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Abstract

Policy Reuse (PR) provides Reinforcement Learning allgor#t with a mechanism to bias an ex-
ploration process by reusing a set of past policies. PoleydR offers the challenge of balancing
the exploitation of the ongoing learned policy, the expiiora of new random actions, and the
exploitation of past policies. Efficient application of Ryl Reuse requires a mechanism to build,
for each domain, a library of policies which is useful anduaate enough to efficiently solve any
task in such domain. In this work, we propose a mechanismetatera library of policies based
on a similarity metric among policies. If the new policy iswar to any of the past ones, it is not
added to the library. Otherwise, it is stored together with dther policies, so it can be reused in
the future. Thus, the Policy Library stores thasisor eigen-policieof each domain, i.e., the core
past policies that are effectively reusable. Empiricaultssdemonstrate that the Policy Library
can be efficiently created and that the stored eigen-pslia® be understood as a representation
of the structure of the domain.






1 Introduction

Policy Reuse (PR) is a learning process in which learnedieslare saved and reused for similar
tasks in the same domain. The domain defines how the agentdseinethe environment, i.e. the
state transition function; each different task in the saoreain is characterized through its reward
function.

Policy Reuse is built upon two previous contributions: syiitoplan reuse [10] and extended
rapidly-exploring random trees (E-RRT) [1]. Planning byakngical reasoning provides a method
for symbolic plan reuse. However, when reusing a past plarstep becomes invalid to use in the
new situation, the traditional reuse questions are: efifii¢o resolve the locally failed step and
direct the search to return back to another past plan stép), tmrcompletely abandon the past plan
and re-plan from scratch from the failed step directly tagahe goal. E-RRT solves this general
reuse question by guiding a new plan probabilistically vatpast plan. The past experience is
effectively used as #ias in the new search, and thus solving the general reuse proinleam
probabilistic manner.

Building upon these two approaches we have recently degdlagprobabilistic policy reuse
algorithm for tasks within the same domain in Reinforcemegdrning, that we called PRQ-
Learning [4]. It is based on two cornerstones. Firstly, apl@ation strategy able to bias the
exploration of the domain with a predefined past policy; aewbad, a similarity metric that allows
the estimation of the similarity of past policies with resp® a new one [3]. The PRQ-Learning
algorithm uses the similarity metric to estimate the usedas of reusing each of the past policies,
so the most useful one is selected and exploited to learnetveone.

Policy Reuse requires a set of policies to reuse. Thus, aanéxah to create this set is re-
quired. In this work, we contribute an incremental methodbudd a library of policies. When
solving a new problem by reuse, the algorithm determinediveneéhe learned policy is or is not
“sufficiently” different from the past policies, as a furanti of the effectiveness of the reuse. The
idea is to identify the core policies that need to be savedlteesany new task in the domain
within a threshold of similarity. Given a threshaolddefining the success of the reuse, our algo-
rithm identifies a set ofd-eigen-policies,” as the basis or learned structure of threain. Thus,
our method to build the Policy Library has a novel “side-effen terms of learning the structure
of the domain, i.e., the basis or the “eigen-policies” of doenain.

Policy Reuse and the learning of the structure of a domairstifehallenge areas, although
several related works can be found in the bibliography. Rstaince, the integration of previously
learned sub-policies or options is applied to improve tlaelmg of new tasks [9, 6]. Hierarchical
RL [2] tries to find the relationship among different absti@t levels of action policies. Life-
long learning improves new learning processes by usingxperence of past ones [7], and some
methods to find the structure of the domain can be found [8)weéver, this is the first work in
which Policy Reuse is applied to learn the structure of a doma

This report is organized as follows. Section 2 introduceliciP&euse, the similarity metric
among policies, and the PRQ-Learning algorithm, which ieffitty reuses a defined set of policies.
Section 3 defines the concept of Policy Library, and dessrPePR, an algorithm to build it.
Section 4 describes the experiments performed. Lastlyiddes summarizes the main conclusions
of this work.



2 Policy Reuse

The goal of this section is to summarize Policy Reuse. Kijraté describe the concepts of task,
domain, and gain. Then, we define how the reuse of a past pslioged as a bias in a new
exploratory process. We also introduce a similarity cohbepveen policies, which motivation is
deeply described in [3]. Lastly, we describe the PRQ-leayilgorithm [4].

2.1 Domain, Tasks and MDPs

A Markov Decision Process [5] is represented with a tupl§, A, 7, R >, whereS is the set of

all possible states4 is the set of all possible action®, is an unknown stochastic state transition
function,7 : S x A x § — R, andR is an unknown stochastic reward functidd,; S x A — R.

We focus on RL domains where differetatskscan be solved. We introduce a task as a specific
reward function, but the other concep$s,4 and7 stay constant for all the tasks. Thus, we extend
the concept of an MDP by introducing two new concepts: doraaih task. We characterize a
domain,D, as a tuple< S, A, 7 >. We define a task), as a tuple< D, Rq >, whereD is a
domain as defined before, aitl, is the stochastic and unknown reward function.

In this work we assume that we are solving a task with absgroal states. Thus, H; is
a goal state7 (s;,a,s;) = 1, T(s;,a,s;) = 0fors;, # s;, andR(s;,a) = 0, for alla € A.

A trial starts by locating the learning agent in a random fp@siin the environment. Each trial
finishes when a goal state is reached or when a maximum nurhiségps, sayH, is achieved.
Thus, the goal is to maximize the expected average reinfogoé per trial, sayl/, defined as
W = % fozo Etho vhry.n, wherey (0 < v < 1) reduces the importance of future rewards, and
., defines the immediate reward obtained in the d$teyf the trial &, in a total of K trials. An
action policy,IT : S — A, defines for each state, the action to execute. The actiooypdt is
optimal if it maximizes the gain W in such a task, 3&¥;.

The goal of Policy Reuse is to describe how learning can be gspé different policies, which
solve different tasks, are used to bias the explorationgg®of the learning of the action policy of
another similar task. Then, the scope of this work is sumaedras: (i) we need to solve the task
Q, i.e. learnlIy,; (ii) we have previously solved the set of tagi®,, ..., (2, }, so we have the set
of policies,{II}, ... ,II* }, to solve them respectively; (iii) how can we use the presipalicies,
IT%, to learn the new onédJg,?

An efficient solution to this problem is the PRQ-Learningaalthm. This algorithm automat-
ically answers two questions: (i) what policy, from the §Bt, ... II*}, is used to bias the new
learning process? (ii) once a politi; is selected, how is it integrated in the learning process?
The algorithm is based on an exploration strateggeuse, which is able to bias the learning of a
new policy with only one past policy. From this strategy, mitarity metric between policies is
obtained, providing a method to select the most accurateyol reuse. Both the-reuse strategy
and the similarity metric, defined in [3], are summarizechia hext subsection.

2.2 A Similarity Metric Between Policies

The goal of ther-reuse strategy is to balance random exploration, expiloitaf the past policy,
and exploitation of the new policy, which is being learnedently. Ther-reuse strategy follows



the past policy, sa¥l,..;, with a probability of). However, with a probability of — v, it exploits
the new policy. Obviously, random exploration is alwaysuiegd, so when exploiting the new
policy, it follows ane-greedy strategy, as defined in Table 1. Lastly, th@arameter allows the
decay of the value af in each trial.

m-reuse [y, K, H, 9, v).
fork=1to K
Set the initial states, randomly.
Sety; ¢
forh=1t0 H
With a probability ofyy,, a = I1,4(s)
With a probability ofl — ¢, a = e-greedyIl,,c.,(s))
Receiv current stat€, and rewardsy, j,
UpdateQ <« (s, a), and thereforell,,.,,
Setyy 1 — Ypv
Sets « s’
W= & 3 YoV
ReturnWV andIl,,.,,

Table 1:7-reuse Exploration Strategy.

Interestingly, ther-reuse strategy also contributes a similarity metric betwgolicies, based
on the gain obtained when reusing each policy. Let’s @3lthe gain obtained while executing
the m-reuse exploration strategy, reusing the past pdlicyWe callll;, the optimal action policy
for solving the task). W is the gain obtained when using the optimal polidy,, to solvefa.
Therefore,IV; is the maximum gain that can be obtainedin Then, we can use the difference
betweenV; andWW; to measure the similarity among both policies using theadist metric shown
in equation 1.

d.(IL;, IT) = We, — W; (1)

In this case the distance metric is not symmetric,dsdIl;, II;) could be different from
d_(I1;,11;). This distance metric is also useful to estimate how usefuktise the policyl;
is to learn to solve the new task. Then, the most useful péticguse, from a seilly, ..., I1,},
is argy; max(W;),7 = 1,...,n. Notice thatl/(, has disappeared of the formula, given that is
independent of. Thus,V;, or the average reward obtained when reusing the poljoyith the
m-reuse exploration strategy, is used as an estimation ofdirovlar the policyll; is to the one we
are currently learning. The set of; values, fori = 1,...,n, is unknown a priori, but it can be
estimated on-line while the new policy is computed. Thisideformalized in the PRQ-Learning
algorithm.



2.3 PRQ-Learning Algorithm

The PRQ-Learning algorithm (Policy Reuse in Q-Learning)i$4hown in Table 2. The learning
algorithm used is Q-Learning [11]. It has been chosen becaus an off-policy algorithm, and
therefore, it allows to learn a policy while following a difent one. The goal is to solve a td3k
i.e. to learn an action policii,. We haven past policies to solve different tasks respectively.
For simplicity of the notation, we will call these policiék, ..., II,. Let's call W, the expected
average reward that is received when reusing the paélicwith the 7-reuse exploration strategy.
Also, let’s calliV, the average reward that is received when following the palig greedily. The
algorithm uses thél” values in a softmax way to choose between reusing a pasypuiic the
m-reuse exploration strategy, or following the ongoing heat policy greedily.

This algorithm has demonstrated to successfully reuse defined set of policies [4]. The
problem is that it requires the existence of such a set otigsli This work contributes a method
to incrementally construct the Policy Library, so each tiameew policy is learned, the method
decides whether to add it to the library or not, depending dhreshold of similarity,). The
algorithm is described in the next section.

3 An Algorithm to Learn a Library of Policies

This section describes theL P R algorithm (Policy Library through Policy Reuse). The aigfan

is based on an incremental learning of policies that solfferént tasks. Notice that we are as-
suming that the tasks that the algorithm will be asked toesahe unknown a priori. Otherwise, a
method to learn them in parallel could be applied.

The algorithm works as follows. Let’s caltL the Policy Library, and let’'s define it as a set
of policies. Initially, the Policy Library is empty?L = (). Then, the first task, s&y,, needs to
be solved, so the first policy, sds, is learned. To learn the first policy, any exploration stgst
could be used but the policy reuse strategseuse, given that there is not any available policy to
reuse.ll; is added to the Policy Library, sBL = {II;}. When a second task needs to be solved,
the PRQ-Learning algorithm is applied, reusiig Thus,II; is learned. Then, we need to decide
whether to addl; to the Policy Library or not. This decision is based on howisinil; is toIl,,
following the similarity metric defined in equation 1, insteted in equation 2. In the equation,
W5 is the average gain obtained when followiig greedily, and/1/; is the average gain obtained
when reusindl;. Both values are computed in the execution of the PRQ-Legralgorithm, so
no additional computations are required.

d_.(II;,1y) = Wy — W, (2

As defined in the previous section, this distance metrieres how similafl; is toIl,. In
our case, ifil; is very similar toll,, i.e. d_.(I1;, II,) is close to 0, to include the second policy in
the library is unnecessary. However, if the distance iseldng is included.

The PLPR algorithm is defined in Table 3. It is executed eaunk that a new task needs to be
solved. It inputs the Policy Library and the new task to splured outputs the learned policy and
the updated Policy Library.

Equation 3 is the update equation for the policy libraryjvdet from equation 2. It requires
the computation of the most similar policy, which is the pplil; such asj = arg; max V;, for
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Policy Reuse in Q-Learning

e Given:

1. Asetofn policies,{II7, .. ., IT}; } to solve different tasks
2. A new task we want to solve

3. A maximum number of trials to executs,

4

. A maximum number of steps per tridi
e |Initialize:

1. Qqa(s,a) =0,Vs€ S,ac A

2. Initialize Wg, to 0

3. Initialize W; to O

4. |Initialize the number of trials where polidyg, has been chosebj, = 0

5. Initialize the number of trials where polidy; has been choseb); = 0,Vi =1,...,n
e Fork=1to K do

— Choose an action policy];, randomly, assigning to each policy the probability of lgeselected computed by the following

equation:

eTWj

P(l;) = S e
— Initialize the states to a random state
— SetR=0
— forh =1to H do
* Usell; to compute the next action to execug following an exploitation strategy.
* Executea
x Receive current state;
x Receive current reward,
x UpdateQgq (s, a) using Q-Learning update function:

Q(s,0) = (1 - a)Q(s,a) + alr + ymax Q(s', a’)]

* SetR = R+ ~"r

x Sets «— s’

- Setw; = HE
- SetU]‘ =U;+1
— Setr =17+ AT
Table 2: PRQ-Learning
i =1,...,n. The gain obtained by reusing such a policy is calléd,.. The new policy learned

is inserted in the library itV,,,. is lower thans times the gain obtained by using the new policy
(Wq), whered € [0, 1] defines a similarity threshold.

The PLPR algorithm has an interesting “side-effect” in terof learning the structure of the
domain. Notice that the Policy Library is initialized to etypand a new policy is included only
if it is different enough with respect to the previously stwwones, depending on the threshald
When the number of policies stored is fully representatiizéhe domain, no more policies are
stored. Thus, the stored ones can be considered as the baigjsio-policie®f the domain, so any



PLPR Algorithm

e Given:

1. A Policy Library, LP, composed of policies,{I1;, ..., I, }
2. A new task we want to solve
3. A parameter
e Execute the PRQ-Learning algorithm, using LP as the setsifgalicies. Receive from
this executiordlg, Wqo andW,,,..., where:
— Ilg is the learned policy
— Wq is the average gain obtained when the poligywas followed

— Wiae = max Wy, fori=1,....n

e Update PL using the following equation:

[ PLU{Ilg} if Wi < 6Wo
PL= { PL otherwise (3)

Table 3: PLPR Algorithm

task can be efficiently learned by reusing such a librarysigaThe parametérhas an important
role. If it receives a value of 0, the Policy Library storedyothe first policy learned, given that
the average gain obtained by reusing it will be greater tleso in most cases, due to the positive
rewards obtained by chance.jlf= 1, most of the policies learned are inserted, due to the fatt th
Wiae < Wa, given thatiV, is maximum if the optimal policy has been learned. Differegiies

in the rang€0, 1) provide different sizes of the library, as will be demont&dan the experiments.
Thus,é defines the size, and therefore the resolution, of the lorar

4 Experiments

This section describes the experiments performed in a aagigdomain, which is described next.

4.1 Navigation Domain

This domain consists of a robot moving inside of an office aasashown in Figure 1(a), similar
to the one used in other RL works [8]. The environment is regméed by walls, free positions and
goal areas, all of them of sidex 1. The whole domain isV x M (24 x 21 in this case). The possible
actions that the robot can execute are “North”, “East”, “®d@and “West”, all of size one. The
final position after each action is noised by a random vagi&dilowing a uniform distribution in
the rangd —0.20, 0.20). The robot knows its location in the space through contisumordinates
(x,y) provided by some localization system. In this work, we asstinat we have the optimal

6



uniform discretization of the state space (which consi§t4ox 21 regions). Furthermore, the
robot has an obstacle avoidance system that blocks thetexeofiactions that would crash it into
a wall. The goal in this domain is to reach the area marked \W@ithwhen the robot reaches it, it
is considered a successful trial, and it receives a rewatd Otherwise, it receives a reward of 0.

(a) Task), (b) 50 different goal areas

Figure 1: Office Domain.

Performing a task consists of trying to solvesit= 2000 times. Each of these times is called
atrial. Each trial consists of a sequence of actions urgibibal is achieved or until the maximum
number of actionsi = 100, is executed. Notice that there is no separation betweenitgpand
test, so the correct balance between exploration and eaptm must be achieved to maximize the
average gain in each performance.

In the following experiments, 50 different tasks are setjaéiy performed, each of them with
a different reward function, located in different positsoof the different rooms of the domain, as
shown in Figure 1(b). Notice that the figure does not repreaamique task with 50 different
goals, but the 50 different goal areas of the 50 differerksaghe results provided are the average
of 10 different executions, in which the 50 different tasks sequentially performed following a
random order.

4.2 Results

In the experiments, the following parameter setting is udeat the Q-Learning algorithmy =
0.95 anda = 0.05. For ther-epsilon exploration strategy, = 1, v = 0.05, ande is set tol — 1,

in each step. In the PRQ-Learning algorithimis initially set to 0, and is increased by 0.05 after
each trial. All the previous parameters have empiricalipdestrated that provide good results in
this domain [3, 4].

The first element to study is the size of the Policy Libraryltowhile performing the tasks
with the PLPR algorithm, i.e. the number of eigen-policiesmed in the Policy Library, shown
in Figure 2. The figure shows in theaxis the size of the Policy Library, and in theaxis, the
number of tasks performed up to that moment. As introducegeiction 3, whed = 0, only 1
policy is stored. When = 0.25, the number of eigen-policies is around 14. Interestindi is



the number of rooms in the domain. While increasinghe number of eigen-policies increases
and wheny = 1, almost all the learned policies are stored.
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Figure 2: Number of eigen-policies obtained.

Figure 3 shows an example of the eigen-policies obtainedéexecution, withh = 0.25. It
represents the Policy Library obtained after performirg 30 tasks which, in this case, is com-
posed of 14 eigen-policies. In the figure, we assume thatiaypislrepresented by the goal area
of the task that it solves. An eigen-policy is represented al the goal area, but in this case, the
area is shaded. The figure demonstrates that for most of ¢ines;cone and only one eigen-policy
has been learned. The algorithm has discovered that if tiierelnt tasks are given two goal areas
in the same room, their respective policies are very sipsaonly one of them needs to be stored
in the Policy Library. That allows us to say that the struetaf the domain has been learned by
the PLPR algorithm, and is represented by the eigen-pslicie

Figure 3: Eigen Policies.

These results demonstrate empirically the influence of therameter in the size of the library,
and enforce the idea of defining theeigen-policies as the policies stored in the Policy Lirar
when learning with the PLPR algorithm with a defined valuej ofLastly, Figure 4 shows the
average gain obtained when performing the 50 differentstagkh the PLPR algorithm, for the
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different values of. In most of the cases$, = 0.25,0.50,0.75 and 1, the average gain increases
up to more than 0.2, and no significant differences exist betwthem. Only in the case &= 0,

the average gain stays low, around 0.16, given that, agdnted above) = 0 generates a Policy
Library with only one policy (the first one learned). For campgons, the same learning process
has been executed with the Boltzmann exploration stravetly different settings of the tempera-
ture parameter. The maximum average gain obtained by thanoisd 0.12, demonstrating that
Policy Reuse obtains an increment of almost a 100% gain ipéhiermance of the 50 tasks over
the results obtained when the 50 tasks are learned fronthcrat
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Figure 4: Average gain obtained in the life long term.

5 Conclusions

The goal of this work is to extend Reinforcement Learning émdins where policies to solve
different tasks, must be learned. In this report we dese@ibmethod, the PLPR algorithm, to build
a library of policies based on the concepts of Policy Reusksamilarity between polices. The
work contributes three main results. Firstly, the PLPR athm allows the construction of the
Policy Library. Second, reusing the policies stored in tbidy Library for learning a new policy
provides a better performance than when learning the neaydodbm scratch. And last, the Policy
Library is composed of a set of eigen-policies, which hasaestrated to represent the structure
of the domain. Future work is oriented to the use of the kndg#elearned about the structure of
the domain, and how it can be transferred to new learninggsses.
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