
Exploiting Rich Mobile Environments

Jesse Chang Rajesh Krishna Balan
Mahadev Satyanarayanan

December 2005
CMU-CS-05-199

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was partially supported by the National Science Foundation (NSF) under grant numbers ANI-
0081396 and CCR-0205266, and by an equipment grant from the Hewlett-Packard Corporation (HP). Rajesh Balan
was supported by an IBM Graduate Fellowship in 2003-2005 andby a USENIX Graduate Fellowship in 2002. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF, HP, IBM, USENIX or Carnegie Mellon University. All unidentified
trademarks mentioned in the paper are properties of their respective owners.



Keywords: Mobile and Pervasive Computing, Data Decomposition, Rich Mobile Environ-
ments



Abstract

Remote execution has commonly been used to allow mobile devices to run large computationally
intensive applications such as language translation and optical character recognition. Traditionally,
most remote execution systems have concentrated on resource-limited environments. However,
with the sharp decrease in the price of computing, it is not inconceivable that environments with
an abundance of computing resources will soon become the norm. In this paper, we investigate a
solution, known as “data decomposition”, that exploits these excess resource to improve applica-
tion latency. We identify the kinds of applications that might benefit from this solution. We then
describe how we extended an existing remote execution system to support data decomposition.
We then present results, for three real applications, that show that data decomposition can greatly
improve application latency – up to 85% in some cases compared with using just a single remote
execution server. We also present results that show the effect of data decomposition in heteroge-
neous environments. Our results suggest that data decomposition can be used fairly, without global
knowledge, by multiple clients.





1 Introduction

In the last few years, there has been a proliferation of small, light mobile devices such as PDAs
and cellphones. These devices have become increasingly useful as more and more applications are
ported to them. However, the devices themselves only have limited computational power as space,
weight, and battery lifetime considerations are more important design considerations. Hence, many
useful resource-intensive mobile applications such as language translation and optical character
recognition cannot be executed on these devices without performance penalties.

Fortunately, there is a solution. The computational capabilities of these mobile devices can be
augmented through the use of remote execution. For example,the resource-intensive application
may run completely on the remote server with the mobile device accessing it using ssh, vpn, or
similar techniques. Alternatively, the application may run on the mobile device but remote servers
may be used to execute the computationally intensive portions of the application.

Previous research on using remote servers has concentratedon cases where there are just
enough servers to support the basic requirements of the resource-intensive applications. How-
ever, the cost of commodity computing has been decreasing considerably. It is possible, today,
to buy a fairly powerful personal computer for just a few hundred dollars – about the same cost
as office furniture. It is thus likely that environments witha large number of available servers
will become increasingly common. Indeed, such environments already exist in the form of smarts
rooms and university environments where server resources are usually abundantly available and
underutilized.

In this paper, we investigate whether it is possible to utilize additional servers, over and beyond
the basic application requirements, to achieve additionalperformance improvements – in particular
reduced application latency. For example, if the normal application operation requires just two
servers, is it possible to achieve lower latency by using four servers?

Specifically, in this paper, we answer the following four questions:

• What kinds of applications can benefit from additional servers?

• How can this benefit be achieved without extensive application modifications?

• What are the performance benefits of using additional servers?

• Can distinct independent mobile clients exploit a common pool of additional servers in a fair
manner?

We show that applications can benefit from additional servers as long as they process data that
is easy to decompose into independent chunks. This decomposition, known asdata decomposition,
can be performed with relatively little application modification and results in substantial improve-
ments in overall application latency – up to a 85% reduction for some applications. We also present
results that show the effect of data decomposition in heterogeneous environments and results that
suggest that data decomposition can be used fairly, withoutglobal knowledge, by multiple clients.

The rest of this paper is organized as follows: Section 2 present related work and Section 3
describes the kinds of applications that can benefit from data decomposition. In Section 4, we
show how data decomposition can be added to an existing remote execution system. We present
our validation approach in Section 5 and the actual validation results in Sections 6 to 8.

1



2 Related Work

The idea of exploiting excess server resources isn’t new, but we believe we are the first to apply it
to the mobile computing domain (where mobility dictates that the availability of servers will con-
stantly change). In this section, we present a few systems inthe parallel and distributed computing
domains that have exploited excess resources.

MapReduce [7] is a highly scalable and error resilient production cluster computing system
for processing and generating large data sets. It does this by using all available servers to process
chunks of work. MapReduce has a very simple programming interface and requires applications
to provide only two functions: a Map function that splits data into smaller chunks and a Reduce
function that combines the partial results obtained by processing a chunk into full results. This
simple API makes it easy to modify applications to to supportMapReduce. Many of the ideas
presented in this paper are similar in spirit to this work.

River [1] is a data-flow programming environment and I/O substrate for a cluster computing
environment. River uses distributed queues, dispersed among the cluster machines, to process
application data. River provides a rich programming model and API that application developers
could use to specify the composition and location of the distributed queues. A proper specifica-
tion of the queues allowed River to achieve, by carefully scheduling disk and network transfers,
excellent application completion times even in a heterogeneous environment. However, the rich
programming interface also made River both harder to use and easier to use incorrectly.

Finally, BAD-FS [5] was designed to orchestrate large, I/O-intensive batch workloads on re-
mote computing clusters distributed across the wide area. It does this by using two distinct com-
ponents; a storage layer that exposes control of traditionally fixed policies such as caching, con-
sistency, and replication; and a scheduler that exploits this control as necessary for different work-
loads. Developers are provided with an extended API to precisely specify the control parameters
for the storage layer. However, this makes it harder to modify existing applications to use BAD-FS.

3 Applicability of Data Decomposition

In this section, we answer the “What kinds of applications canbenefit from additional surrogates?”
question posed in the Introduction. Prior systems that exploited additional resources did so by
decomposing application data into smaller chunks. This method proves to be suitable for mobile
computing applications as well.

Applications that are most suitable for data decompositionhave data that can be divided in-
dependently. Even if the data cannot be divided independently, data decomposition may still be
possible if the contextual information needed to describe each decomposed segment is relatively
small and easy to obtain. For example, for a face recognitionapplication, it will be possible to
decompose input images into independent pieces only if we can be sure that we have not divided
a face in the image between two pieces. On the other hand, it istrivial to decompose the data
for an application that converts text into speech. Each distinct word can be converted completely
independently from every other word.

2



In general, the more dependent the data is, the more difficultit is to use data decomposition
with that application. The ideal application will have datawith easily detectable segment bound-
aries. To be more precise, the time to inspect the data and findthe correct segment boundaries for
independently splitting the data into smaller pieces should be much less than the time to execute
each smaller piece. The time to recombine partial results into a complete result must also be small.
Hence, applications that perform large amounts of computation on large amounts of data (that can
be decomposed) are perfectly suited for data decomposition.

One can imagine many types of applications with these characteristics. For example, string
matching/manipulation programs like grep and word frequency counter, have input data in text
format that can be separated on word boundaries. The partialresults from each smaller compu-
tation can be combined in a very easy and efficient manner. Forgrep, the results can simply be
concatenated together. For word frequency counter, the frequency counts of each result can be
added to obtain the final result.

There are also many computationally-intensive mobile applications that can benefit from data
decomposition. In this paper, we show the benefits of data decomposition for three useful mobile
applications: an optical character recognition software (OCR), GOCR [9], a text to audio synthe-
sizing tool, Festival-Lite [6], and a language translationtool, Pangloss-Lite [8]. Optical character
recognition is highly useful for mobile users. For example,a foreign traveller can take an image
of a street sign, perform OCR on it to extract the words, and then translate the words into a known
language using a language translator. The image can be broken up into smaller pieces (as long as
care is taken to ensure no characters overlap in these pieces) that can be processed independently.
Text to audio conversion is incredibly useful as mobile device users may prefer having files read
to them instead of having to view them on the devices’ small displays. Spoken text is also a viable
output modality that can be used in mobile devices designed for the visually impaired. The text to
be converted into speech can be broken up into smaller chunks, each containing a smaller number
of words, that can be converted independently. Finally, language translation is incredibly useful in
allowing mobile users to communicate with locals when travelling in a foreign country. Different
sentences or paragraphs can be translated independently.

4 Design of a Data Decomposition System

4.1 Design Considerations

A successful data decomposition system should have the following characteristics:

Provide excellent performance improvements : Data decomposition should result in sub-
stantial improvements in application latency.

Easy to use : Application developers should need to do as little as possible to benefit from data
decomposition.

Play nice with others : Multiple clients, using data decomposition, in the same overprovi-
sioned environment should avoid affecting the performanceof each other.

We address each of these considerations in turn below.

3



Figure 1: Main Components of Chroma

4.2 Provide Excellent Performance

To be effective, a data decomposition system must be able to dynamically detect available servers
and use them to process chunks of application data. These detection and usage steps involve mul-
tiple steps: a) detecting a list of possible available servers, b) determining the resource availability
(available memory and CPU cycles) on each of these servers, c)determining the expected resource
usage for each application chunk, d) selecting a set of servers that can provide adequate perfor-
mance, e) parallelizing the execution of each application chunk on these selected servers.

Instead of building a new system from scratch, we decided to reuse an existing dynamic re-
mote execution system (that already had most of this functionality) and add data decomposition
functionality to it. We used the Chroma [4] runtime as a base asa) it already provides most of the
functionality listed above and can provide excellent application performance in mobile environ-
ments, b) the Chroma developers have validated that a large number of useful mobile applications
can be easily retargeted to use Chroma [3], and c) the source code for Chroma was made available
upon our request. We briefly describe Chroma in the next few paragraphs.

4.2.1 Overview of Chroma

Figure 1 shows the main functional components of Chroma. Chroma is an application-aware adap-
tive remote execution system that dynamically partitions applications among available servers. It
can also dynamically decrease the quality or fidelity of applications to reduce resource usage.

To determine the possible application partitions, Chroma uses the notion oftactics. Tactics are
enumerations of the useful partitions of the applications.In particular, they list the ways of usefully
partitioning the computationally intensive portions of the application. Chroma uses a RPC model
where applications are partitioned at a modular level. At runtime, Chroma’s sophisticated solver

4



OUT INT Resolution; // dynamic fidelity variable that Chroma must set

// definition of RPC procedures that can be remotely executed

RPC a (IN int size, OUT string name1);

RPC b (IN int size, OUT string name2);

RPC c (IN string name1, IN string name2, OUT float result);

TACTIC do_a_and_c = a & c; // Tactic number 1: do RPC c after RPC a

TACTIC do_a_b_and_c = (a, b) & c; // Tactic number 2: do RPCs a and b

// in parallel followed by RPC c

Figure 2: Describing an Application’s Tactics and Fidelities Using Vivendi

uses predictions of the resource usage of each possible tactic and fidelity combination to determine
the optimal tactic, fidelity setting, and server selection that does not exceed the measured available
resources (such as the number of available servers, the CPU and memory availability on each of
those servers, the available bandwidth, the available battery power, etc.) and which maximizes
the target utility function. The utility function precisely captures the preferences of the user. For
example, if the user prefers accurate answers over latency,Chroma would run the application at a
high fidelity. Conversely, if the user prefers low latency response, Chroma might reduce the fidelity
and use a fast remote server (regardless of the energy cost ofusing such a server).

Chroma also makes it easy for application developers to retarget their applications to use it.
Developers first have to describe the tactics and fidelity settings of their application using a simple
language called Vivendi. Figure 2 shows an example of such a description. This description is then
processed by a smart stub generator that creates most of the code needed to interface the application
with Chroma. Finally, the developer inserts a few simple application-specific APIs (created by the
stub generator) into the application to complete the process. Balan et al. provides more details and
extensive validation of this process [3].

4.2.2 Adding Data Decomposition to Chroma

To successfully use data decomposition, we need to a) determine the available servers that can be
used to process chunks of data, b) efficiently split application data into chunks, c) execute each
chunk on a different server, and d) efficiently recombine thepartial results into a complete result.

We modified the Chroma solver to determine the servers that canbe used for processing data
chunks. In particular, instead of determining an optimal server selection, the solver was modified
to return a list of servers that were “good enough”. This set of servers can then be used for data
decomposition. We used a user-specified performance threshold to determine if any particular
server was good enough.

Because efficient methods to decompose application and to recombine partial results is ex-
tremely data-specific, we require application developer toprovide asplit and ajoin function. The
split function is used to split application data into smaller chunks. It takes as input the list of server

5



(determined by the solver) that can be used for decomposition, the group size (explained below),
and the input data. It is up to the split function to determinehow to split the data and how many
servers to use. It returns the split data and the exact numberof servers that should be used (this
number cannot exceed the number chosen by the solver. The split function may choose to use
less servers if there is not enough data to justify using moreservers). The join function takes all
the partial results and returns a recombined final result. The actual execution of each application
chunk, on a different remote server, is performed by Chroma.

4.3 Making Data Decomposition Easy to Use

To make it easy for application developers to use data decomposition, we extended the Vivendi
syntax for describing application tactics. For example,

TACT IC decomp = %split : ((a,b) & c)) : join;

states that thedecomp tactic can be decomposed (denoted by the keyword %). The decompos-
able part of the tactic comprises of executing RPCsa andb in parallel followed by RPCc. The
split function issplit and the join function isjoin. Note that the tactic already contains parallelism.
Thus, for this tactic to be most effectively executed, it requires at least 2 servers (the final RPC can
be run on the same server as one of the earlier RPCs). The group size for this tactic is thus 2. The
number of distinct server groups that can be used to execute application chunks is thus obtained by
dividing the number of available servers with the group size. The application data should be split
using the number of distinct server groups to avoid server usage collisions.

The stub generator was modified to support data decomposition. In particular, the stub will
generate all the intermediate data structures needed to store chunks of data and partial results (the
developer will not need to create any data structures). The stub will also ensure that each chunk is
correctly executed in parallel. For example, in this case, the stub will generate the code needed to
execute the tactic of RPCsa, b, andc in parallel – each with a different chunk of application data.
The stub uses the group size to ensure that each chunk is provided enough servers to execute any
parallel stages in the tactic without competition from other chunks.

This combination of a simple description language and a stubgenerator makes it easy for
developers to use data decomposition. They will only have toprovide the functions to split and
join application data. Every other aspect of data decomposition (handling of partial data, buffer
management, error recovery, parallel remote execution, etc.) will be automatically stub generated.

4.4 Allowing Multiple Clients to Use Data Decomposition

A key concern with data decomposition is that it easily affect the performance of other clients. For
example, if other clients are performing normal execution and a single decomposable client starts
using every available server, the performance of the normalclients might suffer. This situation be-
comes worse if there are multiple decomposable clients all competing for the same set of available
servers.

One solution to prevent this is to use strict admission control and resource allocation schemes.
However, this scheme requires some sort of central authority for each mobile environment. In this

6



paper, we investigate whether individual clients can use simple mechanisms that require no global
knowledge to achieve fair usage of available resources. In particular, we use simple randomization
server selection schemes. We present the effectiveness of these schemes in Section 7.

5 Validation Approach

To validate the usefulness of data decomposition, we used three applications that are representa-
tive of the needs of a future mobile user. These applicationsare all computationally intensive in-
teractive applications that are currently being actively developed for mobile environments. These
applications are

• Pangloss-Lite [8] : A natural language translator written in C++ for translating sentences in
one language to another. This kind of application is important for the modern mobile user
who is moving from country to country. Panlite’s data was split at the line level and the
translations of each line were combined to form the final result. Panlite translates sentences
by using up to 3 translation engines. The output of these engine is processed by a language
modeler. The tactic is shown below and has a group size of 3.

TACT IC translate = %split : ((eng 1,eng 2,eng 3) & modeler)) : join;

• GOCR [9] : An optical character recognizer that identifies text in images. This can be used
to convert unknown signs into text which can then be translated into a known language. We
split the input image into smaller pieces (we used a simple intensity detection algorithm to
ensure that we did not cut a possible character into two pieces) and recombined the partial
text recognitions to form the final output. GOCR uses a simple tactic with a group size of 1
as shown below.

TACT IC recognize = %split : (ocr) : join;

• Flite [6] : A program that converts text files into audio. Thisis very useful as a user interface
mechanism and for allowing the visually handicapped accessto computers. We split Flite’s
data at the word level. Flite usually outputs WAV format files. However, as shown in Sec-
tion 8, these were inefficient to recombine. Hence, we toggled a parameter in Flite such that
it output raw format audio files (of slightly larger size thanWAV files) that were then easily
merged together to form the final audio file. Flite also has a simple tactic with a group size
of 1 as shown below.

TACT IC convert = %split : (synthesize) : join;

5.1 Experimental Platform

We used HP Omnibook 6000 notebooks with 256 MB of memory, a 20 GB hard disk and a 1
GHz Mobile Pentium 3 processor as our main remote servers. Weused two different clients that
represent the range of computational power available in today’s mobile devices. Thefast client is
the above mentioned HP Omnibook 6000 notebook. Theslow client is an IBM Thinkpad 560X

7



notebook with 64 MB of memory and a 233 MHz Mobile Pentium MMX CPU. The computational
power of the Thinkpad 560X is representative of today’s mostpowerful handheld devices. In some
experiments, we also used the slow clients as servers.

The clients and servers ran Linux and were connected via a 100Mb/s Ethernet network. This
was acceptable as the goal was to verify the performance of data decomposition and not the abil-
ity of the system to adapt to bandwidth fluctuations. We used adistributed file system to share
application code between the clients and servers.

5.2 Success Criteria

To successfully validate the effectiveness of data decomposition, we need to show the following
things:

• Data decomposition can greatly improve application performance – in particular application
latency.

• Data decomposition can be used in a fair manner without any global knowledge or admission
control.

The validation of the first two parts (results shown in Sections 6 and 7 respectively) will justify
our claim that data decomposition is valuable and usable. Additionally, we show in Section 8,
that the performance of data decomposition depends greatlyon the efficiency of the split and join
functions used.

6 Results: Data Decomposition is Good

In this section, we show that data decomposition can be effective in reducing application latency.
We first show results for the three applications in a homogeneous environments where all the
servers are similar. We then repeat the experiment for a realistic heterogeneous environment con-
taining two different types of servers.

6.1 Homogeneous Environments

Figures 3, 4, and 5 show the results of data decomposition forFlite, GOCR, and Panlite respec-
tively. In all three cases, there were nine available fast servers. We see that data decomposition
greatly improved the performance of each application (compared with using just one fast server)
– up to a 36% reduction in latency for Flite (when using seven servers and an input size of 222
words) , up to a 75% reduction in latency for GOCR (when using six servers and an input size of
1524 characters), and up to a 66% improvement in latency for Panlite (when using three groups of
3 servers each (since Panlite has a group size of 3) for a totalof nine servers and an input size of
603 words).

8



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8
Number of Fast Servers

L
at

en
cy

 (
se

co
n

d
s)

71 words (456 bytes)
129 words (830 bytes)
222 words (1494 bytes)

The Figure shows the effect of data decomposition for three different inputs. The x-axis is the number of
servers used and the y-axis is the overall application latency.

Figure 3: Performance Improvement for Flite

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8
Number of Fast Servers

L
at

en
cy

 (
se

co
n

d
s)

24 characters (18.8K)

768 characters (30.6K)

1524 characters (60.3K)

The Figure shows the effect of data decomposition for three different inputs. The x-axis is the number of
servers used and the y-axis is the overall application latency.

Figure 4: Performance Improvement for GOCR

9



0

10

20

30

40

50

60

70

80

3 6 9
Number of Fast Servers

L
at

en
cy

 (
se

co
n

d
s)

152 words (1KB)

302 words (2KB)

603 words (4KB)

The Figure shows the effect of data decomposition for three different inputs. The x-axis is the number of
servers used and the y-axis is the overall application latency. The servers are used in groups of 3 because
panlite’s tactic has 3 parallel stages.

Figure 5: Performance Improvement for Panlite

0

5

10

15

20

25

1 2 3 4 5 6 7
Number of Slow Servers

L
at

en
cy

 (
se

co
n

d
s)

24 characters (18.8K)

768 characters (30.6K)

1524 characters (60.3K)

The Figure shows the effect of data decomposition for three different inputs. The x-axis is the number of
servers used and the y-axis is the overall application latency.

Figure 6: Performance Improvement for GOCR Using Slow Servers

10



0

1

2

3

4

5

6

7

8

1 2 3 4 5
Number of Fast Servers

L
at

en
cy

 (
se

co
n

d
s)

1 slow server
2 slow server
3 slow server
4 slow server
5 slow server
no slow server

The Figure shows the effect of data decomposition in a heterogeneous environment. The x-axis is the
number of fast servers used and the y-axis is the overall application latency. Each line represents the
number of slow servers used.

Figure 7: Effect of Naively Using Both Fast and Slow Servers

This latency improvement also occurs even if we just use slowservers. Figure 6 shows the
effect of performing data decomposition for GOCR using just slow servers. Compared to using
just one slow server, using six slow servers resulted in an 85% improvement in latency for an input
size of 1524 characters. Hence, data decomposition is highly effective, when using homogeneous
servers, in reducing application latency.

6.2 Heterogeneous Environments

However, the assumption that all servers in the environmentare homogeneous may not be realistic.
In this section, we investigate the effect of using data decomposition in an environment where there
is more than one type of server.

Figure 7 shows the effects of using different servers in a naive fashion. In particular, each server
was given the same amount of data to process regardless of itsspeed. With this naive approach,
we see that using slow servers actually hurts the overall latency. This is because the slow server
becomes a bottleneck in the system. It is actually better to ignore the computational power of the
slow servers and use only a small number of fast servers instead of using a larger number of fast
and slow servers.

6.2.1 Solution: Proportional Decomposition

The solution to using a heterogeneous environment is to giveeach server data in proportion to how
powerful it is. Thus, a fast server would get a large chunk of data compared with a slow server.
Figure 8 shows the effect of using such a scheme. In this experiment, there was only one slow
server being used and up to five fast servers (shown on the x-axis). The bottom line shows the
results when the slow server was not used. The other two linesshow the naive case where each

11



0

1

2

3

4

5

6

7

8

1 2 3 4 5
Number of Fast Servers

L
at

en
cy

 (
se

co
n

d
s)

Equal Division

Proportional Division

No Slow Server

The Figure shows the effect of proportional data decomposition in a heterogeneous environment. The
x-axis is the number of fast servers used and the y-axis is theoverall application latency. The base case
is the “No Slow Server” case. The other two lines show the effects of using a single slow server with
proportional and equal data division.

Figure 8: Effect of Proportional Data Decomposition

server was given equal amounts of data and the better case where data was proportionally divided
between the servers. We see that proportional division allows us to perform slightly better than not
using the slow server at all – which is what we wanted as more server resources should improve
and not hurt performance.

6.3 Summary

In summary, data decomposition can greatly reduce application latency in homogeneous envi-
ronments. It can also reduce application latency in heterogeneous environments as long as the
computing capabilities of the server are considered when deciding how much data to send to that
server.

7 Results: Data Decomposition Can be Used Fairly

In situations where multiple clients are present, each client will compete for the same server re-
sources. In this section, we show how using the same servers can affect client performance – in
particular for clients that are executing small jobs. We then describe a method that uses purely
local decisions (no global coordinator or admission control mechanism) that can prevent clients
from using the same servers.

We used GOCR as the application for this experiment. The experiment used two clients. The
first was an aggressive client that was continuously recognizing a large image containing 9144
characters. This operation typically takes 120 seconds on asingle fast server. The second was
a regular client that kept recognizing a small image containing 768 characters every 10 seconds.

12



0

5

10

15

20

25

30

35

Aggressive Client Regular Client

L
at

en
cy

 (
se

co
n

d
s)

Worst Case 
Random - 20 Operations
Random - 50 Operations
Random - 100 Operations
Best Case

The Figure shows the effect of random server selection for two clients (each client selecting 2 servers from
a set of 8). The worst case occurs when both clients use the same servers. The next three bars show the
effect of random server selection for different numbers of concurrent operations for the regular client. The
final bar shows the best case performance where each client uses separate servers.

Figure 9: Effect of Using a Random Server Selection Mechanism

This operation takes 1.36 seconds on average on a single fastserver. The environment contained 8
servers and each client was allowed to use up to 2 servers for data decomposition.

7.1 Random Server Selection

In this section, we investigate whether a simple statistical approach is sufficient to ensure that
independent clients pick different servers – similar approaches have been used by other systems,
such as Ethernet’s back-off mechanism, to provide fairnesswithout any central arbiter. Each time
a client performs an operation, it randomly selects two servers to use. This makes it very unlikely,
when there are abundant server resources, for collisions tooccur for every operation. We hope that
on average, over a period of time, each client will be able to have a fair share of server usage with
minimal collisions.

We ran this experiment using four different cases. In the first case, both clients used exactly
the same two servers. This represents the worst case performance. We then ran three different
experiments with random selection. For each experiment, wechanged the number of operations
performed by the regular client. We used 20, 50, and 100 operations. Each experiment was run
long enough such that each client made the required number ofrequests.

Figure 9 shows the results of the experiments. The worst caseresults shows that using the same
servers results in the aggressive client taking an average of 30 seconds (instead of 120 seconds)
while the regular client took an average of 23 seconds (instead of 1.36 seconds) to complete.
Without competition (results not shown), the average latency for the regular client reduced to 0.82
seconds while the average latency of the aggressive client remained at 30 seconds. Clearly, with
competition, only the aggressive client benefited from datadecomposition. The regular client
actually suffered significant performance degradation.

13



Random selection helped to reduce the number of collisions and the corresponding perfor-
mance degradation. In particular, the latency of the regular client decreased significantly with no
discernible effect on the aggressive client. As we increased the number of operations, the average
latency of the regular client kept decreasing – reducing to 7seconds when the regular client exe-
cuted 100 operations. This is still not an ideal result as theregular client can use a single server and
complete the operation in only 1.3 seconds (even less with data decomposition and free servers).

This result still provides evidence that it may be possible to use client-side mechanisms, without
any global knowledge, to obtain some level of fair resource usage. These mechanisms require
a large number of available free servers to be effective. Otherwise, collisions will become too
frequent. We believe that improving the statistical methods used by clients to pick servers will
result in even better results. It should be noted that a central admission mechanism will be able to
achieve much better results (close to the best results). However, such a mechanism may not exist
in many environments.

8 Sensitivity Analysis

In this section, we investigate if data decomposition is sensitive to the choice of split and join
functions. We used Flite for this experiment. Recall, from Section 3, that Flite was set to return
data using a raw audio format instead of the standard WAV file format.

For this experiment, we modified Festival-Lite to return data in WAV format instead. The WAV
audio format uses compression and thus requires longer timeto recombine partial results compared
with recombining raw audio format (where partial files can simple be appended to each other to
create the final output). We used a popular audio manipulation tool called SoX [2] to recombine
the partial WAV files into the final result.

8.1 Results

We conducted the same experiment for which the results are shown in Figure 3. Figure 10 shows
the results when using WAV files instead of raw audio. Comparing the two figures, we notice a
huge performance difference. Additionally, the shape of the two graphs even looks completely
different. Indeed, the overall latency actually increasesas the number of servers increase due to
the overhead of recombining WAV files. This result clearly demonstrates that data decomposition
is only effective if the time needed to either split application data chunks or join partial results into
a final result is small (compared to the execution time of eachchunk).

9 Conclusion

This paper was motivated by the observation that even thoughmobile devices have become in-
creasingly common, they still have limited computational capabilities – weight, power, and size
are larger concerns. However, for mobile computing is to become truly useful, these devices have
to be able to execute a broad range of computationally-intensive applications. This paper extends

14



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8
Number of Fast Servers

L
at

en
cy

 (
se

co
n

d
s)

71 words (456 bytes)
129 words (830 bytes)
222 words (1494 bytes)

The Figure shows the effect of an inefficient join function for three different inputs. The x-axis is the
number of servers used and the y-axis is the overall application latency.

Figure 10: The Effect of Using an Inefficient Join Function

the large body of work in remote execution systems and asked the following question: “Is it pos-
sible for mobile devices to use excess server resources (a situation that might become increasingly
common due to the low cost of computing hardware) to improve application latency?”.

We presented a solution, called data decomposition, that demonstrates that this is possible.
We implemented data decomposition into an existing remote execution system and made it easy
for applications to use. We then evaluated data decomposition using three real applications –
a language translator, an optical character recognizer, and a speech synthesizer. Our evaluation
showed that data decomposition can greatly reduce application latency (up to an 85% reduction
in some cases). We presented a simple client-side solution that can potentially allow different
clients to fairly use a common pool of server resources without any global knowledge. Finally, we
also showed that the performance of data decomposition depends greatly on the efficiency of the
routines used to split data into chunks and to recombine partial results into the final answer.

References

[1] Arpaci-Dusseau, R. H., Anderson, E., Treuhaft, N., Culler, D. E., Hellerstein, J. M., Patter-
son, D., and Yelick, K. Cluster i/o with river: Making the fastcase common.Proceedings
of the sixth workshop on I/O in parallel and distributed systems (IOPADS), Atlanta, GA, May
1999.

[2] Bagwell, C. Sox source code and online documentation.http://sox.sourceforge.net/,
Feb. 2005. (Version 12.17.5).

[3] Balan, R. K., Gergle, D., Satyanarayanan, M., and Herbsleb, J. Simplifying cyber foraging for
mobile devices. Technical Report CMU-CS-05-157R, Carnegie Mellon University, Pittsburgh,
PA, Aug. 2005.

15



[4] Balan, R. K., Satyanarayanan, M., Park, S., and Okoshi, T. Tactics-based remote execution
for mobile computing.Proceedings of the 1st International Conference on Mobile Systems,
Applications, and Services (MobiSys), pages 273–286, San Francisco, CA, May 2003.

[5] Bent, J., Thain, D., Arpaci-Dusseau, A. C., Arpaci-Dusseau, R. H., and Livny, M. Explicit
control in the batch-aware distributed file system.Proceedings of the First USENIX Symposium
on Networked Systems Design and Implementation (NSDI), San Francisco, CA, Mar. 2004.

[6] Black, A. W. and Lenzo, K. A. FLITE: a small fast run-time synthesis engine.http://www.

speech.cs.cmu.edu/flite/, Feb. 2003. (Version 1.2).

[7] Dean, J. and Ghemawat, S. Mapreduce: Simplified data processing on large clusters.Proceed-
ings of the Sixth Symposium on Operating Systems Design and Implementation (OSDI), San
Francisco, CA, Dec. 2004.

[8] Frederking, R. and Brown, R. D. The pangloss-lite machine translation system.Expanding MT
Horizons: Proceedings of the Second Conference of the Association for Machine Translation
in the Americas, pages 268–272, Montreal, Canada, 1996.

[9] Schulenburg, J. GOCR source code and online documentation.http://jocr.sourceforge.
net/, Feb. 2004. (Version 0.39).

16


