Γ ` sigexp sig : Sig S := sigid=sig
〈Γ ` sigbind S′ sigid 6∈ dom(S′)〉

Γ ` sigid = sigexp 〈and sigbind〉 S〈, S′〉
(23)

Rule 23: Either all optional elements or none must be present.

35

Γ `ctx sigid sig : Sig

sdecs;S, sigid=sig ` sigid sig : Sig (24)

sigid ′ 6= sigid
sdecs;S ` sigid sig : Sig

sdecs;S, sigid ′=sig ′ ` sigid sig : Sig

(25)

sdecs;S ` sigid sig : Sig

sdecs;S, unitid=S′ ` sigid sig : Sig
(26)

Γ `ctx unitid S

sdecs;S, unitid=S′ ` unitid S′ (27)

unitid ′ 6= unitid
sdecs;S ` unitid S′′

sdecs;S, unitid ′=S′ ` unitid S′′
(28)

sdecs;S ` unitid S′

sdecs;S, sigid=sig ` unitid S′
(29)

Γ ok

` U(sdecs) ok

sdecs; · ok
(30)

sdecs;S ok sdecs ` sig : Sig

sdecs;S, sigid=sig ok
(31)

sdecs;S ok sdecs ` S′ ok
S′ = (sigid1=sig1, . . . , sigidn=sign)

sdecs;S, unitid=S′ ok

(32)

36

B or T, F,G,E ∈ Basis = TyNameSet× FunEnv × SigEnv × Env
T ∈ TyNameSet = Fin(TyName)

F ∈ FunEnv = FunId fin→ FunSig

G ∈ SigEnv = SigId fin→ Sig
E or (SE, TE, VE) ∈ Env = StrEnv × TyEnv ×ValEnv

Φ or (T)(E, (T ′)E′) ∈ FunSig = TyNameSet× (Env × Sig)
Σ or (T)E ∈ Sig = TyNameSet× Env

SE ∈ StrEnv = StrId fin→ Env

TE ∈ TyEnv = TyCon fin→ TyStr

VE ∈ ValEnv = VId fin→ TypeScheme× IdStatus
t ∈ TyName (type names)

funid ∈ FunId (functor identifiers)
sigid ∈ SigId (signature identifiers)
strid ∈ StrId (structure identifiers)

tycon ∈ TyCon (type constructors)
vid ∈ VId (value identifiers)

Figure 20: Static TDIL for Standard ML (summary). Fin(A) denotes the set of finite subsets of A

C Unit Static Semantic Rules

We use the following definitions and notation.

• TD’s static semantics. We recall the static TDIL for Standard ML in Figure 20.

We write E∅ for the empty environment ({}, {}, {}).
We write tynames A for the set of free type names in the semantic object A.

We write tyvars A for the set of free type variables in the semantic object A [16, Section 4.2].

For any semantic object A, we write A wf for “every type structure occuring in A is well-
formed” [16, Section 4.9].

We assume familiarity with realizations ϕ and their support Supp ϕ [16, Section 5.2].

We assume familiarity with signature instantiation and enrichment [16, Sections 5.3 and 5.5].

• Sets. We write A \B for {a ∈ A ; a 6∈ B}.
We write #A for the cardinality of the finite set A.

• Finite maps. The domain of a finite map f : A fin→ B is the set dom(f) of those a ∈ A for
which f is defined.

Finite maps may be specified explicitly; for example {a1 7→ b1, . . . , an 7→ bn} (n ≥ 0).

We extend this notation to a form of set comprehension, writing {a 7→ b ; φ} for the map
taking every a satisfying φ to b(a).

• Extension. To extend finite maps f, g : A fin→ B, we define f + g : A fin→ B by

(f + g)(a) =
{
g(a) if a ∈ dom(g)
f(a) otherwise.

37

We define T + T ′ by T ∪ T ′.
We extend semantic objects componentwise; for example, E+E′ and B+B′ have the evident
definitions.

We extend components in a semantic object when it is unambiguous to do so; for example,

Γ + U = B,U ′+U
Γ +B′ = B+B′, U ′

Γ + T = B+T,U ′ = (T ′+T, F,G,E), U ′

where Γ = B,U ′ and B = T ′, F,G,E.

We lift application to finite maps in semantic objects when it is unambiguous to do so; for
example,

Γ(unitid) = U(unitid)
B(strid) = E(strid) = SE(strid)

where Γ = B,U ; B = T, F,G,E; and E = (SE, TE, VE).

• Projection. We write (· of ·) for projection from semantic objects; for example,

T of Γ = T of B = T ′

where Γ = B,U and B = T ′, F,G,E.

Γ ` udecs : uspecs

Γ ok

Γ ` · : · (33)

srcunit = (unit unitid = unit topdec end) Υ = (T)(F,G,E)
Γ ` topdec : T, F,G,E

Γ + T + {unitid 7→ T, F,G,E} ` udecs : uspecs

Γ ` (srcunit , udecs) : (unitid :Υ, uspecs)

(34)

Γ ` topdec : B

Γ ` impexp : F,G,E

Γ ` import impexp : ∅, F,G,E (35)

B ` strdec ⇒ E T := tynames E \ (T of B) tyvars E = ∅
B,U ` strdec : T, {}, {}, E (36)

B ` sigdec ⇒ G

B,U ` sigdec : ∅, {}, G,E∅
(37)

Rule 37: TD’s Rules 65 and 67 ensure that tynames G = ∅. TD’s rules for B ` spec ⇒ E ensure
that tyvars G = ∅.

38

B ` fundec ⇒ F T := tynames F \ (T of B) tyvars F = ∅
B,U ` fundec : T, F, {}, E∅

(38)

Γ ` topdec : B Γ +B ` topdec′ : T ′, F ′, G′, E′ T := (T of B) ∪ T ′
Γ ` local topdec in topdec′ end : T, F ′, G′, E′

(39)

Γ ` topdec : B Γ +B ` topdec′ : B′

Γ ` topdec topdec′ : B +B′
(40)

Γ ` impexp : F,G,E

Γ(unitid) = T, F,G,E

Γ ` unitid : F,G,E
(41)

B of Γ ` intexp ⇒ Υ Υ = (T)(F, {}, E)
Γ(unitid) = T ′, F ′, G′, E′ F ′, G′, E′ : Υ using ϕ

Γ ` (unitid : intexp) : ϕ(F), {}, ϕ(E)
(42)

Γ ` impexp : F,G,E Γ ` impexp′ : F ′, G′, E′

Γ ` impexp impexp′ : F+F ′, G+G′, E+E′
(43)

B ` intexp ⇒ Υ

B ` topspec ⇒ F,E T := (tynames F,E) \ (T of B)

B ` intf topspec end⇒ (T)(F, {}, E)
(44)

B ` topspec ⇒ F,E

B ` spec ⇒ E

B ` spec ⇒ {}, E (45)

B ` funspec ⇒ F

B ` functor funspec ⇒ F, {} (46)

B ` topspec ⇒ F,E B + E ` topspec′ ⇒ F ′, E′

dom(F) ∩ dom(F ′) = ∅ dom(E) ∩ dom(E′) = ∅
B ` topspec topspec′ ⇒ F+F ′, E+E′

(47)

39

B ` funspec ⇒ F

B ` sigexp ⇒ (T)E B + T + {strid 7→ E} ` sigexp′ ⇒ (T ′)E′

F := {funid 7→ (T)(E, (T ′)E′)}
〈B ` funspec ⇒ F ′ funid 6∈ dom(F ′)〉

B ` funid(strid : sigexp) : sigexp′ 〈and funspec〉 ⇒ F 〈+F ′〉
(48)

Γ ok

tynames F,G,E,U ⊂ T F,G,E,U wf

(T, F,G,E), U ok
(49)

Γ ` Υ : Sig

T = T of Γ
T ∩ T ′ = ∅ tynames F,G,E ⊂ T ∪ T ′

tyvars F,G,E = ∅ F,G,E wf

Γ ` (T ′)(F,G,E) : Sig

(50)

Γ ` uspecs ok

Γ ok

Γ ` · ok
(51)

Γ ` Υ : Sig Υ = (T ′)(F,G,E) Γ + T ′ ` uspecs ok

Γ ` unitid :Υ, uspecs ok
(52)

E : Σ using ϕ

Σ ≥ E− using ϕ E � E−
E : Σ using ϕ

(53)

Σ ≡ Σ′ using ϕ

T = ϕ(T ′) E = ϕ(E′) Supp ϕ ⊂ T ′ #T = #T ′

(T)E ≡ (T ′)E′ using ϕ
(54)

40

Υ ≡ Υ′ using ϕ

(T)E ≡ (T ′)E′ using ϕ F = ϕ(F ′) G = ϕ(G′)

(T)(F,G,E) ≡ (T ′)(F ′, G′, E′) using ϕ
(55)

F,G,E : Υ using ϕ

E : (T)E′ using ϕ
dom(F) ⊃ dom(F ′)

∀funid ∈ dom(F ′). ∃ϕ1, ϕ2





E′1 : (T1)E1 using ϕ1

ϕ1(E2) : (T ′2)E′2 using ϕ2

where (T ′1)(E′1, (T
′
2)E′2) = ϕ(F ′(funid))

and (T1)(E1, (T2)E2) = F (funid)
dom(G) ⊃ dom(G′)
∀sigid ∈ dom(G′). ∃ϕ′. G(sigid) ≡ ϕ(G′(sigid)) using ϕ′

F,G,E : (T)(F ′, G′, E′) using ϕ

(56)

41

(F,G,E) or B ∈ Basis = FunEnv× SigEnv × Env

F ∈ FunEnv = FunId fin→ FunctorClosure

G ∈ SigEnv = SigId fin→ Int
(SE, TE, VE) or E ∈ Env = StrEnv× TyEnv ×ValEnv

(strid : I, strexp, B) ∈ FunctorClosure = (StrId× Int)× StrExp× Basis
(SI, TI, VI) or I ∈ Int = StrInt× TyInt×ValInt

SE ∈ StrEnv = StrId fin→ Env

TE ∈ TyEnv = TyCon fin→ ValEnv

VE ∈ ValEnv = VId fin→ Val× IdStatus

SI ∈ StrInt = StrId fin→ Int

TI ∈ TyInt = TyCon fin→ ValInt

VI ∈ ValInt = VId fin→ IdStatus
(G, I) or IB ∈ IntBasis = SigEnv× Int

Figure 21: Dynamic TDIL for Standard ML (summary)

D Unit Dynamic Semantic Rules

We use the following definitions and notation.

• We recall the dynamic TDIL for Standard ML in Figure 21.

• We extend the TDIL category FunctorClosure as follows, permitting an optional ascribed
interface on the functor body.

FunctorClosure = FClos ∪ FClos′

(strid : I, strexp, B) ∈ FClos = (StrId× Int)× StrExp× Basis
(strid : I, strexp : I ′, B) ∈ FClos′ = (StrId× Int)× (StrExp× Int)× Basis.

Here, A ∪B denotes the disjoint union of A and B.

• We define the function ↓ : Basis×UnitInt→ Basis that cuts down a basis B to match a unit
interface UI:

↓ : Basis×UnitInt→ Basis
(F,G,E) ↓ (FI, I) = (F ↓ FI, {}, E ↓ I)

↓ : FunEnv × FunIntEnv→ FunEnv
F ↓ FI = {funid 7→ F (funid) ↓ FI(funid) ; funid ∈ dom(F) ∩ dom(FI)}

↓ : FunctorClosure× (Int× Int)→ FunctorClosure
(strid :I0, strexp, B) ↓ (I, I ′) = (strid :I, strexp:I ′, B)
(strid :I0, strexp:I ′0, B) ↓ (I, I ′) = (strid :I, strexp:I ′, B).

• TD’s evaluation judgement s,B ` strexp ⇒ E/p, s′ handles functor application for functor
closures of the form FClos. We extend that judgement by adding the following rules to handle

42

functor closures of the form FClos′.

B(funid) = (strid :I, strexp′:I ′, B′)
s,B ` strexp ⇒ E, s′ s′, B′+{strid 7→ E ↓ I} ` strexp′ ⇒ E′, s′′

s,B ` funid(strexp)⇒ E′ ↓ I ′, s′′

B(funid) = (strid :I, strexp′:I ′, B′)
s,B ` strexp ⇒ p, s′

s,B ` funid(strexp)⇒ p, s′

B(funid) = (strid :I, strexp′:I ′, B′)
s,B ` strexp ⇒ E, s′ s′, B′+{strid 7→ E ↓ I} ` strexp′ ⇒ p, s′′

s,B ` funid(strexp)⇒ p, s′′

s,Γ ` udecs ⇒ Γ′/p, s′

s,Γ ` · ⇒ Γ, s (57)

srcunit = (unit unitid = unit topdec end)
s,Γ ` topdec ⇒ B, s′ s′,Γ+{unitid 7→ B} ` udecs ⇒ Γ′, s′′

s,Γ ` srcunit , udecs ⇒ Γ′, s′′
(58)

srcunit = (unit unitid = unit topdec end)
s,Γ ` topdec ⇒ p, s′

s,Γ ` srcunit , udecs ⇒ p, s′
(59)

srcunit = (unit unitid = unit topdec end)
s,Γ ` topdec ⇒ B, s′ s′,Γ+{unitid 7→ B} ` udecs ⇒ p, s′′

s,Γ ` srcunit , udecs ⇒ p, s′′
(60)

s,Γ ` topdec ⇒ B/p, s′

Γ ` impexp ⇒ B

s,Γ ` import impexp ⇒ B, s
(61)

s,B ` strdec ⇒ E, s′

s, (B,U) ` strdec ⇒ ({}, {}, E), s′
(62)

s,B ` strdec ⇒ p, s′

s, (B,U) ` strdec ⇒ p, s′
(63)

Inter B ` sigdec ⇒ G

s, (B,U) ` sigdec ⇒ ({}, G,E∅), s
(64)

43

B ` fundec ⇒ F

s, (B,U) ` fundec ⇒ (F, {}, E∅), s
(65)

s,Γ ` topdec ⇒ B, s′ s′,Γ+B ` topdec′ ⇒ B′, s′′

s,Γ ` local topdec in topdec′ end⇒ B′, s′′
(66)

s,Γ ` topdec ⇒ p, s′

s,Γ ` local topdec in topdec′ end⇒ p, s′
(67)

s,Γ ` topdec ⇒ B, s′ s′,Γ+B ` topdec′ ⇒ p, s′′

s,Γ ` local topdec in topdec′ end⇒ p, s′′
(68)

s,Γ ` topdec ⇒ B, s′ s′,Γ+B ` topdec′ ⇒ B′, s′′

s,Γ ` topdec topdec′ ⇒ B+B′, s′′
(69)

s,Γ ` topdec ⇒ p, s′

s,Γ ` topdec topdec′ ⇒ p, s′
(70)

s,Γ ` topdec ⇒ B, s′ s′,Γ+B ` topdec′ ⇒ p, s′′

s,Γ ` topdec topdec′ ⇒ p, s′′
(71)

Γ ` impexp ⇒ B

Γ(unitid) = B′

Γ ` unitid ⇒ B′
(72)

Inter B ` topspec ⇒ UI U(unitid) = B′

B,U ` unitid : intf topspec end⇒ B′ ↓ UI (73)

Γ ` impexp ⇒ B Γ ` impexp′ ⇒ B′

Γ ` impexp impexp′ ⇒ B +B′
(74)

IB ` topspec ⇒ UI

IB ` spec ⇒ I

IB ` spec ⇒ {}, I (75)

IB ` funspec ⇒ FI

IB ` functor funspec ⇒ FI, ({}, {}, {}) (76)

IB ` topspec ⇒ FI, I IB + I ` topspec′ ⇒ FI ′, I ′

IB ` topspec topspec′ ⇒ FI+FI ′, I+I ′
(77)

44

IB ` funspec ⇒ FI

IB ` sigexp ⇒ I IB + {strid 7→ I} ` sigexp′ ⇒ I ′

FI := {funid 7→ (I, I ′)} 〈IB ` funspec ⇒ FI ′〉
IB ` funid(strid : sigexp) : sigexp′ 〈and funspec〉 ⇒ FI〈+FI ′〉

(78)

E TD Linking Rules

TD defines the initial static basis B0 = T0, F0, G0, E0 [16, Appendix C]. We define the basis interface

Υbasis = (T0)(F0, G0, E0)

and assume the unit identifier basis may not appear in source units.

Γ ` L ok

Γ ` uspecs ok
Γ + uspecs ` exps ok

uspecs = unitid1:Υ1, . . . , unitidn:Υn

unitid1, . . . , unitidn are distinct

Γ ` uspecs → exps ok

(79)

Γ ` exps ok

Γ ` udecs : uspecs

Γ ` udecs : uspecs ok
(80)

Γ ` (T)(F,G,E) : Sig

Γ ` T, F,G,E ok
(81)

L⇒ udecs

· → udecs : uspecs ⇒ udecs (82)

Υ ≡ Υbasis using ϕ

basis:Υ→ udecs : uspecs ⇒ udecs
(83)

Γ ` L++L′ ⇒ L′′

Γ ` exps++exps ′ ⇒ exps ′′

Γ ` (uspecs0 → exps)++(· → exps ′)⇒ uspecs0 → exps ′′
(84)

45

unitid ∈ dom(uspecs)
(Γ + uspecs0 + uspecs)(unitid) = T ′, F ′, G′, E′

F ′, G′, E′ : Υ using ϕ
L′ := ϕ(uspecs1 → udecs ′ : uspecs ′)

Γ ` (uspecs0 → udecs : uspecs)++L′ ⇒ L′′

Γ ` (uspecs0 → udecs : uspecs)++(unitid :Υ, uspecs1 → udecs ′ : uspecs ′)⇒ L′′

(85)

unitid 6∈ dom(exps)
uspecs0 = uspecs ′′, unitid :Υ′, uspecs ′′′

Υ′ ≡ Υ using ϕ
L′ := ϕ(uspecs1 → exps ′)

Γ ` (uspecs0 → exps)++L′ ⇒ L′′

Γ ` (uspecs0 → exps)++(unitid :Υ, uspecs1 → exps ′)⇒ L′′

(86)

unitid 6∈ dom(exps) ∪ dom(uspecs0)
Υ′ ≡ Υ using ϕ

Γ + BT(uspecs0) ` Υ′ : Sig
L := uspecs0, unitid :Υ′ → exps
L′ := ϕ(uspecs1 → exps ′)

Γ ` L++L′ ⇒ L′′

Γ ` (uspecs0 → exps)++(unitid :Υ, uspecs1 → exps ′)⇒ L′′

(87)

Γ ` exps++exps ′ ⇒ exps ′′

Γ ` (udecs : uspecs)++(udecs ′ : uspecs ′)⇒ udecs, udecs ′ : uspecs, uspecs ′ (88)

Γ ` B++B′ ⇒ B +B′ (89)

F TD Elaboration Rules

We define the bound type names in a linkset, BT(L), by

BT(uspecs0 → udecs : uspecs) = BT(uspecs0) ∪ BT(uspecs)
BT(uspecs0 → B) = BT(uspecs0).

project ⇒ L

· ⇒ · → · (90)

46

project ⇒ L Υbasis = (T)(F,G,E) T ∩ BT(L) = ∅
L = uspecs0 → udecs : uspecs

Γ := ((T, F,G,E), {}) + BT(uspecs0) + uspecs
Γ ` srcunit ⇒ uspecs1 → udecs ′ : uspecs ′

` L++(basis:Υbasis , uspecs1 → udecs ′ : uspecs ′)⇒ L′′

project , srcunit ⇒ L′′

(91)

project ⇒ L
BT(L) ∩ BT(L′) = ∅ ` L′ ok ` L++L′ ⇒ L′′

project , L′ ⇒ L′′
(92)

Γ ` srcunit ⇒ L

srcunit = (unit unitid = unit topdec end)
Γ ` topdec ⇒ uspecs0 → T, F,G,E

Γ ` srcunit ⇒ uspecs0 → srcunit : unitid :(T)(F,G,E)
(93)

Γ ` topdec ⇒ L

Γ ` impexp ⇒ L

Γ ` import impexp ⇒ L
(94)

topdec = strdec Γ ` topdec : B

Γ ` topdec ⇒ · → B
(95)

topdec = sigdec Γ ` topdec : B

Γ ` topdec ⇒ · → B
(96)

topdec = fundec Γ ` fundec : B

Γ ` topdec ⇒ · → B
(97)

Γ ` topdec ⇒ uspecs0 → B
Γ + BT(uspecs0) +B ` topdec′ ⇒ L

B′ := T of B, {}, {}, E∅ Γ ` (uspecs0 → B′)++L⇒ L′

Γ ` local topdec in topdec′ end⇒ L′

(98)

Γ ` topdec ⇒ L L = uspecs0 → B
Γ + BT(uspecs0) +B ` topdec′ ⇒ L′

Γ ` L++L′ ⇒ L′′

Γ ` topdec topdec′ ⇒ L′′

(99)

47

Γ ` impexp ⇒ L

Γ(unitid) = T, F,G,E L := unitid :(T)(F,G,E)→ ∅, F,G,E
Γ ` unitid ⇒ L

(100)

Γ ` intexp ⇒ (T)(F,G,E) L := unitid :(T)(F,G,E)→ ∅, F,G,E
Γ ` unitid : intexp ⇒ L

(101)

Γ ` impexp ⇒ L Γ ` impexp′ ⇒ L′

BT(L) ∩ BT(L′) = ∅ Γ ` L++L′ ⇒ L′′

Γ ` impexp impexp′ ⇒ L′′
(102)

48

interpreter

input

stream

parsing

Figure 22: The dependencies among the libraries and the Mini-ML interpreter. The interpreter
uses all three libraries and the input and parsing libraries use the stream library.

G Larger Example: Mini-ML

In this appendix we present a more realistic example based on code used in Frank Pfenning’s 1995
Logic Programming course at Carnegie Mellon. The example comprises a stream library, an input
library, a parsing library, and an interpreter for Mini-ML that uses the libraries.9 In Figure 22,
we illustrate the high-level dependencies in the code. We first discuss the library handoff units
and the interpreter. Then we give library implementations and show how to link these to make an
executable interpreter.

Stream Library

The stream library declares a signature BASIC STREAM describing the visible “core” of functional
streams, a signature STREAM that extends BASIC STREAM, a functor Stream that lifts a BASIC STREAM
structure to STREAM, and plain and memoizing STREAM structures. The handoff unit StreamLib
declares all of these components by importing units STREAMSIG and StreamImpl:

unit STREAMSIG =
unit
signature BASIC_STREAM =
sig
type ’a stream
val empty : ’a stream
val create : (unit -> (’a * ’a stream) option) -> ’a stream
val expose : ’a stream -> (’a * ’a stream) option
(* · · · *)

end
9The libraries were written by Chris Okasaki, Frank Pfenning, and Bob Harper. Pfenning wrote the interpreter

to demonstrate the libraries to teams of students using them to implement compilers for the course.

49

signature STREAM =
sig
include BASIC_STREAM
exception Empty
val delay : (unit -> ’a stream) -> ’a stream
val lcons : ’a * (unit -> ’a stream) -> ’a stream
val cons : ’a * ’a stream -> ’a stream
val map : (’a -> ’b) -> ’a stream -> ’b stream
(* · · · *)

end
end

unit StreamLib =
unit
import STREAMSIG

import StreamImpl :
intf
functor Stream(structure BasicStream : BASIC_STREAM)
: STREAM where type ’a stream = ’a BasicStream.stream

structure PlainStream : STREAM

structure MemoStream : STREAM

(* default stream package memoizes *)
structure Stream : STREAM
where type ’a stream = ’a MemoStream.stream

end
end

The other libraries and the interpreter import StreamLib, heavily using its structure Stream :
STREAM but never directly referring to the auxiliary units STREAMSIG and StreamImpl. We shall
give a stream implementation StreamImpl that, like StreamLib, performs IC against STREAMSIG
to obtain the stream signatures.

Input Library

The input library declares a signature INPUT and structure Input : INPUT. Structure Input creates
character streams. For example, the function

Input.promptkeybd : string -> char Stream.stream

creates a stream that, when forced, prompts the user for input a line at a time. The handoff unit
InputLib imports units INPUTSIG and InputImpl:

50

unit INPUTSIG =
unit
local
import StreamLib

in
signature INPUT =
sig
val readfile : string -> char Stream.stream
val readkeybd : unit -> char Stream.stream
val promptkeybd : string -> char Stream.stream

end
end

end

unit InputLib =
unit
import INPUTSIG

import InputImpl :
intf
structure Input : INPUT

end
end

This description of the input library performs IC against the stream library description (unit
StreamLib) but SC against its implementation (unit StreamImpl).

Parsing Library

The parsing library declares a signature POS and structure Pos : POS for positions within a file, a
signature BASIC PARSING describing a “core” set of parsing combinators, a signature PARSING that
extends BASIC PARSING with additional combinators and utilities, a functor Parsing that lifts a
BASIC PARSING structure to PARSING, and, finally, a structure Parsing : PARSING. The parsing
library uses the stream library. For example,

Pos.markstream : char Stream.stream -> (char * Pos.pos) Stream.stream

marks a character stream with position information for reporting errors and

Parsing.transform : (’a,’t) Parsing.parser
-> (’t * Pos.pos) Stream.stream
-> ’a Stream.stream

creates a stream of parsed values from a parser and a marked stream of tokens. Following the now
familiar pattern, the handoff unit ParsingLib imports PARSINGSIG and ParsingImpl:

51

unit PARSINGSIG =
unit
local
import StreamLib

in
signature POS =
sig
type pos
val markstream : char Stream.stream -> (char * pos) Stream.stream
(* · · · *)
val makestring : pos -> string

end

signature BASIC_PARSING =
sig
(* Parser with token type ’t, result type ’a *)
type (’a,’t) parser
type pos (* = Pos.pos *)

val succeed : ’a -> (’a,’t) parser
val fail : (’a,’t) parser

val done : ’a -> (’a,’t) parser
val any : (’t,’t) parser

val -- : (’a,’t) parser * (’a -> (’b,’t) parser) -> (’b,’t) parser
val ## : (’a,’t) parser * (pos -> (’a,’t) parser) -> (’a,’t) parser

val !! : (’a,’t) parser -> (’a * pos,’t) parser

val $: (unit -> (’a,’t) parser) -> (’a,’t) parser

val lookahead : (’a,’t) parser -> (’a -> (’b,’t) parser)
-> (’b,’t) parser

val parse : (’a,’t) parser -> (’t * pos) Stream.stream -> ’a option
val transform : (’a,’t) parser -> (’t * pos) Stream.stream
-> ’a Stream.stream

end

signature PARSING =
sig
include BASIC_PARSING
val && : (’a,’t) parser * (’b,’t) parser -> (’a * ’b,’t) parser
val || : (’a,’t) parser * (’a,’t) parser -> (’a,’t) parser
(* · · · many more · · · *)

end
end

end

52

unit ParsingLib =
unit
import PARSINGSIG

import ParsingImpl :
intf
structure Pos : POS

functor Parsing(structure BasicParsing : BASIC_PARSING
where type pos = Pos.pos)

: PARSING
where type ’a parser = ’a BasicParsing.parser
where type pos = Pos.pos

structure Parsing : PARSING
where type pos = Pos.pos

end
end

Interperter

The Mini-ML interpreter is a single unit Interp that declares signatures and structures for identi-
fiers, lexical tokens, an abstract syntax, lexical analysis, parsing, evaluation, and a read-eval-print
loop. It performs IC against the handoff units StreamLib, InputLib, and ParsingLib and units
BoolLib and IntLib (not shown but assumed to declare the Standard Basis Library structures
Bool and Int).

unit Interp =
unit
import StreamLib InputLib ParsingLib IntLib BoolLib

signature ID =
sig
eqtype id

val id : string -> id
val eq : id * id -> bool
val makestring : id -> string

end

structure Id :> ID = struct (* · · · *) end

53

signature TOKEN =
sig
datatype token =
Id of Id.id

| Num of int
| LParen | RParen
| Plus | Times | Neg | Eql
| Fn | Rec | Is
| LAngle | RAngle | Comma | Fst | Snd
| True | False | If | Then | Else
| Let | Be | In
| Semi

val makestring : token -> string
end

structure Token :> TOKEN = struct (* · · · *) end

signature ABSSYN =
sig
datatype abssyn =
Var of Id.id

| Num of int
| Bool of bool
(* · · · *)
val makestring : abssyn -> string

end

structure AbsSyn :> ABSSYN = struct (* · · · *) end

signature LEXER =
sig
val lex_item : (Token.token * Pos.pos, char) Parsing.parser
val lex :
(char * Pos.pos) Stream.stream ->
(Token.token * Pos.pos) Stream.stream

end

structure Lexer :> LEXER = struct (* · · · *) end

signature PARSER =
sig
val parse_prog : (AbsSyn.abssyn, Token.token) Parsing.parser
val parse : (Token.token * Pos.pos) Stream.stream
-> AbsSyn.abssyn Stream.stream

end

structure Parser :> PARSER = struct (* · · · *) end

54

signature EVALUATOR =
sig
val evaluate : AbsSyn.abssyn Stream.stream
-> AbsSyn.abssyn Stream.stream

end

structure Evaluator :> EVALUATOR = struct (* · · · *) end

signature INTERPRETER =
sig
val interpreter : char Stream.stream -> string Stream.stream
val interact : unit -> unit

end

structure Interpreter :> INTERPRETER =
struct
val interpreter =
(Stream.map AbsSyn.makestring) o
(Evaluator.evaluate) o
(Parser.parse) o
(Lexer.lex) o
(Pos.markstream)

fun interact () =
let
fun loop s =
(case Stream.expose s of
NONE => ()

| SOME (result, s’) =>
(print (result ^ "\n"); loop s’))

val is = interpreter (Input.promptkeybd "> ")
in
loop is

end
end

end

The interpreter is organized around the stream library. For example, the Mini-ML evaluator
has type

Evaluator.evaluate : AbsSyn.abssyn Stream.stream
-> AbsSyn.abssyn Stream.stream

and maps a stream of expressions into a stream of values, filtering out those expressions whose
evaluation gets stuck (and printing an error message). This organization lends itself well to exper-
imenting and debugging. A one-line change

55

val interpreter =
(Stream.map AbsSyn.makestring) o

(* (Evaluator.evaluate) o *)
(Parser.parse) o
(Lexer.lex) o
(Pos.markstream)

produces a variant of the interpreter that accepts syntactically correct Mini-ML expressions and
prints the resulting abstract syntax.

Library Implementations

Unit StreamImpl performs IC against the unit STREAMSIG:

unit StreamImpl =
unit
import STREAMSIG

functor Stream(structure BasicStream : BASIC_STREAM)
:> STREAM where type ’a stream = ’a BasicStream.stream =
struct
open BasicStream
exception Empty
fun delay t = create (expose o t)
(* · · · *)

end

structure BasicStream :> BASIC_STREAM =
struct (* · · · *) end

structure PlainStream : STREAM =
Stream (structure BasicStream = BasicStream)

structure BasicMemoStream :> BASIC_STREAM =
struct (* · · · *) end

(* default stream package memoizes *)
structure Stream = MemoStream

end

Unit InputImpl performs IC against INPUTSIG and StreamLib but SC against StreamImpl. It
also needs a way to perform IO: We assume the unit TextIOLib (not shown) declares the Standard
Basis Library structure TextIO.

unit InputImpl =
unit
local
import INPUTSIG StreamLib TextIOLib

in
structure Input :> INPUT = struct (* · · · *) end

end
end

56

We declared everything specified by StreamLib in StreamImpl. Here we demonstrate an al-
ternative. Unit ParsingImpl imports structure Pos and functor Parsing from auxilliary units
PosImpl and ParsingFunImpl:

unit PosImpl =
unit
local
import PARSINGSIG StreamLib

in
structure Pos :> POS = struct (* · · · *) end

end
end

unit ParsingFunImpl =
unit
local
import PARSINGSIG StreamLib PosImpl

in
functor Parsing (structure BasicParsing : BASIC_PARSING

where type pos = Pos.pos) : PARSING =
struct (* · · · *) end

end
end

unit ParsingImpl =
unit
local
import PARSINGSIG StreamLib

in
import PosImpl ParsingFunImpl

structure BasicParsing :> BASIC_PARSING where type pos = Pos.pos =
struct (* · · · *) end

structure Parsing =
Parsing (structure BasicParsing = BasicParsing)

end
end

Linking

To create an executable interpreter, we shall link unit Interp with library implementations and
the unit

unit RunInterp =
unit
import Interp
val () = Interpreter.interact()

end

57

that gets things started. We begin by compiling Interp and RunInterp:

Lr = link(STREAMSIG, StreamLib,
INPUTSIG, InputLib,
PARSINGSIG,ParsingLib,
IntLib,BoolLib,
Interp,
RunInterp).

We then compile the libraries:

LS = link(STREAMSIG, StreamImpl)
LI = link(STREAMSIG, StreamLib, INPUTSIG, TextIOLib, InputImpl)
LP = link(STREAMSIG, StreamLib,

PARSINGSIG,PosImpl, ParsingFunImpl, ParsingImpl)

Finally, we complete the linkset
L = link(LS , LI , LP , Lr)

to an executable program. When run, the program will prompt the user, parse Mini-ML expres-
sions from its input, evaluate these in turn, and print the resulting values (provided evaluation
terminates). The following typescript demonstrates the program in action.

> true+3;
Run-time error arithmetic type error
> let sq be fn x in x*x in sq(sq 4);
256
> let fib be rec f(x) is
> if x=0 then 1
> else if x=1 then 1
> else f(x + ~1) + f(x + ~2)
> in fib 7;
21
>

An implementation could avoid unnecessary recompilation, maintaining a repository of compiled
code during IC. For example, such an implementation might employ

L0 = link(STREAMSIG)
L1 = link(L0, StreamImpl)
L2 = link(L0, StreamLib)
L3 = link(L2, INPUTSIG, TextIOLib, InputImpl)
L4 = link(L2, PARSINGSIG,PosImpl, ParsingFunImpl, ParsingImpl)

to avoid recompiling STREAMSIG and StreamLib while producing LS = L1, LI = L3, and LP = L4.

58

