Exploiting Rich Mobile Environments

Jesse Chang Rajesh Krishna Balan
Mahadev Satyanar ayanan

December 2005
CMU-CS-05-199

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

This research was partially supported by the National $eidfoundation (NSF) under grant nhumbers ANI-
0081396 and CCR-0205266, and by an equipment grant from ¢hdtt-Packard Corporation (HP). Rajesh Balan
was supported by an IBM Graduate Fellowship in 2003-2005anal USENIX Graduate Fellowship in 2002. Any
opinions, findings, and conclusions or recommendationsessed in this material are those of the authors and do
not necessarily reflect the views of the NSF, HP, IBM, USENEXGarnegie Mellon University. All unidentified
trademarks mentioned in the paper are properties of thgdeive owners.

Keywords: Mobile and Pervasive Computing, Data Decomposition, Rich ioBnviron-
ments

Abstract

Remote execution has commonly been used to allow mobile elewicrun large computationally
intensive applications such as language translation atickbpharacter recognition. Traditionally,
most remote execution systems have concentrated on reslimited environments. However,
with the sharp decrease in the price of computing, it is nodmteivable that environments with
an abundance of computing resources will soon become time. narthis paper, we investigate a
solution, known as “data decomposition”, that exploitssthexcess resource to improve applica-
tion latency. We identify the kinds of applications that htigpenefit from this solution. We then
describe how we extended an existing remote executionmyitesupport data decomposition.
We then present results, for three real applications, thawghat data decomposition can greatly
improve application latency — up to 85% in some cases cordpaith using just a single remote
execution server. We also present results that show thet effelata decomposition in heteroge-
neous environments. Our results suggest that data decdimpasn be used fairly, without global
knowledge, by multiple clients.

1 Introduction

In the last few years, there has been a proliferation of sriglit mobile devices such as PDAs
and cellphones. These devices have become increasingly asenore and more applications are
ported to them. However, the devices themselves only henitell computational power as space,
weight, and battery lifetime considerations are more irtgpardesign considerations. Hence, many
useful resource-intensive mobile applications such aguage translation and optical character
recognition cannot be executed on these devices withotdrpegince penalties.

Fortunately, there is a solution. The computational cdjigsi of these mobile devices can be
augmented through the use of remote execution. For exathglegsource-intensive application
may run completely on the remote server with the mobile deaiccessing it using ssh, vpn, or
similar techniques. Alternatively, the application may nn the mobile device but remote servers
may be used to execute the computationally intensive pwriod the application.

Previous research on using remote servers has concentmatedses where there are just
enough servers to support the basic requirements of theinesmtensive applications. How-
ever, the cost of commodity computing has been decreasingiderably. It is possible, today,
to buy a fairly powerful personal computer for just a few hrewidollars — about the same cost
as office furniture. It is thus likely that environments waharge number of available servers
will become increasingly common. Indeed, such environsialieady exist in the form of smarts
rooms and university environments where server resoureegsaally abundantly available and
underutilized.

In this paper, we investigate whether it is possible tozgikdditional servers, over and beyond
the basic application requirements, to achieve additipagbrmance improvements —in particular
reduced application latency. For example, if the normaliegfion operation requires just two
servers, is it possible to achieve lower latency by using $euvers?

Specifically, in this paper, we answer the following four stiens:

e What kinds of applications can benefit from additional sesver

e How can this benefit be achieved without extensive appboatodifications?
e What are the performance benefits of using additional seé?vers

e Can distinct independent mobile clients exploit a commori pbadditional servers in a fair
manner?

We show that applications can benefit from additional serasrlong as they process data that
is easy to decompose into independent chunks. This decatioppknown asdata decomposition,
can be performed with relatively little application modé#imn and results in substantial improve-
ments in overall application latency — up to a 85% reductayrsbme applications. We also present
results that show the effect of data decomposition in hgereous environments and results that
suggest that data decomposition can be used fairly, withiob&l knowledge, by multiple clients.

The rest of this paper is organized as follows: Section 2gmierelated work and Section 3
describes the kinds of applications that can benefit froma dacomposition. In Section 4, we
show how data decomposition can be added to an existing eeexetution system. We present
our validation approach in Section 5 and the actual vabaatesults in Sections 6 to 8.

1

2 Reated Work

The idea of exploiting excess server resources isn't netwblbelieve we are the first to apply it
to the mobile computing domain (where mobility dictated tha availability of servers will con-
stantly change). In this section, we present a few systenieiparallel and distributed computing
domains that have exploited excess resources.

MapReduce [7] is a highly scalable and error resilient prtidaccluster computing system
for processing and generating large data sets. It doesyhisihg all available servers to process
chunks of work. MapReduce has a very simple programmingfaterand requires applications
to provide only two functions: a Map function that splits @atto smaller chunks and a Reduce
function that combines the partial results obtained by @semg a chunk into full results. This
simple API makes it easy to modify applications to to suppdaipReduce. Many of the ideas
presented in this paper are similar in spirit to this work.

River [1] is a data-flow programming environment and I/O stdistfor a cluster computing
environment. River uses distributed queues, dispersed @iti@ncluster machines, to process
application data. River provides a rich programming model ARI that application developers
could use to specify the composition and location of therithsted queues. A proper specifica-
tion of the queues allowed River to achieve, by carefully daliag disk and network transfers,
excellent application completion times even in a hetereges environment. However, the rich
programming interface also made River both harder to use asidreo use incorrectly.

Finally, BAD-FS [5] was designed to orchestrate large, ili@nsive batch workloads on re-
mote computing clusters distributed across the wide ate#ods this by using two distinct com-
ponents; a storage layer that exposes control of traditiofimed policies such as caching, con-
sistency, and replication; and a scheduler that exploigsctimtrol as necessary for different work-
loads. Developers are provided with an extended API to peécspecify the control parameters
for the storage layer. However, this makes it harder to nyagkisting applications to use BAD-FS.

3 Applicability of Data Decomposition

In this section, we answer the “What kinds of applicationslwamefit from additional surrogates?”
guestion posed in the Introduction. Prior systems thataétqa additional resources did so by
decomposing application data into smaller chunks. Thishoweproves to be suitable for mobile
computing applications as well.

Applications that are most suitable for data decompositiave data that can be divided in-
dependently. Even if the data cannot be divided indepehdeldta decomposition may still be
possible if the contextual information needed to descréhedecomposed segment is relatively
small and easy to obtain. For example, for a face recognépmpiication, it will be possible to
decompose input images into independent pieces only if wéeasure that we have not divided
a face in the image between two pieces. On the other handirivisl to decompose the data
for an application that converts text into speech. Eachndistvord can be converted completely
independently from every other word.

In general, the more dependent the data is, the more difficslto use data decomposition
with that application. The ideal application will have datah easily detectable segment bound-
aries. To be more precise, the time to inspect the data anthincorrect segment boundaries for
independently splitting the data into smaller pieces sthéwal much less than the time to execute
each smaller piece. The time to recombine partial resultsartomplete result must also be small.
Hence, applications that perform large amounts of comjauit@in large amounts of data (that can
be decomposed) are perfectly suited for data decomposition

One can imagine many types of applications with these cheniatics. For example, string
matching/manipulation programs like grep and word fregyetounter, have input data in text
format that can be separated on word boundaries. The pagsialts from each smaller compu-
tation can be combined in a very easy and efficient mannergfegr, the results can simply be
concatenated together. For word frequency counter, tligiérecy counts of each result can be
added to obtain the final result.

There are also many computationally-intensive mobileiappbns that can benefit from data
decomposition. In this paper, we show the benefits of datardposition for three useful mobile
applications: an optical character recognition softw@€R), GOCR [9], a text to audio synthe-
sizing tool, Festival-Lite [6], and a language translatiool, Pangloss-Lite [8]. Optical character
recognition is highly useful for mobile users. For exampléoreign traveller can take an image
of a street sign, perform OCR on it to extract the words, and tfenslate the words into a known
language using a language translator. The image can berbupkmto smaller pieces (as long as
care is taken to ensure no characters overlap in these pibe¢san be processed independently.
Text to audio conversion is incredibly useful as mobile dewisers may prefer having files read
to them instead of having to view them on the devices’ smalpldiys. Spoken text is also a viable
output modality that can be used in mobile devices desigoethé visually impaired. The text to
be converted into speech can be broken up into smaller cheakh containing a smaller number
of words, that can be converted independently. Finallyglege translation is incredibly useful in
allowing mobile users to communicate with locals when tiawgin a foreign country. Different
sentences or paragraphs can be translated independently.

4 Design of a Data Decomposition System

4.1 Design Considerations

A successful data decomposition system should have treniolly characteristics:

Provide excellent performance improvements : Data decomposition should result in sub-
stantial improvements in application latency.

Easy to use: Application developers should need to do as little as ps$p benefit from data
decomposition.

Play nice with others : Multiple clients, using data decomposition, in the samerpxovi-
sioned environment should avoid affecting the performari@ach other.

We address each of these considerations in turn below.

(Provided by application)

Tactics
/ Fidelities Utility
description | | Function

l User-specific

knowledge
Solver Selected tactic | application
and fidelities
Resource Predicted
availability resource usage

Resource Demand
Predictor
t
(actual resource consumption logged
and fed back to improve prediction

Resource Monitors

Figure 1: Main Components of Chroma

4.2 Provide Excellent Performance

To be effective, a data decomposition system must be ablgnandically detect available servers
and use them to process chunks of application data. Thesetidetand usage steps involve mul-
tiple steps: a) detecting a list of possible available ssiJ® determining the resource availability
(available memory and CPU cycles) on each of these servatst@mining the expected resource
usage for each application chunk, d) selecting a set of sethiat can provide adequate perfor-
mance, e) parallelizing the execution of each applicatlam& on these selected servers.

Instead of building a new system from scratch, we decide@tise an existing dynamic re-
mote execution system (that already had most of this funatity) and add data decomposition
functionality to it. We used the Chroma [4] runtime as a basa)atsalready provides most of the
functionality listed above and can provide excellent aggilon performance in mobile environ-
ments, b) the Chroma developers have validated that a largberof useful mobile applications
can be easily retargeted to use Chroma [3], and c) the soudesfooChroma was made available
upon our request. We briefly describe Chroma in the next feagraphs.

421 Overview of Chroma

Figure 1 shows the main functional components of Chroma. Chisrman application-aware adap-
tive remote execution system that dynamically partitiopgliaations among available servers. It
can also dynamically decrease the quality or fidelity of aggpions to reduce resource usage.

To determine the possible application partitions, Chrones tise notion ofactics. Tactics are
enumerations of the useful partitions of the applicationgarticular, they list the ways of usefully
partitioning the computationally intensive portions o thpplication. Chroma uses a RPC model
where applications are partitioned at a modular level. Atime, Chroma’s sophisticated solver

4

OUT INT Resolution; // dynamic fidelity variable that Chroma must set

// definition of RPC procedures that can be remotely executed
RPC a (IN int size, OUT string namel);

RPC b (IN int size, OUT string name2);

RPC c (IN string namel, IN string name2, OUT float result);

TACTIC do_a_and_c = a & c; // Tactic number 1: do RPC c after RPC a
TACTIC do_a_b_and_c = (a, b) & c; // Tactic number 2: do RPCs a and b
// in parallel followed by RPC c

Figure 2: Describing an Application’s Tactics and FidebtUsing Vivendi

uses predictions of the resource usage of each possihledadtfidelity combination to determine
the optimal tactic, fidelity setting, and server selectiwai does not exceed the measured available
resources (such as the number of available servers, the CéPthamory availability on each of
those servers, the available bandwidth, the availabletyagower, etc.) and which maximizes
the target utility function. The utility function precigetaptures the preferences of the user. For
example, if the user prefers accurate answers over lat@mrgma would run the application at a
high fidelity. Conversely, if the user prefers low latencyp@sse, Chroma might reduce the fidelity
and use a fast remote server (regardless of the energy casihgfsuch a server).

Chroma also makes it easy for application developers togetdhneir applications to use it.
Developers first have to describe the tactics and fidelitynggst of their application using a simple
language called Vivendi. Figure 2 shows an example of su@sergbtion. This description is then
processed by a smart stub generator that creates most aidaé@eeded to interface the application
with Chroma. Finally, the developer inserts a few simple @pgpibn-specific APIs (created by the
stub generator) into the application to complete the psadgalan et al. provides more details and
extensive validation of this process [3].

4.2.2 Adding Data Decomposition to Chroma

To successfully use data decomposition, we need to a) detethe available servers that can be
used to process chunks of data, b) efficiently split appboatiata into chunks, c) execute each
chunk on a different server, and d) efficiently recombineghsial results into a complete result.

We modified the Chroma solver to determine the servers thabearsed for processing data
chunks. In particular, instead of determining an optimaveeselection, the solver was modified
to return a list of servers that were “good enough”. This $eteovers can then be used for data
decomposition. We used a user-specified performance thicesh determine if any particular
server was good enough.

Because efficient methods to decompose application and tontgne partial results is ex-
tremely data-specific, we require application developgravide asplit and ajoin function. The
split function is used to split application data into smiatleunks. It takes as input the list of server

(determined by the solver) that can be used for decomposii@ group size (explained below),
and the input data. It is up to the split function to deterntiogs to split the data and how many
servers to use. It returns the split data and the exact nuoflssrvers that should be used (this
number cannot exceed the number chosen by the solver. Thdusaition may choose to use

less servers if there is not enough data to justify using msereers). The join function takes all

the partial results and returns a recombined final resule ddtual execution of each application
chunk, on a different remote server, is performed by Chroma.

4.3 Making Data Decomposition Easy to Use

To make it easy for application developers to use data deositign, we extended the Vivendi
syntax for describing application tactics. For example,

TACTIC decomp = %split: ((a,b) & c)): join;

states that thdecomp tactic can be decomposed (denoted by the keyword %). Thergexss
able part of the tactic comprises of executing RRGmdb in parallel followed by RPQ. The
split function issplit and the join function igoin. Note that the tactic already contains parallelism.
Thus, for this tactic to be most effectively executed, ituiegs at least 2 servers (the final RPC can
be run on the same server as one of the earlier RPCs). The geeufmsthis tactic is thus 2. The
number of distinct server groups that can be used to exeppteation chunks is thus obtained by
dividing the number of available servers with the group sizee application data should be split
using the number of distinct server groups to avoid servagesollisions.

The stub generator was modified to support data decompuasitio particular, the stub will
generate all the intermediate data structures neededrto@tanks of data and partial results (the
developer will not need to create any data structures). futewill also ensure that each chunk is
correctly executed in parallel. For example, in this case stub will generate the code needed to
execute the tactic of RPGs b, andc in parallel — each with a different chunk of application data
The stub uses the group size to ensure that each chunk isipdoghough servers to execute any
parallel stages in the tactic without competition from ottleunks.

This combination of a simple description language and a gererator makes it easy for
developers to use data decomposition. They will only haverdwide the functions to split and
join application data. Every other aspect of data decontipasfhandling of partial data, buffer
management, error recovery, parallel remote executior), will be automatically stub generated.

4.4 Allowing Multiple Clientsto Use Data Decomposition

A key concern with data decomposition is that it easily dffee performance of other clients. For
example, if other clients are performing normal executiod a single decomposable client starts
using every available server, the performance of the noctrelts might suffer. This situation be-
comes worse if there are multiple decomposable client®atipeting for the same set of available
servers.

One solution to prevent this is to use strict admission @b@ind resource allocation schemes.
However, this scheme requires some sort of central auyhforieach mobile environment. In this

6

paper, we investigate whether individual clients can usgk mechanisms that require no global
knowledge to achieve fair usage of available resourcesatticolar, we use simple randomization
server selection schemes. We present the effectivenelsesd schemes in Section 7.

5 Validation Approach

To validate the usefulness of data decomposition, we ugsee #pplications that are representa-
tive of the needs of a future mobile user. These applicatwasall computationally intensive in-
teractive applications that are currently being activedyaloped for mobile environments. These
applications are

e Pangloss-Lite [8] : A natural language translator writterCi+ for translating sentences in
one language to another. This kind of application is impdrfar the modern mobile user
who is moving from country to country. Panlite’s data wagtsgl the line level and the
translations of each line were combined to form the finallte®anlite translates sentences
by using up to 3 translation engines. The output of thesenengiprocessed by a language
modeler. The tactic is shown below and has a group size of 3.

TACTIC trandate = %split: ((eng-1,eng2,eng_-3) & modeler)) : join;

e GOCR [9] : An optical character recognizer that identifieg texmages. This can be used
to convert unknown signs into text which can then be traedlatto a known language. We
split the input image into smaller pieces (we used a simgknsity detection algorithm to
ensure that we did not cut a possible character into two p)esred recombined the partial
text recognitions to form the final output. GOCR uses a simgudéid with a group size of 1
as shown below.

TACTIC recognize = %split : (ocr) : join;

o Flite [6] : A program that converts text files into audio. TlEsery useful as a user interface
mechanism and for allowing the visually handicapped actesemputers. We split Flite’s
data at the word level. Flite usually outputs WAV format filésowever, as shown in Sec-
tion 8, these were inefficient to recombine. Hence, we tayglparameter in Flite such that
it output raw format audio files (of slightly larger size tHaAV files) that were then easily
merged together to form the final audio file. Flite also hasrg® tactic with a group size
of 1 as shown below.

TACTIC convert = %split : (synthesize) : join;

5.1 Experimental Platform

We used HP Omnibook 6000 notebooks with 256 MB of memory, a BOh@rd disk and a 1
GHz Mobile Pentium 3 processor as our main remote serversusé# two different clients that
represent the range of computational power available iaytesdnobile devices. Thiast client is
the above mentioned HP Omnibook 6000 notebook. Jow client is an IBM Thinkpad 560X

7

notebook with 64 MB of memory and a 233 MHz Mobile Pentium MMXW&H he computational
power of the Thinkpad 560X is representative of today’s nposterful handheld devices. In some
experiments, we also used the slow clients as servers.

The clients and servers ran Linux and were connected via M@e Ethernet network. This
was acceptable as the goal was to verify the performancetafddecomposition and not the abil-
ity of the system to adapt to bandwidth fluctuations. We usedtibuted file system to share
application code between the clients and servers.

5.2 SuccessCriteria

To successfully validate the effectiveness of data decaitipn, we need to show the following
things:

e Data decomposition can greatly improve application penforce — in particular application
latency.

e Data decomposition can be used in a fair manner without astyaknowledge or admission
control.

The validation of the first two parts (results shown in Sewi6 and 7 respectively) will justify
our claim that data decomposition is valuable and usableditidtally, we show in Section 8,
that the performance of data decomposition depends greatlge efficiency of the split and join
functions used.

6 Results: Data Decomposition is Good

In this section, we show that data decomposition can beteféein reducing application latency.
We first show results for the three applications in a homogesenvironments where all the
servers are similar. We then repeat the experiment for stiedieterogeneous environment con-
taining two different types of servers.

6.1 Homogeneous Environments

Figures 3, 4, and 5 show the results of data decompositioklie, GOCR, and Panlite respec-

tively. In all three cases, there were nine available fastess. We see that data decomposition
greatly improved the performance of each application (caneg with using just one fast server)

— up to a 36% reduction in latency for Flite (when using sevawers and an input size of 222

words) , up to a 75% reduction in latency for GOCR (when usirgsrvers and an input size of

1524 characters), and up to a 66% improvement in latencydoliteé (when using three groups of

3 servers each (since Panlite has a group size of 3) for adbiawhe servers and an input size of
603 words).

1.6

—o- 71 words (456 bytes)
129 words (830 bytes)
—&—222 words (1494 bytes)

1.4+

1.2 1

Latency (seconds)
o ©
[o)] o]

Number of Fast Servers

The Figure shows the effect of data decomposition for thitferdnt inputs. The x-axis is the number of
servers used and the y-axis is the overall application ¢tgten

Figure 3: Performance Improvement for Flite

=24 characters (18.8K)
25 | -#-768 characters (30.6K)

m
° =k 1524 characters (60.3K)
2
315 1
c
g
©
a1+
0.5
O T T T T T T T 1
1 2 3 4 5 6 7 8

Number of Fast Servers

The Figure shows the effect of data decomposition for thitferent inputs. The x-axis is the number of
servers used and the y-axis is the overall application ¢gten

Figure 4: Performance Improvement for GOCR

80

70 -
=152 words (1KB)
= 60 7 -#- 302 words (2KB)
° 50 | —A- 603 words (4KB)
o
(6]
()
L 40 |
>
(8]
S 30
®
-
20 -
L |
10 ,‘\ e
0 T 1
3 6 9

Number of Fast Servers

The Figure shows the effect of data decomposition for thitéerdnt inputs. The x-axis is the number of
servers used and the y-axis is the overall application ¢gtefhe servers are used in groups of 3 because
panlite’s tactic has 3 parallel stages.

Figure 5: Performance Improvement for Panlite

25
20 —o- 24 characters (18.8K)
= - 768 characters (30.6K)
2 =& 1524 characters (60.3K)
o 15 4
(8]
Q
A2
>
S 10 -
[}
kS
-~
5 -
i T\‘N —— —
1 2 3 4 5 6 7

Number of Slow Servers

The Figure shows the effect of data decomposition for thitéerdnt inputs. The x-axis is the number of
servers used and the y-axis is the overall application ¢tgten

Figure 6: Performance Improvement for GOCR Using Slow Server

10

—&— 1 slow server
—— 2 slow server
—8— 3 slow server
4 slow server
- X -5 slow server
—9 - no slow server

Latency (seconds)

Number of Fast Servers

The Figure shows the effect of data decomposition in a hgéseous environment. The x-axis is the
number of fast servers used and the y-axis is the overalicgtign latency. Each line represents the
number of slow servers used.

Figure 7: Effect of Naively Using Both Fast and Slow Servers

This latency improvement also occurs even if we just use slewers. Figure 6 shows the
effect of performing data decomposition for GOCR using jlstvsservers. Compared to using
just one slow server, using six slow servers resulted in & B3provement in latency for an input
size of 1524 characters. Hence, data decomposition isyhéffdctive, when using homogeneous
servers, in reducing application latency.

6.2 Heterogeneous Environments

However, the assumption that all servers in the environ@menbhomogeneous may not be realistic.
In this section, we investigate the effect of using data degmmsition in an environment where there
is more than one type of server.

Figure 7 shows the effects of using different servers in@enfaishion. In particular, each server
was given the same amount of data to process regardlessspie¢sl. With this naive approach,
we see that using slow servers actually hurts the overah&t This is because the slow server
becomes a bottleneck in the system. It is actually bettegriore the computational power of the
slow servers and use only a small number of fast serversachgteusing a larger number of fast
and slow servers.

6.2.1 Solution: Proportional Decomposition

The solution to using a heterogeneous environment is togged server data in proportion to how
powerful it is. Thus, a fast server would get a large chunkatadccompared with a slow server.
Figure 8 shows the effect of using such a scheme. In this erpat, there was only one slow
server being used and up to five fast servers (shown on thésk-akhe bottom line shows the
results when the slow server was not used. The other two $hew the naive case where each

11

-~ Equal Division
=o- Proportional Division
5 | -4 No Slow Server

Latency (seconds)
B

0 T T T 1

1 2 3 4 5
Number of Fast Servers

The Figure shows the effect of proportional data decomjoosih a heterogeneous environment. The
x-axis is the number of fast servers used and the y-axis isvBell application latency. The base case
is the “No Slow Server” case. The other two lines show thectdfer using a single slow server with
proportional and equal data division.

Figure 8: Effect of Proportional Data Decomposition

server was given equal amounts of data and the better case ddwa was proportionally divided
between the servers. We see that proportional divisiomallgs to perform slightly better than not
using the slow server at all — which is what we wanted as maneeseesources should improve
and not hurt performance.

6.3 Summary

In summary, data decomposition can greatly reduce appicddtency in homogeneous envi-

ronments. It can also reduce application latency in hetsregus environments as long as the
computing capabilities of the server are considered wherdohg how much data to send to that

server.

7 Results: Data Decomposition Can be Used Fairly

In situations where multiple clients are present, eacmthgll compete for the same server re-
sources. In this section, we show how using the same seraaraftect client performance — in
particular for clients that are executing small jobs. Wentdescribe a method that uses purely
local decisions (no global coordinator or admission cdmrechanism) that can prevent clients
from using the same servers.

We used GOCR as the application for this experiment. The @rpet used two clients. The
first was an aggressive client that was continuously reaigpia large image containing 9144
characters. This operation typically takes 120 seconds singde fast server. The second was
a regular client that kept recognizing a small image comgi768 characters every 10 seconds.

12

EWorst Case

Random - 20 Operations
O Random - 50 Operations
Random - 100 Operations
[Best Case

Latency (seconds)

Aggressive Client Regular Client

The Figure shows the effect of random server selection fordients (each client selecting 2 servers from
a set of 8). The worst case occurs when both clients use the sarers. The next three bars show the
effect of random server selection for different numbersasfauirrent operations for the regular client. The
final bar shows the best case performance where each cliemnsaparate servers.

Figure 9: Effect of Using a Random Server Selection Mechanism

This operation takes 1.36 seconds on average on a singkefast. The environment contained 8
servers and each client was allowed to use up to 2 serverstfaidécomposition.

7.1 Random Server Selection

In this section, we investigate whether a simple statistipgroach is sufficient to ensure that
independent clients pick different servers — similar apph@s have been used by other systems,
such as Ethernet’s back-off mechanism, to provide fairméfeut any central arbiter. Each time

a client performs an operation, it randomly selects twoessrto use. This makes it very unlikely,
when there are abundant server resources, for collisiomstiar for every operation. We hope that
on average, over a period of time, each client will be ableateeha fair share of server usage with
minimal collisions.

We ran this experiment using four different cases. In the ¢iase, both clients used exactly
the same two servers. This represents the worst case parfoen We then ran three different
experiments with random selection. For each experimenghamaged the number of operations
performed by the regular client. We used 20, 50, and 100 tpasa Each experiment was run
long enough such that each client made the required numbegoésts.

Figure 9 shows the results of the experiments. The worstreaséts shows that using the same
servers results in the aggressive client taking an avera86 seconds (instead of 120 seconds)
while the regular client took an average of 23 seconds @astd 1.36 seconds) to complete.
Without competition (results not shown), the average katdar the regular client reduced to 0.82
seconds while the average latency of the aggressive ckemiined at 30 seconds. Clearly, with
competition, only the aggressive client benefited from adlteomposition. The regular client
actually suffered significant performance degradation.

13

Random selection helped to reduce the number of collisiodstla® corresponding perfor-
mance degradation. In particular, the latency of the regtilant decreased significantly with no
discernible effect on the aggressive client. As we incrédlse number of operations, the average
latency of the regular client kept decreasing — reducing $ecbnds when the regular client exe-
cuted 100 operations. This is still not an ideal result aséfyalar client can use a single server and
complete the operation in only 1.3 seconds (even less withacomposition and free servers).

This result still provides evidence that it may be possiblede client-side mechanisms, without
any global knowledge, to obtain some level of fair resoursage. These mechanisms require
a large number of available free servers to be effective.e@iise, collisions will become too
frequent. We believe that improving the statistical methaded by clients to pick servers will
result in even better results. It should be noted that a akadimission mechanism will be able to
achieve much better results (close to the best results).eMervsuch a mechanism may not exist
in many environments.

8 Sendgtivity Analysis

In this section, we investigate if data decomposition issgae to the choice of split and join
functions. We used Flite for this experiment. Recall, fronct®m 3, that Flite was set to return
data using a raw audio format instead of the standard WAV dilmét.

For this experiment, we modified Festival-Lite to returnredatWAV format instead. The WAV
audio format uses compression and thus requires longetadineeombine partial results compared
with recombining raw audio format (where partial files camglie be appended to each other to
create the final output). We used a popular audio manipulatiol called SoX [2] to recombine
the partial WAV files into the final result.

8.1 Results

We conducted the same experiment for which the results awersin Figure 3. Figure 10 shows
the results when using WAV files instead of raw audio. Compgtire two figures, we notice a
huge performance difference. Additionally, the shape efttho graphs even looks completely
different. Indeed, the overall latency actually increasgshe number of servers increase due to
the overhead of recombining WAV files. This result clearlyndastrates that data decomposition
is only effective if the time needed to either split applicatdata chunks or join partial results into
a final result is small (compared to the execution time of ednchnk).

9 Conclusion

This paper was motivated by the observation that even thoughile devices have become in-
creasingly common, they still have limited computationababilities — weight, power, and size
are larger concerns. However, for mobile computing is tmbeetruly useful, these devices have
to be able to execute a broad range of computationally-snterapplications. This paper extends

14

—o- 71 words (456 bytes)
-~ 129 words (830 bytes)
=& 222 words (1494 bytes)

Latency (seconds)

1 2 3 4 5 6 7 8
Number of Fast Servers

The Figure shows the effect of an inefficient join functiom foree different inputs. The x-axis is the
number of servers used and the y-axis is the overall apitétency.

Figure 10: The Effect of Using an Inefficient Join Function

the large body of work in remote execution systems and asletbtlowing question: “Is it pos-
sible for mobile devices to use excess server resourcetuédisn that might become increasingly
common due to the low cost of computing hardware) to imprgmieation latency?”.

We presented a solution, called data decomposition, thabdstrates that this is possible.
We implemented data decomposition into an existing remxgelgion system and made it easy
for applications to use. We then evaluated data decompnositsing three real applications —
a language translator, an optical character recognizeraaspeech synthesizer. Our evaluation
showed that data decomposition can greatly reduce appickttency (up to an 85% reduction
in some cases). We presented a simple client-side soluti@mincan potentially allow different
clients to fairly use a common pool of server resources witlaoy global knowledge. Finally, we
also showed that the performance of data decompositiomndspgreatly on the efficiency of the
routines used to split data into chunks and to recombinegbagsults into the final answer.

References

[1] Arpaci-Dusseau, R. H., Anderson, E., Treuhaft, N., CullzrE., Hellerstein, J. M., Patter-
son, D., and Yelick, K. Cluster i/o with river. Making the fastse common Proceedings
of the sixth workshop on 1/O in parallel and distributed systems (IOPADS), Atlanta, GA, May
1999.

[2] Bagwell, C. Sox source code and online documentatiaitp: //sox.sourceforge.net/,
Feb. 2005. (Version 12.17.5).

[3] Balan, R. K., Gergle, D., Satyanarayanan, M., and HerbsleSimplifying cyber foraging for
mobile devices. Technical Report CMU-CS-05-157R, Carnegiedvidliniversity, Pittsburgh,
PA, Aug. 2005.

15

[4]

[5]

[6]

[7]

[8]

[9]

Balan, R. K., Satyanarayanan, M., Park, S., and Okoshi, &ctids-based remote execution
for mobile computing.Proceedings of the 1st International Conference on Mobile Systems,
Applications, and Services (MobiSys), pages 273-286, San Francisco, CA, May 2003.

Bent, J., Thain, D., Arpaci-Dusseau, A. C., Arpaci-DusseR. H., and Livny, M. Explicit
control in the batch-aware distributed file systétroceedings of the First USENIX Symposium
on Networ ked Systems Design and Implementation (NSDI), San Francisco, CA, Mar. 2004.

Black, A. W. and Lenzo, K. A. EITE: a small fast run-time synthesis enginetp: //www.
speech.cs.cmu.edu/flite/, Feb. 2003. (Version 1.2).

Dean, J. and Ghemawat, S. Mapreduce: Simplified dataegeieg on large clusterBroceed-
ings of the Sxth Symposium on Operating Systems Design and Implementation (OSDI), San
Francisco, CA, Dec. 2004.

Frederking, R. and Brown, R. D. The pangloss-lite machiaediation systenmExpanding MT
Horizons: Proceedings of the Second Conference of the Association for Machine Trandlation
in the Americas, pages 268—-272, Montreal, Canada, 1996.

Schulenburg, J. GOCR source code and online documentatitp: //jocr.sourceforge.
net/, Feb. 2004. (Version 0.39).

16

