A Formulation of Dependent ML
with Explicit Equality Proofs

Daniel R. Licata Robert Harper

December, 2005
CMU-CS-05-178

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We study a calculus that supports dependent programming in the style néXfanning’s Dependent ML.
Xi and Pfenning’s language determines equality of static data using a buididisidn procedure; ours
permits explicit, programmer-written proofs of equality. In this report, wengediur calculus’ semantics
and prove type safety and decidability of type checking; we have meathmuach of these proofs using the
Twelf proof assistant. Additionally, we illustrate programming in our calculusubh a series of examples.

Finally, we present a detailed comparison with other dependently typecdgeagiincluding Dependent ML,
Epigram, Cayenne, ATS)mega, and RSP1.
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1 Introduction

1.1 Dependent Types

Consider the following signature for a module implementing liststafings:

signature STRING._LIST =
sig
type slist
val nil:slist
val cons:string X slist — slist
val append:slist X slist — slist
val nth:slist X nat — string
val map2:(string X string — string) X slist x slist — slist
end.

While mostly self-explanatory, this signature leaves some questions unaas\Wwer examplesth (1st, i)

is supposed to return thé” element oflst, but what does it do when is not smaller than the length of
the list? The functiomap2 should map the given function across the two lists, but what does it do when
the lists are of different lengths? (Ignore the remaining items in the longer l@i&e RN exception?) In a
language such as Standard ML [38], these sorts of questions aléywsvered in informal comments,
and violations of the answers manifest themselves as run-time faults.

In a language witldependent typg83, 34, 35]—types that contain run-time programs—yprograms can
be given precise enough types that these questions do not come wgnd2efly typed languages generalize
the usual function type from ML to a dependent function type;A. B, where the argument to the function
is allowed to appear in the result type. For example, the above signatube caxised to track the length
of alistin its type:

signature SLIST2 =
sig
type slist(x:nat)
val nil:slist(0)
val cons:IlIx:nat.string x slist(x) — slist(1+ x)
val append:IIx:nat.lly:nat.slist(x) X slist(y) — slist(x+7y)
val nth:IOx:mnat.Mi:(nat|i < x).slist(x) — string
val map2:lIx:mnat. (string X string — string) x slist (x) X slist (x) — slist (x)
end.

The first line means that the typaist (E) is well-formed wherE is a term of typenat. We give precise
types tonil andcons: nil is a list of length zero; the result of@ns has one more element than the input
list. The type ofappend propagates information in the same manner—the length of the output is is the sum
of the lengths of the input lists—and makes it more difficult for a buggy versiaype check. The type
of map2 ensures that it is only called on lists of the same length, obviating our earbstiqns. Similarly,
the type ofath requires that the offsatbe less than the length of the list; a primitive implementation could
now return the data at the given offset without checking at run-time tbeatfteet is in bounds.

As this example begins to suggest, dependent types can allow interestiggtig®to be checked in the
type system, enable richer interfaces at module boundaries, serve aimenrelcecked documentation, and
obviate some dynamic checks. Proving that a program possesses argwise pype can be harder, but in
return the type tells more about the program’s behavior. Pragmatically,abegpnmer can use dependency
inasmuch as it seems worthwhile to capture such strong invariants.



1.2 Dependent Types and the Phase Distinction

For the types in the above example to be useful, equality of types should irsdotenotion of equality for
the programs embedded in them. For example, it is desirable that a term withltype(1 + 1) also has
typeslist (2). In a pure\-calculus where program equality is decidable, this is not especially pneble
atic. However, if non-terminating programs are allowed to appear in typesliey will be undecidablé.
Additionally, it is unclear what it means to allow I/O effects or mutable state in types

Proposals for dependently typed programming languages have takeuasvapproaches to these prob-
lems. Some allow all programs to appear in types by excluding the problematicalgedeatures. For
example, Epigram [37] insists on totality, disallowing effects and non-termima@iayenne [4] allows non-
termination (but no other effects) by sacrificing decidable type checkinmgram equality is sound but
incomplete. Other proposals [62, 9, 48, 55] ug#hase distinctiorfi23] to isolate certain programs that can
appear in types; the rest of the language can then be arbitrarily effectfu

In present work, we follow these latter proposals in insisting on the phiaseation, which maintains
a clear separation between the compile-time (static) and run-time (dynamictsaspa program. Type
checking is defined to rely only on the compile-time aspects of a program, widkide the types of its
run-time parts and, to support dependent types, the data that cam apfiesse types. Execution is free
to rely on both the compile-time and the run-time aspects—languages with run-timartgfysis [24, 15]
compute with compile-time data at run-time, for example. This methodology erbatese run-time part
of the language can be chosen quite freely to have termination, or noptexte or not, store effects, or not,
without interfering with type checking. Moreover, standard technol@8y29, 52, 17, 16] equips a language
with the phase distinction with a higher-order module system that itself reghegibase distinction.

1.3 The Need For Proofs

The phase distinction ensures that some notion of program equality carilbiato the type system, but
existing languages differ in what notion of equality they include and whétiegrautomate reasoning about
other propositions. In traditional dependently typed languages suclhyen@e and Epigram, equality is
often determined by computation (for exampbe;reduction for functions); additional equalities and other
propositions are proven by the programmer using explicit proofs. Itrasty Xi and Pfenning’s Dependent
ML (DML) [62, 61, 56] is designed to permit fully automated reasoning aloompile-time data. In DML,
compile-time data, calleithdices are drawn from a designat@tiex domairthat is chosen by the language
designer. For exampleyil would have typelist (z), wherez is a compile-time number in the index
domain of natural numbers. Operations on indices (such)aand propositions (such as equality aajl
are also specified by the language designer. In order to provide fulityreated reasoning about indices,
the language designer also fixes a particular constraint solver cagatgeiding these propositions. For
example, Xi and Pfenning’s original implementation has integer indices witmsti@int solver for linear
integer inequalities [61].

While automation eases the burden on the programmer, a language thas ded@epropositions using
only a constraint solver fixed by the language designer is restricted énsdavays:

e For type checking to be decidable, all built-in index propositions must biaale. For example, if
decidable type checking is desired, the built-in index domain cannot ever@all of arithmetic;
the original DML implementation restricted index multiplication to stay in a decidabggrfemnt.

e The language designer can include undecidable propositions at thef aestidable type checking,
but when the decision procedure loops while proving a proposition thatiés the programmer’s

1This assumes a sufficiently rich notion of equality—for example, two @mmgrare equal iff they reduce to the same value.



only recourse is to write a different program. In particular, even if tlegammer knows why some
proposition is true, he cannot convince the type checker.

e The language cannot allow the programmer to define new propositions iabdaes: the constraint
solver will not be able to solve them.

e The language cannot allow the programmer to define new index domains withstirig operations
on them. By the previous point, the programmer cannot define new propssitimut these indices,
limiting their utility. Moreover, decidable notions of equality that are generalltmdex domains
(for example, computational principles) often do not include all desiraplaldies; thus, the built-in
equality of these new indices would likely be insufficient.

However, recent studies have shown the benefits of allowing a vari@tdioks, operations, and propo-
sitions. For example, static verification of array accesses [61] and ntaayaata structure invariants [57]
are possible using DML's integer index domain. Sometimes, this involves grcother constraint do-
mains as integers (e.dxed, black} as{0, 1}); using such encodings is less clear to programmers and cre-
ates opportunities for errors. Tracking matrix sizes requires goingnoeye linear fragment of arithmetic
supported by the original DML [9]. Interpreters and compiler transfeiona that verify object-language
typing through the meta-language type system employ representations cflabjguage types and envi-
ronments [8] as indices; these index domains are necessarily specificabjéut language that is being
implemented. Other interpreters use meta-language types themselves [4itas.iXML documents can
be represented typefully and taglessly using indices that describe tletusér [64]. Finally, certified type
checkers [47] can be written in a language with LF [22] terms and typeslees The number and variety
of these examples suggest that the above restrictions are undesirable.

To support undecidable propositions and programmer-defined inderide and propositions, some
recent proposals for phase-respecting dependent types [9a&&Fhifted their focus away from constraint
solvers, returning instead to the explicit proofs common in traditional degrelydtyped languages. Propo-
sitions that do not admit decidable proof search often do admit decidaid$ ghecking. Additionally,
unlike a fixed constraint solver, explicit proofs easily extend to newgsitijpns about programmer-defined
indices.

1.4 Contributions

We are in the process of designing an ML-like language with programnigredeindex domains; in the
previous sections, we have discussed some of the issues that set tinet émmour work. In particular,
to support an ML-like language with unrestricted effects and decidabitgibe-time type checking, we
take the phase distinction as fundamental. To support programmer-difiteeddomains and unrestricted
propositions about them, we base our approach on explicit proofg thdrea constraint solver.

In this report, we lay a foundation by studying a language with the fixed iddexain of natural num-
bers. We answer answer several questions about the design ofithikisa

1. How are indices and index operations represented as compile-time data?
2. How are indices used in the types of run-time data?

3. What notion of equality of compile-time data is built into the type system?
4

. What does a programmer do when this notion of equality is insufficient? ddovether propositions
about indices (such as thein the type ofnth) be stated and proven?

5. What does a programmer do when there is insufficient evidence fopagition?
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In our answers to these questions, we have attempted to cull the bestsdabum the existing proposals for
phase-respecting languages with programmer-defined index domainsxdfople, likemega [48, 41],
our calculus allows a programmer to define new functions on indices; like[®T 8ur calculus includes a
consistent logic in which proofs of index propositions are given. Addatiignin answering these questions
we have arrived at a need for some features not found in any existpgsal for phase-respecting depen-
dent types. Most notably, we allow run-time computation with compile-time dataasictlices and proofs.
This enables some programming techniques familiar from traditional depiytigred languages—for ex-
ample, it is sometimes useful to have run-time code dispatch on the structupeauffa

In the remainder of this paper, we detail our calculus’s answers to the=sgigns. In Section 2, we
describe our calculus’s answers at a high level. In Section 3, wenirtse syntax of our calculus. In
Section 4, we illustrate our calculus’s answers by implementing the list moduletfisrmtroduction. In
Section 5, we present the semantics of our calculus and overview its metg-thé have formalized much
of the meta-theory using Twelf [44]; the theorems are presented in AppBndn Section 6, we contrast
our calculus’s answers with those in related work. Finally, in Section 7,is@ss some possibilities for
future work. The Twelf code implementing the examples and meta-theory islaeada the Web [1].

2 Answers to the Design Questions

In this section, we discuss how our calculus answers the five desigtianssfsom Section 1.

2.1 Indices and Index Operations are Represented as Constrtors

In a calculus likeF,, [20], compile-time data are calldtype) constructoraind classified bkinds a partic-
ular kind TYPE classifies the types of run-time terms. We fit index domains into such a caldliosihg
LX [15] and ©mega [48, 41]: an index domain is a kind (other tITA®E) and indices are constructors of
that kind. In these languages and ours, an index domain is often an wrelyatiefined kind. For example,
the index domain of natural numbers could be defined by

kind NAT = z|s NAT.

Like LX and ©2mega, we support index-level operations (such as+thesed in the type o&ppend) as
constructor-level functions. In our calculus, these functions cantiteew using the induction operators
associated with the index domains. For exampletteperator could be defined as follows:

plus::NAT — NAT — NAT = A, i:NAT. \. j::NAT. NATrec[u.NAT](i, j,i'.r.s r).

TheNATrec construct allows induction over the kind of natural numbers; the equivdédinition in pattern-
matching syntax would be
pluszj = j
plus (si’)j = s(plusi’j).

Languages such as ATS [9] and RSP1 [55] adopt a relational viewlekifevel operations; we discuss the
trade-offs between this approach and ours in Section 6.



2.2 Indexed Types

Using indices in types, we revise the signatst&ST2 from Section 1 as follows:

signature SLIST3 =
sig
type slist (u::NAT)
val nil:slist(z)
val cons:Vu:NAT. string X slist (u) — slist(su)
val append:Vu:NAT.Vv:NAT.slist (u) X slist(v) — slist (plusuv)
val mnth:Vu:NAT.Vv:(NAT|v < u).slist (u) — string
val map2:Vu:NAT. (string X string — string) X slist (u) x slist (u) — slist (u)
end.

The first line now says that the typd ist (u) is well-formed whem haskind NAT. Because our indices
are constructors, the dependent function constructbas been replaced by the more familiain the
subsequent types.

This example allows us to illustrate some terminology. In B1igST3 signature,slist (u::NAT) is
a family of types indexed by the constructors of a kind. In contrast, in thggnat SLIST2 signature,
slist (x:nat) is a family of types indexed by the terms of a type. Because our calculusndb@diow
run-time terms to appear in types, types aanty be indexed by a kind; consequently, mdexed type
we always mean a type that is indexed by the constructors of a kind. Sporrdingly, because all data
that indexes types comes from the constructor level, we use “index’hgymously with “constructor”. In
contrast, when describing other languages, we use the pthepsadent typ refer to a type that is indexed
by the terms of a typé.Note that, under this definition, a traditional polymorphic list type defined by

type list (a:: TYPE) = nilla:: TYPE]|cons[a:: TYPE| a (1list a)

is also an indexed type, where the indices happen to be constructorsiafyp.

As a second bit of terminology, bo#list (x:nat) andslist (u:: NAT) areinductive familieg19].3
Inductive families generalize ordinary ML-style datatypes in two waylsist (u:: NAT) illustrates both.
First, the data constructors for inductive families are allowed to target mupset of the family’s indices—
for examplenil creates only aslist (z). Second, the data constructors for one subset of the indices can
refer mutually and inductively to other subsets—for exampteys creates an inhabitant eflist (s i)
from an inhabitant oklist (i). For ordinary polymorphic datatypes, it is possible but tedious to define
each instance of an indexed datatype separately; this is not the caseldotiva families. Dependent
inductive families have been well-studied in type theory [31] and underligr&m [37]; indexed inductive
families underlie DML’s datatypes and GADTSs [48].

2.3 Definitional Equality

Like F,,, our calculus requires a coarser notion of type equality than syntacticaéence. As mentioned
above, it is desirable that the typest (plus (s z) (s z)) be equal to the typeist (s (s z)). To this end,
our type system includes a notiondaéfinitional equalityof type constructors; our definitional equality rela-
tion includess andn rules for constructor-level functions apidrules for constructor-level natural numbers.

2Note that this distinction between indexed and dependent types is notsabeaglated with the distinction between compile-
time and run-time data. We believe that, for a programming language, hgukiag is fundamentally a compile-time activity;
consequently, we view any data that can appear in types as compile-time-ta example, the dependent types in Epigram [37]
and RSP1 [55] are indexed by terms that, in our view, must nonethedes=eln as compile-time data.

*More preciselyslist (u:: NAT) is a non-uniform mutually- and inductively-defined family of types indkkg constructors
of kind NAT.



Under these ruleglus (s z) (s z) is indeed equal te (s z). The type system permits types and kinds to
be silently interchanged with their definitional equals, so if a term haslype (plus (s z) (s z)), it also
has typelist (s (s z)).

Unfortunately, there are some equal types that are not related by this nbtlefinitional equality. For
example, consider a client ofA.IST3 module implementing a function

map2App: Vu::NAT. Vv:NAT. (string X string — string) X slist (u) X slist(v) — slist(plusuv
p<ApPpP g g g 1Y

that appends the first list with the second, appends the second list withidheaffid then maps the given
function over these two results. The natural implementation would be

map2App = A i::NAT. A j::NAT. A (£,11,12).map2 (f, append 11 12 append 12 11)

but this program is not well typed. The call tmp2 requires the two lists to have the same length;
whenl1i:slist (i) and12:slist (j), the type ofappend gives that the first argument tap2 has type
list (plus i j) whereas the second has typest (plus j i). Doing thes-reduction resulting from the
definition ofplus gives

plusij = NATrec[.NAT|(4,j,i’r.s1)

plus ju = NATrec[..NAT|(j,i,i’.r.sr).

Unfortunately, these two constructors are not definitionally equal inalautus (intuitively, there are ng-
redices, and we only includérules forNATrec). One might hope to enrich definitional equality to include
facts like commutativity of addition, but enriching the general equality rulesniductive types to cover
such equalities amounts to asking the type checker to search for induciivés;pthus, it quickly becomes
undecidable [26].

2.4 Propositions and Proofs

We address the limitations of definitional equality with a notioppositional equalitydetermined by ex-
plicit proofs; proofs of propositional equality can be used to influeneeytping of a term. For example, we
give a well-typed version aiap2App using a proof thaplus is commutative. In our calculus, propositional
equality is represented as a kind; a proof is a constructor of that kince ptecisely, equality is represented
as the inductive family of kind8Qy(I, J); an inhabitant of a particular member of this family is a witness
to the equality olNATs I andJ. Inductive families can be used to represent any proposition that isteorela
among indices; for example, a kindy(I, J) could be used to represent the< v constraint in the type
of nth. Proofs of such propositions are just constructor-level progranhe same properties that make
definitional equality tractable—purity and termination—also make for a consisigin, so it is reasonable
to have the constructor level serve both purposes. This avoids dupticatid it would allow types to be
indexed by proofs. However, there is nothing fundamental behind tliside: one could choose to have
two syntactic classes for compile-time data, one for types and indices aridrgreofs.

For proofs of propositional equality to be useful, they must be able to imfli¢he typing of a term.
For example, a proof thaQy(i, j) should imply that a term with typgist (i) also, in some sense, has
typelist (j). This could be achieved by adapting the definitions of propositional equlatityhave been
studied in intensional Martinf type theory [40, 26F. In Martin-Lof type theory, propositional equality is
defined to be the least relation containing reflexivity, and the elimination formduality expresses the fact

“Intensional here refers to “intensional equality”. In type theory with isiemal equality, a proof must be explicitly used to
retype a term; in type theory with extensional equality, the mere provabilitymbposition induces a definitional equality, and
therefore an implicit retyping. Because it relies on provability, extensitypee theory is undecidable [26]. “Intensional” and
“extensional” are used in this sense because many equalities of theiertenisterms are only true by virtue of an inductive proof.
In most type theories, definitional equality only equates terms whose iotesrere the same; in extensional type theory, definitional
equality includes these extensional concepts.



that propositional equals are really definitionally equal. Using the elimination, fib would be possible to
prove lemmas such as symmetry, transitivity, and congrueE@g 1, J) impliesEQy(s I,s J)). To retype
terms, we could add a run-time elimination form for proofs with the following typirg:

A,u::NAT FA:=TYPE A FP:EQy(I,J) A;T HE:[I/u]A
A; T F subst[u.A](P,E):[J/ulA

This construct could transition directly Foat run-time: because all proofs are ultimately reflexivity, the type
given tosubst[u.A| (P, E) would always be definitionally equal to the typemftherefore, these semantics
would satisfy type preservation.

This notion of propositional equality allows proofs of equality to be usedtypesterms. However, it
privileges propositional equality, defined as the identity relation, as thepsoposition whose proofs can
be eliminated at run-time. In Appendix A, we sketch a simple example that shoyw®me might want
a run-time elimination form for other proofs. In this example, we track the umitseasure of scientific
guantities (as in Kennedy's languages [28] and Fortress [2]) usirigeisd Units—meters, seconds, the
product of two units, the inverse of a unit, and scalar factors—aresepted as constructors in an in-
dex domairU. An indexed typexfloat (u::U) represents floating-point numbers tagged with a unit; for
example,quantity[met| 4.0 represents four meters and has tyff@oat (met). Using these types, we
define unit-respecting arithmetic operations: addition requires two quantittae same unit; the unit of
the multiplication of two quantities is the product of their units.

Scientific units obey certain algebraic laws; for exampleloat (met - sec™!) should be equal to
ufloat (((met - sec™!) - sec™!) - sec)). These laws are not part of definitional equality for the index do-
main, so we axiomatize a notion of propositional equality that includes them. \rowmlike the definition
of equality as the least relation containing reflexivity, retyping based methmofs of equality requires a
run-time action: whem andv are propositionally equal unitsfloat (u) andufloat (v) do not always
classify the same terms. Though the retyping function is the identity on thelyimdef1loats (interchang-
ing algebraically equivalent units does not change the magnitude of thétgluahe coercion must package
the number with the new unit.

Next, we extend the example by defining a proposition relating two units of the damension. Two
units have the same dimension when they differ only by a factor of scalextmple, both meters and
feet have dimension length. Retyping based on this proposition requaksgsthe underlyinggloat by
the appropriate factor. To write this retyping function, it is necessary mopcbe with the proof that the
units have the same dimension at run-time: we case-analyze the proofdifyggxtract the factor of scale,
and then do the appropriate multiplication. Run-time computation with indices antspsaiseful in other
circumstances as well; for example, Brady [6] writes a structurally re@ucgicksort by induction on the
proofs of an accessibility relation.

To support examples like these, we have designed our calculus to alletvreircomputation with all
compile-time data. To study run-time elimination forms for proofs in our simple cacuwe axiomatize
propositional equality for natural numbers inductivedyin zz proves that is equal toz; eqn_ss(I, J,P)
proves that I is equal tos J whenP proves that is equal taJ. This definition is more like the propositions
on units of measure than axiomatizing equality as reflexivity is: it is inductivefindd; also, it has more
than one constructor, so writing coercions will require a case-analyiswore than one branch.

2.5 Run-time Checks Produce Proofs

Sometimes, desired index relationships will not be evident. For examplegeapmmer might want to call
map2 on two lists with potentially different lengths. One solution is to rewrite as mucheoptbgram as
necessary to make it evident that the lists have the same length. Howegagating this information will
sometimes be difficult or impossible—for example, the lists might be read frominmé. In these cases,
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Kinds
K = TYPE‘Hku1ZZK1.K2 ‘NAT|EQN(C1,CQ)

Type Constructors

A,B,C,I,J,P = C;— Cy|Cy X Ca|Cy+ Co|Vk, C|Ik, Clunit|void|nat I|list I
|u| Acu:K.C|Cy Co
|z|s I|NATrec[uK|(I,C,,i’.T.Cs)
|eqn_zz | eqn_ss(I,J,P) |EQyrec[i.j.p.K](C,Cpzyi..p-T.Css)

Terms
E = x|AxA.E|E; Ey|fixx:A.E
| (E1,Ep) |fst E|snd E
| inl[A] E|inr[A] E| case(E,x:A.Es, y:B.Ey)
| Au:K.E|E[C] | pack[A](C, E) | unpack([B](Es, u::K.x:(A u).Ep)
| () | abort[A] E
| zero | succ|I] E|natcase[u.A](E,E,, i’.n’.Eg)
|nil|cons[I] E; E; | listcase[u.A](E,E,, hd.i’ .t1.E;)
| NATcase[u.A|(I,E,, i’ .Es) |EQycase[i.j.p.A)(C,Ezz, i.5.p-Ess)

Contexts

A = |AjuzkK
r .

Figure 1: Syntax

the programmer should be able to write a run-time check that, if it is true, estblish desired property.
Then the programmer could check whether the two lists have the same lernbthapgaif they do, and
handle the other case appropriatellowever, a standard boolean-valued check such as

sameLength:V i:NAT.V j:NAT. list (i) x list (j) — bool

does not serve this purpose: this function returning true has no cimmegth the truth of the proposition
EQu(i, j). In our calculus, the truth of this proposition can be established by a ¢hatketurns a proof in
the cases where it is true. For example, a programmer could write a function

sameLength:V i:NAT.V j::NAT. list (i) x list (j) — (3 _=:EQu(d, j).unit) + unit

that, instead of just returningrue, creates a proof that the indices are equal. This proof could then He use
to retype thelist (j) to alist (i) before callingnap2.

In general, the programmer can write and use arbitrary run-time functicrigetk the truth of propo-
sitions. In Section 4, we use a proof-producing implementatiareefThan to write a version ohth that
works with an offset that is not necessarily in bounds, calling the statichéigled version ofith in the
case where the offset is in the correct range.

3 Syntax

We present the full syntax of our calculus in Figure 1. We [@s¢u|C, [C2/ulK, [C2/ulE, [Ca/u]A, [Co/u]T,

®An alternative would be to rewriteap2 with a less strict type, building in a case for lists of different lengths; thertrthi
of the proposition is irrelevant. However, this leads to unnecessarydiqaieation—the originahap2 does what the programmer
wanted when the lists do have the same length.



and [E,/xE for the meta-operations of capture-avoiding substitution. The innermbstituion applies
first, so[Cq/u][C1/v]|C IS [C2/u]([C1/V]C).

Much of the kind and constructor level has been summarized above: idexlypes, constructor-
level functions, the index domain of natural numbers, and the EijdcC,, C,) of proofs of equality of
constructors of kindiAT. However, because the proofs of equality introduce dependenciegsds &n
constructors, the usual function kind Bf, is replaced with a dependent function kind. We often abbreviate
TYPE asT, NAT asN, andll, u::K,.K asK, — K whenu is not free ink. We abbreviaté/k (\; u::K. C)
and3x (Ac u:K. C) as the more familia¥ u::K. C and3u::K. C. But for a few constructs, the term level is a
standard polymorphig-calculus. Because numbers and lists are given indexed types, ther@wtructors
embedded in the syntax fencc andcons. Additionally, NATcase andEQycase are term-level elimination
forms for the constructor-level natural numbers and proofs of theialég.

We defer presentation of the typing rules until after the examples—they atdrfaomiliar. One subtlety
is that thecase-like elimination forms folNAT andEQy(I, J) (both at the constructor level and at the term
level) treat these kinds as inductive families, so information about the seedinonstructor is propagated
into thecase branches using substitution [19, 31, 37, 24, 15]. In these rules, th#rszed constructor is
allowed to appear free in the result kind/type of each rule, and in eacktbthe appropriate constructor is
substituted. Consider the rule for the constructor-l&vatrec:

A;i:NAT FKkind A FI:NAT A FCp:fz/i]K A, i’ :NAT,r:[i//i]K b Co::[si//i]K
A + NATrec[i.K](I,Cy,i’.x.Co):: [I/i]K

In thez branch, the result constructor must only have Kinti]K. The same device is used in tA@rec
rule, wherel, J, and the proof itself can appear free in the result. We have also applietkthie to term-
level cases, where the situation is a bit different; for examplelirstcase, the list itself cannot appear in
the result type (since terms cannot appear in types); however, its indine§ hese rules will be crucial in
the examples below.

4 Examples

Our answers to the first and second design questions in Sections 2.2andi2de some examples of rep-
resenting indices as type constructors and using indices in types. We tbustiraanswers to the remaining
three questions in this section. We have implemented all of the following exangtes Twelf to run the
LF encoding of the semantics as a type checker and an interpreter; #¢nésaailable on the Web [1].

We implement the signature from the introduction, tweaked slightly to reflectttidat there are no
strings in our calculus:

signature NLIST =
sig
type bnat = Ju:NAT.nat (u)
type nlist (u::NAT)
val nil:nlist(z)
val cons:Vu:NAT.bnat x nlist (u) — nlist(su)
val append:Vu:NAT.Vv::NAT.nlist (u) X nlist (v) — nlist (plusuv)
val nth:Vu:NAT.Vv:NAT.V ::Lty(v,u).nlist (u) — bnat
val map2:Vu:NAT. (bnat X bnat — bnat) X nlist (u) X nlist (u) — nlist (u)
val map2App:Vu,v:NAT. (bnat X bnat — bnat) X nlist (u) x nlist (v) — nlist (plusuv)
end.

We instead work with lists whose elements ar@:NAT. nat (u)—"blurred” natural numbers whose sizes
are statically unknown. Just a&sin our calculus acts as a dependent function typects as a (weak)



dependent pair typ2.

4.1 Using Definitional Equality

Implementingnlist as thelist type of our calculuspil is built-in, andcons is just ai-abstraction over
the built-incons. Forappend, recall that the construct@rlus of kind NAT —y NAT —y NAT is defined to
be A\c i::NAT. A\ j::NAT.NATrec[u.NAT](4, j,i’.r.s r). We useplus to give a precise type faippend as

follows:

append:V i:NAT.V j:NAT.list (i) X list (j) — list(plusi j) =
fixr:V i:NAT.V ju:NAT.list (i) x list (j) — list (plus i j).
Ai,juN.Als:list (i) x list (j).
listcase[i’.list (plus i’ j)](fst 1ls,snd 1s,hd.i’.tl.cons|(plus i’ j)] hd (r[i’][j] (t1, snd 1s))).

Typing this term uses both definitional equality and the inductive-family typirg for 1istcase. For
example, the branch of theistcase for an empty first list must have type st (plus z j), but the result

of the branch has typeist (j); fortunately, these types are definitionally equal. Similarly, in ¢hes
branch, the result clearly has typéplus i’ j), and definitional equality shows that it has the desired type,
plus (s i’) j.

Implementingnap?2 is similar. One way to implement it is to case on each of the two lists and go into
an infinite loop (i.e., raise an exception) in the mismatched cases: becausadtierf can only be called
on lists of the same length, these cases will never occur. It is also possibielament the function in a
manifestly total manner, for example by casing on the first list and then usifesthntotalhead andtail
on the other. We take this approach here, as writiagd andtail is also illustrative. A first attempt at
tail falls flat:

tail:Vi:N.list(si) — listi =
AizN.A1l:list (s i).listcase[i’.list (1)](1,777,hd.i".t1.t1).

First, we have naist (i) to return in thenil branch; second, in theons branch, we have not established
thati’, the size of the:1 list exposed by pattern matching, is the same.a@ne way around these problems
is to define the truncated predecessor function for indices,

tpred :: NAT —y NAT = A, i:N.NATrec[ .NAT|(i,z,i’._.i")
and then write

tail’:Vi:N.1list (i) — list (tpredi) =
Ai:zN.A1l:list (i).listcase[i’.list (tpred i’)](1,nil, hd.i’.t1.t1).

Then it is simple to writecail:
tail:Vi:zN.list(si) — list (i) = Ai:N.tail[s i].

To write tail, we computed an index in the result type based on an input index. This dimésenot
work for head :Vi:N.1list (s i) — bnat, as the result type of this function does not even mention the

By “weak”, we mean that the existential has a closed-scope eliminationfather than projections. This is a simple way to
maintain the phase distinction: the first projection of an existential projeasstractor from a term; permitting this introduces
complications that we wish to avoid here.
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indexi, so we cannot vary the index in it. However, we can instead define adaygen(t just the indices in
it) by case analysis on a index. For example,

hdtp = A;i:NAT.NATrec[_.TYPE|(i,unit, _._.bnat)
head':Vi:N.list (i) — hdtpi = Aiu=N.A1:list (i).1listcase[i’hdtp i’|(1,(),hd._._.hd)
head:Vi:N.list (s i) — bnat = A i::N.head'[s i].

Again, note the uses of definitional equality: when applied 1d &t (s I), S-reduction shows thatead’

has the desired type.
We can now defineap2 as follows:’

map2 : all i:N. (bnat * bnat -> bnat) * list(i) * list(i) -> lis t(i) =
fix r : all i::N. (bnat * bnat -> bnat) * list(i) * list(i) -> lis t(i).
Fn i:N. fn x: (bnat * bnat -> bnat) * list(i) * list(i).
(listcasel[i'.list(i’) -> list(i")]
(fst (snd x),
fn Ist:list(z). Ist,
hd.i'.tl.
fn 12:list(s 1').
cons((fst x) (hd, head[i'] 12),
i

rfi'](fst X, (t, tailliT 12)))))
(snd (snd x)).

Aside from illustrating uses of definitional equality and the inductive-familyrigpules, the examples
in this section fead andtail) show a technique for writing, in a manifestly total form, functions that
are only defined for some of the elements of an inductive family. The techrsgthis: write an auxiliary
function with a type that is defined by case analysis (or, more generallgtiod) on the indices of the type
family; in the irrelevant cases, define the type to be something trivial; théimedde original function to
be the restriction of this auxiliary function to the desired indices. At the terel,leme could instead fill in
the irrelevant cases with an infinite loop. However, the technique deddnigre will also be applicable at
the constructor level, where one does not have the luxury of gereenaision.

4.2 Using Propositions and Proofs

4.2.1 Proving Simple Theorems

Our kind and constructor level is a first-order intuitionistic logic: depehélerctions allow quantification

over individuals such aBAT; because we have included propositions in the same syntactic category as
individuals, implication is definable using quantification. This mechanism carséé to establish some
properties of indices. For example, a simple induction over natural nurabewss that equality is reflexive:

eqn.refl:: Il i:NAT.EQy(i,i) = Aci:NAT.NATrec[u.EQy(u,u)](i,eqn zz,i’.r.eqn ss(i’,i’,r)).
The following proof of symmetry is an example of induction over proofs:

eqn_sym:: [Ty i::NAT. Tl j::NAT.EQu(i, j) —x EQu(j,1) =
Ac 1::NAT. Ac j=:NAT. \¢ p::EQu(i, j). EQyrec[i’.j"._.EQn(j’,1)](p, eqn_zz,i’.j’. _.r.eqn_ss(j’, i/, r)).

When inducting over the proof, there is no need to contradict the “offedfial” cases as one would have to
do in a proof by induction over the two numbers.

’In the example code, we sometimes @ige  for A, pi forI, fn for A, Fnfor A, all andexists for ¥ and3, and* for
x. Additionally, we use the shorthagt:K2 for iterated binding forms, spi i,j::K2.K ispi i:K2.pi j:K2.K

11



Transitivity is a little trickier. One way to do it is as follows:

eqn trans:: Il i:NAT. Il j::NAT. EQy(i, j) —y Ok k:NAT. EQy(j, k) —x EQ(i, k) =
Ac i, juN. Ac p12::EQy(d, j)-
EQyrec[i’.j’. M k:N.EQy(j’, k) —x EQu(i’, k)]
(p12,
Ac kN A p23::EQy(d, j). p23,
i’.j.p'.r.
Acki:N.NATrec[k .EQy(s j', k') —x EQu(s i’, k)]
(k
Ac p23::EQu(s j’,z). eqn_trans contra i’ j’ p23,
k'._ A\ p23:EQu(s j’,s k). eqn_ss(i’,k’,r ¥’ (eqn_pp j’ k' p23)))).

By induction on the proof oEQy(i, j), we create a proof that all equal toj’ are equal tai’. In the
eqn_zz case this is easy, sindé and j’ are bothz. In the inductive case, we case analkzgroducing in
each case a proof thatifis equal tas j' thenitis equal ta i’. Whenk is z, the assumption is contradictory
(zero and successor are never equal). Whisrs k/, we can use the outer inductive hypothesin a proof
of EQy(j’, k') extracted using the lemmsgn_pp, and theneqn_ss gives the result. The lemmasnn_pp
andeqn trans_contra are defined below. This proof requires more sophisticated uses of thetiionl
principles than the previous lemmas. For example, abstractingkanezach branch of thEQyrec ensures
that a strong enough inductive hypothesis is available: we appeabiothek’ bound in theNATrec, so
assumingQy(j’, k) —x EQu(i’, k) for a fixedk bound outside the loop is insufficient. Bindipg3 in each
branch of thelATrec propagates index information: in tlxebranch, we give it typ&Qy(s j’, z), whereas
in the successor branch we give it tyf& (s j’, s ¥'). This is a well-known technique [24, 15].

To discharge our first lemma, we need to prove

eqn pp:: ki, juN.EQy(s i,s j) —x EQu(d, j).
The kind of this constructor is similar to the typetafil; we use the same device:

eqn pp’ 1M i, j::N.EQy(i, j) —x EQu(tpred i,tpred j) =
Ae i, juN. Ao p::EQu(d, j). EQurec[i’.j’.p/.EQu(tpred i, tpred j')|(p, eqn zz,i’.j’.p’._.p/)
eqn pp:: ki, juN.EQy(s i,s j) —x EQu(i,j) = Aci,j:N.eqnpp’ (s i) (s j).

Now, we must discharge the other assumption by writing

eqn_trans_contra: Il j,i::N.EQy(s j,z) —k EQu(s i, 2z).

The hypothesis, that zero is equal to the successor of some numbainlgeseems contradictory, but how
can we exploit this contradiction within the language? If we had a Kibtb with the usual false elim
abort.[K] C, we could first demonstrate the contradiction and thenalset. to derive this particular
consequence. Would it be possible to write this function? Its type would be

eqn_trans_contra’ :: Il j::N.EQy(s j,z) —yx VOID.

To implement it, we would need to define a kind by cases on indices (this is similag tygh ofhead’,
which was also defined by cases on indices):

K(z,z) = UNIT

K(s_,s_) = UNIT
K(z,s.) = VOID
K(s_,z) = VOID.

12



Then,Ac j::N. A\¢ p::EQyu(s j, z). EQurec[().i".3".0](,p, ().1".3".p.0)K(i', j') proves the result, since the re-
sult kind isUNIT in all the cases we must consider. Unfortunately, our language dobsavethe operators
needed to define thisat the kind level (kind-leveh andNATrec); we may add them in future work. How-
ever, we can still salvage the idea by definingitidicesof the result kind by cases on the input. While not
as general (this trick does not allow the outer “shape” of the kind to varsyiffices for this lemma:

eqn_trans_contra: Il j,i::N.EQy(s j,z) —x EQu(s i,2) =
e j, iu:N. Ao pi:EQu(s j,z). EQurec[i’.j'._.EQu(f i i’ j',2)](p, eqn-zz,i’.j’._._.eqn_zz)

wheref is
Ac i,u,viN.NATrec[.NAT](u, z, ._.NATrec[_.NAT|(v,s i, _._.z)).

That is, when the second two arguments match, the valdei®t, so we are provin®Qy(z,z) in each
branch; when we substitute the indicegpft yields what we needed.
4.2.2 Retyping Based on Equality Proofs

Now, we return to th@ap2App example. Our purported solution was

map2App : Vu::NAT. V v::NAT. (bnat X bnat — bnat) x list (u) X list (v) — bnat (plusuv) =
A i:NAT. A j::NAT. A (£,11,12).map2 (f, append 11 12, append 12 11).

The necessary index equalities are

plusij = NATrec[..NAT|(i,j,i'.r.sr)
plus ju = NATrec[.NAT|(j,i,i’.r.sT).

We observed that these two constructors are not definitionally equaéveowusing the above machinery,
it is easy to prove that these two terms are equal:

plus_rhz :: pi i:N. EQN(plus i z, i) =
fn/c i:N.
NATrec [u.EQN(plus u z, u)]
(i, eqn_zz, i.reqn_ss(plus i' z, ', 1))

plus_rhs :: pi i,j::N. EQN(plus i (s j), s (plus i j)) =

fn/c i,j::N.
NATrec[u.EQN(plus u (s j), s (plus u }))]
@i, eqn-refl (s j), i.r.egn_ss(plus i’ (s j), s (plus i’ J), r )
plus_commutes :: pi i,j::N. EQN(plus i j, plus j i) =
fn/c i,j::N.
NATrec[u.EQN(plus u j, plus j u)]
(u,

egn_sym (plus j z) (plus z j) (plus-rhz j),
i.r.
egn_trans (s (plus i’ j)
(s (plus j 1))
(egn_ss (plus i’ j, plus j i, 1))
(plus j (s 1))
(eqn_sym (plus j (s ")
(s (plus j 1)
(s (plus_rhs j i))).
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To finish offmap2App, we must be able to exploitEfly(plus i j,plus j i) toretype dist (plus i j)
toalist (plus j i). Such a retyping mechanism can be defined using the term-level eliminatios for
proofs. For example,

retype/list : all i,j::N. all _:EQN(, j). list(i) -> list( D)=
fix rzall i,jzN. all _:EQN(, j). list(i) -> list(j).
Fn i,jzN. Fn p:EQN(,)).
EQNcaseli’.j._. list(i’) -> list(j’)]
(p,
fn x:list(z). x,
inj.p.
fn Ist:list(s 7).
cons[j’]
(head[i’] Ist)
(rPI°1P7] (tail[i] Ist))).

Then, we can use this retyping function as follows:

map2App : all i,j::N. (bnat * bnat -> bnat)
* list(i) * list())
-> list(plus i j) =
Fn ij:N. fn x: (bnat * bnat -> bnat) * list(i) * list()).
map2[plus i j]
(fst x,
(append[i][j] (fst (snd x), snd (snd x)),
retypel/list[plus | i][plus i j]
[plus_commutes | i]
(append[j]il(snd (snd x), fst (snd x))))).

More generally, we can write a retyping function that works for any typexed by a natural number:

retype/NAT : all ij:N.all _EQN(,)j).all c:N->T.(c i) > (c ) =
fix r : all ij:N.all _:EQN(,).all c:NAT->TYPE.(c i) - > (c ).
Fn i,jzN. Fn _:EQN(,)).
EQNcaseli’j._. all c:NAT->TYPE.(c i") -> (c j)]

(.

Fn c:N->T. fn x:(c 2). X,

Fn c:N->T. fn x:(c (s i").

ri0p[fn/c ni:N. ¢ (s n)] x).

This is possible because the inductive definition of equality that we haee gitimately amounts to reflex-
ivity.

4.2.3 Restricting the Domain of a Function

As another example, we writeth as a total function that always returns an element of the list (not an
option, asin SML). To do sagth requires a proof that the offset into the list is in bounds. If the equivalen
operation were included as primitive, it could be implemented without a run-timedsocheck [61].

In the type ofath given in the signature above, the constrairt u is represented by requiring a proof
of the propositiorLty(v,u). This proposition could be treated analogoushE@g(I, J), with inhabitants
1t zs I andlt_ss I JP and elimination forms giving induction. However, rather than assuming a built-in
propositionLty(I, J), we define less-than notationally B8y(J, plus I (s K)) for somek. If our calcu-
lus were extended witk-kinds, we could do this properly; here, we imitate it by having the tetm
parametrized separately Byand the proof of equality:
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nth : all u,v,w:N. all _::EQN(u, plus v (s w)).list(u) -> bna t =

fix r : all u,v,w:N. all _EQN(u, plus v (s w)).list(u) -> bn at.
Fn uv,w:N. Fn p:EQN(u, plus v (s w)).
fn Ist:list(u).
(NATcase[v'. all _::EQN(u, plus v’ (s w)). bnat]
(v,

Fn p::EQN(u, (s w)).
head[w] (retype/list[u][(s W)][p] Ist),
V. Fn pEQN(u, plus (s V') (s w)).
rlplus v’ (s w)][V][w][(egn-refl (plus V' (s w)))]
taillplus v’ (s w)]
(retypellist[u][plus (s V) (s w)][p] Ist)))
[p].

In this example, polymorphism over proof kinds plays the same role as tisetssdrts [62] (and, in later
presentations, guards and asserts [9]) in DML. Additionally, this versfaith recursively analyzes the
constructor-level number at run-time, illustrating run-time computation over indices. Other calculi with
indexed types [62, 9, 48] require passtiith a term-levehat (v) for case-analysis.

4.3 Using Run-time Checks To Produce Proofs

In some cases, the size of a list will not be known statically (for example, ihtimber is the result of
run-time input). In these cases, run-time checks can be used to geneafe or example, we can write
lessThan as follows:

lessThan : all v,u:N. (exists w:N. exists _:EQN(u, plus v (s w)).unit) + unit =
fix r.
Fn v,u:N.
NATcase[v'. (exists w:N. exists _:EQN(u, plus v’ (s w)).u nit) + unit]
(v,
NATcase[u'. (exists w:N. exists _:EQN(u’,s w).unit) + un it]
(u,
inr[exists w::N. exists
u’. inlfunit]
(pack[fn/c w:N. exists _:EQN(s u’, s w)]
u,
pack[fn/c _:EQN(s u’, s u’). unit]
(eqn-refl (s u’), (),

ZEQN(z, s w).unit] (),

V.
NATcase[u'. (exists w:N.
exists _EQN(U’, plus (s V) (s w)).unit)
+ unit]
(u,
inr[(exists w::N.
exists _:EQN(z, plus (s V') (s w)).unit)]
0,
case(r[v][u’],
exl : (exists wiN. exists _:EQN(u’, plus V' (s w)).unit).
inlfunit]
(unpack[(exists w::N.
exists _:EQN(s u’, plus (s V') (s w)).unit)]
(ex1,
wiN.
ex2:(fn/fc w::N.exists _:EQN(U, plus V' (s w)).unit)
u.
unpack[(exists w::N.
exists _EQN(s u’, plus (s V') (s w)).
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unit)]
(ex2,
p::EQN(U, plus v’ (s w)).
. (fn/fc _:EQN(U’, plus v’ (s w)). unit)
p.
pack[fn/c w::N.
exists _EQN(s u’, plus (s V) (s w)).

unit]
(w,
pack[fn/c _EQN(s u’, plus (s V) (s w)).unit]
(eqn_ss(u’,
plus v' (s w),
p),

_ 0M)),
_unit.
inr[(exists w::N.
exists _:EQN(s u’, plus (s V) (s w)).unit)] ())))-

If our calculus hadt and sum kinds, it would be possible to instead write this check as a static functio

whose value is case-analyzed at runtime (using the analogugofse for sum kinds).
UsinglessThan, it is easy to write a version afth that works for any offset:

nth/dyn-check : all u::N. bnat * list(u) -> (bnat + unit) =
Fn u:N. fn x : bnat * list(u).
unpack[bnat+unit]
(fst x,
ViNAT. _:(fn/fc viN.nat(v)) v.
case(lessThan[v][u],
y : (exists w:N. exists _:EQN(u, plus v (s w)). unit).

inlfunit]
(unpack[bnat]

v,

w:iN.
e:(fn/c w::N.

(exists _::EQN(u, plus v (s w)). unit))
w.

unpack[bnat]

(e,
p::EQN(u, plus v (s w)).
_: (fn/c _:EQN(u, plus v (s w)). unit)

p.
nth[u][vi[wi[p] (snd x)))),
z:unit. inr[bnat] ())).

4.4 Discussion

We now take stock of these examples. The basic approach seems dasonthat the code was mostly
easy to write. Sometimes, we wrote (up to type annotations) the same code thatdehave written
without the more precise typesppend, map2). It is interesting to note that these cases were also ones that
made good use of definitional equality—this supports our hypothesis tHatling basic computation in
definitional equality is worthwhile. That said, the examples suggest vaaieraues for improvement:

¢ In some examples (e.gap2App), it was necessary to write proofs and retyping functions to establish
index equalities that were beyond definitional equality; these incurretimentime and space costs.
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There are two opportunities for improvement here: first, one could hogléetoate the run-time costs
of proofs; second, one could hope to reduce the extent to which tigegononer has to write proofs.

Along the first line, Brady describes techniques [6] for the compilatiompigiEam that reduce the time
and space costs of dependent programming. For example, one of mgteehidentifies duplicate
data in inductive families: if the same index appears more than once, onlyopgeneed be passed
at run-time. Another identifies redundant data tags—fost (n), either knowing that the index is
z or s or knowing that the list imil or cons is sufficient. A third technique identifies inductive
families whose indices completely determine their inhabitants—EQw(I, J) is an example—and
prevents constructing and passing such families at run-time. These teebisiesem applicable to our
language: like Epigram, our constructor level is a total language with induietimilies; some of the
techniques do not depend on totality and could consequently be applied teroulevel as well.
Alternatively, we could potentially use proof irrelevance [43] to collapsel& that are not used at
run-time. ldeally, we would like to support fully general indexed types withaining the asymptotic
time and space complexity of programs.

The second opportunity, reducing the need for writing proofs, seems amobitious. One approach
might be to reintroduce constraint solvers as entities definable in the lamguag

¢ In the presentation above, we have used a module syntax to structureathples. In a language
like ours, we anticipate that the module system will be used not only to structoséme code, but
also to develop libraries of index domains and the operations on and [@oodt them. The recent
techniques for advanced module systems [23, 29, 52, 17, 16] presainthehphase distinction is
realized with constructors as compile-time data and terms as run-time data. sBemaucalculus
meets this requirement, it should be relatively straightforward to extendalaulas with such a
module system.

e Insome examples (e.@qn_trans), it was necessary to be clever in handling case branches where the
indices are contradictory. Epigram’s pattern matching notation [36] askelsdhis problem by gener-
ating refutations of contradictory cases automatically in many situations. Beqaitern matching
is elaborated to elimination rules like those in this paper, it seems likely that we vablegto adapt
their techniques to our setting. However, employing their techniques mayeegio add kind-level
operators and polymorphism.

¢ As these examples illustrate, the syntax of our language requires manyntypiations. It would be
desirable to ease this burden as part of building a practical externaldgagn top of our calculus.
It may be possible to make some progress using established techniquessshiclirectional type
checking as in Pierce and Turner [45], type and term inference aseif [A4] and Epigram [37], or
type inference for GADTs [42, 51, 46].

5 Semantics

In this section, we present the static and dynamic semantics of our calcdldésanss its meta-theory.

5.1 Static Semantics

Our static semantics comprises the following judgements, which are defined hyléls below.
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A FKkind Kind formation
A F K = K'kind Definitional equality of kinds

A FC:K Kinding of constructors
AFC=C:uK Definitional equality of constructors
A;T'HE:A Typing

Both definitional equality judgements are congruent equivalence relatimfmitional equality of kinds is
simply an extension of the definitional equality of the constructors embeddbdrim Definitional equality
of constructors include8 and extensionality rules fak, u::K,. K andj rules forNAT andEQy(I, J). Since
reflexivity of constructor equality is left as an admissible rule, assumptioris should be thought of as
shorthand for both :: X andu = u :: K (see the ruleleg-cn-var  below).

In the rules, we assume and maintain the invariant that all types and kindscorttext are well-formed
and all variables in the context are distinct. In particular, there is an impligteddition on binding forms
that the bound variable is neither bound in the context nor free in any kitygbe in it (we cam-rename it
if itis).

A FKykind A,u::K; FKykind

A T TYPEKing Vkd-type A F I, u:Ky. Ky kind wi-kd-pi
AFI:N AFJ:N
- wW-kd- f-kd-eqn
A F NAT king Vi-kd-nat A+ EQy(T,J) kind W q
A F K, = Ky kind
A+ Ko = K; kind deq-kd-sym A+ K; = Ko kind A+ Ky = K3 kind deq-kd-trans

A F K, = Ko kind A F K, = Kzkind

AF Ky =K kind A,u:K; F Ky = K,ykind

-kd- deq-kd-pi
A F TYPE = TYPEkind deq-kd-type A F TuwiKy. Ko = TusK). Ky kind q P
AFI=TIaN AFJ=J:N
-kd- deg-kd-egn
A NAT = NATKkina 000kd-nat A b EQy(L,J) = EQu(I’,J ) kind oo
AFC:K AFK=Kkind
ofkd-de -
AFCuK d AunK A FusK ofkd-var
A FCi:TYPE A F Cy::TYPE A FCiuTYPE A F Cy::TYPE
A FC; — C,: TYPE ofkd-arrow A F C; x Co TYPE ofkd-prod
A FCy:TYPE A FCy::TYPE
A I Cy + Cy:: TYPE ofkd-sum
A FK2kind A F C::K2 —y TYPE A FK2kind A F C::K2 —y TYPE .
A F Vgs C:: TYPE ofid-all A F g5 C:: TYPE ofkd-exists
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ofkd-unit ofkd-void

A Funit.:: TYPE A + void, :: TYPE
A fn;f ; }\fj:\fl;PE ofkd-nat A FA lli_sf:::II\:I:A"l?YPE ofkd-list
LN GGy ATGIBEI ALtk oo,
o ofkdz SN e

A;i:NAT FKkind A FI:NAT A FCpufz/iJK Aji/ wNAT,r:[i’/i]JK F Cou[si//i]K

A F NATrec[iK|(I,Cy,i/.r.Co):: [I/i]K ofkd-natrec

ofkd-eqgn-ss

A FI:NAT A FJuNAT A FC:EQ(I,J)
ofkd-eqn-zz
A F eqn zz::EQy(z,z) A+ eqn_ss(I,J,P)::EQu(s I,s J)

AyicN juN p:EQu(i,j) F Kkind
A F C:EQy(I,J)
A Cy::[eqn_zz/p|[z/]][z/i]K
AyicN juNpaEQu(i, j),r=K F Cyleqn-ss(di, j,p)/pl[s j/jl[s i/i]K
A + EQyrec[i.j.p.K](C,Cq,1i.j.p.x.Ca):: [C/pP][I/F][T/i]K

ofkd-eqnrec

A l_ Cl = CQZZK

A+ Cg = CiilK A+ Ci = CQZZK A+ CQ = C321K
AFC =Cy:K deg-cn-sym AFC, =C3::K deg-kd-trans
AFC=C:K AFK=Kkind deg-cn-deq-kd deg-cn-var

AFC=cCuK AuzK, A Fu=u:K

AFC =C{:TYPE AF Cy = C,::TYPE
AFC —Cy=C)— C,:TYPE

deg-cn-arrow

AFC =C{=TYPE AF Cy, = CyuTYP

E
deqg-cn-prod
A F Cy x Cy = C) x Cy:: TYPE aenp

AFC =C{=TYPE AF Cy = C,:TYPE

deg-cn-sum
A} Cy+Cy = C) +C,::TYPE g

AF K2 =K2'kind A F C=C :K2—y TYPE
A F VKQ C = VKQI C’:: TYPE

deg-cn-all

A F K2 =K2'kind AF C=C ::K2—y TYPE

-cn-exi
At Fgo C = Fgor €' TYPE deg-cn-exists
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deg-cn-void

deg-cn-unit
A F unit. = unit.:: TYPE q A F void. = void.:: TYPE

A FTI=T:NAT
A F listI = list I’ :: TYPE

AFTI=T1:NAT
A F nat I = nat I’::TYPE

deqg-cn-nat deg-cn-list

A F Ky = Kikind AjunKy H C=C':K
A F AcuiKy. C = AcunKy. C i uiKy. K

deg-cn-fn

AFC =CiulyuiK,. K AF Cy = ChuK

2
A'F CiCy = Cf Gy [Co/ulK deg-cn-app

AjuzKy, HC =CluK AF C2=C2:uK deg-cn-app-beta
A F (AcuiKqe.Cq) Co = [C5/ulC) i1 [Co/u]K g PP

A FKykind A FCullyuiKe. K A FC uMzuiKe. K AuiKy F Cu=C'uzkK

deg-cn-fn-ext
AFC=C:OiuK,. K q

I’::NAT
s I’ ::NAT

AFI
Ak sI

T deqg-cn-z deg-cn-s

Al z=z:NA

A,u::NAT F K = K'kind
AF I =T :NAT
AF C, = C::[z/u]K
Ayi"aNyra[if/uK F Cs = CLi[sI'/uK
A F NATrec[uK]|(I,C,,i".r.Cs) = NATrec[u.K'|(I’,CL,i’".r.CL) :: [I/u]

m deg-cn-natrec

A,u:zNFKkind AFC, =CLuz/uKk Ai’:Nr:[i'/u]K FCs::[s I'/ulK
A F NATrec[uX](z,C,,i’.x.C5) = CL::[z/u]K

deg-cn-natrec-beta-z

A,u:N F K = K'kind
AF I =T1:NAT
AtF C, = C,:[z/uK

Ayi’"aNyra[if/uK F Cs = CLuf[si/uK
A+ NATrec[uK]|(s I,C,,i’'.r.Cs) = [NATrec[uK'|(I’,CL,i".x.CL)/x]|[T'/i]CL :: [s I/u]

m deg-cn-natrec-beta-s

deg-cn-eqg-zz

A+ eqn.zz = eqn zz::EQy(z, z)

AFI=Tu:NAT AFJ=Ju:NAT AFP=P:EQIJ)
A eqn_ss(I,J,P) = eqn ss(I’,J,P’) = EQu(s I,s J)

deg-cn-eg-ss

AyicN,juNpaEQe(i,j) F K = K'kind
AFC=C:EQT,I)
A F G, = O, = [oquza/pllz/3l2/A]K
AyicN,juNpuEQy(i,j),r=K F Css = Clg::[ean-ss(i, j,p)/p]ls j/ills i/i]K

AT EQurecij.pKI(C,Co i pr.Cor) = EQurecli j pK|(C.CL, 1.ipr.CL ) [C/pl[d ][ ax Jcden-eanrec
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A;ixzN juNp:EQy(i,j) FXkind
A+ C, = Cl,::[eqn_zz/pl[z/j][z/1]K
AjiaN, joN p:EQ(d,j =K FCg: . i, 3, /] i/ilK
il gl pi (i, ]),r i [eqn_ss(i, j P)/P][SJ/J'HS 1/1] deq-cn-eqnrec-beta-zz
A+ EQurec[i.j.p.K]|(C,C,z,1.j.p.x.Css) = Co, :: [eqn_zz/pl[z/j][z/1]K

deg-cn-egnrec-beta-ss

A;icN joaNp:EQe(i,j) F K = K kind
A F C,; = Cl, :[eanzz/p|[z/]][z/1i]K
AjicN juN poEQu(i, j),r K b Css = Cig::[eqn-ss(i, ], p)/pl[s j/3][s i/i]K
A+ P =P :EQ(IJ)
A J=J:NAT
AR I =T :NAT
A + EQurec[i.j.pK](eqn_ss(I,J,P),Cysz,1.3.p.7.Cos) = [EQurec[i.j.p.X'](P,Cs,,1.3.p.x.Cle)/T][P'/P][3'/3][T/1]Css 2 [C/P)[I/3][T/1]K

A;T"FE:A AF A= A:TYPE
A;T FE: A

oftp-deq

oftp-var
A;T,x:AT Fx:A P

AFATYPE A;T,x:A, FE:A

A;T FAxiAy).E:Ay — A oftp-fn

AFA:TYPE A;T',x:AFE:A ofto-fix
A;T Ffixx:A.E:A P

A,F FE:A]_XAQ
A; T FfstE: A

oftp-fst

AFAGTYPE A; T FE:A
A, I+ 1n1[A2}EA1+A2

oftp-inl

A;T FE Ay — A A;T FEy:A

A;TFE:Aj+Ay A;T,x:A FE:A A; T, x0:A) FEy:A

A, '+ CaSG(E,X1:A1.E1,X22A2.E2) :A

A FVgA:TYPE AjuzK; ' HE:A
A;T FAuwK E: Vg (AcusK. A)

oftp-Fn

A,F I_El EQZA Oftp-app
A;T FE:Ay A;T FEy:A
’ 1t 22 oftp-pair
A;Fl_(E]JEZ):AlXAQ
A;FFESAixAQ
A;T'FsndE:A, oftp-snd
AFAGTYPE A;T FE: A .
- oftp-inr
A; T Finr[A)E: Ay + Ay
oftp-case
A:T FE:VY%B A FC:K
’ Y € oftp-App

A; T HE[C]:BC

AFC:K A;T'FE:AC A FA:K—y TYPE

A; T F pack[A](C,E): Ik A

oftp-pack

A;T FE; :Ju:K.A AjuzK;I',x:AubFEy;:B A FB:TYPE

A; T F unpack[B](Es,u:K.x:(Au).Ey): B

m oftp-empty-tuple

‘uni

oftp-zero
A; T F zero:nat (z) P

oftp-unpack

A; T FE:void
A; T I abort[A]E: A

oftp-abort

A; T F E:nat (I)

A; T F succ[I]E:nat (s I)

oftp-succ



A,i:NAT FAtype A;T FE:nat(I)
A;T FE;:[z/i]A
A,i’:NAT; T',n’:nat (i’) F Ey:[si’/i]A
- —— — oftp-natcase
A  natcase[i.A|(E,E;, i’ .n".Ey) :[I/i]A

_ A;T FE;:Jn:N.nat(n) A;T FEy:1list(I)
oftp-nil - oftp-cons
A; T F cons[I]E; Ey:list (s I)

A; T Fnil:list(z)

A,i:NAT FAtype A;T FE:list(I) A;T FE;:[z/i]A
A,i’::NAT; T',hd: Ju::N.nat (u),tl:nat (i) F Ep:[s i’/i]A i
- - > - oftp-listcase
A; T  listcase[i.A|(E,E;,hd.t1.i".Ey): [I/i]A

AFI:zNAT A;T FEs:[z/i]A A,i’=NAT; T FE;:[si’/i]A
oftp-NATcase

A,i::NAT + A type
A; T NATcase[i.4](I,Eq,i'E,): [I/i]A

AyiaN joN p:EQy(i,j) H A TYPE
A FC:EQy(I,J)
A; T FE;:[eqn-zz/plz/]][z/i]A
AyicN juNpaEQe(i,j); T FEy:[eqn-ss(i, j,p)/plls j/5l[s 1/i]A
oftp-EQNcase
A - EQycase[i.j.p.A](C,Eq,1i.j.p.Ea) 1 [C/p][I/]][I/1]A P-EQ

5.2 Dynamic Semantics
The dynamic semantics are mostly standard. The elimination forms for cons¢ruetp on a notion of
weak head reduction to reduce the scrutinized constructor to an introddtio.

¢ M ¢
hr
c; 25 ¢
% whr-app-1 } whr-app-beta
C; Cy 5 Ci Co (AcuK2.C) C2 WAL [c2/u]C
whr _,
I—1 whr-natrec-num

NATrec[uK](I,C,, i’ .1.Co) 25 NATrec[wK](I/, C,, i’ .1.Cs)

whr-natrec-beta-z

whr

NATrec[u.K|(z,C,,i".r.Cs) — C,

whr-natrec-beta-s

NATrec[uK|(s I,C,,i'.r.Co) % [NATrec[uK](I,C,, i'.7.Cs)/x][I/1']Cs

whr _,
P—P whr-egnrec-proof

EQurec[i.j.p.K|(P, Caz, i.3.p.T.Cos) % EQyrec(i.j.p.K|(P’, Cazs i.5.p.T.Cs)
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whr-eqgnrec-beta-zz

EQurec[i.j.p.K|(eqn_zz,Cypz,1i.5.p.7.Css) why Cyz

whr-eqnrec-beta-ss

EQurec[i.j.p.K|(eqn_ss(I,J,P),C,;, 1i.j.p.x.Css) mhy [EQurec[i.j.pK]|(P,Czz, i.j.p.x.Css)/x][P/P][I/F][I/1]Css

The value judgement is defined by a subsyntax (thal iss1ue is derivable ifE is also produced by the
following grammar). In the grammar, the metavariablill refers to arbitrary terms.

V = AxAE||(Vy,Vy)|inl[A] V|inr[A] V| A u:K.E|pack[A](C,V) | ()
| zero | succ[I] V|nil| cons[I] V; V,

Reference to a term produced Bys shorthand for an extra premisefralue.

Ey — E, Ep — E)
————— step-app-1 —————— step-app-2
El EQHE1 E2 Vl EQ'—>V1 E2
step-app-beta step-fix
(Ax:A.E) Vy — [Vo/x]E p-app fixx:A.E [fixx:A.E/x|E P
step-pair- step-pair-
(E1,E2) — (E{, Eo) (Vi,E2) — (V4,E)
/
— B2 E  step-fst step-fst-beta
fst E— fst E fst (Vq, V) — V4
!
— E=E  step-snd step-snd-beta
snd E — snd E snd (V4,Vy) — Vg
/ /
E—E step-inl E—E step-inr

inl[A] E — inl[A] E/ inr[A] E — inr[A] E/
E—FE

7 step-case
case(E,x:A.E;,y:B.E;) — case(E',x:A.E;, y:B.E;)

step-case-beta-|
case(inl[V],x:A.E1,y:B.E;) — [V/X|E; P

step-case-beta-r
case(inr|V],,x:A.E;,y:B.E;) — [V/y|E, P

!/

= ™ step-st-
EC] —Ejq] Do aeP (AwK.E) C — [C/ulE

El — E
step-st-app-beta

E— E

_pack
pack[A](C.E) r pack[A](C.B) S cPPac

El = Ell
unpack[B](E;, u::K.x:(A u).Ey) — unpack[B](E;, u::K.x:(A u).Ey)

step-unpack
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unpack[B](pack[;] (C, V), wk o (hy w).Ey) s [V/x][C/ulE, P UnPack-beta

E— E
succ[I]E — succ[I]E

E— E
abort[A] E — abort|[A] E/

step-abort

n step-succ

E—FE
natcase[i.A](E,Ey,i’.n".Ey) — natcase[i.A|(E/,Eq, i’ .0 .Ey)

step-natcase

step-natcase-beta-z
natcase[i.A](zero,Es,i'.n Ey) — E4 P

step-natcase-beta-s
natcase[i.A](succ[I] V,E;,i’.n".Ey) — [V/n][I/i']E, .

E1*—>Eg_

cons[I| E; E; — cons[I] E} E,

EQHE;

cons[I] V; Ey — cons[I] Vi E}

step-cons-1

step-cons-2

E—FE
listcase[i.A](E,Eq,h.i.t1.Ey) — listcase[i.A](E,Ey,h.i.t1.Ey)

step-listcase

; 5 - - step-listcase-beta-nil
listcase[i.A](nil,Es,h.i.t1.Ey) — E4

step-listcase-beta-cons
listcase[i.A](cons[I] V4 Vo, Eq h.it.Ey) — [Vo/t][I/1i][Vy/h]E, P

whr

c—Cc
NATcase[i.A](C,E,,i".Ey) — NATcase[i.A](C',Eq, i’ .Ey)

step-NATcase

- ~ step-NATcase-beta-z
NATcase[i.A](z,Eq,1i".Ep) — Eg

step-NATcase-beta-s
NATcase[i.A](s I,Eq, i’ .Ep) +— [I/i]Es P

whr

c—C

step-EQNcase
EQucase[i.j.p.A](C,Eq,i.j.p.E2) — EQycase[i.j.p.A](C',Eq,i.j.p.Ea) P-EQ

- — step-EQNcase-beta-zz
EQycase[i.j.p.A](eqn_zz,E;,1.j.p.Ey) — Eg

step-EQNcase-beta-ss
EQucaseli.j.p.A](eqn_ss(I,J,P),Eq,i.j.p.E2) — [P/p][J/3][1/i]Ex P-EQ

24



5.3 Discussion of the Meta-theory

We have proved that our calculus is type safe and that it admits decidaleclygeking. Because our
language has a complex notion of definitional equality, a direct proofaxjress and preservation for the
declarative rules presented above runs into trouble in a couple of placke step-app-beta case of
preservation, inversions giv& + A, — A = By — B::TYPE, and from this it is necessary to conclude
that A F A = B:: TYPE. In the presence of transitivity of constructor equaltieq-cn-trans ) and
(-reduction for constructor-level functiond€qg-cn-app-beta ), this entailment is not obvious. The
canonical forms lemmas necessary for progress also depend oniagalgfinitional equality, as the type
conversion ruledftp-deq ) is not syntax-directed: for example, depending on what definitionzéléy

is, any value—not just pairs—could have typex A,.

To circumvent these difficulties, we have specified an independenttalgéar formulation of equality
and typing and shown that it is equivalent to the declarative version. yiéids not only the lemmas
necessary for type safety, but also an effective algorithm for typekihg. Indeed, because the algorithmic
rules are well-moded, Twelf’s logic programming operational semanticsuratinem effectively. Since our
kind and constructor level is an extension of the types and objects ofilRat surprising that we were able
to follow the algorithmic equality technique pioneered by Harper and Pferj@bigather closely. Their
work gives an algorithm for decidingn-equality of functions; in the present work, we have extended their
technique to an algorithm for decidingonly equality forNAT andEQy(I, J).

We have formalized much of the meta-theory of our language using Tweltfs-theorem checker. Un-
fortunately, Twelf's meta-theorem apparatus does not currently stlpgacal relations directly; thus, while
we have formalized many of the lemmas leading up to it, the logical relations argfionemmpleteness
of algorithmic equality is on paper. Porting lemmas between paper and Tweltifseiby theadequacy
theorems of the LF methodology, which establish a bijection between objectdgagyntax/judgements
and canonical terms of particular types in LF. The full meta-theory is pteden Appendix B.

6 Related Work

In the following section, we compare other languages’ mechanisms fotrdgfecomputing with, and rea-
soning about indices with ours; we do not discuss other novel featurieseresting applications of these
existing languages here. Many of these languages automate reasooiuigratices, which we leave to
future work.

Constructive Type Theory The concept of a dependent type is rooted in constructive type theefinyn-
dational framework for constructive mathematics that makes explicit the datignal content of proofs.
The principal influences on the present work are deBruijn’s AUTOMAIroject [39], which called atten-
tion to the central role of dependent types for formalized reasoningjMadf’'s seminal work on construc-
tive type theory [33, 34, 35], which presented the first compreherngpe theory adequate for constructive
mathematics; the NuPRL Project [12], which built the first implementation of a thased interactive
proof development system for type theory; and the Calculus of Cotistingd14, 30], which explored an
impredicative type theory extending higher-order logic.

Epigram Altenkirch, McBride, and McKinna’s Epigram [36, 37, 3] is an impressattempt to integrate
dependent types into a practical programming language. Their desigsed blmsely on the foundational
constructive type theories (notably Luo’'s UTT framework [31]). Rathan employing a phase distinction,
Epigram insists that all well-typed programs terminate and disallows computaétieets (though the

authors speculate on using a subsyntax or a monad to allow them [3]). 3Jikteirce on termination is

25



sharply at odds with most other functional languages, which permit umdsalirecursion. Our approach,
in contrast, is designed at the outset to accommodate non-termination ancefitfoes. The Epigram

group has developed several techniques for practical dependegrapiming. For example, McBride’s
techniques [36] elaborate a concise pattern matching notation [13] to elimitfiatios like those we have

used in this paper. In Section 4.4, we described Brady’s compilation teawmitat mitigate the run-time
costs of dependent programming [6]. We may be able to apply these teebnaaur language.

Cayenne Augustsson’s Cayenne [4] is another recent proposal to integrassadent types into a practical
programming language. Like Epigram, Cayenne permits types to contain gfbpme, imposing no phase
distinction. However, because Cayenne allows general recursibpndlother effects) and, moreover, allows
non-terminating terms to appear in types, type checking is undecidable.appeoach is simply to ensure
soundness of any equational reasoning (so, for example, a dinengaression cannot be deemed equal to a
convergent expression) and permit the type checker to fail in casa®weuations cannot be resolved after
a certain number of reductions. Such an approach to type checkingeaampbedictable: the programmer
has to guess when an equality will be evident in few enough steps. Regtticircompile-time data to a
language where equality is decidable avoids this problem.

MML - Harper and Morissett'a £ [24] supports intensional type analysis using two elimination forms for
the constructors of kin@YPE: the constructor-levelyperec and the term-levetypecase. OurNATrec,
EQyrec, NATcase, andEQycase are analogues of these constructs for other kinds. For example, dedinin
type by induction on indices is analogous to the useBypkrec in Harper and Morissett’s work. Unlike
AML “our calculus does not include an elimination form for the KItgE itself.

LX Thetypecase construct ofAM~ allows run-time analysis of a language’s types. However, when a
compiler is translating af‘“ program into an intermediate language that supports only analysis of its own
types, the program must be rewritten to instead case-analyze the typedmktimediate language. Unfor-
tunately, it is often difficult and sometimes impossible to rewrite the program im aunanner. LX [15]
was designed to support run-time analysis of the original source laadgypgs in the compiler’s interme-
diate languages. In the paper, inductive kinds are used to define ehaould call) the index domain of
source language types; these inductive kinds could also be used te uefax domains such a4T. LX
supports run-time case analysis of constructor-level sums via a cansatler ccase; our NATcase and
EQycase are analogous. However, whereas our constructor-level is deptyndyped, LX's constructor
level is simply-typed, so one cannot use inductive families of kinds (famgte, ouEQy (I, J)) to represent
propositions.

DML, Zenger's Indexed Types, and Extensions In DML [62, 56] and some extensions thereof (for
example, Xi's ATS [59] extends DML with some imperative [65] and objea@trated [7] features; Dunfield
and Pfenning combine DML-style dependent types wiilasort refinements [18]), equality of indices
is decided by a constraint solver. As we discussed in Section 1, this dossaie to programmer-defined
index domains without some additional mechanism. Zenger’s indexed tyBgarfs similar to DML—a
language designer fixes the index domains and a decision procedtinerfar

Programming with Proofs in ATS Chen and Xi have recently extended ATS to address some of the lim-
itations of the DML-style framework [9]. On the surface, their work appeeery similar to ours: their
indices are represented as compile-time data; one reasons about irgiliesampile-time inductive fam-
ilies as propositions inhabited by explicit proofs. However, there ardfigignt differences between their
proposal and ours. First, their calculus does not admit index-levetiturs or elimination forms for indices

26



and proofs (e.g., oWATrec andEQyrec). Instead, a programmer must use the proposition mechanism
to represent these functions relationally. For example, where in ourlgaleuprogrammer defines the
index-level functionplus by induction, in theirs he would inductively define a propositians (i, j, k)

that relates two natural numbers to their sum. Instead of theltyge(plus i j), he would havaist (k)

such thaPlus (i, j, k) is true. Second, their calculus does not admit run-time computation with indides a
proofs.

Our resulting languages are quite different, and there are tradeetff®bn our approaches. On the one
hand, because Chen and Xi's calculus does not allow inductive fusatiomdices, there is less need for a
mechanism for retyping terms based on proofs of index equality. For dgatohandle the commutativity
of addition example in their calculus, it suffices to give the proof Hais (i, j, k) impliesPlus (j, i,k);
the actual index in the typkist (k) remains unchanged. Also, because their calculus does not allow run-
time computation with static data, it is possible to give a complete erasure of indidgs@ofs.

On the other hand, the constructor- and term-level elimination forms for imdicd proofs in our cal-
culus are general and useful:

e By representing index-level operations as inductive functions whos®utational behavior is part
of definitional equality, our calculus automates some reasoning about sndidereover, unlike a
constraint solver treating certain index operations specijéigguality for induction operators scales
to any index domain defined using an inductive kind. In contrast, defimimctibns relationally using
the proposition mechanism forces a programmer to explicitly prove thesditeguaFor example,
contrast our implementation append in Section 4 with Chen and Xi'soncat in their Figure 11:
in ours, there is no need for proofs, as the index reasoning is handiegl\eby definitional equality.
There is a syntactic cost to manipulating proofs, especially because gavkmexistential packages
of proofs and terms requires let-binding each intermediate step of the cdioputa

e The constructor-level elimination operators for indices and proofs allor@grammer to define a type
by induction on indices or proofs. Doing so is useful, for example, fptating index information to
write functions in a manifestly total manner (recall the definitiomedd above). Because Chen and
Xi's calculus does not allow elimination forms, defining a type by induction oitéxlis impossible.

¢ Run-time elimination forms allow proofs to be used to retype terms. While the lacldekilevel
elimination forms in Chen and Xi's calculus obviates many uses of retypinge# dot eliminate them
all. When functions are represented relationally, one must sometimes peapdeate evidence that
they are in fact functions. For example, gielus (i, j, k) andPlus (i, j, k'), it requires a separate
proof to know thatk andk’ are actually equal. Unfortunately, because Chen and Xi's calculus does
not allow run-time elimination forms for proofs, it is unclear how such a pooofd be used to retype
alist (k) to alist (k’). One solution might be to build in a notion of propositional equality whose
only proof is reflexivity, as described in Section 2; because reflexnggds no run-time action, the
elimination construct for this proof might still be compatible erasing all compile-tiata.d

e Run-time computation over indices prevents a a programmer from having &mthath constructor-
level and term-level copies of the same data through the program. For kExamg@hen and Xi's
calculusnth must be abstracted over botli&T and anat (i), whereas in our calculus the function
can be written by case-analyzing th&T directly. Altenkirch et al. [3] described this problem while
comparing indexed types to Epigram’s dependent types; our calculws ¢hat it is not a fundamental
limitation of types indexed by compile-time data.

Moreover, as we mentioned in Section 4.4, there is hope for supporting toestructs with reasonable
run-time costs without adhering to a complete erasure of indices.
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Another contrast between our calculus and Chen and Xi's presentdtiiiSois that much of their
language does not seem to be formally defined and studied. First, whilauseeindex-level functions
whose equality must at least includdor their examples to type check, their core calculus does not include
them. Second, they do not show how to compile programmer-defined indeail® to their calculus—
though, since they do not provide elimination constructs for indices, itldhmupossible to represent them
simply as additional constants. Most significantly, they do not show howgpatithe inductive families
that they use as propositions. While their examples seem to require typisgfoukease that propagate
index information, their core calculus does not tresade. Similarly, it is unclear how their calculus ensures
exhaustiveness of pattern matching in proof-level functions.

Explicit proofs of type equality in Haskell Several papers have explored applications of using values as
proofs of type equality in Haskell. This idea was pioneered by Weirich $83, who defined the type of
proofs that type\ equals types as

EQrype(A,B) = V£:TYPE — TYPE.f A — f B.

In Haskell, onlyEQrype (A, A) is inhabited by a terminating term, and then the only member is the identity
function. To cast a term using a proof, the programmer instantiates the pglgiméunction and applies it.
This notion of an equality proof has been used to implement a typeesateand typedynamic [53, 54,

10, 5] as well as polytypic programming [10]. However, it is problematic inwegys. First and foremost,
Haskell is not a consistent logic—the purported proof might not terminateanIML-like language, we
would have to contend with “proofs” that employ other effects such as matatid I/0. Second, since the
only terminating proof is the identity function, there is no observable effemtecuting the casts at run-time;
but since there is no way to guarantee that a proof terminates, it must b&etyping in our framework
has a run-time action because the “equalities” witnessed by the coercionsnoidie the identity.

First-class phantom types and guarded recursive datatypesFirst-class phantom types [11] build the
sort of type equality reasoning enabled by the explicit Haskell proofsiorexd above into the type checker.

In particular, when specifying data constructors ite@aa declaration, the programmer can list type equali-
ties that are necessary for an application of that constructor to be wellktyghen a term that was created
with such a constructor isase-analyzed, the truth of its equations is assumed in typing the corresponding
case arm; the type system uses congruence closure to determine whethertheeddacts imply that a
necessary equation is true. Xi et al. [60] proposed a similar construatdgd recursive datatypes, as an
extension to SML. Because some method for deciding equations is bakeddrstgstem, it suffers from the
limitations of constraint-solver-based approaches described in Section 1.

Qmega Pasalic and Sheard’s languagenega [41, 48] extends Haskell with first-class phantom types,
programmer-defined type-level functions, and extensible kinds. Asricalaulus, but in contrast to ATS,
Qmega supports index-level functions directly rather than relationally. Mesvevhile the authors discuss
the need for restrictions [48{)mega currently does not enforce the totality and termination of type-level
functions; consequently, type checking is undecidable [49]. We hesteiated our type-level functions to
primitive recursion to avoid this problem. Along the same lines, it is unclear ifkieds must be inductive

or if arbitrary recursive kinds are allowed; in the latter case, similar probleith termination of type
checking will arise.

Propositions about indices are handled in several wa§2raga, but none of them are quite satisfactory.
First, index and type equality iffmega are built into the type checker using first-class phantom types.
This mechanism is of course limited by whatever decision procedure is builthattanguage. Because
QQmega supports index-level functions, the need for additional propositemualities that can be used to
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retype terms is more acute than in ATS; indeed, the authors observe tHerpraith commutativity of
addition [49] but do not propose a solution. As a supplemental mechanis®erins possible to prove
equalities inductively by reflecting indices as run-time terms (using a fornmgketon type); however, this
approach admits non-terminating “proofs”. In contrast, our calculup@tp propositional equality as an
indexedkind, and thus its proofs are necessarily normalizing. Finally, a recent éoteios2mega suggests
a mechanism whereby the phantom type decision procedure can be tolat tarbirary indexed datygpes
as propositions [50]. Using this mechanism, a programmer can write a terhpltegegam whose type is
then treated as a new proof rule by the internal decision proceduree\téoyit is unclear how the totality of
such programs is ascertained and under what circumstances the deciiedure will successfully use a
new rule. In our calculus, proofs inhabit a compile-time level that is restrictéerminating functions and
exhaustive case-analyses; additionally, proofs are fully explicit aeretbre predictable.

Finally, @mega does not allow computation over indices at run-time. ConsequenthyA&S,functions
must be abstracted over both compile-time and run-time copies of their arguf@entsth must take both
aNAT and anat (1)).

RSP1 RSP1 [55] supports both traditional dependent types (types containrgkeofehe syntactic class
of run-time programs) and imperative features (in particular, hash tafildses this by defining syntactic
criteria for those terms that can appear in types. Whereas our calcalimsethe phase distinction as a
separation between type constructors on the one hand and terms on th&8#g erects a phase distinc-
tion between type constructors and pure on terms on the one hand actfuetferms on the other. Both
of these formulations prevent effectful terms from appearing in typd$ath admit run-time computation
with indices. However, our style of presenting the phase distinction is bguokeaner: our typeg — B
andVu::K. B are collapsed into RSP1's sindlex:A. B, but the distinction between the two is still present in
their two typing rules for function application, which distinguish between apptios to pure and impure
arguments. Additionally, as we noted in Section 4.4, our presentation is cotepatib the existing tech-
nigues for advanced module systems, which assume that the phase distsat@lized as a split between
type constructors and terms.

In addition to this difference, RSP1 suffers from some of the of the saoidgms as other approaches.
First, because proofs are represented as arbitrary terms of indatagpes, they may be effectful or non-
terminating. Second, because RSP1 does not allow functions to appepesn #yprogrammer must adopt
a relational approach to index functions that is similar to Chen and Xi's [#];stime criticisms of the
relational approach apply. Moreover, because index terms are atgouted with at run-time, RSP1 does
not provide a complete erasure of indices and proofs; this was the Ideertiefit derived from representing
functions as relations in Chen and Xi's work.

7 Conclusion

In this report, we have presented a language with types indexed by thedodwin of natural numbers
and rigorously developed its meta-theory. Our calculus maintains a phégetiis between compile-time
data and run-time data; it treats index equalities using explicit proofs. Mutiredanguage design is a
consequence of the following decisions:

1. Indices are type constructors in &p-like calculus. Index operations are represented directly as
index-level functions that can be written using the inductive elimination foonmtlices.

2. Inductive families of types are indexed by this compile-time data.
3. Bn-equality functions and@-equality for inductive families of kinds are built into a notion of defini-
tional equality that automates some reasoning about indices.
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4. When these equalities are insufficient, a programmer can use expliofs moequality to establish
properties of indices. Run-time elimination forms allow a programmer to write imyerthat retype
a term based on an equality proof. Other propositions could be repedsenother inductive families
of kinds.

Instead of providing a run-time elimination form only for the identity propositiea, have chosen
to permit run-time computation with all compile-time inductive families. This allows Eugrto be
written by analyzing indices and proofs of arbitrary propositions; famneple, in Section 4, we wrote
nth by analyzing a compile-time number; in Appendix A, we sketch how run-time elimimé&bions
for proofs allow retyping terms based on coarser notions of equality haacic identity.

5. When there is insufficient evidence for a proposition, run-time cheaide used to create proofs.

Our calculus enables programming in the style of Dependent ML [62] oukzgpes with GADTSs [48] using
the standard constructs of dependent type theory. When indicesrasumors, dependent function and
pair types are simply standard universal and existential polymorphism.n\pttoefs are explicit, DML's
subset sorts (and, in later presentations, guard and assert typgastaquantification over proofs. The
constraints generated by DML's pattern matching are accounted for th&rsggandard elimination rules for
inductive families of types.

There is much left to be done:

¢ In Section 4.4, we discussed several opportunities for improvemengstegbby the examples.

e We must extend our language to support arbitrary inductive families okéwléypes and kinds,
following Dybjer’s inductive families [19] and their implementation in Epigram][37

e The standard restriction on mutable state—that the data &f @annot change type—does not make
sense in our setting: Bist (6) ref is not very interesting, as it can only be mutated to lists with the
same length. Xi [58], Westbrook et al. [55], and Mandlebaum et al. j8&vide starting points for
circumventing this restriction.
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A Units of Measure and Run-time Elimination Forms for Proofs

In this section, we sketch an approach for tracking units of measure is {gpén Kennedy’s languages [28]
and Fortress [2]). This example should be programmable in a languageragifammer-defined index do-
mains and propositions. In particular, it illustrates why such a languaggdstgpport run-time elimination
forms for proofs.

First, we define an index domain representing units:

kind U = met|sec|Us - Uy |U™!|scalar (i:: NAT).

The possible units are meters, seconds, the product of two units, thedrskea unit, or a dimensionless
scalar. Then, we define a type of floating-point numbers indexed by. units

type ufloat (u::U) = quantity[u::U] float:ufloat (u).

Then, for examplequantity[met] 4.0 represents four meters and has tyf@oat met. Now, we define
operations that obey unit constraints; for example, addition is only defiimephantities with the same unit,
and the unit of a multiplication is the product of the units:

uplus:Vu:U.ufloat u X ufloat u — ufloat (u)
umult :Vu,v::U.ufloat u X ufloat v — ufloat (u- v).

These functions can be implemented by extracting the underfiingts, performing the equivalent op-
eration, and then packaging the result with the correct unit. If we then mgideat abstract, exposing a
way to create aifloat from afloat and the primitive arithmetic operation but not a way to project out
the underlyingfloat, then the programmer would have no choice but toufdeats in a unit-respecting
manner (as defined by the primitives).

So far, we have said nothing about the algebraic properties of units. iFlpoblematic: for ex-
ample, a programmer cannot add a velocity of tyfi@oat (met - sec™?) with another velocity, of type
ufloat (met - sec™!-sec™! - sec), computed from an acceleration and a time. To allow such computa-
tion, we can define a notion of propositional equality that includes thesbraigdaws:

kind EQy(u::U,v::U) = reflu:EQy(u,u)
| symuv (p:EQu(u,v))::EQy(v,u)
| transuvw(pl2:EQu(u,v)) (p23::EQy(v,w)) :: EQu(u,w)
| assocuvw:EQu(u-(v-w),(u-v)- w)
| ident u::EQu(scalar(sz)-u,u)
| ! scalar (s z))
| commuv:EQy(u-v,v-u)

| multCongul vlu2v2 (pu::EQy(ul,u2)) (pv:EQu(vl,v2)) :: EQy(ul - v1,u2 - v2)
| invConguv (p::EQu(u,v))::EQu(u~t,v1).

invu:EQu(u-u”
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We could then prov&Qy(met - sec™ !, met - sec™! - sec™! - sec) as follows:

pl::EQy(met - sec™! met - sec™?) = refl (met-sec™?)

p2::EQy(sec - sec™!, scalar(s z)) = invsec

p3::EQu(scalar(s z) sec™ ! sec) = sym (trans (comm sec™ ! sec) p2)

p4 ::EQu(met - sec™! - scalar(s z),met - sec ' -sec !-sec) = multCongplp3

p5::EQu(scalar(s z) (met - sec™!),met - sec™ ) = 1ident (met-sec™?)

p6 :: EQu(met - sec™ !, ((met - sec™!) - scalar(s z))) = trans (symp5) (comm (scalar(s z)) (met - sec™?))
p7 ::EQy(met - sec™ !, met - sec™! - sec™! - sec) = trans p6 p4.

But, if we wish to calluplus on terms with these types, the proof is not enough: we need to use the proof
to retype one of the terms. Unfortunately, it would not be type safe to adoph-time elimination form

like subst in Section 2 that has no run-time action—wH&dy(u, v) is true,ufloat (u) andufloat (v)

do not always classify the same terms. The retypin@&@(u, v) must have a run-time action that coerces
aufloat (u) to aufloat (v). In this case, the equalities that we have postulated are not the identity on
ufloat (u), but they are the identity on the underlyin@oat: replacing algebraically equal units does not
change the magnitude of a quantity. Consequently, the correct prooh attilois case does not depend on
how the particular equality proof was constructed:

retype/U::Vu,v::U.V _:EQu(u, v). ufloat(u) — ufloat(v)
retype/Uuv _ (quantity[u] x) = quantity[v]x

This notion of equality captures the algebraic properties of units. Howesxemight want a yet coarser
“equality” that relates all units of the same dimension. For example, both metgfeet represent quan-
tities of the same dimension, length, but they differ by a factor of scale; in #isis,ave could define feet
notationally as3048 - 10000~! - met. We can define a proposition that relates units of the same dimension:

kind SAMEDIM (u::U,v::U) = sameUnituv (p: EQy(u,v))::SAMEDIM (u,v)
| scaleuvn (p::EQy(u,scalar(n)-v)):: SAMEDIM (u,v).

However, as NASA so infamously discovered [27], the coercionseiyping based on this proposition
are not the identity on the quantity. A correct coercion must act differdotigifferent proofs; it can be
defined using run-time analysis of proofs:

NATtoFloat:Vn:N. float
NATtoFloat z = 0.0
NATtoFloat (s i) = 1.0 + (NATtoFloat i)

scaleFactor:Vn:N.ufloat((scalar n) ') = quantity[(scalar n) !](NATtoFloat n)
P n:N. T vi:U. EQy((scalar n) ! - ((scalarn) - v),v) = ...

retype/SAMEDIM:Vu, v::U.V _::SAMEDIM(u, v). ufloat(u) — ufloat(v)
retype/SAMEDIM u v (sameUnit uvp) = retype/Ulu][v][p]
retype/SAMEDIMu v (scaleuvnp) =
fnx : ufloat(u) =>
let ¥’ : ufloat(scalar(n)-v) = retype/Ufu|[scalar(n) - v][p] x in
let x” : ufloat((scalarn)™!-((scalarn)-v)) = umult|[(scalar n) !][(scalarn)-v] (scaleFactor(n]) x’ in
retype/U [(scalarn)~! - ((scalarn) - v)|[v][Pnv] x”

In addition to case-analyzing the proof, this example requires run-timesasalyan index to compute the
scale factof

8We definedSAMEDIM with two constructors for illustrative purposes, but jesaile would have sufficed because one can
always applyident to showEQy(scalar(s z) - u,u). With this alternate definition, the retyping function would have only one
case, but it would still be necessary to deconstruct the given proatriacethe scale factor and the proof of unit equality.
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In this example, we have defined propositions representing coarsealeqee relations than syntactic
identity, and we have shown how the actions of these equivalences-timeiterms can be defined by case-
analyzing indices and proof at run-time. Of course, it is still the prograrsmesponsibility to ensure that
the proposition adequately represents the notion of equality that he hasheaddsand that the coercions
correctly witness that equality. However, once he has done so, theapmoger can work at the level of
abstraction afforded by the proposition. In this example, instead of martaining together arbitrary
arithmetic operations to change units, the programmer will give the proof thairits are equivalent, the
type system will check that the proof correctly mediates the units in questidrthan the correct coercions
for that proof can be applied.

B Full Meta-theory
B.1 Outline

In this section, we prove type safety and decidability of type checking éoddtlarative presentation of our
language in Section 5. To do so, we first give an equivalent algorithmicuiation of the language; then,
we prove type safety and decidability of type checking for the algorithmimébation. The algorithm is
based on Harper and Pfenning’s treatment of LF [25], and our dewedot follows theirs closely. In this
method, definitional equality is decided by two judgemefits; ¢ <= ¢':Xand¥ F C «—— C =K.
The first judgement is kind-directed; the second is structural. The kiedtdd part relies on the weak
head reduction judgement presented in Section 5 to reduce constructeeakdead normal form. Both
judgements operate over kinds with dependencies erased; this greatly ssmhidwing transitivity of the
algorithm.

In the present work, we have extended this technique to an algorithneéididg 5-only equality for
NAT andEQy(I, J). There was one trick required in adapting the algorithm to inductive kinks jddgement
¥ + ¢ <= ¢’ :Kis kind-directed, so there must be only one rule for each kind (exemptingethk head
reduction rules). For example, at function kinds, the algorithm appliessxteality of functions. It is easy
to see that this works for kinds like functions or pairs with only one introdactiosm; however, it was
not immediately obvious how to apply it to kinds liKAT that have constructors of more than one shape.
Our solution is as follows: the single kind-directed equality ¥aT simply refers to a mutually-defined
judgement,¥ + C <=y C/, that handles the structural comparison of the various intro forms of kind
NAT. That is, equality at KindlAT is defined by a separate “horizontal” judgement that complements usual
“vertical” induction over kinds that defines the algorithm. The logical relatiargument used to show
completeness of the algorithm must account for this fact. In our proofptfieal relations in general are
defined by induction over the classifying kind; in addition, the logical reladitdT is itself inductively
defined by a separate rule induction. This technigue is an adaption of ¢timg stormalization proofs of
Godel's T (see Girard et al. for a presentation [21]) to our setting.

The proof is organized as follows. In Section B.2, we establish some basiede about the declarative
presentation. In Section B.3, we give an algorithmic version of equality howt hat it is equivalent the
declarative specification of definitional equality. In Section B.4, we dgeréghmic versions of kinding and
typing and show them equivalent to the declarative definitions. In Sectmmi prove type safety. Finally,
in Section B.6, we prove decidability of type checking. All Twelf proofserehced here are available on
the Web [1].

B.2 Basic Properties of the Declarative System

We tacitly assume that all contexts appearing in the premises of the followingthestatements are well-
formed according to the definition in Section 5.
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THEOREM B.1: ADEQUACY. These lemmas refer to the LF signature that is available in the companion
Twelf code [1]. An encoding function é@mpositionalf it commutes with substitution.

1. There are compositional bijections between the following.

Syntactic Category Canonical LF Terms of Type in LF contexts

Kwith FVinuy...u, kd uj:cn...

cwithFVinuy...u, cn uj:cn...
Ewith FVinuy...up,x1.. .35 tm uj:cn...Xq:tm..

We use™- 7 and - to refer to the functions witnessing any of these bijections.

2. There are bijections between the following.

Derivations of

Canon. LF Terms of Type

in LF contexts

u;::Ky... FKkind

wf kd "K™

uy :cn, duy :ofkdu; "K; ', dequ;:deq-cnu; u; "Ky ' ...

u; 2Ky... F K = K kind

deq kd "K™ "K'

uy :cn, duy :ofkduy "Ky ', dequs:deqcnu;u; "Ky ' ...

u; Ky... FCK

ofkd "CT TK™

u; :cn, duy :ofkdu; "K; ', dequs:deqcnu;u; "Ky ' ...

uKy... FC=C:K

deq.cn "CT "¢ K™

uy :cn, duy :ofkduy Ky ', dequs:deq.cnu;u; "Ky ' ...

u; :Ki;x5:4; FE:A

oftp "ETTA™

u; :cn, du; :ofkdu; "K; ', dequ; :deq-cnu; u; "K; ',
X :tm, dxj:oftp xj TA;T

c ™ o FVinu,...

whr "¢ r¢/m

u; :cn...

whr .
C—*C FVinu;...

whrrt "C¢? T¢/7

u;:cn...

Evalue, FVinu;... x;...

value "E'

u;:Cn...,X;:tm...

E—E,FVinu;... x;...

step "E'E”

up:Cn...,xXq:tm...

Proof. The encodings we use follow standard techniques [22]: the syntaxdiemgsouse higher-order
abstract syntax, representing object-language variables with metaatpmgariables; the derivations and
judgements are encoded using the judgements-as-types methodologyg@amity, the proofs of adequacy
are also by standard means; Harper, Honsell, and Plotkin present gamples [22]. O

LEMMA B.2: SUBSTITUTION INTO A SUBSTITUTION.

If v is not free inC, then[Cy /u][Cy/v|C is [[C2/u]Cy /v][C2/ulC. Under the same restriction§, /u][Cy /v]K
is [[C2/u]Cy /v][C2/u]K. Note: when used in this sense,“is” means syntactic identity up-tonversion.

Proof. By mutual induction on the structure ofandk. In some cases, we replace equals for equals until
the two sides are identical; then the equality is given by reflexivity. Readiadpétkward would show how

to construct a derivation of equality.

e To show:

[C2/u][C1/v]uis [[C2/u]C1/v][C/u]u.

The LHS reduces t¢C,/u]u becauser andv are different and then t0, becausex andu are the
same. The RHS reduces[{6,/u]C;/v|C, becausa andu are the same and thendg because is

not free inCs.

e To show:

[C2/u][C1/v]vis [[C2/u]Cs /v][Ca/u]v.

The LHS reduces t{f, /u|C; because andv are the same; the RHS reducef{® /u|C; /v]v because
u andv are different and then ti@, /u|C; becauser andv are the same.
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e To show:
[C2/u][C1/v]wis [[C2/u|Cs /v][Ca/ulw.

Both sides reduce t@ because the variables are different.

e To show:
[Co/u][Cy/v]unit is [[Co/u|Cy/v][Co/ulunit.

Both sides reduce tenit because substitution into it is a no-op.

e To show:
[C2/u][C1/v](A — B) is [[C2/u]Cs /v][C2/u](A — B).

By induction,
[C2/u][C1/v]A IS [[C2/u]Cy/v][C2/ulA
[C2/ul[C1/v]Bis [[C2/u]Cy/v][Ca/ulB.

By congruence of identity,
[C2/u][C1/v]A — [C2/u][Cy1/v]B S [[C2/u]Cy/v][C2/u]A — [[C2/u]Cy/v][C2/u]B
Then the definition of substitution fer- allows the substitution to be pulled outside on each side.

e To show:
[Ca/u][Cy/v](Ac w::K. C) iS [[C2/ulCy /v][Ca/u](Ac w:K. C).

By induction,
[C2/u][C1/v]K is [[C2/u]Cy/v][C2/ulK
[C2/ul[C1/v]Cis [[C2/u]Cy/v][Ca/u]C.

In order to apply the definition of substitution far we must know that is distinct fromu andv and
thatw is not free in any of the substituted terms. Fortunately, this can be achigueddnaming the
bound variabler to something fresh.

¢ All other cases are similar to the previous three. When there are no sebsiqms, substitution is a
no-op. Otherwise, apply induction, congruence, and the definitionbstsution; in binding forms,
a-renaming the bound variable to something fresh ensures that the defiritidreapplied.

O
LEMMA B.3: WEAKENING. If A, A’ - JandA,u::K, A’ is well-formed them\, u:: K, A’ - J.

Proof. By induction over the given derivation. Alternatively, this statement ofkgamg is true in LF [25],
so this follows from HEOREMB. 1. O

LEMMA B.4: SUBSTITUTION.
1. IfAju=K A"+ JandA + C::KthenA, [C/u]A" + [C/u]d.
2. If AjuzK AT F JandA + C::KthenA, [C/u]A/; [C/u]l F [C/u]d.
3. FA;T,x:A T F JandA +E:AthenA; T, TV + [E/x]J.

Proof. By induction over the given derivation. Alternatively, this statement o§stution is true in LF [25],
so this follows from HEOREMB. 1. O
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Using this lemma, we can show that the context in its reaulfc, /u]A’, is well-formed.
LEMMA B.5: REFLEXIVITY OF DEFINITIONAL EQUALITY.

1. fA FKkindthenA F K = Kkind.
2. fA FC:KthenA F C = C::K.
Proof. In Twelf. O

Two inversion lemmas are necessary for functionality; fortunately, theyegroven first:
LEMMA B.6: INVERIONS, PART 1.

1. FA FsI:KthenA FI:K andA - K = Kkind.
2. IfA FsI:NATthenA F I::NAT.
Proof. In Twelf. O

LEMMA B.7: FUNCTIONALITY OF SUBSTITUTION INTO IDENTICALS. AssumeA + Cy = Cj::Ko,
A Cy::Ky, A FCL Ky, @andA + Ky kind.

1. If A u::Ky, A’ F Kkind thenA, [Co/u]A" F [Co/ulK = [C)/ulKkind.
2. If Aju:Ky, A’ F C::KthenA, [Co/u]A’ F [Co/u]C = [C,/u]C:: [Co/ulK.

Proof. The proof proceeds by a simple mutual induction on the given derivatlmriseven stating this
theorem in Twelf requires some tricks because of the substitution into thextomteus, it is on paper for
now. In the cases we claim are analogous to a previous case, obsarsaliktitution into the constructors
and kind in question is always defined analogously to substitution into those prekiious case.

1. The proof is by induction on the derivation &f u :: K5, A’ - K kind.

e Case fomwf-kd-type . By the definition of substitutioriC /u]TYPE is TYPE, anddeq-kd-type
gives thatA, [C;/u]A’ - TYPE = TYPEkind (the context in the conclusion of the rule is arbi-
trary).

e Case fowf-kd-nat . Analogous to the above, except we aeg-kd-nat
e Case for

Dl DZ
A,uiKy, A’ FKekind A,u:Ky, A',v:iKe F K¢ kind

wif-kd-pi
A,u::Ky, A F I u::Ke. K¢ kind P!

A, [Co/ul(A’,v::Ks) F [Co/ulKe = [C,/u]Ki kind. The the definition of substitution gives
thatA, [Co/u] A’ v:: [Co/ulKs F [Co/ulKy = [Ch/u]K: kind, so bydeqg-kd-pi  and the defi-
nition of substitution we get the result.

e Case fowf-kd-eqn . By the IH,A, [Co/u]A" F [Ca/u]I = [C)/u]I::[Co/u]NAT and
A, [Cy/u]A" F [Cy/u]d = [Ch/u]J:: [Co/u]NAT. [Co/u]NAT iSNAT, SO we can applgeq-kd-eqn ;
then, the definition of substitution gives the result.

By the IH onDy, A, [Co/u]A" = [Ca/ulKe = [C,/u]Ke kind. By the IH onDy,
]

2. The proof is by induction on the derivation Af u:: Ko, A’ F C:K.
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e Case for
A,uiKy, A FC:K A,u:Ky, A’ - K = K'kind

AusKy, AN FCuK
By the IH, A [Co/u]A” F [Ca/u]C = [C,/u]C::[Cy/u]K. By substitution (EMMA B.4)
applied to the second premise derivatidn, [Co/u]A’  [Ca/u]K = [Ca/u]K'kind. Then
deg-cn-deg-kd  gives the result.

ofkd-deq

e Case forofkd-var . We distinguish two subcases, based on whether the variable in question is
the one we are substituting for in the theorem statement or not:

— Case for
ofkd-var

AuiKy, A FuiK,
By the definition of substitutioriCs /uju is C; and[C), /u]u is C,. By assumption,
A F Cy = C,::Ky, and, since is not free inK, (by well-formedness of the context), this
derivation has the necessary kind. Then, the result is true by wegk@rimmA B.3).
— Case for
(v:Kin AorA’)

A,u:iKy, A FviK ofkd-var

By the definition of substitutionfX/u]visv. If v::K is in A, then by definition of substitu-
tion,v::Kisin A, [Co/u]A’, so we can obtaif\, [C2/u]A’ F v = v::Kbydeg-cn-var
Because is not free inK, this is what we need. If on the other handX is in A/, then by
the definition of substitution :: [C5 /uK is in [C2/u]A’, so bydeq-cn-var
A, [Co/ulA" F v = v:i:[Cy/ulK.

e Case for

A,u::Kg, A’ FC; i TYPE A,u::Ky, A’  Cy:: TYPE

ofkd-arrow
A,u::Ky, A’ FC¢ — C :: TYPE

Applying the IH to each premise derivation gives thafC, /u] A’ + [C/u]Cs = [C,/u]Cs :: TYPE
andA, [Co/u]A’" + [Cy/u]Cy = [CS/ulCy :: TYPE (by the definition of substitutioriC, /u| TYPE

is TYPE). Thendeg-cn-arrow  and the definition of substitution (to pull the substitution out-
side the—, and to give the substitution intYPE) give the result.

e Case forofkd-prod . This case is analogous edkd-arrow , usingdeq-cn-prod
e Case forofkd-sum . This case is analogous ¢dkd-arrow , usingdeg-cn-sum .
e Case for

A,u::Ky, A’ FKkind A,u:Ky, A’ F C::lly _::K. TYPE

A,u::Ky, A’ |- Vy Ci: TYPE ofkd-all

By the IH, A, [Cy/u]A’ F [Ca/u]K = [C)/ulKkind and
A, [Co/u]A’  [Co/ulC = [C,/ulC:: [Co/ulllk _::K. TYPE. By the definition of substitution, we
can push the substitution inside thiéo getlly _::[C,/u]K. TYPE (since substitution int@YPE is

a no-op). Then, we can apptleqg-cn-all and use the definition of substitution to get the
result.
e Case forofkd-exists . This case is analogous ¢dkd-all  , usingdeq-cn-exists

e Case forofkd-unit . By deg-cn-unit , A [Cy/u]A’ - unit = unit:: TYPE. Then, by
the definition of substitutiorfX/ujunit iSunit and[X/u|TYPE is TYPE, so we have the result.
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Case forofkd-void . This case is analogous édkd-unit  , usingdeg-cn-void

Case for
A,u::Ky, A’ F I::NAT

fkd-n
A,u::Ky, A’ Fnat I::TYPE ofkd-nat

By the IH, A, [Cy/u]A" + [Cy/u]I = [C,/u]I::NAT (using the definition of substitution into
NAT). Thendeg-cn-nat  and the definition of substitution give the result.

Case forofkd-list . This case is analogous ¢dkd-nat , usingdeq-cn-list

Case for
AyuiKg, A’ FKekind A u:Ky, A',v:iKe FCiiKg

AjuiKy, A" F Ao viKe. C Tl viKe. K ofkd-fn

By the IH applied to the premise derivations (and using the definition of sutistiu

A, [Cy/u]A" F [Cy/ulKe = [C,/u]Ks kind and

A, [Co/u]A’ v ::[Cy/ulKs F [Co/ulC = [C,/u]C:: [Ca/u]Ky. Then, bydeqg-cn-fn

A, [Ca/u]A" B Ao vii[Co/ulKs. [Co/u|C = ¢ vi:[Ch/ulKe. [Ch/u]C:: (T vi:[Co/ulKe. [Co/ulKe),
so the definition of substitution gives the result (the bound variable is nheset does not
interfere).

Case for

AusKoy, AN FCeullgviKa. K AyuKy, A C,u K
AjuiKo, A" Cs Cai:[Ca/VK

2 ofkd-app

Apply the IH to each premise, using the definition of substitution to push theitulos inside
thelly; then usedeg-cn-app . This gives

A, [Cy/u]A" F [Ca/ulCs [Ca/ulCa = [Ch/ulCs [Ch/u]Cq :: [[Co/u|Ca/v][Ca/ulK. This result
kind is equal to[C,/u][Ca/v]K by LEMMA B.2 (the bound variable can be chosen fresh, so

it will not be free inC,) and the definition of substitution lets us pull the substitution outside the

application on each side. This gives the result.
Case forofkd-z . This case is analogous ¢dkd-unit  , usingdeq-cn-z
Case forofkd-s . This case is analogous ¢dkd-nat , usingdeg-cn-s

Case forofkd-natrec . By the IH applied to the premise derivations (and using the definition
of substitution),

A, [Cy/u]A’,i::NAT b [Cy/u]K = [C)/u]Kkind

A, [Co/u]A" F [Co/u]l = [C,/u]T::NAT

A, [Cy/u]A’ F [Cy/ulC, = [C,/u]C, :: [Ca/u][z/i]K

A, [Cy/u]A’ i" i NAT, r:: [Co/u][i//i]JK F [Ca/ulCs = [Ch/ulCs:: [Co/u][s 1'/i]K

The bound variablé can be chosen fresh; then it is not identicak @nd not free irc, (sinceC,

is well-typed without it in the context). Then byElvmMA B.2 and the definition of substitution
(into z, s, andi, where by above we know thatis distinct fromu), we can commute the
substitutions intX in the last two lines; then we can appig-cn-natrec and use the
definition of substitution to get the result.

Case fookfd-eqn-zz . Bydeg-cn-eqn-zz  , A, [Cy/u]A’ F eqn zz = eqn zz::EQy(z,z),
since the context in the conclusion of the rule is arbitrary. By the definitiosubstitution,
[C2/uleqn_zz iS eqn_zz and[C, /u]EQy(z, z) iS EQy(z, z), SO we have the result.
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e Case forofkd-eqn-ss . By the IH,

A, [Cy/u]A" F [Cy/u]I = [C,/u]I:: [Co/u]NAT
A, [Co/u]A’ F [Ca/u]d = [C,/u]J:: [Cy/u]NAT
A, [Cy/u]A" F [Cy/ulP = [C)/u]P:: [Co/u]EQy(T, J)

Then, by the definition of substitutid@, /u]NAT iSNAT and[C, /u]EQy (I, J) iSEQy([C2/u]I, [C2/u]J),
so we can applgleg-cn-eqn-ss  and then use the definition of substitution to pull the sub-
stitution outside eachqgn_ss and the result kind.

e Case forofkd-egn-rec . By the IH,

(A’,i:N,juN,puEQy(i, j)) F [Co/ulK = [C5/u]K kind
A" F [Cy/u]C = [C4/u]C :: [C2/ulEQn(T, J)

Recall that all context variables are assumed to be distinct. Then, eldtbatv

— in the first line,[Co/u](A/,;i N, j =N, p:: EQy(d, j)) is [Ca/u]A’, i ::N,j ::N,p:: EQu({, j)
by the definitions of substitution into contexts,EQy(C;, C2), and variables.

— In the second lin€lC, /u]EQy (I, J) is EQu([C2/u]T, [C2/u]J).

— Inthe third line,[Cy /ul[eqn_zz/pl[z/]][z/1]K iS [eqn_zz/p|[z/j][z/1][C2/u]K by LEMMA
B.2 and the definition of substitution farandeqgn_zz (we can choose fresh bound variables
to satisfy the premises of the lemma).

— Similarly, in the fourth line|Cs /u][eqn_ss(i, j,p)/pl[s j/jl[s 1/i]K is
leqn_ss(i,J,p)/plls j/jl[s 1/1][C2/uJK Also, the substitution into the context,
[Co/u](A',i:N,juN,p:EQu(i, j),r::K), iSA 1 N,j:Np::EQu(i, j),[Co/u]r :: K.

Applying these syntactic equalities of meta-operations to the above derwgtids them in a
form where we can applyeq-cn-eqn-rec  , and then we can use the definition of substitution
to pull the substitutions outside each side and the result kind.

O

LEMMA B.8: FUNCTIONALITY OF SUBSTITUTION INTO DEFINITIONAL EQUALS. Assume
AF Cy =ChiiKg, A FCyi:Koy A C Ky, andA F Ky kind.

1. f AusKy, A’ F K = K'kind, A,u::Ky,A’ + Kkind, and A,u::K,, A’ + K’ kind then
A, [Cy/u]A" F [Cy/u]K = [C)/u]K kind.

2. fAuzKy, A’ - C = ¢ :KandA,u::Ky, A’ - Kkind then
A, [Co/u]A’ F [Cy/u]C = [C,/u]C :: [Co/ulK.

Proof. In Twelf. These are immediate consequences BfiMA B.7 and LEMMA B.5. The extra well-
formedness premises are necessary because we have not yetrshovanity; once we do, they will be
redundant. m

LEMMA B.9: REGULARITY.
1. IfA F K = K'kind thenA + K kind andA + K’ kind.
2. fA FC::KthenA F Kkind

3. fAFC=cC:KthenA FC:=:K, A FC' ::K,andA F Kkind.
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4. IfA; T’ FE:AthenA F A::TYPE.
Proof. In Twelf. O

LEMMA B.10: INVERSION.

1. Inversion of kind equality:
o If A  Myu:Ky.K = Lkind thenL is Il u::K5. K’ whereA + K, = K, kind and
A,u::Ky F K = K kind.
e If A - L = Iyu:Ky.Kkind thenL is Iy u::K5. K’ whereA + K, = K, kind and
A,u:Ky F K = K kind.
o If A Myu:Ky.K = My u:K,. K kind thenA + X, = K, kind and
A,u::Ky F K = K kind.

e If A+ EQy(I,J) = Lkind thenLisEQy(I’,J)whereA - I = I':NandA + J = J = N.
e If A+ L = EQy(I,J)kind thenLisEQy(I’,J)whereA I = I':NandA + J = J = N.
o If A+ EQy(I,J) = EQy(I’,J)kindthenA - I = I':NandA F J = J' =

2. Inversion of kinding:

o If A FCy — Cy::KthenA + K = TYPEkind andA + C; :: TYPE and A | Cs:: TYPE. The
analogous statement holds foy x C, andCy + Cs.

o If A F Vg, C::KthenA F K = TYPEkind and A F C::Ixu:K,. TYPE. The analogous
statement holds fat, C

e If A Fnat I::KthenA F K = TYPEkind andA + I:NAT. The analogous statement holds
forlist I.

o If A F A u:Ky.Ci:KethenA,u::Ky FC::KandA + K, = My u::Ky. Kkind.
o If A FCCyuKothenA FCiullxuiKy. KandA F Cy:Ky andA F K. = [Cg/u]Kkind.
o If A Fz::KthenA F K = NATkind.

o If A - NATrec[uK|(I,C,,i".x.C5):: Ky thenA, u:: NAT - K kind,
A I:NAT, A Cyii[z/ulK, A i’ :NAT,r:: [i'/ulK F Cs::[s i’/ulK, and
A F X, = [I/uJKkind.
o If A egqnzz::KthenA F K = EQu(z,z) kind.
o If A Fegqnss(I,J,P)::KthenA FP::EQy(I,J)andA F X = EQy(s I,s J)kind.
e If A - EQyrec|i.j.p.K](C,Cy,1.j.p.x.Ca) :: K, then
A, 1N, N pEQu(d, §), oK - Coileqnoss(i, 3,p)/pl[s §/][s 1/1]K,
A FCyu [eqn zz/pl[z/jllz/i]K, A F C:EQy(I,J), A,i:=N,juN,p:EQy(i,j) F Kkind,
andA + X, = [C/p][J/]][I/i]K kind.

3. Inversion of constructor equality:
e IfAF sI =sI'::NATthenA - I = I'::NAT.

Proof. In Twelf. The lemmas in the first two categories follow from straightforwadliction. For the third
category, general inversion properties of constructor equality dreasily provable at this point (intuitively,
because of thg rules and transitivity). Indeed, these properties are one of the primoipligations for the
algorithmic formulation of definitional equality that we will soon develop. Hogrebecause we need this
last lemma in developing algorithmic equality, we prove it now; fortunately, it ivdlle usingNATrec to
take the predecessor of each side. O
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B.3 Deciding Constructor Equality
B.3.1 Algorithmic Equality

Erased kinds Algorithmic equality is directed by approximate kinds, where all dependeacgesrased.
The erased kinds are
K ::= TYPE | Ky —>yKy | NAT | EQy.

A new form of context maps constructor variables to erased kinds:
= | W uzk

All syntactically correct erased kinds are well-formed, so the only comddina well-formedV is that no
variable occurs more than once.
The erasure functioft)~ from kinds to erased kinds is defined as follows:

(TYPE)~ = TYPE
(MruwKse.K)™ = (Ko) =x(K)™
(NAT)~ = TNAT

(EQu(C1,C2))” = EQu.

We extend this function pointwise to contexts, denoted AAy~. Because a well-formed binds each
variable once(A)~ is well-formed whemA is.

LEMMA B.11: ERASURE PROPERTIES
1. For all kindsk, (K)~ exists.
2. If (k) =Kand(K)~ =K thenKisK'.
3. IfA F K = K'kind then(K) ™ is (K)~.
4. Ifuis potentially free irk, then([C/u]K)~ is (K) ™.
Proof. In Twelf. O

The first two parts of this lemma justify using function notation for .

Definition of Algorithmic Equality

| F K < K kind]

norm-eg-kd-type
¥ + TYPE < TYPEkind q yp

U F Ky <= Kikind WP,u::(K;)” F Ky < K,kind
U b Oyu:K;. Ky <= Tu:K]. K, kind

norm-eq-kd-pi

norm-eqg-kd-nat
U | NAT <= NATkind q

UF I« I':NAT W J< J:NAT
U - EQy(I,J) <= EQu(I’,J')kind

norm-eq-kd-eqn
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— base-kd-type ——— base-kd-nat —— base-kd-egn

TYPE base NAT base EQy base

‘\III—C<:>C/::R\

Kbase C; ¢/ Uk ¢, < CuK

v+ Cl — CQIZK

norm-eq-cn-whr-left

Kbase C,5¢, Uk ¢ < ChuK

U+ C1 <~ CQIZK

norm-eq-cn-whr-right

v Cy <= 1vype Co

v Cl < CzTYpE

norm-eg-cn-type

s /LR
U u:Ky F Cu <:iC uA..K norm-eg-cn-arrow
\I/ l‘ C — C/ZZKQ/:)kK

/
vee NATE\ norm-eq-cn-nat

U - C <= C'::NAT

U F C < C
—__ norm-eg-cn-egn

U C < C:EQy

U - C <y C

U ¢« ¢ ::TYPE
norm-eg-cn/type-neut-e
U+ C < 1ypE c’ d yp a

v - Cy <=>C’1::T/Yﬁ3 U+ Cq <:>C’2::T/YEE

norm-eg-cn/type-arrow
\I/ l_ C1 — C2 <1:'>TYPE Cll — CIQ

U+ Cy <:>C’1::TY/ﬁ‘. U Cy <:>C'2::'ﬁﬁ

norm-eg-cn/type-prod
U F C; X Cy < r1ypr CI1><C/2 9 ype-p

U b C < CuTYPE W F C, < C,:TYPE

norm-eg-cn/type-sum
\I/ '7 C1 + C2 <:>TYPE Cli + C/2 q yp

Uk Ky, <= Kykind W F C <= C:: (Ky)~ = TYPE

U v C — norm-eq-cn/type-all
k, O <=1vPE VK,

U b Ky < Kykind U b C <= C':: (Kp)~ =5 TYPE

A EP] norm-eq-cn/type-exists
K, © <=TYPE Tk}

norm-eq-cn/type-unit

U F unit <—TYPE unit

norm-eq-cn/type-void

VU F void <—TYPE void
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U F C <« ¢ :NAT
norm-eg-cn/type-nat
\If |_ nat C @TYPE nat C/ q yp

U | C <= C = NAT .
norm-eq-cn/type-list
\\ }_ list C <—TYPE list Cl q yp

U - C <—NAT ¢’

I N
W EC e CuNAT o eq-cn/nat-neut-eq
Uk C <=y C

! NAT
U EC e ..NAT/ norm-eg-cn/nat-s

———————— norm-eg-cn/nat-z
\I/}_Z<:>NATZ q \I/}_SC@NATS

v FC —EQy ¢’

\I’I—C<—>C'::ﬁ

UFoC o norm-eq-cn/eqn-neut-eq
—EQy

norm-eq-cn/eqn-zz

U |- eqn.zz <=gq, eqn_zz

U I« I NAT UF J<= J:NAT Wl—P{:}P’::ﬁ

norm-eq-cn/egn-ss
U + eqn_ss(I,J,P) <, eqn-ss(I’,J,P/) a a

Uk C+— K

_ _ neut-eg-cn-var
U usK ¥ Fue—— uk

v+ Cl — Cllilk\g/—.?kk\ v+ C2 < C/zilf(\g

— neut-eg-cn-app
U+ C1C2 — C/].C/2K

W,u:NAT - K <= K'kind (K)"isK W b I «— I':NAT
Ut C, « C =K
\Il,i’::mr::ﬁ F Cs <= CL:K
— heut-eg-cn-natrec
U F NATrec[u.K](I,C.,i’.r.C5) «— NATrec[u.K'|(I’,C,i'.r.C}):K

\I/,i::mj ::mpzzml— K < K'kind (K)~ iSK UFP«— P’::ECE
Uk C,p <= C K
\Il,i::m ’::ﬁ ZEQu,r K F Css < C._ =K
J P EQw, s ss _ neut-eg-cn-eqnrec

U + EQyrec[i.j.pK|(P,C,z,1.j.p.r.Css) «— EQyrec[i.j.p.X'|(P/,CL,,i.j.p.x.CL.):K

whr
c—*c

Weak head reductior, whr ¢/, was defined in Section 5.

whr
¢ Ml ¢ —r e,
whrrt-whr

whrrt-refl
whr whr
Cc —* C/ C1 —* C2
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| C whnorm andC whneut |
These judgements can be given by a subsyntax; the meta-variablesmptb@ned here still refer to any
constructor:

Rwhneut ::= u|RC,||NATrec[uK|(R,C,,i".r.Cs)|EQurec[i.j.p.K|(R,Czz,i.j.p.T.Css)
Nwhnorm == R|C; — Cy|Cy X Ca|Cy + Co|Vk, C|Tk, C|unit|void|nat I|listI
| A\cuiK.C|lz|s I|eqn-zz|eqn_ss(I,J,P)

Discussion of Algorithmic Equality We refer to? + ¢ <= ¢’::K and its auxiliary judgements( -

C <mpk C,¥ F C <y C,and¥ + C <=y C') asnormal equality(or, more precisely,
normalizing equalitybecause these judgements determine equality by normalizing construceonstento

U + ¢ «—— C'::K asneutral equalitypecause this judgements determines equality of neutral constructors.
The rules for these judgements are well-moded. Operationally, the eraseth ¥ - ¢ «—— C’::K and

whr whr

the right-hand constructor it — ¢’ andC —* C’are outputs; all other meta-variables appearing in the
judgements are inputs.

Properties of Algorithmic Equality

LEMMA B.12: ADEQUACY OF ALGORITHMIC EQUALITY ENCODING. These lemmas refer to the LF
signature that is available in the companion Twelf code [1].

1. There is a bijection between the following.

Syntactic Category | Canonical LF Termsof Type in LF contexts
K kd :
2. There are bijections between the following.
Derivations of Canon. LF Terms of Type in LF contexts

K base, FVinu;. .. base kd "X u;:cn

(X)” =K, FVinu,... ed/kd "K7 K" u;:cn

C whnorm, FVinu;... whnorm "C" uji:cn

C whneut, FVinu;... whneut "C™ u;:cn
ug i ﬁi ... F K &< K'kind norm_eq kd "K' "K' Uy : cn, nequ, :neut_eq-cn ujy uy '_ﬁi—‘ e
w Ky... F C < =K norm_eq.cn "CT FC'™ K7 u;:cn, nequ; :neut_eq.cn u; uy Ky
Ky ... B C <y C norm_eq.cn/type "C"' "C'7  u;:cn,nequ;:neut_eq-cnu; uy KL
Ky ... F C ey C normeq.-cn/nat "C? "C'7  u;:cn,nequy :neut_eq.cnuy uy KL
u K. . F C e Y norm_eq.cn/eqn "CT "C'?  uy:cn,nequ;:neut_eqcnug ug K7 ...
w K. F Ce— =K neut_eq.cn "CT "C'” K7 u; : cn, nequ :neut_eq-cnuy ug K.
Proof. Again, the proofs of adequacy follow standard techniques [22]. O

LEMMA B.13: ERASURES OFALGORITHMIC EQUALS ARE IDENTICAL.
If ¥ - K <= K'kind then(X)  is (X')~.

Proof. In Twelf. O

LEMMA B.14: WEAKENING OF ALGORITHMIC EQUALITY.
For algorithmic equality judgements J, ¥, ¥/ + Jand¥,u:: K, ¥’ is well-formed then?, u:: K, ¥’  J.

Proof. By induction over the given derivation. Alternatively, weakening is truefnso this follows from
LEMMA B.12. O
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LEMMhA B.15: DEIIERMINACY OF WEAK HEAD REDUCTION.
If ¢ 25 ¢’ andc 25 ¢” thenc’ is C”.

Proof. In Twelf.

LEMMA B.16: CONSTRUCTORS ARENEUTRALLY EQUAL AT A UNIQUE KIND.
f¥ - Cy «—— Cy::Kand¥ F C, «— C3::K thenKisK'.

Proof. In Twelf.

LEMMA B.17: SUBJECTS OFAUXILLARY JUDGEMENTS AREWEAK HEAD NORMAL.

1. f¥  ¢; «— Cy::KthenC; whneut andC, whneut
2. fU F C <=1ypr C' thenC whnorm andC’ whnorm
3. f¥ I C <=mr C'thenC whnorm andC’ whnorm

4. If U - C <=gq, C'thenC whnorm andC’ whnorm

Proof. In Twelf.

LEMMA B.18: WEAK HEAD NORMAL CONSTRUCTORS ARENOT WEAK HEAD REDUCIBLE.
1. C whneut andc % ¢/ imply a contradiction.
2. C whnorm andc Y% ¢/ imply a contradiction.

Proof. In Twelf.

LEMMA B.19: SYMMETRY OF ALGORITHMIC EQUALITY.

1. f¥ - K; < Kykindthen¥ - K, <= K; kind.

2. If U - C; <= Cy:Kthen¥ F Cp <= C; =K.

3. fU F C; <=1ypg Cothen¥ + Cy; <=1ypr Ci.

4, If U + C; <t Cothen¥  Cy <=yt Ci.

5. If¥ F C; <=gq Cathen¥ F Cy; <=1 C;.

6. IfU F C; «— Cyu:KthenVU - Cy «— C; K.
Proof. In Twelf.

LEMMA B.20: TRANSITIVITY OF ALGORITHMIC EQUALITY.

1. f¥ Ky <= Ky kind andV¥ Ky < Kszkind then¥ Ky <= Kskind.
U < CyuKandW¥ - Cy < C3:Kthen¥ + C; < Cs3:XK.

CIfU - Ci <=r1ype Co andv Cy <= Type C3 thenv Cy <= r1ype Cs.

2
3
4, If U + C; <mr CrandV¥ F Cy, <=t Cszthen¥ F C; <=yt Cas.
5 f¥ F Cy <=gq CrandV¥  Cy; <=gq, Czthen¥ - C; <=gq, Cs.
6

U ¢ —— CyuKand¥ + Cy «—— C3::Kthen¥ + C; «— Csz::K.

Proof. In Twelf.
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B.3.2 Soundness of Algorithmic Equality

The algorithm is only sound when its subjects are well-formed, so theseyyng premises.

LEMMA B.21: SOUNDNESS OFWEAK HEAD REDUCTION.
If A FC:KandC Y™ ¢/, thenA - C = ¢ ::K.

Proof. In Twelf. O
THEOREMB.22: SOUNDNESS OFALGORITHMIC EQUALITY.
1. IfA FXkind, A FK kind, and(A)~ F K <= K'kind, thenA F XK = K'kind.

A FCaKARC:Kand(A)” F C < C'::(K)",thenA + C = C'::K.

A FC:K A FC K and(A)” F C <1y C,thenA - C = C'::K.

.IfAFC:K A FC K and(A

2 )

3 )~

4. fA FC:=:K A FC:K and(A)” F C <y C,thenA ¢ = ¢’ ::K.
5 )~ F C <=q C,thenA I C = C'::K.
6

A FRCEK A FCK,and(A)” F C — ¢':L,thenA - C = ¢':K, A - K = K kind,
and(X)~ is (K')" isL.

Proof. In Twelf. O

B.3.3 Completeness of Algorithmic Equality

Supporting Concepts

DEFINITION B.23: CONTEXT EXTENSION. A context®’ extends a contex¥, written &' > U, iff ¥’
contains all declarations ir and possibly more.

LEMMA B.24: ALGORITHMIC EQUALITY IS CLOSED UNDERCONTEXT EXTENSION.

For all algorithmic equality judgements J,¥f - JandV¥, > ¥ then¥, F J.

Proof. Apply LEMMA B.14 repeatedly; this will terminate because all contexts are finite. O

DEFINITION B.25: SMULTANEOUS SUBSTITUTIONS. Simultaneous substitutions are defined by the fol-
lowing grammar:
o == -|o,C/u

Application of these substitutions is written on the rightag andX[s] to distinguish it from the previously-
defined notion of substitution. Substitution application is defined by mutualfimeiuzn kinds and construc-
tors. We maintain the invariant that all variables in the domain of a substituticdisthect; binding forms
are tacitlya-renamed if necessary when we wiites /u for a bound variabla. Additionally, we only apply

a substitutions to an expression when substitutes for all free variables in the expression. Finally, we
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tacitly assume the usual side conditions that ensure capture-avoidance.

eqn_ss(I[o], J[o],Plo])
EQurec[i.j.pKlo,i/1,3/3,p/pll(Plo], Czlo],1.5.p.x.Ces[0,1/1,5/3, P/, T/x])

(TYPE)[o] = TYPE
(Mg uiKe.K)[o] = Mxu:Ks[o].K[o,u/u]
(NAT)[0] = NAT
(EQu(T,9))[0] = EQu(Ilo], I[o])
(Ci — Cy)[o] = Ci[o] — Cy[o]
(C1 X CQ)[O’] = C1[U} X CQ[O’]
(Ci+Ca)[o] = Cifo] + Calo]
(Vk, C)[o] = Vi,[o Clo]
(31(2 C)[O‘] = EIKQ[O'] C[O’]
(unit)[o] = unit
(void)[c] = wvoid
(nat I)[e] = nat I[o]
(u)[e,Ca/u,0’] = Cy
(AcuwK.C)[o] = AcuiKy[o].Clo,u/y]
(C1 Co)[o] = Cifo] Cy[a]
@] = =
(sDfo] = s1[o]
(NATrec[u.K](I,C,,i".x.Cs))[o] = NATrec[uK[o,u/u]|(I[o],C,[o],i".r.Cslo,1' /i, x/x])
(eqnzz)[o] = eqn.zz
o] =
ol =

This definition gives substitutions that are simultaneous in the sensethafu, o'] is C; the substitutions
in o ando’ are not applied t@.

LEMMA B.26: SUBSTITUTION AND SIMULTANEOUS SUBSTITUTION.
1. Ifuis not free inC thenC|[o, Cy /u, '] is C[o, o’]. If uis not free ik thenX[o, Cy /u, o’ isK[o, o'].

2. For all 0 ando’ such thatu is not free,C[o, Co /u, 0’| is [C2/u](C[o, u/u, o']). For all o ando’ where
uis not freeK[o, C2/u, 0'] is [Co/u](K[o, u/u, o’]).

3. Clo, Cao, 0']/u, 0’| is ([C2/ulC) [0, 0’]. K[o, Calo, 0’| /u, o'] is ([K/u|Cy)[o, o”].

Proof. Each part is by mutual induction @anandk. The third uses the first. O

Logical Relations A straightforward inductive proof of completeness breaks down tsecius not ob-
vious that algorithmic equality is a congruence for the elimination forms. Outisolis to use logical
relations. The first relation, between two constructors, is defined byiimiuon erased kinds.

DEFINITION B.27: LOGICALLY RELATED CONSTRUCTORS
1. ¥ F C = C e [TYPE]iff ¥ + ¢ <= C’:: TYPE.

2.0 F C = C € [K; K] iff forall ¥, > ¥ and allc, andc}, such that¥, is well-formed and
U, FC=2Che K],y FCCy =C'Ch e [K].

3. W + ¢ = ¢’ e [NAT] is defined inductively as the least relation closed under the following inere
rules:
ci ™.c, Wk, =C, € [NAT]

Ir-nat-whr-left
UHFHC =Cy € m
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M ¢, Wk c =c, e [NAT]
\IJI_C1:C2€m

Ir-nat-whr-right

Uk C e ¢ NAT
Uk C=C e [NAT]

Ir-nat-neut-eq

U I =1 € [NAT
Ir-nat-z m

U+ z=zc [NAT] UksI=sI e [NAT]

Because the logical relation at KT is defined inductively, rule induction can be used to reason
from the knowledge thab + ¢ = ¢’ € [NAT].

Ir-nat-s

4.0 + ¢ = ¢’ e [EQy] is defined inductively as the least relation closed under the following infere
rules:
ci ™l Wk, =C, € [EQy]

U C=Cy € [EQ]

Ir-egn-whr-left

™, Wk =C, e [EQ]
\I/|—C1:C2€m

Ir-egn-whr-right

TFCes ¢ EQy
UkC=C c [Eqy]

Ir-egn-neut-eq

Ir-eqn-zz
U I eqnzz = eqn zz € m

UhI=1¢c[NAT] U+ J=2J e [NAT] ¥+ P =P € [EQ]

U + eqn.ss(I,J,P) = eqn.ss(I’,J,P') € [EQy]

Ir-egn-ss

Next, we extend this to a relation between two substitutions; here, the lodatibnds defined by induction
on the structure of erased contexts.

DEFINITION B.28: LOGICALLY RELATED SUBSTITUTIONS.
1. VFo=0 €][]iffois-ando’is-

2.0 F o = o € [0,u:K]iff oiso;,C/uando’ is o},C'/u, where¥ + oy = o} € [O©] and
UFc=_c e [K].
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Logically Related Constructors are Algorithmically Equal
LEMMA B.29: LOGICALLY RELATED CONSTRUCTORS AREALGORITHMICALLY EQUAL.

1. f¥ ¢ = ¢ € [NAT] then® + C <= C'::NAT.

fU - ¢ =C € [EQ]theny  C < C:EQy.

2.
3. f¥ ¢ = € [K]then¥ F C < ¢’ =K.
4,

fU + ¢« ¢'=:Kthen¥ + ¢ = ¢’ e [K].

Proof. We prove the first part independently by rule induction on the assumeatien. The second part
is then proven by rule induction using the first. Then, the last two partsravem by mutual induction on
the classifying erased kirid

1. °

Case follr-nat-whr-left
By the IH, ¥  C] <= C,::NAT, so applyingnorm-eq-cn-whr-left to this and the
premise reduction derivation (observe thAT is a base kind) gives the result.

Case follr-nat-whr-right
By the IH, ¥ + C; < C,::NAT, so applyingnorm-eg-cn-whr-right to this and the
premise reduction derivation (observe thAT is a base kind) gives the result.

Case folr-nat-neut-eq . By norm-eg-cn/nat-neut-eq applied to the premise equal-
ity derivation,¥ + C <=yt C/, sonorm-eg-cn-nat gives the result.

Case forr-nat-z . By norm-eq-cn/nat-z , U F z <=yur z, sonorm-eqg-cn-nat
gives the result.

Case for-nat-s . Bythe IH,¥ + I <= I’::NAT. By norm-eqg-cn/nat-s
U+ sI <=t s I/, sonorm-eg-cn-nat gives the result.

Case folr-egn-whr-left
By the IH, U + C| <= C,::EQy, So applyingnorm-eq-cn-whr-left to this and the
premise reduction derivation (observe tagf is a base kind) gives the result.

Case foilr-egn-whr-right

By the IH, ¥V + C; <= C,::EQy, So applyingnorm-eg-cn-whr-right to this and the
premise reduction derivation (observe tBgf is a base kind) gives the result.

Case fotr-eqn-neut-eq . By norm-eqg-cn/egn-neut-eq applied to the premise equal-
ity derivation,¥ - C <q, C’, sonorm-eg-cn-eqn  gives the result.

Case forlr-eqn-zz . By norm-eg-cn/eqn-zz , U F eqnzz <=pq eqn_zz, SO
norm-eq-cn-eqn  gives the result.

Case forr-nat-s . By the previous party - I <= I’:NATandV¥ - J <= J' :NAT.
Bythe IH,¥ + P < P’::EQy. Thennorm-eg-cn/eqn-ss andnorm-eg-cn-egqn  give
the result.

Case foITYPE. Direct from the definition of the LR.
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e Case foKy,K.

U, uiKy Fu+«— u::f(\Q neut-eq-cn-var

K, is a subexpression &K Def subexpr
TUu:kKobFu=muce€ [[ﬁg]] IH (4) onKs
Uk C=C e [K kK] Assumption
v, u SK> U Def >
U,u:Ky F Cu=Cu e [ Def LR for [Ky K]
Kis a subexpression @K Def subexpr
U,usKy F Cu < C'u=K IH (3) onK
Uk C < KK norm-eg-cn-fn-ext

e Case fOINAT. Apply Part 1.
e Case fOEQy. Apply Part 2.

4. e Case folTYPE. By norm-eq-cn/type-neut-eq andnorm-eg-cn-type applied to the
assumption, the constructors are normally equal; then the definitiffvBE] gives the result.

e Case foKy K.
By assumption¥ + C «— C’::K,—xK. We are going to use the definition of the logical
relation forﬁgﬁkﬁ, so assume for the “for all” arbitrary ;. > ¥, C, andC,, such that
U, F Cy = Ch € [Ko]. Then

U, FCy < C) :/Z\/K\Q _ IH(3) applied toK and this assumption
U, FC««— C:Ky—>kK LEMMA B.24
U, FCCy «— C'CpuK neut-eq-cn-app
W, FCC, =C'Cy € [K] IH (4) applied toK
This satisfies the “for all”, so the result is true by the definition of the logiekation.
e Case fomAT. Ir-nat-neut-eq applied to the assumption gives the result.
e Case fOEQy. Ir-egn-neut-eq applied to the assumption gives the result.

Definitionally Equal Constructors are Logically Related

LEMMA B.30: WEAKENING OF THE LOGICAL RELATIONS. Assumel,u::K,, ¥’ is a well-formed con-
text.

1. fU, 0 F ¢ = C € [NAT] then¥, u=:Ky, ¥/ - C = ¢’ € [NAT].
2. U,V - C=C € [EQthen¥,u:K,, ¥ + C = ¢’ € [EQy].
3.0, ¢ =C¢ e [K]thenW,u:K,, ¥ - ¢ = ¢ e [K].

4, fU, V' o =0 € [O]thenV,u:Ky, ¥ - o = o € [8].

Proof. First we prove Part 1 by rule induction; then, we prove Part 2 by ruledtion using Part 1. Next,
we prove Part 3 by induction on the erased kind; finally, we prove Paytidduction on the erased context.

1. e Case folr-nat-whr-left . By the IH, we can weaken the premise LR derivation, and then
applyinglr-nat-whr-left to this and the premise reduction derivation gives the result.
e Case folr-nat-whr-right . By the IH, we can weaken the premise LR derivation, and then
applyinglr-nat-whr-right to this and the premise reduction derivation gives the result.
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e Case forr-nat-neut-eq . By LEMMA B.14 we can weaken the premise derivation; then

applyinglr-nat-neut-eq gives the result.
e Casefolr-nat-z . This case is immediate Bynat-z because the context in the result is
arbitrary.

e Case fofir-nat-s . By the IH, we can weaken the derivation®f ¥’ - I = I’ € [NAT],
and then applyindr-nat-s to this gives the result.

2. e Case folr-egn-whr-left . By the IH, we can weaken the premise LR derivation, and then
applyinglr-egn-whr-left to this and the premise reduction derivation gives the result.
e Case folr-eqn-whr-right . By the IH, we can weaken the premise LR derivation, and then
applyinglr-eqn-whr-right to this and the premise reduction derivation gives the result.
e Case fordr-egn-neut-eq . By LEMMA B.14 we can weaken the premise derivation; then
applyinglr-eqn-neut-eq gives the result.

e Case folr-eqn-zz . This case is immediate biyeqn-zz ~ because the context in the result
is arbitrary.

e Case folr-eqn-ss . By the previous part, we can weaken the derivations of
U, ¥ I =1 € [NAT] and¥, ¥’ + J = J' € [NAT]. By the IH, we can weaken the
derivation ofU, ¥/ + P = P’ € [EQy]. Then applyindr-eqn-ss  gives the result.

3. e Case forTYPE. By definition of [TYPE], ¥, ¥’ + C <= C:TYPE, so by LEMMA B.14

U,u:Ky, U F C <= ¢ :: TYPE; then the definition of TYPE] gives the result.
e Case fork; S K.. We are going to use the definition qﬁzﬁkﬂ], so assume for arbitrary

U, > W, u:Ky, ¥ andcCs, C thatW, - C; = C} € [K¢]. Observe thal, u::X,, ¥’ extends
U, U’, so by transitivity of extensio® . > ¥, ¥’. Then, by our assumption,
U, 0+ ¢ = € [K:=xKs], S0, by the definition of the LRY; F CC; = C'C; € [K¢].
By the definition of[K:=,K.] (recall that we assumed an arbitraky extending?, u :: K,, ¥’)
we have the result.

o Case fOINAT. Apply Part 1.
e Case folEQy. Apply Part 2.

4. e Case for. Immediate by the definition df], as the context in the definition is arbitrary.
e Case for[®,u::K]. By assumptiont, ¥’ - ¢ = o € [©,u::K], so by the definition of the
LR o iso1,C/uando’ is o ,C' /uwhere¥, ¥’ - ¢, = o} € [0] and¥, ¥ + ¢ = ¢’ € [K].
By the IHV,u::Ky, U’ - oy = o} € [O] and by Part 3
U, uKy, ¥ - ¢ = ¢ € [K], so the definition of ©, u :: K] gives the result.

O
LEMMA B.31: CLOSURE OF THELOGICAL RELATIONS UNDER CONTEXT EXTENSION.
1. fU Fc=c¢ € [Kand¥, > Uthen¥, - Cc = ¢ € [K].
2. f¥ o =0 € [O]and¥, > VthenV, F o = ¢’ € [0].
Proof. Apply weakening repeatedly. O

LEMMA B.32: STMMETRY OF THE LOGICAL RELATIONS.

1. f¥ ¢ = ¢ e [NAT] thenW + ¢’ = C e [NAT].
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2. fU ¢ =C € [EQqythen? I ¢ = C € [EQy].
3. fU Fc=c ¢ [Kthen¥ I ¢’ = C € [K].
4. fU o = o' € [O] then¥ + ¢’ = o € [O].

Proof. First we prove Part 1 by rule induction; then, we prove Part 2 by ruledtion using Part 1. Next,
we prove Part 3 by induction on the erased kind; finally, we prove Paytidduction on the erased context.

1. e Case fordr-nat-whr-left
By the IH,¥ + C, = | € [NAT], and therr-nat-whr-right applied to this derivation
and the premise reduction derivation gives the result.

e Case forr-nat-whr-right .
By the IH, ¥ I C, = C; e [NAT], and therlr-nat-whr-left applied to this derivation
and the premise reduction derivation gives the result.

e Case folr-nat-neut-eq
By symmetry of algorithmic equality (EMMA B.19), we get the symmetric structural equality

derivation, and then we applynat-neut-eq to get the result.
e Case fodr-nat-z . Return the given derivation.
e Case forr-nat-s . By the IH, we get the symmetric premise derivation, and then we apply

Ir-nat-s to get the result.

2. e Case folr-egn-whr-left
BytheIH, U - C, =} € [[EQI]] and therr-eqn-whr-right applied to this derivation
and the premise reduction derivation gives the result.

e Case fodr-egn-whr-right
Bythe IH, ¥ - C, = C; € [[EQI]] and therir-egn-whr-left applied to this derivation
and the premise reduction derivation gives the result.

e Case folr-egn-neut-eq . By symmetry of algorithmic equality gmmA B.19), we get the
symmetric neutral equality derivation, and then we appBgn-neut-eq to get the result.

e Case folr-eqn-zz . Return the given derivation.

e Case forlr-egn-ss . By the previous part, we compute the symmetric derivationsiar
By the IH, we get the symmetric premise derivation¥qQg. Then we applyr-nat-s to get
the result.

3. e Case forTYPE. By assumptlon inthiscasd; - ¢ = ¢’ € [[TYPEﬂ so by the definition
of [[TYPE]] v+ C — ¢ :: TYPE. By symmetry O of algorithmic equality EMMA B.19),
U + ¢’ < C::TYPE, and then the definition dfTYPE] gives the result.

e Case fok, =K. We are going to use the definition fif,—,K], so assume for the “for all” that
for arbitraryW > W, C,, andC,, U, + Cy = C}, € [[Rz]]. We must show that
U, F C¢'C, = cC, € [K] so that the definition of the LR will give the result. By the IH
applied tok, and the assumption abové, + C, = C, € ﬁz]]. By assumption in this case,
UkCc=C¢€ ﬂ@ﬁkﬂ], so by the definition of the logical relation,
U, F CC, = C'C, € [K]. Then the IH ork gives what we needed to show.

e Case fOINAT. Apply Part 1.
e Case folEQy. Apply Part 2.
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4. e Case for. By assumption¥ - o = ¢’ € [-], so by the definition of the LRy is - ando” is -.
Then the definition of the LR gives the result.

e Case for®,u:: K. By the definition of the LRy is 01,C/u ando’ is ¢/,¢ /u where
Uk oy =0, € [Oand¥ + ¢ = ¢ € [K]. Byinduction¥ - o) = o; € [©] and by
Part 3V + ¢’ = C € [K], so the definition of the LR gives the result.

Il
LEMMA B.33: TRANSITIVITY OF THE LOGICAL RELATIONS.
1. f® ¢, = Cp € [NATJand ¥ + C, = C3 € [NAT] thenV + C; = C3 € [NAT].
2. fW ¢ =C, € [EQuand¥ + C, = Cs € [EQy] thenW + C; = C3 € [EQy].
3. fU ¢, = C, € [Kland¥ + C; = C5 € [K] then¥ + C; = C5 € [K].
4. fU - 01y = 0y € [O]and¥ + 05 = 03 € [O] then¥ + 04 = 03 € [O].

Proof. First we prove Part 1 by rule induction; then, we prove Part 2 by ruledtidn using Part 1, Next,
we prove Part 3 by induction on the erased kind; finally, we prove Paytidduction on the erased context.

1. The proof is by mutual lexicographic induction on the derivation¥of C; = C; € [[ﬁzm] and
U FEC =C3¢€ m

e Case for

c, ™ ¢, Wk C, =cC, e [NAT]
Ir-nat-whr-left ]
U+ Cy = Cy € [NAT] D, arbitrary.

By the IH applied to the premise derivationgf - ¢, = C, € m andD, (note that one
is smaller while the other is the sam@),+ C|, = C3 € m. Thenlr-nat-whr-left
applied to this and the premise reduction derivation gives the result.

e Case for
Cs ™ cl W C, =C, € [NAT] _
_ Ir-nat-whr-right
D, arbitrary U+ Cy = C3 € [NAT]

By the IH applied to the premise derivationgf - C, = C; € m andD; (note that one
is smaller while the other is the sam@),+ ¢; = ¢, € [NAT]. Thenlr-nat-whr-right
applied to this and the premise reduction derivation gives the result.

e Case for

whr

C, X8 ¢, W= C, € [NAT]
\I/|_C1:C2€m

C M ¢l Uk ¢l = Cs € [NAT]
\I/FCQZCQ,Gm

By determinacy of weak head reductiongumA B.15),C} is C5, so the RHS premise really
derives¥ + ¢, = C; € [NAT]. Then the IH on the two premise derivations (note that both are
smaller) gives the result.

Ir-nat-whr-right

Ir-nat-whr-left
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o Case for .
U F Cy «— Cy::NAT

U FEC =Cy € m
U F C «— C3:IW
U FC =C3 € m
Transitivity of algorithmic equality (EMMA B.20) applied to the premises gives

Ir-nat-neut-eq

Ir-nat-neut-eq

¥  C; «— Cz::NAT, sowe can applir-nat-neut-eq to this derivation to get the result.
e Case when both premises were derived using an applicatitmnat-z as the final rule.
Apply Ir-nat-z
e Case for
U+ I, = I, € [NAT] Uk I, = I3 € [NAT]
Ir-nat-s Ir-nat-s
\Il}—sllzsIgem \Ifl—sIgzslsem

By the IH on the premises (note that both are smalléry; I; = I € [NAT], solr-nat-s
gives the result.

e All other cases are contradictory. So far, we have covered

LHS RHS

Ir-nat-whr-left _
Ir-nat-whr-right

Ir-nat-whr-right Ir-nat-whr-left
Ir-nat-neut-eq Ir-nat-neut-eq
Ir-nat-z Ir-nat-z
Ir-nat-s Ir-nat-s

We derive contradictions in each remaining case as follows:

Ir-whr-nat-right vs. Ir-nat-z  , -s, or-neut-eq : The premise of the LHS deriva-
tion is thatC, i C,. When the RHS derivation is-nat-z , Co is z; this is contradictory

by inversion because no rule derives head reduction for the syntaaticzf When the RHS
derivation islr-nat-s  , we similarly get a contradiction by inversion because this head reduc-
tion derivation is impossible. Feneut-eq , by LEMMA B.17 and LEMMA B.18 we get a
contradiction.

Ir-nat-z  , -s, or-neut vs. Ir-nat-left : The premise of the RHS derivation is that

whr

C, — Cl, so we get the same contradictions as in the above cases.

This leaves the off-diagonals & , -s , and-neut-eq . For-z vs.-s and-s vs.-z , we get
a contradiction becaus® cannot syntactically be bothands I,. For-z or-s vs. -neut
and the symmetric case, we get a contradiction by inversion because or s I,, so we have
a derivation of neutral equality where one side4ss z or s I,, but no inference rule for neutral
equality derives these conclusions.

Thus, we get the result vacuously in each of these cases.

2. The proof is by mutual lexicographic induction on the derivation&¥of C; = C, € [[f(ﬁ]] and
U C = Cs € m
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e Case for

c, ™ ¢ Wk, =C, € [EQy]
Ir-eqn-whr-left .
Uk C =0y € [EQ] D, arbitrary.

By the IH applied to the premise derivation®f - C; = C, € m andD, (note that one
is smaller while the other is the samé), - C| = C; € [[fbﬂ Thenlr-egn-whr-left
applied to this and the premise reduction derivation gives the result.

e Case for
M W C, =C,c [EQ] .
_ Ir-egn-whr-right
D; arbitrary U+ Cy=Cs € [EQ]

By the IH applied to the premise derivation f- C, = C; € m andD; (note that one
is smaller while the other is the sam#@),- ¢; = C} € [[Ecm] Thenlr-eqn-whr-right
applied to this and the premise reduction derivation gives the result.

e Case for

whr

C2—>C,2 \I’I_C1:C,2€ EQN
Uk C =0y € [EQy]

Co Ml Wb cl = Cs e [EQu
\IJFCQZCQ,G[[EQ\N]]

By determinacy of weak head reductiongiumA B.15),C} is C5, so the RHS premise really
derives¥ + ¢, = C3 € [EQy]. Then the IH on the two premise derivations (note that both are
smaller) gives the result.

Ir-egn-whr-right

Ir-egn-whr-left

o Case for -
U F Cy «— Cy::EQy

\I/'—C1:C2€m
‘1"‘C2<—>C325E®
\IJI_CQZCQ,E[[E@]

Transitivity of algorithmic equality (EMMA B.20) applied to the premises gives
¥  C; «—— Cz::EQy, SO We can applir-egn-neut-eq to this derivation to get the result.

Ir-nat-neut-eq

Ir-nat-neut-eq

e Case when both premises were derived using an applicatibregh-zz as the final rule.
Apply Ir-eqn-zz
e Case for

@Fllzlgem \PFJ1:J2€m \Ill—Plnge[[fm

Ir-egn-ss
U + eqn_ss(Iy,J1,P1) = eqn.ss(Iy, Jo,Py) € m
Uk I,=1I3€ [NAT] Uk J, = J3 € [NAT] @Fpgngemlreqnss

U + eqn ss(Iz, Ja,Py) = eqn_ss(Is, J3,P3) € [[EQ\N]]

By the previous party - I; = I € [NAT] and¥ + J, = J; € [NAT]. By the IH on the
premises (note that both are smalldr)}|- Py = P3 € [[fcm],solr-eqn-ss gives the result.
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e All other cases are contradictory. We derive contradictions in eachimergaase as follows:
Ir-egn-whr-right vs.Ir-eqn-zz  ,-s, or-neut-eq : The premise of the LHS deriva-
tion is thatC, why C,. When the RHS derivation is-eqn-zz  , C, is eqn_zz; this is contra-
dictory by inversion because no rule derives head reduction for thaayc form. When the
RHS derivation idr-eqn-ss  , we similarly get a contradiction by inversion because this head
reduction derivation is impossible. Fareut-eq , by LEMMA B.17 and LEMMA B.18 we get
a contradiction.

Ir-eqn-zz  , -ss , or-neut vs. Ir-egn-whr-left : The premise of the RHS derivation
is thatC, whr o , SO we get the same contradictions as in the above case.

This leaves the off-diagonals &4z , -ss , and-neut-eq . For-zz vs.-ss and-ss vs.-zz ,
we get a contradiction becausgcannot syntactically be botyn_zz andeqn_ss(X, Y, Z). For
-zz or-ss vs.-neut andthe symmetric case, we get a contradiction by inversion beCause
is eqn_zz Or eqn_ss(X, Y, Z), SO we have a derivation of neutral equality where one sidg is
eqn_zzor eqn_ss(X, Y, Z), but no inference rule for neutral equality derives these conclusions

Thus, we get the result vacuously in each of these cases.

3. e Case foITYPE. By the definition oﬂ[TY/P\E]] on both of the assumptions, we get the two algorith-
mic equalities. Then transitivity of algorithmic equalityglmA B.20) gives
¥ F C; = C3 € [TYPE], so the definition of TYPE] produces the result.

e Case fok: ,K.. Assume for “for all” that for arbitrary, > ¥ andcs, C},

U, FC =C} € [[ﬁf]]. We must show tha¥ ;. - C; C; = C3C; € [[ﬁt]] to get the result
by the definition of the LR. By our first assumptiofi, - C; = C, € [Kfﬁkﬁt}], so by the
definition of the logical relation applied to thi#,, - C; C¢ = C, C; € [K¢]. By symmetry
(LEMMA B.32), W, + C, = C¢ € [K¢], and then by induction applied & and these two
symmetric statementg;, - C; = C; € [K¢]. But then by the definition of the LR applied to
the other assumption, - C, C; = C3C; € [K.]. Then induction applied t&; lets us put
these together into what we needed to show.

e Case folNAT. Apply Part 1.
e Case fOEQy. Apply Part 2.

4. e Case for. By assumptiony F o1 = 0, € [-Jand¥ + o, = o3 € [-]. By definition of the
LR applied to the first premisé€; is -; by the definition of the LR applied to the second premise,
Cs is -. The definition of the LR applied to these two facts gives the result.

e Case for©,u:: K. By assumption¥ - o; = o, € [©,u::K] and

U + o, = 03 € [O,u:K]. By the definition of the LRg is ¢/,C1 /u andoy is 0,C2/u
whereV + o} = o, € [@]and¥ - C; = Cy € [K]; o2 is 4,Ch/uandos is o4,C3/u where
U+ o) =of € [O]and¥ + €, = Cs € [K]. Butob,Cy/uis oy is o, Cy/u, S0,0% is o
andc, is C,. Thus, we can apply the IHtd - o] = o} € [O] andV o5 = o} € [O] to
get¥ + ¢} = o4 € [O]and use Part30f + C; = C, € [K]andV¥ - C, = C3 € [K]
to getl + C; = C3 € [K]. Then the definition of©, u:: K] gives the result.

O

LEMMA B.34: LOGICAL RELATION IS CLOSED UNDERHEAD EXPANSION.

whr

1. f¥ + ¢, = ¢, € [K] andc; 25 ¢, thenW - ¢; = G, € [K].

whr

2. fU - ¢; = ¢, e [K]andCy 25 ¢, then® + ¢, = C; € [K].
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Proof. The proof in each case is by induction on the classifying erased kind.r§V@ifove Part 1 and then

Part 2.

1.

e Case forTYPE. By assumption¥ + C, = C, € [TYPE], so by the definition of the LR,

U b ¢, <= C,:: TYPE. By norm-eq-cn-whr-left applied to this and the head reduction
derivation (observe thatyPE is a base kind), we get algorithmic equality; then the definition of
[TYPE] gives the result.

Case foK: = K,. We are going to show - C; = C, € [K:=yK.] using the definition of the
LR, so assume for the “for all” arbitrary ;. > ¥, C; andC; such thatl | + C; = C; € [K¢].
By assumption + C; = Cy € [K:=xK:], so by the definition of the LR applied to this,

whr

U, F CjC: = C,C: € [K]. By our other assumptiorg; ~ ¢}, so bywhr-app-1
applied to this derivatiog; Cs why ¢, C¢. Then by the IH applied t&,, this fact, and
U, F C{Cs = CaC; € [K¢], wegetthatl, - C;C; = CoC; € [[ﬁt]]. This is what we

needed to show to satisfy the “for all”, so the definition of the LR gives thalte

Case folNAT. The assumptions are exactly the premisels-oat-whr-left , which then
derives the conclusion.

Case forEQy. The assumptions are exactly the premisebk-efjn-whr-left , which then
derives the conclusion.

2. This is mostly the same as the previous part.

e Case forTYPE. By assumption¥ - ¢; = ¢} € [TYPE], so by the definition of the LR +

Ci < Ch: TYPE. By norm-eg-cn-whr-right applied to this and the head reduction
derivation (observe thatYPEis a base kind), we get algorithmic equality; then the definition of
[TYPE] gives the result.

Case foik: —=,K,. We are going to show + C; = C, € [K:=yK.] using the definition of the
LR, so assume for the “for all” arbitrary . > W, C¢ andC} such thatv, + C; = C; € [K¢].
By assumption¥ + C; = C, € [K:=xK:], So by the definition of the LR applied to this,

whr

W, F C;C = C,C, e [K]. By our other assumptiorg, ~= ¢}, so bywhr-app-1
applied to this derivatiog, C} whe ¢, C;. Then by the IH applied t&,, this fact, and
W, F C 0 = CyC, e [Ke], we getthatl, - C;C; = C,C, € [K.]. This is what we

needed to show to satisfy the “for all”, so the definition of the LR gives thalte

Case folNAT. The assumptions are exactly the premiseds-nat-whr-right , Which then
derives the conclusion.

Case forEQy. The assumptions are exactly the premiseis-efjn-whr-right , which then
derives the conclusion.

O

One of the primary difficulties in the completeness proof is that the algorithmtistmaously a con-
gruence on the elim forms; the logical relation is designed to give stronggbressumptions to show that
it indeed is. Here, we show that this is the case for the inductive kinds.

LEMMA B.35: LOGICAL RELATION IS A CONGRUENCE FORELIMS.

1.

(@) ¥,u:NAT + K < K'kind
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(b) U+ I =T e [NAT],
© ¥kc,=¢c; e [K]
(d) forall ¥ > ¥, J, J/,R, andR’ such that¥’ + J = J € [NAT]and¥’ - R = R’ € [(K)7],
vk R/r][J/47]Cs = [R/x][3'/1]¢s" € [(K)7]
then¥ F NATrec[u.K|(I,C,,i'.r.Cs) = NATrec[uK|(I',C,,i".r.C[) € [(K)~].
2. If

(@) \P,i::ﬁj ::mp::ﬁl— K <= K'kind

(b) U + Pf = Pf' € [EQy]

€) ¥k Cpp = Cy, € [(K)7]

(d) forall ¥’ > ¥, 1,1/, 3,7, P, P, R, andR’ such thatl’ + I = I’ € [NAT],
U b J=1J c[NAT], ¥ +P =P € [EQ,and¥ + R = R € [(K)],
'+ [R/x][P/P][3/5][T/i]Css = [R'/x][P'/p][3'/5][T'/i]Css € [(K)7]

then¥ + EQyrec(i.j.p.K|(P,Cpz,i.j.p.r.Css) = EQyrec[i.j.p.K|(P’,CL,,1i.5.p.r.CL) € [K].
Proof. 1. This part is proven by induction on the derivationlof- I = 1’ € [[ﬂﬂ.

e Case for
I™ 17 g1 =T € [NAT]

UFI=T c [NAT]

By the IH applied to the premise derivation and assumptions (a), (c), and (d

U + NATrec[uK|(I”,C,,i".r.C5) = NATrec[u.K|(I',C,,i".r.C}) € [(K)].

By whr-natrec-num  applied to the premise head reduction derivation,
NATrec[u.K|(I,C,,i".T.Cs) whe NATrec[u.K]|(I”,C,,i".r.Cs), so closure under head expansion

(LEMMA B.34) gives the result.

Ir-nat-whr-left

e Case for
U™ §EI=1" e [NAT]
UHI=T1 e [NAT]
By the IH applied to the premise derivation and assumptions (a), (c), and (d
U + NATrec[uK]|(I,C,,i".r.Cs) = NATrec[u.K](I”,C,,i'.x.C) € [(K)7].
By whr-natrec-num  applied to the premise head reduction derivation,

NATrec[u.X|(I’,C,,i’.x.Cs) why NATrec[u.X|(I”,C,,i’.x.Cs), SO closure under head expansion
(LEmMA B.34) gives the result.

Ir-nat-whr-right

e Case for -
U I «— I'::NAT

U+ I=T1 e [NAT]

First, by LEMMA B.29 applied to premise (c¥ + C, < C.::(K)~. Second, observe that
the contextV, i’ ::NAT, r :: (K)~ extendsV. By neut-eqg-cn-var ,

W, i’ NAT,r:: (K)~ b i’ «— i’::NAT, so by LEMMA B.29

' NAT,r:: (K)~ F i/ = i’ € [NAT]; similarly,

"uWAT,r=(K)~ F r = r € [(K)"]. Thus, by premise (d),

' NAT,r:: (K)~ b [r/r][i//4']Ce = [r/x][i’/i/]C, € [(K)~], so again by EMMA B.29,

Y

Ir-nat-neut-eq

)

e

I

SHSES

[

)
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Ui’ = NAT,r:: (K)~ F Cs <= C.:(K)~ (where we have dropped the identity substitu-
tions according to the definition of substitution). Then, HBut-eq-cn-natrec applied

to premise (a), the premise of the rule, and these two facts,

U F NATrec[u.K](I,C,,i".x.Cs) «— NATrec[u.K'|(I’,C,,i".r.CL):: (K)~. Applying LEMMA
B.29 to this gives the result.

e Case for | i
r-nat-z

\Ill—z:zem

By premise (c)¥ + C, = C, € [(X)~]. By closure under head expansioreftma B.34)
applied twice anavhr-natrec-beta-z ,
U + NATrec[uK](z,C,,i".r.Cs) = NATrec[u.K'|(z,C,,i".r.CL) € [(X)].

y Yz
UkI=1 c [NAT]
Utk sI=sI e [NAT]

By the IH applied to premises (a), (c), and (d) and the premise of the rule,

U - NATrec[u.K](I,C,,i’.r.Cs) = NATrec[uX'][(I’,C,,i’.r.CL) € [(X)"]. Thus, we can
apply premise (d) to show that

U + [NATrec[uK|(I,C.,i".r.Cs)/r|[I/i']Cs = [NATrec[uK'](I’,CL,i’.r.CL)/r][I'/i'|c, € [(K)].

We can now apply EMMA B.34 towhr-natrec-beta-s twice to prove that
U + NATrec[uK|(s I,C,,i".r.C5) = NATrec[u.K'|(sI’,C,,i'.xr.CL) € [(K)7].

)y Yz

e Case for

Ir-nat-s

2. This part is proven by induction on the derivatiomlof- Pf = Pf’ € [[EQ\N]]

e Case for
Pt Y™ pg” U | P£” = Pf € [NAT]

U - Pf = Pf € [NAT]
By the IH applied to the premise derivation and assumptions (a), (c), 3nd (d
U + EQyrec[i.j.p.K](Pf”,Cpz,i.j.p.x.Css) = EQurec|i.j.p.X'[(Pf,CL,,i.j.p.x.Cs) € [(K)7].
By whr-eqn-rec-proof applied to the premise head reduction derivation,
EQyrec[i.j.p.K|(P£f,C,z,1.j.p.r.Css) whe EQyrec[i.j.p.K|(Pf”,Cysz, i.j.p.r.Css), SO Closure
under head expansion EMMA B.34) gives the result.

Ir-egn-whr-left

e Case folr-eqn-whr-right . This case is analogous to the above case.
e Case folr-egn-neut-eq . By assumption,

U + Pf «— Pf/:EQy
U b Pf = Pf € [EQy]

Ir-egn-neut-eq

First, by LEMMA B.29 applled to premlse (e} + C,p < C.,::(K)~. Second, observe
that the contextl, i :: NAT, RE ‘NAT,p: EQy, T :: (K)~ extendsV. By neut-eg-cn-var and
LEMMA B.29,1, j, p, andr are logically related to themselves in this extended context. Thus,
by premlse (d)

W, i NAT, j :NAT, piEQu, T (K) b [r/x][p/pl3/3]l3/11Css = [x/x]lp/pl5/3]l3/4]CLs € [(®)7].
Again by LEMMA B.29, ¥, i ::NAT, j::NAT,p::EQy,r:: (K)~ F Css <= CLg:: (K)~ (where

we have dropped the identity substitutions according to the definition of sulstjtuThen, by
neut-eqg-cn-natrec applied to premise (a), the premise of the rule, and these two facts, we
get neutral equality of thEQyrecs, and then EMMA B.29 gives the result.
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e Case folr-eqn-zz

Ir-eqn-zz
¥ F eqnzz = eqn.zz € m

By premise (c)¥ - C,, = C,, € [(K)"]. By closure under head expansion (applied twice)
(LEMMA B.34) andwhr-egnrec-beta-zz , we get the result.

e Case for

UHI=Tc[NAT] U+ J=1J c[NAT] ¥+ P =P e [EQ]
U + eqn_ss(I,J,P) = eqn_ss(I’,J,P') € [EQy]

Ir-egn-ss

By the IH applied to premises (a), (c), and (d) andﬂ‘ﬁpremise of the rule,

U + EQurec[i.j.p.K|(P,Czz,i.j.p.x.Css) = EQurec[i.j.p.K'|(P/,CL,,i.j.p.x.CLs) € [(K)].
Thus, we can apply premise (d) to show logical relatedness of the subsistuitoC., andC...
Then we can apply EMMA B.34 withwhr-eqgnrec-beta-ss to get the result.

O

LEMMA B.36: DEFINITIONAL EQUALS ARE LOGICALLY RELATED.

1L.IfAFC=C=zKand¥ F o = ¢’ € [(A)"]then¥ F Clo] = C'[o’] € [(K)7].

2. fAFK=Kkindand¥V - o = ¢’ € [(A)"]thenV + K[o] <= K'[0’] kind.

Proof. By mutual induction on the definitional equality derivations. We sometimes silemply she defini-
tions of erasure and substituti@mote that this theorem statement meets our invariant about only applying
substitutions that substitute for all variables in a constructor: wheh o = ¢ € [(A)7], o ando’
substitute for all variables irh.

1.

e Case for
A Cy

A Cy

By symmetry of the logical relations @MMA B.32), ¥ + ¢/ = o € [(A)~]. By the IH,
U F Cylo’] = Ci[o] € [(K)~], so by symmetry of the logical relations,
v+ Cl[O'] = CQ[OJ] S [[(K)_]]

e Case for

Cy::
Coy::

K
X deg-cn-sym

AFC =CuK AFC =C3:K

AR C, = Gk deg-kd-trans

By the IH applied to the first premis@ + Ci[oc] = Cs[o’] € [(K)~]. By symmetry and
transitivity of the LR (LEMMA B.32, LEMMA B.33),¥ ¢’ = ¢’ € [(A)~], so by the IH
applied to the second premise, Cy[0’] = Cs[o’] € [(K)~]. Then transitivity of the logical
relations gives the result.
e Case for
AFC=C=z2K AFK=Kkind

AFC=CdCuK deg-cn-deq-kd

By the IH applied to the first premis®&, - Clo] = C'[¢'] € [(K)~]. By LEMMA B.11 applied
to the second premis&)~ is (K’)~, so replacing syntactic equals gives the result.

®Derivations respect the definitions of meta-operations such as substiuttberasure: we are just rewriting their subjects
according to the definitions of the meta-operations defining them.
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deg-cn-var
AuzK A" Fu=uzK q

By the definition of erasure(A)~ containsu:: (K)~. Thus, by the definition of the logical
relations,C/u is in o andC’/uis in ¢/, where¥V + ¢ = ¢’ € [(X)~]. By the definition of
substitutionu[c] is C andu[o’] is C', so this is the result.
Case for
Dy D,
AFC = C'1::TYPE AFC = C’Q::TYPE

deg-cn-arrow
At C — Cy = C) — C,uTYPE a

By the IH applied to each premise derivatiah,- C;[o] = C;[¢/] € [TYPE] and

U F Cylo] = Cylo’] € [TYPE]. By LEMMA B.29, ¥ + Ci[o] <= C,[o’]:: TYPE and
U + Cylo] <= C[o’]:: TYPE. Then we can applyiorm-eg-cn/type-arrow to these
two derivations to ger - Ci[o] — Ca[o] <=1ype C)[0’] — Ch[o’], to which we can apply

norm-eq-cn-type to get normal equality. Then the definition of substitution lets us pull the

substitution outside of therrow on each side, and finally the definition [ifYPE] gives the
result.

Case fodeg-cn-prod . This case is justlike the above, except wensen-eg-cn/type-prod
Case fodeg-cn-sum . This case is just like the above, except wemsen-eq-cn/type-sum

Case for
Dy Dy
AF K2 =K2kind A F C = 1 _::K2. TYPE
A F VKQ C = VKQ/ ¢’ :: TYPE

deg-cn-all

By IH(2) applied toDy,

U |+ Ky[o] <= Kj[o'] kind. By IH(1) applied taDs, ¥ + C[o] = C'[o’] € [(Ik -::K2. TYPE) ],
so by the definition of erasure angtMA B.29,¥ + Clo] <= C'[o'] :: (K2)~=TYPE. Then
we can us&orm-eg-cn/type-all on these derivations to derive

U+ Vg,o] Clo] <= 1vee Yk (o C'lo’], andnorm-eq-cn-type to get normal equality on
that derivation to get normal equality. The definition of substitution lets ustipalsubstitution
outside on each side, and then the definition of the LR gives the result.

Case fodeqg-cn-exists . This case isjust like the above, except we msBN-eg-cn-exists

Case fordeq-cn-unit . By norm-eg-cn/type-unit , U I unit <=rypg unit, and
thennorm-eqg-cn-type gives normal equality. Then the definition[afyPE] and substitution
gives the result.

Case fodeg-cn-void . This case is just like the above, except wensen-eq-cn/type-void

Case for
D

AF I =T:NAT

deg-cn-nat
A F nat I = nat I’ ::TYPE q

By IH applied toD, ¥ + I[o] = I'[o'] € [NAT], so by LEMMA B.29 these are algorithmi-
cally equal. Then we applyorm-eg-cn/type-nat andnorm-eg-cn-type and use the
definitions of substitution anfr'YPE] to get the result.

Case foideg-cn-list . This case is just like the above, except wemsan-eg-cn/type-list
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e Case for
A F Ky = Kokind A,uzKy H C = C' K

A F AuiKe.C = AcusK,. C il uiKo. K

deg-cn-fn

We are going to use the definition of the LR f@k u::K,. K)~ = (Ko)~—x(K)~, so assume for
the “for all” that for arbitraryC,, C5, and¥, > U, U, + C, = C, € [(K2)~]. By LEMMA
B.31,¥, F o = o' € [(A)7], so by the definition of the LR,
U, F 0,C/u = o¢/,C5/u € [(A)",u::(Kz)~]. By the definition of erasure, this context
is (A,u::Ky)~. Thus, by the IHV, F C[o,Co/u] = C'[o’,C,/u] € [(K)"]. By LEMMA
B.26, C[o, Co/u] is [C2/u|C[o, u/u] andC’[o, C, /u] is [CS/u|C'[0’,u/u]. By whr-app-beta
(Ac wKa[o]. Clo,u/u]) Co hr, [C2/u](C[o, u/u]) and
(A uw::K5[o']. C'lo’,u/u]) C5 why [C5/u](C'[o’,u/u]). Thus, by closure under head expansion
(LemMA B.34) applied once to each side,
U, F (AcuiKa[o].Clo,u/u]) Co = (AcuiKy[o'].C'[o’,u/u]) €, € [(K)~]. We can pull the
substitution outside th& on each side by the definition of substitution; then the definition of the
LR for (Ko)~=%(K)~ gives the result.
e Case for
AFC =CiuMuKy. K AF Cy = ChuK
Ak Cy Cy = Cf Cy::[Co/ulK

By the IH, ¥ + Ci[o] = Ci[o’] € [(Ixuw:Ky.K)"] and¥ + Colo] = Chlo’] € [(K2)7]-
By the definition of erasurd[l, u::K,. K) ™ is (K2) " =% (K) ™. Thus, by the definition of the LR,
U F Cy[o] Calo] = Cilo’] C4[o’] € [(K)~]. Then, by the definition of substitution, we can pull
the substitution outside the application on both sides, andgmMa B.11,(K) ™ is ([Co/ulK)~,

so this is the result.

2 deg-cn-app

e Case for

AjuzKy HC =CiuK AF Cy =ChuK

2
deg-cn-app-beta
A F (Acu:iKye.Cp) Co = [C5/u]C) :: [Co/uK g PP

By induction,¥ F Cylo] = C4jo’] € [(K2)~]. By the definition of the LR,

U+ 0,Cy/u = 0/,Ch/u € [(A)",u::(Kz2)~ ], and by the definition of erasure, this context is
(A,u::Ky)~. Thus, by the IH¥  Cy[o,Cy[o]/u] = Ci[o’,Ch[0"]/u] € [(K)~]. By LEMMA
B.26,C4[0, Co[o]/u] is [Ca[o]/u]C1[o, u/u]. By whr-app-beta

(Ac wiKa[o]. C1[o, u/u]) Calo] e [Ca]o]/u](Cy[o,u/u]), so by closure under head expansion
(LEMMA B.34), ¥ + (A;u:Ks[o].Ci[o,u/u]) Colo] = Cilo’,Ch{o’]/u] € [(K)~]. On the
left, the definition of substitution allows us to pull the substitution outside\taed then the ap-
plication, giving¥ + ((Acu::Ks.Cy) Co)[o] = Ci[o’,C5[0’]/u] € [(K)~]. Then, by LEMMA
B.26, we can rewrite the right-hand side @3, /u|C})[¢’]. Finally, LEMMA B.11 shows that
([C2/u]K)~ is (K)~, so we have the result.

e Case fordeg-cn-fn-ext

A FKokind A FCulliu:iKe. K A FCuIzuiKe. K AuuKy FCu=CukK
AFC=CuMuKy K

We are going to use the definition of the LR f@k u::K,. K)~ = (K2)~—x(K)~, so assume for
the “for all” that for arbitraryC,, C;, and¥, > ¥, ¥, + Cy = C, € [(K2)"]. By LEMMA
B.31,¥, F o = o' € [(A)7], so by the definition of the LR,

U, F 0,C/u = 0/,Cy/u € [(A)",u::(Ke)~]. By the definition of erasure, this context is
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(A,u::Ky)~. Then, by induction¥, + (Cu)[o,Ca/u] = (C'u)[o’,Cs/u] € [(K)~]. The
bound variabla: is chosen fresh and it is not free @nor C’; consequently, rewriting using the
definition of substitution gives thalt, + C[o] C; = C'[0’] C5 € [(K)~]. Then the definition
of the LR for (K,) = (K)~ gives the result.

Case fordeg-cn-z . Note thatz|o] is justz, solr-nat-z  gives the result.

Case for
D

AFTI=T1:NAT
AF sI = sTI:NAT

deg-cn-s

By induction,¥ + I[o] = I'[¢’] € [NAT]. Thus, we can appliy-nat-s and then use the
definition of substitution to move the substitutions outsidestloa both sides, which gives the
result.

Case for

Dy

A,i:NF K = K'kind
Dy

AF I =T1:NAT

Dy

Ak C, =C,z/i]K
Dy

Ai"aNjra[if/i]K B Co = CL:[s T'/i]K
A + NATrec[i.X](I,Cy,i".r.Cy) = NATrec[i.K'|(I',C},i".r.Cl) 1 [I/1]

m deg-cn-natrec

Note that by LEMMA B.11, the erasure of any substitution intds still (K)~ without the sub-
stitution; we use this fact silently below.
We are going to use&MMA B.35, so we must satisfy its assumptions.

(a) By LEMMA B.29, U, u::NAT - u = u € [NAT]; thus by LEMMA B.30 and the definition
ofthe LRU,u:K  o,u/u = o/,u/u € [(8),u:K]. By the IH(2) applied taD;,
U, u:NAT - K[o,u/u] <= K/[o’,u/u]kind.

(b) By the IH(1) applied td,, ¥ - Ijo] = I'[o’] € [NAT]

(c) By the IH(1) applied t@Ds, U F C,[0] = C.[0'] € [K].

(d) Assume for the “for all” arbitrary? . > ¥ andJ, J’, R, andR’ such that
U, b J=1J c [NAT]and¥, - R = R’ € [(K)~]. By closure of the LR under context
extension (EMMA B.31),¥, F o = o’ € [(A)~]. Applying the definition of logically
related substitutions once givls, + o,J/i’ = ¢’,J/i’ € [A,i’::NAT], and applying
itgivesU, + o,J/i',R/r = o', J/i’,R'/r € [A, i’ ::NAT,r:: (K)~]. We can then apply
the IH toD, and these substitutions to get that
U, + Cglo,J/i",R/x] = CLlo’,J/i’,R'/x] € [(K)"]. Then LEMMA B.26 gives that
Cslo, 3/i',R/x] is [R/x][3/i'](Cs[o, i'/i’, x/x]) and the analogous statement for the right-
hand side.

Now we can use the fact that the LR is a congruence for the elimination fdremnsMA B.35)

on these facts to show that

U - NATrec[u.K[o,u/u]](I]o],C.lo],i".x.C5[o,i" /i, r/x]) =

NATrec[u.K'[0/,u/u]|(I'[0"],C,[0'],i".x.CL[0o’,i’/i',x/x]) € [(K)~]. Then by the definition of

substitution we can pull the substitutions outsideNh®rec on both sides, and we are done.
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e Case fordeqg-cn-natrec-beta-z

Aju:zN FKkind AF C, =CLi[z/i]K A,i’=N,r:[i'/i]JK F Cg::[s I'/i]K
A F NATrec[uX|(z,Cz,i'.r.Cs) = CL::[z/i]K

By the IH, ¥ + C,[0] = C,[o'] € [(K)~]. By whr-natrec-beta-z :

NATrec[u.K[o,u/ul]|(z, C;[o],i".r.C5[o,i" /i, r/x]) h, Cz[o]. Then by LEMMA B.34 on the
left side, ¥ + NATrec[u.K[o,u/u]|(z,C.[o],i".r.Cs[o,i’'/i/,r/x]) = CL[o'] € [(K)~]. By
the definition of substitutionz is the same ag|s]| and we can pull the substitution outside the
NATrec to get the result.

e Case fordeg-cn-natrec-beta-s
=N F K = K' kind
I= I’ NAT

Ai" N r:
A F NATrec[uK](s I,C,,i".r.Cs)

ulK F CS = C’ i [s I’ /ulK
[NATrec[uK']|(I’,C,,i".x.CL)/x][I'/i']CL :: [s I/u]K.

) Yz

Note that the premises are the same as thoskegfcn-natrec  , so by the same reasoning
as in the first paragraph of that case, we can use the IH to satisfy a#é pfémises of EMMA
B.35, and then applying the lemma gives
U - NATrec[uK[o,u/u]](I]o],C.lo],i".x.C5[o,i" /i), r/x]) =
NATrec[uX'[o,u/u]](I'[0’],CL[0’],i’ .x.CLlo’,i"/i',x/x]) € [(K)~]. Call the left-hand con-
structork and the right-hand on&. Then by the definition of the LR applied twice,
U b 0,I[0]/i',R/r = o,T[0']/i/,R//r € [(A)",i’=NAT,r: (K)"]. By the definition of
erasure, this matches the context in the final premise, so by the IH
U + Cglo,I[o]/i',R/x] = Cslo’,T'[0']/i',R/x] € [(X )—]. By whr-natrec-beta-s :
NATrec[u.K[o,u/u]|(s (I[o]), Cz[o],i’.x.Cs[o, i/ /i’ r/x]) 5 [R/x][I[0]/i](Cslo, i’ /i, x/x]),
so by closure under head expansiogf{MA B.34) and LEMMA B.26,
U + NATrec[uXK[o,u/u]|(s (I[0]),C.[0],i".x.Cslo,i'/i’,x/x]) = Cslo’,T'[0’]/1i/,R /x] € [(K)].
The definition of substitution gives that the left-hand sid@&lASrec[u.k]|(s I,C,,i’.x.Cs)[o]
and that’ is NATrec[u.K'|(s I’,C,,i".x.C,)[0’] Finally, by LEMMA B.26, the right-hand side
is ([NATrec[u.K'|(I’,CL,i".x.CL)/x][I'/i]|Cs)[0’].

e Case fordeg-cn-eqn-zz . eqn_zz[o] IS justeqn_zz, solr-eqn-zz  gives the result.

e Case fordeq-cn-eqn-ss . By the IH,

v+ 1fo] = Tlo’] € [NAT]
¥+ o] = I]o’] € [NAT]

U + Pf[o] = P£'[0] € [EQy].
Thuslr-egn-ss  and the definition of substitution give the result.
e Case fordeq-cn-eqgn-rec
We are going to use#MMA B.35, so we must satisfy its premises.

(a) By LEMmmA B.29, LEMMA B.30 and the definition of the LR,
U,i::NAT,j:NAT,p=EQy - 0,1/i,j/3,p/p = 0',i/i,3/3,p/p € [(A)~,i:NAT,j::NAT,p: EQy].
Thus the IH glves that
U, i::NAT, j::NAT,p: EQy - Klo,i/1,3/3,p/p] < K'[0',i/1,]/],p/p] kind

(b) By the IH applied to the premise of the rue, - Pf[o] = P£[0'] € [EQy].

67



(c) By the IH applied to the premise of the rule, - C,,[c] = C.,[0'] € [(K)~].
(d) Assume for the “for all'v’ > ¥, 1, 1/, J, J/, P, P/, R, andR’ such that
U HI=1¢c[NAT|, ¥ J=J c [NAT], V' - P = P’ € [EQy], and
U’ R = R’ € [(K)~]. By closure under context extension,
V' F o = ¢ € [(A)"]. Then, by the definition of the LR for substitutions,
U b o0,1/i,3/j,P/p,R/T = ¢/,1'/i,3/3,P'/p,R'/r € [(A)~,i:NAT, j::NAT,p: EQy,r: (K)].
Because this context matches the erasure of the context in the fourth @rtiie rule, we
can apply the IH to get
U, + Cglo,1/i,3/3,P/p,R/x] = CLlo’,1'/i,3'/3,P'/p,R'/x] € [(K)"]. Then
LEMMA B.26 shows that
Csslo,1/4,3/3,P/p,R/x]is[R/x][P/p][J/3][1/](Css[o, 1/4,3/5,p/p, r/x]) and the anal-
ogous fact for the right-hand side. Applying these equalities prove®tudtr
Then the lemma and the definition of substitution give the result.
Case fordeg-cn-eqn-rec-beta-zz .Bythe IH,U F C,,[0] = CL,[0'] € [(K)~]. Then
closure under head expansiorefumA B.34) withwhr-eqn-rec-beta-zz on the left-hand
side and the definition of substitution give the result.
Case fordeq-cn-eqgn-rec-beta-ss
Observe that the premises here contain all the premises of the congruknse we can satisfy
the assumptions of#MMA B.35 in the same way. This gives that
U+ EQyrec[i.j.pK[o,1/1,3/],p/p]](Plo], Czz[0],1.3.p.T.Ces[0, 3/, 3/5, /P, T/x]) =
EQyrec[i.j.pK[o",1/1,3/3,0/pl](P'[0"],CLalo’], 1.3.p.2.Clal0’, /1, 3/3.0/p. 2/x]) € [(K)T.
Call the left-hand construct@rand the right-hand’. By the IH, ¥ + I[o] = I'[¢’] € [NAT],
U + J[o] = J[o'] € [NAT], and¥ + P[s] = P'[¢'] € [EQy]. Then, by the definition of the
LR for substitutions
U+ o,1Ifo]/1,3[0]/j,Plo]/p,R/T =
0, 1'[0")/1,3'[0')/j,P'[0']/p,R/T € [(A)~,1:NAT, j :: NAT, p:: EQy, T :: (K)~]. Since this matches
the context in th&,s equality premise, we can apply the IH to get
U+ Css0,I[0]/4, J[0]/3, Plo]/p. R/x] = Ciilo’, T'[0"]/4,3[0"]/53,P'[0"]/p, R/x] € [(K)7].
On the left, we then usehr-eqgn-rec-beta-ss , LEMMA B.26, closure under head expan-
sion (LEMMA B.34), and the definition of substitution to get what we need. On the right, we
use the definition of substitution andcEMMA B.26 to give the result.

Case for
A+ K2 K1 kind
A+ Kl K2 kind .
By symmetry of the LRY ¢ = o € [(A)7]. Bythe IH,¥ + Ky[0'] <= Ki[o]kind.
Then LEMMA B.19 gives the result.
Case for

deqg-kd-sym

A F Ky = Kokind A F Ky = Kzkind
A F K; = Kzkind
By the IH, ¥ F K;[o] <= Ky[o'] kind. By symmetry (LEMMA B.32),
U o = o € [(A)7], so by transitivity (lEMMA B.33)¥ + ¢ = ¢’ € [(A)"]. Then
we can apply the IH to the second premise with these substitutions to show
U + Ki[o] <= Ks[o'] kind . Then LEMMA B.20 gives the result.
Case for

deg-kd-trans

A F TYPE = TYPEkind deq-kd-type

Apply norm-eg-kd-type , and then use the definition of substitution to get the result.
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e Case for
A F Ky = K{kind A,u:K; F Ky = Kykind

A F TiuiKy. Ky = M usK). K, kind

deq-kd-pi

By the IH applied to the first premise derivatioW, - Ki[o] <= K|[¢'] kind. By rule,
Vou:(Ky)” Fu«— u:(Ky)",s0bylEMMA B.29,0, u:: (K1)~ - u =u € [(K1)"]. By
weakening (EMMA B.30),V,u:: (K1)~ F o = ¢’ € [(A)~], so by the definition of the LR,
U,u: (K1)~ F o,u/u = o’;u/u € [(A)",u:: (K1)~ ]. By the definition of context erasure,
U,u: (K1)~ F o,u/u = o’,u/u € [(A,u::Kq)"]. Since this matches the context in the sec-
ond premise, we can apply the IH to get thatu :: (K1)~ + Ka[o,u/u] <= K,[0o’,u/u] kind.

By LEMMA B.11, (K)~ is (K[¢])~. Thusnorm-eqg-kd-pi ~ and the definition of substitution
(to pull the substitution outside thkeon each side) give the result.

e Case for

A F NAT = NATkind deq-kd-nat

Apply norm-eqg-kd-nat  , and then use the definition of substitution to get the result.

3. Case fodeq-kd-eqn . Bythe IH,¥ + I[s] = I'[o’] € [NAT] and
U + Jjo] = J[o'] € [NAT]. By LEMMA B.29, these are algorithmically equal. Theey-kd-eqn
and the definition of substitution give the result.

O

DEFINITION B.37: IDENTITY SUBSTITUTIONS. idy ,..¢ IS idy,u/u, andid. is .
LEMMA B.38: IDENTITY SUBSTITUTIONS ARELOGICALLY RELATED. ¥ + idy = idy € [V].

Proof. By induction on the classifying context. The result is immediate by the definitianwine context
is empty. In the inductive case fdr, u:: K, by neut-eq-cn-var ¥ F u «— u:K, and then EMMA
B.29 gives logical relatedness. This combined with the inductive residsghe result. O

THEOREMB.39: COMPLETENESS OFALGORITHMIC EQUALITY.

1. fAFC=C:u:Kthen(A)” F C < C':(K)".

2. If A - X = K'kind then(A)~ + K <= K'kind.
Proof. Each part is immediate usingeEmmA B.38, LEMMA B.39, LEMMA B.29, and the definition of
identity substitutions. O
B.4 Algorithmic Kinding and Typing

Using algorithmic equality, we give a syntax-directed version of the kindimhtgping rules. The single
kind/type-conversion rule in the declarative judgement is replaced baliggpremises on many rules.
Algorithmic kinding and typing are given by three judgements:

e T FX kind Operational interpretation: in the given context, chedkig a well-formed kind.
e T FC : K Operational interpretation: in the given context, synthesize a kind éwifail.

e Y:Z FHE : A Operational interpretation: in the given contexts, synthesize a typedofail.
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= stands for a context containing algorithmic typirg { A) assumptionsY stands for a context containing
algorithmic kinding ¢ : K) assumptions.(I)* and (A)* are the obvious function from declarative
contexts to algorithmic typing oneg.Y)~ translates algorithmic typing contexts to algorithmic equality
ones, so its range is®. Well-formedness of these new contexts is defined in the usual manmaugeall
erased kinds are well-forme(lf')~ is well-formed wheri is.

Soundness and completeness are stated as follows:

THEOREM B.40: SOUNDNESS OFALGORITHMIC TYPING AND KINDING. AssumeA andT are well-
formed.

1. If(A)T FK kind thenA - K kind.

2. If (A)* ¢ = KthenA I C:K.

3. If(A); ()" FE © AthenA; T FE:A.
Proof. In Twelf. O
THEOREMB.41: COMPLETENESS OFALGORITHMIC TYPING AND KINDING.

1. If A - Kkind then(A)™ FK Kind.

2. If A C:Kthen(A)T ¢ = K for somek’ such thatA F K’ = Kkind.

3. fA;T FE:Athen(A)*; ()T HE A for somed’ such thatA + A’ = A:: TYPE
Proof. In Twelf. O

Note that in completeness, we only require that the algorithm synthesize speia the equivalence class;
indeed, LEMMA B.47 shows that our algorithmic judgements synthesize a unique type fana tésing
these theorems, we can show that preserves well-formedness of its arguments.

B.5 Type Safety

THEOREM B.42: TYPE SAFETY FOR ALGORITHMIC TYPING. AssumeA andI" are well-formed. If
(A)*; ()" FE  Athen forallE' such tha —* E/

o (A); ()" FE 7 A whereA - A’ = A:TYPE

e and eitherE’ value or E' — E”.
Proof. In Twelf. The proof is by the standard progress and preservation lenirhasonly slightly unusual
part is that, for expedience, we show preservation only up to definitemadlity; this allows us to prove
the necessary substitution lemma directly as a consequence of substituttbe fteclarative system and

equivalence of the algorithmic and declarative presentations. The algarifndgements make showing
type safety easier in several ways:

e Because all the rules are syntax-directed, the inversion lemmas are fpirespection; no induction
iS necessary.

e Itis easy to show that equality of types implies equality of subcomponents. iggolis property
directly for the declarative system would likely require a logical relatiogsiaient.
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e In the case of progress fOiATcase, it necessary to show that the scrutinized constructor is either
weak head reduciblez, or s I. Because the constructor is well-typed, it is algorithmically equal
to itself, so the definition of algorithmic equality gives the result (becausgress only considers
closed terms, the constructor in question cannot be neutral). Establistsipgdperty directly for the
declarative presentation would be more difficult. Similar reasoning is us@&fifoase.

O

THEOREM B.43: TYPE SAFETY FOR DECLARATIVE TYPING. If A; T' - E: A then, for allE’ such that
E—*E,A; T - E:Aand eitherE’ value or there exists al” such thatt’ — E”.

Proof. In Twelf. Type safety is direct using soundnessHEDREM B.40) and completeness HEOREM
B.41) of algorithmic typing and type safety for algorithmic typingHOREM B.42). O

B.6 Decidability

LEMMA B.44: DECIDABILITY OF ALGORITHMIC EQUALITY FOR NORMALIZING CONSTRUCTORS
AND KINDS. By “not X”, we mean “X implies a contradiction”.

1. f¥U F K < K'kindand¥ + L <= L’'kind then either
U F K < Lkindornot¥ F K < Lkind.

2. fU F ¢, « ¢, :Kand¥ F ¢, «= C,::Kthen either
U FC < Cy:Kornot¥  C; <= Cy::K.

3. fU F Cy <=ur Cjand¥ - Cy <=1 C, then either
U F C; <=mr Coornot¥ + C; <=yt Co.

4. If U F C; <=, C,and¥ - Cy, <gq, C,then either
VU Cy <=gg Co0rnot¥ - C; <gq, Co.

5. fU F C; < 1vyp Cll andV + Cy <=1ypg C/2 then either
U - Cy <= r1ypg CoOrnot¥ + Cy <—=-1ypg Cs.

6. fU F ¢, «— C,:Kand¥ F ¢, «—— C,::X then either
P - C; «—— Cy::K" for someX” or not.

Proof. The proof is by mutual lexicographic induction on the given derivatiorisusés lEMMA B.13,
LEMMA B.17, LEMMA B.15, LEMMA B.16, LEMMA B.19, and IEMMA B.20. O

THEOREMB.45: DECIDABILITY OF ALGORITHMIC EQUALITY.
1. If A FXkind andA + K'kind then eithelA)~ + K <= K'kindornot(A)~ + K <= Kkind.
2. IfA Fc:KandA + ¢ ::KtheneithefA)” - C < ¢ ::(K)” ornot(A)” F C < C':=:(X)".

Proof. In each part, reflexivity (EMMA B.5), completeness of algorithmic equality{HOREMB.39), and

decidability for normalizing kinds (EMMA B.44) give the result. O
whr
LEMMA B.46: CONSTRUCTORSHAVE UNIQUE WEAK HEAD NORMAL FORMS. If ¢ —* ¢’ and
whr

¢ —* ¢ whereC’ whnorm and¢” whnorm thenc’ is ¢”.
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Proof. By induction on the first derivation. When one side endslimrt-whr  and the other imvhrrt-refl ,

eitherC’ or " is C, so the premise derivation of ™ x combined with the derivation af whnorm give a
contradiction by IEMMA B.18; then we get the result vacuously. When both derivationa/ang-refl ,
both ¢’ andc” areCc. When bother derivations end whrrt-whr , determinacy of weak head reduction
(LemmA B.15) and the IH give the result. O

LEMMA B.47: ALGORITHMS SYNTHESIZE UNIQUE KINDS AND TYPES.
1. fY FC = KandY F C = K thenKisK'.
2. fT;ZFE T AandY;=E FE : A thenAis4’.

Proof. The algorithmic typing and kinding rules are syntax-directed, so in ea@htbadinal rules of both
derivations must be the same. Then, in each case, the result follow#ifecawailable inductive hypotheses,
using LEMMA B.46 and simple properties of syntactic equality (reflexivity, symmetry, itigitng congru-
ence, and equality of subcomponents). O
LEMMA B.48: SOUNDNESS OFMANY-STEP WEAK HEAD REDUCTION.

whr
If A FCc:KandC —* ¢/, thenA - C = ¢’ ::K.
Proof. In Twelf. O

LEMMA B.49: NORMALIZING TERMS OFKIND TYPE HAVE WEAK HEAD NORMAL FORMS.
o . whr
If U - Cy <= C,:: TYPE then there exists @; such thatC; whnorm andC; —* Cs.

Proof. By induction on the given derivation. In the case fmrm-eq-cn-whr-left , the IH gives
whr

that there exists &; such thatc/ —* Cs, and by premise&, why c}, sowhrrt-whr  gives the re-

sult. In the case fonorm-eqg-cn-whr-right , the result is immediate by the IH. In the case for

norm-eq-cn-type , LEMMA B.17 applied to the premise amchrrt-refl give the result. No other

rules derive a conclusion with the correct kind. O

THEOREMB.50: DECIDABILITY OF ALGORITHMIC TYPING AND KINDING.
1. Given a conteXt” and a kindk, eitherY F K kind Or NotY FK kind.
2. Given a contexXi’ and a constructoct, eitherY ~ C %, K for somex or not.
3. Given context¥” and= and a ternE, eitherY;= F E . A for somea or not.

Proof. The first two parts are by mutual induction over the given kind and castsiruthe third is by
induction on the given term. The proof useeNMMA B.47, LEMMA B.40, LEMMA B.4, LEMMA B.9,
LEMMA B.10, LEMMA B.48, LEMMA B.46, and LEMMA B.49. O

THEOREMB.51: DECIDABILITY OF DECLARITIVE JUDGEMENTS.
GivenA andk, eitherA F K kind or not A F K kind.
GivenA, K, andk’, eitherA + K = K’ kind or notA F K = K'kind.

GivenA, C, andK, eitherA F C::KornotA +~ C::K.

Ll

GivenA, ¢, ¢/, andk, eitherA - ¢ = ¢/::KornotA F ¢ = ¢’ ::K.
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5.

GivenA, I', E, andA, eitherA; T' FE:AornotA; I' - E:A.

Proof. The proof of each part is direct using various lemmas and the previotss pa

1.

This part uses decidability, soundness, and completeness of algoréquatity (THEOREM B.50,
THEOREMB.40, and HEOREMB.41).

This part uses the previous part to establish well-formedness of the ikilguestion, as the algorithm
is only sound for well-formed kinds. It also uses regularitgfimA B.9) and decidability, soundness,
and completeness for algorithmic kinding{EOREMB.45, THEOREMB.22, and HEOREMB.39).

. This part uses the previous part and synthesis of unique kirelg\la B.47), as well as decidabil-

ity, soundness, and completeness of algorithmic equaline@Rem B.50, THEOREM B.40, and
THEOREMB.41).

. This part uses the previous part to establish well-kindness of thé&ractwss in question. It also uses

uses regularity (EMMA B.9) and decidability, soundness, and completeness for algorithmic kinding
(THEOREMB.45, THEOREMB.22, and HEOREMB.39).

. This part uses the previous part and synthesis of unique kirelgnjla B.47), as well as decidabil-

ity, soundness, and completeness of algorithmic equalige@GREM B.50, THEOREM B.40, and
THEOREMB.41).

O
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