
A Lower Bound Framework for Binary
Search Trees with Rotations

Jonathan Derryberry Daniel Dominic Sleator
Chengwen Chris Wang

November 22, 2005
CMU-CS-05-187

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

This paper considers the problem of bounding below the cost of accessing a sequence of keys in
a binary search tree. We develop a lower bound framework for this problem that applies to any
binary search tree algorithm, including self-adjusting and offline ones. This new framework can
be used to derive two previously known lower bounds.

This research was sponsored by National Science Foundation (NSF) grant no. CCR-0122581.

Keywords: Dynamic Optimality, Binary Search Tree, Splay Tree, Competitive Algorithms,
Lower Bound

1 Introduction
Binary search trees (BSTs) are a common class of data structures for storing a set of keys from a
totally ordered universe. BSTs support, at a minimum, the operations of accessing, insertion, and
deletion of keys. A number of self-adjusting BST data structures have been proposed in which the
tree is restructured via rotations in response to the pattern of accesses [ST85, DHIP04, WDS06].
To better understand the limits of performance of self-adjusting BSTs, it is useful to consider the
case in which the set of keys is static, so that accessing is the only operation allowed.

A well-known open problem is that of devising a competitive BST algorithm. This would be
an online self-adjusting BST algorithm whose performance on a sequence of accesses is within a
constant factor of all other BST algorithms, even offline ones that know all future accesses. The
Dynamic Optimality Conjecture for splay trees [ST85] asserts that splay trees are competitive in
this sense.

One approach to this problem has been to develop lower bounds on the cost of accesses in a
BST. Such a lower bound takes as input a sequence of accesses, and returns a number which is
a lower limit on the cost of any BST algorithm for handling that sequence of accesses. If, for
example, splay trees were shown to cost at most a constant factor more than some lower bound,
then this would prove the Dynamic Optimality Conjecture.

In Section 2 of this paper we define the model carefully. In Section 3 we prove our new Rect-
angle Cover Lower Bound. In Section 4 we show how to use our bound to derive two previously
known lower bounds. Section 5 contains conclusions and future work.

2 The Model
Let the sequence of accesses to be processed by a BST algorithm be σ = σ1, σ2, . . . , σm. Each
access σi is a key in the tree, and the requested keys must be accessed in the specified order.1

Traditionally, a BST algorithm processes an access by walking down from the root of the tree until
the accessed node is reached. The cost is the number of nodes on that path. The algorithm is also
allowed (whenever it wants) to restructure the tree by doing rotations, at a cost of 1 per rotation.

There is an alternative model proposed by Wilber [Wil89]. In this model, the accessed node
must be moved to the root of the tree by doing rotations. Of course, other rotations may be done
as well, which may affect future accesses. The cost is exactly the number of rotations done plus 1.
A BST algorithm that does this is called a standard search algorithm. This is the model we use in
this paper. Because rotations are invertible, the cost in the standard model is at most twice that in
the traditional model.

Note that the cost for a BST to process a sequence of accesses will clearly depend on the initial
tree. Our lower bound is applicable to any BST algorithm on any initial tree.

1We often refer to the node containing key x as x. We assume the tree will never contain two equal keys, so this
represents no ambiguity.

1

3 The Lower Bound
It is useful to view the access sequence as a set of points in two dimensions: the x-coordinate is
time, and the y-coordinate is the key space. (See Figure 1.) In this view, access σi is mapped to the
point (i, σi). Let P denote the set of points generated in this fashion by the access sequence σ.

A box is an axis-aligned rectangle whose opposing corners are points in P . A box is either up
or down. A box is up if its lower-left and upper-right corners are points in P . Similarly, a box
is down if its upper-left and lower-right corners are in P . A box also contains a divider which is
simply a horizontal line across the box. To avoid ambiguity, we require that the y-coordinate of
the divider be distinct from all the keys. Two boxes conflict if they are both up or both down, and
the intersection of the two boxes contains part or all of both dividers.

Theorem 1. Let σ be a sequence of accesses, let P be the corresponding point set, and let B be a
set of pairwise non-conflicting boxes for P . Then the number of rotations required by any standard
BST search algorithm to process σ is at least |B|.

Before we prove the theorem, we need a few preliminaries. Let LCA(x, y) (where x and y are
nodes in a BST) denote the least common ancestor of x and y.

Lemma 1. Let a and b be two distinct nodes in a binary search tree T with a < b. Let p and c be
two nodes in T , such that p is the parent of c. Suppose a rotation of edge (c, p) is performed and
as a result of this rotation, LCA(a, b) changes. It must follow that:

(1) a ≤ c ≤ b

(2) a ≤ p ≤ b

(3) LCA(a, b) = p before the rotation
(4) LCA(a, b) = c after the rotation

Proof: Let Π be a permutation of the keys of tree T sorted in increasing order of depth with ties
broken arbitrarily. Notice that, starting from an empty tree, inserting the keys of Π in order using
the standard insertion algorithm produces T . Moreover, notice that LCA(a, b) is the first node in
Π whose key k satisfies a ≤ k ≤ b. We can assume without loss of generality that c immediately
follows p in Π.2 If we swap c and p in the permutation, then the tree that results from the new
permutation is exactly T modified by doing a rotation of edge (c, p).

We can now use this alternative characterization of a rotation and of LCA(a, b) to determine the
conditions that must hold for LCA(a, b) to change. Since p and c are adjacent in Π and a change
in LCA(a, b) implies that Π’s first key from the range [a, b] changes, both p and c must be in the
range [a, b] (conditions (1) and (2)), and LCA(a, b) must change from p to c (conditions (3) and
(4)).

2Actually, even without this assumption, it is still the case that swapping p and c in Π results in T with edge (c, p)
rotated.

2

a

b

c

p

x

y

Time

K
ey

 S
pa

ce

Figure 1: The 2-D representation of an access sequence and some boxes.

This diagram shows a sequence of eight accesses. Each access is a dot. Time is on the horizontal
axis. The third access is to point a’s second coordinate, the fourth to x’s second coordinate, etc.

Two up-boxes are shown: (a, b) and (x, y). The dividers for these boxes are shown as horizontal
dashed lines. They are non-conflicting because their intersection contains only one divider.

The rotation of edge (c, p) in the tree is illustrated by the arrow connecting labels p and c. This
rotation is the first one in time between a and b that causes LCA(a, b) to move across the divider
of box (a, b). Therefore, it is the rotation that is associated with the box.

3

Proof of Theorem 1: For each box Bk in B, we are going to associate a rotation Rk done by the
BST algorithm processing the access sequence. Two boxes will not be associated with the same
rotation. This will prove that the number of rotations done is at least the number of boxes.

Consider an up-box Bk. Let (i, σi) be its lower-left corner and (j, σj) be its upper-right corner.
After accessing σi, we know σi is at the root of the tree, and after accessing σj , we know σj is at
the root of the tree. Consider the time interval spanned by the box. At the beginning of this interval
LCA(σi, σj) = σi, and at the end LCA(σi, σj) = σj . Thus, LCA(σi, σj) must cross from below
the divider to above the divider at some time in this interval. The rotation Rk we associate with
box Bk is the first one that moves the LCA across the divider.

As shown by Lemma 1, LCA(a, b) only moves by virtue of a rotation between two keys that
are inside range [a, b], that is, two keys that are inside the box. So the rotation Rk can be added to
our diagram as a vertical line inside the box Bk, crossing the divider. (See Figure 1.) If Rk were
inside another up-box Bl, and Rk crossed Bl’s divider, the intersection of Bk and Bl would contain
Rk and thus contain two dividers. Therefore, the boxes would conflict.

Of course, the situation is analogous for down-boxes. Note that the rotation associated with
an up-box is a left-rotation, and the rotation associated with a down-box is a right-rotation, so an
up-box and a down-box can never be associated with the same rotation.

4 Applications
In this section, we show that the Rectangle Cover Lower Bound is a generalization of two previ-
ously known lower bounds.

4.1 New Proof of the Interleave Lower Bound
We begin by describing the lower bound, using the description from [WDS06], which we reproduce
here for the reader’s convenience.

Given an initial tree T0 and an m-element access sequence σ, for any BST algorithm satisfying
these requests there is a cost, as defined in Section 1. Denote by OPT(T0, σ) the minimum cost any
BST algorithm must incur to satisfy these requests starting with initial tree T0. Wilber [Wil89] de-
rived a lower bound on OPT(T0, σ), and this was modified to be the interleave bound by Demaine
et al. [DHIP04].

Let IB(R, σ) denote the interleave lower bound on the cost of accessing the sequence σ, where
R is a BST over the same set of keys as T0. Define IB(R, σ) =

∑
v∈R IB(R, σ, v), where for each

node v, IB(R, σ, v) is defined as follows. First, restrict σ to the set of nodes in the subtree of R

rooted at v (including v). Next, label each access in this restricted σ as either “left” (or “right”)
depending on whether the accessed element is in the left subtree (including v) or right subtree of
v. Now, IB(R, σ, v) is the number of times the labels switch.

4

Theorem 2. (Interleave Lower Bound3)

OPT(T0, σ) ≥ IB(R, σ) + m

Proof: To prove this theorem, it suffices to show that we can place an up-box for each left-to-right
label change and a down-box for each right-to-left label change, such that no two boxes conflict.
Because up-boxes and down-boxes do not interfere, it suffices to show that no two up-boxes for
left-to-right label changes conflict.

Given a sequence of queries σ = σ1, σ2, . . . , σm, whenever a node v’s label changes from left
to right at time r, we place a box in the following way. Let σl be the last query in v’s left subtree at
time l, and σr be the query that induces the switch at v. We place a box whose opposing corners are
at (l, σl) and (r, σr), and place its divider at v − ε, where ε is very small. Let this box be described
by the tuple ((l, σl), (r, σr), v − ε).

Consider any two such up-boxes, B = ((l, σl), (r, σr), v− ε) and B′ = ((l′, σ′
l), (r

′, σ′
r), v

′− ε).
One of the following cases applies (See Figure 2):

1. If v = v′ then the boxes do not overlap in time, so they do not conflict.

2. If neither v nor v′ is an ancestor of the other, then the ranges (σl, σr) and (σ′
l, σ

′
r) are disjoint.

3. If v′ is an ancestor of v and v < v′, then σl < σr ≤ v′ − 1 < v′ − ε, so that B does not
contain B′’s divider.

4. If v′ is an ancestor of v and v > v′, then σr > σl ≥ v′ + 1 > v′ − ε, so that B does not
contain B′’s divider.

Cases where v is an ancestor of v′ are similar to cases 3 and 4. Hence, B and B ′ do not conflict.
The above argument proves a lower bound of IB(P, σ) on the number of rotations required to

access σ. Each access incurs an additional cost of 1, which is adds m to the lower bound.

4.2 New Proof of Wilber’s Second Lower Bound
Wilber’s second lower bound [Wil89] is more complicated to explain, and was conjectured by
Wilber to be better than his first bound. Informally, the bound can be defined as follows. For each
access σi, we travel backwards in time starting at time i and keep track of 2 closest accesses in key
space to σi, one to a larger key than σi and one to a smaller key than σi. Wilber’s second lower
bound for access σi is the number of times a new ‘record closeness’ occurs on a different side from
where the last record that was set. (We stress that the 2 records are on different sides of σi and are
independent – the record on one side may remain far away from σi in key space while the other
comes closer and closer to σi.) The lower bound for the sequence σ is the sum of this quantity over
all accesses, using each access as a starting point.

3This lower bound, the lower bound of Wilber [Wil89] and that of Demaine et al [DHIP04] are all identical up to
a constant factor. For readers familiar with these papers, our IB() is the same that in [DHIP04] and our OPT() is the
same as that in [Wil89].

5

(2, 5)

(4, 3)

σ =

(1, 1)

6

4

3

2

1

(1, 5, 5, 3, 7)

Time

K
ey

 S
pa

ce (3, 5)

(5, 7)

7
5

Figure 2: This figure shows the left-to-right switches (and the corresponding up-boxes) induced by the se-
quence (1, 5, 5, 3, 7). Below is a set of examples for each case in the proof of the interleave lower bound. The
boxes ((1, 1), (2, 5), 4−ε) and ((4, 3), (5, 7), 4−ε) are an example of case 1. The boxes ((1, 1), (4, 3), 2−ε)
and ((3, 5), (5, 7), 6 − ε) are an example of case 2. The boxes ((1, 1), (2, 5), 4 − ε) and ((1, 1), (4, 3), 2 − ε)
are an example of case 3. The boxes ((3, 5), (5, 7), 6− ε) and ((4, 3), (5, 7), 4− ε) are an example of case 4.

6

More formally, given a sequence of queries σ = σ1, . . . , σm, for each access σi, find a maximum-
sized subsequence of crossing accesses σc1, . . . , σcκ(i)+1

and inside accesses σb1 , . . . , σbκ(i)
such that

for all j ∈ [1, κ(i)]:

1. To ensure that the cj’s and bj’s go backwards in time,

cj+1 < bj ≤ cj ≤ c1 = i − 1.

2. To ensure that successive cj’s are on different sides of σi,

(σcj+1
− σi)(σcj

− σi) ≤ 0.

3. To help ensure that each σcj
is a new record, for j < κ(i)

|σcj+2
− σi| < |σbj

− σi|.

4. To define bj and further ensure that each σcj
is a new record, for j ≥ 1,

Sj = {cj+1 < k < i | (σcj
− σi)(σk − σi) > 0}

bj = argmin
k∈Sj

|σk − σi|,

where by convention we let bj be the minimum possible such value if multiple k ∈ Sj are
equally close to σi. (Note that this does not conflict with the assertion that bj ≤ cj.)

Theorem 3. The number of rotations required to access σ is at least
∑

1≤i≤m κ(i) (so the total
cost of σ is at least m +

∑
1≤i≤m κ(i)).

Proof: We can prove Wilber’s second lower bound using our box lower bound as follows. For
each access σi, find maximum-sized sequences σc1 , . . . , σcκ(i)+1

and σb1 , . . . , σbκ(i)
satisfying prop-

erties 1-4 above. For every pair of accesses (σcj+1
, σbj

), draw the corresponding box and place the
divider at σi +ε if the box is oriented up or σi−ε if the box is oriented down, where ε is very small.

Note that any two boxes oriented in the same direction created using σi’s sequence of κ(i) boxes
cannot conflict because they are disjoint along the time axis by properties 1 and 2. Now, consider
two boxes B = ((ck, σck

), (bk−1, σbk−1
), σi + ε) and B′ = ((c′k′, σc′

k′
), (b′k′−1

, σb′
k′−1

), σi′ + ε) for
i′ 6= i, such that without loss of generality i < i′ and both boxes are up-boxes. If c′k′ ≥ i, then B

and B′ do not overlap in time, so they do not conflict. Else, c′k′ < i and by the properties of σi′’s
sequence of boxes, either σc′

k′
< σi so that σb′

k′−1
≤ σi < σi + ε by property 4, or σc′

k′
≥ σi so that

σc′
k′

> σi + ε by property 3 because σc′
k′

must be strictly closer to σi′ than σi′ , which in this case
must be strictly less than σi′ . Thus, B and B ′ do not conflict.

7

5 Conclusions and Open Problems
It is straightforward to extend the Rectangle Cover Lower Bound to handle insertions and deletions
as long as insertions and deletions have to pay for accessing the relevant node, and each deletion
has to rotate the relevant node to a leaf. All that needs to be done is to add a point to the diagram
for each insertion and deletion. Everything else (i.e., the construction of the boxes) is the same.

Another generalization to the original framework is possible. We can allow the divider for each
up-box to be a monotonically non-decreasing function of time, which starts at the left boundary
of the box and ends on the right boundary of the box. (For each down-box the divider would be a
non-increasing function.) We do not know if this idea leads to an improvement.

Exhaustive search has shown that the Rectangle Cover Bound is not exact.4 However, it is more
general than Wilber’s first lower bound, so we know it is within a factor of O(log log n) of the cost
of the optimal BST algorithm. Perhaps the Rectangle Cover Bound is within a constant factor of
optimality. Proving this is an open problem.

Another open problem regarding the Rectangle Cover Lower Bound is whether it can be com-
puted in polynomial time. If not, another interesting problem is whether it can be approximated
to within a constant factor, or some factor that is o(log log n) (Wilber’s first lower bound approxi-
mates it to within O(log log n)). One potentially useful observation is that you can assume without
loss of generality that no box contains (inside or on its boundary) any other access point.

Lower bounds sometimes lead to new algorithms. Examples of this are the development of new
algorithms for binary search trees based on Wilber’s first lower bound [Wil89, DHIP04, WDS06].
There is the possibility that our lower bound formulation could be used in this fashion.

Returning to the original motivation for this research, the problem of finding a o(log log n)-
competitive online (or even offline) BST remains open. Another problem is devising an on-
line comparison-based data structure (that does not necessarily adhere to the BST model) that
is within a factor of o(log log n) of the optimal offline BST. For example, Iacono devised a non-
BST comparison-based data structure called the unified structure that exploits temporal and spatial
locality of accesses with better bounds than have been proven for any BST [Iac01], but his data
structure is only O(log n)-competitive.5

References
[DHIP04] Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pătraşcu. Dynamic

Optimality–Almost. FOCS, 2004.

4There are sequences of six accesses for which the bound is too low by one rotation
5Consider the sequence of n accesses 0,

√
n, 2

√
n, . . . , (

√
n − 1)

√
n, 0,

√
n, 2

√
n, . . . , (

√
n − 1)

√
n, The

unified structure requires Ω(log n) time per access while splay trees require only O(1) time per access. To see that
splay trees require only O(1) time per access for this sequence, notice that this first round of

√
n accesses costs O(n)

by the Dynamic Finger Theorem. After the first round, at most 2
√

n nodes remain on the left spine and the nodes
0,
√

n, 2
√

n, . . . , (
√

n − 1)
√

n are all among them. Thus, all following rounds will not touch any nodes that were not
on the left spine at the end of first round. Applying the Dynamic Finger Theorem on this smaller tree with at most
2
√

n nodes shows that successive rounds cost only O(
√

n).

8

[Iac01] John Iacono. Alternatives to splay trees with o(log n) worst-case access times. In SODA
’01: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,
pages 516–522, Philadelphia, PA, USA, 2001. Society for Industrial and Applied Math-
ematics.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees.
Journal of the ACM, 32(3):652–686, July 1985.

[WDS06] Chengwen Wang, Jonathan Derryberry, and Daniel D. Sleator. O(log log n)-
Competitive Dynamic Binary Search Tree. SODA, 2006.

[Wil89] Robert Wilber. Lower bounds for accessing binary search trees with rotations. SIAM
Journal on Computing, 18(1):56–67, 1989.

9

