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Abstract

Advances in computer architecture research yield increasingly powerful processors which

can execute code at a much faster pace than they can access data in the memory hierarchy.

Database management systems (DBMS), due to their intensive data processing nature, are

in the front line of commercial applications which cannot harness the available computing

power. To prevent processors from idling, a multitude of hardware mechanisms and soft-

ware optimizations have been proposed. Their effectiveness, however, is limited by the

sheer volume of data accessed and by the unpredictable sequence of memory requests.

This Ph.D. dissertation introduces Staged Database Systems, a new software architec-

ture for optimizing data and instruction locality at all levels of the memory hierarchy. The

key idea is to break database request execution in stages and process a group of sub-

requests at each stage. Group processing at each stage allows for a context-aware execu-

tion sequence of requests that promotes reusability of both instructions and data. The

Staged Database System design requires only a small number of changes to the existing

DBMS codebase and provides a new set of execution primitives that allow software to

gain increased control over what data and instructions are accessed, when, and by which

requests. The central thesis is the following:

“By organizing and assigning system components into self-contained stages,

database systems can exploit instruction and data commonality across con-

current requests thereby improving performance.”
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Chapter 1

Overview

Advances in computer architecture research yield increasingly powerful processors which

can execute code at a much faster pace than they can access data in the memory hierarchy.

Database management systems (DBMS), due to their intensive data processing nature, are

in the front line of commercial applications which cannot harness the available computing

power. To prevent processors from idling, a multitude of hardware mechanisms and soft-

ware optimizations have been proposed. Their effectiveness, however, is limited by the

sheer volume of data accessed and by the unpredictable sequence of memory requests.

This Ph.D. dissertation introduces Staged Database Systems, a new software architec-

ture for optimizing data and instruction locality at all levels of the memory hierarchy. The

key idea is to break database request execution in stages and process a group of sub-

requests at each stage. Group processing at each stage allows for a context-aware execu-

tion sequence of requests that promotes reusability of both instructions and data. The

Staged Database System (StagedDB) design requires only a small number of changes to

the existing DBMS code base and provides a new set of execution primitives that allow

software to gain increased control over what data and instructions are accessed, when, and

by which requests.

Chapter 1 motivates the need for a new database system architecture to alleviate the

mismatch between DBMS software behavior and modern CPU architectural features. It

also serves as a dissertation road map, providing an overview of all chapters. The thesis

maintained throughout this document is the following. “By organizing and assigning sys-

tem components into self-contained stages, database systems can exploit instruction and

data commonality across concurrent requests thereby improving performance.”
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1.1.   Introduction

Advances in processor design, storage architectures and communication networks, and the

explosion of the Web, have allowed storing and accessing terabytes of information online.

Database management systems are responsible for supporting an increasing base of mil-

lions of users executing time-critical operations. Although database software architecture

has fundamentally remained unchanged over the past two decades, hardware infrastruc-

ture has undergone significant changes. Computer processors execute multiple instruc-

tions every clock cycle and apply out-of-order and instruction-level parallelism techniques

to maximize performance. In the mean time, while main memory sizes have grown along

with processor speed, memory speed has fundamentally lagged behind. Today's memory

systems incur access latencies that are up to three orders of magnitude larger than the

latency of a single arithmetic operation.

Research shows that the performance of database systems on modern hardware is

tightly coupled to how efficiently the entire memory hierarchy, from disks to on-chip

caches, is utilized. Unfortunately, according to recent studies, 50% to 80% of the execu-

tion time in database workloads is spent waiting for instructions or data [Ailamaki et al.

1999; Barroso et al. 1998;  Keeton et al. 1998]. Current technology trends call for comput-

ing platforms with higher-capacity memory hierarchies, but with each level requiring

increasingly more processor cycles to access. At the same time, advances in chip manu-

facturing process allow the simultaneous execution of multiple programs on the same

chip, either through hardware-implemented threads on the same CPU (simultaneous mul-

tithreading—SMT), or through multiple CPU cores on the same chip (chip multiprocess-

ing—CMP), or both. With higher levels of hardware-available parallelism, the

performance requirements of the memory hierarchy increase.

To improve DBMS performance, it is necessary to engineer software that takes into con-

sideration all features of new microprocessor designs. Database systems have traditionally

employed a work-centric multi-threaded (or multi-process) execution model for parallel-

ism. Since typically each database query or transaction is handled by one or more pro-

cesses (threads), the DBMS essentially relinquishes execution control to the operating

system and then to the CPU. The operating system's context switching decisions are obliv-
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ious to the state of the request/thread and therefore cause severe context thrashing in the

memory hierarchy.

1.2.   Pitfalls of thread-based concurrency

Modern database systems adopt a thread-based concurrency model for executing coexist-

ing query streams. To best utilize the available resources, DBMS typically use a pool of

threads or processes. Each incoming query is handled by one or more threads, depending

on its complexity and the number of available CPUs. Each thread executes until it either

blocks on a synchronization condition, an I/O event, or until a predetermined time quan-

tum has elapsed. Then, the CPU switches context and executes a different thread (e.g.,

IBM’s DB21) or the same thread takes on a different task (e.g., Microsoft’s SQL Server2).

Context-switching typically relies on generated events instead of program structure or the

query’s current state. While this model is intuitive, it has several shortcomings:

  • There is no single number of preallocated worker threads that yields optimal perfor-

mance under changing workloads. Too many threads waste resources and too few

threads restrict concurrency.

  • Preemption is oblivious to the thread’s current execution state. Context-switches that

occur in the middle of a logical operation evict a possibly larger working set from the

cache. When the suspended thread resumes execution, it wastes time restoring the

evicted working set.

  • Round-robin thread scheduling does not exploit cache contents that may be common

across a set of threads. When selecting the next thread to run, the scheduler ignores

that a different thread might benefit from already fetched data.

These three shortcomings are depicted in Figure 1-1. In this hypothetical execution

sequence, four concurrent queries handled by four worker threads pass through the opti-

mizer or the parser of a single-CPU database server. The example assumes that no I/O

takes place. Whenever the CPU resumes execution on a query, it first spends some time

1. IBM DB2 Universal Database V7 Manuals. “Administration Guide V7.2, Volume 3: Performance”
2. Microsoft SQL Server 2000 Technical Article. Available at: http://msdn.microsoft.com/library
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loading (fetching from main memory) the thread’s private state. Then, during each mod-

ule’s execution, the CPU also spends time loading the data and code that are shared on

average between all queries executing in that module (shown as a separate striped box

after the context-switch overhead). A subsequent invocation of a different module will

likely evict the data structures and instructions of the previous module, to replace them

with its own ones.

The performance loss in this example is due to (a) a large number of worker threads:

since no I/O takes place, one worker thread would be sufficient, (b) preemptive thread

scheduling: optimization and parsing of a single query is interrupted, resulting in unneces-

sary reloads of its working set, and, (c) round-robin scheduling: optimization and parsing

of two different queries are not scheduled together and, thus, the two modules keep replac-

ing each other’s data and code in the cache. The solution to these problems is a new

DBMS software architecture that allows for context switching on module boundaries, and

for group scheduling of requests on a per-module basis.

1.3.   Techniques to improve locality

Since each memory hierarchy level trades capacity for lookup speed, research has focused

on ways to improve locality at each level. Techniques that increase reusability of a page or

a cache block are referred to as temporal locality optimizations, while spatial locality opti-

mizations are improving the utilization within a single page or cache block. Database
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researchers propose1 relational processing algorithms to improve data and instruction tem-

poral locality [Padmanabhan et al. 2001; Shatdal et al. 1994], and also indexing structures

and memory page layouts that improve spatial locality [Shao et al. 2004]. Buffer pool

replacement policies seek to improve main memory utilization by increasing the reusabil-

ity of data pages across requests [Chou and DeWitt 1985; Megiddo and Modha 2003].

Computer architecture researchers propose to rearrange binary code layout [Ramirez et

al. 2001] to achieve better instruction spatial locality. A complementary approach to

improve performance is to overlap memory hierarchy accesses with computation. At the

software level, recent techniques prefetch known pages ahead of time [Chen et al. 2001],

while at the microarchitecture level, out-of-order processors tolerate cache access laten-

cies by executing neighboring instructions [Hennessy and Patterson 1996]. Although

related work identifies memory-related bottlenecks and proposes techniques to boost per-

formance, current DBMS designs do not have the means to exploit commonality across all

levels of the memory hierarchy.

1.4.   A staged approach for DBMS software

Most of the research to date for improving locality examines data accessed and instruc-

tions executed by a single query (or transaction) at a time. Database systems, however,

typically handle multiple concurrent users. By properly synchronizing and multiplexing

the concurrent execution of multiple requests there is a potential of increasing both data

and instruction reusability at all levels of the memory hierarchy. Existing DBMS designs,

however, pose difficulties in applying such execution optimizations as they abide by the

execution primitives provided by the underlying operating system. A new software design

is needed to allow for application-induced control of execution.

In this dissertation, we re-engineer database systems to improve utilization of all mem-

ory hierarchy levels. Rather than rewriting the entire code of the database system, we pro-

vide the support to organize system components into self-contained “stages” and change

request execution sequence to perform group-processing at each stage, thus effortlessly

1. A more complete treatment of related work follows in Chapter 2.
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exploiting commonality across queries. A stage acts as an independent server with its own

queue for the incoming requests, thread support, and resource management. Each query

consists of a number of packets that queue up in front of staged operators. The query is

essentially the first-class citizen in the system: it carries all the information necessary for

its execution, and it visits the stages it needs.

The StagedDB design requires only a small number of changes to the existing DBMS

code base and provides a new set of execution primitives that allow software to gain

increased control over what data is accessed, when, and by which requests. Figure 1-2

illustrates the high-level idea behind StagedDB. For simplicity, we only show two requests

passing through two stages of execution. In conventional DBMS designs, context-switch-

ing among requests occurs at random points, possibly evicting instructions and data that

are common among requests executing at the same stage (these correspond to the striped

boxes in the left part of Figure 1-2). A StagedDB system (right part of Figure 1-2) consists

of a number of self contained modules, each encapsulated into a stage. Group processing

at each stage allows for a context-aware execution sequence of requests that promotes

reusability of instructions and data.

The rest of this section summarizes the key components of StagedDB that were devel-

oped and evaluated as part of this dissertation and will be described over the next chapters.

First, we explore the design space of staged execution schemes along with the software

engineering benefits of staging a database system. Then, we focus on the query execution
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engine, where most of the query’s lifetime is spent, and build a staged engine to enhance

locality across concurrent queries. At the microarchitectural level, we apply the principles

of StagedDB to address instruction-stream optimization in transaction processing.

1.4.1   StagedDB: design tradeoffs and benefits

Staged software architectures, similar to StagedDB, exhibit the following fundamental

scheduling tradeoff. On one hand, all requests executing as a batch in the same software

module benefit from improved locality. On the other hand, each completed request sus-

pends its progress until the rest of the batch finishes execution, thereby increasing

response time. We investigate this tradeoff by developing a simulated execution environ-

ment that is also analytically tractable. We propose and evaluate scheduling policies that

are shown to improve query response times in staged execution, when compared to tradi-

tional techniques such as first-come first-serve and processor-sharing, for a wide range of

workload parameter values.

Looking from a software engineering point of view, years of DBMS software develop-

ment have lead to monolithic, complicated implementations that are difficult to extend,

tune, and evolve. StagedDB eases software development by isolating functions inside self-

contained micro-servers (stages), and also allows for an accurate resource allocation based

on the needs of each stage. For example, stages that do not perform I/O are assigned fewer

threads than stages performing heavy I/O. As a case study, this dissertation describes the

benefits, both performance and software engineering ones, of staging PREDATOR, a

research prototype DBMS [Seshadri et al. 1997].

1.4.2   Staging a relational query execution engine

In decision-support applications, database systems typically execute concurrent queries

independently by invoking a set of relational operator instances for each query. To exploit

common data retrievals and computation in concurrent queries, researchers have proposed

a wealth of techniques, ranging from buffering disk pages to constructing materialized

views (precomputed query results) and optimizing multiple queries. The ideas proposed,

however, are inherently limited by the query-centric philosophy of modern query execu-

tion engine designs. Ideally, the query engine should proactively coordinate same-operator
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execution among concurrent queries, thereby exploiting common accesses to memory and

disks as well as common intermediate result computations.

We apply the StagedDB design to a full-blown relational query execution engine, built

on top of BerkeleyDB1, and show how to maximize data and work sharing across concur-

rent queries at execution time. In the resulting query engine prototype, called QPipe, each

relational operator becomes a staged micro-engine serving query tasks from a queue, as

shown in Figure 1-3. A packet dispatcher converts an incoming query plan to a series of

query packets. Data flow between micro-engines occurs through dedicated buffers - simi-

lar to a parallel database engine [DeWitt et al. 1990]. QPipe achieves better resource utili-

zation than conventional engines by grouping requests of the same nature together, and by

having dedicated micro-engines to process each group of similar requests. Every time a

new packet queues up in a micro-engine, all existing packets are checked for overlapping

work. On a match, each micro-engine employs different mechanisms for data and work

sharing, depending on the enclosed relational operator. We show that QPipe achieves a

factor of two speedup over a commercial DBMS when running a workload consisting of

TPC-H queries (the industry-standard decision-support benchmark). When running QPipe

with queries that present no sharing opportunities, we find that the overhead of checking

for overlapping work is negligible (less than 1% of the query execution time).

1. BerkeleyDB, http://www.sleepycat.com
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1.4.3   Improving instruction cache performance

In examining the efficiency of the highest levels of the memory hierarchy, recent research

studies have reported that, when running Online Transaction Processing (OLTP) work-

loads, instruction-related delays in the memory subsystem account for 25% to 40% of the

total execution time [Barroso et al. 1998; Keeton et al. 1998;   Shao and Ailamaki 2004].

In contrast to data, instruction misses cannot be overlapped with out-of-order execution,

and instruction caches cannot grow as the slower access time directly affects the processor

speed. With commercial DBMS exhibiting more than 500KB of OLTP code footprint [Lo

et al. 1998] and modern CPUs having 16-64KB instruction caches, transactional code

paths are too long to achieve cache-residency. The challenge is to alleviate the instruction-

related delays without increasing cache size.

This dissertation proposes and evaluates STEPS (Synchronized Transactions through

Explicit Processor Scheduling), a technique based on the StagedDB design that minimizes

instruction-cache misses by multiplexing concurrent transactions and exploiting common

code paths. At a higher level, STEPS applies the StagedDB design to form groups of con-

current transactions that execute the same transactional operation (e.g., traversing an

index, updating a record, or performing an insert). Since DBMS typically assign a thread

to each transaction, STEPS introduces a thin wrapper around each transactional operation

to coordinate threads executing the same operation. Although transactions in a group have

a high degree of overlap in executed instructions, a conventional scheduler that executes

one thread after the other would still incur new instruction misses for each transaction exe-

cution (as shown in the left part of Figure 1-4). The reason is that the code working set of

transactional operations typically overwhelms the L1-I cache. To maximize instruction

sharing among transactions in the same group, STEPS lets only one transaction incur com-

pulsory instruction misses, while the rest of the transactions “piggyback” onto the first

one, finding the instructions they need in the cache. To achieve this, STEPS identifies the

points in the code where the cache fills up and performs a quick context-switch, so that

other transactions can execute the cache-resident code (right part of Figure 1-4).

We evaluate STEPS inside the Shore research prototype database storage manager

[Carey et al. 1994]. STEPS yields a 82-96% reduction in instruction cache misses for each
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additional concurrent transaction, and at the same time eliminates 62-64% of mispredicted

branches by loading a repeating execution pattern into the CPU. In a full-system evalua-

tion on a real processor using TPC-C, the industry-standard transactional benchmark,

STEPS produces a 16-39% speedup.

1.5.   Contributions

The dissertation makes the following contributions, organized in four categories.

1. By examining current database system software designs and by exploring an alterna-

tive, staged design, this dissertation:

  • provides an analysis of design shortcomings in modern DBMS software.

  • introduces a novel database system design which is shown to exhibit both performance

and software engineering benefits over traditional database system designs.

  • presents new research opportunities based on the proposed design.

2. By studying scheduling tradeoffs in staged server architectures, this dissertation:

  • introduces four novel cohort scheduling techniques for staged software servers that

follow a “production-line” model of operation; the proposed techniques outperform

traditional scheduling policies and justify software staging even when the degree of

inter-request locality is low.
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  • presents a mathematical framework to methodically quantify the performance

tradeoffs when using the proposed scheduling policies.

3. By designing, building, and evaluating a staged relational query engine, and by study-

ing opportunities for data and computation sharing across concurrent queries, this

dissertation:

  • introduces QPipe, a novel query execution engine that provides full intra-query paral-

lelism, taking advantage of all available CPUs in multiprocessor servers (both tradi-

tional multiprocessors and chip multiprocessors) for evaluating a single query,

regardless of the plan's complexity.

  • provides a set of query evaluation techniques to maximize data and work sharing

across concurrent queries at run time.

  • presents an efficient run-time for evaluating plans produced by a multi-query opti-

mizer, by avoiding costly materializations.

  • demonstrates an improved design over traditional, tuple-by-tuple query engines (using

the iterator evaluation model), by saving extraneous procedure calls and by improving

temporal locality.

4. By investigating the poor instruction cache performance exhibited in transaction pro-

cessing workloads, and by exploring the potential of explicit thread scheduling tech-

niques coupled with a grouped execution discipline, this dissertation:

  • contributes a software approach to address instruction cache performance in transac-

tion processing applications; the proposed techniques enable thread scheduling at very

fine granularity to reuse instructions in the cache across concurrent threads. The pro-

posed techniques are implemented and evaluated inside a full-blown research proto-

type database system running a multi-user transactional benchmark on real hardware.

  • provides a tool to automate the deployment of the proposed set of techniques inside a

commercial DBMS server.
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1.6.   Dissertation organization

The dissertation consists of six chapters. Chapter 1 provides an overview of the disserta-

tion and lists its contributions1. Chapter 2 presents related work from a broad scope of

research in database system architectures, performance studies on recent processors, and

research in operating systems. Chapter 3 explores the design space of staged execution

schemes and describes performance and software engineering benefits of staging a data-

base system2. Chapter 4 describes QPipe, a staged relational query engine that enhances

locality across concurrent queries3. Chapter 5 describes STEPS, a transaction coordinating

mechanism based on the StagedDB design that minimizes instruction cache misses in

OLTP workloads4. Chapter 6 discusses additional benefits of the StagedDB design, pre-

sents promising future research directions, and concludes.

1. Parts of the chapter are published in [Harizopoulos and Ailamaki 2005].
2. Parts of the chapter are published in [Harizopoulos and Ailamaki 2002; Harizopoulos and Ailamaki 2003].
3. Parts of the chapter are published in [Harizopoulos et al. 2005; Shkapenyuk et al. 2005].
4. Parts of the chapter are published in [Harizopoulos and Ailamaki 2004].



Chapter 2

Related work

This chapter presents related work from a broad scope of research in database system

architectures, performance studies on recent processors, and research in operating sys-

tems. We first discuss both traditional and novel database system architectures, along with

mechanisms to improve query processing performance, such as buffer pool management,

materialized views, query caching, and multiple query optimization. We then review

recent studies pointing out the CPU-memory bottleneck in DBMS performance, along

with related work to address cache performance. Lastly, we discuss related research efforts

in the operating systems community to improve performance of thread-based servers and

reduce the response time of requests by changing the server CPU scheduling policy.

2.1.   DBMS architectures and query processing

In the past three decades of database research, several new software designs have been

proposed. One of the earliest prototype relational database systems, INGRES [Stonebraker

et al. 1976], actually consisted of four “stages” (processes) that enabled pipelining (the

reason for breaking up the DBMS software was main memory size limitations). Staging

was also known to improve CPU performance in the mid-seventies1. 

Parallel database systems [DeWitt and Gray 1992; Chekuri et al. 1995] exploit the

inherent parallelism in a relational query execution plan and apply a dataflow approach for

designing high-performance, scalable systems. In the GAMMA database machine project

[DeWitt et al. 1990] each relational operator is assigned to a process, and all processes

1. Asynchronous Work Elements, IBM/IMS team. Comments from anonymous reviewer, Oct. 2002.
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work in parallel to achieve either pipelined parallelism (operators work in series by

streaming their output to the input of the next one), or partitioned parallelism (input data

are partitioned among multiple nodes and operators are split into many independent ones

working on a part of data). In extensible DBMS [Carey and Haas 1990], the goal was to

facilitate adding and combining components (e.g., new operator implementations). Both

parallel and extensible database systems employ a modular system design with several

desirable properties, but there is no notion of cache-related interference across multiple

concurrent queries.

2.1.1   Stream processing systems

Recent database research focuses on a data processing model where input data arrives in

multiple, continuous, time-varying streams [Babcock et al. 2002]. The relational operators

are treated as parts of a chain where the scheduling objective is to minimize queue mem-

ory and response times, while providing results at an acceptable rate or sorted by impor-

tance [Urhan and Franklin 2001]. Avnur and Hellerstein propose eddies, a query

processing mechanism that continuously reorders pipelined operators in a query plan, on a

tuple-by-tuple basis, allowing the system to adapt to fluctuations in computing resources,

data characteristics, and user preferences [Avnur and Hellerstein 2000]. Operators run as

independent threads, using a central queue for scheduling. While the aforementioned

architectures optimize the execution engine’s throughput by changing the invocation of

relational operators, they do not exploit cache-related benefits. For example, eddies may

benefit by repeatedly executing different queries at one operator, or by increasing the tuple

processing granularity (we discuss similar tradeoffs over the next thesis chapters).

TelegraphCQ (CACQ [Madden et al. 2002] and PSoup [Chandrasekaran and Franklin

2003]) and NiagaraCQ [Chen et al. 2000] describe techniques to share work across differ-

ent queries in stream management systems, by sharing either physical operators or their

state. Although the concept of sharing operators is similar to what we propose in this the-

sis, the different context creates an entirely different problem. Queries in stream systems

always process the most recently received tuples. In traditional DBMS, queries have spe-

cific requirements as to which tuples they need and in what order they need to process

them.



Chapter 2: Related work • 15

2.1.2   Buffer pool management

In its simplest form, a buffer pool manager keeps track of disk pages brought in main

memory, decides when to write updated pages back to disk, and evicts pages (typically

using a LRU policy) when new ones are read. The Hot Set [Sacco and Schkolnick 1986]

and DBMIN [Chou and DeWitt 1985] algorithms rely on explicit hints from the query

optimizer on query access patterns. Since it is infeasible for the optimizer to predict the

query patterns in a multi-query environment, several algorithms base replacement deci-

sions on the observed importance of different pages. LRU-K [O’Neil et al. 1993] and 2Q

[Johnson and Shasha 1994], for instance, improve the performance of the traditional LRU

eviction policy by tracking multiple past-page references, while ARC [Megiddo and

Modha 2003] shows similar performance improvements without relying on tunable

parameters.

Since queries interact with the buffer pool manager through a page-level interface, it is

difficult to develop generic policies to coordinate current and future accesses from differ-

ent queries to the same disk pages. The need to efficiently coordinate and share multiple

disk scans on the same table has long been recognized [Gray 2004] and several commer-

cial DBMS incorporate various forms of multi-scan optimizations (Teradata, RedBrick

[Fernandez 1994], and SQL Server1). The challenge is to bypass the restrictions implied

by the page-level interface in order to fully exploit the knowledge of query access pat-

terns, even if it requires run-time adjustments to the query evaluation strategy.

2.1.3   Materialized views, query caching, and plan recycling

Materialized view selection [Roussopoulos 1982] is typically applied to workloads known

in advance, in order to speed-up queries that contain common subexpressions. The most

commonly used technique is to exhaustively search all possible candidate views, while

employing various heuristics to prune the search space. It is important to note that materi-

alized views exploit commonality between different queries at the expense of potentially

significant view maintenance costs. Modern tools for automatic selection of materialized

1. C. Cook. “Database Architecture: The Storage Engine.” Microsoft SQL Server 2000 Technical Article,
July 2001. Available at: http://msdn.microsoft.com/library
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views [Agrawal et al. 2000] take such costs into account when recommending a set of

views to create [Blakeley et al. 1986]. The usefulness of materialized views is limited

when the workload is not always known ahead of time or the workload requirements are

likely to change over time.

Caching query results can significantly improve response times in a workload that con-

tains repeating instances of the same query or queries that are subsumed by others. A

recently proposed cache manager [Shim et al. 1999] dynamically decides on which results

to cache, based on result computation costs, sizes, reference frequencies, and maintenance

costs due to updates. Semantic data caching [Dar et al. 1996] (as opposed to page or tuple

caching) can result in more efficient use of a cache and reduced communication costs in

client-server environments. Query plan recycling [Sarda and Haritsa 2004] reduces the

query optimization time by exploiting potential similarity in the plans of different queries.

The queries are first clustered based on characteristics of their execution plans, and then

all queries assigned to a cluster use the same plan generated for the cluster representative

query. Both approaches complement any type of run-time optimizations. QPipe improves

a query result cache by allowing the run-time detection of exact instances of the same

query, thus avoiding extra work when identical queries execute concurrently, with no pre-

vious entries in the result cache.

2.1.4   Multi-query optimization

Multiple-query optimization (MQO) [Finkelstein 1982; Sellis 1988;  Roy et al. 2000]

identifies common subexpressions in query execution plans during optimization and pro-

duces globally-optimal plans. Since the detection of common subexpressions is done at

optimization time, all queries need to be optimized as a batch. In interactive scenarios

where queries may arrive at any time, other queries that share the same computation may

be already running (waiting to collect a batch delays the early queries). In addition, to

share intermediate results among queries, MQO typically relies on costly materializations.

To avoid unnecessary materializations, a recent study [Dalvi et al. 2001] introduces a

model that decides at the optimization phase which results can be pipelined and which

need to be materialized to ensure continuous progress in the system. In contrast, QPipe

identifies and exploits common subexpressions at run time without forcing the optimizer
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to wait for a sufficient number of queries to arrive before optimizing a batch. Moreover,

QPipe can efficiently evaluate plans produced by a multi-query optimizer, since it always

pipelines shared intermediate results.

2.2.   DBMS performance on modern processors

Computer architecture research addresses the ever-increasing processor-memory speed

gap [Hennessy and Patterson 1996] by exploiting data and code locality and by minimiz-

ing memory stalls. Modern systems employ mechanisms ranging from larger and deeper

memory hierarchies to sophisticated branch predictors and software/hardware prefetching

techniques. Prior research [Maynard et al. 1994] indicates that adverse memory access

patterns in database workloads result in poor cache locality and overall performance.

Recent studies of OLTP workloads and DBMS performance on modern processors [Aila-

maki et al. 1999; Keeton et al. 1998] narrow the primary memory-related bottlenecks to

L1 instruction and L2 data cache misses. More specifically, Keeton et al. measure an

instruction-related stall component of 41% of the total execution time for Informix run-

ning TPC-C on a PentiumPro. When running transactional (TPC-B and TPC-C) and deci-

sion-support (TPC-H) benchmarks on top of Oracle on Alpha processors, instruction stalls

account for 45% and 30% of the execution time, respectively [Barroso et al. 1998; Stets et

al. 2002]. A recent study of DB2 7.2 running TPC-C on Pentium III [Shao and Ailamaki

2004] attributes 22% of the execution time to instruction stalls.

Work in “cache-conscious” DBMS optimizes query processing algorithms [Shatdal et

al. 1994], index manipulation [Chen et al. 2001; Chilimbi et al. 2000;  Graefe and Larson

2001], and data placement schemes [Ailamaki et al. 2001]. Such techniques improve the

locality within each request, but have limited effects on the locality across requests. Con-

text-switching across concurrent queries is likely to destroy data and instruction locality in

the caches. For instance, when running workloads consisting of multiple short transac-

tions, most misses occur due to conflicts between threads whose working sets replace each

other in the cache [Jayasimha and Kumar 1999; Rosenblum et al. 1995].

Unfortunately, unlike DSS workloads, transaction processing involves a large code foot-

print and exhibits irregular data access patterns due to the long and complex code paths of
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transaction execution [Harizopoulos and Ailamaki 2004]. Finally, OLTP instruction

streams have strong data dependencies that limit instruction-level parallelism opportuni-

ties, and irregular program control flow that undermines built-in pipeline branch predic-

tion mechanisms and increases instruction stall time [Keeton et al. 1998].

2.2.1   Techniques to address L1-I cache stalls

Most research on cache-conscious database systems has primarily addressed data cache

performance [Shatdal et al. 1994; Chen et al. 2001;  Graefe and Larson 2001;  Ailamaki et

al. 2001]. L1-I cache misses, however, and misses occurring when concurrent threads

replace each other’s working sets [Rosenblum et al. 1995], have received little attention by

the database community. Two recent studies [Padmanabhan et al. 2001; Zhou and Ross

2004] propose increasing the number of tuples processed by each relational operator,

improving instruction locality when running single-query-at-a-time DSS workloads.

Unfortunately, similar techniques cannot apply to OLTP workloads because transactions

typically do not form long pipelines of database operators.

Instruction locality can be improved by altering the binary code layout so that run-time

code paths are as conflict-free and stored as contiguously as possible [Romer et al. 1997;

Ramirez et al. 2001]. Such compiler optimizations are based on static profile data col-

lected when executing a certain targeted workload and therefore, they may hurt perfor-

mance when executing other workloads. Moreover, such techniques cannot satisfy all

conflicting code paths from all different execution threads. While the proposed techniques

can enhance instruction-cache performance by increasing spatial locality (utilization of

instructions contained in a cache block), they cannot increase temporal locality (instruc-

tion reusability) since that is a direct function of the application nature.

A complementary approach is instruction prefetching in the hardware [Chen et al.

1997]. Call graph prefetching [Annavaram et al. 2003] collects information about the

sequence of database functions calls and prefetches the function most likely to be called

next. The success of such a scheme depends on the predictability of function call

sequences. Unfortunately, OLTP workloads exhibit highly unpredictable instruction

streams that challenge even the most sophisticated prediction mechanisms (call graph

prefetching is evaluated through relatively simple DSS queries [Annavaram et al. 2003]).
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2.3.   Related work in operating systems

Recently, OS research introduced a staged server programming paradigm [Larus and

Parkes 2002], that divides computation into stages and schedules requests within each

stage. The CPU processes the entire stage queue while traversing the stages going first for-

ward and then backward. The authors demonstrate that their approach improves the per-

formance of a simple web server and a publish-subscribe server by reducing the frequency

of cache misses in both the application and operating system code. While the experiments

were successful, significant scheduling trade-offs remain unsolved. For instance, it is not

clear under which circumstances a policy should delay a request before the locality benefit

disappears. Welsh et al. propose a staged event-driven architecture (SEDA) for deploying

highly concurrent internet services [Welsh et al. 2001]. SEDA decomposes an event-

driven application into stages connected by queues, thereby preventing resource overcom-

mitment when demand exceeds service capacity. SEDA does not optimize for memory

hierarchy performance, which is the primary bottleneck for data-intensive applications.

Research in operating systems points out limitations in thread scalability when building

highly concurrent applications1 [Pai et al. 1999]. Related work suggests inexpensive

implementations for context-switching [Anderson et al. 1991; Banga and Mogul 1998],

and also proposes event-driven architectures with limited thread usage, mainly for internet

services [Pai et al. 1999].

2.3.1   Scheduling algorithms

Most server architectures adopt processor-sharing (PS) scheduling as a “fair” scheduling

policy. The CPU(s) spend a fixed amount of time (typically in the order of a few ms) on

each active process and keep switching processes in a round-robin fashion. Recent work

argues in favor of SRPT (Shortest Remaining Processing Time first) scheduling for the

case of a single server [Bansal and Harchol-Balter 2001]. Crovella et al. have shown that

traditional assumptions for workload modeling are not accurate [Crovella et al. 1998].

More specifically, it was shown that UNIX jobs have sizes that follow a Pareto (heavy-

1. J. K. Ousterhout. “Why threads are a bad idea (for most purposes).” Invited talk at 1996 USENIX Tech.
Conf. (slides available at http://home.pacbell.net/ouster/), Jan. 1996.
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tailed) distribution and not an exponential one. The effects of taking into account this dis-

tribution can be counter-intuitive and are discussed in [Crovella et al. 1998]. We experi-

ment with such a distribution for query sizes in the next chapter.

Affinity scheduling explicitly routes tasks to processors with relevant data in their

caches [Squillante and Lazowska 1993; Srivastava and Eustace 1994] (the term “affinity

scheduling” is widely used in the context of shared-memory multiprocessor systems).

Although this type of affinity is similar to the one that the staged programming paradigm

tries to leverage on, the latter approaches the problem by restructuring a single application

to exploit locality, rather than improve locality for a collection of tasks in a generic setting.

Frequent switching between threads of the same program interleaves unrelated memory

accesses, thereby affecting locality. This thesis addresses memory performance from a sin-

gle application’s point of view, improving locality across its threads.

2.4.   Chapter summary

Research shows that the performance of database management systems on modern hard-

ware is tightly coupled to how efficiently the entire memory hierarchy, from disks to on-

chip caches, is utilized. Unfortunately, according to recent studies, 50% to 80% of the exe-

cution time in database workloads is spent waiting for instructions or data. Related work

in the database community has proposed (a) modular and pipelined database system

designs for parallelism, extensibility, or continuous query performance, (b) mechanisms to

share and reuse data and work across different queries, and, (c) cache-conscious algo-

rithms to improve cache performance of query execution. The operating systems commu-

nity has proposed (a) techniques for efficient threading support, (b) event-driven and

locality-aware staged server designs for scalability and performance, and, (c) scheduling

algorithms for cache performance and low response times.

Although related work identifies memory-related bottlenecks and proposes techniques

to boost performance, current DBMS designs do not have the means to exploit commonal-

ity across all levels of the memory hierarchy. Despite the multitude of proposed optimiza-

tions, these are inherently limited by the sheer volume of data that DBMS need to process

and by the unpredictable sequence of memory requests. Most of the research to date for
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improving locality examines data accessed and instructions executed by a single query (or

transaction) at a time. Database systems, however, typically handle multiple concurrent

users. Request concurrency adds a new dimension for addressing the locality optimization

problem. Unfortunately, the operating system's context switching decisions are oblivious

to the state of the request/thread and therefore cause severe context thrashing in the mem-

ory hierarchy. 

By properly synchronizing and multiplexing the concurrent execution of multiple

requests there is a potential of increasing both data and instruction reusability at all levels

of the memory hierarchy. Existing DBMS designs, however, pose difficulties in applying

such execution optimizations. Since typically each database query or transaction is han-

dled by one or more processes (threads), the DBMS essentially relinquishes execution

control to the OS and then to the CPU. A new design is needed to allow for application-

induced control of execution.

The solution is a new DBMS software architecture that allows for context switching on

module boundaries, and for group scheduling of requests on a per-module basis. This the-

sis applies the principles behind the staged programming paradigm to relational database

system design and presents a new DBMS software architecture for optimizing data and

instruction locality at all levels of the memory hierarchy. The Staged Database System

design breaks database request execution in stages and processes a group of sub-requests

at each stage, thus effortlessly exploiting data and work commonality.
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Chapter 3

Designing a Staged Database System

Traditional database system architectures face a rapidly evolving operating environment,

where millions of users store and access terabytes of data. In order to cope with increasing

demands for performance, high-end DBMS employ parallel processing techniques cou-

pled with a plethora of sophisticated features. However, the widely adopted, work-centric,

thread-parallel execution model entails several shortcomings that limit server performance

when executing workloads with changing requirements. Moreover, the monolithic

approach in DBMS software has lead to complex and difficult to extend designs.

In this chapter we introduce the StagedDB design for high-performance, evolvable

DBMS that are easy to tune and maintain. StagedDB breaks the DBMS software into mul-

tiple modules and encapsulates them into self-contained stages connected to each other

through queues. Rather than rewriting the entire code of the database system, we provide

the support to organize system components into stages and change request execution

sequence to perform group-processing at each stage, thus effortlessly exploiting common-

ality across queries. This chapter shows how this staged, query-centric approach remedies

the weaknesses of modern DBMS by providing solutions at both a hardware and a soft-

ware engineering level.

3.1.   Introduction

Modern commercial DBMS are built as a large piece of software that typically serves mul-

tiple requests using a thread-based concurrency model. Queries are handled by one or

more threads (or processes) that follow the Query Execution Plan (QEP) up to its comple-
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tion—hence the term work-centric: the query execution is centered around the work that

needs to be done. While widely adopted, the problem with this model is that it implicitly

defines a query execution sequence and a resource utilization schedule in the system.

Whenever a thread blocks due to an I/O, an ungranted lock request, an internal synchroni-

zation condition, or due to an expiring quantum, the thread scheduler assigns the CPU to

the next runnable thread of the highest priority. This context-switching mechanism creates

a logical gap in the sequence of actions the DBMS performs. While a software developer

optimizes the individual steps involved in a single query’s execution, she or he typically

has no means of applying similar optimization techniques to a collection of multiplexed

queries. Therefore, the key to high performance is to take into account all concurrent

requests when addressing database performance bottlenecks.

Looking from a software engineering point of view, years of DBMS software develop-

ment have lead to monolithic, complicated implementations that are difficult to extend,

tune, and evolve. While database software developers commonly organize code into sepa-

rate components, the final product consists of tightly integrated and interdependent soft-

ware modules, “glued” together to eliminate overheads and increase performance. This

practice, however, makes it difficult to profile individual components, fine-tune them, or

even trace bugs across components. Moreover, the DBMS is viewed as an “all or nothing”

application, with no support for partial services involving only a small subset of the soft-

ware components. To allow for a flexible database architecture, a new design is needed

that can combine the existing system components while at the same time improves perfor-

mance when compared to a tightly integrated traditional design.

This chapter describes the Staged Database System (StagedDB) design for high-perfor-

mance, evolvable DBMS. The core idea is to provide the support to organize system com-

ponents into self-contained stages and change request execution sequence to perform

group-processing at each stage. A stage acts as an independent server with its own queue

for the incoming requests, thread support, and resource management. This staged, query-

centric approach improves current DBMS designs by providing solutions (a) at the hard-

ware level: it optimally exploits the underlying memory hierarchy and takes direct advan-

tage of new architectures such as Chip Multiprocessors (CMP), and (b) at a software

engineering level: it aims at a highly flexible platform that is easy to program and tune.
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In the remaining of the chapter, we first describe in more detail the pitfalls of thread-

based concurrency (Section 3.2) and the problems of monolithic DBMS software (Section

3.3). We then present the main components of StagedDB (Section 3.4), while in Section

3.5 we analyze and provide mechanisms to overcome the main performance tradeoff when

staging server software. We describe both performance and software engineering benefits

in Section 3.6. The last section draws the chapter’s conclusions.

3.2.   Pitfalls of thread-based concurrency

To best utilize the available resources, DBMS typically use a pool of threads or processes.

Each incoming query is handled by one or more threads, depending on its complexity and

the number of available CPUs. Each thread executes until it either blocks on a synchroni-

zation condition, an I/O event, or until a predetermined time quantum has elapsed. Then,

the CPU switches context and executes a different thread or the same thread takes on a dif-

ferent task. Context-switching typically relies on generated events instead of program

structure or the query’s current state. While this model is intuitive, it has several shortcom-

ings:

• There is no single number of preallocated worker threads that yields optimal perfor-

mance under changing workloads.

• Preemption is oblivious to the thread’s current execution state.

• Round-robin thread scheduling does not exploit cache contents that may be common

across a set of threads. 

These shortcomings, along with their tradeoffs and challenges are further discussed over

the next paragraphs.

3.2.1   Choosing the right thread pool size

Although multithreading is an efficient way to mask I/O and network latencies and fully

exploit multiprocessor platforms, many researchers argue against thread scalability [Pai et
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al. 1999; Welsh et al. 2001]. Related studies suggest (a) maintaining a thread pool that

continuously picks clients from the network queue to avoid the cost of creating a thread

per client arrival, and (b) adjusting the pool size to avoid an unnecessarily large number of

threads. Modern commercial DBMS typically adopt these guidelines. The database

administrator (DBA) is responsible for statically adjusting the thread pool size. The trade-

off the DBA faces is that a large number of threads may lead to performance degradation

caused by increased cache and TLB misses, and thread scheduling overhead. On the other

hand, too few threads may restrict concurrency, since all threads may block while there is

work the system could perform. The optimal number of threads depends on workload

characteristics which may change over time. This further complicates tuning1.

To illustrate the problem, we performed the following experiment using PREDATOR

[Seshadri et al. 1997], a research prototype DBMS, on a 1GHz Pentium III server with

512MB RAM and Linux 2.4. We created two workloads, A and B, designed after the Wis-

consin benchmark [DeWitt 1993]. Workload A consists of short (40-80msec), selection

and aggregation queries that almost always incur disk I/O. Workload B consists of longer

join queries (up to 2-3 secs) on tables that fit entirely in main memory and the only I/O

needed is for logging purposes. We modified the execution engine of PREDATOR and

added a queue in front of it. Then we converted the thread-per-client architecture into the

following: a pool of threads that picks a client from the queue, works on the client until it

exits the execution engine, puts it on an exit queue and picks another client from the input

queue. By filling the input queue with already parsed and optimized queries, we could

measure the throughput of the execution engine under different thread pool sizes.

Figure 3-1 shows the throughput achieved under both workloads, for different thread

pool sizes, as a percentage of the maximum throughput possible under each workload.

Workload A’s throughput reaches a peak and stays constant for a pool of twenty or more

threads. When there are fewer than twenty threads, the I/Os do not completely overlap,

and thus there is idle CPU time, resulting in slightly lower throughput2. On the other hand,

1. Quoting the DB2 performance tuning manual (“agents” are implemented using threads or processes): “If
you run a decision-support environment in which few applications connect concurrently, set
{num_pool_agents} to a small value to avoid having an agent pool that is full of idle agents. If you run a
transaction-processing environment in which many applications are concurrently connected, increase the
value of {num_pool_agents} to avoid the costs associated with the frequent creation and termination of
agents.” 
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Workload B’s throughput severely degrades with more than 5 threads, as there is no I/O to

hide and a higher number of longer queries interfere with each other as the pool size

increases. The challenge is to discover an adaptive mechanism with low-overhead thread

support that performs consistently well under frequently changing workloads.

3.2.2   Preemptive context-switching

A server's code is typically structured as a series of logical operations (or procedure calls).

Each procedure (e.g., query parsing) typically includes one or more sub-procedures (e.g.,

symbol checking, semantic checking, query rewriting). Furthermore, each logical opera-

tion typically consists of loops (e.g., iterate over every single token in the SQL query and

symbol table look-ups). When the client thread executes, all global procedure and loop

variables along with the data structures that are frequently accessed (e.g., symbol table)

consist the thread's working set. Context-switches that occur in the middle of an operation

evict its working set from the higher levels of the cache hierarchy. As a result, each

resumed thread often suffers additional delays while re-populating the caches with its

evicted working set.

However, replacing preemption with cooperative scheduling where the CPU yields at

the boundaries of logical operations may lead to unfairness and hurt average response

time. The challenge is to (a) find the points at which a thread should yield the CPU, (b)

build a mechanism that will take advantage of that information, and (c) make sure that no

execution path holds the CPU too long, leading to unfairness.

2. We used user-level threads which have a low context-switch cost. In systems that use processes or kernel
threads (such as DB2), increased context-switch costs have a greater impact on throughput.
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Figure 3-1. Different workloads perform differently as the number of threads
changes.
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3.2.3   Round-robin thread scheduling

The thread scheduling policy is another factor that affects memory affinity. Currently,

selection of the next thread to run is typically done in a round-robin fashion among equal-

priority threads. The scheduler considers thread statistics or properties unrelated to its

memory access patterns and needs. There is no way of coordinating accesses to common

data structures among different threads in order to increase memory locality.

Table 3-1 shows an intuitive classification of commonality in data and code references

in a database server. Private references are those exclusive to a specific instance of a

query. Shared references are to data and code accessible by any query, although different

queries may access different parts. Lastly, common references are those accessed by the

majority of queries. Current schedulers miss an opportunity to exploit shared and common

references and increase performance by choosing a thread that will find the largest amount

of data and code already fetched in the higher levels of the memory hierarchy.

In order to quantify the performance penalty, we performed the following experiment.

We measured the time it takes for two similar, simple selection queries to pass through the

parser of PREDATOR under two scenarios: (a) after the first query finishes parsing, the

CPU works on different, unrelated operations (e.g., optimize another query, scan a table)

before it switches into parsing the second query, and, (b) the second query starts parsing

immediately after the first query is parsed (the first query suspends its execution after exit-

ing the parser). Using the same setup as in 3.2.1, we found that Query 2 improves its pars-

classification data code

PRIVATE
Query Execution 
Plan, client state, 

intermediate results
NO

SHARED tables, indices
operator specific code 
(e.g., nested-loop vs. 

sort-merge join)

COMMON catalog, symbol table rest of DBMS code

Table 3-1. Data and code references across all queries
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ing time by 7% in the second scenario, since it finds part of the parser’s code and data

structures already in the server’s cache. As we show in simulation results in Section 3.5,

even such a modest average improvement across all server modules results into more than

40% overall response time improvement when running multiple concurrent queries at high

system load.

However, a thread scheduling policy that suspends execution of certain queries in order

to make the best use of the memory resources may actually hurt average response times.

The trade-off is between decreasing cache misses by scheduling all threads executing the

same software module together, while increasing response time of other queries that need

to access different modules. The challenge is to find scheduling policies that exploit a

module’s affinity to memory resources while improving throughput and response time.

3.3.   Pitfalls of monolithic DBMS design

Extensibility. Modern DBMS are difficult to extend and evolve. While commercial data-

base software offers a sophisticated platform for efficiently managing large amounts of

data, it is rarely used as stand-alone service. Typically, it is deployed in conjunction with

other applications and services. Two common usage scenarios are the following: (a) Data

streams from different sources and in different form (e.g., XML or web data) pass through

“translators” (middleware) which act as an interface to the DBMS. (b) Different applica-

tions require different logic which is built by the system programmer on top of the DBMS.

The above-mentioned scenarios may deter administrators from using a DBMS as it may

not be necessary for simple purposes, or it may not be worth the time spent in configura-

tions. A compromise is to use plain file servers that will cover most needs but will lack in

features. DBMS require the rest of the services and applications to communicate with each

other and coordinate their accesses through the database. The overall system performance

degrades since there is unnecessary CPU computation and communication latency on the

data path. The alternative, extending the DBMS to handle all data conversions and appli-

cation logic, is a difficult process, since typically there is no well-defined API and the

exported functionality is limited due to security concerns.
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Tuning. Database software complexity makes it difficult to identify resource bottlenecks

and properly tune the DBMS in heavy load conditions. A DBA relies on statistics and sys-

tem reports to tune the DBMS, but has no clear view of how the different modules and

resources are used. For example, the optimizer may need separate tuning (e.g., to reduce

search space), or the disk read-ahead mechanism may need adjustment. Current database

software can only monitor resource or component utilization at a coarse granularity (e.g.,

total disk traffic or table accesses, but not concurrent demand to the lock table). Based

solely on this information it is difficult to build automatic tuning tools to ease DBMS

administration. Furthermore, when client requests exceed the database server’s capacity

(overload conditions) then new clients are either rejected or they experience significant

delays. Yet, some of them could still receive fast service (e.g., if they only need a cached

tuple).

Maintainability. An often desirable property of a software system is the ability to

improve its performance or extend its functionality by releasing software updates. New

versions of the software may include, for example, faster implementations of some algo-

rithms. For a complex piece of software, such as a DBMS, it is a challenging process to

isolate and replace an entire software module. This becomes more difficult when the pro-

grammer has no previous knowledge of the specific module implementation. The diffi-

culty may also rise from a non-modular coding style, extended use of global variables, and

module interdependencies.

Testing and debugging. Large software systems are inherently difficult to test and debug.

The test case combinations of all different software components and all possible inputs are

practically countless. Once errors are detected, it is difficult to trace bugs through millions

of lines of code. Furthermore, multithreaded programs may exhibit race conditions (when

there is need for concurrent access to the same resource) that may lead to deadlocks.

Although there are tools that automatically search program structure at run time to expose

possible race conditions [Savage et al. 1997], they may slow down the executable or

increase the time to software release. A monolithic software design makes it even more

difficult to develop code that is deadlock-free since accesses to shared resources may not

be contained within a single module.
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3.4.   A staged approach for DBMS software

A staged database system consists of a number of self-contained modules, each encapsu-

lated into a stage. A stage is an independent server with its own queue, thread support, and

resource management that communicates and interacts with the other stages through a

well-defined interface. Stages accept packets, each carrying a query’s state and private

data (the query’s backpack), perform work on the packets, and may enqueue the same or

newly created packets to other stages. The first-class citizen is the query, which enters

stages according to its needs. Each stage is centered around exclusively owned (to the

degree possible) server code and data. There are two levels of CPU scheduling: local

thread scheduling within a stage and global scheduling across stages. This design pro-

motes stage autonomy, data and instruction locality, and minimizes the usage of global

variables.

We divide at the top level the actions the database server performs into five query exe-

cution stages (see Figure 3-2): connect, parse, optimize, execute, and disconnect. The exe-

cute stage (query execution engine) typically represents the largest part of a query’s

lifetime and is further decomposed into several stages (described in Section 3.4.2). The

break-up objective is (a) to keep accesses to the same data structures together, (b) to keep

instruction loops within a single stage, and (c) to minimize the query’s backpack. For

example, connect and disconnect execute common code related to client-server communi-

cation: they update the server’s statistics, and create/destroy the client’s state and private

data. Likewise, while the parser operates on a string containing the client’s query, it per-

forms frequent lookups into a common symbol table.

The design in Figure 3-2 is general enough to apply to any modern relational DBMS,

with minor adjustments. For example, commercial DBMS support precompiled queries

that bypass the parser and the optimizer. In our design the query can route itself from the

connect stage directly to the execute stage. Figure 3-2 also shows certain operations per-

formed inside each stage. Depending on each module’s data footprint and code size, a

stage may be further divided into smaller stages that encapsulate operation subsets (to bet-

ter match the cache sizes).
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There are two key elements in the proposed system: (a) the stage definition along with

the capabilities of stage communication and data exchange, and (b) the redesign of the

relational execution engine to incorporate a staged execution scheme. These are discussed

next.

3.4.1   Stage definition

A stage provides two basic operations, enqueue and dequeue, and a queue for the incom-

ing packets. The stage-specific server code is contained within dequeue. The proposed

system works through the exchange of packets between stages. A packet represents work

that the server must perform for a specific query at a given stage. It first enters the stage’s

queue through the enqueue operation and waits until a dequeue operation removes it.

Then, once the query’s current state is restored, the stage specific code is executed.

Depending on the stage and the query, new packets may be created and enqueued at other

stages. Eventually, the stage code returns by either (i) destroying the packet (if done with

that query at the specific stage), (ii) forwarding the packet to the next stage (i.e., from

parse to optimize), or by (iii) enqueueing the packet back into the stage’s queue (if there is

more work but the client needs to wait on some condition). Queries use packets to carry

Figure 3-2. The Staged Database System design: Each stage has its own queue
and thread support. New queries queue up in the first stage, they are encapsulated
into a “packet”, and pass through the five stages shown on the top of the figure. A
packet carries the query’s “backpack”: its state and private data. Inside the execu-
tion engine, queries issue multiple packets to increase parallelism.
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their state and private data. Each stage is responsible for assigning memory resources to a

query. As an optimization, in a shared-memory system, packets can carry only pointers to

the query’s state and data structures (which are kept in a single copy).

Each stage employs a pool of worker threads (the stage threads) that continuously call

dequeue on the stage’s queue, and one thread reserved for scheduling purposes (the sched-

uling thread). More than one threads per stage help mask I/O events while still executing

in the same stage (when there are more than one packets in the queue). If all threads hap-

pen to suspend for I/O, or the stage has used its time quantum, then a stage-level schedul-

ing policy specifies the next stage to execute. Whenever enqueue causes the next stage’s

queue to overflow we apply back-pressure flow control by suspending the enqueue opera-

tion (and subsequently freeze the query's execution thread in that stage). The rest of the

queries that do not output to the blocked stage will continue to run.

3.4.2   A staged relational execution engine

In a staged query engine each relational operator is assigned to a stage. This assignment is

based on the operator’s physical implementation and functionality. We group together

operators which use a small portion of the common or shared data and code (to avoid stage

and scheduling overhead), and separate operators that access a large common code base or

common data (to take advantage of a stage’s affinity to the processor caches). The dashed

box in Figure 3-2 shows the individual execution engine stages.

Although control flow amongst operators/stages still uses packets as in the top-level

DBMS stages, data exchange within the execution unit exhibits significant peculiarities.

Firstly, stages do not execute sequentially anymore. Secondly, multiple packets (as many

as the different operators involved) are issued per each active query. Finally, control flow

through packet enqueueing happens only once per query per stage, when the operators/

stages are activated. This activation occurs in a bottom-up fashion with respect to the

operator tree, after the init stage enqueues packets to the leaf node stages (similarly to the

“push-based” model [Graefe 1996] that aims at avoiding early thread invocations). Data-

flow takes place through the use of intermediate result buffers and page-based data

exchange using a producer-consumer type of operator/stage communication.
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Based on the above-mentioned design guidelines, Chapter 4 describes in detail and eval-

uates QPipe, a staged relational query engine, that can enhance locality across concurrent

queries. Before we describe the benefits of StagedDB, the next section addresses the main

performance tradeoff in staging server software.

3.5.   The scheduling tradeoff

Any staged server architecture, including StagedDB, exhibits a fundamental scheduling

tradeoff: On one hand, all requests executing as a batch in the same module benefit from

enhanced cross-request locality. On the other hand, each completed request suspends its

progress until the rest of the batch finishes execution, thereby increasing response time. In

this section we investigate this tradeoff and propose scheduling policies that offer a signif-

icant performance advantage for the staged DBMS design. To compare alternative strate-

gies for forming and scheduling query batches at various degrees of inter-query locality,

we develop a simple simulated execution environment, based on a “production-line” oper-

ation model (i.e., requests go through a series of stages only once and always in the same

order), that is also analytically tractable.

3.5.1   Problem formulation

We consider the case of a single-CPU database server with a memory-resident workload.

Each query submitted to the server passes through several stages of execution, and each

one of those stages corresponds to a server module (see also Figure 3-3). A module is

defined as an autonomous, in terms of the data structures owned and accessed, part of the

work that the database server performs in response to a request. An example of such a

Figure 3-3. A production-line model for staged servers.
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module is the parser or the optimizer of the database. Data structures referenced and code

executed by two different queries during the execution of a single module can overlap by a

variable amount of instructions and data. For instance, two different queries may use dif-

ferent execution operators, produce their own plans, and access different tuples; however,

they will reference common code such as buffer pool code or index look-up, and common

data such as the symbol table or the database catalog.

Once the common data structures and instructions of a module are accessed and loaded

in the cache, subsequent executions of different requests within the same module will sig-

nificantly reduce memory delays. To model this behavior, we charge a query with an addi-

tional CPU demand (quantity li in Figure 3-3) whenever the query starts execution at a

certain module and the common data structures are not already in the cache (that is, the

CPU was previously working on a different module). This extra CPU demand represents

the time spent on average in memory stalls attributed to data and code shared by all que-

ries. The model assumes, without loss of generality, that the entire set of a module's data

structures that are shared on average by all requests can fit in the higher levels of the mem-

ory hierarchy, and that a total eviction of that set takes place when the CPU switches to a

different module.

The prevailing scheduling discipline, Processor-sharing (PS), fails to reuse cache con-

tents, since it switches from query to query in a random way with respect to the query’s

current execution module. To exploit the data locality across requests, we propose tech-

niques for scheduling queries between different modules, and evaluate them against PS. In

order to compare the different scheduling policies we assume a Poisson stream of queries,

whereas the query service time is based on several analytical distributions.

Clearly, several of the assumptions related to the system architecture (single CPU, in-

memory DBMS, context switch costs, common data structure sizes and cache behavior)

are simplifications used to understand the problem and to allow for a meaningful evalua-

tion of the scheduling policies. Relaxing these assumptions does not affect the generality

of the results, as we briefly discuss below.

High-end commercial database system installations typically run on multiprocessor sys-

tems. Although this essentially adds a degree of freedom to the space of possible schedul-
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ing policies, it is straightforward to extend the proposed approach to include execution on

multiple CPUs: we divide the modules into groups and assign each group to a processor.

The analysis in this section then holds for each individual CPU. The results drawn using

this model may easily be transferred from the processor/cache/memory to the CPU/mem-

ory/disk hierarchy. I/O interrupts cause the suspension of a thread execution, before the

end of the time slice assigned to that thread. The assumption of an in-memory DBMS

removes the need of premature thread preemption (except for synchronization purposes),

and thus, allows for a simpler execution model. Nevertheless, blocking threads do not

affect the way the proposed policies work since in our implementation each stage is served

by a pool of threads, allowing this way the CPU to overlap I/O events among the queries

consisting the processed batch.

We do not model context-switch overhead, since this cost applies to all policies and thus

it does not affect the relative performance gains. We also chose to model the locality bene-

fits of staged execution with a single parameter per module. This parameter is a combina-

tion of all the code/data overlaps between different queries executing in a given module.

Although the execution of the first query in a batch will not always fetch all common data

and code of a module, and a context-switch may not always cause the eviction of all the

common data and code, this single parameter nevertheless captures the average behavior.

For instance, in Chapter 5, we show how to stage code appropriately to exploit common

instructions in the cache across queries, and find that a single parameter can describe the

amount of overlap.

The assumption of exponentiality with respect to query interarrival times (Poisson arriv-

als) does not match workloads universally, but it provides a tractable model for comparing

the different policies. For the specific problem under consideration, bursty arrivals will

only increase the potential of locality-aware scheduling, and thus, the use of Poisson arriv-

als is adequate for qualitatively comparing the different scheduling policies. Given the

assumptions mentioned, the exact problem definition follows.

3.5.1.1     Problem definition
Queries arrive at a DBMS server according to a Poisson process with rate . Each query

passes through a series of M modules, always in the same order. Each module has its own

λ
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separate queue. There is only one CPU in the system. Whenever a query arrives at the

server, its service time is drawn from an analytical distribution with mean m; when that

query executes at a given module i, it spends time  (see Table 3-2 for symbol defini-

tions). If the immediately previous query execution happened at a different module, then

the CPU also spends time  (either fixed or drawn from a distribution) to load module i

common contents in the cache. The goal is to devise a scheduling policy that minimizes

the average query response time.

The baseline scheduling policies are First Come First Serve (FCFS) and the prevailing

one, PS. Under FCFS, whenever a query arrives at module 1, it executes and then contin-

ues with module 2, until it has executed all M modules. New queries that arrive at module

1 will have to wait until the current query exits the system. Since there is only one CPU,

the only queue that actually accumulates input is the one at the entrance of module 1. Like

PS, FCFS also fails to reuse cache contents (each newly loaded module wipes the previous

one from the cache).

mi

li

symbol explanation value

M number of modules

to be set at the 
experimentation 

section

, 
fraction of a query’s total execution time 

spent at module i

query arrival rate

m mean query service time, when all common 
data+code is found in cache

l total time a query spends loading in cache 
common data+code

mean query service time, at module i, when 
common data+code is found in cache

time a query spends at module i, loading in 
cache common data+code

system load

Table 3-2. Symbol definitions

αi αi

i 1=

M

∑ 1=

λ

mi αi m×

li αi l×

ρ λ m l+( )×
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3.5.2   Proposed scheduling policies

The execution flow in the model is purely sequential, thereby reducing the search space

for scheduling policies into combinations of the following parameters: the number of que-

ries that form a batch at a given module (one, several, all), the time they receive service

(until completion or up to a cutoff value), and the module visiting order. Following are the

four proposed scheduling policies.

D-gated (Dynamic-gated). This policy dynamically imposes a gate on the incoming

queries, and executes the admitted group of queries as a batch at each module, until their

completion. Execution takes place in a first-come first-served basis at the queue of each

module. When the first query in the queue of module 1 starts execution, it fetches the com-

mon data structures of the module in the cache. The rest of the queries that form the cur-

rent batch pass through module 1 without paying the penalty of loading the common data

structures in the cache. When the last query of the batch finishes execution at module 1,

the CPU shifts to the queue of module 2 and again processes the whole batch in a FCFS

fashion. Meanwhile, incoming queries to the database server are queued up, at the first

module’s queue. Eventually, the current batch moves to the last module, and each query

leaves the system immediately after its execution. Then, the CPU shifts to the first module

and marks the new batch of admitted queries. These are the queries that have accumulated

so far in the first module’s queue. From that point of time and on, a gate is imposed to all

incoming queries, for the duration of the next batch’s execution. Since the gate defines a

batch size each time module 1 resumes execution, we call this policy Dynamic-gated, or

D-gated. Whenever the CPU shifts to module 1 and the queue is empty, D-gated reduces

to plain FCFS. Note that D-gated is a cache-conscious scheduling policy since it only pays

the penalty of loading a module in the cache once per batch of queries.

T-gated(N) (Threshold-gated). This policy works similarly to D-gated, except for the

way it specifies the size of the admitted batch of queries. T-gated explicitly defines an

upper threshold N for the number of queries that will pass through module 1 and form a

batch of maximum size N. If more than N queries have queued up in module 1 when the

CPU finishes with the previous batch, T-gated will admit just N queries while the rest will

be considered for the next batch. For N=1, this policy reduces to FCFS.
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non-gated. This policy admits all queries queued up in module 1, and works on module

1 until the queue becomes empty. At that point the CPU moves to the next module and

proceeds in the same fashion as D-gated and T-gated. Once the current batch exits the sys-

tem, the CPU shifts to module 1 and keeps admitting queries until there is no more work to

be done at module 1. Non-gated is more sensitive to starvation, since a continuous stream

of queries might cause the server to work indefinitely on module 1. While the analytic

workloads we used did not produce this behavior, the use of a time-out mechanism is nec-

essary in a real implementation. This policy is similar to the one described in [Larus and

Parkes 2002] (when applied to our model).

C-gated (Cutoff-gated). One possible issue with the previous policies is that a very

large query can essentially block the way to other, smaller ones, and thus lead momen-

tarily to higher response times. With an exponential distribution of query sizes, this issue

does not have an impact on the average response time. This is because the majority of the

system load is attributed to relatively small query sizes (close to the mean). A heavy-tailed

distribution on the other hand, typically involves half the system load to be made up by

infrequent but very large queries. In a scenario like that, FCFS based policies could lead to

unreasonably high response times, compared to processor-sharing. C-gated tries to bridge

the cache-awareness that D-gated and T-gated exhibit with the fairness in the presence of

large queries that PS shows. Under C-gated, apart from the imposed gate to the incoming

queries at the first module (either dynamically or as a predefined threshold), an additional

cutoff value applies to the time the CPU spends on a given query at a given module.

Whenever the CPU exceeds that cutoff value, it switches execution to the rest of the que-

ries in the queue and to the next module, leaving the large query unfinished. That query

will rejoin the next batch, and eventually resume execution. Whenever its remaining CPU

demand for the current module drops below the cutoff value, it will advance to the next

module. This way, both small and large queries make progress while still benefiting from

increased data locality. The cutoff technique resembles the Foreground-Background

scheduling policy used in Unix, where large jobs, when identified, are pushed in a separate

queue and receive service only when there are no jobs in the default queue. The difference

is that under C-gated large queries receive service, even at the presence of small queries,

once per batch passing.
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The analysis of PS and FCFS under the proposed model, as well as the analysis of

staged locality-aware policies, is in the Appendix of the dissertation (page 141). Next, we

evaluate and compare the proposed policies against PS and FCFS.

3.5.3   Evaluation
In all of our experiments, we set M, the number of modules, equal to five. For simplicity,

an equal percentage of service time breakdown is assigned to the five different modules

(that is, a query spends equal time in all modules or , for all i). PS and FCFS are not

affected by the number of modules neither the service time breakdown. The gated algo-

rithms can actually benefit by a biased assignment of service times to the different mod-

ules. This happens when queries spend a significant amount of time at the last module. On

average, those queries will leave the server faster since they execute mostly in a FCFS

fashion (and thus, are not delayed by all queries in the batch) and benefit from module

locality at the same time. Since this is not typically the case in a real DBMS, the number

of modules and service time breakdown remain the same through all experiments.

Whenever a query arrives at the server, its service time is drawn from two distributions:

exponential and bounded Pareto (a highly variable distribution with a cutoff value for the

maximum service time; see Section 3.5.3.3 for details), both with mean m. Note that this is

the minimum amount of time that the CPU needs to work on the query, and reflects code

execution and accesses to data that are private to the given query (and may be carried

through successive stages). A query may also spend on average time  at each module i (a

total time of l for all modules), loading the common data structures and instructions of that

module.We choose a deterministic value for the module loading time, l, that is equal for all

queries and varies in the experiments as a percentage of the total expected execution time

of a query in a default, non-staged configuration (m+l). While in both cases all policies

performed almost the same (with the exception of FCFS which is discussed later; PS per-

formed exactly the same), a deterministic module loading time fits better in the context of

a database server, since all queries need to execute and access a fairly predictable common

set of instructions and data structures at all modules. The gated family of policies per-

formed almost the same in both cases because it is the average value of the common code

and data size that affects the locality benefits and not the distribution of it.

ai 0.2=

li
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The total expected query execution time, m+l, (or mean CPU demand) refers to the case

where all common instructions and data structures need to be loaded in the cache (and

which always is the case for FCFS and PS), and is set to 100ms. Since other values for the

total mean CPU demand resulted in the same relative differences in response times among

all policies tested, all performance graphs are based only on that value. The results for

both PS and FCFS are derived from analytical formulas for the M/G/1 queue, as those are

described in the Appendix of the dissertation. The formula for PS reflects a best-case sce-

nario where there is no penalty for the more frequent (when compared to the other poli-

cies) context-switches. FCFS is actually the same as T-gated(1) and so the formula was

also validated against the simulation scripts. The confidence intervals were very tight and

so they are omitted, for better graph readability. Table 3-3 shows all the experimentation

parameters, along with their value range.

3.5.3.1     Effect of various degrees of data locality
In the first experiment, the variable component of the mean query CPU demand is drawn

from an exponential distribution with mean m in the range of 40-100ms. Initially, the

query arrival rate is set to produce a system load of 80%. This experiment compares the

mean response time for a query under PS, FCFS, D-gated, non-gated and T-gated(2), for

various module loading times (the time it takes all modules to fetch the common data

structures and code in the cache, l). This time varies as a percentage of the mean query

CPU demand, from 0% to 60% (the mean query service time that corresponds to private

parameter variance value range

M, number of modules fixed 5

, fraction of execution time at module i fixed 0.2

, query arrival rate Poisson 0-12 queries/sec

m+l, query service time, no module loaded see below for m, l mean = 100ms

m, query service time, all modules loaded exponential, 
bounded pareto mean = 0-100% of 100ms

l, common data+code loading time equal for all queries 0-100% of 100ms

Table 3-3. simulation parameters.

ai

λ
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data and instructions, m, is adjusted accordingly so that m+l=100ms). This value (l) can

also be viewed as the percentage of execution time spent servicing cache misses, attrib-

uted to common instructions and data, under the default server configuration (e.g., using

PS). The results are in Figure 3-4.

The graph of Figure 3-4 shows that the gated family of algorithms performs better than

PS for module loading times that account for more than 8% of the query execution time.

Response times are up to twice as fast and improve as module load time becomes more

significant. On the other hand, for module loading times that correspond to less than 8% of

the execution time, non-gated and D-gated policies show up to 20% worse response times.

Among those two gated policies, D-gated performs best. T-gated(2) performs consistently

well, outperforming PS in almost all configurations. The reason that T-gated(2) performs

better than D-gated or non-gated is because it closer approximates FCFS than D-gated

does and thus, the first query of every batch of two queries is delayed by only one other

query. When the benefits of cache hits are reduced, it is more important for a query not to

be delayed by other queries. T-gated performed better in this scenario for a threshold value

of N = 2. Note that FCFS shows better response times than PS as the percentage of module

loading time increases. This is because of the deterministic component (module loading

time) in the mean CPU demand. A fixed part in the service time reduces variability and

thus, queueing time delays. As an example, consider the case where the module loading

time is 100ms (that is, no variability in the service time since it is always 100ms). Then,

Figure 3-4. Mean response times for 80% system load.
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two requests that arrive together will have an average of 150ms response time under

FCFS, and 200ms under PS. In fact, it would always be better to use FCFS rather that PS.

For the graph in Figure 3-5, the same experimental setup is used, but the arrival rate is

set to create a system load of 95%. As the system load increases, the trends in the gated

family of policies do not change. The performance of PS and FCFS though drops signifi-

cantly and as a result, gated policies perform better for almost all values of module loading

time percentages (> 2%). The gains of the gated policies now increase to up to 7 times

reduced response times. T-gated(2) is still the policy of choice, since it never loses to PS.

Moreover, its ability of improving the performance (when compared to PS), even when

the common memory references are low, outweigh its slightly worse performance than D-

gated and non-gated for high percentages of common memory references.

3.5.3.2     Direct comparison of T-gated(2) and PS

This experiment directly compares PS and T-gated(2) (T-gated with N set to 2) by plotting

the area that each of those policies results in lower response times. The same exponential

distribution is used for the query sizes. The graph in Figure 3-6 is produced by varying

both the system load and the module loading times. It shows the relative speedup of T-

gated(2) over PS, for a wide range of different locality scenarios. The x-axis is the percent-

age of execution time that is eliminated for a query that finds the common data structures

of a module in the cache. This value varies from 1% to 70%. The y-axis is the server load;
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we varied the arrival rate to achieve server loads between 1% and 98%. On the right of the

y-axis we denote the areas where the relative speedup of T-gated(2) over PS is within a

certain range. Areas with darker color correspond to higher speedup, while the white area

corresponds to those combinations that both policies perform almost the same. PS is only

able to perform better than T-gated(2) in a small area on the left of the graph; the relative

speedup of PS in that area does not exceed 1.1.

3.5.3.3     Effect of very large query sizes

For the last experiment, we study the effect of a highly variable distribution. The exponen-

tial distribution assumes that the remaining query service times are independent of the

CPU time used so far. This is not true in many real workloads, where the few large queries

are increasingly more likely to take more of the CPU time. This property exactly (known

as decreasing failure rate) is characteristic of a heavy-tailed distribution, under which, a

very small fraction of the largest queries can comprise as much as half of the system load.

While PS, as a fair policy, is insensitive to different distributions, the rest of the policies

are not. A really large query can block many smaller ones and incur higher mean response

times. This experiment tests how well C-gated can push small queries out of the system

fast, while still exploiting data locality.
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We use the same distribution as in [Crovella et al. 1998], Bounded Pareto, for the vari-

able component of the total query size, with fixed mean in the range of 40-100ms (depend-

ing on the choice for l, so that the mean query CPU demand remains 100ms), and a

maximum query size of 10,000sec. Bounded Pareto has been shown to closely model task

size distributions in real world workloads [Crovella et al. 1998]. For the C-gated policy we

manually set a fixed cutoff value of 100ms (same as the mean CPU demand). In a real

environment, this can be implemented by monitoring the query sizes and using the aver-

age value as the cutoff. We repeated the first experiment (Figure 3-4) but this time we

tested C-gated under both the exponential and the Bounded Pareto distributions. FCFS,

non-gated, D-gated, and T-gated explode under Bounded Pareto (they result into very

large response times) and thus they do not appear in the plot. Instead, we show again D-

gated response times under the exponential distribution. PS behaves exactly the same

under both distributions (a well known result from queueing theory).

The results in Figure 3-7 show that C-gated under Bounded Pareto outperforms PS for

module loading times of 15% or more of the mean query execution time. While C-gated

under Bounded Pareto is worse when compared to D-gated under the exponential distribu-

tion, it nevertheless manages to exploit data locality through locality-aware scheduling

and avoid the pitfall of working almost indefinitely on very large queries. Note that C-

gated under the exponential distribution is only slightly worse than D-gated. This means

that C-gated is the policy of choice when there is no apriori knowledge of the workload
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characteristics. By increasing the system load, the same trends as in the graph of Figure 3-

5 are observed. That is, the gains of the gated family over PS increase.

3.6.   Benefits of the StagedDB design

To assess the benefits of StagedDB we built a staged mechanism on top of PREDATOR

[Seshadri et al. 1997], a single-CPU, multi-user, client-server, object-relational database

system that uses the Shore [Carey et al. 1994] storage manager. The first decision we

faced is how to break the system into stages, i.e., what the granularity of computation

should be at each stage. We initially partitioned the database system into the same five

high-level stages shown in Figure 3-2: a connection manager, parser, optimizer, execution

engine, and a final stage to handle query results. Since the majority of query time is spent

in the execution engine, we further map the different operators into five distinct stages

(see also Figure 3-2): file scan (fscan) and index scan (iscan), for accessing stored data

sequentially or with an index, respectively, sort, join which includes three join algorithms,

and a fifth stage that includes the aggregate operators (min-max, average, etc.).

The rationale for the above-mentioned high-level partitioning is that existing prototypes

already have well-defined boundaries for the five high-level components (commercial

DBMS have more modules but the boundaries are often cleaner). Our approach into stag-

ing PREDATOR included three steps: (1) identifying stage boundaries in the base system

and modifying the code to follow the staged paradigm (these were relatively straightfor-

ward changes that transformed the base code into a series of procedure calls and are not

further discussed here), (2) adding support for stage-aware thread scheduling techniques,

and (3) implementing page-based dataflow and queue-based control-flow schemes inside

the execution engine.

A similar approach can apply to the process of staging a commercial DBMS which is far

more complicated than our prototype. Each of the high-level stages will need to further

break into smaller ones, following a recursive, top-down approach. The strategy will be

largely guided by the functionality and performance requirements of each stage. The opti-

mizer, for instance, is a computation-intensive module that consists of three easily identifi-

able components: candidate plan construction, access to statistics, and plan cost
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computation. A database software developer will first need to assign each of those compo-

nents to a different stage and then recursively componentize until computation is evenly

divided across stages (while keeping overhead low). For stages that include accesses to

data structures common to different queries, accesses will need to be clustered separately

into stages. The wizards, tools, and statistic collection mechanisms need to be assigned to

separate stages.

3.6.1   Evaluation of StagedDB prototype implementation

The StagedDB prototype consists of 2,500 new lines of code (PREDATOR is 60,000 lines

of C++) and supports most of the database functionality of the original system. Shore pro-

vides non-preemptive user-level threads that typically restrict the degree of concurrency in

the system since a client thread yields only upon I/O events. We use this behavior to

explicitly control the points at which the CPU switches thread execution. We incorporate

the proposed affinity scheduling schemes (from Section 3.5) into the system’s thread

scheduling mechanism by rotating the thread group priorities among stages. For example,

whenever the CPU shifts to the parse stage, the stage threads receive higher priority and

keep executing dequeue until either (a) the queue is empty, or (b) the global scheduler

imposes a gate on the queue, or (c) all working threads are blocked on a I/O event. The

thread scheduler tries to overlap I/O events as much as possible within the same stage.

Queueing overhead. We conducted an experiment to examine the staged system’s over-

head due to additional enqueue-dequeue operations. We pick simple selection, aggregate,

and 2- or 3-way join queries from the Wisconsin Benchmark [DeWitt 1993] on a small,

memory-resident database, and send them one at a time to the original system and the

staged one. Note that we expect the staged system to perform about the same or slightly

worse, since we only submit one query at a time (no opportunity for enhancing cross-

query locality). Moreover, the staged system uses multiple threads per query without

being able to exploit inter-query parallelism (because of the single CPU and the memory-

resident database). We measured a 0-2% performance degradation for the staged system.

Note that this was the pure overhead, without including the benefits of staging. The staged

system actually ran faster, even for a single query, by batching tasks at each stage and

avoiding extra procedure calls.
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Performance and software engineering benefits. Since each stage inside the execution

engine processes multiple tuples (with a granularity of a page) on behalf of each query, the

staged system improved performance over the original system which uses a tuple-by-tuple

iterator evaluation model. Since each relational operator processes a batch of tuples, the

staged system avoids extraneous procedure calls and achieves better instruction temporal

locality (we address instruction cache optimizations in Chapter 5). Furthermore, the

staged system naturally provides intra-query parallelism by employing as many stages as

the nodes in a query’s plan. When compared to the original system, the staged system was

able to run faster queries containing I/O, since it overlaps I/O with computation of other

stages. Lastly, in developing and testing code in both the original and the staged system,

we were able to trace and isolate software bugs more easily in the staged system.

Our initial implementation of StagedDB on top of PREDATOR confirmed the intuition

regarding the benefits of staging database software and contributed several promising

research directions. In this dissertation, we further investigate how the staged execution

engine can improve cross-query locality (Chapter 4) and how StagedDB can improve

instruction cache performance for large, commercial-grade systems processing multiple

concurrent transactions (Chapter 5). For the rest of the dissertation, the prototype DBMS

used so far (PREDATOR) is discarded in favor of two alternative implementations that

better suit the needs of each research direction.

For the staged execution engine (Chapter 4), we transfer our implementation of stages

on top of the BerkeleyDB database storage manager. BerkeleyDB allows building applica-

tions that utilize native OS threads and can also run on multi-processor servers (PREDA-

TOR runs on single-CPU systems and uses non-preemptive user-level threads). Having a

staged implementation based on native OS threads is important because it provides porta-

bility, flexibility in constructing scheduling policies, and high performance.

For studying the instruction cache bottleneck in transaction processing (Chapter 5), we

use our own high-performance runtime built directly on top of Shore. We chose to bypass

PREDATOR (which itself is built on top of Shore), since it contains elaborate code to han-

dle a wide range of data types that contributes a high overall overhead, and also does not

support pre-compiled transactions (which is the norm in typical transaction processing
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installations). Finally, we chose Shore instead of BerkeleyDB for two reasons. First, Shore

provides more advanced transaction processing features (e.g., it allows for record-level

locking whereas BerkeleyDB currently offers only page-level locking). Second, modify-

ing a user-level thread package instead of a native one, was a less demanding task. More-

over, instruction-cache results obtained from a single-CPU server are easy to generalize to

multi-processors, since instruction caches are private to each CPU.

In the remaining of this section we discuss how the StagedDB design addresses the

shortcomings of conventional DBMS architectures, as those presented in Sections 3.2 and

3.3.

3.6.2   Solutions to thread-based problems

The StagedDB design avoids the pitfalls of the traditional threaded execution model as

those were described in Section 3.2 through the following mechanisms:

• Each stage allocates worker threads based on its functionality and the I/O frequency,

and not on the number of concurrent clients. This way there is a well-targeted thread

assignment to the various database execution tasks at a much finer granularity than

just choosing a thread pool size for the whole system.

• A stage contains DBMS code with one or more logical operations. Instead of preempt-

ing the current execution thread at a random point of the code (whenever its time

quantum elapses), a stage thread voluntarily yields the CPU at the end of the stage

code execution. This way the thread’s working set is evicted from the cache at its

shrinking phase and the time to restore it is greatly reduced. This technique can also

apply to existing database architectures.

• The thread scheduler repeatedly executes tasks queued up in the same stage, thereby

exploiting stage affinity to the processor caches. The first task’s execution fetches the

common data structures and code into the higher levels of the memory hierarchy while

subsequent task executions experience fewer cache misses. This type of scheduling

cannot easily apply to existing systems since it would require annotating threads with

detailed application logic.
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3.6.3   Solutions to software-complexity problems

Stages provide a well-defined API and thus make it easy to:

• Replace a module with a new one (e.g., a faster algorithm), or develop and plug mod-

ules with new functionality. The programmer needs to know only the stage API and

the limited list of global variables.

• Debug the code and build robust software. Independent teams can test and correct the

code of a single stage without looking at the rest of the code. While existing systems

offer sophisticated development facilities, a staged system allows building more intui-

tive and easier to use development tools.

• Encapsulate external wrappers or “translators” into stages and integrate them into the

DBMS. This way we can avoid the communication latency and exploit commonality

in the software architecture of the external components. For example, a unified buffer

manager can avoid the cost of subsequent look-ups into each component’s cache. A

well-defined stage interface enables the DBMS to control distribution of security priv-

ileges.

3.6.4   Additional benefits of StagedDB

Multi-processor and multi-core systems. High-end DBMS typically run on multi-pro-

cessor or multi-core (Chip Multiprocessors—CMP) systems. A staged system naturally

maps one or more stages to a dedicated CPU or processor core, providing fine-grain intra-

query parallelism. Stages may also migrate to different processors to match the workload

requirements. Data and code locality benefits are even higher than in the single-CPU

server, since fewer stages are exclusively using a single processor’s cache. We discuss

extensions to StagedDB for multi-core systems in the last chapter of the dissertation.

Multiple query optimization. Multiple query optimization [Sellis 1988] has been exten-

sively studied over the past fifteen years. The objective is to identify and exploit subex-

pression commonality in a batch of queries during optimization and reduce execution time

by reusing already fetched or computed input tuples. Commercial systems typically do not

include a multi-query optimizer, since most applications process queries interactively and
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not in batches (e.g., e-commerce applications, reservation systems, ad-hoc decision sup-

port querying systems). A staged system, however, provides a window of time before exe-

cuting the optimizer stage, during which incoming queries may queue up and form a

batch. Furthermore, the optimizer can spend less time waiting for a sufficient number of

incoming queries with common subexpressions, since newly arrived queries can still

exploit common data from other queries already inside the execution engine.

3.7.   Chapter summary

In this chapter we first motivated the need for a new database system architecture by ana-

lyzing the shortcomings of DBMS software. Modern database systems are built as mono-

lithic pieces of software and force the use of non-synergetic execution primitives for

handling concurrent requests: independent threads are used to multiplex request execution

and maximize processor utilization. While database software architecture has fundamen-

tally remained unchanged over the past two decades, hardware infrastructure has under-

gone significant changes. Good memory hierarchy utilization is essential in today's

applications. No matter how well a single execution thread is optimized, there is always

interference between non-synergetic threads. For instance, in Chapter 5 we show how

eliminating instruction interference in the caches across concurrent transactions yields a

16-39% throughput improvement. With the advent of thread-parallel architectures (CMP

and SMT), cross-thread interference will hurt performance even more.

The monolithic nature of DBMS design makes it difficult to find bottlenecks and in

turn, optimize resource utilization. It makes it difficult to enforce scheduling policies and

also makes it difficult for the hardware designer to isolate and benchmark individual com-

ponents of the system. Furthermore, DBMS today ship as an “all or nothing” software.

While database software complexity and code size have grown to meet application

demands, the design philosophy has remained the same. The core system components are

tightly glued together and new components are added on top of them. It is economically

infeasible for a vendor to ship systems with custom components. As a result, DBMS is fre-

quently considered an “overkill” for a number of applications that would otherwise benefit

from the usage of database technology.
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As a solution to the above-mentioned problems, this chapter introduced StagedDB, a

new design for high-performance, evolvable database systems. The core idea of StagedDB

is to encapsulate system components in self-contained stages and replace existing glue

with queues and sub-requests. We detailed techniques to define and build individual stages

out of a prototype DBMS along with query scheduling policies for staged architectures. To

prove the feasibility of staged execution for a database server, we studied the performance

tradeoff of delaying sub-requests to execute them in groups and found scheduling disci-

plines that can outperform traditional architectures. We then evaluated our initial imple-

mentation of a staged database system on top of PREDATOR, a research prototype

DBMS, and described both performance and software engineering benefits of the case

study.

Over the next two chapters, we further investigate how the staged execution engine can

improve cross-query locality (Chapter 4) and how StagedDB can improve instruction

cache performance for large, commercial-grade systems processing multiple concurrent

transactions (Chapter 5).



Chapter 4

Implementing a staged query engine

Relational DBMS typically execute concurrent queries independently by invoking a set of

operator instances for each query. To exploit common data retrievals and computation in

concurrent queries, researchers have proposed a wealth of techniques, ranging from buff-

ering disk pages to constructing materialized views and optimizing multiple queries. The

ideas proposed, however, are inherently limited by the query-centric philosophy of mod-

ern engine designs. Ideally, the query engine should proactively coordinate same-operator

execution among concurrent queries, thereby exploiting common accesses to memory and

disks as well as common intermediate result computation.

This chapter describes QPipe, a staged, operator-centric relational engine that enhances

locality across concurrent queries. Each relational operator is encapsulated in a micro-

engine serving query tasks from a queue. QPipe implements on-demand simultaneous

pipelining (OSP), a novel query evaluation paradigm for maximizing data and work shar-

ing across concurrent queries at execution time. OSP enables proactive, dynamic operator

sharing by pipelining the operator’s output simultaneously to multiple parent nodes. Eval-

uation of QPipe built on top of BerkeleyDB shows that QPipe achieves a 2x speedup over

a commercial DBMS when running a workload consisting of TPC-H queries.

4.1.   Introduction

Modern decision-support systems (DSS) and scientific database applications operate on

massive datasets and are characterized by complex queries accessing large portions of the

database. Although high concurrency is predominantly studied in transactional workloads
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due to intensive updates, decision-support systems often run queries concurrently (hence

the throughput metric suggested in the specification of TPC-H, the prevailing DSS bench-

mark). In a typical data warehousing installation, new data is periodically bulk loaded into

the database, followed by a period where multiple users issue read-only (or read-heavy)

queries. Concurrent queries often exhibit high data and computation overlap, e.g., they

access the same relations on disk, compute similar aggregates, or share intermediate

results. Unfortunately, run-time sharing in modern execution engines is limited by the par-

adigm of invoking an independent set of operator instances per query, potentially missing

sharing opportunities if the caches and buffer pool evict data pages early.

4.1.1   Sharing limitations in modern DBMS

Modern query execution engines are designed to execute queries following the “one-

query, many-operators” model. A query enters the engine as an optimized plan and is exe-

cuted as if it were alone in the system. The means for sharing common data across concur-

rent queries is provided by the buffer pool, which keeps information in main memory

according to a replacement policy. The degree of sharing the buffer pool provides, how-

ever, is extremely sensitive to timing; in order to share data pages the queries must arrive

simultaneously to the system and must execute in lockstep, which is highly unlikely. To

illustrate the limitations of sharing through the buffer pool, we run TPC-H on X, a major
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commercial system1 running on a 4-disk Pentium 4 server (experimental setup details are

in Section 4.5). Although different TPC-H queries do not exhibit overlapping computation

by design, all queries operate on the same eight tables, and therefore there often exist data

page sharing opportunities. The overlap is visible in Figure 4-1 which shows a detailed

time breakdown for five representative TPC-H queries with respect to the tables they read

during execution2.

Figure 4-2 shows the throughput achieved for one to twelve concurrent clients submit-

ting requests from a pool of eight representative TPC-H queries, for DBMS X and QPipe,

our proposed query engine. Both systems were configured with locking and logging dis-

abled. QPipe achieves up to 2x speedup over X, with the throughput difference becoming

more pronounced as more clients are added. The reason QPipe exhibits higher TPC-H

throughput than X is that QPipe proactively shares the disk pages one query brings into

memory with all other concurrent queries. Ideally, a query execution engine should be able

to always detect such sharing opportunities across concurrent queries at run time, for all

operators (not just for table scans) and be able to pipeline data from a single query node to

multiple parent nodes at the same time. We call this ability on-demand simultaneous pipe-

lining (OSP). The challenge is to design a query execution engine that supports OSP with-

out incurring additional overhead.

1.Licensing restrictions prevent us from revealing the vendor.
2.Table specifications and TPC-H queries are available from the TPC website: http://www.tpc.org
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4.1.2   State-of-the-art in data and work sharing

Modern database systems employ a multitude of techniques to share data and work across

queries. The leftmost part of Figure 4-3 shows those mechanisms and the center column

shows the order in which they are invoked, depending on the high-level phases of query

execution. Once a query is submitted to the system, it first performs a lookup to a cache of

recently completed queries. On a match, the query returns the stored results and avoids

execution altogether. Once inside the execution engine, a query may reuse precomputed

intermediate results, if the administrator has created any matching materialized views. To

our knowledge, modern engines do not detect and exploit overlapping computation among

concurrent queries. When an operator consumes tuples, it first performs a buffer pool

lookup, and, on a miss, it fetches the tuples from disk. Buffer pool management techniques

only control the eviction policy for data pages; they cannot instruct queries to dynamically

alter their access patterns to maximize data sharing in main memory.

The rightmost part of Figure 4-3 shows that during each of the three basic mechanisms

for data and work sharing there is a missed opportunity in not examining concurrent que-

ries for potential overlap. Often, it is the case that a query computes the same intermediate
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result that another, current query also needs. Or, an in-progress scan may be of use to

another query, either by reading the file in a different order or by making a minor change

in the query plan. It would be unrealistic, however, to keep all intermediate results around

indefinitely, just in case a future query needs it. Instead, what we need is a query engine

design philosophy that exploits sharing opportunities naturally, without incurring addi-

tional management or performance overhead.

4.1.3   On-demand simultaneous pipelining

To maximize data and work sharing at execution time, we propose to monitor each rela-

tional operator for every active query in order to detect overlaps. For example, one query

may have already sorted a file that another query is about to start sorting; by monitoring

the sort operator we can detect this overlap and reuse the sorted file. Once an overlapping

computation is detected, the results are simultaneously pipelined to all participating parent

nodes, thereby avoiding materialization costs. There are several challenges in embedding

such an evaluation model inside a traditional query engine: (a) how to efficiently detect

overlapping operators and decide on sharing eligibility, (b) how to cope with different

consuming/producing speeds of the participating queries, and, (c) how to overcome the

optimizer’s restrictions on the query evaluation order to allow for more sharing opportuni-

ties. The overhead to meet these challenges using a “one-query, many-operators” query

engine would offset any performance benefits.

To support simultaneous pipelining, we introduce QPipe, a new query engine architec-

ture, based on the principles of the StagedDB design. QPipe follows a “one-operator,

many-queries” design philosophy. Each relational operator is promoted to an independent

micro-engine which manages a set of threads and serves queries from a queue. Data flow

between micro-engines occurs through dedicated buffers — similar to a parallel database

engine [DeWitt et al. 1990]. By grouping similar tasks together, QPipe can naturally

exploit any type of overlapping operation. We implement QPipe on top of the BerkeleyDB

storage manager, using native OS threads. The resulting prototype is a versatile engine,

naturally parallel, running on a wide range of multi-processor servers (tested on IA-64,

IA-32, Linux and Windows). We demonstrate the effectiveness of our techniques through

experimentation with microbenchmarks and the TPC-H benchmark. QPipe can efficiently
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detect and exploit data and work sharing opportunities in any workload and can achieve

up to 2x throughput speedup over traditional DBMS when running TPC-H queries. As

Figure 4-2 shows, QPipe exploits all data sharing opportunities, while executing the same

workload as the commercial DBMS.

In the remaining of this chapter, we describe the design and implementation of QPipe

(Section 4.2), we present on-demand simultaneous pipelining (OSP) techniques for maxi-

mizing data and work sharing across queries (Section 4.3), we then describe how OSP is

implemented in QPipe (Section 4.4), while in Section 4.5 we present our experimentation

with the QPipe prototype. We address deadlocks in OSP in Section 4.6 and summarize the

chapter in Section 4.7.

4.2.   QPipe: design and implementation

In this section we first briefly describe the design philosophy behind conventional query

engines (Section 4.2.1), we then introduce the QPipe engine design (Section 4.2.2) and

provide details of the QPipe/BerkeleyDB prototype (Section 4.2.3).

4.2.1   Conventional engine design

Traditional relational query engine designs follow the “one-query, many-operators”

model, and therefore are query-centric. Query plans generated by the optimizer drive the
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query evaluation process. A query plan is a tree with each node being a relational operator

and each leaf an input point (either file scan or index scan) [Graefe 1996]. The execution

engine evaluates queries independently of each other, by assigning one or more threads to

each query. The high-level picture of the query engine consists of two components — the

execution environment, where each query performs all of its intermediate computations,

and the storage manager which handles all requests for disk pages (see also Figure 4-4).

Queries dispatch requests to the disk subsystem (storage engine) and a notification mecha-

nism informs the query when the data is placed in a pre-specified memory location. The

storage engine optimizes resource management by deciding which pages will be cached or

evicted. Since all actions are performed without having cumulative knowledge of the

exact state of all current queries, conventional engines cannot fully exploit data and work

sharing opportunities across queries.

4.2.2   The QPipe engine

QPipe implements a new, alternative execution model, based on the StagedDB design, that

we call “one-operator, many-queries,” and therefore is an operator-centric architecture

(Figure 4-5). In QPipe, each operator is promoted to an independent micro-engine

(µEngine). µEngines accept requests (in the form of packets) and serve them from a

queue. For example, the Sort µEngine only accepts requests for sorting a relation. The
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request itself must specify what needs to be sorted and which tuple buffer the result needs

to be placed into. The way a query combines the independent work of all µEngines is by

linking the output of one µEngine to the input of another, therefore establishing producer-

consumer relationships between participating µEngines. In the current prototype, tuple

buffers are implemented in shared-memory, however, this communication module can

easily be replaced with a message passing mechanism, to deploy QPipe in distributed

environments.

The input to QPipe is precompiled query plans (we use plans derived from a commer-

cial system’s optimizer). Query plans pass through the packet dispatcher which creates as

many packets as the nodes in the query tree and dispatches them to the corresponding

µEngines. Each µEngine has a queue of incoming requests. A worker thread that belongs

to that µEngine removes the packet from the queue and processes it. Figure 4-6 shows the

components of a µEngine. Packets mainly specify the input and output tuple buffers and

the arguments for the relational operator (e.g., sorting attributes, predicates etc.). µEngines

work in parallel to evaluate the query. The evaluation model resembles a push-based exe-

cution design [Graefe 1994], where each operator independently produces tuples until it

fills the parent’s input buffer. If the output is consumed by a slower operator, then the

intermediate buffers regulate the data flow.

Since QPipe involves multiple local thread pools (one for each µEngine), efficient

scheduling policies are important to ensure low query response times. We follow a two-

level scheduling approach. At the higher level, the scheduler chooses which µEngine runs

next and on which CPU(s). Within each µEngine, a local scheduler decides how the

worker threads are scheduled. In our prototype we use a round-robin schedule for the
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µEngines, with a fixed number of CPUs per µEngine, and the default, preemptive proces-

sor-sharing (PS) that the OS provides for the worker threads. Since this simple policy

guarantees that the system always makes progress, response times for all queries were

held low.

QPipe improves performance (throughput and response time) when compared to tuple-

by-tuple evaluation engines (iterator model) by saving extraneous procedure calls and by

improving temporal locality. Recent work [Zhou and Ross 2004] introduces a buffer oper-

ator to increase the number of tuples processed at one time at each operator, thereby

improving instruction temporal locality for long running queries. By processing a batch of

tuples for each query at every µEngine, QPipe improves instruction temporal locality, as

also shown in the previous chapter. QPipe also provides full intra-query parallelism, tak-

ing advantage of all available CPUs in a multi-processor server for evaluating a single

query, regardless of the plan's complexity.

QPipe can achieve better resource utilization than conventional engines by grouping

requests of the same nature together, and by having dedicated µEngines to process each

group of similar requests. In the same way a disk drive performs better when it is pre-

sented with a large group of requests (because of better disk head scheduling), each

µEngine can better optimize resource usage by processing a group of similar requests.

Over the next sections of the chapter we focus on QPipe’s ability to reuse data pages and

similar computation between different queries at the same µEngine.

4.2.3   The QPipe/BerkeleyDB prototype
The QPipe prototype is a multi-threaded, parallel application that runs on shared-memory

multiprocessor systems. Each µEngine is a different C++ class with separate classes for

the thread-pool support, the shared-memory implementation of queues and buffers

(including query packets), and the packet dispatcher. Calls to data access methods are

wrappers for the underlying storage manager. The bare system is a runtime consisting of a

number of idle threads, as many as the specified µEngines times the number of threads per

µEngine. The OS schedules the threads on any of the available CPUs. Client processes can

either submit packets directly to the µEngines or send a query plan to the packet dis-

patcher which creates and routes the packets accordingly. The basic functionality of each
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µEngine is to dequeue the packet, process it, optionally read input or write output to a

buffer, and destroy the packet. The client process reads the final results from a shared-

memory buffer.

We implement relational-engine functionality by inserting relational processing code to

each µEngine, and providing the packet dispatcher code to transform precompiled query

plans into packets. The database storage manager adds the necessary transactional sup-

port, a buffer-pool manager, and table access methods. In the current prototype we use the

BerkeleyDB database storage manager and have implemented the following relational

operators: table scan (indexed and non-indexed), nested-loop join, sort, merge-join, hybrid

hash join, aggregate (both simple and hash-based). The implementation is about 7,000

lines of C++ code (BerkeleyDB itself is around 210,000 lines).

In addition to BerkeleyDB, we have successfully applied the QPipe runtime to two other

open source DBMS, MySQL1 and Predator [Seshadri et al. 1997]. Since there is typically

a clear division between the storage manager and the rest of the DBMS, it was straightfor-

ward to transfer all function calls to the storage manager inside the µEngines. Taking the

optimizer’s output and redirecting it to the packet dispatcher was also straightforward. The

time consuming part of the conversion is to isolate the code for each relational operator.

Fortunately, each relational operator uses a limited set of global variables which makes it

easy to turn the operator into a self-contained module with parameters being passed as an

encoded structure.

4.3.   Simultaneous pipelining

Despite a plethora of mechanisms to share data and work across queries (as those were

analyzed in Chapter 2), the prevailing relational query execution paradigm is character-

ized by two key properties that preclude full exploitation of sharing opportunities. First, it

deprives individual queries from knowing about the state of other, concurrent queries. In

doing so, it prevents the system from taking action at run time, once an overlapping oper-

ation across different queries appears. Second, traditional query engines adhere to a static

1.http://www.mysql.com/
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evaluation plan and to a page-level interface to the storage manager. Despite the fact that

disk page access patterns are known in advance, sharing opportunities are limited since the

system cannot adjust the query evaluation strategy at run time.

If two or more concurrent queries contain the same relational operator in their plans, and

that operator outputs the same tuples on behalf of all queries (or a query can use these

tuples with a simple projection), then we can potentially “share” the operator. The opera-

tor will execute once, and its output will be pipelined to all consuming nodes simulta-

neously. We refer to the ability of a single relational operator to pipeline its output to

multiple queries concurrently as simultaneous pipelining. On-demand simultaneous pipe-

lining (OSP) is the ability to dynamically exploit overlapping operations at run time. OSP

is desirable when there exist opportunities for reusing data pages that the buffer pool man-

ager has evicted early, or intermediate computations across queries that are not covered by

pre-computed materialized views.

In this section we first characterize what a “missed opportunity” for data and work shar-

ing is (Section 4.3.1). Then, we classify all relational operators with respect to their effec-

tive “window of opportunity,” i.e., what percentage of the operation’s lifetime is offered

for reuse (Section 4.3.2). Lastly, we describe the challenges in exploiting overlap between

relational operators (Section 4.3.3).

4.3.1   Data and work sharing misses

Whenever two or more concurrent queries read from the same table, or compute the same

(or subset of the same) intermediate result, there is potentially an opportunity to exploit

overlapping work and reduce I/O traffic, RAM usage, and processing time. A sharing miss

in a workload is defined in terms of memory page faults and computation as follows:

A query  begins execution at time  and completes at time .

Definition 1. At time ,  requests page , which was previously referenced

at time . If the request results in a page fault, and , the page fault is a

data sharing miss.

Q Ts Tc

Tr Q P

Tp Ts Tp<
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Definition 2. At time ,  initiates new computation by running operator .

If  was also executed between  and , then there is a work sharing miss.

Sharing misses can be minimized by proactively sharing the overlapping operator

across multiple queries. To clarify this procedure, consider the scenario illustrated in Fig-

ure 4-7 in which two queries use the same scan operators. For simplicity, we assume that

the main memory holds only two disk pages while the file is  pages long. Query 1

starts a file scan at time . As the scan progresses, pages are evicted to make room for

the incoming data. At time , Query 2 arrives and starts a scan on the same table. At this

point, pages  and  are in main memory. These will be replaced by the new pages

read by the two scans:  for Q1 and  for Q2. At time , Q1 has finished and Q2 is

about to read page . The main memory now contains  and  that Q2 just read.

Page , however, was in main memory when Q2 arrived in the system. This page (and all

subsequent ones) represent data sharing misses by Q2.

With simultaneous pipelining in place, Query 2 can potentially avoid all data sharing

misses in this scenario. Assuming that Q2 is not interested in which order disk pages are

read — as long as the entire table is read — then, at time , Q2 can “piggyback” on Q1’s

scan operator. The scan operator will then pipeline all pages read simultaneously to both

Tw Q W

W Ts Tw

Figure 4-7. Two queries independently start a file scan on the same table. Query 2
is missing the opportunity to reuse all pages, after Pn, that Query 1 brings momen-
tarily in RAM.
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queries, and, on reaching the end of file, a new scan operator, just for Q2, will read the

skipped pages. What happens, however, if Q2 expects all disk pages to be read in the order

stored in file? To help understand the challenges involved in trying to minimize sharing

misses, the next subsection classifies relational operators with respect to their sharing

opportunities.

4.3.2   Window of Opportunity (WoP)

Given that query Q1 executes a relational operator and query Q2 arrives with a similar

operator in its plan, we need to know whether we can apply simultaneous pipelining or

not, and what are the expected cost savings for Q2 (i.e., how many sharing misses will be

eliminated). We call the time from the invocation of an operator up until a newly submit-

ted identical operator can take advantage of the one in progress, window of opportunity or

WoP. Once the new operator starts taking advantage of the in-progress operator, the cost

savings apply to the entire cumulative cost of all the children operators in the query’s plan.

Figure 4-8 shows a classification of all basic operations in a relational engine with

respect to the WoP and the associated cost savings for a simultaneously pipelined second

query. We identify four different types of overlap between the various relational opera-

tions (shown on the top of the figure). Linear overlap characterizes operations that can

always take advantage of the uncompleted part of an in-progress identical operation, with

cost savings varying from 100% to 0%, depending how late in the process Q2 joins Q1.

For example, unordered table scans (which do not care about the order in which the tuples

linear step full spike

• table scan (either as 
an operator or part of 
reading sorted files, 
hashed partitions etc.)

• index scan
• hash join (probe)
• group-by
• nested-loop join
• merge join

• hash join (partitioning)
• sort
• single aggregate
• non-clustered index 
scan (RID list creation)

• ordered table scan

100%
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Q2 gain
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Q2 gain
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100%

0%
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0% 100%
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100%

0%
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0% 100%
Q1 progress

Figure 4-8. Windows of Opportunity for the four basic operator overlap types.
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are received) fall in this category. Step overlap applies to concurrent operations that can

exploit each other completely (100% cost savings), as long as the first output tuple has not

been produced yet. For example, in the probing phase of hash-join, it may take some time

before the first match is found; during that time, Q2 can join Q1. Full overlap is the ideal

case: 100% cost savings for the entire lifetime of the in-progress operation (for example,

computing a single aggregate). The last category, spike overlap, is all operations that can-

not be overlapped, unless they start at the exact same time; for example, a table scan that

must output tuples in table order can only piggyback on any other scan if the first output

page is still in memory. A spike overlap is the same as a step overlap when the latter pro-

duces its first output tuple instantaneously.

Figure 4-9 shows two “enhancement” functions that can apply to the aforementioned

categories in order to increase both the WoP and the cost savings. The buffering function

refers to the ability of an operator to buffer a number of output tuples. Since output is not

discarded immediately after it is consumed, an incoming request has a wider window of

opportunity for exploiting the precomputed output tuples. For example, an ordered table

scan that buffers N tuples can be converted from spike to step. The materialization func-

tion stores the results of an operator to be used later on. For example, consider an ordered

table scan. If a new, highly selective (few qualifying tuples) query needs to scan the same

table in stored tuple order, then we can potentially exploit the scan in progress by storing

the qualifying tuples for the new query. This way we trade reading part of the table with

storing and then reading a potentially significantly smaller number of tuples. This function

can convert spike to linear, albeit with a smaller effective slope for the cost savings.

buffering materialization

Applies to
linear, step

Applies to
step, spike

100%
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Figure 4-9. WoP enhancement functions.
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Next, we break down each operator to its basic overlap types.

File scans. File scans have only one phase. If there is no restriction on the order the tuples

are produced, or the parent operator needs the tuples in order but can output them in any

order, then file scans have a linear overlap. If tuple ordering is strict then file scans have a

spike overlap.

Index scans. Clustered index scans are similar to file scans and therefore exhibit either

linear or spike overlap depending on the tuple ordering requirements. Unclustered index

scans are implemented in two phases. The first phase probes the index for all matches and

constructs a list with all the matching record IDs (RID). The list is then sorted on ascend-

ing page number to avoid multiple visits on the same page. This phase corresponds to a

full overlap as a newly arrived operator can exploit work in progress at any point of time.

The second phase is similar to file scan and so is either linear or spike overlap.

Sort. Sorting consists of multiple phases, though, in our context, we treat it as a two-phase

operator. In the first phase the input is sorted on the sorting attribute (either in memory or

disk, depending on the size of the file). During this phase any new arrival can share the

ongoing operation, and therefore it is a full overlap. The second phase is pipelining the

sorted tuples to the parent operator and it is similar to a file scan (either linear or spike).

Aggregates. All aggregate operators producing a single result (min, max, count, avg)

exhibit a full overlap. Group-by belongs to step overlap, since it produces multiple results.

Buffering can potentially provide a significant increase in the WoP, especially if the pro-

vided buffer size is comparable to the output size.

Joins. The most widely used join operators are hash-join, sort-merge join, and nested-loop

join. Nested-loop join has a step overlap (it can be shared while the first match is not

found yet). The sorting phase of sort-merge join is typically a separate sort operator. The

merging phase is similar to nested-loop join (step). Hash-join first hashes and partitions

the input relations. This phase is a full overlap. The joining phase is again step overlap.

Both buffering and materialization can further increase the WoP.

Updates. By their nature, update statements cannot be shared since that would violate the

transactional semantics.
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4.3.3   Challenges in simultaneous pipelining

A prerequisite to simultaneous pipelining is the decoupling of operator invocation and

query scope. Such a decoupling is necessary to allow an operator to copy its output tuples

to multiple queries-consumers. In commercial DBMS this decoupling is visible only at the

storage layer (as shown in Figure 4-4). Whenever a query needs tuples from the disk it

waits for them to be placed at a specified buffer. From the query’s point of view, it does

not make a difference whether there is a single or multiple I/O processes delivering the

same tuples to multiple queries. A similar decoupling should apply to all relational opera-

tors to implement simultaneous pipelining techniques. Following, we outline the remain-

ing challenges.

Run-time detection of overlapping operations. To make the most out of simultaneous

pipelining, the query engine must track the progress of all operators for all queries at all

times. Whenever a query is submitted, the operators in its plan must be compared with all

the operators from all active queries. The output of each comparison should specify

whether there is an overlapping computation in-progress and whether the window of

opportunity (WoP) has expired. This run-time detection should be as efficient as possible

and scale well with the number of active queries.

Multiple-scan consumers. When new scan requests for the same table arrive repeatedly

and dynamically share a single scan, a large number of partial scans will then be active on

the same relation. Ideally, these partial scans should again synchronize the retrieval of

common tuples, which requires additional bookkeeping. File scans with different selectiv-

ities and different parent consumption rates can make the synchronization difficult. If one

file scan blocks trying to provide more tuples than its parent node can consume, it will

need to detach from the rest of the scans. This might create a large number of partial scans

covering different overlapping and disjoint regions of the relations, further complicating

synchronization efforts.

Order-sensitive operators. Query optimizers often create plans that exploit “interesting”

table orders by assuming that the scanned tuples will be read in table order. For example,

if a table is already sorted on a join attribute, the optimizer is likely to suggest a merge-

join and avoid sorting the relation. Such scans have a spike WoP and therefore cannot take
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advantage of an ongoing scan. In case the ordered scan is highly selective (few qualifying

tuples), a materialization function could help by storing the qualifying tuples, and reusing

them later, in order. The challenge, however, is to exploit the scan in progress even if the

new, order-sensitive scan does not perform any filtering.

Deadlocks in pipelining. The simultaneous evaluation of multiple query plans may lead

to deadlocks. Consider for example two queries that share the results of two different

scans (table A and B). If one query needs to advance scan A to be able to process the last

value read from B, while the other query has the opposite need, advancing B to process

A’s last read value, then the two queries become deadlocked. The existence of a buffer can

only delay the appearance of a deadlock in this case. The challenge is to efficiently detect

potential deadlock situations and avoid them while still making the most out of overlap-

ping computations.

In the next section we describe how QPipe implements OSP techniques and addresses

the above-mentioned challenges. The treatment of deadlocks in simultaneous pipelining is

separately covered in Section 4.6.

4.4.   Support for simultaneous pipelining in QPipe

In QPipe, a query packet represents work a query needs to perform at a given µEngine.

Every time a new packet queues up in a µEngine, we scan the queue with the existing

packets to check for overlapping work. This is a quick check of the encoded argument list

for each packet (that was produced when the query passed through the packet dispatcher).

The outcome of the comparison is whether there is a match and which phase of the current

operation can be reused (i.e., a sorted file, and/or reading the sorted file). Each µEngine

employs a different sharing mechanism, depending on the encapsulated relational opera-

tion (sharing opportunities were described in the previous section).

There are two elements that are common to all µEngines: the OSP Coordinator and the

Deadlock Detector (Figure 4-6, page 60). The OSP Coordinator lays the ground for the

new packet (the “satellite” packet) to attach to the in-progress query’s packet (the “host”

packet), and have the operator’s output simultaneously pipelined to all participating que-

ries. The OSP Coordinator handles the additional requirements and necessary adjustments



70 • Stavros Harizopoulos Staged Database Systems

to the evaluation strategy of the satellite’s packet original query. For example, it may cre-

ate an additional packet to complete the non-overlapping part of an operation (this sce-

nario is described in Section 4.4.2). The Deadlock Detector ensures a deadlock-free

execution of simultaneously pipelined schedules. The pipelining deadlock problem is

treated in detail in Section 4.6.

Figure 4-10 illustrates the actions the OSP coordinator takes when two queries have an

overlapping operation. In this scenario, we assume Query 1 has already initiated a join of

step overlap (e.g., merge-join), and a few tuples have already been produced, but are still

stored in Q1’s output buffer. Without OSP (left part of Figure 4-10), when Q2 arrives, it

will repeat the same join operation as Q1, receiving input and placing output to buffers

dedicated to Q2. When the OSP Coordinator is active, it performs the following actions:

1. It attaches Q2’s packet (satellite) to Q1 (host).

2. It notifies Q2’s children operators to terminate (recursively, for the entire subtree under-

neath the join node).

3. It copies the output tuples of the join that are still in Q1’s buffer, to Q2’s output buffer.

4. While Q1 proceeds with the join operation, the output is copied simultaneously to both

Q1’s and the satellite’s output.

The above steps are illustrated in Figure 4-10 (right part).

Once the OSP Coordinator attaches one or more satellite packets to a host packet, a “1-

producer, N-consumers” relationship is formed between the participating queries. QPipe’s

intermediate buffers regulate the dataflow. If any of the consumers is slower than the pro-

ducer, all queries will eventually adjust their consuming speed to the speed of the slowest
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consumer. Next, we describe (a) how QPipe deals with the burden of frequently arriving/

departing satellite scans, (b) the actions the OSP Coordinator takes to exploit order-sensi-

tive overlapping scans, and how QPipe handles lock requests and update statements.

4.4.1   Synchronizing multiple scan consumers

Scan sharing of base relations is a frequently anticipated operation in QPipe. A large num-

ber of different scan requests with different requirements can easily put pressure on any

storage manager and make the bookkeeping in a design that shares disk pages difficult.

Sharing of multiple scans to the same table was first described in the RedBrick Data Ware-

house implementation [Fernandez 1994], and several other commercial systems such as

Teradata and SQL Server mention a similar functionality in their implementation. Details

of the mechanisms employed, such as what kind of bookkeeping the storage manager per-

forms and how the technique scales to multiple concurrent scans with different arrival

times, are not publicly disclosed. Moreover, the existing literature describes only scenarios

where queries do not depend on the table scan order.

To simplify the management of multiple overlapping scans in QPipe, we maintain a

dedicated scan thread that is responsible for scanning a particular relation. Once a new

request for scanning a relation arrives, a scanner thread is initiated and reads the file (Fig-

ure 4-11). The scanner thread essentially plays the role of the host packet and the newly

arrived packet becomes a satellite (time  in Figure 4-11). Since the satellite packet is

the only one scanning the file, it also sets the termination point for the scanner thread at

the end of the file. When later on, (time ), a new packet for scanning the same relation

arrives, the packet immediately becomes a satellite one and sets the new termination point

for the scanner thread at the current position of the file. When the scanner thread reaches

the end-of-file for the first time, it will keep scanning the relation from the beginning, to

serve the unread pages to Query 2.

This circular scan implementation simplifies the bookkeeping needed to track which

queries are attached at any time. Moreover, it is the job of the OSP Coordinator to allow a

packet to attach to the scanner thread or not, depending on the query requirements. For

example, the query may need to start consuming pages only after another operator in the

Tt 1–

Tt
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plan has started producing output. In our implementation, the OSP coordinator applies a

late activation policy, where no scan packet is initiated until its output buffer is flagged as

ready to receive tuples. Late activation prevents queries from delaying each other.

4.4.2   Order-sensitive scans

Consider a join operation where the base relations are already sorted on a joining key. In

this case, the query plans may use a merge operator directly on the sorted files. If a scan is

already in progress and a second query arrives, it encounters a spike overlap, and thus, it

will not be able to attach. There are two cases, however, that the scan in progress can still

be exploited.

First, if the parent operator of the merge-join does not depend on the order in which its

input tuples are received, then the OSP Coordinator creates two merge-join packets for the

same query. The first packet joins the remaining portion of the shared relation with the

non-shared relation, providing output tuples to the order-insensitive parent. Afterwards,

the second packet processes the unread part of the shared relation and joins it again with

the non-shared relation. To avoid increasing the total cost, the OSP Coordinator always

assumes the worst case scenario of reading the non-shared relation twice in order to merge

the two disjoint parts of the shared relation. If the total cost does not justify sharing the

operation, the OSP Coordinator does not attach the packets.

Second, if the selectivity of the scan is high (few qualifying tuples) or the selectivity of

the merge operation is high, then the OSP Coordinator may choose to use the materializa-

Figure 4-11. Circular scan operation. Q1 initiates the scanner thread (Tt-1). Q2
attaches immediately when it arrives (Tt) and sets the new termination point for
the circular scan at page Pn.
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tion function to save out-of-order results that are cheap to produce. Once the scan reaches

the beginning of the relation, the query resumes regular execution, passing the result

tuples to the parent of the merge. Once the scan reaches the page it first attached to, the

saved results are used to compute the rest of the merge.

4.4.3   Locks and updates

Data and work sharing techniques are best exploited in read-mostly environments, such as

concurrent long-running queries in data warehouses, where there is high probability of

performing overlapping work. Workloads with frequent concurrent updates to the data-

base limit the percentage of time that scans can be performed (due to locking), and there-

fore restrict the overall impact of data sharing techniques. QPipe runs any type of

workload, as it charges the underlying storage manager (BerkeleyDB in the current imple-

mentation) with lock and update management by routing update requests to a dedicated

µEngine with no OSP functionality. As long as a sharing opportunity appears, even in the

presence of concurrent updates, QPipe will take advantage of it. If a table is locked for

writing, the scan packet will simply wait (and with it, all satellite ones), until the lock is

released.

4.5.   QPipe evaluation

This section presents our experimentation with the QPipe prototype. We experiment using

two datasets. The first dataset is based on the Wisconsin Benchmark [DeWitt 1993] which

specifies a simple schema with two large tables and a smaller one. We use 8 million 200-

byte tuple tables for the big tables (BIG1 and BIG2 in the experiments) and 800,000 200-

byte tuples for the small table (SMALL). The total size of the tables on disk is 4.5GB. The

second dataset is a 4GB TPC-H database generated by the standard dbgen utility. The total

size of the dataset on disk (including indices and storage engine overhead) is 5GB. All

experiments are run on a 2.6 GHz P4 machine, with 2GB of RAM and four 10K RPM

SCSI drives (organized as software RAID-0 array), running Linux 2.4.18. We discard all

result tuples to avoid introducing additional client-server communication overhead. In all

of the graphs, “Baseline” is the BerkeleyDB-based QPipe implementation with OSP dis-
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abled, “QPipe w/OSP” is the same system with OSP enabled, and “DBMS X” is a major

commercial database system. When running QPipe with queries that present no sharing

opportunities, we found that the overhead of the OSP coordinator is negligible (less than

1% of the query execution time).

4.5.1   Sharing data pages

4.5.1.1     Exploiting overlapping unordered scans
In this experiment we examine how well QPipe with OSP performs when exploiting the

linear overlap of table scans. We evaluate three different workloads with 2, 4, and 8 con-

current clients running TPC-H Query 6. The 99% of execution time is spent performing an

unordered table scan of the LINEITEM relation. We evaluate the performance of circular

scans in QPipe as a function of different query interarrival times. We vary the interarrival

time for a set of queries from 0 sec (highest overlap) to 100 sec (relatively little overlap).

The goal of the experiment is to investigate the amount of redundant I/O that we can save

by employing OSP.

The results are shown in Figure 4-12. The vertical axis is the total number of disk blocks

read during the workload execution time. For workloads where queries arrive simulta-

neously, traditional disk page sharing through the buffer pool manager performs well.
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Figure 4-12. Total number of disk blocks read for three different con-
figurations (2, 4, and 8 concurrent users sending TPC-H Query 6) with
varying user interarrival times (0-100 sec). The number of blocks read
remains flat for longer than 120 sec interarrival times.
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However, as the query interarrival time grows to 20 sec, the data brought in by the running

query are completely evicted from the buffer pool by the time the next query arrives. On

workloads with a high degree of overlap (20 sec interarrival time) QPipe with OSP can

save up to 63% of the total I/O cost. As the interarrival time grows and the overlap

between queries shrinks the two curves approach each other (and remain flat at the same

point for 120 sec or more when there is no overlap). Note that the curve for the Baseline

system, for 4 or 8 clients, does not grow monotonically; the reason is that multiple concur-

rent scans in our implementation utilize large scan buffers, causing contention in the

buffer pool and therefore the eviction of useful meta-data pages that need to be re-read.

QPipe w/OSP always exploits all data sharing opportunities, making optimal use of the

existing buffer pool space, whereas the baseline system depends on the timing of different

arrivals to share data.

4.5.1.2     Exploiting overlapping clustered index-scans

In this experiment we evaluate our technique for exploiting overlaps between ordered

scans, essentially converting a spike overlap to linear. We submit to QPipe two instances

of TPC-H Query #4 which includes a merge-join at different time intervals. The full plan

of Query #4 is shown in Figure 4-13 (right part). Even though the merge join relies on the

input tuples being ordered, there is no need for the output of the join to be properly
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Figure 4-13. Sharing order-sensitive clustered index scans (I) on ORDERS and
LINEITEM between two queries starting at different time intervals. Merge-join (M-
J) expects tuples in key order. Since sort (S) does not assume a specific ordering,
QPipe w/OSP performs 2 separate joins to share the in-progress scan.
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ordered. QPipe with OSP takes advantage of this property of the query plan, and allows

ordered scans to attach to the existing one even though it is already in progress. Once the

merge join consumes the input produced by the overlapping scans it initiates a new partial

scan to retrieve the records it missed due to the late arrival. Figure 4-13 shows that QPipe

with OSP significantly outperforms the baseline system with OSP disabled.

4.5.2   Reusing computation in aggregates / joins

4.5.2.1     Sort-merge join
The sort-merge join operator consists of a sort which is a full + linear overlap, followed by

a merge which is a step overlap. In the next experiment, we use two similar 3-way join

queries from the Wisconsin Benchmark. The graph in Figure 4-14 shows the total elapsed

time from the moment the first query arrives until the system is idle again. We vary the

interarrival time for the two queries from 0 sec up to the when there is no overlap between

the queries. The graph shows that QPipe with OSP can exploit commonality for most of

the query’s lifetime (that’s why the line for QPipe w/OSP remains flat most of the time)

resulting in a 2x speedup. In this case, QPipe w/OSP is able to merge the packets from the

two different queries during the merge phase of the sort-merge join. The baseline system

performs better when the queries arrive close to each other (point zero on the horizontal

axis), as it can share data pages in the buffer pool.
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Figure 4-14. Sharing multiple operators, with sort (S) at the highest level. The
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4.5.2.2     Hash join

In this experiment we evaluate a full + step overlap operator, hash join. We submit to

QPipe two instances of TPC-H query #4 which uses a hash join between the LINEITEM

and ORDERS relations varying interarrival time. We expect that QPipe with OSP will be

able to reuse the building phase of hash join. The graph axes are the same as in the previ-

ous figures. Figure 4-15 shows that QPipe with OSP can reuse the entire results of the

build phase of the hash-join (20 seconds mark). After the hash join starts producing the

first output and it is no longer possible to reuse the results of the build phase, QPipe still is

able to significantly reduce the I/O costs by sharing the results of the scan in progress on

LINEITEM.

4.5.3   Running full workloads

In the next experiment we compare the performance of QPipe with OSP against the base-

line system and the commercial DBMS X, using a set of clients executing a random mix of

queries from the TPC-H benchmark. The query mix is based on TPC-H queries #1, #4, #6,

#8, #12, #13, #14, and #19. To make sure that multiple clients do not run identical queries

at the same time, the selection predicates for base table scans were generated randomly

using the standard qgen utility. Even though all the queries had different selection predi-
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Figure 4-15. Changing the plan of TPC-H query #4 to use hash-join allows for a
window of opportunity on sharing the build phase of the hash-join (first 20 secs).
If the second query arrives later than that, it still can share the scan on LINEITEM.
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cates for table scans, QPipe’s circular scans are able to take advantage of the common

accesses to LINEITEM, ORDERS and PART. We use hybrid hash joins exclusively for all

the join parts of the query plans. Since hash joins do not rely on the ordering properties of

the input streams, we are able to use unordered scans for all the access paths, which have

large windows of opportunity. We vary the number of clients from 1 to 12 and measure the

overall system throughput. Each client is given 128MB of memory to use for the sort heap

and the hash tables. When running a single client we observe that the workload is disk-

bound.

Figure 4-16 shows that QPipe w/OSP outperforms both the baseline system and X. For

a single client, the throughput of QPipe and X is almost identical since the disk bandwidth

is the limiting factor. As the number of clients increases beyond 6, DBMS X is not able to

significantly increase the throughput. On other hand, QPipe with OSP takes full advantage

of overlapping work and achieves a 2x speedup over DBMS X. The difference in the

throughput between the baseline system and DBMS X shows that X’s buffer pool manager

achieves better sharing than the one BerkeleyDB employs. In Figure 4-17 we show the

average response time for the same mix of TPC-H queries, for QPipe w/OSP and the base-

line system, using 10 concurrent users and changing the think time of each user. As this

experiment shows, QPipe w/OSP achieves high throughput without sacrificing query

response times.
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Figure 4-16. TPC-H throughput for the three systems increasing the number of
concurrent users from 1 to 12, and keeping think time to zero.
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4.6.   Deadlocks in simultaneous pipelining

In this last section of the chapter, we study the deadlock problem in simultaneous pipe-

lines: whenever the execution engine simultaneously pipelines tuples produced by a query

node to multiple consumers, it introduces the possibility of deadlock. Since nodes can

only produce tuples as fast as the slowest consumer allows them to, loops in the combined

query plans can lead to deadlocks. One such scenario was described in Section 4.3.3. This

problem is not specific to QPipe; it has been also identified and studied in the context of

multi-query optimization [Dalvi et al. 2001], where materialization of intermediate results

is used as a deadlock prevention mechanism. It also appears in the context of parallel sort-

ing [Graefe 1993], where multiple producers sort partitions of a relation and pipeline their

results to multiple consumers who perform a merge.

In all of the above-mentioned contexts, pipelining is applied to query evaluation strate-

gies that are based on query plan graphs (more specifically, Directed Acyclic Graphs—

DAGs) instead of trees. The difference is that a single node can have multiple parents,

which can either belong to the same or different queries. While pipelined query graphs can

speed up execution when compared to pipelined tree plans, by eliminating redundant com-

putation and data accesses, they may also lead to run-time execution deadlocks. This sec-

tion introduces a dynamic mechanism for detecting and resolving deadlocks in pipelined

query graphs. Instead of statically determining what nodes to materialize (as proposed in
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Figure 4-17. Average response time for QPipe w/OSP and the baseline system for
a mix of TPC-H queries, varying the think time, for 10 concurrent users (low think
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[Dalvi et al. 2001]), we pipeline every pipelinable operator in the query plan, resolving

deadlock when it arises by materialization.

Over the next paragraphs of this section we describe the problem in more detail and dis-

cuss related work (4.6.1), we then propose mechanisms to detect and resolve deadlocks

dynamically (4.6.2), and, lastly, we evaluate the proposed techniques (4.6.3).

4.6.1   Problem description and related work

To illustrate the problem consider the plan-DAG shown in Figure 4-18. Queries 1 and 2

each perform a merge-join on tables A and B, with Query 1 applying a selection predicate

on table A. Since both queries scan the same tables, the results from each scan are pipe-

lined to both queries. Each operator in a query plan has a finite buffer in which incoming

tuples are temporarily stored, before they are processed; the produced tuples are sent to the

buffer of the parent operator. In Figure 4-18, next to each edge, we show a snapshot of the

state of those buffers. In this specific scenario, where two of the buffers are full, the evalu-

ation of the plan-DAG cannot proceed. In order for the merge-join of Query 2 to proceed

(by consuming a tuple from its left full buffer), it needs to receive a tuple from scan B.

However, scan B cannot provide a tuple since it would overflow the right buffer of Query

1’s merge join. Similarly, Query 1 cannot consume any tuples from its right full buffer,

causing a deadlock in the evaluation of the plan-DAG.

SCAN SCAN

MERGE
JOIN

MERGE
JOIN

Table A Table B

σ

Query 1 Query 2

Figure 4-18. Example of a deadlocked query graph.
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Given a DAG G = (V, E), we define the directionless graph of G to be the undirected

graph Gd = (V, {{u, v} | ((u, v) ∈ E) ∨ ((v, u) ∈ E)}). Gd is also known as the shadow of G.

Deadlocks may occur in a pipelined query plan graph every time there exists a cycle in the

directionless graph, due to different tuple consuming/producing rates across nodes and the

finite buffers between producers and consumers. In a pipelined plan, both the consuming

and producing rate of a node may depend on the producing rate of the children nodes and

the consuming rate of the parent. In general, two nodes may indirectly affect each other’s

consuming/producing rate as long as there is some graph connection between them (a path

between the two nodes in the directionless graph). Intuitively, a cycle in the directionless

graph means that a node can be in a situation where a requirement for a tuple production/

consumption places an additional requirement to that node. If those two requirements are

conflicting, a deadlock may occur. For instance, a node can set the requirement “to pro-

duce a tuple, a tuple needs to be consumed,” which may trigger a requirement on the same

node of the form “to consume a tuple, a tuple needs to be produced.”

A proactive way to remove the possibility of deadlock in query plan graphs is to always

materialize the results produced by shared query nodes. This is the default strategy in

Multi-Query Optimization [Sellis 1988]. Ideally, we would like to use pipelining as much

as possible and rely on selective materialization only when it is absolutely necessary. The

authors in [Dalvi et al. 2001] propose to solve the deadlock problem in pipelined MQO

plans by deciding at query optimization which shared nodes will be pipelined and which

will be materialized, forming this way a valid schedule (deadlock-free evaluation of the

plan-DAG). They observe that whenever a cycle exists in the directionless graph (called a

C-cycle) and certain conditions apply, then a schedule is not realizable (may deadlock at

run time). Once the deadlocking C-cycles are identified, they are broken by selective

materialization of a subset of shared nodes. The proposed algorithm makes conservative

decisions since it relies on static analysis of the query plans. Due to pessimistic assump-

tions, a large number of safe query graphs will be flagged as potentially deadlocking and

will lead to unnecessary materialization. Since the analysis of the query graph is done at

query optimization time, the algorithm suffers from a lack of information about operator

selectivities and real materialization costs. As a result, even if the graph is going to dead-

lock at run time, the algorithm can make suboptimal choices.
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4.6.2   Detecting and resolving deadlocks

Each node in a plan-DAG corresponds to either a base relation, the final result of some

query, or an intermediate result. Edges represent producer-consumer relationships: edge

(u, v) means that tuples of u are used by v. Each edge of a plan-DAG has a finite buffer

associated with it. Over time, some buffers may become full and some may become

empty. We label full-buffer edges as “heavy” and empty-buffer edges as “light.” Heavy

and light edges can slow the execution of the overall plan, and if enough edges are heavy

or light, the execution will introduce deadlocking structures within the graph. A worst-

case deadlock prevention approach, such as the one in [Dalvi et al. 2001], attempts to

materialize as many nodes as needed to avoid heavy and light edges altogether.

We propose an optimistic approach, fixing deadlock when and if it arises. In our model,

we attempt to pipeline everything, only materializing nodes in the event of a deadlock.

Deadlock detection and resolution (materialization choices) are done by monitoring the

status of buffers in the query graph. To capture this, we define a buffered plan-DAG, a

graph which represents the current state of buffers at some point during the query execu-

tion with a buffer state function s: E → {F, E, N}. Each edge of a buffered plan-DAG is

labeled either F (for a full buffer), E (for empty), or N (for neither). We can now formulate

a notion of “waiting” which captures producer and consumer interaction. Given any final

consumer v (that is, a node with outdegree zero), at some point in time, v may be waiting

on a tuple from another node u; in that case, the buffer state function would give s(u, v) =

E. Similarly, for every initial producer v (that is, a node with indegree zero), v may be

waiting to put something on the input buffer of one or more u (in that case, s(u, v) = F). To

model the notion of waiting for a buffered plan-DAG G′ = ((V, E), s), we define a corre-

sponding waits-for graph Waits(G′ ) as the directed graph (V, E′ ) such that

E′ = {(v, u) | [(u, v) ∈ E ∧ s(u, v) = E] ∨ [(v, u) ∈ E ∧ s(v, u) = F]}.

Given this definition, a deadlock is equivalent to the existence of a cycle in the above

waits-for graph. That is, in a deadlocked situation, all final consumers are waiting on one

of its input buffers to contain something, and all initial producers are waiting on one of its

output buffers to pull a tuple.
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As an example, consider the query plan-DAG shown in Figure 4-18. There are two

paths (modulo edge directions) from one SCAN node to the other. The intuitive argument

in [Dalvi et al. 2001] for why some of the nodes here need to be materialized (prior to exe-

cution) is simply that the rates of consumers and producers along the two paths could pos-

sibly vary greatly, even if one side has a materialized node and the other one does not,

leading to buffer overflow on one side. If this were to occur in our model, then the two

paths between the SCAN nodes would have all F and E edges with the proper edge direc-

tions. This results in a cycle in the waits-for graph. Finding a waits-for cycle is equivalent

to detecting the precise moment at which a particular buffer configuration will eventually

stall computation. That is, we can both detect and optimally resolve the problem immedi-

ately and efficiently as it arises, when the last buffer in the cycle empties or becomes full.

Detection. To detect a cycle efficiently, we use data structures for dynamic connectivity, a

problem that has been studied extensively in the algorithms literature. The details, which

are out of the scope of this dissertation, are in [Shkapenyuk et al. 2005], where we show

that Waits(G') can be checked for cycles in linear time using dynamic connectivity. Note

that this is a theoretical result; in practice, checking for cycles can typically be done even

faster (dynamically) if the graph is sparse.

Resolution. Once a deadlock is detected, we must resolve it by materializing some prob-

lematic nodes. This materialization problem is much easier than the static case [Dalvi et

al. 2001], in that it can be optimally solved in polynomial (quadratic) time (the proof is in

[Shkapenyuk et al. 2005]). At a high level, deadlock resolution can be done as follows.

When deadlock arises due to a bad buffer configuration, every cycle in the waits-for graph

contains a specific vertex v (the last node “responsible” for deadlock). Therefore, the

waits-for graph has a particular structure that we can exploit. We build an undirected

graph G'' that represents the possible cycles through v. G'' has weights on nodes, corre-

sponding to materialization costs. G'' also has two distinguished nodes vin and vout; nodes

connected to vin (respectively, vout) correspond to nodes with paths to v (respectively,

paths from v) in the waits-for graph. We prove (in [Shkapenyuk et al. 2005]) that finding a

minimum vertex cut in G'' that disconnects vin from vout is equivalent to choosing a mini-

mum cost set of nodes to materialize that breaks the existing deadlock.



84 • Stavros Harizopoulos Staged Database Systems

4.6.3   Experimental evaluation

We evaluate the potential benefits of our dynamic materialization strategy on a TPC-H

workload that can take advantage of query subplan sharing. We configure TPC-H with

scale factor 10 (database size is 10 GB) and use queries Q4 and Q10 with shared scans on

the LINEITEM table and the smaller ORDERS table. To better compare the static materi-

alization policy and our own dynamic one, we use Microsoft SQL Server’s EXPLAIN

facility for run-time estimates of the submitted queries. The SQL Server optimizer uses

sophisticated cost models which are more accurate for estimating relative query costs than

the simplistic cost models largely used the multi-query optimization literature. Since SQL

Server does not support multi-query optimization, we mimic it by manually materializing

common subexpressions and appropriately adjusting the query costs to reflect materializa-

tion or multiple reads of shared results. The experiments are conducted on a Dual Pentium

III 900MHz with 1GB of RAM running SQL Server 2000 on Windows Server 2003.

The right part of Figure 4-19 shows the merged query plan graph for the two TPC-H

queries. Since the plan-DAG contains a cycle, a static deadlock analysis (pessimistic pipe-

lining) will need to materialize all edges coming out of one of the relations. Since the scan

on LINEITEM is significantly more expensive than the scan on ORDERS, a greedy static

algorithm chooses to pipeline the results of the scan on LINEITEM and materialize the
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scan on ORDERS. However, since the consumption rates for the ORDERS and

LINEITEM relations are not significantly different for different consumers, an optimistic

approach that pipelines everything will never reach deadlock. This is reflected on the cost

estimates for running the batch of two queries shown in the left part of Figure 4-19. The y-

axis indicates units of time used by SQL Server. The leftmost bar corresponds to the cost

evaluating the two queries independently. The next bar is the cost of performing multi-

query optimization with full materialization, and provides a speedup of 1.32. Applying the

pessimistic static pipelining algorithm provides a speedup of 1.67 by avoiding materializa-

tion and incurring read costs on the ORDERS relation. Our optimistic approach further

removes any materialization costs and shared read costs by using a fully pipelined plan-

DAG, and provides a speedup of 1.89.

4.7.   Chapter summary

This chapter described QPipe, a staged relational query engine that enhances locality

across concurrent queries. It also introduced a set of techniques and policies to exploit

overlapping work between concurrent queries at run time and showed how these tech-

niques are incorporated inside QPipe.

QPipe offers several advantages over traditional query engine designs. It provides full

intra-query parallelism, taking advantage of all available CPUs in multiprocessor servers

for evaluating a single query, regardless of the plan's complexity. By processing a batch of

tuples for each query at every µEngine, QPipe improves instruction temporal locality and

avoids extraneous procedure calls in the DBMS code, when compared to tuple-by-tuple

query engines. Furthermore, by applying on-demand simultaneous pipelining of common

intermediate results across queries, QPipe avoids costly materializations and can effi-

ciently evaluate plans produced by a multi-query optimizer.

Multiple concurrent queries often operate on the same set of tables, using the same set

of basic operators in their query plans. Modern DBMS can therefore execute concurrent

queries faster by aggressively exploiting commonalities in the data or computation

involved in the query plans. Current query engines execute queries independently and rely

on the buffer pool to exploit common data, which may miss sharing opportunities due to
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unfortunate timing. Previous efforts to explore overlapping work include multiple query

optimization, materialized views, and exploitation of previous results; all these

approaches, however, involve caveats and overhead that makes them impractical in sev-

eral cases. In this chapter we changed the query engine philosophy from query-centric

(one-query, many-operators) to operator-centric (one-operator, many-queries) and showed

how we can proactively detect and exploit common data and computation at execution

time with no additional effort or overhead. 

We also proposed a new model that characterizes deadlocks in the generalized context

of query plan graphs. Our dynamic model uses the well-understood concept of waits-for

graphs to define deadlocks in pipelined execution engines. We use information about the

state of the intermediate query buffers (full, empty, or non-empty) without making any

assumptions about operator consumer/producer rates. This allows us to pipeline the results

of every query node, only materializing the tuples in the event of a real deadlock. Based

on our model, we proposed an efficient algorithm to detect deadlocks at run time and

choose an optimal set of nodes to materialize that minimizes the total cost of executing all

concurrent queries.

Locality and predictability of different tasks running in a system has long been the key

property that computer and storage architects, along with software designers have

exploited to build high-performance computing systems. In this chapter we showed that

the key to optimal performance is exposing all potential locality both in data and in com-

putation, by grouping similar tasks together. QPipe, our proposed query execution engine

architecture, leverages the fact that a query plan offers an exact description of all task

items needed by a query, and employs techniques to expose and exploit locality in both

data and computation across different queries. Most importantly, by successfully applying

the QPipe architecture to two open source DBMS and two storage managers, we demon-

strated that the QPipe design can apply with relatively few changes to any DBMS.



Chapter 5

Improving instruction cache performance

Instruction-cache misses account for 25-40% of execution time in Online Transaction Pro-

cessing (OLTP) database workloads. In contrast to data cache misses, instruction misses

cannot be overlapped with out-of-order execution. Current chip design practices do not

allow increases in the size or associativity of instruction caches that would help reduce

misses. On the contrary, the effective instruction cache size is expected to further decrease

with the adoption of Chip Multithreading designs (multiple on-chip processor cores and

multiple simultaneous threads per core). Different concurrent database threads, however,

execute similar instruction sequences over their lifetime, too long to be captured and

exploited in hardware. The challenge, from a software designer's point of view, is to iden-

tify and exploit common code paths across threads executing arbitrary operations, thereby

eliminating extraneous instruction misses.

This chapter describes Synchronized Threads through Explicit Processor Scheduling

(STEPS), a mechanism based on the principles of StagedDB to increase instruction local-

ity in database servers executing transaction processing workloads. STEPS works at two

levels to increase reusability of instructions brought in the cache. At a higher level, STEPS

applies a staged execution scheme by using synchronization barriers to form teams of

threads executing the same system component. Since typically transactional system com-

ponents can overwhelm the instruction cache, STEPS schedules special fast context-

switches within a team, at very fine granularity, to reuse sets of instructions across team

members. To find points in the code where context-switches should occur, we develop

autoSTEPS, a code processing tool that runs directly on the DBMS software binary.
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We demonstrate the effectiveness of STEPS on Shore, a research prototype database

system shown to be governed by similar bottlenecks as commercial systems. Using

microbenchmarks on real and simulated processors, we observe that STEPS eliminates up

to 96% of instruction-cache misses for each additional team thread, and at the same time

eliminates up to 64% of mispredicted branches by providing a repetitive execution pattern

to the processor. When performing a full-system evaluation, on real hardware, with TPC-

C, the industry-standard transactional benchmark, STEPS eliminates two thirds of instruc-

tion-cache misses and provides up to 1.4 overall speedup. This chapter shows that STEPS

can minimize both capacity and conflict instruction cache misses for arbitrarily long code

paths.

5.1.   Introduction

Good instruction-cache performance is crucial in modern Database Management System

(DBMS) installations running Online Transaction Processing (OLTP) applications. OLTP

applications include banking, e-commerce, reservation systems, inventory management; a

common requirement is the ability of the DBMS software to execute fast multiple concur-

rent transactions, which are typically short in duration. In large scale installations, server

software is leveraging increasingly higher-capacity main memories and highly parallel

storage subsystems to efficiently hide I/O latencies. As a result, DBMS software perfor-

mance is largely determined by the ability of the processors to continuously execute

instructions without stalling. Recent studies show that between 22% and 45% of the exe-

cution time in the prevailing OLTP benchmark (TPC-C), is attributed to instruction-cache

misses [Shao and Ailamaki 2004; Keeton et al. 1998;  Barroso et al. 1998].

Over the past few years, a wide body of research has proposed techniques to identify

and reduce CPU performance bottlenecks in database workloads [Shatdal et al. 1994;

Graefe and Larson 2001;  Ailamaki et al. 2001]. Since memory access times improve

much slower than processor speed, performance is bound by instruction and data cache

misses that cause expensive main-memory accesses [Ranganathan et al. 1998; Ailamaki et

al. 1999]. Related research efforts propose hardware and compiler techniques to address

instruction-cache performance [Ranganathan et al. 1998; Ramirez et al. 2001]. The focus,

however, is on single-thread execution (single transaction). While the proposed techniques
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can enhance instruction-cache performance by increasing spatial locality (utilization of

instructions contained in a cache block), they cannot increase temporal locality (instruc-

tion reusability) since that is a direct function of the application nature. A study on Oracle

reports a 556KB OLTP code footprint [Lo et al. 1998]. With modern CPUs having 16-

64KB instruction cache size (L1-I cache), OLTP code paths are too long to achieve cache-

residency.

Although instruction reusability (temporal locality) cannot be increased within a single

execution thread by hardware or compiler techniques, DBMS software is inherently multi-

threaded. It executes multiple concurrent threads (each carrying out a transaction execu-

tion), and therefore exists the opportunity to alter software design to reuse instructions in

the cache across different concurrent threads. The payoff in such a software approach can

be large, and complementary to any hardware/compiler technique. For example, consider

a software mechanism that can identify ten concurrent threads, executing the same func-

tion call (the code path of which is far larger than the instruction cache). Each thread exe-

cution will yield a default number of instruction misses. If, however, we perfectly reuse

the instructions one thread brings gradually in the cache, across all ten threads, we can

achieve a 90% reduction in instruction cache misses. That is, in a group of threads, we

could potentially turn one thread's instruction cache misses to cache hits for all the other

threads. Applying this idea, however, to a DBMS consisting of millions lines of code, exe-

cuting different types of transactions, each with different requirements, and unpredictable

execution sequences (due to lock requests, frequent critical sections, I/O requests) is a

challenging task. To the best of our knowledge, this line of work is the first to address

instruction cache misses in transaction processing from within the DBMS software.

This thesis chapter presents STEPS (Synchronized Threads through Explicit Processor

Scheduling), a methodology and its application for increasing instruction locality in data-

base servers executing transaction processing workloads, and we also present autoSTEPS,

a code profiling tool that automates the application of STEPS to any database system.

STEPS works at two levels to increase reusability of instructions brought in the cache. At

a higher level, synchronization barriers form teams of threads that execute the same sys-

tem component. Within a team, STEPS schedules special fast context-switches at very

fine granularity, to reuse sets of instructions across team members. Both team formation
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and fine-grain context-switching are low-overhead software mechanisms, designed to co-

exist with all DBMS internal mechanisms (locking, logging, deadlock detection, buffer

pool manager, I/O subsystem), and flexible enough to work with any arbitrary OLTP

workload. STEPS requires only few code changes, targeted at the thread package. To find

points in the DBMS core code where context-switches should occur, we develop

autoSTEPS, a code analysis tool that runs directly on the DBMS software binary, thus

eliminating the need to examine and modify DBMS source code. STEPS can minimize

both capacity and conflict instruction cache misses for arbitrarily long code paths.

We demonstrate the effectiveness of STEPS on Shore, a research prototype database

system shown to be governed by similar bottlenecks as commercial systems. First, using

microbenchmarks on real and simulated processors, we show that STEPS eliminates up to

96% of instruction-cache misses for each additional team thread, and at the same time

eliminates up to 64% of mispredicted branches by providing a repetitive execution pattern

to the processor. When performing a full-system evaluation, on real hardware, with TPC-

C, the industry-standard transactional benchmark, STEPS eliminates two thirds of instruc-

tion-cache misses and provides up to 1.4 overall speedup. To the best of our knowledge,

this is the first software approach to provide explicit thread scheduling for improving

instruction cache performance. The contributions of the chapter are:

• A novel technique that enables thread scheduling at very fine granularity to reuse

instructions in the cache across concurrent threads.

• A tool to automatically find the boundaries in the code that the instruction cache fills

up.

• The implementation and evaluation of the presented techniques inside a full-blown

research prototype database system running a multi-user transactional benchmark on

real hardware.

The rest of the chapter is organized as follows. Section 5.2 presents background infor-

mation and discusses related work. Section 5.3 introduces our methodology and evaluates

the basic implementation of STEPS. Section 5.4 describes and evaluates the application of

STEPS to full OLTP workloads. Section 5.5 presents autoSTEPS and discusses applicabil-

ity to commercial DBMS. The last section contains the chapter summary.
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5.2.   Background

To bridge the CPU/memory performance gap, today’s processors employ a hierarchy of

caches that maintain recently referenced instructions and data close to the processor. Fig-

ure 5-1 shows an example of an instruction cache organization and explains the difference

between capacity and conflict cache misses. Recent processors — e.g., IBM’s Power5 —

have up to three cache levels. At each hierarchy level, the corresponding cache trades off

lookup speed for size. For example, level-one (L1) caches at the highest level are small

(e.g., 16KB-64KB), but operate at processor speed. In contrast, lookup in level-two (L2)

caches typically incurs up to an order of magnitude longer time because they are several

times larger than the L1 caches (e.g., 512K-8MB). L2 lookup, however, is still several

orders of magnitude faster than memory accesses (typically 300-400 cycles). Therefore,

the effectiveness of cache hierarchy is extremely important for performance.

5.2.1   The instruction cache problem

In contrast to data cache accesses, instruction cache accesses are serialized and cannot be

overlapped. Instruction cache misses prevent the flow of instructions through the proces-

cache
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for loop {
if ? call A
f2
f1

f3 }f4
* * * *
A ( ) { }a1
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Figure 5-1. Example of a 2-way set associative, 4-set (8 cache blocks) L1-I cache.
Code stored in RAM maps to one set of cache blocks and is stored to any of the
two blocks in that set. For simplicity we omit L2/L3 caches. In this example, the
for-loop code fits in the cache only if procedure A is never called. In that case,
repeated executions of the code will always hit in the L1-I cache. Larger code
(more than eight blocks) would result in capacity misses. On the other hand, fre-
quent calls to A would result to conflict misses because A’s code would replace
code lines f3 and f4 needed in the next iteration. A code layout optimization tech-
nique [Romer et al. 1997; Ramirez et al. 2001] would place procedure A’s code on
address 20, so that it does not conflict with the for-loop code.
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blockf2 * * * *

* * * *
* * * *

* * * *

* * * *
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sor and directly affect performance. To maximize first-level instruction cache utilization

and minimize stalls, application code should have few branches (exhibiting high spatial

locality), a repeating pattern when deciding whether to follow a branch (yielding low

branch misprediction rate), and most importantly, the “working set” code footprint should

fit in the L1-I cache. Unfortunately, OLTP workloads exhibit the exact opposite behavior

[Keeton et al. 1998]. A study on Oracle reports a 556KB OLTP code footprint [Lo et al.

1998]. With modern CPUs having 16-64KB L1-I cache sizes, OLTP code paths are too

long to achieve cache-residency. Moreover, the importance of L1-I cache stalls increases

with larger L2 caches, as shown in Figure 5-2a (stalls shown as non-overlapping compo-

nents; I-cache stalls are actually 41% of the total execution time [Keeton et al. 1998]). As

a large (or highly associative) L1-I cache may adversely impact the CPU’s clock fre-

quency, chip designers cannot increase L1-I sizes (associativity) despite the growth in sec-

ondary caches, as shown in Figure 5-2b.

Current chip design trends towards improving process performance are leading to

thread-parallel architectures, where multiple threads or processes can run simultaneously

on a single chip via multiple on-chip processor cores (chip multiprocessors — CMP) and/

or multiple simultaneous threads per processor core (simultaneous multithreading —

SMT)1. To be able to fit more cores on a single chip without overheating, and also save

time in hardware verification, chip designers are expected to use simpler, “lean” cores as
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building blocks. The instruction cache size of these cores is not expected to grow. SMT

chips already operate on a reduced effective instruction cache size, since the instruction

cache is shared among all simultaneous threads. In future processors, the combined effect

of larger L2 cache sizes and small (or shared) L1-I caches will make instruction cache

stalls the key performance bottleneck.

5.3.   STEPS: Introducing cache-resident code

All OLTP transactions, regardless of the specific actions they perform, execute common

database mechanisms (e.g., index traversing, buffer pool manager, lock manager, logging).

In addition, OLTP typically processes hundreds of requests concurrently (the top perform-

ing system in the TPC-C benchmark suite supports over one million users and handles

hundreds of concurrent client connections1). High-performance disk subsystems and high-

concurrency locking protocols ensure that, at any time, there are multiple threads in the

CPU ready-to-run queue.

We propose to exploit the characteristics of OLTP code by reusing instructions in the

cache across a group of transactions, effectively turning an arbitrarily large OLTP code

footprint into nearly cache-resident code. We synchronize transaction groups executing

common code fragments, improving performance by exploiting the high degree of OLTP

concurrency. The rest of this section describes the basic implementation of STEPS, and

details its behavior using transactional microbenchmarks.

5.3.1   Basic implementation of STEPS

Transactions typically invoke a basic set of operations: begin, commit, index fetch, scan,

update, insert, and delete. Each of those operations involves several DBMS functions and

can easily overwhelm the L1-I cache of modern processors. Experimenting with the Shore

database storage manager [Carey et al. 1994] on a CPU with 64KB L1-I cache, we find

1. As of the time this dissertation is written, all major chip manufacturers have announced or made available
CMP and SMT designs (Intel’s Pentium4 currently implements a 2-way SMT design which is marketed as
Hyperthreading design). 

1. Transaction Processing Performance Council. http://www.tpc.org
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that even repeated execution of a single operation always incurs additional L1-I misses.

Suppose that N transactions, each being carried out by a thread, perform an index fetch

(traverse a B-tree, lock a record, and read it). For now, we assume that transactions exe-

cute uninterrupted (all pages are in main memory and locks are granted immediately). A

DBMS would execute one index fetch after another, incurring more L1-I cache misses

with each transaction execution. We propose to reuse the instructions one transaction

brings in the cache, thereby eliminating misses for the remaining N-1 transactions.

As the code path is almost the same for all N transactions (except for minor, key-value

processing), STEPS follows the code execution for one transaction and finds the point at

which the L1-I cache starts evicting previously-fetched instructions. At that point STEPS

context-switches the CPU to another thread. Once that thread reaches the same point in the

code as the first, we switch to the next. The Nth thread switches back to the first one,

which fills the cache with new instructions. Since the last N-1 threads execute the same

instructions as the first, they incur significantly fewer L1-I misses (conflict misses, since

each code fragment’s footprint is smaller than the L1-I cache).

Figures 5-3a and 5-3b illustrate the scenario mentioned above for two threads. Using

STEPS, one transaction paves the L1-I cache, incurring all compulsory misses. A second,

similar transaction follows closely, finding all the instructions it needs in the cache. Next,

we describe (a) how to minimize the context-switch code size, and, (b) where to insert the

context-switch calls in the DBMS source code.

Figure 5-3. (a) As the instruction cache
cannot fit the entire code, when the CPU
switches (dotted line) to thread B, this
incurs the same number of misses.

Figure 5-3. (b) By “breaking” the code
into three pieces that fit in the cache, and
switching back and forth between the
two threads, thread B finds all instruc-
tions in the cache.
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5.3.2   Fast, efficient context-switching

Switching execution from one thread (or process) to another involves updating OS and

DBMS software structures, as well as updating CPU registers. Thread switching is less

costly than process switching (depending on the implementation). Most commercial

DBMS involve a light-weight mechanism to pass on CPU control (Shore uses user-level

threads). Typical context-switching mechanisms, however, occupy a significant portion of

the L1-I cache and take hundreds of processor cycles to run. Shore’s context-switch, for

instance, occupies half of Pentium III’s 16KB L1-I cache.

To minimize the overhead of context-switch we apply a universal design guideline:

make the common case fast. The common case here is switching between transactions

executing the same operation. STEPS executes only the core context-switch code and

updates only CPU state, ignoring thread-specific software structures such as the ready

queue, until they must be updated. The minimum code needed to perform a context-switch

on a IA-32 architecture — save/restore CPU registers and switch the base and stack point-

ers — is 48 bytes (76 in our implementation). Therefore, it only takes three 32-byte (or

two 64-byte) cache blocks to store the context-switch code. One optimization that several

commercial thread packages (e.g., Linux threads) make is to skip updating the floating

point registers until they are actually used. For a subset of the microbenchmarks we apply

a similar optimization using a flag in the core context-switch code.

5.3.3   Finding context-switching points in Shore

Given a basic set of transactional operations, we find appropriate places in the code to

insert a call to CTX(next) (the context-switch function), where next is a pointer to the

next thread to run. STEPS tests candidate points in the code by executing the DBMS oper-

ations (on simple, synthetic tables) and by inserting CTX (next) calls before or after major

function calls. Using hardware counters (available on almost all processors1), we measure

the L1-I cache misses for executing various code fragments. Starting from the beginning

of a DBMS operation and gradually moving towards its end, STEPS compares the number

1. Intel Corporation. “IA-32 Intel® Architecture Software Developer's Manual, Volume 3: System Program-
ming Guide.” (Order Number 253668).
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of L1-I misses the execution of a code fragment incurs alone with the total number of

misses when executing the same fragment twice (using the fast CTX call). A CTX point is

inserted as soon as STEPS detects a knee in the curve of the number of L1-I cache misses.

STEPS continues this search until it covers the entire high-level code path of a DBMS

operation, for all operations.

The method of placing CTX calls described above does not depend on any assumptions

about the code behavior or the cache architecture. Rather, it dynamically inspects code

paths and chooses every code fragment to reside in the L1-I cache as long as possible

across a group of interested transactions. If a code path is self-conflicting (given the asso-

ciativity of the cache), then our method will place CTX calls around a code fragment that

may have a significantly smaller footprint than the cache size, but will have fewer conflict

misses when repeatedly executed. Likewise, this method also explicitly includes the con-

text-switching code itself when deciding switching points. Figure 5-4 shows the context-

switch calls (CTX) placed in index_fetch in Shore, using a machine with 64KB instruction

cache and 2-way set associativity.

The rest of this section evaluates STEPS using microbenchmarks, whereas the complete

implementation for OLTP workloads is described in Section 5.4. In all experiments we

refer as “Shore” to the original unmodified system and as “STEPS” to our system built on

top of Shore.

INDEX_FETCH

find
tuple

pin

CTX

directory

CTX

CTX

access

B-tree lookup
traverse

CTX

CTX

fix page
CTX

CTXCTX

CTX
lock

CTX
CTX
CTX

CTX

begin

Figure 5-4. Context-switch (CTX) calls placed in Shore’s source code for
index_fetch. Arrows represent code paths, to be followed from left to right and
from top to bottom until a CTX is encountered. Note that the actual number of
context-switches can be larger than the number of CTX, since a CTX can be
placed inside a for loop (i.e., for each level of a B-tree).



Chapter 5: Improving instruction cache performance • 97

5.3.4   STEPS in practice: microbenchmarks

We conduct experiments on the processors shown in Table 5-1. Most experiments run on

the AthlonXP, which features a large, 64KB L1-I cache. High-end installations typically

run OLTP workloads on server processors (such as the ones shown in Figure 5-2b). In our

work, however, we are primarily interested in the number of L1-cache misses. From the

hardware perspective, this metric depends on the L1-I cache characteristics: size, associa-

tivity, and block size (and not on clock frequency, or the L2 cache). Moreover, L1-I cache

misses are measured accurately using processor counters, whereas time-related metrics

(cycles, time spent on a miss) can only be estimated and depend on the entire system con-

figuration. Instruction misses, however, translate directly to stall time since they cannot be

overlapped with out-of-order execution.

Shore runs under Linux 2.4.20. We use PAPI [Browne et al. 1999] and the perfctr

library to access the AthlonXP and PIII counters. The results are based on running index

fetch on various tables consisting of 25 int attributes and 100,000 rows each. The code

footprint of index fetch without searching for the index itself (which is already loaded) is

45KB, as measured by a cache simulator (described in Section 3.2.4). Repeatedly running

index fetch would incur no additional misses in a 45K fully-associative cache, but may

incur conflict misses in lower-associativity caches, as explained in Figure 5-1. We report

results averaged over 10 threads, each running index fetch 100 times.

CPU Cache characteristics

AMD
AthlonXP

L1 I + D cache size
associativity / block size

64KB + 64KB
2-way / 64 bytes

L2 cache size 256KB

Pentium III
L1 I + D cache size

associativity / block size
16KB + 16KB

4-way / 32 bytes

L2 cache size 256KB

Simulated IA-32
(SIMFLEX)

L1 I + D cache size
associativity

[16, 32, 64KB]
[direct, 2, 4, 8, full]

Table 5-1. Processors used in microbenchmarks.
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5.3.4.1     Instruction misses and thread group size
We measure L1-I cache misses for index fetch, for various thread group sizes. Both STEPS

and Shore execute the fast CTX call, but STEPS multiplexes thread execution, while

Shore executes the threads serially. We first start with a cold cache and flush it between

successive index fetch calls, and then repeat the experiment starting with a warm cache.

Figure 5-5 shows the results on the AthlonXP.

STEPS only incurs 33 misses for every additional thread, with both a cold and a warm

cache. Under Shore, each additional thread adds to the total exactly the same number of

misses: 985 for a cold cache (capacity misses) and 373 for a warm cache (all conflict

misses since the working set of index fetch is 45KB). The numbers show that Shore could

potentially benefit from immediately repeating the execution of the same operation across

different threads. In practice, this does not happen because: (a) DBMS threads suspend

and resume execution at different places of the code (performing different operations),

and, (b) even if somehow two threads did synchronize, the regular context-switch code

would itself conflict with the DBMS code. If the same thread, however, executes the same

operation immediately, it will enjoy a warm cache. For the rest of the experiments we

always warm up Shore with the same operation, and use the fast CTX call, therefore

reporting worst-case lower bounds.

The following brief analysis derives a formula for the L1-I cache miss reduction bounds

as a function of the thread group size (for similarly structured operations with no excep-

tional events). Suppose executing an operation P once, with cold cache, yields  misses.
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Executing P, N times, flushing the cache in-between, yields  misses. A warm cache

yields , misses because of fewer capacity misses. In STEPS, all threads

except the first incur  misses, where . For a group size of N, the total num-

ber of misses is . For an already warmed-up cache this is:

. When comparing STEPS to Shore, we express the miss reduction per-

centage as: . Therefore, the bounds for computing the

L1-I cache miss reduction are:

For index fetch, we measure , , giving a range of 82% - 87% of overall

reduction in L1-I cache misses for 10 threads, and 90% - 96% for 100 threads. For the

tuple update code in Shore, the corresponding parameters are:  and .

The next microbenchmarks examine how the savings in L1-I cache misses translate into

execution time and how STEPS affects other performance metrics.

5.3.4.2     Speedup and level-one data cache misses
Keeping the same setup as before and providing Shore with a warmed-up cache we mea-

sure the execution time in CPU cycles and the number of level-one data (L1-D) cache
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misses on the AthlonXP. Figure 5-6a shows that STEPS speedup increases with the num-

ber of concurrent threads. We plot both STEPS performance with a CTX function that

always updates floating point registers (float on) and with a function that skips updates.

The speedup for 10 threads is 31% while for a cold cache it is 40.7% (not shown).

While a larger group promotes instruction reuse it also increases the collective data

working set. Each thread operates on a set of private variables, buffer pool pages, and

metadata which form the thread’s data working set. Multiplexing thread execution at the

granularity STEPS does, results in a larger collective working set which can overwhelm

the L1-D cache (when compared to Shore). Figure 5-6b shows that STEPS incurs increas-

ingly more L1-D cache misses as the thread group size increases. For up to four threads,

however, the collective working set has comparable performance to single-thread execu-

tion. Fortunately, L1-D cache misses have minimal effect on execution time (as also seen

by the STEPS speedup). The reason is that L1-D cache misses that hit in the L2 cache (i.e.,

are serviced within five to ten cycles) can be easily overlapped by out-of-order execution

[Ailamaki et al. 1999]. Moreover, in the context of Simultaneous Multithreading (SMT), it

has been shown that for eight threads executing simultaneously an OLTP workload and

sharing the CPU caches, additional L1-D misses can be eliminated [Lo et al. 1998].

Figure 5-7. Lower bounds for speedup using a warm cache for Shore (bottom
graph) and percentage of reduction in L1-I cache misses (top graph) of STEPS
over Shore, for 2-80 concurrent threads. The top line shows the maximum possi-
ble reduction.
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On the other hand, there is no real incentive in increasing the group size beyond 10-20

threads, as the upper limit in the reduction of L1-I cache misses is already 90-95%. Figure

5-7 plots the STEPS speedup (both with float on/off) and the percentage of L1-I cache

misses reduction for 2-80 concurrent threads. The reason that the speedup deteriorates for

groups larger than 10 threads is because of the AMD’s small, 256KB unified L2 cache. In

contrast to L1-D cache misses, L2-D misses cannot be overlapped by out-of-order execu-

tion. STEPS always splits large groups (discussed in Section 4) to avoid the speedup deg-

radation.

5.3.4.3     Increasing the size of context-switching code
Next, we examine the effect of the context-switch code size on L1-I cache misses for

STEPS, when keeping the breaking points in the source code the same. In our implemen-

tation, the CTX code size is 76 bytes. For this experiment, we pad the CTX function with

a varying number of nops1 to achieve CTX code sizes of up to 16KB. Figure 5-8 shows

the total number of L1-I cache misses for ten threads executing index_fetch, for various

sizes of the CTX code (128B to 16KB). The leftmost bar corresponds to our original

STEPS implementation, while the rightmost bar corresponds to the default Shore configu-

ration with no STEPS, under a warmed-up cache. This experiment shows that the CTX

1. A nop is a special assembly instruction used for padding cache blocks; it provides no other functionality.
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code could possibly include more functionality than the bare-minimum and still provide a

significant reduction in the number of instruction cache misses. In our setup, a CTX func-

tion that is 25 times larger than the one we use, would result in almost the the same miss

reduction (albeit with a lower overall speedup improvement). Having this flexibility in the

footprint of the CTX code is important for portability of the STEPS implementation.

5.3.4.4     Detailed behavior on two different processors

The next experiment examines a wide range of changes in hardware behavior between

STEPS and Shore for index fetch with 10 threads. We experiment with both the Athlon XP

and the Pentium III, using the same code and a CTX function that updates all registers

(float optimization is off). The Pentium III features a smaller, 16KB L1-I and L1-D cache

(see also Table 5-1 for processor characteristics). Since the CTX points in Shore were cho-

sen when running on the AthlonXP (64KB L1-I cache), we expect that this version of

STEPS on the Pentium III will not be as effective in reducing L1-I cache misses as on the

AthlonXP. The results are in Figure 5-9. Our observations for each event counted, in the

order they appear in the graph, follow.

Execution time and L1-I cache misses. STEPS is also effective on the Pentium III

despite its small cache, reducing L1-I cache misses to a third (66% out of a maximum pos-

sible 90% reduction). Moreover, the speedup on the Pentium is higher than the AthlonXP,

0%

20%

40%

60%

80%

100%

120%
AthlonXP

Pentium III

N
or

m
al

iz
ed

 c
ou

nt
 (S

ho
re

 is
 1

00
%

) 20
39

209%
66

38

close to 0

Figure 5-9. Relative performance of STEPS compared to Shore, for index fetch
with 10 concurrent threads, on both the AthlonXP and the Pentium III. The two
last bars are events exclusively available on the Pentium.
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mainly because the absolute number of misses saved is higher (absolute numbers for

STEPS are on top of each bar in Figure 5-9). The last bar in Figure 5-9 shows the reduc-

tion in the cycles the processor is stalled due to lack of instructions in the cache (event

only available on the Pentium III). The reduction percentage matches the L1-I cache miss

reduction.

Level-one data cache. STEPS incurs significantly more L1-D cache misses on the Pen-

tium’s small L1-D cache (109% more misses). However, the CPU can cope well by over-

lapping misses and perform 24% faster.

Level-two cache. L2 cache performance does not have an effect on the specific

microbenchmark since almost all data and instructions can be found there. We report L2

cache performance in the next section, when running a full OLTP workload.

Instructions and branches retired. As expected, STEPS executes slightly more

instructions (1.7%) and branches (1.3%) due to the extra context-switch code.

Mispredicted branches. STEPS reduces mispredicted branches to almost a third on

both CPUs (it eliminates 64% of Shore’s mispredicted branches). This is an important

result coming from STEPS’ ability to provide the CPU with frequently repeating execu-

tion patterns. We verify this observation via an event available to Pentium III (second to

last bar in Figure 5-9), that shows a reduction in the number of branches missing the

Branch Target Buffer (BTB), a small cache for recently executed branches.

5.3.4.5     Varying L1-I cache characteristics
The last microbenchmark varies L1-I cache characteristics using SIMFLEX [Hardavellas et

al. 2004], a Simics-based [Magnusson et al. 2002], full-system simulation framework

developed at the Computer Architecture Lab of Carnegie Mellon. We use Simics/SIMFLEX

to emulate a x86 processor (Pentium III) and associated peripheral devices (using the

same setup as in the real Pentium). Simics boots and runs the exact same binary code of

Linux and the Shore/STEPS microbenchmark, as in the real machines. Using SIMFLEX’s

cache component we modify the L1-I cache characteristics (size, associativity, block size)

and run the 10-thread index fetch benchmark. The reported L1-I cache misses are exactly

the same as in a real machine with the same cache characteristics. Metrics in simulation

involving timing are subject to assumptions made by programmers and cannot possibly
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match real execution times. Figures 5-10 (a), (b), and (c) show the results for a fixed 64-

byte cache block size, varying associativity for a 16KB, 32KB, and 64KB L1-I cache.

As expected, increasing the associativity reduces instruction conflict misses (except for

a slight increase for fully-associative 16KB and 32KB caches, due to the LRU replace-

ment policy resulting in more capacity misses). The conflict miss reduction for STEPS is

more dramatic in a small cache (16KB). The reason is that with a 45KB working set for

index fetch even a few CTX calls can eliminate all capacity misses for the small caches.

Since STEPS is trained on a 2-way 64KB cache, smaller caches with the same associativ-

ity incur more conflict misses. As the associativity increases those additional L1-I misses

disappear. Despite a fixed training on a large cache, STEPS performs very well across a

wide range of cache architectures, achieving a 89% overall reduction in L1-I misses — out

of 90% max possible — for the 8-way 32KB and 64KB caches. Experiments with differ-

ent cache block sizes (not shown here) find that larger blocks further reduce L1-I misses,

in agreement with the results in [Ranganathan et al. 1998].

5.4.   Applying STEPS to OLTP workloads

So far we saw how to efficiently multiplex the execution of concurrent threads running the

same transactional DBMS operation when (a) those threads run uninterrupted, and (b) the

DBMS does not schedule any other threads. This section removes all previous assump-
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tions and describes how STEPS works in full-system operation. The design goal is to take

advantage of the fast CTX calls and maintain high concurrency for similarly structured

operations in the presence of locking, latching (which provides exclusive access to DBMS

structures), disk I/O, aborts and roll-backs, and other concurrent system operations (e.g.,

deadlock detection, buffer pool page flushing).

The rest of this section describes the full STEPS implementation (Section 5.4.1), pre-

sents the experimentation setup (5.4.2) and the TPC-C results (5.4.3).

5.4.1   Full STEPS implementation

STEPS employs a two-level transaction synchronization mechanism. At the higher level,

all transactions about to perform a single DBMS operation form execution teams. We call

S-threads all threads participating in an execution team (excluding system-specific threads

or processes and threads which are blocked for any reason). Once all S-threads belong to a

team, the CPU proceeds with the lower-level transaction synchronization scheme within a

single team, following a similar execution schedule as in the previous section. Next, we

detail synchronization mechanisms (Section 5.4.1.1), different code paths (Section

5.4.1.2), and threads leaving their teams (Section 5.4.1.3). Section 5.4.1.4 summarizes the

changes to Shore code.

5.4.1.1     Forming and scheduling execution teams

To facilitate a flexible assignment of threads to execution teams and construct an efficient

CPU schedule during the per-team synchronization phase, each DBMS operation is asso-

ciated with a double-linked list (Figure 5-11). S-threads are part of such a list (depending

on which operation they are currently executing), while all other threads have the prev
and next pointers set to zero. The list for each execution team guides the CPU schedul-

ing decisions. At each CTX point the CPU simply switches to the next thread in the list. S-

threads may leave a team (disconnect) for several reasons. Transactions give up (yield) the

CPU when they (a) block trying to acquire an exclusive lock (or access an exclusive

resource), or on an I/O request, and, (b) when they voluntarily yield control as part of the

code logic. We call stray the threads that leave a team.
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The code responsible for team formation is a thin wrapper that runs every time a trans-

action finishes a single DBMS operation (“STEPS wrapper” in Figure 5-11). It discon-

nects the S-thread from the current list (if not stray) and connects it to the next list,

according to the transaction code logic. If a list reaches the maximum number of threads

allowed for a team (a user-defined variable), then the transaction will join a new team after

the current team finishes execution. Before choosing the next team to run, all stray threads

are given a chance to join their respective teams (next DBMS operation on their associated

transaction’s code logic). Finally, the STEPS wrapper updates internal statistics, checks

with the system scheduler if other tasks need to run, and picks the next team to run1.

Within each execution team STEPS works in a “best-effort” mode. Every time a trans-

action (or any thread) encounters a CTX point in the code, it first checks if it is an S-thread

and then passes the CPU to the next thread in the list. All S-threads in the list eventually

complete the current DBMS operation, executing in a round-robin fashion, the same way

as in Section 3. This approach does not explicitly provide any guarantees that all threads

will remain synchronized for the duration of the DBMS operation. It provides, however, a

1. Different per-team scheduling policies may apply at this point. In our experiments, picking the next opera-
tion that the last member of a list (or the last stray thread) is interested, worked well in practice since the
system scheduler makes sure that every thread makes progress.

NULL

NULLDBMS
operation X

DBMS
operation Y

DBMS
operation Z

STEPS wrapper
STEPS wrapper

stray thread

stray thread

to Op X to Op W

STEPS wrapper

: any of begin, index fetch, insert, delete, update, scan, commitDBMS
operation

: Xaction thread : pointer

Figure 5-11. Additions to the DBMS code: Threads are associated with list nodes
and form per-operation lists, during the STEPS setup code at the end of each
DBMS operation.

S-thread
(executes CTX calls)

execution team
for Op X
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very fast context-switching mechanism during full-system operation (the same list-based

mechanism was used in all microbenchmarks). If all threads execute the same code path

without blocking, then STEPS will achieve the same L1-I cache miss reduction as in the

previous section. Significantly different code paths across transactions executing the same

operation or exceptional events that cause threads to become stray may lead to reduced

benefits in the L1-I cache performance. Fortunately, we can reduce the effect of different

code paths (Section 5.4.1.2) and exceptional events (5.4.1.3).

5.4.1.2     Maximizing code overlap across transactions

If an S-thread follows a significantly different code path than other threads in its team

(e.g., traverse a B-tree with fewer levels), the assumed synchronization breaks down. That

thread will keep evicting useful instructions with code that no one else needs. If a thread,

however, exits the current operation prematurely (e.g., a key was not found), the only

effect will be a reduced team size, since the thread will wait to join another team. To mini-

mize the effect of different code paths we follow the next two guidelines: 1. Have a sepa-

rate list for each operation that manipulates a different index (i.e., index fetch (table1),

index fetch (table2), and so on). 2. If the workload does not yield high concurrency for

similarly structured operations, we consider defining finer-grain operations. For example,

instead of an insert operation, we maintain a different list for creating a record and a dif-

ferent one for updating an index.

DBMS 
operation

cross-transaction code overlap

always same 
tables

same tables 
+ split Op

begin / commit

fetch

insert

delete

update

scan

Table 5-2. Operation classification for overlapped code
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Table 5-2 shows all transactional operations along with their degree of cross-transaction

overlapped code. Begin, commit, scan, and update are independent of the database struc-

ture and use a single list each. Index fetch code follows different branches depending on

the B-tree depth, therefore a separate list per index maximizes code overlap. Lastly, insert

and delete code paths may differ across transactions even for same indices, therefore it

may be necessary to define finer-grain operations. While experimenting with TPC-C we

find that following only the first guideline (declaring lists per index) is sufficient. Small

variations in the code path are unavoidable (e.g., utilizing a different attribute set or

manipulating different strings) but the main function calls to the DBMS engine are gener-

ally the same across different transactions. For workloads with an excessive number of

indices, we can use statistics collected by STEPS on the average execution team size per

index, and consolidate teams from different indices. This way STEPS trades code overlap

for an increased team size.

5.4.1.3     Dealing with stray transactions
S-threads turn into stray when they block or voluntarily yield the CPU. In preemptive

thread packages the CPU scheduler may also preempt a thread after its time quantum has

elapsed. The latter is a rare event for STEPS since it performs switches at orders of magni-

tude faster times than the quantum length. In our implementation on Shore we modify the

thread package and intercept the entrance of block and yield to perform the following

actions:

1. Disconnect the S-thread from the current list.

2. Turn the thread into stray, by setting pointers prev and next to zero. Stray threads

bypass subsequent CTX calls and fall under the authority of the regular scheduler. They

remain stray until they join the next list.

3. Update all thread package structures that were not updated during the fast CTX calls.

In Shore these are the current running thread, and the ready queue status.

4. Pass a hint to the regular scheduler that the next thread to run should be the next in the

current list (unless a system or a higher priority thread needs to run first).

5. Give up the CPU using regular context-switching.
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Except for I/O requests and non-granted locks, transactions may go astray because of

mutually exclusive code paths. Frequently, a database programmer protects accesses or

modifications to a shared data structure by using a mutex (or a latch). If an S-thread calls

CTX while still holding the mutex, all other threads in the same team will go astray as they

will not be able to access the protected data. If the current operation’s remaining code

(after the mutex release) can still be shared, it may be preferable to skip the badly placed

CTX call. This way STEPS only suffers momentarily the extra misses associated with

executing a small, self-evicting piece of code.

Erasing CTX calls is not a good idea since the specific CTX call may also be accessed

from different code paths (for example, through other operations) which do not necessar-

ily go through acquiring a mutex. STEPS associates with every thread a counter that

increases every time the thread acquires a mutex and decreases when releasing it. Each

CTX call tests if the counter is non-zero in which case it lets the current thread continue

running without giving up the CPU. In Shore, there were only two places in the code that

the counter would be non-zero.

5.4.1.4     Summary of changes to the DBMS code

The list of additions and modifications to the Shore code base is the following. We added

the wrapper code to synchronize threads between calls to DBMS operations (STEPS

wrapper, 150 lines of C++), the code to perform fast context-switching (20 lines of inline

assembly), and we also added global variables for the list pointers representing each

DBMS operation. We modified the thread package code to update the list nodes properly

and thread status whenever blocking, yielding, or changing thread priorities (added/

changed 140 lines of code). Finally, we inserted calls to our custom CTX function into the

source code (as those were found during the microbenchmarking phase). Next, we

describe the experimentation testbed.

5.4.2   Experimentation setup

We experiment with TPC-C, the most widely accepted transactional benchmark, which

models a wholesale parts supplier operating out of a number of warehouses and their asso-
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ciated sales districts1. The benchmark is designed to represent any industry that must man-

age, sell, or distribute a product or service. It is designed to scale just as the supplier

expands and new warehouses are created. The scaling requirement is that each warehouse

must supply ten sales districts, and each district serves three thousand customers. The

database schema along with the scaling requirements (as a function of the number of

warehouses W) is shown in Figure 5-12 (left part).

The database size for one warehouse is 100MB (10 warehouses correspond to 1GB and

so on). TPC-C involves a mix of five concurrent transactions of different types and com-

plexity. These transactions include entering orders (the New Order transaction), recording

payments (Payment), delivering orders, checking the status of orders, and monitoring the

level of stock at the warehouses. The first two transactions are the most frequently exe-

cuted (88% of any newly submitted transaction), and their code outline (in terms of calls

to the DBMS in our implementation of TPC-C on top of Shore) is shown in Figure 5-12.

The TPC-C toolkit for Shore is written at CMU. Table 5-3 shows the basic configuration

characteristics of our system. To ensure high concurrency and reduce the I/O bottleneck in

1. Transaction Processing Performance Council. http://www.tpc.org

New Order
begin
fetch (D) lock
fetch (W)
fetch (C)
update (D)
for (avg 10)
.....fetch (I)
.....fetch (S) lock
.....update (S)
.....insert (O-L)
insert (O)
insert (N-O)
commit

Payment
begin
fetch (D) lock
fetch (W) lock
scan (C) 60% prob.
fetch (C) lock
fetch (C) lock, 10% prob.
update (C)
update (D)
update (W)
insert (H)
commit

Figure 5-12. Database schema for TPC-C benchmark and code outline (in terms
of system calls to the DBMS) of the two most frequently executed transactions,
New Order and Payment (capital letters correspond to TPC-C tables, “fetch” and
“scan” are implemented through SQL SELECT statements that retrieve a single or
multiple records correspondingly.
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our two-disk system we cache the database in the buffer pool and allow transactions to

commit without waiting for the log to be flushed on disk (the log is flushed asynchro-

nously; this technique is also known as lazy commit). A reduced buffer pool size would

cause I/O contention allowing only very few threads to be runnable at any time. High-end

installations can hide the I/O latency by parallelizing requests on multiple disks. To mimic

a high-end system’s CPU utilization, we set user thinking time to zero and keep the stan-

dard TPC-C scaling factor (10 users per Warehouse), essentially having as many concur-

rent threads as the number of users. We found that, when comparing STEPS with Shore

running New Order, STEPS was more efficient in inserting multiple subsequent records

on behalf of a transaction (because of a slot allocation mechanism that was avoiding over-

heads when inserts were spread across many transactions). We modified slightly New

Order by removing one insert from inside a for-loop (but kept the remaining inserts).

For all experiments we warm up the buffer pool and measure CPU events in full-system

operation, including background I/O processes that are not optimized using STEPS. Mea-

surement periods range from 10sec - 1min depending on the time needed to complete a

pre-specified number of transactions. All reported numbers are consistent across different

runs, since the aggregation period is large in terms of CPU time. Our primary metric is the

number of L1-I cache misses as it is not affected by the AthlonXP’s small L2 cache (when

compared to server processors shown in Figure 5-2b).

STEPS setup: We keep the same CTX calls used in the microbenchmarks but without

using floating point optimizations, and without re-training STEPS on TPC-C indexes or

tables. Furthermore, we refrain from using STEPS on the TPC-C application code. Our

CPU AthlonXP, 2GB RAM, Linux 2.4.20

Storage one 120GB main disk,
one 30GB log disk

Buffer pool size Up to 2GB

Page size 8192 Bytes

Shore locking hierarchy Record, page, table, entire database

Shore locking protocol Two phase locking

Table 5-3. System configuration
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goal is to show that STEPS is workload-independent and report lower bounds for perfor-

mance metrics by not using optimized CTX calls. We assign a separate thread list to each

index fetch, insert, and delete operating on different tables while keeping one list for each

of the rest operations. Restricting execution team sizes has no effect since in our configu-

ration the number of runnable threads is low. For larger setups, STEPS can be configured

to restrict team sizes, essentially creating multiple independent teams per operation.

5.4.3   TPC-C results

Initially we run all TPC-C transaction types by themselves varying the database size (and

number of users). Figure 5-13 shows the relative performance of STEPS over Shore when

running the Payment transaction with standard TPC-C scaling for 10, 20, and 30 ware-

houses. The measured events are: execution time in CPU cycles, cache misses for both L1

and L2 caches, the number of instructions executed, and the number of mispredicted

branches. Results for other transaction types were similar. STEPS outperforms Shore,

achieving a 60-65% reduction in L1-I cache misses, a 41-45% reduction in mispredicted

branches, and a 16-39% speedup (with no floating point optimizations). The benefits

increase as the database size (and number of users) scale up. The increase in L1-D cache

misses is marginal. STEPS speedup is also fueled by fewer L2-I and L2-D misses as the

database size increases. STEPS makes better utilization of AMD’s small L2 cache as

fewer L1-I cache misses also translate into more usable space in L2 for data.

Figure 5-13.  Transaction mix includes only the Payment transaction, for 10-30
Warehouses (100-300 threads).
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Table 5-4 shows for each configuration (10, 20, and 30 warehouses running Payment)

how many threads on average enter an execution team for a DBMS operation and exit

without being strays, along with how many threads are ready to run at any time and the

average team size. The single capital letters in every operation correspond to the TPC-C

tables/indices used (Customer, District, Warehouse, and History). STEPS is able to group

on average half of the available threads. Most of the operations yield a low rate for pro-

ducing strays, except for index fetch on District and Warehouse. In small TPC-C configu-

rations, exclusive locks on those tables restrict concurrency.

Next, we run the standard TPC-C mix, excluding the non-interactive Delivery transac-

tion (TPC-C specifies up to 80sec queueing delay before executing Delivery). Figure 5-14

shows that the four-transaction mix follows the general behavior of the Payment mix, with

the reduction in instruction cache misses (both L1 and L2) being slightly worse. Statistics

for the team sizes reveal that this configuration forces a smaller average team size due to

the increased number of unique operations. For the 10-warehouse configuration, there are

14 ready threads, and on average, 4.3 threads exit from a list without being stray. Still, this

means a theoretical bound of a 77% reduction in L1-I cache misses, and STEPS achieves a

56% reduction while handling a full TPC-C workload and without being optimized for it

specifically. Results for different mixes of TPC-C transactions were similar.

Warehouses 10 20 30
Operation 
(table) in out in out in out

index fetch (C) 8.6 8.6 16 16 25.2 24.7

index fetch (D) 8.9 1.7 16.2 2.6 31.7 5.3

index fetch (W) 8.9 0.5 16.6 1 30 1.9

scan (C) 9.4 8.2 16 14.3 26.2 23.7

insert (H) 7.9 7.8 14.9 14.6 24 23.2

update (C, D, W) 7.5 7.2 14 12.3 21.6 19

average team size 8.6 6.9 15.9 12.3 26.4 20.4
# of ready threads 15 28 48.4

Table 5-4. Team sizes per DBMS operation in Payment
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5.5.   Applicability to commercial DBMS

STEPS has the following two attractive features that simplify integration in a commercial

DBMS: (a) its application is incremental as it can target specific calls to the DBMS and

also co-exist with other workloads which do not require a STEPS runtime, (e.g., decision

support applications simply bypass all CTX calls), and (b) the required code modifications

are restricted to a very specific small subset of the code, the thread package. Most com-

mercial thread packages implement preemptive threads. As a result, DBMS code is thread

safe: programmers develop DBMS code anticipating random context-switches that can

occur at any time. Thread safe code ensures that any placement of CTX calls throughout

the code will not break any assumptions.

To apply STEPS to a thread-based DBMS the programming team first needs to augment

the thread package to support fast context-switching. Database software using processes

instead of threads may require changes to a larger subset of the underlying OS code. For

the rest of this section, we target DBMS software that assigns transactions to threads (and

not processes). In general, a STEPS fast CTX call needs to bypass the operating system’s

scheduler and update only the absolute minimum state needed by a different thread to

resume execution. Whenever a thread gives up CPU control through a mechanism differ-

ent than fast CTX (e.g., disk I/O, unsuccessful lock requests, failure to enter a critical sec-

tion, or expired time quantum), all state needed before invoking a regular context-switch

needs to be updated accordingly. This is the state that the OS scheduler needs to make
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Figure 5-14. Transaction mix includes all transactions except the non-interactive
Delivery transaction, for 10-20 Warehouses.
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scheduling decisions. The next phase is to add a STEP wrapper in each major DBMS

transactional operation. This thin wrapper will provide the high-level, per-operation trans-

action synchronization mechanism used in STEPS. The only workload-specific tuning

required is the creation of per-index execution teams, which can be done once the database

schema is known. The previous two sections described our approach into implementing

the above mentioned guidelines in Shore running on Linux. The implementation does not

depend on the core DBMS source code, since it only affects the thread package and the

entry (or exit) points of a few high-level functions.

The final phase in applying STEPS is to decide how many fast CTX calls to insert in the

DBMS code and where exactly to place them. So far, we identified candidate insertion

points by “test-and-try.” We performed a manual search by executing DBMS operations

on the target hardware, and using the CPU performance counters to count instruction

cache misses. In our implementation we could afford the time to perform a manual search

since Shore’s code is relatively small (around 60,000 lines of code). Commercial systems,

however, may contain tens of millions of code lines. To aid STEPS deployment in large-

scale DBMS software we need a tool that can automatically decide on where to insert

CTX calls throughout the source code. Moreover, such a tool should be versatile enough

to produce different outputs for different targeted cache architectures. This way, a DBMS

binary with STEPS could ship optimized for a specific CPU.

In the remaining of this section we describe autoSTEPS, our approach towards auto-

mating the deployment of STEPS in commercial DBMS. Section 5.5.1 presents the func-

tionality and usage of the tool, Section 5.5.2 describes the implementation, while Section

5.5.3 evaluates the accuracy of autoSTEPS.

5.5.1   AutoSTEPS: A tool to generate CTX insertion points

We leverage existing open-source software to obtain a trace of all instruction references

during the execution of a transactional operation. Valgrind1 / cachegrind2 is a

cache profiling tool which tracks all memory references (both data and instruction) from a

1.http://valgrind.org/
2.http://valgrind.org/docs/manual/cg_main.html
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binary executable and passes them through a cache simulator to report statistics. We mod-

ify cachegrind to output all memory addresses of instructions executed between two

“magic” instructions, placed anywhere in the DBMS source code (or user application

code). AutoSTEPS is a cache-simulator script, written in Python, that takes as input the

memory address trace and outputs the source code lines where fast CTX calls should be

placed for STEPS-like execution. The tool usage is the following:

• First, the user specifies the DBMS operation for processing (such as index_fetch,

insert, update, or any desired function call), by creating a sample client application

which contains the operation to be profiled.

• If the targeted platform is the same as the one used to run the tool, no further action is

needed (the tool automatically extracts cache parameters and outputs them for verifi-

cation). Otherwise, the user needs to specify the cache characteristics (L1-I cache size,

associativity, and block size) using a switch.

• The user first executes the modified version of valgrind to obtain the trace (i.e.,

“>steps_valgrind sample_transaction.exe > trace”), and then runs

autoSTEPS on the collected trace.

• The tool outputs the memory addresses of the code that CTX calls need to be inserted,

along with various cache statistics, both for plain and STEPS execution. Note that,

depending on the underlying cache architecture, the tool may output different

addresses for the CTX calls.

A specific DBMS operation can be profiled for STEPS by compiling a client application

that issues sample transactions to a set of tables in the database. If the targeted operation is

a function call exported by the DBMS to the client application, then the user inserts a

“magic” instruction right before and right after the function call to the DBMS, and re-

compiles the client application. If the function call to be profiled is an internal one, then

the magic instruction should be inserted at the DBMS source code. The magic instruction

is a unique sequence of native assembly instructions with no effect, that differs on each

platform and comes with the tool documentation; its purpose is to instruct the tool to start

and stop processing the binary.
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To translate the memory addresses to source code line numbers, autoSTEPS invokes

the system debugger in batch mode and outputs source file names and line numbers. Once

the lines in the source code are known, the CTX calls are inserted in place (the code of the

CTX call is always the same). Then, the user re-compiles and runs the transactional appli-

cation. Note that this procedure does not guarantee a deadlock-free execution since it may

have introduced potential races. In our experiments with Shore, this was not the case, but

it may occur in other systems. The autoSTEPS tool is an aiding tool in the process of

instrumenting code, not a complete binary solution. We envision that a commercial appli-

cation would also include two more tools. The first is a binary modification tool, similar to

[Srivastava and Eustace 1994], to insert the CTX calls directly to the DBMS binary with

no need for recompiling. The second tool is a race-detection binary tool, similar to [Sav-

age et al. 1997], to pinpoint badly placed CTX calls which may cause races or force S-

threads to go astray. Since similar tools already exist, it is out of the scope of this work to

re-implement such functionality. Next, we describe the implementation of autoSTEPS.

5.5.2   AutoSTEPS algorithm

To profile code for STEPS we only need to examine L1-I cache traffic. We re-implement

the cache simulator of cachegrind, to compare with STEPS-like execution. To find

points in the code to place fast CTX calls, we need to consider cache misses only for non-

leading1 threads in an execution team. A regular cache simulator will count all misses for

the single executing thread. Under STEPS, these are the default, compulsory misses that

will always be caused by the leading thread. Since STEPS performance is governed by the

misses caused by non-leading threads, we need to track which cache blocks are evicted

during execution of a code segment by the leading thread. Those evicted cache blocks will

need to be reloaded when non-leading threads execute the same code segment (immedi-

ately after the next CTX call). This way, we can decide on where to place CTX calls and

also compute overall misses for all threads in the execution team, by processing a trace of

only one thread executing the entire transactional operation.

1. A leading thread in an execution team is the first thread to execute (and therefore load in the cache) a new
code segment, enclosed by two consecutive CTX calls. Non-leading threads are the rest n-1 threads in the
execution team that will execute the same code segment and will incur significantly fewer misses.
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Our algorithm works on top of the regular L1-I cache simulation. Starting from the

beginning of the trace, the autoSTEPS simulator marks each cache block accessed with

the number of the current code segment. These are the cache blocks loaded by the leading

thread and, initially, the segment number is 0. The algorithm does not take into consider-

ation regular misses. However, whenever a cache block with the same segment number as

the currently executed segment is evicted, we count it as a STEPS miss. A STEPS miss

corresponds to a miss that would have been caused by a non-leading thread. When the

number of STEPS misses reaches a threshold, we mark the current memory address as the

place where a CTX call will be inserted, increase the code segment number, reset the num-

ber of STEPS misses, and continue processing the trace.

To better match CTX call selection with code behavior, instead of using a fixed thresh-

old for STEPS misses, we place CTX calls close to the beginning of a “knee” in the order

that misses occur. Such a knee appears when (a) STEPS misses occur close to each other

in terms of executed instructions (the number of in-between instructions is the width of the

knee), and, (b) when the number of consecutive misses that are spaced out by fewer

instructions than the knee width, reaches a predefined threshold (the “height” of a knee).

Whenever two consecutive STEPS misses are separated by more than the knee width, we

reset the knee height counter, up to a maximum of twice the knee height for STEPS misses

between two consecutive CTX calls. The input to autoSTEPS is the width of the knee (as a

number of instructions) and the height of the knee (as a number of STEPS misses). Upon

detection of a knee, the CTX call is placed before the instruction that marks the beginning

of the knee. For the code segment following the newly placed CTX call, we can afford

more evictions before one results into a STEPS miss (since it is a new segment for all team

threads), effectively “absorbing” the knee in the misses altogether.

To test autoSTEPS we collect a trace of instructions executed during index_fetch, using

the same setup as in Section 5.3. We run autoSTEPS with a knee of width 200 instructions

and height 4 misses and compare the number of misses for a single thread (non-leading

thread when in STEPS mode) for the original code and STEPS execution. Figure 5-15

shows the cumulative number of misses as those add up for every executed instruction

(the number of executed instructions at any time is in on the x-axis). The top line corre-

sponds to the L1-I cache misses of the original code, when the cache is warmed up with



Chapter 5: Improving instruction cache performance • 119

the exact same operation, as computed by the cache simulator of cachegrind. The bottom

line corresponds to STEPS misses (misses caused by non-leading threads), while the verti-

cal lines show where a CTX call takes place. In this run, autoSTEPS outputs 3 insertion

points for CTX code which results into a total of 7 CTX calls. As Figure 5-15 shows, the

resulting configuration keeps the overall number of misses very low with only 3 CTX

insertion points in the source code. Note that during manual tuning, a total of 16 CTX

insertion points was used.

To examine the effect of varying the knee input parameters to autoSTEPS, Figure 5-16

plots the number of L1-I cache misses (y-axis) against the number of CTX calls executed

(x-axis) for various inputs. The observed trend is an expected one: as the height of the

knee is reduced, autoSTEPS results into more recommendations for CTX calls which

bring the overall number of misses lower. For the same height, a wider knee essentially

allows more flexibility in defining a knee, absorbing more misses. Note that these are only

trends and not rules that always hold, since autoSTEPS does not try to minimize the actual

number of CTX calls executed. A CTX insertion point is picked according to the miss

behavior up to that point, and not according to how many total calls it will generate. Fig-

Figure 5-15. Cumulative number of instruction cache misses for single-thread
execution of index_fetch for all executed instructions. “Original” corresponds to
warm-cache behavior for any thread. The line for “STEPS simulation (200,4)”
shows misses for any non-leading STEPS thread. The vertical lines show the
points where a fast CTX takes place, when autoSTEPS is configured for a “knee”
of 200 instructions width and height 4.
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ure 5-16 also shows the performance of the manually configured STEPS runtime used in

the previous sections. The number of CTX calls in the manually tuned system exceed

those resulting from autoSTEPS recommendations. Note that the cache simulation results

into fewer misses for both the original and STEPS execution when compared to the simu-

lation results of Section 5.3.4.5, because of the simplicity of the simulator (e.g., it does not

simulate prefetching and assumes a perfect LRU replacement policy) and because of the

fact we are assuming a perfectly warmed-up cache with no pollution from context-switch-

ing code.

5.5.3   Evaluation

To evaluate the effectiveness of the recommendations produced by autoSTEPS, we pick

the same input parameters as in Figure 5-15 (knee width 200 and height 4). AutoSTEPS

outputs the line number and source file of three places in Shore’s code to insert fast CTX

calls. After inserting the CTX calls and recompiling the code, we run the index_fetch

microbenchmark with 10 threads on AthlonXP. We compare three systems: the original

Shore, Shore with STEPS using the manual search for CTX insertion points (which

resulted in a total of 16 insertions), and Shore with STEPS using the three insertion points

recommended by autoSTEPS. We expect that the specific autoSTEPS configuration will

not outperform the manual one in reducing the number of misses, as shown in the simula-

tion results of Figure 5-16, but the reduced number of CTX calls should give a relative
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Figure 5-16. Number of L1-I cache misses and total number of context-switches
executed for non-leading STEPS threads, for different runs of autoSTEPS using
different input parameters. The “manual” point is produced by using the same
CTX calls as in the manually tuned system.
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speedup benefit to the autoSTEPS configuration. The results are in Figure 5-17. The left

part of the figure shows the total number of L1-I cache misses for all 10 threads executing

index_fetch, for the three systems. As expected, the autoSTEPS configuration signifi-

cantly outperforms the original system and is slightly worse than the manual configura-

tion. The right part of Figure 5-17 shows the total execution cycles. The autoSTEPS

configuration performs almost as well as the manual configuration since it executes fewer

context-switches.

5.6.   Chapter summary

This chapter described STEPS, a transaction coordinating mechanism based on the

StagedDB design, that addresses the instruction cache bottleneck in OLTP workloads. As

recent studies have shown, instruction cache misses in transaction processing account for

up to 40% of the execution time. Although compiling techniques and recently proposed

architectural features can partially alleviate the problem, the database software design

itself holds the key for eliminating cache misses by targeting directly the root of the prob-

lem. While database researchers have demonstrated the effectiveness of cache-conscious

algorithms and data structures on data cache misses, instruction cache performance in

transaction processing has yet to be addressed from within the software. The size of the

code involved in transaction processing and the unpredictable nature of transaction execu-

tion make a software approach to eliminate instruction cache misses a challenging one.

Figure 5-17. Performance comparison of Original, STEPS with manually placed
CTX calls, and STEPS with an automatically produced configuration. We use
autoSTEPS(200,4) to derive only 3 CTX calls (the manual configuration has 16
CTX calls). 
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STEPS is a mechanism that can apply with few code changes to any database software

and shape the thread execution sequence to improve temporal locality in the instruction

cache. Based on the grouped execution scheme of the StagedDB design, STEPS first

forms teams of threads executing the same system component. It then multiplexes thread

execution within a team, at such fine granularity that it enables reuse of instructions in the

cache across threads. In this chapter we described the implementation of STEPS and

showed how to automate the application of STEPS to any commercial DBMS.

To the best of our knowledge, STEPS is the first software approach to provide explicit

thread scheduling for improving instruction cache performance. STEPS is orthogonal to

compiler techniques and its benefits are always additional to any binary-optimized config-

uration. This chapter showed that STEPS minimizes both capacity and conflict instruction

cache misses of OLTP with arbitrary long code paths, without increasing the size or the

associativity of the instruction cache. The contributions of the chapter are:

• A novel technique that enables thread scheduling at very fine granularity to reuse

instructions in the cache across concurrent threads.

• A tool to automatically find the boundaries in the code that the instruction cache fills

up.

• The implementation and evaluation of the presented techniques inside a full-blown

research prototype database system running a multi-user transactional benchmark on

real hardware.



Chapter 6

New research opportunities and 
conclusions

The last chapter in this dissertation describes new research opportunities that become pos-

sible with the StagedDB design and presents the overall conclusions. Future research dis-

cussion is organized into two sections. First, we overview key performance characteristics

of Chip Multiprocessors (CMP), which have already started replacing conventional (sin-

gle core) processors in server computing. As of today, dual-core CMP systems are avail-

able and it is widely expected that over the next few years (2006 and onwards) chip

designers will keep increasing the number of processor cores per chip. In Section 6.1.1,

we argue that CMP systems underutilize their performance potential when running con-

ventional DBMS software and propose mechanisms to adapt a Staged Database System

for CMP environments and optimize performance. The second part of future research

focuses on new opportunities for scheduling system resources in StagedDB. Section 6.1.2

describes how a Staged Database System can further improve performance by implement-

ing new scheduling policies on stages involving disk requests and database lock requests.

6.1.   Future work

6.1.1   High-performance database computing for CMPs

To exploit the increasingly large number of available transistors per chip, chip designers

have introduced processors consisting of multiple cores on the same chip (Chip Multipro-

cessors, CMPs). Each core typically includes a private L1 cache and shares the on-chip L2
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cache with the rest of the cores. As of today, dual-core CMP systems are available and it is

widely expected that over the next few years (2006 and onwards) chip designers will keep

increasing the number of processor cores per chip. At the same time, computer architects

expect that growing on-chip wire delays will force a re-design of on-chip large caches.

Today’s cache hierarchies consist of few discrete levels, each with a fixed access latency.

With higher levels of chip integration, maintaining fixed access latency to the on-chip L2

cache will no longer be desirable, as areas that are physically closer to a core could be

accessed in much shorter time. For example, for a 16MB on-chip L2 cache, built in a 50-

nanometer process technology, it takes only 4 cycles to access the location closest to a

core and 47 cycles to access the location that is the furthest to the core [Kim et al. 2002].

As a result, ongoing research in computer architecture is proposing cache architectures

with non-uniform access times [Kim et al. 2002; Beckmann and Wood 2004]. An example

of such a cache architecture is shown on the left side of Figure 6-1 [Beckmann and Wood

2004]. Eight CPU cores are placed around a large, shared L2 cache; cache blocks within

the same colored-area have the same access latency while the overall access latency that a

core sees, is a multiple of the colored areas that need to be crossed to retrieve a cache

block. To minimize access times in shared CMP caches, computer architects propose

cache block replication and migration mechanisms. Beckmann and Wood simulated a

block migration policy using scientific and OLTP workloads on the cache architecture of

Figure 6-1. The two rightmost pictures in Figure 6-1 show the overall cache utilization

with darker areas corresponding to more heavily accessed areas. In the scientific work-

Figure 6-1. Non-uniform access shared L2 cache for 8-way CMP (left) and cache
hit intensity for scientific and OLTP workloads (right).
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load, each core heavily accesses its private data set, and as a result, these blocks are gath-

ered around each core, while shared data, which are accessed less frequently, are gathered

in the center of the cache. The behavior of OLTP, however, is dramatically different. The

majority of accesses is to shared data, and as a result of each core “pulling” these cache

blocks, the center area of the cache becomes the most heavily used area.

With conventional DBMS designs there seems to be no way to provide low latency

access to shared data since each core needs to access the center of the shared L2 cache.

StagedDB, however, holds the potential of dramatically changing memory access patterns,

essentially creating a picture similar to the one under the scientific workload in Figure 6-1.

A suitable staging scheme can assign stages that access the same shared data (e.g.,

indexes, lock tables) to the same core and have transactions migrating through stages,

depending on which indexes each transaction needs to access. This way, data shared

across transactions become private to each core, while private transaction data will follow

a migratory pattern. Since the majority of data cache accesses is to shared data, a staged

transaction processing system can potentially behave similarly to the scientific workload

shown in Figure 6-1.

In the above mentioned design, additional hardware mechanisms can be employed to

facilitate the migration of transaction private data across cores. Since the application pro-

grammer can easily identify which data structures are private to each transaction, a hard-

ware data streaming mechanism (similar to the one in [Wenisch et al. 2005]) can be used

to hide access latency. Such a mechanism will automatically move data belonging to a pre-

specified “stream” to the core that needs to access the stream, after the first access to the

data stream occurs. The application programmer can provide hints to the hardware with

respect to which data belong to the private environmental data of each transaction and

therefore consist a stream.

6.1.2   Resource scheduling in StagedDB

The departure from a time-sharing thread-based execution model to stage-based database

software introduces new scheduling opportunities. The CPU is no longer assigned directly

to queries, rather it processes stage queues which include different queries at different
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phases of their execution. Depending on the nature of each stage there is a number of local

optimizations to perform, utilizing information from the queries waiting in the queue. We

focus on two classes of stages: (a) those responsible for issuing I/O requests, and, (b)

stages that govern the access to lock tables. By giving the database programmer control

over scheduling those two resources (disk and lock requests), it becomes easier to imple-

ment priority-based scheduling, where certain queries are given higher priority.

I/O stage queue management. Traditional database systems issue I/O requests at random

points of time from the disks' point of view. That is, whenever the current execution thread

incurs an I/O, the database system switches to a different thread without having any

knowledge if and when the new thread will generate a disk request. In StagedDB, database

tables are accessed through specialized stages. Each stage can examine its queue and

determine the disk requests that will be generated. By presenting all disk requests together,

the storage manager and the underlying disks can perform deeper and more effective

scheduling. A future research direction is to leverage this effect and also further expose

the I/O stages to the underlying storage architecture.

Lock stage queue management. Requests for locks share several similarities to disk

requests. The current execution thread may issue a lock request at any time; if the request

is not granted, the database system switches to a different thread. Typically there are no

means to interrupt the current lock holder (same as when the disk head is about to serve a

request). This fact deprives traditional database systems of the ability to control the execu-

tion sequence and optimize the system resource utilization. Consider, for example, two

concurrent transactions that need to acquire the same exclusive lock. Assume that one

transaction is short and about to commit, while the other one contains several more opera-

tions before committing. If the second transaction gets the lock first, the response time of

the short transaction will be high. On the other hand, if both transactions were queued up

in the same stage, we could potentially schedule the lock request form the short transac-

tion first, thus reducing the average response time. A future research direction is to

develop stages to control accesses to locks and implement stage queue scheduling policies

to maximize resource utilization and minimize response times.
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6.2.   Dissertation conclusions

Recent research has shown that the performance of database management systems on

modern hardware is tightly coupled to how efficiently the entire memory hierarchy, from

disks to on-chip caches, is utilized. Unfortunately, according to recent studies, 50% to

80% of the execution time in database workloads is spent waiting for instructions or data.

Although related work has identified memory-related bottlenecks and proposed tech-

niques to boost performance, current DBMS designs do not have the means to exploit

commonality across all levels of the memory hierarchy. Most of the research to date for

improving locality examines data accessed and instructions executed by a single query (or

transaction) at a time. Database systems, however, typically handle multiple concurrent

users. Request concurrency adds a new dimension for addressing the locality optimization

problem. Unfortunately, the operating system's context switching decisions are oblivious

to the state of the request/thread and therefore cause severe context thrashing in the mem-

ory hierarchy. 

This dissertation introduced a novel way to re-engineer database systems to improve

utilization of all memory hierarchy levels. By properly synchronizing and multiplexing

the concurrent execution of multiple requests there is a potential of increasing both data

and instruction reusability at all levels of the memory hierarchy. Existing DBMS designs,

however, pose difficulties in applying such execution optimizations as they abide by the

execution primitives provided by the underlying operating system. Rather than rewriting

the entire code of the database system, this dissertation provides the support to organize

system components into self-contained stages and change request execution sequence to

perform group-processing at each stage, thus effortlessly exploiting commonality across

queries. The proposed design, StagedDB, requires only a small number of changes to the

existing DBMS code base and provides a new set of execution primitives that allow soft-

ware to gain increased control over what data is accessed, when, and by which requests.

This dissertation first introduced techniques to define and build individual stages out of

a prototype DBMS along with query scheduling policies for staged architectures (Chapter

3). To prove feasibility of staged execution for database servers, we studied the perfor-

mance tradeoff of delaying requests to execute them in groups, and found scheduling dis-
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ciplines that outperform traditional architectures. We then evaluated the initial

implementation of a staged database system on top of Predator, a research prototype

DBMS, and described both performance and software engineering benefits of the case

study.

In Chapter 4, we investigated how a staged execution engine can improve cross-query

locality. We built and evaluated QPipe, a staged relational query engine that exploits over-

lapping work between concurrent queries at run time and offers several advantages over

traditional query engine designs. It provides full intra-query parallelism, taking advantage

of all available CPUs in multiprocessor servers for evaluating a single query, regardless of

the plan's complexity. By processing a batch of tuples for each query at every staged rela-

tional operator, QPipe improves instruction temporal locality and avoids extraneous pro-

cedure calls in the DBMS code, when compared to tuple-by-tuple query engines.

Furthermore, by applying on-demand simultaneous pipelining of common intermediate

results across queries, QPipe avoids costly materializations and can efficiently evaluate

plans produced by a multi-query optimizer.

Then, in Chapter 5, this dissertation investigated how the StagedDB design can improve

instruction cache performance for large, commercial-grade systems processing multiple

concurrent transactions. According to recent studies, instruction cache misses in transac-

tion processing account for 25-40% of the execution time. While database researchers

have demonstrated the effectiveness of cache-conscious algorithms and data structures on

data cache misses, instruction cache performance in transaction processing has yet to be

addressed from within the software. This dissertation introduced STEPS, a novel mecha-

nism that can apply with few code changes to any database software and can shape the

thread execution sequence to improve temporal locality in the instruction cache. To the

best of our knowledge, STEPS is the first software approach to provide explicit thread

scheduling for improving instruction cache performance. In chapter 5 we showed that

STEPS minimizes both capacity and conflict instruction cache misses of OLTP with arbi-

trary long code paths, without increasing the size or the associativity of the instruction

cache. The implementation and evaluation of the proposed techniques was done inside a

full-blown research prototype database system running a multi-user transactional bench-

mark on real hardware.
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The key results of this dissertation are summarized as follows:

1. Database management systems can improve performance and software engineering

characteristics by organizing system components into self-contained stages.

2. Relational query engines can improve performance (both throughput and single-query

response time) by converting their design philosophy from query-centric (one-query,

many-operators) to operator-centric (one-operator, many-queries).

3. The instruction cache bottleneck in transaction processing can be removed by forcing

concurrent transactions to maximize reuse of instructions already present in the cache.

Epilogue

Locality and predictability of different tasks running in a system has long been the key

property that computer and storage architects, along with software designers have

exploited to build high-performance computing systems. Different implementation itera-

tions of caching and prefetching techniques both in hardware and software already span

more than three decades. At this point of time, two trends in server computing have

become (and are expected to remain) the norm: high-performance servers process multiple

concurrent requests (varying from tens to thousands) and the utilization of the underlying

hardware in its entirety (from CPUs to memory hierarchy and to disks) is a critical factor

in deciding performance. This Ph.D. dissertation showed how to re-engineer server soft-

ware to better match the underlying modern hardware, and how to exploit request concur-

rency to improve locality and predictability in the system, thereby improving

performance. The focus has been on Database Management Systems, arguably the most

challenging sever computing platform, but the lessons learned are general enough to apply

to other server software as well.
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APPENDIX

Analysis of scheduling policies

8.1.   Analysis of PS and FCFS

Under both FCFS and PS each query sees all modules as if they were one M/G/1 server,

with mean service time the mean module service time plus the module load time. That is,

each query has to serve for l time units plus a variable amount of time drawn from an

exponential distribution with mean m. For PS, the mean response time (expected time in

system) in a M/G/1 server, is:

 (PS)

For FCFS, the Pollaczek - Khinchin formula applies to the expected time in system for a

M/G/1 server:

 (P-K)

This formula needs the first 2 moments of the general query size distribution (Exp(m) + l):

 (1),  (1)

So, the expected response time for a query for the given problem definition under FCFS is:

 (FCFS)
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8.2.   Analysis of M/M/1 with a locality-aware policy

This section considers a special case of the M/M/1 queue where the notion of data locality

is incorporated into the job service times. While in CPU, we assume that each job under-

goes a series of execution steps (modules). At each of those modules the service time is

affected by the cache hit ratio. Whenever a job moves to the next execution module, new

data structures and new instructions need to be loaded in the cache. However, if a second

job is preemptively scheduled to execute the very same module that the previous job was

working on, then, the cache hit ratio increases, and thus, the service time for the second

job is reduced.

Although the analysis described here is in the context of the staged server paradigm, it

can also apply to a wider class of servers that follow a “production-line” model of opera-

tion. For instance, we can imagine a single robotic arm (could be part of a chain) perform-

ing several tasks on incoming items. Suppose some or all of those tasks require each time

a special, time-consuming preparation on behalf of the robotic arm (such as switching

position or functionality). Then, it could be more efficient if the robotic arm treated

incoming items as a batch and performed each task on the whole batch (thus paying the

penalty of preparation only once per incoming batch). In that system, the notion of the

cache and common data structures is replaced by the preparation of the robotic arm that is

common to each task.

In order to model this queue, we assume that all jobs pass through the same execution

modules. The breakdown of the service requirement into modules is such that the common

data associated with each module fit entirely in the cache (or in the higher levels of the

memory hierarchy, in general). The total service time for a job that always suffers the

default cache miss ratio (as in the FCFS case) is drawn from an exponential distribution

with mean . A job that always executes a module just after another job has brought the

common data of that module in the cache, requires a total service time drawn from an

exponential distribution with mean , with .

All existing scheduling policies (preemptive and non-preemptive) for the M/M/1 queue

are oblivious to cache performance. For exponential service times all non size-based poli-

cies result in the same expected time in system, namely:

1 µ⁄

c µ⁄ 0 c 1≤<
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,

where  is the job arrival rate. The rest of this Section analyses d-gated for the M/M/1

queue just described.

An equivalent way to think of the proposed cache-conscious execution is as a modified

FCFS policy. Under this policy the first job in the queue (and in a group) gets uninter-

rupted service with rate  and then waits until all jobs in its group finish. Each of those

jobs in turn, executes in a FCFS fashion, but with an “accelerated” rate of , and then

waits for the rest (note that c was defined to be between zero and one). When the last job

of the group finishes execution, all jobs leave the system at the same time and the CPU

looks at the queue: the jobs that wait there will consist the next group (if there are no jobs

in the queue, then the first job to arrive in the system will consist a group by itself, in

which case the cache-conscious execution reduces to a true FCFS policy). This modified
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FCFS scheme behaves the same as the proposed cache-conscious execution in terms of the

number of jobs in the system at any time.

Since both the interarrival and service times are exponential, a Markov chain can be

written for this modified FCFS scheme (illustrated in Figure 8-1). A state (m, n, z) in this

chain is defined as: m is the number of jobs waiting in the queue (not admitted), n is the

number of jobs consisting the current batch, and, z is the number of jobs, out of the current

batch, that would have finished execution under normal FCFS but now have to wait for all

members of the batch to complete execution. Every batch comes to completion whenever

there is a departure with rate  (for batch size = 1) or rate  (for batch size > 1), from a

state in the form of: (m, n, n-1); this departure leads to state (0, m, 0), since all m jobs wait-

ing in the queue will consist the next batch.

Solution of Markov chain. We can write a balance equation for the state (m, n, z): the

rate we leave that state equals the rate at which we enter into that state.

 , for    (1)

For z = 0, the balance equation is:

 ,  (2)

Convention: from now on we will write all probabilities of the form ,  as ..The

goal is to express all state probabilities as functions of .

For z = 1, the balance equation is:

 ,  (3)

By substituting (2) into (3) and solving the recurrence, we derive:

 ,  (4)

µ µ c⁄

µ
c
--- λ+ 

  Pm n z, ,
µ
c
---Pm n z 1–, , λPm 1– n z, ,+= 1 z n< <

µ λ+( )Pm n 0, , λPm 1– n 0, ,= Pm n 0, ,→ λ
µ λ+
------------- 

  m
P0 n 0, ,=

P0 n 0, , Pn

Pn

µ
c
--- λ+ 

  Pm n 1, , µPm n 0, , λPm 1– n 1, ,+=

Pm n 1, ,
µ

µ c⁄ λ+
------------------- λ

µ c⁄ λ+
------------------- 

  i λ
µ λ+
------------- 

  m i–
⋅

i 0=

m

∑
 
 
 
 

Pn⋅ ⋅=
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For z = 2, (1) and (4) give, after solving for the recurrence:

 ,  (5)

Similarly, for z = 3, we have:

 ,  (6)

From (2), (4), (5), and (6) we can conclude what the formula for  as a function of 

is.

 ,  (7)

Convention: from now on, a[m, z] will be the following sum

 ,  (8)

a[m, z] can be thought as a sequence for z > 0 with m being a non negative integer, and the

following recursive definition can be written:

 ,  (9) 

This will be useful when we want to evaluate those probabilities. We now need to com-

pute probabilities . For n > 1, we have the following balance equation:

Pm n 2, ,
µ c⁄

µ c⁄ λ+
------------------- µ

µ c⁄ λ+
------------------- λ

µ c⁄ λ+
------------------- 

  i λ
µ λ+
------------- 

  m i–
⋅

i 0=

m

∑ … λ
µ c⁄ λ+
------------------- 

  i λ
µ λ+
------------- 

  m i–
⋅

i m=

m

∑+ +
 
 
 
 
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Pm n 3, ,
µ c⁄

µ c⁄ λ+
------------------- 

  2 µ
µ c⁄ λ+
------------------- λ

µ c⁄ λ+
------------------- 

 
i1 λ

µ λ+
------------- 

 
m i1–

⋅

i1 i2=

m

∑
i2 i3=

m

∑
i3 0=

m

∑
 
 
 
 

Pn⋅ ⋅ ⋅=

Pm n z, , Pn

Pm n z, ,
µ c⁄

µ c⁄ λ+
------------------- 

  z 1– µ
µ c⁄ λ+
------------------- … λ

µ c⁄ λ+
------------------- 

 
i1 λ

µ λ+
------------- 

 
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⋅
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m

∑
iz 1– iz=

m

∑
iz 0=

m

∑
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 
 
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Pm n 0, ,
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  m
Pn= 0 m 0 n<,≤

a m z,[ ] … λ
µ c⁄ λ+
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 
i1 λ

µ λ+
------------- 

 
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⋅

i1 i2=

m

∑
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m

∑
iz 0=

m

∑=

a m z,[ ] λ
µ c⁄ λ+
------------------- 

  k
a m k– z 1–,[ ]⋅

k 0=

m

∑= 0 m 1 z<,≤

a m 1,[ ] λ
µ c⁄ λ+
------------------- 

  k λ
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------------- 
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 ,

and by using (7) and (9), we can rewrite that as:

 ,  (10)

For n = 1, we can write the following balance equation:

 ,

which can be written as:

 ,  (11)

The probability of being in state 0 (system being idle) equals 1 minus the sum of the prob-

abilities of being in every other possible state, namely:

 , 

or:

 ,  (12)

From equations (10), (11), and (12) we can see that the probabilities  through  are

part of a set of an infinite number of linear equations, and their value could had been

obtained if we were able to solve this linear system of infinite equations. Such a solution

would have the following general representation:

µ λ+( ) Pn⋅ µPn 1 0, ,
µ
c
---Pn i i 1–, ,

i 2=

∞

∑+=

Pn
µ λn⋅

µ λ+( )n 1+
--------------------------- P1⋅ µ
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µ λ+( ) P1⋅ λP0 µP1 1 0, ,
µ
c
---P1 i i 1–, ,

i 2=

∞

∑+ +=

P1
λ

µ λ+
------------- P0⋅ µ λ⋅
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µ λ+
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µ c⁄ λ+
------------------- 

  i 1–
Pi⋅ ⋅
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∞

∑⋅+ +=

P0 1 Pm n z, ,
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n 1–

∑
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∑
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∑–=

P0 1 µ c⁄
µ c⁄ λ+
------------------- 

  z 1– µ
µ c⁄ λ+
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n 1–

∑
m 0=

∞

∑
n 1=

∞

∑–=

P1 P∞
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where the quantity S(n) is defined as:

Evaluation. The above solution can be approximated by solving for a finite n. Since the

last job on every batch sees the system as if it was a simple FCFS server, the system is sta-

ble and the sum of the state probabilities goes to 1 as n goes to infinity. We used dynamic

programming to efficiently evaluate a[m,z], and matlab to solve the linear equations, for n

in the range of 100-500. The results matched exactly the simulation scripts, for all combi-

nations of  we tried.

P1

P2

P3

…
Pn

…

µ λ⋅

µ λ+( )2
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