
Exploiting Redundancy
for Robust Sensing

Suman Nath

CMU-CS-05-166
August 2005

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:

Srinivasan Seshan, Chair
Phillip B. Gibbons
M. Satyanarayanan

Deborah Estrin, University of California, Los Angeles

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

c© 2005 Suman Nath

This research was sponsored by the National Science Foundation under grant no. ANI-0092678,
the State of Pennsylvania under award no. 6003221 and through a generous grant from the Intel
Corporation. The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies, either expressed or implied,
of any sponsoring institution, the U.S. government or any other entity.

Keywords: sensor networks, wide-area sensing, query processing, robustness and avail-
ability, resource-efficient algorithms.

Abstract

In this thesis, we explore the challenges in making an Internet-scale heterogeneous sens-

ing system more robust. We target ”end-to-end” robustness in that we address failures

in collecting data from a large collection of wired and wireless sensors, and problems in

making sensor readings available to end-users from storage on Internet-connected nodes.

Although often overlooked, robustness is extremely crucial for such systems because they

are often deployed in harsh environments and are not typically very well-maintained.

Traditional robustness techniques generally involve tradeoffs between robustness and

resource-efficiency; i.e., they mask failures by using additional resources (e.g., energy,

storage). Unfortunately, these traditional tradeoffs are not well suited to resource con-

straints and large scales of typical sensing systems.

This dissertation puts forth the claim that more practical solutions can be developed

by exploiting several unique deployment- and application-specific properties of typical

sensing systems. We show that by slightly relaxing the requirements of exact or fresh

answers, we can significantly improve the robustness of a system, without additional re-

source overheads. We argue that this approach is well suited to sensing systems since

optimizing resource usage is one of the important goals of their designs and the applica-

tions can often tolerate approximate or slightly stale data. We support the above claim

by proposing efficient solutions for robust data collection and storage in a sensing system.

For robust collection of data from wireless sensors, we present Synopsis Diffusion,

a novel data aggregation scheme that exploits wireless sensors’ broadcast communica-

tion and sensing applications’ tolerance for approximate aggregate answers. Synopsis

Diffusion, unlike previous schemes, decouples aggregation algorithms from underlying

aggregation topologies, enabling highly robust aggregation with energy-efficient multi-

path routing. We also present Tributary-Delta, a novel adaptive aggregation scheme that

efficiently combines the benefits of existing schemes and uses application-aware adapta-

tion to cope with the dynamics of deployment environments. Under typical loss rates,

our techniques can provide five times more accurate results than existing energy-efficient

schemes, without additional energy overhead.

i

ii Abstract

For storing sensor readings on Internet-connected nodes, we show that existing de-

sign principles used to build highly available storage systems do not work well for an

Internet-scale system where failures are often correlated. Our results show that, for sens-

ing applications, weak quorum systems are more suitable than traditional strict quorum

systems because weak quorum systems are more effective in tolerating correlated fail-

ures and sensing applications can tolerate the small data inconsistency caused by such

quorum systems. We also show that configuring a system with parameters derived by

using the correlation model we develop is more effective than existing techniques in op-

timizing resource usage and target availability. Finally, we show how several data- and

query-characteristics of a typical sensing system can be exploited to design efficient self-

repairing and load balancing techniques. Our techniques can improve the availability of

a sensing system by orders of magnitude without any additional resource overhead.

We show the feasibility of our techniques through a combination of analysis, simula-

tion, and implementation within IrisNet, an Internet-scale sensing infrastructure that we

have developed as part of this dissertation.

To my parents,

Mukti Nath and Manik Lal Nath

iii

Acknowledgements

Over the last five years of my graduate education at CMU, a number of people influenced

me and helped me complete this dissertation. I hope that I can remember everyone who

helped me through this difficult yet rewarding process.

First and foremost, I would like to thank my advisor, Professor Srinivasan Seshan,

for taking me on as a student about four years ago, even though I had little experience

in systems research. He has been an ideal advisor in every respect, in terms of technical

advice on my research and in terms of professional advice. My choice of career path

has been greatly influenced by Srini. He encouraged me to work on sensor networks

and introduced me to the researchers at Intel Research Pittsburgh that later became

an extraordinary piece of good fortune for me. He showed a constant optimism in the

ultimate usefulness and success of my research that helped to sustain me as I worked

through the hard problems.

I am indebted to Dr. Phillip B. Gibbons and Dr. Haifeng Yu from Intel Research

Pittsburgh for their endless hours of advice and guidance regarding my research. There is

no doubt that this dissertation would have been impossible without their help. It was my

work with Phil in the IrisNet project and on Synopsis Diffusion that initiated the work

in this dissertation. Haifeng guided my research on robustness of distributed storage

systems that constitutes a significant part of this dissertation. Phil’s tireless editorial

effort vastly improved the quality of this dissertation; wherever there was a sentence too

meandering or grammatically incorrect, he had been there to edit it. Phil and Haifeng

were the best mentors I could have asked for, and I hope that I can live up to their high

standards.

I thank the other members of my thesis committee, Professor M. Satyanarayanan and

Professor Deborah Estrin, for helping me select interesting research direction to explore. I

am grateful to Satya also because of his enthusiastic support for the IrisNet project while

he was the director of Intel Research Pittsburgh. Intel Research Pittsburgh generously

helped me by providing the resources required for my research. I am also grateful to

Professor Bruce Maggs for kindly taking me as his student in my first year at CMU and

v

vi Acknowledgements

then giving me the freedom to choose the topics and the collaborators of my research.

I have built upon the work of the many members of the IrisNet projcet. Shimin Chen,

Amol Deshpande, and Yan Ke designed and implemented significant parts of IrisNet that

I could play with in my research. The other members of the IrisNet project, including

Brad Karp, Padmanabhan Pillai, Rahul Sukthankar, and Dilip Sundarraj, had important

inputs on my research on IrisNet. People from the Argus project, including Mark Abbott,

Ganesh Gopalan, Rob Holman, Chuck Sears, John Stanley, and Curt Vandetta, helped

us evaluating the IrisNet system with a real application. They were very tolerant users

of IrisNet and I hope that this software continues to serve them well.

I am grateful to Zachary Anderson and Amit Manjhi for their valuable help in my

work on Synopsis Diffusion and Tributary-Delta. Zach helped me in evaluating many

ideas regarding Synopsis Diffusion. The idea of Tributary-Delta took shape during my

discussion with Amit (and Phil).

I owe a special debt of gratitude to my mother for encouraging and supporting me to

go to graduate school and my father for inculcating the love for knowledge in me. My

friends from BUET, Anjan Bhowmick, Liton Chakraborty, Shubhashish Ghosh, Ashikur

Rahman, Amalendu Roy, have provided a support network that has withstood the test of

time. I would also like to thank many new friends I have made here at CMU, including,

but not limited to: Mukesh Agrawal, Aditya Akella, Ashwin Bharambe, Yan Ke, Amit

Manjhi, Mahim Misra, Muralidhar Talupur, and Hong Yan.

Contents

1 Introduction and Preview 1

1.1 Focus of This Thesis: Robust Sensing . 2

1.2 Internet-scale, Heterogeneous Sensing System 3

1.2.1 Sensing System Architecture . 3

1.2.2 IrisNet: A Shared Infrastructure for Sensing Applications 5

1.3 End-to-end Robustness of a Sensing Application 6

1.4 Preview: Two Fundamental Challenges of End-to-end Robustness 7

1.4.1 Challenge#1: Robust Data Collection 7

1.4.2 Challenge#2: Robust Data Storage 13

1.4.3 Summary and the Thesis Statement 17

1.5 Contribution and Structure of the Thesis 18

1.5.1 Conceptual Contributions . 18

1.5.2 Artifacts . 19

1.6 Outline of the Thesis . 20

2 Background and Related Work 23

2.1 Wireless Sensor Networks . 23

2.1.1 Data Processing in Sensor Networks 25

2.1.2 In-network Aggregation . 25

2.1.3 Robustness Against Transient Failures 27

2.1.4 Robustness Against Long-term Failures 29

2.1.5 Discussion . 30

2.2 Robust Sensor Data Storage . 32

2.2.1 Replication and Erasure-coding of Read-only Data 33

2.2.2 Replication of Read-write Data 33

2.2.3 Automatic Replica Regeneration 35

2.2.4 Correlated Failures . 37

vii

viii CONTENTS

2.2.5 Discussion . 39

2.3 Summary . 40

3 IrisNet 41

3.1 A Two-Tier Architecture . 43

3.2 The SA Architecture . 43

3.2.1 Senselets: Application-specific Filtering 44

3.2.2 Cross-Senselet Sharing . 45

3.2.3 Incorporating Wireless Sensors . 47

3.3 The OA Architecture . 48

3.3.1 Distributing the Database . 49

3.3.2 Answering Queries . 50

3.3.3 Caching and Data Consistency . 52

3.3.4 Fault Tolerance and Replication 52

3.4 IrisNet Applications . 53

3.4.1 Developing an Application in IrisNet 54

3.4.2 Prototype Applications . 54

3.5 Summary . 57

4 Synopsis Diffusion 59

4.1 A Näıve ODI Algorithm . 61

4.2 Synopsis Diffusion . 62

4.2.1 Synopsis Diffusion on a Rings Overlay 64

4.2.2 More Robust Rings Topologies . 66

4.3 Formal Framework and Theorems . 66

4.3.1 Definitions . 67

4.3.2 ODI-Correctness . 68

4.4 Examples: Duplicate-Sensitive Aggregates 71

4.4.1 Approximate Count . 72

4.4.2 Approximate Count Distinct . 73

4.4.3 Approximate Sum . 73

4.4.4 Uniform Sample of sensor readings 75

4.4.5 Aggregates computed from Uniform Samples 75

4.4.6 Most Popular Items . 76

4.4.7 Union Counting over a Sliding Window 76

4.4.8 Count-Min Sketch Generation . 77

CONTENTS ix

4.5 Error Bounds of Approximate Answers 78

4.6 Evaluation . 80

4.6.1 Methodology . 80

4.6.2 Realistic Experiments . 82

4.6.3 Effectiveness of Rings2 . 83

4.6.4 Effect of Communication Losses 84

4.6.5 Effect of Deployment Densities 85

4.6.6 Effect of Synopsis Size . 87

4.6.7 Beyond Sum . 87

4.6.8 Discussion . 89

4.7 Related Work . 89

4.7.1 Aggregation over Multi-path . 89

4.7.2 Query Processing over Data Streams 90

4.8 Summary . 91

5 Adaptive Aggregation Schemes 93

5.1 Tributary-Delta: Motivation and Overview 94

5.2 Adaptive Rings . 96

5.2.1 Measuring Link Quality with Implicit Acknowledgements 96

5.2.2 Multi-path Topology Adaptation 98

5.3 Tributary-Delta Details . 99

5.3.1 The General Framework . 100

5.3.2 Adapting to Network Conditions 103

5.3.3 Adaptation Strategies . 104

5.3.4 Computing Aggregates over Tributary-Delta 105

5.4 Evaluation . 106

5.4.1 Evaluation of Adaptive Rings . 107

5.4.2 Evaluation of Tributary-Delta . 110

5.4.3 Discussion . 117

5.5 Summary . 118

6 Subtleties in Tolerating Correlated Failures 121

6.1 Myths Debunked: A Preview . 122

6.2 Methodology . 124

6.2.1 Failure traces . 125

6.2.2 Limitations . 127

x CONTENTS

6.2.3 Steps in our study . 128

6.3 A Tunable Model for Correlated Failures 128

6.3.1 Correlated Failures in Real Traces 128

6.3.2 A Tunable Bi-Exponential Model 130

6.3.3 Stability of the Model . 132

6.4 Myth: Correlated Failures Can Be Avoided 133

6.5 Myth: Simple Modelling of Failure Sizes Is Adequate 140

6.6 Impact of Failure Correlation . 142

6.6.1 Myth: Additional Fragments Are Always Effective 142

6.6.2 Myth: Better Designs under Independent Failures Remain Better 148

6.7 Read-Write Systems . 149

6.8 Artifacts . 150

6.9 Summary . 151

7 Design and Implementation of Data Storage in IrisNet 153

7.1 Desiderata and Design Rationale . 155

7.1.1 Replication Design . 156

7.1.2 Regeneration Design . 157

7.1.3 Load Balancing Design . 158

7.2 Replication in IrisNet . 159

7.2.1 Replication Basics . 159

7.2.2 Providing Consistency . 160

7.2.3 Choosing SQS Parameters . 162

7.2.4 Improving Data Freshness in SQS 163

7.3 Regeneration in IrisNet . 163

7.3.1 Replica Regeneration Optimizations 165

7.4 Load Balancing in IrisNet . 167

7.4.1 Reaction . 168

7.4.2 Selection . 168

7.4.3 Placement . 172

7.4.4 A Simple Run . 172

7.4.5 Related Work . 173

7.5 Evaluation . 173

7.5.1 Individual Crash-Failures . 174

7.5.2 IrisLog in the Wild . 178

7.5.3 Long-Term Availability under Crash-Failures 179

CONTENTS xi

7.5.4 Inconsistency from SQS . 182

7.5.5 POST under Targeted Node Overload 184

7.6 Summary . 187

8 Conclusion 191

8.1 Summary . 191

8.1.1 Our Approach . 192

8.1.2 Contributions . 192

8.2 General Remarks . 195

8.3 Future Directions . 196

8.3.1 Robust Aggregation in Wireless Sensors 196

8.3.2 Aggregation over Imprecise and Incorrect Data 198

8.3.3 Adaptation of Aggregation Schemes 199

8.3.4 Wide-area Robustness . 201

8.4 Closing Remarks . 203

List of Figures

1.1 An Internet-scale, heterogeneous sensing system 5

1.2 Transient loss rates experienced by sensors in real deployments 8

1.3 Dynamics of message loss rate in a sensor network over time 9

1.4 Fragility of tree-based aggregation . 10

1.5 Benefits of Tributary-Delta . 13

1.6 Failure correlation in the PlanetLab testbed 15

2.1 Probability of an inconsistent access with SQS 35

3.1 IrisNet Architecture . 43

3.2 Execution environment in SA host . 45

3.3 Computation DAGs for two senselets . 46

3.4 Processing a IrisNet query over the logical hierarchy 50

3.5 Hierarchy used in IrisLog . 55

3.6 Images from the IrisNet Ocean Monitor prototype 57

4.1 A näıve ODI Count algorithm . 62

4.2 Flow of partial aggregates in an epoch 65

4.3 Synopsis Diffusion over the Rings topology 65

4.4 Equivalent graphs under ODI-correctness 68

4.5 Graph used in the proof of Theorem 4.1 70

4.6 Computer Average over time with different aggregation schemes 83

4.7 Activity of randomly placed sensors during an epoch 84

4.8 Impact of packet loss on aggregation schemes 85

4.9 The impact of sensor density on accuracy 86

4.10 Impact of sensor density on power consumption 86

4.11 Effect of synopsis size in computing Sum 88

4.12 Computing uniform sample . 88

xiii

xiv LIST OF FIGURES

4.13 Hierarchy among synopsis problems . 91

5.1 A Tributary-Delta Topology . 95

5.2 Implicit Acknowledgements . 98

5.3 Computing Count in the Tributary-Delta framework 101

5.4 The effectiveness of Adaptive Rings to cope with node failures 108

5.5 The impact of motion on accuracy and overhead 109

5.6 Evolution of the TD-Coarse and TD topologies 112

5.7 RMS errors and loss rates . 114

5.8 Timeline showing relative errors of different aggregation schemes 115

5.9 False negatives in frequent items estimated without retransmission 116

5.10 False negatives in frequent items estimated with retransmission 117

6.1 Correlated failures in three real-world traces 129

6.2 Convergence of the correlation model . 133

6.3 Stability of the correlation model . 134

6.4 Negligible availability improvements from failure pattern prediction . . . 136

6.5 Predictability of pairwise failures . 138

6.6 Required redundancy for certain availability targets 141

6.7 Availability of Erasure(m,n) under different traces 143

6.8 Availability under the model G(0.009, 0.4, ρ2) 144

6.9 Failure size distribution under the model G(0.009, 0.4, ρ2) 144

6.10 Fraction of fragments failed for u = 277, α = 0.009 and ρ1 = 0.4 146

6.11 Effects of the correlation model G(0.0012, 2
5
ρ2, ρ2) on two systems 149

7.1 Part of the XML database used by IrisLog 155

7.2 A regeneration token . 164

7.3 The workload graph of a node . 170

7.4 A simple adaptive data placement scenario 173

7.5 Replica count during regeneration . 175

7.6 Bandwidth consumption during regeneration 176

7.7 Availability after regeneration . 177

7.8 Availability of Majority and IrisLog under events in PL trace 178

7.9 Availability of IrisNet in the wild . 179

7.10 Validation of EmuLab results against PlanetLab results 182

7.11 Validation of simulation results against EmuLab results 183

7.12 Inconsistency of IrisLog under PL trace 184

LIST OF FIGURES xv

7.13 Inconsistency of SQS under different correlation level 185

7.14 Cost of different fragmentation algorithms 187

7.15 Unavailability caused by different fragmentation algorithms 188

7.16 Overhead caused by different fragmentation algorithms 188

List of Tables

2.1 Hardware characteristics of different motes 24

2.2 Classification of aggregation schemes . 31

2.3 Classification of adaptive aggregation schemes 32

2.4 Comparison of regeneration designs . 37

4.1 Robustness of different aggregation schemes computing Average 83

5.1 Comparison of in-network aggregation schemes 94

5.2 Effect of asymmetric links . 110

5.3 Properties of different adaptive aggregation schemes 118

6.1 Three traces used in our study . 125

6.2 Gap analysis of PL trace . 126

7.1 Terminology used in Chapter 7 . 154

7.2 Breakdown of the average regeneration time 176

7.3 Breakdown of bandwidth usage during regeneration 177

7.4 IrisLog trace: Trace of user queries in IrisLog 185

xvii

Chapter 1

Introduction and Preview

Recent technological improvements have enabled high-fidelity instrumentation of physi-

cal space with large collections of cheap sensing devices (called sensors) that are equipped

with processing and communication capabilities. Examples of such devices include resource-

constrained wireless sensors like motes [HSW+00] and high bit-rate multimedia sen-

sors like cameras and microphones. These sensors are able to provide dense sensing

close to physical phenomena, process and communicate sensed information, and co-

ordinate actions with each other. Such capabilities have opened the door to build-

ing useful software systems, as evidenced by motes being used for habitat monitor-

ing [BRY+04,HTB+05, SMP+04], structure monitoring [XRC+04], health [SGW01], ed-

ucation [SMP01], etc., and cameras and microphones being used for ocean monitor-

ing [HSOH03], surveillance [CLFK01], tracking mobile objects [KT02], etc.

Motivated by the increased availability of sensors and the accelerated trend toward

ubiquitous Internet connectivity, we envision Internet-scale applications that can manip-

ulate information derived from a large collection of heterogeneous sensors spread across a

large geographic area, even all over the world. An example of such an Internet-scale, het-

erogeneous sensing application (or, sensing application in short) is a hypothetical Ocean

Monitor that detects, stores, and processes interesting oceanographic events (e.g., rip-

tides or sand-bar formations) on coasts all around the world. It uses a large collection of

cameras and motes deployed along the coastlines; cameras are used for looking over the

near-shore ocean surface to detect oceanographic events, while motes are used to sense

temperature or chemical properties of near-shore water. Oceanographers from anywhere,

via the Internet, can query, analyze, and correlate live (directly from the sensors) and

historical (from an archival system) oceanographic events worldwide, and combine them

with other data sources. For example, an oceanographer from the USA can correlate the

rip-tide events detected over the last year on the Australian coast with the corresponding

1

2 Chapter 1. Introduction and Preview

chemical properties of water to understand whether the properties of riptides are affected

by the water pH level. Such unique opportunities would greatly assist scientists in better

understanding the behavior of oceans. Additional examples of useful sensing applications

include a Parking Space Finder, for directing drivers to available parking spots near their

destination; a Bus Alert service, for notifying a user when to head to the bus stop; Wait-

ing Time Monitors, for reporting on the queuing delays at post offices, food courts, etc.;

a Lost and Found service, for tracking down lost objects; and a Person Finder service,

for locating your colleagues or monitoring your children playing in the neighborhood.

1.1 Focus of This Thesis: Robust Sensing

An important, but often overlooked, requirement of such a sensing application is its

robustness, i.e., its ability to mask failures of system components. The importance comes

from several factors. First, wireless sensors are often deployed in a harsh, or even hostile,

environment where component failures can be a norm. Over time, nodes can fail; they

may run out of energy, overheat in the sun, be carried away by wind, crash due to

software bugs, or be stepped on by a wild elephant. Even in fixed positions, nodes’

communication ranges (and thus their topologies) can change dramatically due to the

vagaries of RF propagation that result from its strong environmental dependence [PG03].

These changes are difficult to predict in advance. Similarly, sensors directly connected to

the Internet may fail or become unavailable because of network failures, worms or DDoS

attacks, software crashes, or maintenance downtime.

Second, sensors are often deployed in remote places and are operated mostly unat-

tended. Fixing failures, if at all feasible, may take significant time. Traditional large-scale

networks such as the Internet work in spite of brittle hardware and software partly be-

cause the number of people maintaining a network has grown along with the size of the

network itself. In contrast, a single human will often be responsible for a large collection

of sensors, and hence a sensor may not receive individual human attention. Therefore, it

is desirable that a sensing application automatically mask failures.

Finally, and interestingly, some sensing applications become more important during

catastrophic events that cause large failures. For example, an ocean storm may bring a

significant part of the Ocean Monitor system down; but the same storm may generate

oceanographic events that scientists are interested in studying. Similarly, a sensing appli-

cation deployed inside a building may become more valuable during a fire since firefighters

may use the application to locate people inside the building and rescue them. Therefore,

the applications must survive such catastrophes.

1.2. Internet-scale, Heterogeneous Sensing System 3

In this thesis, we focus on providing end-to-end robustness of a sensing application. To

understand different components of this end-to-end robustness, we next briefly describe

the system model we consider and the software infrastructure we develop as part of this

thesis.

1.2 Internet-scale, Heterogeneous Sensing System

We envision an Internet-scale sensing system that collects data from a large collection

of sensors dispersed over geographic regions and stores the data so that the stored data,

along with live sensor data, can be accessed and processed from anywhere in the Internet.

Sensing applications are deployed over this sensing system and provide useful services to

end users.

1.2.1 Sensing System Architecture

We here briefly describe a feasible design for an Internet-scale sensing system and the

rationale behind such design. We also provide an overview of IrisNet, an implementation

of this design.

At a high level, an Internet-scale sensing system consists of two components: the first

is responsible for data collection and and the second for data storage.

Data Collection

The data collection component of a sensing system collects and processes data collected

from different types of sensors, connected directly or indirectly to the Internet, such as

the following:

• Resource-constrained sensors: These are small, low-cost, battery-powered de-

vices each having limited processing speed and storage capability, short-range wire-

less radio, and sensing components capable of detecting local conditions such as

temperature, light, sound, or movement of objects. An example of such a sensor

is the Berkeley mote [HSW+00]. Although a single mote has limited capability,

when deployed in a large number, they have the ability to measure a given physical

space in great detail. They generally collect information over a small geographic

location, organize themselves into a wireless ad hoc network, and send the collected

information to a special resource-rich node called the base station, which is often

connected to the Internet.

4 Chapter 1. Introduction and Preview

• Resource-rich sensors: These are high bit-rate sensors such as cameras and mi-

crophones attached to devices (e.g., laptops) with PC-class processing and storage

capabilities, sufficient energy, and good connectivity to the Internet. Such sensors

often provide multimedia data and monitor the physical space in a “non-immersive”

way.

• Software sensors: These are computer programs that, unlike the two previous

types of sensors, provide useful information about computer systems. Examples

of such sensors include programs reporting current available bandwidth or disk

space of a set of computers. Like resource-rich sensors, they are not constrained by

processing, storage, connectivity, or energy.

We refer to the first type of sensors as wireless sensors and the latter two types as

wired sensors .1

For scalability, it is desirable that sensor data is processed and filtered near its sources.

The data collection component of a sensing system provides the general computation

environment for such aggressive filtering. It uses the computation capabilities of the

sensors to process raw data and transfers only the useful information over the network.

Data Storage

A sensing system indexes and stores the data collected or derived from the sensors in

Internet-connected nodes (Figure 1.1). Storing data in such resource-rich nodes is im-

portant for several reasons. First, the nodes can efficiently index and archive sensor data

and let users query them interactively from anywhere in the world; sensors themselves

may not have enough storage to archive historical data required by many (e.g., scientific)

applications. Second, these nodes can perform complex processing, such as cleaning,

modelling, and correlation of data; such processing is not feasible in wireless sensors.

Third, such storage nodes can act as a cache for sensor data; one application can reuse

the data collected for others, thus improving system efficiency.

The right architecture of this storage component is decided by the following data

and query characteristics of a sensing application: i) numerous high bit-rate live data

sources, and ii) rich, expressive queries involving data that spans a large geographic

region. The first property implies that a centralized or clustered system like Google

is not suitable, while the second property suggests that a distributed file system such

as NFS is not sufficient for this purpose. A more suitable architecture is a read-write

1Note that resource-rich sensors can use point-to-point wireless communication; we use the term wired
sensors just for the classification purpose.

1.2. Internet-scale, Heterogeneous Sensing System 5

Query

Microphone Camera

Internet

Wireless
Sensor Network

Data Collection

Data StorageResponse

This diagram shows the architecture of an Internet-scale heterogenous sensing system we
consider in this thesis. At a high level, it consists of a data collection component that
collects data from a large collection of wired and wireless sensors, and a data storage
component that stores and organizes that data in a way such that end-users can process
and query it from anywhere in the Internet.

Figure 1.1: An Internet-scale, heterogeneous sensing system.

distributed database that is capable of frequent updates and efficient processing of queries

on distributed sensor data. Moreover, users may care about only a small fraction of the

total data produced by the sensors; storing them near the data sources and querying them

only on demand saves valuable network bandwidth. This also highlights the importance

of a distributed query processing mechanism for the storage component.

Sensing applications, running on the sensing system, let users from anywhere in the

Internet query and perform complex processing on stored sensor data. The sensing system

also provides generic features like load balancing, fault-tolerance, security, etc. required

by a sensing application. An architecture for a generic sensing system is shown in Fig-

ure 1.1.

1.2.2 IrisNet: A Shared Infrastructure for Sensing Applications

In the IrisNet (Internet-scale Resource-intensive Sensor Network Services) project [Int03b,

GKK+03], we use the above design rationale to build a sensing system. Moreover, our

goal is to make IrisNet an easy-to-use software infrastructure that someone can use to

easily write new sensing applications. IrisNet is the first general-purpose shared software

infrastructure tailored for developing and deploying new sensing applications. To simplify

the task of developing new sensing applications, we take two complimentary steps. First,

we build the first general-purpose shared software infrastructure tailored for developing

6 Chapter 1. Introduction and Preview

and deploying new sensing applications. IrisNet provides generic functionalities, e.g.,

data collection, query processing, robustness, etc., required by most sensing applications.

Second, we provide a simple programming model that lets application developers express

application-specific tasks and the intended use of IrisNet functionalities. Thus, IrisNet

works as a customizable building block for developing new sensing applications.

The IrisNet architecture comprises two tiers. The lower data collection tier, consisting

of a large collection of Sensing Agents (SAs), collects and processes data from sensors. SAs

run on laptop- or PDA-class machines. Wired sensors are directly connected to SAs that

process high bit-rate sensor data to extract useful information for applications. Wireless

sensors run in self-organizing clusters and connect to SAs (running on base stations)

over multi-hop wireless networks. SAs on base stations install appropriate programs

on the wireless sensors [LGC05, LMG+04], monitor them [ZGE03], and collect useful

information sent by sensors [MFHH02]. Data collected by SAs is sent to the upper data

storage tier of IrisNet consisting of a collection of Organizing Agents (OAs) running on

Internet-connected PC-class machines. OAs index and store sensor data such that users

can easily query it. OAs also provide mechanisms for load balancing, fault tolerance,

security, etc.

Building a sensing system requires addressing a large number of challenges related

to data collection, data storage, query processing, robustness, load balancing, security,

privacy, etc. We address the robustness aspect in this thesis. We briefly describe the

other challenges in the context of IrisNet in Chapter 3.

1.3 End-to-end Robustness of a Sensing Application

To ensure end-to-end robustness of a sensing application, both the data collection (SAs

in IrisNet) and the data storage (OAs in IrisNet) components must be able to tolerate

failures. For example, a live mote should be able to send its data to the base station

despite other motes’ failures or poor connectivity; a camera disconnected from the rest of

the network should be able to locally log its data and send it to the storage nodes later;

disconnected or crashed storage nodes should not impact the availability of stored data,

etc. Failure of either the data collection or the storage component would make users

unable to access live sensor data, while failure of the storage component would make

them unable to access archival data.

In this thesis, we focus on end-to-end robustness of a sensing system. However, for

the data collection component, we mostly focus on aggregate data collection from wireless

sensors. Aggregate data provides holistic information about the whole or a part of a sensor

1.4. Preview: Two Fundamental Challenges of End-to-end Robustness 7

network (e.g., average temperature sensed by the sensors, frequently occurring events in

the system, etc.). Because aggregate data can often be collected in an energy-efficient

way, it assumes greater importance than individual sensor readings that are too detailed

for many applications. Robustness of the data collected from wired sensors can be ensured

by the storage component: we assume that these sensors have good network connectivity

to the storage nodes and they can handle transient disconnection by locally logging the

sensor data for later transmission to the storage nodes.

1.4 Preview: Two Fundamental Challenges of End-

to-end Robustness

There are two independent factors that affect the end-to-end robustness of a sensing ap-

plication: the fragility of data collection from wireless sensors and the vulnerability of

large-scale data storage on Internet-connected nodes. The main stumbling block in com-

bating the first challenge is wireless sensors’ poor connectivity and resource constraints.

The second challenge stems from large-scale correlated failures that are common in to-

day’s Internet. Although such failures have adverse effects on the availability of stored

sensor data, their precise impact and nature is poorly understood.

In this thesis, we address these two challenges, using a combination of novel algo-

rithms, techniques, measurements, and analysis. The rest of this section summarizes the

challenges and outlines our solutions to them.

1.4.1 Challenge#1: Robust Data Collection

Robust collection of aggregate data from wireless sensors is challenging due to the fol-

lowing factors:

1. High transient loss rates: Due to their harsh deployment environment and low-

power radio hardware, sensors experience high communication loss rates. For

example, studies of real deployments have shown that 50% of nodes experience

greater than 10% and 30% of nodes experience greater than 30% loss rates (Fig-

ure 1.2), a significantly higher loss rate than that experienced by other wireless

networks [ZG03].

2. Long-term dynamics: The operating condition of a long-running wireless sensor

network may change over time. For example, message loss rates between nodes can

change due to environmental dynamics (Figure 1.3), existing nodes can leave the

8 Chapter 1. Introduction and Preview

This graph, taken from [ZG03], shows the average transient loss rates experienced by the
sensors in a number of real deployments. The legend In Door represents a deployment
inside a building, Out Door represents an outdoor deployment, and Habitat represents
a real habitat monitoring deployment.

Figure 1.2: Transient loss rates experienced by sensors in real deployments.

network due to hardware failure or resource depletion, and new nodes may join it

due to new deployments. We call these dynamics “long term” as they last for hours

to days.

3. Energy-constraints: Sensors are generally powered by batteries that are not feasibly

replaced on depletion. Therefore, they should avoid energy-expensive operations to

minimize energy consumption and to maximize life time.

We now describe the impact of transient failures and long-term dynamics on data

aggregation from wireless sensor networks.

Transient Failures

Existing aggregation schemes have the following properties:

1. Aggregation over a tree topology: Common approaches for computing aggregate in-

formation in a wireless sensor network use a tree aggregation topology and combine

partial results at the intermediate nodes during message routing (more details in

Chapter 2). The latter technique, called in-network aggregation, is required for

energy-efficiency. A tree topology is required to avoid double-counting—with other

topologies, data from a node may be accounted for by multiple next hop nodes,

resulting in an overestimation of the actual answer.

1.4. Preview: Two Fundamental Challenges of End-to-end Robustness 9

This graph, taken from [PG03], shows the difference of message loss rates (shown in the
y-axis) from a node to two of its neighbors in a real sensor deployment at Intel Research
Berkeley and over a month period of time (shown in the x-axis). Because the difference
is both positive and negative, the best choice of the next-hop node can change over time.

Figure 1.3: Difference of message loss rates from a node to two of its neighbors
in a real sensor deployment and over a month period of time.

2. Unreliable communication: Because reliable communication is expensive, in order

to save valuable energy, sensors tend to use unreliable communication that provides

no guarantee of successful data delivery. Therefore, data sent by a sensor may be

dropped silently before it reaches the base station.

However, a tree topology with unreliable communication is very susceptible to node

and transmission failures. Because each of these failures loses an entire subtree of read-

ings, a large fraction of the readings are typically unaccounted for in a tree-based system

(Figure 1.4(a)). This introduces significant error in the query answer [CLKB04,MFHH02,

ZGE03]. This is depicted in Figure 1.4(b), which shows that aggregation over a tree con-

sistently overestimates the actual average value. Moreover, the high variance of the

computed aggregate suggests that simply scaling the measured value up or down will not

solve the problem.

A common approach to addressing this problem is to fix the second property above;

i.e., to use a reliable communication protocol such that a sender can detect lost messages

and retransmit them [SH03]. This can considerably improve the accuracy of aggregation

over a tree. However, this improvement comes at the cost of high overheads. Namely, the

acknowledgement messages required for reliable communication reduce channel utilization

by 25%, retransmission increases the latency of aggregation, and most importantly, incurs

significant energy overhead (under a ≈ 30% loss rate, latency and energy consumption

increase by around 3 times). This in turn reduces the lifetime of battery-powered sensors.

10 Chapter 1. Introduction and Preview

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 2 4 6 8 10 12 14 16 18 20

y

x

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 90 80 70 60 50

R
e
s
u
lt

Epoch

TAG
Actual

(a) Nodes counted over a tree (b) Computing Average over a tree

In this experiment, 600 sensors are randomly placed in a square area, with the base
station at the center of the area. Sensors use unreliable communication and we assume a
realistic loss model (details in Chapter 4). Each sensor has a value inversely proportional
to the square of its distance from the querying node at the center, emulating the intensity
readings of a radiation source at the center. We run continuous query, with one Average
value computed at the base station in every epoch (an epoch is a round of communication,
explained in Chapter 4). Figure (a) shows the activity of the sensors during a typical
epoch. The lines show the path taken by sensors readings that reached the querying node
at the center. Readings from the sensors not connected by lines fail to reach the base
station, for link-failures in upstream nodes, and therefore are not accounted for in the final
answer. Figure (b) shows the Average value computed with TAG, a tree-based aggregation
scheme, by the base station in different epochs.

Figure 1.4: Fragility of tree-based aggregation.

1.4. Preview: Two Fundamental Challenges of End-to-end Robustness 11

Our approach to addressing this problem is to fix the first property above; i.e., to

use robust multi-path topology, instead of a tree, for aggregation. We exploit the fact

that wireless sensors use broadcast communication and therefore, when a node sends

a message, more than one of its neighbors may be able to receive that message. By

allowing a subset of the neighbors to include the message in in-network aggregation, we

can perform aggregation over multi-path routing. Multi-path is more robust than a tree,

because a message can reach the base station through multiple alternate paths and unless

all the paths fail, the message is successfully delivered. Thus, multi-path routing makes

the aggregation process robust, even with unreliable communication. Moreover, because

a node needs to broadcast only once to communicate with all the neighbors, multi-path

routing can be efficiently implemented in a wireless sensor network.

However, performing aggregation over a multi-path topology is not trivial. The fun-

damental stumbling block is that multi-path routing often results in message duplication

that causes double-counting of a large fraction of sensor readings. For example, in com-

puting the Sum aggregate, if an individual reading or a partial sum is sent along four

paths (to improve the likelihood that at least one path succeeds), and three of them

happen to succeed, that value or partial sum will contribute to the total sum three times

instead of once. Moreover, values along multiple paths may be aggregated in different

orders, which might be problematic for order-sensitive aggregates. A tree topology does

not have such duplication and ordering problems and is therefore used by existing ag-

gregation schemes. This also means that, in these schemes, the aggregation algorithm

and the required routing topology are tightly coupled; it is therefore not possible to use

arbitrarily robust routing, such as multi-path routing.

To address this, we exploit the fact that due to energy constraints and large deploy-

ment scales, most sensing applications require only approximate aggregate answers, and

it is possible to compute approximate answers by methods that avoid the above prob-

lems. To this end, we propose Synopsis Diffusion [NGSA04], a framework well-suited

to energy-efficient aggregation over arbitrary (multi-path) routing topologies. The basic

idea is to map a target aggregate function to a set of order- and duplicate-insensitive

(ODI) functions, and to use them over an energy-efficient multi-path aggregation topol-

ogy. The ODI property of the functions ensures correctness of aggregation over multi-path

topology which in turn provides robustness. As an example, under typical loss rates, a

Synopsis Diffusion Sum algorithm provides a five times more accurate result than the

existing tree-based algorithm, without additional energy overhead. We provide approxi-

mate algorithms to compute several aggregates in this framework and establish the formal

foundation that would enable the development of more such algorithms.

12 Chapter 1. Introduction and Preview

Long-term Failures

To cope with relatively long-term dynamics of a sensor network, aggregation schemes

must be self-configuring and must adapt to the changes in deployment environment.

For example, Figure 1.3 demonstrates a situation where a node should change its next-

hop routing neighbor over time. Enabling such adaptation in a resource-constrained

environment is challenging.

The common approach to coping with dynamics is to adapt the aggregation topology

based on low level observations about network characteristics, without taking application

semantics into account. Each node, based on long-term loss statistics, chooses a neighbor-

ing node to be its next hop for relaying messages. As loss rates change over time, the next

hop node is changed to the one currently having good connectivity [IGE+03,MFHH02].

A node can collect loss statistics by snooping neighboring nodes’ broadcasts (which works

only when links are symmetric) or by explicitly asking neighbors for hints about its out-

going link quality (e.g., through acknowledgements). The adaptation decision can be

completely local [MFHH02], or it can initiated by the base station [IGE+03] depend-

ing on the application’s requirement. Local adaptation is scalable and quick, but global

adaptation can exploit application-level semantics to tune the frequency of adaptation

and the associated overhead.

We argue that application-aware adaptation is a valuable mechanism, since applica-

tions can exploit the intended data semantics, which are generally weak ones, and can

make certain adaptation decisions better. To enable this, we identify a new component to

adapt: the aggregation algorithm. Existing tree-based and our multi-path-based aggre-

gation schemes present a tradeoff between the robustness against communication failure

and the accuracy of computed answers. For example, tree-based aggregation is fragile

against communication failure, but for most aggregates, it provides exact answers in the

absence of failures. In contrast, multi-path-based aggregation, although highly robust

against communication failures, generally provides approximate answers. Therefore, the

best algorithm depends on the current loss rate; e.g., under a high loss rate, a multi-

path-based algorithm may be preferable since its approximation error is smaller than the

communication error of a tree-based algorithm. In a network where loss rates can change

over time or where different parts of the network may have different loss rates, a desirable

strategy is to combine the benefits of these existing approaches into one hybrid approach

and to dynamically adapt it to the current loss rates. Applications using the aggregate

results can provide feedback about the quality of end results, so that the aggregate scheme

knows when and how to adapt.

1.4. Preview: Two Fundamental Challenges of End-to-end Robustness 13

 0

 0.05

 0.1

 0.15

 0.2

 0 0.1 0.2 0.3 0.4

R
M

S
 E

rr
or

Loss Rate

Tree
Multi-path

Tributary-Delta

This graph shows that Tributary-Delta, although a hybrid of tree- and multi-path-based
schemes, can perform better than any of these schemes under all loss rates. The experi-
mental setup and the full graph are provided in Chapter 5.

Figure 1.5: RMS error of a Count query under varying message loss rates and
different aggregation schemes.

We achieve this through a novel aggregation scheme called Tributary-Delta that con-

currently runs tree-based and multi-path-based aggregation in different parts of the

network. As operating conditions change, it uses a combination of local repair and

application-aware global adaptation of the aggregation topology and the aggregation

algorithm. We show that our Tributary-Delta approach significantly outperforms both

tree and multi-path schemes. An example result is shown in Figure 1.5 (full details in

Chapter 5). As expected, the tree-based approach is more accurate than the multi-path-

based approach at very low loss rates, because of its lower approximation error (0% versus

12%). However, at loss rates above 5%, tree is much worse than multi-path because of

its high communication error. On the other hand, Tributary-Delta provides not just the

best of both (e.g., from running either tree or multi-path in the entire network), but in

fact provides a significant error reduction over the best, across a wide range of loss rates,

thus demonstrating the synergies of using both in tandem.

1.4.2 Challenge#2: Robust Data Storage

A sensing system stores the raw data collected from different types of sensors, or the infor-

mation derived from them, in its distributed database on the Internet. The database may

be deployed on nodes under a single, loose administration like today’s Akamai [Aka05]

or PlanetLab [PACR02,Pla05], or multiple cooperative administrations like today’s ISPs.

In such large systems, failures of system components (e.g., nodes or links) are the norms,

14 Chapter 1. Introduction and Preview

rather than the exceptions. The database needs to be highly available and durable in

the face of such failures. The need arises partly because many sensing applications often

archive important data (e.g., scientists must archive all the data collected from their sens-

ing experiments), and partly because, as a result of systems advances, performance is no

longer the only/primary limiting factor in the utility of distributed systems—availability

has become at least as important as performance.

Designing highly available distributed database (or, general storage) systems has long

been an active area in systems research. Standard availability techniques include repli-

cation, regeneration (automatic repair on replica failures), and dynamic load balancing.

Replication helps in tolerating transient crash-failures, regeneration helps in adapting

to long-term crash-failures, and dynamic load balancing avoids failures due to overloads

caused by flash-crowd like events. Although each of these components has been well

studied in the context of many existing systems, we face the following two key problems

in using them within an Internet-scale sensing system:

• Standard availability techniques used in existing distributed storage systems are less

effective than one might hope in an Internet-scale system, often resulting in system

designs that are far from optimal. We identify that correlated failure events, i.e.,

when a large number of nodes fail almost simultaneously, are the primary reason

behind this. Addressing correlated failures in system design is difficult since the

nature of failure correlation in the real world is poorly understood.

• Existing availability techniques have not yet been used in the context of Internet-

scale sensing. Although these techniques, in general, are not very effective in tol-

erating correlated failures, sensing systems have many unique properties (due to

their relaxed functional requirements, as described later) that, we believe, can sig-

nificantly simplify the problems. However, such possibilities have not been explored

yet; we need to develop suitable techniques that can exploit the properties and im-

prove system availability.

We now discuss these two problems in detail.

Correlated Failures in Internet-scale Systems

Existing distributed databases, unlike the future sensing systems we envision, are not

designed to scale to thousands of not-very-well-maintained nodes in the Internet. One

might think that we could use previously proposed availability techniques in our target

sensing system; however, our experience shows that, surprisingly, these techniques are less

1.4. Preview: Two Fundamental Challenges of End-to-end Robustness 15

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60

P
ro

ba
bi

lit
y

Failure Event Size

A failure event causes a number of machines to fail within a short period of time. The
failure event size denotes the number of machines failed due to a particular failure event.
The graph confirms that failures are often correlated and large events are not very rare.

Figure 1.6: Failure correlation (from 1/2003 to 6/2004) in the PlanetLab
testbed.

effective in the real world than one might hope, often resulting in system designs that are

far from optimal. We identify that failure correlation is the primary reason behind this.

The traditional approach of designing and evaluating systems assumes that failures are

independent [BTC+04,BDET00,Cat03,DLS+04,DW01,Yu04,YV04]. For example, most

existing systems, in selecting replication parameters (e.g., number of replicas, quorum

size) required to achieve a target availability, use mathematical analysis that assumes in-

dependent failures. However, for a large-scale sensing system deployed over the Internet,

the assumption of failure independence will rarely be true. Node failures are typically cor-

related on the Internet, with multiple nodes in the system failing (nearly) simultaneously.

The existence of correlated failures in the Internet is evidenced in Figure 1.6 that shows

the distribution of simultaneously-failed nodes in PlanetLab over an 18-month period.

The size of correlated failures can be quite large. For example, Akamai experienced large

distributed denial-of-service (DDoS) attacks on its servers in May and June 2004 that

resulted in many of its client sites being unavailable [Com04], and PlanetLab experienced

four failure events during the first half of 2004 in which more than 35 nodes failed within

a few minutes (these PlanetLab events are also included in Figure 1.6). Such large cor-

related failure events may have numerous causes, including system software bugs, DDoS

attacks, virus/worm infections, node overload, and human errors.

The impact of failure correlation on availability of archived sensor data is dramatic.

Previous studies have shown [BWWG02,YNY+04], and our work confirms, that unavail-

ability under realistic (correlated) failure patterns is orders of magnitude worse than if

16 Chapter 1. Introduction and Preview

failures were independent. Intuitively, if failures arrive independently, individual failures

are spread across time, and hence a system gets enough time to repair its replicas between

two consecutive failures. However, when failure arrivals are correlated, a large number

of failures may cluster in time to destroy all the replicas before the system can react.

Once all the replicas fail, the system cannot repair itself because the data to copy to new

replicas is no longer available.

Poor understanding of the precise nature and impact of correlated failures is one of

the biggest stumbling blocks in designing a highly available distributed sensor database.

System designs today either assume independent failures or use simple failure models that

may lead to a wrong design, failing to provide the target availability in practice. Since

large-scale correlated failures are common in today’s Internet, the design and evaluation

of an Internet-scale sensing system must consider them. For example, in using replication,

a sensing system must choose suitable replication parameters (e.g., number of replicas,

quorum systems, etc.) required to achieve a target availability despite the correlated

failures common in real-world. To this end, we try to systematically understand the

following important questions: Is the impact of correlated failures on system availability

trivial? Are the design principles traditionally being used in real distributed systems

correct under correlated failures? What is the right approach to mitigating the negative

effects of correlated failures? Can we model correlated failures in real world and use

the model in choosing replication parameters? We study three real-world failure traces

and use a combination of experimental and mathematical analysis to answer the above

questions. We show that previously proposed approaches (details in Chapter 2), although

plausible, are less effective than one might hope under real-world failure correlation,

often resulting in system designs that are far from optimal. Our study also reveals the

subtleties that cause this discrepancy between perception (the myth) and reality. These

new findings lead to a number of design principles for tolerating correlated failures in

distributed storage systems. They also provide valuable insights about how some unique

properties of a typical sensing system can be exploited to improve its availability.

Exploiting Sensing Properties

Although existing availability techniques, such as replication, regeneration, and load bal-

ancing, fail to ensure high availability in the presence of correlated failures, we believe

that sensing systems have many unique properties (e.g., hierarchically scoped queries,

tolerance for occasional data inconsistency, absence of write-sharing, easily serializable

timestamped writes, etc.) that can significantly simplify the problems. As an example,

1.4. Preview: Two Fundamental Challenges of End-to-end Robustness 17

we here show how the weak data consistency requirement of sensing applications can be

exploited to choose suitable quorum systems that are more effective that traditional ones

in tolerating correlated failures.

Users in sensing applications often make snapshot queries involving data collected

from multiple sensors at a certain time. However, sensors are often asynchronous or only

loosely synchronized; e.g., some sensors may be slower than the others, or some sensors

may be temporarily disconnected from the network. As a result, data from some sensors in

the snapshot may be stale compared to that from others. Such an inconsistent snapshot is

difficult to avoid in an asynchronous or loosely-synchronized interactive system. However,

most sensing applications can tolerate such occasional inconsistency by using application

specific knowledge (e.g., timestamps and temporal correlation of sensor data).

Our study reveals that this tolerance for occasional stale data can be exploited to

mitigate the negative impact of correlated failures. More specifically, we show that a

recently proposed quorum system (called Signed Quorum Systems (SQS) [Yu04]), which

occasionally returns stale data, is more suitable for a sensing system than traditional

quorum systems. SQS, for its smaller quorum size, can effectively tolerate most corre-

lated failures that adversely affect traditional quorum systems. For example, SQS, with

regeneration mechanisms and with parameters chosen based on analysis using our failure

model, can reduce unavailability of a sensing system by an order of magnitude without

any additional overhead.

Similarly, we show that sensing applications’ hierarchically organized data and hier-

archically scoped queries can be exploited to design an efficient load balancing algorithm

that can cope with flash-crowds [NGS05]. We also show that absence of write-sharing

and easily serializable timestamped writes in sensing applications enable a simple regen-

eration algorithm that can scale to a large number of nodes. We show the feasibility and

usefulness of these techniques by implementing them in IrisNet.

1.4.3 Summary and the Thesis Statement

In summary, the challenges of robust sensing arise from the resource constraints and

the highly failure-prone deployment environment of wireless sensors, and large-scale cor-

related failures of the Internet-connected storage nodes. Although the challenges are

difficult to address in general, sensing applications have unique domain-specific

properties (e.g., broadcast communication medium, tolerance for approximate

query answers and weak data consistency) that we can efficiently exploit to

make the applications highly robust, without any significant resource over-

18 Chapter 1. Introduction and Preview

heads.

1.5 Contribution and Structure of the Thesis

This thesis makes contributions in two major areas. The first area is conceptual and

consists of the novel ideas and design principles generated by our work. The second area

of contribution is a set of artifacts—a few major components of IrisNet and a number of

sensing applications that we have implemented to validate some of our ideas.

1.5.1 Conceptual Contributions

In this thesis, we address the aforementioned challenges and propose solutions that result

in significant improvement in end-to-end robustness of an Internet-scale, heterogeneous

sensing system. Because there is a tremendous heterogeneity and diversity in the prob-

lems, there is no single panacea for all of them. We recognize this heterogeneity and

develop a suite of algorithms, techniques, and design principles to combat these prob-

lems. The components of this solution suite include the following:

1. Synopsis Diffusion: Synopsis Diffusion is a general framework for computing

aggregates over an arbitrary (multi-path) topology. It decouples aggregation al-

gorithm and aggregation topology, providing the opportunity to optimize them

independently. We provide the formal foundation of this framework, example algo-

rithms, and evaluation results. Synopsis Diffusion is the first to show the feasibility

of in-network aggregation over a multi-path topology.

2. Adaptive aggregation: We propose Tributary-Delta, an energy efficient scheme

that combines the benefits of existing tree-based and our multi-path-based aggre-

gation by simultaneously running them on different parts of the network and auto-

matically balancing the proportion of these two components as operating conditions

change. Tributary-Delta is the first to demonstrate application-aware adaptation

of aggregation algorithms to cope with long-term dynamics of operating conditions.

In developing Tributary-Delta, we also propose Adaptive Rings , a multi-path ag-

gregation topology that can automatically adapt to link- or node-failures in an

energy-efficient manner.

3. Design principles to tolerate correlated failures: Using a combination of ex-

perimental and mathematical analysis of several real-world failure traces, we debunk

1.5. Contribution and Structure of the Thesis 19

a number of common myths about how to design highly available systems. Based

on our analysis, we identify a set of design principles that can be used to build

Internet-scale sensing systems capable of tolerating correlated failures. Although

the design principles allow us to exploit unique properties of sensing systems, they

can be generalized and used in a large class of distributed storage systems.

4. Lessons from availability evaluation: Aside from evaluating our own ideas,

we have implemented and evaluated a number of existing techniques that were ei-

ther not implemented (e.g., SQS) or not evaluated (e.g., the Paxos consensus algo-

rithm [Lam98]) before in an Internet-scale system. These implementations demon-

strate the behavior of these algorithms in practice; i.e., we show that a number

of important optimizations are required for a large number of concurrent Paxos

instances to converge on an Internet-scale system. Our experiments with IrisNet’s

storage component identify important differences between the methodologies for

evaluating availability and performance. We show that, unlike performance, avail-

ability can be accurately evaluated with simple simulation, with a realistic failure

trace collected over a reasonably long period of time.

The first two contributions aid in robust data collection from wireless sensor networks,

while the last two contributions are in the area of reliable storage of sensor data in

Internet-connected nodes. In combination, they provide the end-to-end robustness of a

sensing system.

1.5.2 Artifacts

In the course of this thesis, we have developed the following artifacts in the context of

IrisNet:

1. We have designed and implemented the basic architecture of IrisNet that demon-

strates the viability of our ideas related to Internet-scale sensing. The source code

of IrisNet is available at http://www.intel-iris.net.

2. We have developed a number of prototype applications on IrisNet that validate our

ideas. One application, IrisLog [Int03a], has been publicly available since Septem-

ber 2003, letting users make live queries regarding resource usage of 450+ PlanetLab

machines worldwide. IrisLog can be accessed at http://www.intel-iris.net/irislog.

The source code of this application comes with the standard IrisNet distribution.

20 Chapter 1. Introduction and Preview

3. We have designed and implemented IrisNet’s distributed storage component that

can tolerate correlated crash failures of system components and provide high avail-

ability of archived sensor data. It uses SQS, which we have shown to be better

in tolerating correlated failures. It automatically regenerates new replicas when

existing ones fail. In choosing replication parameters, it explicitly considers failure

correlation in real systems. We allow the system administrator to specify a tar-

get availability; we then use our empirically validated failure model to choose the

replication parameters required to achieve the target availability. To avoid overload

failures, we have developed and implemented an efficient load balancing mechanism

that quickly spreads load across multiple nodes when a flash-crowd approaches.

The source code comes with the standard IrisNet distribution.

4. We have developed a failure benchmark program that generates synthetic failure

traces (i.e., information about when individual nodes in a system fail and recover)

for certain classes of distributed systems. The benchmark uses realistic models

capturing certain failure properties (e.g., failure correlation) that we have identified

from our study. We believe that such a benchmark will be very useful in more

accurately evaluating availability of distributed systems. The benchmark can be

found at http://www.intel-iris.net/benchmark.

The first two artifacts are specific to Internet-scale sensing. However, the last two

artifacts are more general and can be used by a large class of distributed systems.

1.6 Outline of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we describe background

materials in the area of sensing applications and robustness. In Chapter 3, we give a

general overview of IrisNet, a general-purpose, shared infrastructure for developing new

sensing applications. We have designed and implemented IrisNet to evaluate some of the

ideas presented in this thesis.

Chapters 4 through 7 form the core of this thesis. In chapter 4, we present Synopsis

Diffusion, a general framework to compute aggregates over arbitrary topologies. We

present the formal foundation of this framework, describe several example algorithms,

and provide evaluation results using an efficient multi-path topology called Rings.

In Chapter 5, we show how the aggregation scheme can be dynamically adapted to

operating condition changes. We show the benefit of application-aware adaption through

1.6. Outline of the Thesis 21

Tributary-Delta, a novel framework to combine the benefits of tree-based and multi-path-

based aggregation by running them concurrently in different parts of the network and by

dynamically changing their proportion with operating conditions. Tributary-Delta uses

Adaptive Rings, a novel and efficient adaptive multi-path topology that exploits a unique

property of Synopsis Diffusion. We also present relevant evaluation results.

Starting from Chapter 6, we focus on robust storage of the sensor data (which might

be collected by techniques discussed in Chapters 4 and 5). In Chapter 6, we study the

impact of correlated failures on a distributed storage system. Based on failure traces

collected from three large distributed systems, we show that many design principles used

in existing systems are incorrect in practice where failures are often correlated. We also

propose new design principles that can mitigate the adverse effects of correlated failures.

In Chapter 7, we describe the design and implementation of IrisNet’s distributed stor-

age component. The design is inspired by the lessons we learn in Chapter 6. Moreover,

we use SQS for replication, the Paxos consensus algorithm for consistent replica regener-

ation, and a novel fragmentation technique for dynamic load balancing. Our evaluation

shows the behavior of these techniques in an Internet-scale system.

Finally, in Chapter 8, we present a summary of our work and contributions. We

conclude this chapter and this thesis with a discussion of general lessons learned about

robustness of sensing applications, and outline some directions for future research.

Chapter 2

Background and Related Work

The purpose of this chapter is to provide the background and an overview of related

work in the area of data collection and storage in sensor networks. We start Section 2.1

with a brief overview of wireless sensor networks, followed by a discussion on in-network

aggregation and existing techniques to make it robust against transient and long-term fail-

ures. This will provide the background material to understand the constraints of wireless

sensors and the challenges of robust data collection. We then, in Section 2.2, describe

existing techniques to build a robust distributed storage system. Existing distributed

storage systems do not target sensing applications, and our discussion here will show the

limitations of these systems in addressing several characteristics (e.g., workload, scale,

correlated failures coming from its Internet-scale deployment, etc.) of a sensing system.

At the end of each section, we consider the general design space and show where in this

space existing techniques and our solutions fall. Finally, we summarize the discussion of

this chapter in Section 2.3.

2.1 Wireless Sensor Networks

This section focuses on robust data collection from wireless sensor networks. To provide

the context, we start with a discussion on general properties of wireless sensors and

their deployment environments. We then describe existing energy-efficient aggregation

schemes and show how they are affected by different types of failures typical in real

sensor deployments. Finally, we discuss several existing techniques proposed to make the

aggregation schemes robust against failures.

A wireless sensor network consists of a collection of sensors, each of which is a small

low-cost device equipped with low-power sensing components, a micro-controller, a small

23

24 Chapter 2. Background and Related Work

Table 2.1: Hardware characteristics of different motes (taken
from [LMG+04]).
Mote weC rene dot mica mica2 mica2 dot iMote btNode

Processor 4 MHz 7 MHz 4 MHz 12 MHz 7 MHz
Flash (code, Kb) 8 8 16 128 128 128 512 128
RAM (kB) 0.5 0.5 1 4 4 4 64 4
Radio (kBaud) 10 10 10 40 40 40 460 460
Radio Type RFM ChipCon Zeevo Ericson
µ-controller Atmel ARM Atmel
Expandable no yes no yes yes yes yes yes
Released 1999 2000 2001 2002 2003 2003 2003 2003

amount of memory, a low power radio, and a battery. Table 2.1 shows hardware charac-

teristics of different generations of the mote sensors. Although a single mote has limited

capability, when deployed in a large number, they have the ability to measure a given

physical space in great detail. A sensor network generally has a base station with suffi-

cient processing power, storage, energy, and connectivity. The base station acts as the

interface between users and sensors; i.e., it can collect data from sensors for users to use.

Wireless sensors have been used for habitat monitoring [BRY+04, HTB+05, SMP+04],

structure monitoring [XRC+04], health [SGW01], education [SMP01], etc.

Experience on building applications has shown several common properties of wireless

sensor networks. First, with a range of only a few hundred feet at most, sensors often use

multi-hop communication; i.e., they relay data through neighboring nodes to the base

station. Second, battery is generally the only source of energy, and it is not feasible to re-

place batteries in most sensor deployments. Therefore, it is necessary to minimize energy

consumption in order to maximize sensors’ lifetime. Third, although communication,

processing, and sensing, all consume energy, communication is the single most expensive

operation. For example, in the current generation of motes, transmitting 1 bit of data

consumes almost as much energy as processing 1000 instructions. S. Madden [Mad03] has

measured the energy used in various phases of processing during a simple data-collection

scenario where a mote transmits one sample of (air-pressure, acceleration) readings every

ten seconds and listens to its radio for one second per ten-second period to receive and

forward results for a small group of neighboring sensors. The result shows that 97% of

energy consumption in this scenario is related to communication, either from directly

using the radio or as a result of the processor waiting for the radio to send data to or

receive data from neighboring nodes.

There are many techniques to optimize energy usage in a sensor network. Here we

2.1. Wireless Sensor Networks 25

mention a few that are relevant to our work. First, a small duty cycle (< 2%) is used so

that a sensor is awake (or, its radio is on) for a small fraction of time. Second, sensors

use unreliable communication, since reliable communication (e.g., with acknowledgement

and retransmission) is expensive. Third, the number of messages to communicate is

reduced by additional processing whenever possible. For example, while relaying multiple

messages from neighboring sensors, a sensor can process all of them and send only a

single processed message. This technique is called in-network processing (or in-network

aggregation when database-style aggregation is performed), and has been shown to be

very effective in minimizing energy usage.

2.1.1 Data Processing in Sensor Networks

There are two commonly used models for processing data in sensor networks. The first

one is the data streams model where all potentially useful sensor data is pushed from

sensors to the base station that archives and processes the data [ABB+03,ZSC+03]. This

model is useful when the application does not know a priori what in-network processing

to perform, when in-network processing is not feasible, or when all sensor data need to

be archived for later analysis. The second model views the sensor network as a database,

where data is stored in individual sensors and queries are pushed all the way to the sensors.

Since this model can use query-specific in-network aggregation, it consumes significantly

less energy than the data streams model. This model is suitable for applications that re-

quire aggregate information from the sensors. In many applications, aggregation answers

assume greater importance than individual sensor readings. Most applications deploy

sensors to sense space, and therefore, a query like “average temperature in the northern

part of the forest” (which requires aggregation over all the sensors in that region) is more

natural than a query like “temperature of the sensor #101.” Moreover, data reported by

individual sensors may be noisy; aggregation helps removing, or reducing the effect of,

outliers. Finally, in some cases, individual sensors provide too detailed information. For

example, in a sensor network monitoring highway traffic flow by sensing road vibrations,

the individual readings of sensors (necessarily) deployed every few feet provide far more

detail information than needed to answer traffic flow queries.

2.1.2 In-network Aggregation

We here describe a number of previous research efforts on in-network aggregation.

26 Chapter 2. Background and Related Work

Directed Diffusion

Directed diffusion [IGE+03] has been proposed as a data gathering protocol for sensor

networks. Originally, it targeted monitoring of events that are typically sensed only by

a few nodes. An example scenario is tracking animal herds in a given geographic region.

Diffusion’s communication paradigm is based on an information sink’s broadcasting re-

quests, or interests, for relevant data. After the interests have been flooded through the

whole network, each node knows the “direction” (or, gradients) toward the sink node.

Then nodes producing relevant information send, and intermediate nodes relay, the data

toward the direction to the sink node. Data can be forwarded in a single path, or in

multi-path. When all the nodes in the network want to send data to the sink, the data

forwarding paths toward the sink form a directed acyclic graph. A node that is supposed

to relay data from multiple neighboring nodes can opportunistically aggregate or filter

data. For example, it can suppress duplicates or unnecessary data in order to reduce

communication overhead.

Although the original proposal of directed diffusion did not focus on duplicate-sensitive

aggregates (e.g., Sum), implementing such aggregates over directed diffusion would re-

quire each node to send data in exactly one path toward the sink (the base station), and

hence the global communication would form a tree topology rooted at the base station.

Intermediate nodes in the tree topology then aggregate data in-network as it propagates

toward the sink. Such a tree topology is important to avoid double-counting of sensor

data.

Tiny AGgregation (TAG)

TAG [MFHH02, MFHH03, MSFC02], implemented in the TinyDB system, provides a

declarative interface, through an SQL-like syntax, to process aggregate queries on sensor

networks. At a high level, it, like directed diffusion, aggregates data in-network over a tree

topology. First, a tree that spans all the sensors is constructed, with the base station as

the root of the tree. In its simplest form, the base station (querying node) broadcasts the

query, and as it is flooded through the network, each node selects the first node it hears

the query from as its parent in the topology. Second, as data is propagated along the

tree toward the base station, each non-leaf node performs in-network aggregation over the

messages received from its children and forwards only the (partial) aggregation result. For

example, in counting the live sensors in the network, the in-network aggregation operation

in a non-leaf node adds the values reported by the children nodes and sends the result to

its parents. The nodes are loosely synchronized; partial results propagate level-by-level

2.1. Wireless Sensor Networks 27

up the tree in distinct epochs, with each node awaiting messages from all its children

before sending a new partial result to its parent. In this way, every node in the network

sends exactly one fixed-size message; and therefore, this approach requires the optimal

n messages in an n-node network. A few other systems, including Cougar [BGS01], use

the same technique.

From a query processing perspective, TAG provides several advantages over directed

diffusion. First, it provides standard aggregate functions that users can easily use through

a well-defined language. In diffusion, such functions are viewed as application-specific

components, and must be coded in a low level language. Second, because the functions

and their semantics are well-defined, TAG can optimize query processing. Diffusion’s

user-defined operators are very difficult for a query optimizer to deal with, because it

cannot understand their semantics, and thus cannot be sure when it may compose or

re-order them with respect to other operators. Therefore, the user bears the burden of

getting the placement and ordering of operators correct, significantly complicating the

development of complex and correct programs. Finally, TAG’s loose synchronization

between nodes at different level of the tree topology provides a better opportunity for

in-network aggregation, and hence TAG is more energy-efficient.

2.1.3 Robustness Against Transient Failures

Most of the existing sensor applications are deployed in harsh, or even hostile, environ-

ments. One of the biggest challenges in collecting or aggregating data in such environ-

ments is the high message loss rate. Studies of real deployments have shown that 50% of

nodes experience greater than a 10% loss rate and 30% of nodes experience greater than

a 30% loss rate, a significantly higher loss rate than that experienced by other wireless

networks [ZG03]. As mentioned in Chapter 1, under such high loss rates, aggregation

over a tree topology with unreliable communication results in high errors in aggregation

answers, because loss of one message or failure of one node results in loss of a complete

subtree in the aggregation topology.

We now describe several techniques to address this problem.

Reliable Communication

One approach to combatting transient failures is to use reliable communication such

as RMST (Reliable Multi-segment Transport) [SH03] and PSFQ (Pump Slowly Fetch

Quickly) [WCK04]). Both the protocols are characterized by hop-by-hop error recovery,

repair requests via NACKs that are delivered at a rate faster than the source transmission

28 Chapter 2. Background and Related Work

rate, and in-network caching. They differ in the details of their implementation: PSFQ

performs error recovery at the transport layer, while RMST does that at the MAC layer.

These protocols can mask transient message losses, making individual links of the aggre-

gation topology more reliable. For example, RMST has been used over directed diffusion

for guaranteed delivery of data, even under high loss rates. However, reliable communi-

cation protocols use extra messages (e.g., acknowledgements, retransmissions) that have

high overhead in terms of energy consumption, channel utilization, and latency [SH03].

Robust Topology

Another approach to robust aggregation is to use an aggregation topology more robust

than a tree. For example, our Synopsis Diffusion framework, described in Chapter 4,

achieves robustness by using an energy-efficient robust aggregation topology (e.g., multi-

path), instead of relying on expensive reliable communication. This has the advantage

of being robust, without the overheads of reliable communication.

Gossip based aggregation [KDG03] also uses a robust aggregation topology. Each

node starts with an initial value, its mass, depending on the target aggregate function.

The whole aggregation process is loosely synchronized. In the beginning of each round, a

node transfers a fraction (e.g., half) of its current mass to a randomly chosen node in the

network. At the end of the round, each node combines its current mass with the mass

it receives from other nodes in that round. In this way, the total mass in the network is

always conserved. It can be shown that, after O(log(n)) rounds, the mass of each node

in the network converges to the result of the target aggregate function. Although highly

robust, this algorithm has some drawbacks when used in sensor networks. First, to ensure

mass conservation, it requires reliable communication; at least, the sender needs to know

whether the message has been successfully delivered. Second, a node can not efficiently

communicate with any random node in the network, it may need to relay message though

other nodes. Third, it ensures only eventual convergence. Fourth, it is not energy-

efficient; aside from requiring reliable communication, it needs O(nlog(n)) messages, each

of which may need to be relayed through multiple nodes. Finally, techniques are known to

compute only a small number of aggregates (e.g., Sum, Average, and Count); computing

more complex aggregates is still an open issue.

A special case of the above mass conservation principle is the value-splitting technique

used in TAG with the goal of improving robustness. The idea is to use a directed acyclic

graph (DAG) instead of a tree, and have each node with accumulated value v send v/k

to each of its k parents. For aggregates such as Count or Sum, this reduces the error

2.1. Wireless Sensor Networks 29

resulting from a single message loss from v to v/k, but the expected aggregation error

remains as bad as for the tree [MFHH02].

Model-based Aggregation

Model-based aggregation [MPD04] uses temporal correlation of data to correct errors

due to transient losses in sensor networks. It uses a model of temporal variation to

predict future data. The next observed sensor data is then compared to the predicted

value to decide the likelihood of that observed data is erroneous. If the observed data

is detected to be erroneous, it reports the predicted value, otherwise, the observed value

is reported. The model is adjusted over time based on the observed values. The success

of this technique depends on the feasibility of building a good model of the data. In

many cases where representative sensor data are not available to build an initial model,

or when sensors are supposed to report rare events, such techniques are unlikely to work.

Deshpande et al. proposed techniques to model sensor data to improve the energy-

efficiency of data acquisition [DGM+02]. This class of techniques are orthogonal to other

previously described techniques, and can be used on top of them to further improve

robustness.

2.1.4 Robustness Against Long-term Failures

A sensor network may experience long-term changes in link quality because of environ-

mental changes or in node membership because of node failures, new deployments, etc. To

ensure long term robustness of data aggregation, it is desirable to adapt the aggregation

topology to cope with such changes.

In directed diffusion, the sink (i.e., the base station) repeatedly broadcasts exploratory

message intended for path setup and repair. When sources detect such a message, they

send exploratory messages back, possibly along multiple paths, toward the sink. After

the sink starts receiving these messages, it reinforces one particular neighbor (e.g., with

the best connectivity) in order to draw down sensor data. Similarly, intermediate nodes

select good neighbors and reinforce relevant gradients. The sink can also use negative

reinforcement to truncate old (worse) paths. An aggregation topology gradually evolves

with a sequence of positive and negative reinforcements, and thus adapts to the changes

in the environment.

TAG relies on a local repair scheme in which each node monitors the quality of the link

with its current parent and a few neighbors (potential parents). The link quality can be

measured by snooping neighbors’ broadcasts (assuming symmetric links) or by explicitly

30 Chapter 2. Background and Related Work

asking neighbors to report back their inward link quality (e.g., through acknowledgement

messages). When a node sees that the quality (loss rate) to its current parent is signif-

icantly worse than that of another potential parent, it “re-parents” itself to improve on

the message loss probability.

Our Adaptive Rings topology, described in Chapter 5, is similar to TAG, in the sense

that each node keeps statistics on link quality and independently takes decision to adapt

the topology. However, it exploits a unique property of our Synopsis Diffusion framework

that enables a node to efficiently measure its outgoing link quality just by snooping

neighbors’ broadcasts (instead of explicit messages from neighbors). Moreover, it adapts

a multi-path topology, instead of a tree topology as used by TAG.

In contrast to the above schemes, our Tributary-Delta scheme, described in Chapter 5,

adapts both the aggregation topology and the aggregation algorithm (tree vs. multi-path

algorithm). Moreover, it uses a combination of local repair and global adaptation.

Topology adaptation has also been studied outside the context of aggregation in sen-

sor networks. In ASCENT [CE04], nodes in a densely deployed network assess their

connectivity and adapt their participation in a multi-hop network topology. For exam-

ple, a node can decide to go into sleep mode if it detects that its absence will not impact

message delivery because neighboring nodes can provide good connectivity. Similarly,

a node can signal when it detects high message loss rate, requesting additional nodes

to wake up and join the network in order to relay messages for it. Xu et al. [XHE00]

proposed similar techniques to modify a topology in response to local measurements of

density. Li et al. [LR00] presented a scheme where mobile nodes can modify their trajec-

tory to transmit messages in the context of disconnected ad hoc networks. Ramanathan

et al. [RRH00] proposed some distributed heuristics to adaptively adjust nodes’ transmit

powers in response to topological changes caused by mobile nodes. All these techniques

modify the basic topology on which an aggregation topology is built. Therefore, they are

orthogonal to our focus.

2.1.5 Discussion

From the robustness point of view, we can classify existing aggregation schemes using two

orthogonal dimensions. The first dimension is whether a scheme uses reliable communi-

cation or not. While reliable communication makes an aggregation scheme highly robust,

unreliable communication is energy-efficient and more suitable for wireless sensors. The

other dimension is the aggregation topology used. A tree topology is simple and can avoid

double-counting errors when computing duplicate-sensitive aggregates. However, a more

2.1. Wireless Sensor Networks 31

Table 2.2: Classification of aggregation schemes.

The table classifies aggregation schemes based on whether they use energy-efficient un-
reliable communication and whether they use a robust topology. Synopsis Diffusion (the
shaded cell), described in Chapter 4, is both energy-efficient and robust.

Unreliable communication Reliable communication
Tree topology Energy-efficient, Not robust Not energy-efficient, Robust

E.g., TAG [MFHH02], Directed
Diffusion [IGE+03]

E.g., Reliable Directed Diffu-
sion [SH03]

More robust topology Energy-efficient, Robust Not energy-efficient, Robust
E.g., Synopsis Diffusion E.g., Gossip [KDG03]

robust (e.g., multi-path or random) topology, if used correctly, can better mask node-

and link-failures. Table 2.2 shows how different aggregation schemes fall within this two

dimensional space. Our Synopsis Diffusion scheme, described in Chapter 4, falls under

the best region in this space—it does not require the overhead of reliable communication,

yet it enjoys the robustness and energy-efficiency of multi-path aggregation topology. We

do not show the model-based aggregation scheme in this table since it is orthogonal to,

and can be used in conjunction with, the other schemes.

Table 2.3 shows different properties of existing adaptive aggregation schemes. Al-

though both TAG and directed diffusion adapt their aggregation topology (tree), they

slightly differ in details of their implementation. TAG’s adaptation is completely local—

each node, based on low-level properties such as loss rates, independently decides when

and how to adapt. Such a local technique is scalable and quick in responding to fail-

ures. TAG tries to minimize the depth of the tree; a node chooses a parent that has

good connectivity and thus a bushy tree is generated. In contrast, in directed diffusion,

the root uses application semantics to decide when to flood exploratory messages that

initiate the adaptation process, although each node independently decides the best next

hop depending on link quality. Globally deciding when to adapt has the advantage that

the sensing application, depending on the user’s requirements, can tune the frequency

of adaptation and overheads associated with it. Our work in this thesis extends these

ideas in two ways. First, our Adaptive Rings topology adapts a multi-path topology.

Second, we combine the benefits of adaptive tree-based and adaptive multi-path-based

aggregations in a hybrid scheme called Tributary-Delta. It uses the observation that

adapting aggregation algorithms in response to network dynamics can provide additional

benefits. Tributary-Delta, like directed diffusion, uses a combination of local repair based

32 Chapter 2. Background and Related Work

Table 2.3: Classification of adaptive aggregation schemes.

Shaded rows show our schemes described in Chapter 5. Tributary-Delta adapts both
aggregation topology and aggregation algorithm, and uses a combination of local and global
adaptation decisions.

Scheme Adapting Component Adaptation Control Optimization Goal

TAG Topology (tree) Local repair Bushy, robust tree
Directed Topology (tree) Local repair mechanism + Robust tree
Diffusion Global repair decision

Adaptive Rings Topology(multi-path) Local repair Robust multi-path
Tributary-Delta Topology Local topology repair + Application-specified

(tree/multi-path) Global decision for robustness bound
+ Algorithm algorithm selection

on low-level properties and global adaptation based on application semantics.

2.2 Robust Sensor Data Storage

Data collected from sensors in an Internet-scale sensing application is stored in a dis-

tributed read-write storage system. Distributed storage systems [BTC+04, BDET00,

Cat03,DLS+04,DW01,HMD05,KBC+00,YV04] have long been an active area in systems

research, due to their fundamental role in computer systems. However, these systems can

not be directly used in a sensing system—e.g., a file system does not support rich queries

on data and existing distributed database systems do not scale well. This motivates for

a new storage architecture for sensing systems, etc.

This new storage architecture for a sensing system can use many existing robustness

techniques such as data replication and regeneration (or, self-repairing). Redundancy

helps in tolerating transient crash-failures, while regeneration helps in adapting the sys-

tem to long-term crash-failures. However, the scale and the deployment environment

of sensing systems raise a few challenges not addressed by existing techniques. First,

failures seen by a large system deployed on the Internet are often correlated. This re-

quires a new approach to determining replication parameters of sensor storage—existing

techniques assume independent failure, and the parameters chosen by such independence

assumptions often result in significantly suboptimal availability. Second, quorum systems

used by existing read-write systems severely limit the availability of the systems, specially

when they are deployed on the Internet. This motivates investigating the right choice of

2.2. Robust Sensor Data Storage 33

quorum systems for sensing systems.

In the rest of this section, we first discuss several standard robustness techniques

(e.g., replication, quorum systems, regeneration) and their tradeoffs. We then focus on

correlated failures and techniques used by a few existing systems to combat them. We also

show limitations of existing approaches and briefly mention our approach to addressing

the problems.

2.2.1 Replication and Erasure-coding of Read-only Data

In replication, data is copied to a number of nodes given by the degree of replication.

Each of the nodes is called a replica and the set of nodes is called the replica group. The

data can be accessed if any of the replicas is available. In erasure-coding [Pla97], used

in OceanStore [KBC+00] and CFS [DKK+01], a data object is encoded into n fragments,

out of which any m fragments can reconstruct the object. Replication can be viewed as a

special case of erasure-coding with m = 1. Under the assumption of independent failures,

it can be shown that erasure-coding (i.e., m > 1) provides significantly higher availability

than replication for a given redundancy (m/n) [WK02]. However, erasure-coding requires

additional overheads for keeping track of fragments and encoding/decoding them. Both

replication and erasure-coding can be used with read-write data, but most read-write

systems use replication.

2.2.2 Replication of Read-write Data

Sensing systems have read-write data. Replication of read-write data introduces the

additional requirements of consistency—a read must be served with the “correct” data.

What “correct” means depends on the application. Often, it is required that any read

sees the latest data (strict consistency). However, for some applications, it is acceptable

to read stale data with a very small probability (probabilistic consistency), or to make

sure that all writes will eventually be applied to all the replicas, but at certain moments,

different reads may see different values (eventual consistency).

Strict Quorum Systems

Quorum systems or voting systems determine the sets of replicas readers and writers need

to access to ensure consistency. Suppose there are n replicas. Let a quorum denote the set

of replicas readers or writers access. A strict quorum system defines a set of read-quorums

and write-quorums such that intersection of any two read-quorum and write-quorum is

34 Chapter 2. Background and Related Work

nonempty. The intersected replicas ensure that the latest write by a writer is seen by any

reader.

Popular examples of strict quorum systems include read-one-write-all where a read

quorum consists of a single replica, while a write quorum consists of all the n replicas,

and majority quorum systems where any read- or write-quorum consists of d(n + 1)/2e
replicas. If a reader or writer is indeed able to access all the replicas in a quorum, we say

the replica group is available. Otherwise, the replica group is unavailable and the read or

write fails. It is known that majority quorum systems achieve the best availability among

all strict quorum systems [BGM87]. However, even majority quorum systems severely

limit the availability of replicated systems deployed in wide-area networks where node-

and link-failures are not rare.

Weak Quorum Systems

The availability of a quorum system can be improved by requiring probabilistic consis-

tency; i.e., permitting the read to miss the latest write with a small probability. Such

occasional inconsistency allows using smaller quorums—the system remains available even

if fewer replicas than needed by strict quorum systems are available.

Probabilistic quorum systems (PQS) [MRW97] use smaller quorums and provide prob-

abilistic guarantee of quorum intersection. For example, in one PQS construction, quo-

rums are all the sets of size l
√

n and each quorum is accessed with equal probability. By

enforcing an access strategy on quorums, it guarantees an intersection probability of at

least 1− el2 .

Signed quorum systems (SQS) [Yu04] further reduce the quorum sizes to be O(1).

Let a mismatch on a replica be an event when either the reader can access the replica

but the writer can not or vice-versa. Mismatch on a replica happens because of network

failures; e.g., when the reader is partitioned from the replica and the writer. The intuition

behind SQS is that strict quorum systems are overly pessimistic regarding the likelihood

of mismatches in the current Internet. Even if the probability of mismatch on one replica

may not be small, the probability that we have concurrent mismatches on multiple repli-

cas, placed randomly on the Internet, is small (Figure 2.1). SQS use quorums of size m

and access them in a way such that inconsistency arises only if m or more simultaneous

mismatches happen. As shown in Figure 2.1, this probability can be made arbitrarily

small by tuning the value of m (quorum size). A number of specific SQS constructions

can be found in [Yu04].

In this thesis, we argue that weak quorum systems are more appropriate to use within

2.2. Robust Sensor Data Storage 35

 1e-05

 0.0001

 0.001

 0.01

 0.1

 5 4 3 2 1

P
ro

b.
 o

f I
nc

on
si

st
en

cy
/A

cc
es

s

Quorum Size

RON1
RON2
TACT

The graph shows the probability of an event that, for a given reader and a given writer, the
reader fails to reach a quorum reachable by the writer, or vice versa. For example, for the
TACT curve, the probability that the reader can access a quorum consisting of 3 replicas
none of which is reachable from the writer, or vice versa, is close to 0.001. The y-axis
can also be interpreted as the probability of c simultaneous mismatches, where c is given
by the x-axis. These results are taken from [Yu03] and are based on RON [ABKM01]
and TACT [YV01] traces.

Figure 2.1: Probability of an inconsistent access with SQS.

sensing systems.

2.2.3 Automatic Replica Regeneration

Availability of a sensing system can be further improved by automatically regenerating

failed replicas to tolerate additional failures. Namely, when replicas fail, instead of waiting

for them to recover, the system can recruit other nodes in the system as new replicas.

The hope is that regeneration takes much less time than recovery (e.g., it can be done

without human intervention). To regenerate, we need to shift the replica group to exclude

the failed replicas and to add new replicas.

Regeneration is tricky in sensing systems, or in any read-write systems that require

some form of consistency. For such systems, it is necessary to ensure that there will not

be more than one replica group for a given data object. Multiple replica groups may arise

if, for example, the original replica group gets partitioned and each partition, suspecting

that the other has failed, regenerates into a new replica group. After this happen, writers

may write to one replica group while the readers may read from the other one, resulting

in data inconsistency.

The standard trick to avoid such replica divergence is to use a regeneration quorum

36 Chapter 2. Background and Related Work

system, independent of the data access quorum system, to ensure that replicas agree on

the membership of the new replica group. Existing regeneration systems differ on the

choice of such quorum systems. For example, RAMBO [LS02] uses a majority quorum

system—replicas must coordinate (using the Paxos consensus protocol [Lam98]) with a

majority of the existing replicas to start regeneration. In contrast, Om [YV04] uses a

randomized consensus protocol and a witness model [Yu03] that achieves similar func-

tionality as a quorum system. In the witness model, quorum intersection is not always

guaranteed, but is extremely likely. In return, a quorum in the witness model can be as

small as a single node.

Om improves over RAMBO in terms of regeneration overhead and availability. For

example, RAMBO can not regenerate if the regeneration quorum is not available, while

Om can regenerate as long as a single node is available. However, we believe that this

improvement is not crucial in practice. In most cases, e.g., when a single replica fails,

regeneration is not a time sensitive operation; it is sufficient to regenerate before all read-

quorums fail.1 If the regeneration quorum recovers before that time, RAMBO remains

almost as available as Om. On the other hand, because Om uses the witness model for

regeneration, there is certain probability of replica divergence. Once this happens, the

system will remain inconsistent until the bad scenario (e.g., large-scale network partition)

goes away. No guarantee is provided on how long such a scenario will last. Finally,

because regeneration is rare (as rare as failures) compared to data access, improving the

performance of regeneration has little impact on the overall system performance.

This thesis argues that an approach which is opposite to Om is more suitable for

sensing systems. In IrisNet, we use a strict regeneration quorum system (so that a

replica group never diverges) and a weak data quorum system (so that it improves system

availability at the cost of occasional inconsistency). IrisNet’s regeneration, described in

Chapter 7, has the following additional advantages over Om. First, it is simpler (Om

needs a complex randomized consensus protocol). Second, Om strives to optimize the

performance of reads, which leads to the design of read-one/write-all, not a suitable design

for write-intensive sensing systems. As a side effect, regeneration must be performed upon

the failure of any replica in Om. Third, even though regeneration in Om is efficient, it still

causes around 20 second service interruption for writes. On the other hand, regeneration

in IrisNet can happen in parallel with normal accesses. Table 2.4 compares all the designs.

1We can permit all the write-quorums to fail before regeneration because they are not required by
the regeneration protocols.

2.2. Robust Sensor Data Storage 37

Table 2.4: Comparison of regeneration designs.

The shaded row shows IrisNet’s design: it uses weak data access quorum systems to toler-
ate correlated failures and strict regeneration quorum systems to avoid replica divergence.

Data access quorum Regeneration quorum Consensus protocol
RAMBO Any traditional quorum Majority Paxos

(strict quorum) (strict quorum)
Om Read-one/write-all Witness model Randomized

(strict quorum) (weak quorum)
IrisNet SQS Majority Paxos

(weak quorum) (strict quorum)

2.2.4 Correlated Failures

Because a sensing system is large-scale, is deployed over the Internet, and might be

hosted by not-very-well-maintained machines, failures observed by the system will often

be correlated, as confirmed by a few recent studies [CV03,YNY+04]. This is in contrast

with the failure independence assumptions traditionally used by researchers in studying

availability [BTC+04,BDET00,Cat03,DLS+04,DW01,Yu04,YV04]. Correlation may be

spatial, when a large number of nodes in a certain geographic region fail; or temporal,

when a large number of nodes in the whole system fail within a short period of time.

Unless otherwise stated, we use the word “correlation” to denote temporal correlation.

Failure correlation has also been observed previously in other systems, including disk

failures [BWWG02, CEG+04], processor failures in multi-processor systems [OSM+04],

and overlay network routing [CSK02].

Correlated failures have recently drawn the attention of researchers working on wide-

area distributed systems [CV03,HMD05,JM02,WMK02,YNY+04], local-area and campus

network environments [BDET00,TI92]. Our focus is mostly on wide-area storage systems.

One simple approach to addressing correlated failures in such systems is over-provisioning:

the best design is selected under an evaluation based on independent failures and then

some over-provisioning is introduced with the hope of offsetting the negative effects of

failure correlation. A few recent storage systems have explored more sophisticated tech-

niques, as described below.

38 Chapter 2. Background and Related Work

OceanStore

OceanStore [KBC+00] is a global persistent data store designed to scale to billions of

users. It encodes data using erasure-coding and stores it in a distributed hash table.

Its strategy in combatting correlated failure is to discover sets of nodes that fail with

low correlation, and to store the erasure-coded fragments of a data object in one such

set [WMK02]. It relies on node failure data (e.g., when a node goes up and down)

collected from human sources and network measurements. This data is used to form a

complete weighted graph G(V,E) where a vertex v ∈ V represents a node in the system

and the weight of an undirected edge (i, j) ∈ E represents the failure correlation of nodes

i and j. The failure correlation of two nodes is measured by the similarity (i.e., mutual

information [BK00]) between their timings of going up and down. The nodes of the graph

are then clustered [SM00] such that the average correlation across clusters is minimized.

Thus, two random nodes within the same cluster are highly correlated, while those from

two different clusters are more independent in their failure properties.

This design is based on the observation made by Weatherspoon et al. [WMK02] and

Chun et al. [CV03]: failure histories can be used to discover a relatively stable pattern

of correlated failures (i.e., which set of nodes tend to fail together). Weatherspoon et

al. showed that the clusters constructed from the first half of their trace are similar to

those constructed from the last half. Given the stability of the clusters, they conjectured

that correlated failure can be avoided just by a suitable replica placement algorithm

that places the fragments of a single data object in nodes in different clusters. Thus,

the fragments do not observe excessive failure correlation among themselves. In some

sense, the problem of correlated failures goes away. Such introspective failure analysis

and modelling can be done online, and thus the system can adapt itself as the failure

pattern changes over time.

Phoenix Recovery Service

Phoenix [JBH+05] uses informed replication that has a similar design principle as OceanStore:

place replicas on nodes with minimal correlation. It considers software diversity as the

measure of failure independence, because nodes running the same software often share

the same vulnerability and fail together due to Internet catastrophes such as worm at-

tacks. Using host diversity characteristics derived from a measurement study of the hosts

on the UCSD campus, the designers of Phoenix developed and evaluated heuristics for

determining the number and the placement of replicas. Since typical Internet catastro-

phes affect a set of nodes running similar software, and Phoenix places replicas on nodes

2.2. Robust Sensor Data Storage 39

running different software, at least one replica is most likely to survive a catastrophe after

which Phoenix can recover the system, by creating new replicas.

Unlike OceanStore, Phoenix does not consider hardware or network failures (which

can cause correlation too). OceanStore’s approach is more general—a perfect cluster-

ing should be able to capture the correlation introduced by similar software, as shown

in [WMK02].

Glacier

Glacier [HMD05] takes a different approach than the above two systems. Instead of

relying on a predictable failure pattern, it employs excessive redundancy to tolerate the

effect of correlated failures. It encodes data using erasure-coding and stores the fragments

in nodes over a distributed hash table. Because of the complexity in availability estimation

introduced by failure correlation, it uses a very simple failure model that considers only

the (single) maximum failure size. It aims to achieve a given availability target despite

the correlated failure of up to a fraction f of all the nodes. Such simplification allows

the system to use a closed-form formula of availability =
∑n

k=m

(
n
k

)
(1 − f)kfn−k, which

is in fact the same as the formula under independent failures (with f being the failure

probability). Using this formula, Glacier is then able to calculate the required system

configuration parameters.

2.2.5 Discussion

The standard approach to improving availability of a storage system is to use redundancy

(e.g., replication, erasure-coding) and regeneration mechanisms. However, one of the

major challenges in designing a sensing system is to determine the parameters associated

with these techniques, since real-world failures are often correlated and their nature is

not well understood yet.

Existing techniques for mitigating the negative impact of correlated failures can be

classified as follows:

• Avoiding correlated failures: This class of techniques are based on the conjecture

that a replica group can be placed in a set of nodes that demonstrate independent

failure properties over time. In this way, a single replica group does not experience

correlated failures. OceanStore’s introspection and Phoenix’s informed replication

fall under this category.

40 Chapter 2. Background and Related Work

• Tolerating correlated failures: This class of techniques are based on the assump-

tion that correlated failures can not be avoided based on failure history [HMD05].

Therefore, these techniques use enough redundancy to tolerate the negative effects

of failure correlations. Over-provisioning and Glacier’s simple-model-based design

fall under this category.

Our approach to tolerating correlated failures in a sensing system falls under the

second category. Our study of three large distributed systems shows that finding a

stable failure pattern of nodes on the Internet is not trivial, and correlated failures can

not be avoided by using existing prediction techniques. However, our study confirms

that existing techniques of tolerating correlated failures have flaws. We show that over-

provisioning may lead to a wrong design—the best design under independent failures

may not be the best under correlated failures. We further show that a simple model may

either end up provisioning more than necessary or may fail to meet the target availability.

We address these shortcomings by i) introducing a better failure correlation model that

we have developed from several real world systems we studied, and ii) using the model

to carefully choose replication parameters. We elaborate our solutions in Chapter 6.

2.3 Summary

In this section, we have discussed and critiqued existing techniques for making different

components of a sensing system robust. Our discussion shows that current solutions do

not comprehensively solve the observed problems. In particular,

• Existing aggregation schemes for wireless sensor networks are either not robust

(because of their reliance on unreliable communication over tree topology) or not

energy-efficient (because of their use of heavy-weight reliable communication). Ex-

isting schemes adapt to long-term failures by local repair, without taking applica-

tion’s tolerance for approximate answers into account.

• Existing distributed read-write systems use strict quorum systems. Existing tech-

niques for building robust distributed storage ignore correlated failures, or hope to

be able to avoid them, or use simple failure models to choose replication param-

eters for tolerating the failures. Such techniques often fail to provide the target

availability of a system deployed in large-scale over the Internet.

The materials described in this chapter set the stages for our work. In the next few

chapters, we revisit the problems, and provide our solutions to them.

Chapter 3

IrisNet

In this chapter, we provide an overview of IrisNet, the first general-purpose shared infras-

tructure tailored for developing and deploying Internet-scale sensing applications. Note

that building a general-purpose sensing infrastructure is not the focus of this thesis. How-

ever, since no such systems existed, we had to design and implement IrisNet to show the

feasibility of Internet-scale sensing, to implement some of our techniques, and to under-

stand the behavior of sensing applications and the effectiveness of our techniques in the

real world.

Our design of IrisNet as a general-purpose infrastructure is motivated by the follow-

ing two reasons. First, developing a new sensing application is extremely challenging;

it requires mechanisms for processing live feeds from high bit-rate sensors, storing and

indexing the useful information extracted from the widely-distributed large-scale collec-

tion of sensors, processing expressive queries over the data, balancing load among nodes,

continuing to function despite component failures, etc. Today there are no effective

tools for providing all these functionalities within a single application. A general-purpose

infrastructure like IrisNet can take care of all these functionalities, letting application

developers develop and deploy new sensing applications with a minimal set of high level

description. Second, a generic infrastructure would allow us to explore solutions that

address challenges common to a large class of sensing applications, rather than the ones

specific to a single sensing application. We use IrisNet to implement some of our tech-

niques and to evaluate them.

IrisNet is designed to address the unique demands of sensing applications, arising

from the following prototypical data source and query characteristics:

• Data source characteristics: widely distributed, numerical and multimedia data,

frequent data updates.

41

42 Chapter 3. IrisNet

• Query characteristics: hierarchically-scoped queries, soft real-time responses,

queries over current data and summarized historical trends, queries involving both

dynamic sensor data and more static attribute data.

As an illustration of these characteristics, consider the Ocean Monitor application

mentioned in Chapter 1. It requires cameras, motes, and other sensors deployed along the

coastlines throughout the world. The queries are geographically scoped for oceanographic

events around a certain coastline or near some location (location is a static attribute).

Current up-to-date data is useful, but historical data is the most relevant (e.g., all sand-

bar formation events last year) for most queries posed by the oceanographers.

There are three key features of IrisNet that address the above demands and the

challenges in developing and deploying new sensing applications:

Handling heterogenous data sources. IrisNet provides means for handling heteroge-

neous data sources such as high bit-rate video or audio sensors and resource-constrained

wireless sensors. For scalability, IrisNet processes sensor feeds at or near their sources.

Because the processing is done locally, network bandwidth consumption is dramatically

reduced and the system scales to a large number of sensor nodes.

Distributed query processing. IrisNet provides a distributed database for each ap-

plication, with efficient distributed query processing. As with the sensor feed processing,

the goal is to push the query processing to the data, for increased parallelism and so that

only the query answer (not the raw data) is transferred on the network. IrisNet provides

query routing, caching, load balancing, and replication schemes tailored to the unique

query characteristics discussed above.

Ease of application development. IrisNet provides application authors with a very

high-level abstraction of the underlying system. IrisNet explores the extent to which a

minimal application specification suffices. At its simplest, an application developer writes

only a browser front end, application specific code, and an XML database schema for the

application. IrisNet derives from these inputs all that is needed to run the application.

We believe that the first two features are fundamental to any successful sensing ap-

plication infrastructure, and the third feature is crucial for its faster adoption by the

community. We have built a working prototype of IrisNet, and studied its performance.

A number of applications are being developed on IrisNet, even by developers beyond us.

This chapter describes the overall architecture of IrisNet and the applications built on it.

3.1. A Two-Tier Architecture 43

Internet

Parking Space Finder
OA Group

Sensing Agent

Sensing Agent Sensing Agent Sensing Agent

Person Finder
OA Group

University
Downtown

Amy
Kim

Sensing Agent

IrisNet has a two-tier architecture. Sensing Agents (SAs) collect and process sensor data
while Organizing Agents (OAs) on the Internet organize and store that data. Each sensing
application has its own OA group. An SA can also collect data from a wireless sensor
network.

Figure 3.1: IrisNet Architecture.

3.1 A Two-Tier Architecture

The IrisNet architecture is implemented using common off-the-shelf hardware and operat-

ing systems in combination with our custom user-level software. IrisNet has two different

types of software modules: sensing agents (SAs) that collect and filter sensor data and,

organizing agents (OAs) that store and organize data in a way users can query it. OAs

run on PC-class hosts while SAs run on PDA-class or higher hosts. While both OAs

and SAs must be connected to the Internet, SAs have the added constraint that the host

must be directly connected to a sensing device.1 While the total collection of SAs create

a sensor feed infrastructure that is shared by all applications, individual groups of OAs

create the distributed database and query processing infrastructure for specific applica-

tions (see Figure 3.1). In this section, we elaborate on this basic two-tier architecture

(SAs and OAs), its benefits, and some of the challenges it creates.

3.2 The SA Architecture

Each SA host is directly connected to one or more sensors. The types of sensors can range

from webcams and microphones connected to laptops to motion detectors and pressure

gauges in motes. An SA running on the host provides a common runtime environment for

applications to share the host’s sensor feed(s). The total collection of SAs create a sensor

1We refer to the software module as the SA and OA, and refer to the physical machine as the SA
host and OA host.

44 Chapter 3. IrisNet

feed processing infrastructure that is shared by all applications. An SA may transmit

data to many OAs for the same or different applications (Figure 3.1).

Because rich sensor feeds such as video streams and audio streams are potentially

high-bit-rate, IrisNet faces a fundamental scaling challenge: how to make numerous dis-

tributed, rich sensor feeds available to users while minimizing the use of network band-

width. Central to the IrisNet architecture is the aggressive filtering of raw data sources

at, or near, the node where the data originate, to achieve drastic bandwidth savings in

their transmission across the network. In this section, we describe in detail how IrisNet

accomplishes this filtering efficiently.

3.2.1 Senselets: Application-specific Filtering

IrisNet exploits the observation that application-specific filtering of sensor feeds yields

the greatest reduction in their data rates. For example, a Parking Space Finder (PSF)

application may use a 10 frame-per-second (fps) video stream from a camera pointed at

a parking lot as its input, but the application need only know which parking spaces are

full and which are empty. Running filtering code tailored to the PSF application on the

host to which the camera is attached will reduce the sensor feed from a stream of 10 fps

video to a series of vectors of { full, empty } bits, one per parking space. Similarly,

an SA running on the base station of a wireless sensor network can collect application-

specific aggregate information from the network and send that, instead of raw data from

individual sensors.

IrisNet performs application-specific filtering by using senselets, binary code fragments

for extracting the useful information from the sensor feed (e.g., existence of riptides

from the camera overlooking ocean surface, average temperature reported by the motes

along the coastline). The developer of a new IrisNet application writes the senselet(s)

and uploads it to the SAs. The IrisNet execution environment on SA hosts provides

sensor feed processing libraries with well-known APIs to be used by senselets. We expect

typical senselets to be sequences and compositions of these well-known library calls, such

that the bulk of the computation conducted by a senselet occurs inside the processing

libraries. Note that we do not require that a senselet use these libraries; they are merely

a convenience to developers, in that they represent a predictable development platform.

Using well-known library calls plays a role in efficient sharing of CPU resources by distinct

senselets, however, as discussed in Section 3.2.2.

Figure 3.2 shows the execution environment in an IrisNet SA host. An SA host receives

one or more raw sensor feeds from directly attached sensors or from base stations of

3.2. The SA Architecture 45

Shared Sensor Feed Buffer

SA Host

Se
ns

el
et

 1

Se
ns

el
et

 3

SA
 D

ae
m

on

To OA

Webcam

Se
ns

el
et

 2

Shared Memory Pool

N
on

−
iS

en
se

 A
pp

lic
at

io
ns

Sensor data is placed in a shared buffer to which every senselet has access. A senselet
can share its intermediate results with others through a shared memory pool. The SA
daemon starts and terminates execution of individual senselets.

Figure 3.2: Execution environment in SA host.

wireless sensor clusters. One instance of the SA runs on each SA host as a root-privileged,

user-level process. The SA is responsible for downloading new senselets, starting them,

and terminating them when an application’s deployment ends. Each senselet runs as a

separate user-level process.

One circular shared-memory buffer for each locally attached sensor is mapped into the

address spaces of all senselets. Raw sensed data are periodically written into this shared

memory, so that all senselets may read them without incurring a memory-to-memory

copy. We discuss the data sharing model for senselets in more detail in next section.

3.2.2 Cross-Senselet Sharing

One sensor feed may be of interest to multiple different IrisNet applications: e.g., a

video feed in a particular location may be used in one application to monitor parking

spaces, and in another to track passersby in the same visual field. To make sensor

feeds maximally available to users of heterogeneous applications, IrisNet must support

sharing of sensor feeds among multiple senselets. We expect image processing primitives

(e.g., color-to-gray conversion, noise reduction, edge detection, etc.) to be reused heavily

across senselets working on the same video stream. If multiple senselets perform very

similar jobs (e.g., tracking different objects), most of their processing would overlap.

For example, many image processing algorithms for object detection and tracking use

background subtraction. Multiple senselets using such algorithms need to continuously

46 Chapter 3. IrisNet

Recognize Face

Intermediate

Time: 10 Time: 11 Time: 12

Reduce Noise

Find Contour

Detect FaceDetect Car

Video Frame

Processing

(a)

(b)

Senselet 1 Output

Senselet 2 Output

Video Sensor Feed

Result

A computation DAG shows the sensor data, intermediate results, and the relevant pro-
cessing steps. The complete DAG is shown here for the video frame at time 12. A few
intermediate results for previous frames are also shown.

Figure 3.3: Computation DAGs for two senselets.

maintain a statistical model of the same background [EDHD02].

Consider the two senselets whose computation graphs are shown in Figure 3.3. Sense-

let 1 finds images of cars in a video stream, while senselet 2 finds images of human faces

in the same video stream. Note the bifurcation at time 12, step (b) between senselets 1

and 2; their first two image processing steps, “Reduce Noise” and “Find Contour,” are

identical, and computed over the same raw input video frame.

We wish to enable senselets like the pair shown in Figure 3.3 to cooperate with one

another. In the figure, one senselet could share its intermediate results (marked as (a)

and (b)) with the other, and thus eliminate the computation and storage of redundant

results by the other.

Each senselet owns a shared-memory region where it has read and write permissions,

and has read-only access to other senselets’ shared-memory regions. These mappings

are enforced by the SA. IrisNet stores senselets’ intermediate results in shared memory

at run time. This technique is quite similar in spirit to the memoization done by opti-

mizing compilers, where the result of an expensive computation is stored in memory for

re-use later, without repetition of the same computation. One key difference between

results sharing in IrisNet and traditional memoization is that IrisNet shares intermediate

results between senselets, whereas memoization shares intermediate results between ex-

actly matching function calls within a single running executable. Two different senselet

binaries may overlap in only a portion of their computation, and results should only be

reused if they were computed using identical functions on identical input data. Moreover,

3.2. The SA Architecture 47

senselets are soft real-time processes that act on time series, and may not be willing to

use pre-computed results derived from stale raw data.

If a senselet’s developer uses the libraries for sensor feed processing provided by the

IrisNet infrastructure, most of that senselet’s time will be spent within these libraries’

functions. IrisNet uses names of sensor feed processing API calls to identify common-

ality in execution. Senselets name intermediate results using their lineage, which is a

hashed encoding of the entire sequence of library function calls along the path from an

original sensor feed to a result in the computation graph. This encoding preserves the

ordering on non-commutative function calls. The libraries implement results sharing.2

Each library function begins by looking for a previously computed intermediate result

of the appropriate name in shared memory. If the result is found, and is timestamped

within the requesting senselet’s expressed tolerance for stale results (slack), it is returned

from shared memory, and the redundant computation is avoided. Otherwise, the library

performs the computation, and the result is stored under the appropriate name in shared

memory for others to use. More details of this can be found in [NKG+04].

Note that the senselet writer need not explicitly refer to the shared store of interme-

diate results to reap the efficiency benefit of sharing. Rather, the sensor feed processing

libraries used by senselets hide this complexity from the developer, and do the work

transparently.

3.2.3 Incorporating Wireless Sensors

An SA can run in a base station of a mote network. In this way, IrisNet can tie together

multiple mote networks and let an application use data from some or all of them. The

SA in the base station has a slightly different set of functionalities than the SA attached

to wired sensors. The SA performs the tasks necessary to manage the mote network,

including asking the motes to sleep when no application requires their data, monitoring

the motes [ZGE03] and providing feedbacks to administrators about when additional

motes need to be deployed, retasking the motes by installing necessary software [LGC05,

LMG+04] (for self-organizing, routing data, etc.), etc. It provides APIs for applications

to perform standard tasks (e.g., topology formation, aggregation, raw data collection,

etc.) within the mote network. For example, it can incorporate TinyDB [MFHH02] to

query the motes and expose its APIs to applications. The SA also lets applications to

transparently share valuable resources—by caching data collected for one application and

2IrisNet provides a parallel, non-shared API to the sensor feed processing libraries. If a senselet wishes
not to share its results with others, it uses this API rather than the standard API, and allocates storage
on the heap rather than in shared memory.

48 Chapter 3. IrisNet

letting others to use that, by merging sensing tasks required by multiple applications, etc.

Senselets running on the SA encapsulate the code to process sensor data collected

from the motes and the code that can be pushed into the mote network to reprogram

it. The latter part is required if the standard APIs provided by the SA to program the

motes is not sufficient. For example, the application may want to compute an aggregate

that is not supported by TinyDB provided by the SA. In such case, the senselet provides

the code, compiled to be run on motes, to implement the missing functionalities. The SA

then installs the code within the motes, starts the task, and terminates it when dictated

by the application.

In this thesis, we consider SAs collecting data from wireless sensors. More specifically,

we focus on efficient and robust collection of aggregate data from wireless sensors. An

application requiring efficient and robust data collection implements our techniques into

its senselet that SAs push inside the wireless sensor networks; individual sensors then use

our algorithm and push aggregate data to the SAs for the application to use.

3.3 The OA Architecture

OAs implement the data storage component of the generic sensing system architecture

mentioned in Chapter 1. OAs are organized into groups, one group per application. A

group of OAs creates the distributed database and query processing infrastructure for a

specific application. Each OA participates in one sensing application (a single physical

machine may host multiple OAs). Each OA has a local database for storing sensor-derived

data; these local databases combine to constitute an overall application database. Using

multiple OAs, i.e., essentially using a distributed database, is necessary to support the

high update rates that may result from sensor readings. Using separate OA groups

allows each application developer to tailor the database schema to the application, and

to facilitate application-workload-specific caching and load balancing.

IrisNet stores data in a distributed XML database. It provides application developers

with a very high-level abstraction of the underlying system, in which the XML database

is completely centralized. In this section, we describe how IrisNet takes an application’s

XML document and creates a distributed application database, which supports updates

by the application’s senselets and answers queries generated by the application’s front end.

Although distributed databases are a well-studied topic (e.g., [SAS+96a,GHOS96,PL91,

AS93,KB91,ABGM90,CP92,OW02]), no work prior to ours shows how to dynamically

distribute an XML document or how to perform query processing over a distributed XML

document.

3.3. The OA Architecture 49

We here briefly describe the components of the OA architecture that are relevant to

this thesis: distributed database, distributed query processing, and fault tolerance.

3.3.1 Distributing the Database

In order to adapt to query and update workloads, IrisNet can dynamically partition the

sensor database among a collection of OAs. The logical hierarchy (e.g., Figure 3.4(a) for

a PSF application) used by the application’s queries is given by the application developer

as a database schema. The schema includes special id attributes, whose value is a short

name that makes sense to include in a user query (e.g., New York). These attributes

define potential split points for partitioning the database, i.e., the minimum granularity

for a partitioned unit. Unlike approaches with a fixed granularity (e.g., a file block), the

granularity can vary widely within the same application database. IrisNet permits an OA

to own any subset of the nodes in the hierarchy (including non-contiguous subsets), as

long as ownership transitions occur at split points and all nodes are owned by exactly one

OA. (OAs can also cache/replicate data owned by other OAs, as discussed latter.) We

envision that application developers will liberally include id attributes in their schema,

to give IrisNet maximal flexibility in partitioning, while IrisNet will typically partition

the document into far fewer actual partitions.

Global naming is achieved by requiring that (1) the id of a split node is unique

among its siblings with the same parent (e.g., there can be only one city whose id is

New York among the NY state node’s children), and (2) the parent of a non-root split

node is also a split node. Thus, the sequence of node names and ids on the path from

the root uniquely identifies a split node. An important feature of our design is that

because the values of id attributes make sense in XML queries, we can extract any

global name we need directly from the query itself! From the query in Figure 3.4(b), for

example, we can extract the global name city-NewYork.state-NY.usRegion-NE for the

New York node in Figure 3.4(a), by concatenating the name and ID pairs from the query

in Figure 3.4(b). We are not aware of any previous global naming scheme that leverages

XML query languages in this manner.

Each OA registers with DNS [MD88] each split node that it owns, where the registered

name is the split node’s global name appended with the name of the application and our

domain name. DNS provides a simple way for any node to contact the owner of a

particular split node of the database. It is the only mapping from the logical hierarchy to

physical IP addresses in the system, enabling considerable flexibility in mapping nodes

in the document to OAs, and OAs to physical machines. This permits the system to

50 Chapter 3. IrisNet

�� �������������� �� ��������������

	
 ��
Block1
�
�

Yonkers

��

��

��

Block1

Block2

Block3

��
PA

��

��

Tribeca

NewYork

Soho

NE

City Neighborhood BlockUs Region State

NY

���
�

Physical Machine ������
���
������
���

Web Server

NE, NY, NewYork

Hierarchy Message

���
�

���
�

		

���
�

�
�

���
�

���
�

������
������

������
������

2
3

4

3

Soho Tribeca1

2

Block 1 Block 1Block 3Block 2

Web Server

/usRegion[@id=’NE’]/state[@id=’NY’]/city[@id=’NewYork’]
/neighborhood[@id=’Soho’]/block[@id=’1’ OR @id=’3’]
/parkingSpace[available=’yes’]

(a) A logical hierarchy (b) Processing a query

Figure 3.4: Processing a IrisNet query over the logical hierarchy. (a) A logical
hierarchy. (b) Top: An XPATH query. Bottom: A mapping of logical nodes
to seven machines, and the messages sent to answer the query (numbers depict
their relative order).

scale to as many machines as needed, each operating in parallel, in order to support large

data volumes and high update frequencies. In IrisNet, an OA keeps track of both the

computational load on its host machine and the frequency of queries (and of updates, if

it is a leaf OA) directed to each split node it owns. An overloaded OA splits off part of

the document it owns to a lightly loaded machine [NGS05]. Conversely, a very lightly

loaded OA is collapsed into its parent. More details of IrisNet’s load balancing will be

discussed in Chapter 7.

3.3.2 Answering Queries

Due to IrisNet’s dynamic partitioning, providing fast and correct answers to user queries

is quite challenging. The goals are to route queries directly to the nodes of interest to

the query, to take full advantage of the data stored at each OA visited, and to pass data

between OAs only as needed. We show how IrisNet addresses each of these goals.

An IrisNet query is specified in XPATH [WWW99], a standard query language for

XML data. An XPATH query selects data from a set of nodes in the hierarchy. In

IrisNet, the query is routed directly to the lowest common ancestor (LCA) of the nodes

potentially selected by the query. IrisNet uses a simple parser to scan the query for its

maximal sequence of id-only predicates (e.g., up to the New York node for the query in

Figure 3.4(b)). This constitutes a non-branching path from the root of the hierarchy to

the node, such that the query answer will come from the subtree rooted at that node. In

3.3. The OA Architecture 51

the common case where the id-only chain ends at the place where the query no longer

selects just a single path, the node is the desired LCA for that query. In Figure 3.4(b),

for example, the Soho node is the LCA because the query selects from two of the node’s

children (Block 1 and Block 3). The simple parser constructs the DNS name for the node

(as detailed above), performs a DNS lookup to get the IP address of the machine hosting

the Soho node, and routes the query to the OA. We call this the starting point OA for

the query. The key point is that for an arbitrary XPATH query posed anywhere in the

Internet, IrisNet can determine where to route the query with just a DNS lookup: no

global or per-application state at the web server is needed to produce the DNS name of

the LCA. Also, the root of the hierarchy is not a bottleneck, because queries are routed

directly to the LCA, which, for the typical hierarchically-scoped query, is far down in the

hierarchy.

Upon receiving a query, the starting point OA queries its portion of the overall XML

document and evaluates the result. However, for many queries, a single OA may not

have enough of the document to respond to the query. The OA determines which part

of a user’s query can be answered from the local document (discussed below) and where

to gather the missing parts (extracting the needed global names from the document).

The OA looks up the IP addresses of the other OAs to contact and sends subqueries to

them. These OAs may, in turn, perform a similar gathering task. Finally, the starting

point OA collects the different responses and the combined result is sent back to the user.

For the example in Figure 3.4(b), the Soho OA receives the query from the web server,

sends subqueries to the Block 1 and Block 3 OAs, each of which returns a list of available

parking spaces, to be combined at the Soho OA and returned to the user.3

While the above recursive process is straightforward at a high level, the actual details

of getting it to work are rather complicated. The crux of the problem is to determine

which part of an XPATH query answer can be extracted from the OA’s local document

(a fragment of the overall application document). Simply posing the query to the XML

database will not work because the fragment may be missing nodes in the document that

are part of the answer or fields in the document that are needed to correctly evaluate

a predicate. In short, existing query processors are not designed to provide negative

information about missing parts of an answer. Our solution to this problem is to tag the

nodes in a fragment with status information that indicates various degrees of completeness

and to maintain tagging/partitioning invariants (such as partitioning only at split points).

3This is a simple example in which the children of the Soho node reside on different machines, but in
general, a subquery may be sent to any descendant in the hierarchy, depending on the query and how
the document is fragmented.

52 Chapter 3. IrisNet

Then, we convert the XPATH query into an XSLT program that walks the OA’s XML

document tree and handles the various tags appropriately. Complete details on the

approach appear in [DNGS03].

IrisNet also lets application developers easily extend its existing database functional-

ity. To process and aggregate sensor data in a new way (e.g., to fuse data from multiple

sensors), beyond the ways supported by IrisNet’s database engine, a developer needs to

decompose the target task into three functions, with a semi-centralized view of execution

in mind; IrisNet then automatically distributes the processing and lets users seamlessly

incorporate the new functionality with the existing query interface. More details of this

feature can be found in [CGN05b].

3.3.3 Caching and Data Consistency

Like many other distributed applications, it is obvious that there will be a great deal of

locality in the user requests to a sensing application. For example, in a PSF application,

there are likely to be many more queries about downtown parking than rural/suburban

parking, as well as spikes in requests for near the stadium on game day. To take advantage

of such patterns, OAs may cache data from any query gathering task that they perform.

Subsequent queries may use this cached data, even if the new query is not an exact match

for the original query. During the gathering task, IrisNet generates subqueries that fetch

partitionable units; in this way, its query processing mechanisms (described above) work

for arbitrary combinations of owned and cached data.

Due to delays in the network and the use of cached data, answers returned to users

may not reflect the most recent data. A query may specify consistency criteria indicating

its tolerance for stale data. For example, a PSF application can specify a decreasing

tolerance for stale data as a user approaches her destination. We store timestamps along

with the cached data, indicating when the data was created, so that an XPATH query

specifying a tolerance is automatically routed to the data of appropriate freshness.

3.3.4 Fault Tolerance and Replication

While a hierarchical database organization enables the scalable processing of rich queries,

it is more susceptible to failures. For example, the failures of nodes high up in the

hierarchy can cause significant portions of the database to become unavailable. Other

hierarchical systems, such as DNS [MD88], rely on replication to tolerate such failures.

However, DNS replication is relatively simple since DNS records are rarely updated.

3.4. IrisNet Applications 53

Unfortunately, sensor readings change frequently making replication more difficult in

IrisNet.

IrisNet achieves fault tolerance through two mechanisms. First, queries are first sent

to the LCA OA, and hence failure of the OAs containing nodes above the LCA node in

the hierarchy does not affect the query processing. Second, IrisNet replicates nodes in

the logical hierarchy on multiple OAs. Each node in the hierarchy has multiple primary

replicas. When the DNS name for a node is resolved, it returns the addresses of all

primary replicas. Typically, primary replicas are assigned to nodes that are optimal in

placement. For example, a leaf node primary replica is likely to be near its associated

SAs.

IrisNet also uses secondary replicas. Secondary replicas only maintain a weakly con-

sistent copy of the data corresponding to the node. Secondary replicas are often placed

far from the primary replicas to avoid simultaneous failures of these hosts. We store

the location of these secondary replicas separately from the primary replicas by using

an alternative trailing domain name. Querying this alternate name retrieves the address

of all primary and secondary replicas for the node. One other important distinction is

that the DNS records for the alternate name are given a TTL of 0 while those for the

normal name are given a TTL of 10 minutes. The low TTL for the alternate DNS records

ensures that an up-to-date list of replicas is retrieved during the critical periods when

the secondary replicas are used.

When a host attempts to route a query to an OA, it may fail in a number of ways:

the TCP connection setup may fail, the query may timeout, the contacted host may no

longer be responsible for the node, etc. Upon any failure, the host re-issues the query to

the next primary replica. If all primary replicas fail, the host performs a DNS lookup on

the alternate node name and queries any newly discovered replicas in a similar fashion.

The current IrisNet prototype does not spawn new replicas when a failure is detected.

More details about IrisNet’s replication will be described in Chapter 6 and 7.

3.4 IrisNet Applications

A key goal in IrisNet is to greatly simplify the task of developing a sensing application.

We now briefly describe how IrisNet lets application developers develop new applications,

and provide examples of a few applications developed on IrisNet.

54 Chapter 3. IrisNet

3.4.1 Developing an Application in IrisNet

A typical developer needs to write only the following:

• Application specific code: senselets and application-specific database aggregation

functions, if not already supported by IrisNet’s distributed database.

• A database schema that describes and organizes the collected sensor readings (e.g.,

a schema that describes the characteristics of a parking spot, including its hierar-

chical, geographic location); and

• A user-friendly browser front end that converts user input into queries upon the

application database.

Note that the developer is not burdened with the details of collecting the sensor

readings, processing queries on the widely distributed data, scaling the application to the

wide area, enforcing the appropriate privacy policies, protecting the applications from

failures and attacks, etc.

3.4.2 Prototype Applications

In this section, we describe several applications built on IrisNet to show how different

pieces described so far fit together. Two of these applications, the IrisLog and the

Parking Space Finder, were developed by us, while the third one, the Ocean Monitor,

was developed by a group of oceanographers from Oregon State University. We use

IrisLog to evaluate some of our techniques in Chapter 7.

IrisLog

IrisLog [Int03a] is a distributed infrastructure monitor that demonstrates the scalabil-

ity of IrisNet. IrisLog is deployed in PlanetLab [PACR02, Pla05], an open, globally

distributed testbed and has been running since September 2003. Currently, IrisLog

monitors over 450 PlanetLab hosts at 270 sites spanning 5 continents, and is the largest

IrisNet deployment to date. Rather than using physical sensors, this application uses

machine statistics, e.g., CPU load or network bandwidth consumption, and system logs

as sensor inputs. It allows efficient querying of both individual and aggregate machine

statistics and resource utilization across the PlanetLab infrastructure.

The database schema used in IrisLog employs a geographic XML hierarchy, a slice of

which is shown in Figure 3.5. This hierarchy allows efficient processing of geographically

3.4. IrisNet Applications 55

CMU−1

Non−USA

CMU−2

CMU

USA−East

MIT

USA−West

USA

PlanetLab

CMU−3

Figure 3.5: Hierarchy used in the IrisLog application.

scoped queries (e.g., find the least loaded CMU node). At each host machine, a set of

monitoring tools is executed periodically to log machine and user statistics, which are

used to update locally-hosted fragments of the distributed database corresponding to the

machine. To support historical queries on the monitored data, the schema uses multi-

resolution vectors to store each monitored metric. These vectors provide higher resolution

samples of recent data than older data. Fragments corresponding to higher levels of the

XML tree are automatically distributed among various machines, based on query load and

performance, and replicated for fault tolerance. Compared to a system that streams log

information from each host to a centralized monitoring station (e.g., Ganglia [MCC04]),

IrisLog both distributes the processing load for handling user queries, and reduces total

bandwidth for handling statistics updates.

Parking Space Finder (PSF)

The Parking Space Finder (PSF) is intended to provide the useful service of locating

available parking spaces near a desired destination and directing the driver to such a

space. The system utilizes a set of cameras connected to IrisNet SAs running senselets to

detect the presence of cars in spaces and update the distributed database with this high-

level semantic information. The database itself is organized according to a geographic

hierarchy, and is logically divided by region, city, neighborhood, block, etc. Our current

table-top deployment uses the logical hierarchy shown in Figure 3.4(a). This hierarchy

fits well with the application, as any update from a given camera or query from a given

driver is likely to touch only small subtrees of the database, improving the scalability of

the distributed system.

56 Chapter 3. IrisNet

The PSF front-end is a web-based interface that takes as input the desired destination

and current location. It queries IrisNet for the closest spot to the destination that is not

occupied, and that matches other user-specified parameters, e.g., whether covered, if a

permit is required, maximum hourly rate, etc. The front-end then uses Yahoo! r© Maps

online service to generate driving directions to the available parking spot. We imagine

that in the future, this front-end can be integrated into a car’s navigation system, and

would be able to get current location and destination directly from the system, and make

use of the built-in mapping to generate driving directions.

The PSF is able to handle some real-world constraints on deployed camera systems.

For example, a single camera may not be able to cover a particular parking lot. Our

current PSF senselet is able to use feeds from multiple, oblique camera views and stitch

them together to produce an image that covers the entire lot, before running car detection

routines. The detector uses variance of pixel intensity in image regions to determine

whether a parking space is occupied. A more sophisticated detector could employ machine

learning techniques to acquire visual models of empty spaces, or employ techniques to

directly determine the presence of cars.

Ocean Monitor

In collaboration with oceanographers of the Argus project [CIL03] at Oregon State Uni-

versity, we have developed a coastal imaging application on IrisNet. SAs connected to

cameras deployed along the Oregon coastline run senselets to detect and monitor near-

shore phenomena, such as riptides and the formation of sandbars.4 The system can

capture and store still and temporally smoothed images (Figure 3.6), essentially raw

data, and also distilled, high-level information processed through senselets. Using IrisNet

senselets, the application allows oceanographers to run their detection algorithms at the

remote site. This permits a greater fidelity of observation (more images can be examined)

than is possible through previous efforts that collected raw data over low-bandwidth mo-

dem and long-range radio links for centralized processing. Users can dynamically change

parameters of the senselets, vary data sampling rates, and even install new processing

algorithms to the remote camera sites, without interrupting service or making a trip to

the coast.

One important type of oceanographic image-based sensor is the pixel stack. These

detectors track time-varying intensities of series of small regions of interest (ROIs) in

coastal images, and correlate these changes with various phenomena. An important as-

4Our current deployment uses only one live camera on the Oregon coast.

3.5. Summary 57

Figure 3.6: Images from the IrisNet Coastal Imaging prototype. On the left,
raw video frames. On the right, temporally smoothed images revealing the
sand bars.

pect of using these detectors is the correct association of regions in the images with

real-world locations and coordinates. Extrinsic calibration techniques applied in Iris-

Net [CGN+05a], along with a few known ground truth points, can be used to accurately

determine the correspondences between image regions and global coordinates. Further-

more, Ocean Monitor implements a technique to provide a composite overhead view of

the coastline, by projecting multiple camera images onto global coordinates and stitching

them together [CGN+05a]. Such a rectified, composite image is designed to assist in the

instrumenting of pixel sensors, permitting the user to select locations based on a world

or map coordinate frame, which the system can automatically convert to ROIs in the

source images.

3.5 Summary

IrisNet is a shared software infrastructure tailored for easy development of Internet-scale

sensing applications. It implements the generic functionalities required by such appli-

cations so that application developers can use IrisNet as a building block. It enables

application-specific processing of sensor data, stores sensor-derived data near the sources,

and supports a general purpose query processing on that distributed data. Initial expe-

rience of building applications on IrisNet shows the feasibility of Internet-scale sensing

and the ease of application development on IrisNet. Our existing prototype applications

all use wired sensors; building applications incorporating wireless sensors is part of our

future work.

As mentioned before, this thesis focuses on robustness of data collection and storage.

58 Chapter 3. IrisNet

In the next two chapters, we will focus on how a senselet running on a base station can

reliably collect aggregate data from wireless sensors. The following two chapters will

involve the storage layer of IrisNet and focus on its fault tolerance.

Chapter 4

Synopsis Diffusion

As mentioned in Chapters 1 and 3, a generic sensing system such as IrisNet consists of

two main components: the data collection component and the data storage component.

In this chapter and the next chapter, we consider the data collection component. More

specifically, we focus on collecting aggregate data from wireless sensor networks in robust

and efficient ways. We describe our solutions in two steps. First, we consider a relatively

static network and propose a novel in-network aggregation framework called Synopsis

Diffusion that provides highly-accurate estimations of useful aggregates in an energy-

efficient way. Then, we consider the dynamics of a typical wireless sensor network and

propose a novel adaptive aggregation framework called Tributary-Delta, which efficiently

combines Synopsis Diffusion with existing tree-based schemes and dynamically adapts to

the dynamics. We describe Synopsis Diffusion in this chapter; Tributary-Delta will be

described in the next chapter.

The key strength of Synopsis Diffusion comes from its decoupling the aggregation

algorithm from the underlying aggregation topology. This enables in-network aggrega-

tion over energy-efficient and highly robust multi-path topologies. Due to the robustness

provided by multi-path routing [GGSE02], Synopsis Diffusion can estimate aggregate

answers with high accuracy, even with high message loss rates and without reliable com-

munication. Synopsis Diffusion is based on three key ideas:

• Exploit the wireless broadcast medium. Existing schemes of aggregation on

a tree superimpose a point-to-point message exchange on an inherently broadcast

medium; Synopsis Diffusion enables any and all listeners to take advantage of the

messages they hear. In this way, aggregate data can propagate over multiple paths

toward the base station. We show that Synopsis Diffusion using a broadcast-based

topology (a Rings topology, as described in Section 4.2) is as energy efficient as

59

60 Chapter 4. Synopsis Diffusion

tree-based aggregation, but dramatically more robust.

• Use order- and duplicate-insensitive (ODI) synopses to summarize par-

tial results. With Synopsis Diffusion, each node sends its partial result along

multiple paths in the aggregation topology, introducing the concern that readings

will be double-counted and will reach the base station in different orders. Synopsis

Diffusion addresses this by using order- and duplicate-insensitive (ODI) synopses,

small-size digests of the partial results received at a node, such that any particular

sensor reading is accounted for only once. In other words, the synopsis at a node

is the same regardless of the number of times a given reading from a given sensor

arrives at the node (either directly or indirectly via partial results).

• Decouple aggregate computation from message routing. With Synopsis

Diffusion, unlike with existing tree-based aggregation schemes, the aggregation

topology (i.e., which nodes send and receive messages when) can be decided in-

dependently of the aggregation algorithm. The goal for an aggregation topology is

to maximize the number of distinct sensor nodes able to send their values to the

base station, while minimizing the number of messages sent (i.e., the energy con-

sumption). There is a continuum to this trade-off, and Synopsis Diffusion provides

the flexibility to use any point on this continuum, to incorporate any desired level

of redundant propagation of readings and partial results (for protection against

possible failures), and to be fully adaptive to the node and link dynamics actually

encountered during routing.

Previous sensor network research has shown that for aggregates that are inherently

duplicate-insensitive (e.g., Max and Min), robust in-network aggregation using broad-

cast is both low-energy and highly accurate [ZGE03]. However, most aggregates are

duplicate-sensitive (e.g., Sum, Count, Average), and the challenge is to devise duplicate-

insensitive synopses for these duplicate-sensitive aggregates. To this end, we develop a

formal definition of duplicate-insensitive synopses. This definition captures the overall

goal of duplicate-insensitivity, but it is not immediately useful for designing synopses.

Thus we derive simple properties that provably imply the more general definition, and

show how these can be used to design (provably correct) synopses. We believe that

Synopsis Diffusion is a powerful framework for the design of sensor network aggrega-

tion schemes. Instead of tightly coupling in-network aggregation and message routing,

Synopsis Diffusion permits independent explorations of these areas.

The remainder of the chapter is organized as follows. Section 4.1 describes a näıve

algorithm that conveys the basic idea of ODI aggregation. Section 4.2 presents the basic

4.1. A Näıve ODI Algorithm 61

Synopsis Diffusion scheme. Section 4.3 presents our formal framework and theorems for

ODI synopses. Section 4.4 presents ODI synopses for additional aggregates. Section 4.5

discusses error bounds of approximate Synopsis Diffusion algorithms. We describe our

experimental results and various trade-offs that Synopsis Diffusion enables in Section 4.6.

We conclude the chapter with related work in Section 4.7 and a short summary of the

chapter in Section 4.8.

4.1 A Näıve ODI Algorithm

The basic requirement of an ODI algorithm is to ensure that the final result computed at

the base station is independent of the underlying topology—i.e., whatever the topology

is, in whichever ways sensor readings get combined inside the network, the end result

must always be the same (e.g., same as the result provided by a tree topology). We will

formally define ODI algorithms in Section 4.3.2.

We start with a näıve ODI algorithm that can compute a duplicate-sensitive aggregate,

Count of live sensors in a network, in-network over an arbitrary topology. Note that

existing tree-based schemes for Count, where each node adds its children’s accumulated

counts and sends the sum to its parent(s), are not ODI and they do not work with an

arbitrary topology—the same reading may be counted more than once if the topology is

not a tree (and hence each reading can be routed through multiple different paths). The

following algorithm avoids this problem.

At the beginning of aggregation, a node with ID i uses the function Bit-Vector

that generates a bit-vector with only the i’th bit set to 1 (Figure 4.1(a)). Assuming

that each node has a unique ID, different nodes set different bits in the bit-vector. Then

the nodes broadcast their bit-vectors. On receiving a bit-vector from its neighbor in

the aggregation topology, a node combines it with its current bit-vector by using the

Boolean OR function (Figure 4.1(b)). In this way, bit-vectors generated by different

nodes get combined in-network as they propagate toward the base station. Finally, the

base station uses the function Bit Count to count the number of 1 bits in the final bit

vector and reports the count as the final answer (Figure 4.1(c)).

Intuitively, the above algorithm correctly computes Count because every node sets

a unique bit in the bit-vector and the Boolean OR operation preserves all the bits

so that the base station can count them all. Moreover, the algorithm is ODI since in-

network aggregation is performed by the Boolean OR function which is ODI. Section 4.3

provides a formal definition of ODI and a framework for proving that an algorithm is ODI.

The above näıve algorithm shows several important aspects of the class of ODI algo-

62 Chapter 4. Synopsis Diffusion

4

1 2

001000 000100

010000100000

3

1 2

43
001000 001100

01100010100

Result = 4

1 2

43
001000 001100

011100101100

111100

(a) Generating bit-vectors (b) Combining bit-vectors (c) Counting bits
by individual nodes in intermediate nodes at the base station

In (a), each Node converts its reading to be aggregated into a synopsis. In (b), each
node broadcasts its own synopsis. A node receiving this synopsis merges it with its own
synopsis and then broadcasts the merged synopsis. After a sequence of such broadcasts,
the base station receives a (merged) synopsis that represents synopses of all the nodes in
the network. In (c), the base station evaluates the synopsis into the final answer to the
aggregate query.

Figure 4.1: A näıve ODI Count algorithm.

rithms we aim to devise. First, the target function (i.e., Count) has been implemented

by a set of helper functions: Bit-Vector, Boolean OR, and Bit Count. These

functions have been chosen carefully such that they produce the same result we expect

from the target Count function and they have certain properties (discussed in Section 4.3)

that make the aggregation process ODI. Second, the partial result exchanged between

two nodes is represented as a synopsis [BBD+02,GM99], a small digest (e.g., bit-vector,

histogram, sample, etc.) of the data. Finally, to be energy-efficient, the synopsis needs

to be small. In this respect, the above näıve algorithm is not efficient—to allow every

node a unique bit position, the size of the bit-vector needs to be at least n, where n is the

number of nodes participating in the aggregation. Later, in Section 4.4, we will provide

an approximate Count algorithm that requires a bit-vector of size only O(log(n)).

4.2 Synopsis Diffusion

We now describe Synopsis Diffusion, a novel in-network aggregation framework that en-

ables robust, highly-accurate estimations of duplicate-sensitive aggregates like Count. We

first describe the general aggregation framework, and then illustrate its use by using a

4.2. Synopsis Diffusion 63

specific aggregation topology (called Rings). Although the description is based on adapt-

ing the TAG communication model and continuous query scheme [MFHH02], it is not

dependent on the particular model or scheme.

The in-network aggregation of a Synopsis Diffusion algorithm is defined by three

functions on the synopses:

• Synopsis Generation: A synopsis generation function SG(·) takes a sensor read-

ing (including its metadata) and generates a synopsis representing that data.

• Synopsis Fusion: A synopsis fusion function SF (·, ·) takes two synopses and

generates a new synopsis.

• Synopsis Evaluation: A synopsis evaluation function SE(·) translates a synopsis

into the final answer.

The exact details of the functions SG(), SF (), and SE() depend on the particular

aggregate query to be answered. An example is given at the end of this section; additional

examples are presented in Section 4.4.

A Synopsis Diffusion algorithm consists of two phases: a distribution phase in which

the aggregate query is flooded through the network and an aggregation topology is con-

structed,1 and an aggregation phase where the aggregate values are continually routed

toward the base station. During the aggregation phase, each node periodically uses the

function SG() to convert sensor data to a local synopsis and the function SF () to merge

two synopses to create a new local synopsis. For example, whenever a node receives a

synopsis from a neighbor, it may update its local synopsis by applying SF () to its cur-

rent local synopsis and the received synopsis. Finally, the base station uses the function

SE() to translate its local synopsis to the final answer. The continuous query defines

the desired period between successive answers, as well as the overall duration of the

query [MFHH03,YG03]. One-time queries can also be supported as a special, simplified

case.

An important metric when discussing the quality of query answers in the presence of

failures is the fraction of sensor nodes contributing to the final answer, called the percent

contributing. With Synopsis Diffusion, a sensor node contributes to the final answer

if there is at least one failure-free “propagation path” from it to the base station. A

propagation path is a hop-by-hop sequence of successfully transmitted messages from the

sensor node to the base station. Note that it does not require that the sensor’s reading

1This topology may be adapted at any time as network conditions change.

64 Chapter 4. Synopsis Diffusion

actually be transmitted in the message, because with in-network aggregation, the reading

will typically be folded into a partial result at each node on the path.

Although the Synopsis Diffusion framework is independent of the underlying topology,

to be more specific, we describe next an example overlay topology, called Rings, which

organizes the nodes into a set of rings around the base station.

4.2.1 Synopsis Diffusion on a Rings Overlay

During the query distribution phase, nodes form a set of rings around the base station q

as follows: q is in ring R0, and a node is in ring Ri if it receives the query first from a

node in ring Ri−1 (thus a node is in ring Ri if it is i hops away from q). The subsequent

query aggregation period is divided into epochs and one aggregate answer is provided at

each epoch. As in TAG, nodes in the Rings topology are loosely synchronized [MFHH02].

An aggregation is collected over an epoch. Each ring is allotted specific time slots within

the epoch and all the nodes in that ring use these specific slots for receiving messages,

sensing/processing, and transmitting messages. The duration of the allotted slot in an

epoch is determined a priori based on the density of deployment (so that even if the sensors

perform carrier sensing, all the sensors get enough time to transmit their messages once).

The slots are assigned such that the receiving slot of ring i contains the transmission

slot of ring (i + 1) (receiving slot is slightly bigger than transmission slot to overcome

limitations in the accuracy of time synchronization between nodes of adjacent rings).

Figure 4.2 shows the process. Such a loose synchronization allows nodes to turn off their

radio and processor for most of the epoch. It also enables multiple aggregation rounds

to be pipelined (e.g., ring 5 can start a new epoch while ring 1 is still processing the

previous epoch).

We now describe the query aggregation phase in greater detail, using the example

Rings topology in Figure 4.3 for illustration. In this example, node q is in R0, there

are five nodes in R1 (including one node that fails during the aggregation phase), and

there are four nodes in R2. At the beginning of each epoch, each node in the outermost

ring (R2 in the figure) generates its local synopsis s = SG(r), where r is the sensor

reading relevant to the query answer, and broadcasts it. A node in ring Ri wakes up at

its allotted time, generates its local synopsis s := SG(·), and receives synopses from all

nodes within transmission range in ring Ri+1
2. Upon receiving a synopsis s′, it updates its

local synopsis as s := SF (s, s′). At the end of its allotted time (by when it is done with

2Note that there is no one-to-one (or even static) relationship between the nodes in ring Ri and those
in ring Ri+1 — a node in ring Ri fuses all the synopses it overhears from the nodes in ring Ri+1.

4.2. Synopsis Diffusion 65

Epoch

�������������������������

������������������������� �������������������������

������������������������� �������������������������

������������������������� ��������������������

��������������������

Radio and Processor Idle 	�		�	
	�		�	
	�	

�

�

�

�

�

Sensing and Processing
Radio Idle

TransmittingListening/Receiving

�������������������������

�������������������������

R
ings

Start of
Epoch

End of

Ring 1

Ring 2

Ring 3

Ring 5

Ring 4

Base Station

Time

Figure 4.2: Partial aggregates flowing toward the base station during an
epoch.

R 1R 0 R 2

A

B

C

q

Figure 4.3: Synopsis Diffusion over the Rings topology. Crossed arrows and
circles represent failed links and nodes.

fusing the synopses from its neighbors in ring Ri+1) within the epoch, the node broadcasts

its updated synopsis s. Thus, the fused synopses propagate level-by-level toward the base

station q, which at the end of the epoch returns SE(s) as the answer to the aggregate

query.

Figure 4.3 shows that even though there are link and node failures, nodes B and

C have at least one failure-free propagation path to the base station q. Thus, their

sensed values are accounted for in the answer produced this epoch. In contrast, all of the

propagation paths from node A failed, so its value is not accounted for.

Because the underlying wireless communication is broadcast, each node transmits

exactly once; therefore, Rings generates the same optimal number of messages as tree-

based schemes (e.g., [MFHH02,MFHH03,MSFC02,ZGE03]). However, because synopses

propagate from the sensor nodes to the base station along multiple paths, Rings is much

more robust. (This added robustness is quantified in Section 4.6.)

66 Chapter 4. Synopsis Diffusion

4.2.2 More Robust Rings Topologies

Since for the nodes in ring 1 of a Rings topology, there is exactly one node receiving the

transmission (the base station), ring 1’s transmissions are more susceptible to random

transmission losses than other rings’ transmissions. To cope with this, we suggest (1)

using multiple base stations (in ring 0) who form a mesh and combine the aggregated

value at the end of each epoch or (2) making nodes in ring 1 transmit multiple times if

the base station has not received a synopsis. The latter approach, although slightly more

power consuming, uses the traditional model of having a single base station. We call this

scheme Rings2 and will evaluate it in Section 4.6.

Note that Rings2 requires the base station to send acknowledgement messages to

the nodes in ring 1 so that the nodes know whether retransmissions are required. In

Chapter 5, we will show that Synopsis Diffusion provides an efficient mechanism called

implicit acknowledgement that can be used in place of explicit acknowledgements. With

this mechanism, the base station can simply broadcast the final synopsis at the end of each

epoch; all the nodes in ring 1 get the required acknowledgements simply by over-hearing

that final synopsis.

4.3 Formal Framework and Theorems

In this section, we present the first formal foundation for duplicate-insensitive aggrega-

tion. We define a Synopsis Diffusion algorithm to be “ODI-correct” if and only if its SG()

and SF () functions are order- and duplicate-insensitive. Intuitively, these two properties

ensure that the final result is independent of the underlying routing topology—the com-

puted aggregate is the same irrespective of the order in which the sensor readings are

combined and the number of times they are included during the multi-path routing. We

formalize these two requirements later in this section. Next, we prove two key results for

ODI synopses. Our first result shows how a Synopsis Diffusion algorithm can be proved

to be ODI-correct by proving a few surprisingly simple properties. The second result

gives a general framework for analyzing the approximation errors produced by an ODI-

correct algorithm. These results are extremely useful for validating Synopsis Diffusion

algorithms, and as a guide for designing new Synopsis Diffusion algorithms. We begin by

defining, in the next section, some of the key terms used in our formal framework.

4.3. Formal Framework and Theorems 67

4.3.1 Definitions

A sensor reading r is a tuple consisting of both one or more sensor measurements and any

meta-data associated with the measurements (e.g., timestamp, sensor id, and location).

Because of the meta-data, sensor readings are assumed to be unique (e.g., there is only

one reading corresponding to a given sensor id and timestamp).

We define a synopsis label function SL(), which computes the label of a synopsis. The

label of a synopsis s is defined as the set consisting of all sensor readings contributing

to s. More formally, SL() is defined inductively, as follows. There are two cases for

SL(s), depending on whether the synopsis s results from an application of SF () or an

application of SG():

SL(s) =





SL(s1)] SL(s2) if s = SF (s1, s2)

{r} if s = SG(r)

The operator] takes two multi-sets and returns the multi-set consisting of all the ele-

ments in both multi-sets, including any duplicates. For example, {a, b, c, c}] {b, c, d} =

{a, b, b, c, c, c, d}. Note that SL() is determined by the sensor readings and the applica-

tions of SG() and SF ()—it is independent of the particulars of SG() and SF (). Note also

that a synopsis label is a virtual concept, used only for reasoning about the correctness

of SG() and SF () functions: SL() is not executed by the sensor network.

The notion of what constitutes a “duplicate” may vary from query to query, e.g.,

a query computing the number of sensors with temperature above 50◦F considers two

readings from the same sensor as duplicates, whereas a query for the number of distinct

temperature readings considers any two readings with the same temperature as duplicates.

For a given query q, we define a projection operator

Πq : multi-set of sensor readings 7→ set of values

that converts a multi-set of sensor readings (tuples) to its corresponding set of subtuples

(called “values”) by selecting some set of the attributes in a tuple (the same set for all

tuples), discarding all other attributes from each tuple, and then removing any duplicates

in the resulting multi-set of subtuples. The set of selected attributes must be such that

two readings are considered duplicates for the query q if and only if their values are the

same. For example, for a query computing the number of distinct temperature readings,

the value for a sensor reading is its temperature measurement. For a query computing

the average temperature, the value of a sensor reading is its (temperature measurement,

68 Chapter 4. Synopsis Diffusion

S

SG SG SG SG SG

SF SF SF

SF

SFSF

SF

r1 2 r3 r4 r5r

S

SF

SF

SF

SG

r1

SG

2r

SG

r4

SF

SF

SG

3r

SG

r5

(a) Aggregation DAG (b) Canonical left-deep tree

Figure 4.4: Equivalent graphs under ODI-correctness.

sensor id) pair.

4.3.2 ODI-Correctness

Although we have given an intuitive definition of an ODI algorithm before, we now

formally define what it means to be ODI. Let R be the universe of valid sensor readings.

Consider a SG() function, a SF () function, and a projection operator Πq; these define

a universe, S, of valid synopses over the readings in R. We assume that SF () is a

deterministic function of its inputs. The formal definition of the properties we seek is:

• A Synopsis Diffusion algorithm is ODI-correct if SF () and SG() are order- and

duplicate-insensitive functions, i.e., they satisfy: ∀s ∈ S : s = SG∗(V), where

V = Πq(SL(s)) = {v1, . . . , vk} and SG∗() is defined inductively as

SG∗(V) =





SF (SG∗(V − {vk}), SG(rk)) if |V | = k > 1

SG(r1) if |V | = 1

where Πq({ri}) = vi.

Figure 4.4 helps illustrate ODI-correctness. We can represent the SG() and SF ()

functions performed to compute a single aggregation result using an aggregation DAG,

as shown in Figure 4.4(a). There is a node for each of the different instantiations of the

functions SG() (which form the leaf nodes) and SF () (which form the non-leaf nodes).

There is an edge e : f1 → f2 iff the output of the function f1 is an input to the function

f2. Thus, all internal nodes have two incoming edges and 0 or more outgoing edges.

Corresponding to the aggregation DAG, ODI-correctness defines a canonical left-deep

4.3. Formal Framework and Theorems 69

tree (Figure 4.4(b)). The leaf nodes are the functions SG() on the distinct values (in this

example, all readings result in distinct values), and the non-leaf nodes are the functions

SF (). A Synopsis Diffusion algorithm is ODI-correct if for any aggregation DAG, the

resulting synopsis is identical to the synopsis s produced by the canonical left-deep tree.

More simply, regardless of how SG() and SF () are applied (i.e., regardless of the

redundancy arising from multi-path routing), the resulting synopsis is the same as when

each distinct value is accounted for only once in s. We chose a left-deep tree for our canon-

ical representation because it lends itself to an important connection with traditional data

streams (as discussed in Section 4.5).

A Simple Test for ODI-Correctness

We believe that ODI-correctness captures the overall goal of order- and duplicate-insensitivity.

However, it is not immediately useful for designing Synopsis Diffusion algorithms because

verifying correctness using this definition would entail considering the unbounded number

of ways that SG() and SF () can be applied to a set of sensor readings and comparing

each against the synopsis produced by the canonical tree.

Thus, a very important contribution of our work is in deriving the following simple

test for ODI-correctness. There are four properties to check to complete the test.

• Property P1: SG() preserves duplicates: ∀r1, r2 ∈ R : Πq({r1}) = Πq({r2})
implies SG(r1) = SG(r2). That is, if two readings are considered duplicates (by

Πq) then the same synopsis is generated.

• Property P2: SF () is commutative: ∀s1, s2 ∈ S : SF (s1, s2) = SF (s2, s1).

• Property P3: SF () is associative: ∀s1, s2, s3 ∈ S : SF (s1, SF (s2, s3)) = SF (SF (s1, s2), s3).

• Property P4: SF () is same-synopsis idempotent: ∀s ∈ S : SF (s, s) = s.

Note that property P4 is much weaker than the duplicate-insensitivity property re-

quired for ODI-correctness. It only refers to what happens when SF () is applied to

the exact same synopsis for both its arguments. It says nothing about what happens

when SF () is applied to differing arguments that come from overlapping sets of sensor

readings.3

3For example, consider the SF () function that takes two numbers x and y and returns their average.
This satisfies property P4, because the average of x and x equals x. However, the function cannot be
used to compute a duplicate-insensitive average of all the sensor readings. For example, if the readings
are 2, 4, and 36, we have SF(SF(2,4),SF(2,36)) = 11 but SF(SF(2,36),SF(4,36)) = 19.5 (and the exact
average is 14).

70 Chapter 4. Synopsis Diffusion

S

SG

r1

SG

2r

SG

2r

SG

r3

SG

r3

SG

r4

SG

2r

SG

r3

SG

r5

SFSF SF SF

SF

SF SF

SF

Figure 4.5: Graph used in the proof of Theorem 4.1.

Given the simplicity of properties P1–P4, it is surprising that they characterize ODI-

correctness. The next theorem shows that indeed this is the case.

Theorem 4.1 Properties P1–P4 are necessary and sufficient properties for ODI-correctness.

Proof of Theorem 4.1. (sketch) Consider an arbitrary execution of Synopsis Dif-

fusion, producing a synopsis s. Let G be the aggregation DAG corresponding to this

execution (Figure 4.4(a)), and let u be the node in G that outputs s. In this proof, we

will perform a series of transformations to G that, by properties P1–P4, will not change

the output of u, and yet will result in the canonical left-deep tree (Figure 4.4(b)).

First, let G1 (Figure 4.5) be the tree rooted at u corresponding to G, resulting from

replacing each node in G with outdegree k > 1 with k nodes of outdegree 1, replicating

the entire subgraph under the original node for each of the k nodes. This may create

many duplicate SF and SG nodes. Also, any node in G without a path to x is discarded

(it did not affect the computation of s). G1 corresponds to a valid execution because SF

is deterministic (so applying it in independent nodes results in the same output, given

the same inputs), and likewise SG(r) = SG(r) is a special case of property P1. Note

that there is exactly one leaf in G1 for each tuple in the synopsis label SL(s).

Second, by properties P2 and P3, we can reorganize G1 into an equivalent tree G2

where the leaves of G2 are sorted by Πq({r}) values: leaf SG(ri) precedes leaf SG(rj)

only if Πq({ri}) ≤ Πq({rj}).
Third, for each pair of adjacent leaves SG(ri), SG(rj) such that Πq({ri}) = Πq({rj}),

we can reorganize G2 (by applying P2 and P3) such that they are the two inputs to an

SF node. By property P1, both inputs are the same synopsis s′, so by property P4, this

SF node outputs s′. Replace the three nodes (the SF node and its two leaf children)

with one of the leaf nodes (say the left one). Repeat until all adjacent leaf nodes are such

4.4. Examples: Duplicate-Sensitive Aggregates 71

that Πq({ri}) < Πq({rj}). Call this G3. Note that there is exactly one leaf in G3 for each

value in Πq(SL(s)).

Finally, reorganize the tree G3 using P2 and P3 into a left-deep tree G4 (Figure 4.4(b));

this is precisely the canonical binary tree. In particular, there is exactly one leaf node in

G4 for each value in V = Πq(SL(s)), and the left-deep tree corresponds to the definition

of SG∗(V). Since performing the SG and SF functions as indicated by G4 produces the

original output s (i.e., the transformations have not changed the output), the algorithm

is ODI-correct.

It is not difficult to show that each of the properties is necessary by considering

aggregation DAGs with at most four sensor readings. For example, if property P4 were

not true, then SF (SG(r1), SG(r1)) would not produce the synopsis that the canonical

tree SG(r1) does. 2

We now illustrate how these properties can be used to prove the ODI-correctness

of a Synopsis Diffusion algorithm by revisiting the Count algorithm that estimates the

number of sensor nodes in the network.

Claim 4.1 The Count algorithm in Section 4.1 is ODI-correct.

Proof. Consider a projection operator Πq that maps a set of sensor readings to the

corresponding sensor IDs. In the Count algorithm, SF (s, s′) is the Boolean OR of

the bit vectors s and s′. Since Boolean OR is commutative and associative, so is

SF (). Next, observe that Πq({r1}) = Πq({r2}) if and only if r1 and r2 have the same

sensor ID and hence are the same reading. Thus SG(r1) = SG(r2). Finally, SF (s, s) is

the Boolean OR of the bit vector s with itself, which equals s. Therefore, properties

P1–P4 hold, so by Theorem 4.1, the algorithm is ODI-correct. 2

Note that the SE() function did not factor into the considerations of ODI-correctness.

ODI-correctness only shows that SE() will see the same synopsis as the left-deep tree.

The accuracy of the approximate answer, on the other hand, depends on the accuracy

of applying SE() to this synopsis. Clever algorithms are still required to get provably

good approximations, although the task has been simplified to being able to show (1)

the ODI-correctness of SG() and SF (), and (2) the accuracy of SE() when applied to

synopses from left-deep trees.

4.4 Examples: Duplicate-Sensitive Aggregates

With Synopsis Diffusion, aggregation can be done over arbitrary message routing topolo-

gies. The main challenge of a Synopsis Diffusion algorithm is to support duplicate-

72 Chapter 4. Synopsis Diffusion

sensitive aggregates correctly for all possible multi-path propagation schemes. As shown

in Section 4.3, to achieve this, we require the target aggregate function (e.g., Count) to be

mapped to a set of order- and duplicate-insensitive (ODI) synopsis generation and fusion

functions. Intuitively, such a set of functions ensure that a partial result at a node u is

determined by the set of readings from sensor nodes with propagation paths to u, inde-

pendent of the overlap in these paths and any overlap with redundant paths. No matter

in what combination the fusion functions are applied, the result is the same. Thus, a

sensor reading is accounted for (exactly once) in the aggregate if there is a propagation

path from the sensor node to the base station, and it is never accounted for more than

once. We illustrate such functions using the following examples of ODI-correct Synopsis

Diffusion algorithms that show the generality of the framework.

4.4.1 Approximate Count

This algorithm counts the approximate total number of sensor nodes in the network. (It

can be readily adapted to other counting problems.) The approximation algorithm we

present here is adapted from Flajolet and Martin’s algorithm (FM) [FM85] for counting

distinct elements in a multi-set. It is a well-known algorithm for duplicate-insensitive

Approximate Count [BGGMM04, CLKB04, PSP03]. The algorithm uses the following

coin tossing experiment CT(x): toss a fair coin until either the first heads occurs or x

coin tosses have occurred with no heads, and return the number of coin tosses. Note that

CT () simulates the behavior of the exponential hash function that is used in FM:

for i = 1, . . . , x− 1 : CT (x) = i with probability 2−i (4.1)

The different components of the Synopsis Diffusion algorithm for Count are as follows.

• Synopsis: The synopsis is a bit vector of length k > log(n), where n is an upper

bound on the number of sensor nodes in the network.4

• SG(): Output a bit vector s of length k with only the CT (k)’th bit set.

• SF (s, s′): Output the bit-wise Boolean OR of the bit vectors s and s′.

• SE(s): If i is the index of the lowest-order bit in s that is still 0, output 2i−1/0.77351 [FM85].

The function SE() is based on the following intuition. Consider the final synopsis

s to which SE() is applied, and the set, V , of sensor nodes contributing to s (i.e., V

4The upper bound can be approximated by the total number of sensor nodes deployed initially, or by
the size of the sensor-id space.

4.4. Examples: Duplicate-Sensitive Aggregates 73

is the set of nodes with failure-free propagation paths to the base station). From the

experiment CT (), the probability that the j’th bit of s is set by a given node in V is

2−j. If no node sets the j’th bit, then there are probably less than 2j nodes in V , and if

we have at least 2j nodes in V , then we expect the jth bit to be set. Thus the number

of sensor nodes in V is proportional to 2i−1, where i is the index of the lowest-order bit

that is not set by any node in V . Thus SE(s) is proportional to the number of sensor

nodes in V . In Section 4.5, we prove that the approximation error guarantees of [FM85]

hold for this algorithm. The accuracy of the algorithm can be improved by having each

synopsis maintain multiple independent bit-vectors and then taking the average of the

indices within SE() [FM85].

4.4.2 Approximate Count Distinct

This algorithm approximately counts the number of distinct items in the network. Fla-

jolet and Martin’s algorithm for approximate distinct counting can be readily converted

to a Synopsis Diffusion algorithm, as follows. Suppose the elements to count are drawn

from the set V . We use a random hash function He : V 7→ [0, r], r > log(|V |), with an

exponential distribution which ensures that half the elements in V are hashed to 0, a

quarter to 1, one-eighth to 2, etc.

• Synopsis: The synopsis consists of a bit-vector of length (r + 1).

• SG(): At node u, output a bit vector s of length r with only the He(valu)’th bit

set, where valu is the value.

• SF (s, s′) and SE(s): Same as the Approximate Count algorithm.

The intuition as to why this works is the same as for the above Approximate Count

algorithm.

4.4.3 Approximate Sum

An approximate sum of (nonnegative integer) sensor readings can be computed using a

simple generalization of the approximate Count algorithm: If the sensor node v has the

value valv to contribute to the final answer, it pretends to be a collection of valv distinct

nodes. Specifically, for SG() each node v outputs a bit vector of length k′ (where k′ is

sufficiently large to hold the maximum sum) with the following bits set: for each of valv

times, perform CT (k′) and set the returned bit. SF () and SE() are the same as in the

Approximate Count algorithm.

74 Chapter 4. Synopsis Diffusion

However, running CT () for valv times, as in the above algorithm, may consume a large

amount of energy when valv is large. Instead, we give below an alternative algorithm that

avoids this overhead. This algorithm is adapted from a variant of FM that instead of

returning 2i−1/0.77351, where i is the index of the lowest-order 0-bit, returns 2j, where

j is the index of the highest-order 1-bit [AMS99]. Because the algorithm keeps track of

only the maximum bit set, the synopsis can be smaller. The algorithm assumes that a

node can quickly generate a random number between 0 and 1.

• Synopsis: Assume that the values we wish to add are integers in the range [0..X].

Because the sum can be bounded by nX, where n is an upper bound on the number

of nodes in the network, the synopsis is an integer in the range [1.. log(nX)], i.e.,

its size is log log(nX) bits.

• SG(): For node v, select a random number xv in [0, 1] and output d− log2(1 −
x1/valv

v)e.

• SF (s, s′): Output max(s, s′).

• SE(s): Output 2s−1.

The intuition behind the SG() function is as follows. The goal is to mimic the process

where for each of valv times, CT (k′) is done and the returned bit is set. The probability

that the ith bit will be the maximum bit set after m trials (m = valv in this case) equals

the probability that all m trials return the ith bit or less minus the probability that all m

trials return the (i−1)th bit or less, i.e., (1−2−i)m− (1−2−(i−1))m. To select a maximum

bit set according to this probability distribution, SG() selects a random number x and

finds the smallest integer i ≥ 1 such that x ≤ (1 − 2−i)m. Solving for i, we seek the

smallest integer i such that i ≥ − log2(1− x1/m), namely, d− log2(1− x1/m)e.
As with Approximate Count, the variance of the approximation can be decreased by

maintaining multiple independent synopses and having SE() output 2s̄, where s̄ is the

average the indices of the highest-order 1-bits [AMS99].

Considine et al. [CLKB04] independently present an energy-efficient Approximate

Count algorithm based on the original FM. Their algorithm is somewhat more accurate

than ours for the same amount of energy, so we use their algorithm in our Approximate

Sum experiments in Section 4.6.

The Approximate Sum algorithm can be further extended to compute Average, Stan-

dard Deviation, and Second Moment [CLKB04].

4.4. Examples: Duplicate-Sensitive Aggregates 75

4.4.4 Uniform Sample of sensor readings

Suppose each node u has a value valu. This algorithm computes a uniform sample of a

given size K of the values occurring in all the nodes in the network. Note that traditional

sampling algorithms over tree [KRA+03] would not produce a uniform sample in the

presence of multi-path routing because they are duplicate-sensitive. However, our ODI

synopses produce a uniform sample of the contributing nodes (i.e., the nodes with failure-

free propagation paths, regardless of whether they are selected for the sample). The

components of the algorithm are as follows:

• Synopsis: A sample of size K of tuples. (Initially, it will have fewer than K tuples,

until there are at least K nodes contributing to the synopsis.)

• SG(): At node u, output the tuple (valu, ru, idu), where idu is the sensor id for node

u, and ru is a uniform random number within the range [0, 1].

• SF (s, s′): From all the tuples in s ∪ s′, output the K tuples (vali, ri, idi) with the

K largest ri values. If there are less than K tuples in s ∪ s′, output them all.

• SE(s): Output the set of values vali in s.

Because the SG() function labels each value with a uniform random number and thus

places it in a random position in the global ordering of all the values in the network,

selecting the K largest positions results in a uniform sample of the values from contribut-

ing nodes. The (duplicate-removing) union operation in SF ensures that the synopsis

accounts for a given node’s value at most once.5

4.4.5 Aggregates computed from Uniform Samples

Many useful holistic aggregates, for which there are no efficient and exact in-network

aggregation algorithms, can be approximated from a uniform sample computed using

the previous algorithm. For example, given the sensor values x1, x2, . . . , xn, the k-th

Statistical Moment µk = 1
n

∑n
i=1 xk

i (e.g., µ1 is the Mean) and the k-th percentile value

for 0 < k < 100 (e.g., k = 50 is the Median) can be approximated with ε additive error6

and with probability 1 − δ by using a sample of size O(1
ε2

log 1
δ
) [BYKS01]. Thus, our

random sampling algorithm provides an efficient way to estimate these holistic aggregates.

5Note that in practice, idu need not be included in the synopsis, because equality in the random id
ru can effectively detect duplicates.

6For k-th percentile aggregates, the error is with respect to the rank of the value not its magnitude.

76 Chapter 4. Synopsis Diffusion

4.4.6 Most Popular Items

The goal of this Top-K Frequent Item algorithm is to return the K values that occur the

most frequently among all the sensor readings. (When K = 1, this is the Mode.) It uses

the CT () function used in the Count algorithm described in Section 4.2.

• Synopsis: A set of the K most popular items (estimated).

• SG(): At node u, output the (value, weight) pair (valu, CT (k)), where k > log(n)

and n is an upper bound on the total number of items.

• SF (s, s′): For each distinct value v in s ∪ s′, discard all but the pair (v, weight)

with maximum weight for that value. Then output the K pairs with maximum

weight. If there are less than K pairs, output them all.

• SE(s): Output the set of values in s.

Essentially, the algorithm determines the frequency of an item by running an ODI-

correct Count algorithm for each value. The counting is done using the Alon et al.

variant [AMS99] of Flajolet-Martin’s algorithm (FM), which estimates the number of

distinct values by keeping track of the highest-order bit that is set to 1. Maintaining

the Count for every item would result in very large synopses being exchanged. Instead,

our algorithm keeps track of the items generating the highest-order bits (and thus, prob-

abilistically, occurring the most frequently in the network). To reduce the number of

false positives and false negatives, each synopsis can contain multiple independent sets

of popular items and the function SE() can choose the K items that appear in the most

number of sets.

This algorithm can be adapted to approximately answer the iceberg query to find all

items occurring above a certain threshold T as follows: SF () retains all the values with

weight ≥ log(T).

The above algorithm essentially uses sampling to find popular items. It works well

with a skewed frequency distribution, i.e., when the popular items appear significantly

more frequently than the unpopular items. For situations where items may have non-

skewed frequency distribution, we have presented in [MNG05] an ODI algorithm that can

efficiently compute items whose frequencies exceed a given threshold.

4.4.7 Union Counting over a Sliding Window

Gibbons et al. [GT01] proposed algorithms for union counting over a sliding window;

i.e., counting the number of recent 1s in the position-wise union of multiple data streams

4.4. Examples: Duplicate-Sensitive Aggregates 77

(generated at multiple nodes). One of their algorithms uses a randomized data structure

called Randomized Wave that yields an (ε, δ)-approximation for union counting in any

sliding window up to a prespecified maximum window size. A Randomized Wave consists

of multiple levels such that level l maintains at most c/ε2 1s with their timestamps, where

c is a constant. In the model considered by Gibbons et al., all the nodes independently

generate Randomized Waves based on their local data streams. The Waves are then sent

to a referee who answers the query. This algorithm can be extended to the Synopsis

Diffusion framework as follows.

• Synopsis: A Randomized Wave data structure.

• SG(): Output the Randomized Wave generated by the algorithm in [GT01].

• SF(s, s’): For each level l, output the c/ε2 items in sl ∪ s′l with their earliest

timestamps, where sl denotes the l’th level of the Wave s.

• SE(s): Output the result given by the query answering algorithm in [GT01] (referee

uses only one final Wave s).

4.4.8 Count-Min Sketch Generation

Cormode et al. [CM05] has recently proposed a sublinear space data structure, called

Count-Min Sketch, for summarizing data streams. The sketch is a two dimensional count

array A, with each row r having a hash function hr. On arrival of an item i with count

c, for each row j of A, A[j, hj(i)] is incremented by c. Cormode et al. has shown that

this sketch can be used to answer many queries including point, range, and inner product

queries and finding quantiles, frequent items, etc., with good time and space complexity.

Although the Count-Min Sketch has been proposed in the context of a single stream,

by replacing the content of each cell with an aforementioned ODI Sum synopsis, it can

be extended to be used in the Synopsis Diffusion framework.

• Synopsis: A two dimensional array of Sum synopsis.

• SG(): Generate the Count-Min Sketch as in [CM05]. Then replace each cell of the

sketch with the corresponding Sum synopsis.

• SF(s, s’): For each cell (x, y), output SFSum(sx,y, s
′
x,y), where SFSum is the fusion

function for Sum synopses and sx,y is the cell (x, y) of the synopsis s.

78 Chapter 4. Synopsis Diffusion

• SE(s): For each cell (x, y), output SESum(sx,y), where SESum is the evaluation

function for Sum synopses. On the resulting two dimensional count array, apply

the specific estimation algorithm in [CM05].

Note that the SG() and the SF () functions used by the algorithms presented in this

section follow the formal framework in Section 4.3, ensuring that the algorithms are

ODI-correct.

4.5 Error Bounds of Approximate Answers

As shown in Section 4.4, many Synopsis Diffusion algorithms provide only approximate

answers to certain queries. In fact, there are two distinct sources of errors in the final

answers computed by a Synopsis Diffusion algorithm A. The first one is the communi-

cation error, which is defined as the fraction of sensor readings not accounted for in A’s

answer in a given epoch (i.e., 1 minus the percent contributing). This error is introduced

by the underlying routing scheme; it occurs when some of the sensors have no failure-free

propagation paths to the base station. The second source of error is the approximation

error, which is defined as the relative error of the answer computed by A with respect to

the answer computed by a corresponding exact algorithm using all the readings accounted

for in A’s final answer. This error is introduced by the SG(), SF (), and SE() functions.

We argue that with a sufficiently robust routing scheme, the communication error

can be made negligible. We illustrate this using a simple analysis. Suppose the underly-

ing multi-path routing constructs a directed acyclic graph (DAG) G rooted at the base

station. We consider a regular DAG of height h where each node at level i, 1 ≤ i ≤ h,

has k neighbors at level (i − 1) to transmit its synopses toward the base station. For

simplicity, assume that level i has di nodes, where d is some constant. Also assume

for this analysis that message losses occur independently at random with probability

p. Then the number of sensor readings N that can reach the base station is given by

N ≥ ∑h
i=0(1 − pk)idi = dh+1(1−pk)h+1−1

d(1−pk)−1
. Thus, the overall communication error is up-

per bounded by approximately 1 − (1 − pk)h. To make it more concrete, assume that

p = 0.1, h = 10. Then, with k = 1 (i.e., a tree topology), the error is around 0.65,

while it is less than 0.1 and 0.01 for k = 2 and k = 3, respectively. Hence, by increasing

the number of neighbors to transmit synopses toward the base station (i.e., increasing

the redundancy of the underlying message routing), through denser sensor deployment if

necessary, the communication error can be made insignificant.

Thus, with a robust routing topology, the main source of error in the result computed

4.5. Error Bounds of Approximate Answers 79

by a Synopsis Diffusion algorithm is the approximation error. Next, we summarize a

generic framework to analyze this approximation error.

Traditionally, the error properties of approximation algorithms are analyzed in a cen-

tralized model where the algorithms are applied at a central place (e.g., the base station)

where all the values are first collected. For example, data stream algorithms [BBD+02]

use this model. However, Synopsis Diffusion presents a distributed model where the SG()

and SF () functions are applied in the distributed set of sensors. The following theo-

rem shows the equivalence of these two models for an ODI-correct Synopsis Diffusion

algorithm.

Theorem 4.2 The answer computed by an ODI-correct Synopsis Diffusion algorithm is

the same as that computed by first collecting the values that can reach the base station

through at least one failure-free propagation path and then applying the SG(), SF (), and

SE() functions on them.

Proof. (sketch) Consider an arbitrary instance of Synopsis Diffusion aggregation. By

ODI-correctness, the corresponding aggregation DAG (Figure 4.4(a)) can be reduced to

a canonical left-deep tree (Figure 4.4(b)). This left-deep tree can be viewed as processing

a data stream of sensor readings at a centralized place: to each new stream value, we

first apply SG and then apply SF with the current stream synopsis. 2

Hence, the final result computed by a Synopsis Diffusion algorithm has the following

semantics: (1) the final answer includes all the values that can reach the base station

through at least one failure-free propagation path, and (2) the result is the same as that

found by applying the function SE on the output of a centralized data stream algorithm

using SG and SF as indicated above.

Theorem 4.2 shows that any approximation error guarantees provided for the well-

studied centralized data stream scenario immediately apply to a Synopsis Diffusion al-

gorithm, as long as the data stream synopsis is ODI-correct. Thus, we can effectively

leverage existing data stream error analysis, as illustrated in the following claim.

Claim 4.2 The Count algorithm in Section 4.4 has the same approximation error guar-

antees as Flajolet-Martin’s (FM) distinct count algorithm [FM85].

Proof: Consider an instance of the Approximate Count algorithm and a correspond-

ing canonical left-deep tree where the leaf nodes from left to right match the order in

which values occur in a particular stream the FM algorithm is applied on. By Theo-

rem 4.2, this is equivalent to applying the SG() and SF () functions on all the data at a

80 Chapter 4. Synopsis Diffusion

central place and then applying the SE() function on the final synopsis. The successive

applications of SG() (i.e., generating a bit vector) and SF () (taking Boolean OR of the

bit vectors) are equivalent to starting with an empty bit vector V , generating the indices,

and setting the corresponding bits in V . This is precisely the same way the FM algorithm

generates the synopsis. Finally, both the algorithms use the same function to evaluate

the resulting synopsis. Hence, they generate the same answer.2

4.6 Evaluation

In this section, we evaluate the Synopsis Diffusion scheme and compare it with the existing

schemes.

4.6.1 Methodology

Aggregation Schemes

We evaluate five different aggregation schemes:

TAG The standard tree-based TAG scheme (Section 2.1.2 in Chapter 2).

TAG2 The TAG scheme with value-splitting among two parents (Section 2.1.3 in Chap-

ter 2).

Rings The Synopsis Diffusion (SD) algorithm over the Rings topology (Section 4.2.1).

Rings2 SD with the nodes in ring 1 transmitting twice (Section 4.2.1).

Flood SD over the flood topology that relies on each node attempting to flood its syn-

opsis to all other nodes in the network. This flood is similar to the route discovery

used in many ad hoc wireless network routing protocols (e.g., [JM96]). Like the

route discovery, the objective of the flood is to discover all possible paths between

the sensor node and the base station. Each node starts with a synopsis of its own

sensor reading. In each round, a node broadcasts its current synopsis to all neigh-

bors and receives messages from all its neighbors. At the end of the round, a node

merges all of its received synopsis with its own current synopsis to generate its new

synopsis. To ensure that all nodes contribute to the synopsis at the base station,

the Flood algorithm has D + 1 rounds, where D is the diameter of the network.

Unless otherwise stated, we compute the Average of the sensor data. We assume

uniform data, i.e., the reading of each sensor is its unique ID.

4.6. Evaluation 81

Topology

To evaluate the performance of the above schemes, we implemented them within the

TAG simulator used in [MFHH02]. In our simulations unless otherwise noted, we collect

a Sum aggregate on a deployment of 600 sensors placed randomly in a 20ft× 20ft area.

We place the base station at the center of the grid. Sensors report their node-ids, which

are assigned sequentially from 1 to 600, as their sensor readings. In each simulation,

we collect results over 500 epochs – we collect a single aggregate value each epoch. We

begin data collection only after the underlying aggregation topology, for both Synopsis

Diffusion and TAG, are stable.

Message size

We use 48-bytes messages as used by the TinyDB systems. Each Sum synopsis bit-vector

uses 32 bits. However, in transmitting multiple bit-vectors, we reduce the size of the

synopsis by interleaving the bit-vectors and applying run-length encoding [PGF02]. In

our experiments for computing Sum, we use 20 32-bit synopses that when compressed,

takes around 14 bytes on average. Two sets of Sum synopses (or one set of Average

synopses that computes both the Sum and the Count) fit in a single TinyDB packet

along with headers and extra room to handle the variation in the compression ratio.

Transmission model

The TAG simulator supports a realistic message loss model based on the wireless network

interfaces in the Berkeley MICA motes. This realistic loss model, described in [MFHH02],

assigns loss probability of links based on the distance between the transmitter and receiver

as follows: the loss probabilities are 0.05, 0.24, 0.4, 0.57, 0.92, and 0.983 within the range

1, 2, 3, 4, 5, and 6 ft respectively, and 1.0 outside the range of 6 ft. Note that these

ranges are relative to the deployment area.

Accuracy

To quantify the performance of the schemes, we use the relative root mean square error

(RMS)—defined as 1
V

√∑T
t=1(Vt − V)2/T , where V is the actual value and Vt is the ag-

gregate computed at time t. The closer this value is to zero the closer the aggregate is

to the actual value.

82 Chapter 4. Synopsis Diffusion

Power consumption

To estimate the overhead of the schemes, our goal is to identify the total battery power

consumed by the scheme since energy is the critical resource in this environment. There

are two main sources of power consumption on the sensor hardware: computation and

communication. To enable our code to execute on actual sensor hardware, we have imple-

mented the Synopsis Diffusion algorithm for computing Sum and some other aggregates

within the TinyOS and the TinyDB environment. By analyzing the binary code compiled

by TinyOS and using the data-sheet of the mote hardware [Atm03], we found that our

code uses at most a few hundred additional CPU cycles in comparison to the TAG im-

plementation. This difference was insignificant in both the overall power budget as well

as in the relative communication power consumption of the different schemes. Therefore,

we choose to simply use the network communication power consumption to compare the

performance of the different schemes. We model the communication power consumption

according to the real measurement numbers reported in [MFHH03].

4.6.2 Realistic Experiments

In this section, we explore some of the high-level performance differences among our

schemes. We use a realistic experimental setup – with a random node placement and a

realistic network loss model – to illustrate these differences. To show the effect of aggre-

gation function and the distribution of data, we use the following two scenarios. First,

we compute Average of uniformly distributed sensor data mentioned before. Second, we

assume skewed data, i.e., the reading of each sensor is inversely proportional to the square

of its distance from the base station7, and compute the Average at the base station.

Figure 4.6 shows how the Average aggregates reported to the base station change over

time with different aggregation schemes, for the skewed data set. Both TAG and TAG2

show significantly higher error and variance than the Synopsis Diffusion schemes. This

is because, because of losses, only a small fraction of nodes can send their data to the

base station. This is shown in the second column of Table 4.1. The third and the forth

columns of the table show the average RMS errors of the computed aggregates when the

sensor data is uniform (column 3) and when is it skewed (column 4) as in Figure 4.6. At

a high level, it shows that both TAG and TAG2 incur large RMS error because only

a small fraction of the nodes report to the base station. Since both TAG and TAG2

provide similar average RMS errors, we report only the performance of TAG in the rest

7This reading distribution could be the result of intensity readings near any radiation source (e.g., a
light bulb)

4.6. Evaluation 83

 40000

 30000

 20000

 10000

 0
 90 80 70 60 50

R
es

ul
t

Epoch

TAG
TAG2
Rings

Rings2
Actual

Figure 4.6: The Average aggregate computed in different epochs with different
aggregation schemes, for the skewed data set.

Table 4.1: Robustness of different aggregation schemes computing Average.

Scheme Average % nodes RMS Error Energy per node (mJ)
in a final answer Uniform Data Skewed Data

TAG < 15% 0.87 0.99 41.8
TAG2 N/A 0.85 0.98 41.8
Rings 65% 0.33 0.19 41.8
Rings2 95% 0.15 0.16 42.1
Flood ≈ 100% 0.13 0.13 780.2

of the experiments. Rings, which is as energy efficient as TAG and TAG2 (shown in

column 5 of Table 4.1 and explained in detail in Section 4.6.5), is much more robust than

these two. It also shows that the performance of Rings2 is better than Rings and is

very close to Flood under this realistic setup. Note that, the errors in the Synopsis

Diffusion schemes come mostly from the approximation algorithm.

4.6.3 Effectiveness of Rings2

Figure 4.7 shows the effectiveness of ring-1-nodes’ transmitting data twice, with a snap-

shot (from the base station’s point of view) of a single epoch. The solid squares in the

figure are the nodes that have failed to send their data to the base station, for all their

transmission paths to the base station have failed. With Rings, around 35% nodes fail

to contribute to the final answer (Figure 4.7(a)), where as Rings2 reduces that number

to around 5% (Figure 4.7(b)). This implies that the robustness bottleneck of around 30%

of the nodes is the last hop to the base station, and improving the robustness of this last

84 Chapter 4. Synopsis Diffusion

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 2 4 6 8 10 12 14 16 18 20

y

x

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 2 4 6 8 10 12 14 16 18 20

y

x

(a) Rings (b) Rings2

The star at the center denotes the base station. The solid squares indicate the nodes not
included in the final answer. The small dots represent the nodes included in the answer
computed in that particular epoch. Rings2 improves the fraction of small dots (i.e., nodes
contributing to the final answer).

Figure 4.7: Random placement of the sensors in a 20×20 grid and their activity
during an epoch.

hop by an extra retransmission is extremely effective in improving robustness.

4.6.4 Effect of Communication Losses

In this set of experiments, we use a simpler loss model in which each packet is dropped

with a fixed probability. Figure 4.8(b) shows the impact of changing this loss probability

on the accuracy of the different schemes. Even with loss rates as low as 10%, the RMS

error for TAG is 0.36, whereas the RMS errors for Rings, Rings2, and Flood are

only around 0.15. More importantly, Rings2 perform as well as Flood even when

the loss rate is as high as 60%.8 We also note that the performance of TAG degrades

much more quickly with increasing loss rate than any of the Synopsis Diffusion schemes.

From Figure 4.8(a), we can see that this degradation is directly related to the fact that

the readings of fewer and fewer nodes are incorporated into the reported aggregate. In

addition, we can see that the impact of excluding sensor nodes dominates the impact of

any approximation errors.

8At high loss rate, Flood fails to provide 100% contributing nodes since we allow the flood to run
for a limited number of epochs.

4.6. Evaluation 85

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 C

on
tri

bu
tin

g

Loss Rate

Flood
Rings

Rings2
TAG

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
M

S
 E

rr
or

Loss Rate

TAG
Rings

Rings2
Flood

(a) % nodes included (b) RMS Error

Figure 4.8: Impact of packet loss on aggregation schemes. The bars in the
second graph show the 95% confidence intervals (omitted in the first graph
because the intervals are very small).

4.6.5 Effect of Deployment Densities

The placement of sensors can influence the loss rates observed as well as the topology used

to aggregate sensor readings. Here, we consider two different variations in the distribution

of sensors: the density of sensors and the shape of the sensor deployment region.

To evaluate the impact of sensor density, we vary the number of total sensors while

keeping the region (size and shape) in which the sensors are deployed constant. This

makes the connectivity graph of the sensors more sparse. In addition, we employ the

realistic packet loss model described earlier.

Figure 4.9 shows the impact of changes in density on the accuracy of TAG, Rings,

Rings2 and Flood. As the network becomes more sparse, the aggregation schemes are

forced to use longer, more error-prone links. This has little impact on Flood, which has

a high degree of redundancy in its data collection. Rings and Rings2, having limited

redundancy compared to Flood, performs worse with very low sensor density. How-

ever, in reasonably dense networks, Rings2 performs as well as Flood due to the large

amount of redundancy it can take advantage of. Sparse networks surprisingly also have

little impact on TAG. TAG prefers to construct short trees since deep trees combined

with packet losses result in very poor performance. As a result, the average parent-child

link distance does not change significantly with density. This results in a similar per-

centage of sensors readings being omitted from the aggregate and, therefore, similar error

performance regardless of density.

The added redundancy of Flood and Rings2 comes at a cost in terms of overhead.

Figure 4.10 plots the impact of density on our overhead metric, communication power

86 Chapter 4. Synopsis Diffusion

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.5 1 1.5 2 2.5

R
M

S
 E

rr
or

Motes/Sq. Ft

TAG
Rings

Rings2
Flood

Figure 4.9: The impact of sensor density on accuracy. The bars show the 95%
confidence intervals

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
ow

er
 C

on
su

m
ed

/M
ot

e/
R

es
ul

t (
m

J)

Density (Motes/Sq. Ft)

Flood
Rings
TAG

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
ow

er
 C

on
su

m
ed

/M
ot

e/
R

es
ul

t (
m

J)

Density (Motes/Sq. Ft)

Flood
Rings
TAG

(a) Transmission power (b) Reception power

Figure 4.10: Impact of sensor density on power consumption.

4.6. Evaluation 87

consumption. Since the nodes in TAG and Rings remain awake for receiving messages

for roughly the same amount of time [MFHH02], and roughly the same number of trans-

missions occur in both schemes, the nodes’ network interfaces in both schemes receive

approximately the same number of messages. So, both TAG and Rings have the op-

timal overhead for transmission power. Rings2 consumes slightly more transmission

energy due to the use of redundant transmissions in ring 1 (see Section 4.2.2). Note that,

however, the Rings and Rings2 scheme force each node to process all of the received

packets, in contrast to a TAG node processing a smaller subset of these messages per

epoch. Fortunately, the cost of processing a message is far less than receiving the message.

Finally, as expected, Flood has the highest overhead for transmission and reception of

the schemes.

In addition to density, the rough shape of a sensor deployment can also affect the

performance of the different aggregation schemes. To evaluate this effect, we varied the

width of the rectangular deployment area while keeping the height (=20) and the sensor

density (2 per square area) constant. Our results show that while the performance of TAG

degrades as the diameter of the network increases (i.e., height of the tree increases), that

of Rings degrades only slightly.

4.6.6 Effect of Synopsis Size

Synopsis Diffusion provides the opportunity to select a desired approximation accuracy

based on the affordable energy overhead (as determined by the message size). For exam-

ple, in the Approximate Sum algorithm in Section 4.4, a larger synopsis enables additional

independent bit-vectors to be used, reducing the approximation error.

To see how the relative error of Synopsis Diffusion changes with the size of the synopsis,

we increase the number of bit-vectors in the Sum synopsis (and hence the total number of

bits in the compressed synopsis). Figure 4.11 shows the average of the relative errors of

the final answer for realistic loss rate and for no loss rate. The x-axis of the graph shows

the number of bits of the compressed bit-vectors (we increased the number of bit-vectors

by four and reported the length of the compressed synopsis, thus the use of 20 bit-vectors

in our other simulations corresponds to the use of around 100 bits). The graph shows

that both the average approximation error and the confidence interval can be decreased

by using more bits (i.e., more bit-vectors) in the synopsis.

4.6.7 Beyond Sum

We here consider aggregates more complex than the ones considered so far in this section.

88 Chapter 4. Synopsis Diffusion

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140
R

el
at

iv
e

E
rr

or

Compressed Synopsis Size (bits)

Realistic Loss
No Loss

Figure 4.11: Effect of synopsis size in computing Sum. The bars represent
95% confidence intervals.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600

F
re

qu
en

cy
 o

f O
cc

ur
en

ce
(%

)

Sensors sorted by frequency

TAG
Rings2

Figure 4.12: Computing uniform sample.

Uniform Sampling

Figure 4.12 compares the sampling algorithm described in Section 4.4 running over

Rings2 with the random sampling algorithm known as RanSub [KRA+03] running over

TAG. The algorithms compute a sample of size 5, and the graph shows the histograms

of the node ids included in 10,000 samples. Note that, RanSub must be run over a tree

topology (since its synopsis is not ODI), and it provides a uniform sample when there

is no message loss. However, with a realistic loss model, RanSub with TAG provides

a distribution far from uniform, while the Synopsis Diffusion algorithm, using Rings2,

closely approximates a uniform distribution.

Top-k Values

We have also simulated the Synopsis Diffusion algorithm to find 5 most frequent values

in the network where the value of a sensor is the integer part of its distance from the

base station (this creates a slightly skewed distribution of the popularity of the data).

4.7. Related Work 89

We use 10 synopses from which SE() estimates the 5 most popular items. We quantify

the accuracy of our estimation {x1, . . . , xk} by using the metric relative rank-error (RRE)

= 1
k

∑k
i=1(|i− ri|), where ri is the actual rank of xi in the descending order of frequency

of all the unique items. With realistic loss model and random placement of the sensors,

our algorithm provides very small (≈ 0.6) relative rank-error.

4.6.8 Discussion

Our results have quantified a number of advantages that Synopsis Diffusion provides over

tree-based aggregation schemes. First, we have shown how Synopsis Diffusion reduces

total errors (due to the combination of estimation error and missing sensor readings) in

lossy environments. Second, we have shown that Synopsis Diffusion can achieve these

gains without a significant increase in power consumption.

4.7 Related Work

This section describes the related work beyond those mentioned in Chapter 2.

4.7.1 Aggregation over Multi-path

Concurrent to our work, two independent works proposed the idea of computing aggre-

gates over multi-path aggregation topology. The Considine et al. paper [CLKB04] is

the most closely related work to ours. They independently proposed using duplicate-

insensitive sketches for robust aggregation in sensor networks. They presented a very

nice technique for extending the Flajolet-Martin distinct counting algorithm to perform

duplicate-insensitive sums and averages in a manner suitable for resource-constrained sen-

sor nodes. Moreover, they considered a broadcast-based ring topology of sensor nodes,

and showed by simulation the accuracy improvements of rings over the TAG scheme. Our

work extends this work in a number of important ways: (1) we present the first formal

definition of duplicate-insensitive synopses; (2) we prove powerful theorems character-

izing ODI synopses and their error guarantees—their paper has no analogous results;

(3) we present solutions for a wider range of aggregates; (4) we consider techniques for

adaptive rings that reduce message loss (described in the next chapter); and (5) our sim-

ulation results use a more realistic communication loss model, and consider scenarios not

addressed in their paper such as mobile sensors and adaptive topologies described in the

next chapter.

90 Chapter 4. Synopsis Diffusion

Bawa et al. [BGGMM04] have independently proposed duplicate-insensitive approaches

for estimating certain aggregates in peer-to-peer networks. However, the work mainly fo-

cuses on the different semantics of the computed aggregates and the required topology

and algorithms to achieve that. They do not address the formal requirements of the

algorithms; they do not provide the example algorithms we provide; and, they use a

peer-to-peer network for evaluation and do not consider many of the sensor-relevant is-

sues addressed by our work.

4.7.2 Query Processing over Data Streams

The use of synopsis in Synopsis Diffusion is related to that in data stream algorithms.

There has been a flurry of recent work in the data stream community devising clever

synopses to answer aggregate queries on data streams (see [BBD+02,Mut03] for surveys,

and [CGMR05, ZKOS05] for some more recent work). There the goals are to estimate

an aggregate with one pass through the data and only limited memory. Thus at any

point in scanning the data stream, the limited memory data stream synopsis is a small

digest suitable for producing a highly-accurate estimate of the stream to that point. The

traditional data streams model is i) centralized , i.e., the synopsis is generated at a single

place, and ii) order-, but not duplicate-, insensitive. Thus, the model is not adequate for

the ODI synopses required for Synopsis Diffusion.

The same synopsis used in traditional data streams can sometimes be used for Syn-

opsis Diffusion. However, Synopsis Diffusion introduces two complications beyond tradi-

tional data streams. First, the data is not presented as a sequential stream to a single

party. Instead, the data is spread among multiple parties and the aggregation must occur

in-network. Specifically, the Synopsis Fusion function merges two synopses, not just a

current synopsis with a next stream value. More related then is work on distributed

streams algorithms [GT01,GT02]. In the distributed streams model, there are multiple

parties, each observing a stream and having limited memory, and the goal is to estimate

aggregates over the union of these streams by exchanging synopses at query time. This

requires the merging of multiple synopses (ala Synopsis Fusion). Second, Synopsis Dif-

fusion requires duplicate-insensitive synopses. None of the previous work on sequential

or distributed data streams was concerned with duplicate sensitivity. (The exception

is for aggregates that are by definition duplicate-insensitive, such as Count Distinct.)

Only recently, Tao et al. [TKC+04] have used duplicate-insensitive counting in mobile

environments.

Figure 4.13 diagrams a path for developing new Synopsis Diffusion algorithms, where

4.8. Summary 91

distributed streams

duplicate−insensitive,

single stream
Synopses for a

Synopsis Diffusion:

in−network

stream)
synopses (single

Duplicate−insensitiveSynopses for

Figure 4.13: Hierarchy among synopsis problems. Each edge is directed from
an easier problem to a harder problem.

each edge is directed from an easier problem to a harder problem.

4.8 Summary

In this chapter, we have presented Synopsis Diffusion, a novel framework for robust

aggregation in wireless sensor networks. We have presented the formal foundation of

this framework, example algorithms, and evaluation results. Our evaluation shows that

Synopsis Diffusion can be significantly more robust (upto 5 times) than, but almost as

energy efficient as, existing tree-based aggregation schemes.

By using ODI synopsis, Synopsis Diffusion decouples aggregation algorithm from ag-

gregation topology. This provides the unique opportunity to independently optimize

these two components. Moreover, it exposes several design tradeoffs related to aggre-

gation algorithm and topology and lets applications choose the appropriate parameters.

For example, since accuracy of most Synopsis Diffusion algorithms can be improved by

using larger synopsis, applications can tune synopsis size according to target robustness

and available energy. Similarly, since there is often tradeoffs between energy-efficiency

and robustness of topologies (e.g., more robust topologies such as Flood and Rings2

consume more energy), the application can choose the “right” topology according to its

requirements. Moreover, as operating conditions change, the application can adapt aggre-

gation algorithm and topology independently, to ensure the intended quality of service.

For example, when the loss rate is low, an energy-efficient tree topology can be used.

However, when the loss rate becomes excessively high, sensors can spend additional en-

ergy to employ a more robust topology such as Flood—the topology independence of

92 Chapter 4. Synopsis Diffusion

Synopsis Diffusion will seamlessly guarantee the correctness of the aggregation process.

In the next chapter, we will discuss two such adaptation techniques.

Chapter 5

Adaptive Aggregation Schemes

In the last chapter, we proposed Synopsis Diffusion for robust data aggregation in a

relatively static, but failure prone, sensor network. However, the operating condition

of a long running sensor network is likely to change over time. New nodes may join

the network because of redeployments. Over time, nodes can fail—they may run out of

energy, overheat in the sun, be carried away by wind or rain, or crash due to software

bugs. A node’s communication range (and, thus, the topology) can change dramatically

due to the vagaries of RF propagation, a result of its strong environmental dependence.

To ensure robustness against these changes, it is desirable that an aggregation scheme

automatically adapts, ensuring that the live nodes in the sensor network can contribute

to the final aggregate answer computed at the base station.

In this chapter, we address this by designing an aggregation scheme that can adapt to

the dynamics of the operating environment. Existing adaptive aggregation schemes use

low-level observations of network characteristics to repair the tree topology, without tak-

ing application semantics into account. We combine the benefit of such local repairs with

application-aware adaptation so that the application, based on the quality of the answers

computed at the base station, can decide how and when to adapt the aggregation scheme.

We argue that such application-aware adaptation is valuable, since the application can

exploit the intended data semantics, which is generally weak (e.g., aggregation over 90%

of the sensors may be sufficient for the application), and can make certain adaptation

decisions better (e.g., if the error in final results is tolerable, it can adapt less often and

conserve energy). We achieve this by adapting both the aggregation topology and the

aggregation algorithm (existing schemes adapt only the topology). We show that simul-

taneously running Synopsis Diffusion and existing tree-based schemes in different parts

of the network, and adapting the topologies and their proportion based on application’s

feedback provide significant robustness benefit. We call our scheme Tributary-Delta.

93

94 Chapter 5. Adaptive Aggregation Schemes

Table 5.1: Comparison of the Tributary-Delta scheme with other in-network
aggregation schemes.
We assume that all the schemes use unreliable communication. The total energy con-
sumption is given by its two components: number of messages and message size. The
total error is given by the sum of the communication error produced by message losses
within the network and the approximation error coming from the aggregation algorithm
(independent of message loss). Because the message size and approximation error depend
on the aggregate, these metrics are shown for two representative aggregates: Count and
Frequent Items.

Energy Components Error Components Latency
Message Message Communi- Approximation
count size cation error error

Aggregate: any Count Freq.Items any Count Freq.Items any
Tree minimal small medium very large none small minimal

(e.g., TAG)
Multi-path minimal small large very small small small minimal

(e.g., Syn. Diffusion)
Tributary-Delta minimal small medium very small very small small minimal

(This chapter)

In the rest of the chapter, we first motivate for and provide an overview of the

Tributary-Delta scheme. It requires an adaptive multi-path topology that we develop

in Section 5.2. We describe the details of Tributary-Delta in Section 5.3 and evaluate it

in Section 5.4.

5.1 Tributary-Delta: Motivation and Overview

The motivation for adapting aggregation algorithm comes from the fact that even though

multi-path-based aggregation (i.e., Synopsis Diffusion) is generally more robust than

tree-based aggregation, the former may not be the best choice under certain common

situations. For example,

• For many aggregates, the known energy-efficient multi-path algorithms provide

only approximate answers (with accuracy guarantees), while tree-based aggregation

schemes provide the exact answer. Therefore, when communication loss is insignif-

icant (e.g., when the sensors are deployed in controlled environments), tree-based

scheme provides more accurate answers.

• For some aggregates (e.g., the Frequent Item algorithm in [MNG05]), the message

5.1. Tributary-Delta: Motivation and Overview 95

Tributary Region
(Tree)

Delta Region
(Multi−path)

Figure 5.1: A Tributary-Delta Topology.

size in multi-path-based scheme is longer than that in tree-based scheme, thereby

consuming more energy.

The first two rows of Table 5.1 provide a qualitative comparison of tree-based and

multi-path-based aggregation schemes. For multi-path, we consider the Rings2 topology

described in Section 4.2.2. As the table shows, the tree-based scheme suffers from very

high communication error while the multi-path-based scheme can have larger message

sizes and approximation errors. These tradeoffs lead to the following questions.

• Can we combine the benefits of these two existing techniques into one hybrid ag-

gregation scheme?

• Can we dynamically adapt the hybrid topology to the changes in current loss rates,

energy budget, etc.?

We address these two questions with a novel in-network aggregation scheme called

Tributary-Delta. In regions of the network with low loss rates, trees are used for their low

or zero approximation error and their short message size. In regions of the network with

higher loss rates or when transmitting partial results accumulated from many sensor

readings, multi-path is used for its robustness. Thus, both tree and multi-path may

be used simultaneously in different parts of the network. The last row of Table 5.1

summarizes the benefits of Tributary-Delta. We call our scheme Tributary-Delta because

of the visual analogy to a river flowing to a gulf: when far from the gulf, the merging

of river tributaries forms a tree-like shape, whereas near the gulf, the river branches out

into a multi-path delta in order to reach the gulf despite the increased obstacles (see

Figure 5.1).

96 Chapter 5. Adaptive Aggregation Schemes

Enabling Tributary-Delta requires four components: adaptive tree topology (e.g.,

self-repairing tree in TAG), adaptive multi-path topology, tree-based aggregation algo-

rithm (e.g., TAG), and multi-path-based aggregation algorithm (e.g., Synopsis Diffusion).

Given that no adaptive multi-path aggregation topology exists, we first develop Adaptive

Rings, an efficient adaptive multi-path topology, in the next section.

5.2 Adaptive Rings

Adaptive Rings is an adaptive multi-path aggregation topology. It enhances the Rings2

topology described in the last chapter with the following two additional mechanisms: i)

each node efficiently measures the loss rate between itself and its parents, and ii) if the

loss rate is high, it chooses a new set of neighbors. For example, a node n with a parent n′

monitors if n′ fails to forward most of n’s transmissions. This may occur if the message

transmitted by n is lost before it is received by n′, or if n′ is dead. In either case, n

selects a new parent n′′. We describe the required mechanisms in detail in the rest of this

section.

5.2.1 Measuring Link Quality with Implicit Acknowledgements

A standard approach to measure link quality is to use acknowledgement or negative

acknowledgement messages—a receiver uses these control messages to notify the sender

whether the transmission has been successful. However, this introduces overheads in the

form of additional energy consumption, longer aggregation latency, and higher channel

utilization.

In forwarding data, ad hoc wireless networks often address this challenge by using

implicit acknowledgements [JM96]. A node n sending to n′ snoops the subsequent broad-

cast from n′ to see if n’s message was indeed forwarded (and, therefore, was previously

received) by n′. However, this does not work with common (tree-based) in-network ag-

gregation schemes. E.g., consider computing Sum with the TAG scheme. If n sends the

value x to n′, and later overhears n′ transmitting some value z ≥ x, there can be two

possibilities: either n′ has heard from n and has included x in z, or n′ has not heard from

n1 and z is the sum of the values n′ has heard from its other children. Thus, n has no way

to determine whether transmission through n′ is reliable. Fortunately, ODI synopses used

by Synopsis Diffusion have a unique property that we can exploit to efficiently implement

1Because wireless communication can be asymmetric, n may hear from n′ even if n′ does not hear
from n.

5.2. Adaptive Rings 97

implicit acknowledgements for in-network aggregation.

The Algebraic Structure of an ODI Synopsis

We begin with the following corollary of Theorem 4.1 in Chapter 4.

Corollary 5.1 Consider an ODI-correct Synopsis Diffusion algorithm with functions

SG() and SF (). The set S of synopses generated by SG() together with the binary

function SF () forms a semi-lattice structure.

A semi-lattice [DP02] is an algebraic structure with the property that for every two

elements in the structure there is an element that is their least upper bound. The function

SF () is essentially the join operator in lattice terminology; i.e., there is a partial order

º on the elements such that:

if z = SF (x, y) then z º x and z º y (5.1)

Moreover,

if z = SF (x, y) then SF (x, z) = z and SF (y, z) = z (5.2)

An example of a semi-lattice is the fixed size bit-vectors used in the Count algorithm

with the Boolean OR function. The top of the lattice is the all 1’s bit-vector, the bottom

is the all 0’s bit-vector, and for any two bit-vectors x and y, if x OR y = z, then x OR z

= z and y OR z = z. Corollary 5.1 follows immediately from Theorem 4.1 because it is

well known that a commutative, associative, idempotent binary function on a set forms

a semi-lattice [DP02].

Implication of the Semi-lattice Structure

If a node n running a Synopsis Diffusion algorithm transmits the synopsis x and later over-

hears some parent node n′ transmitting a synopsis z such that SF (x, z) = z, it can infer

that its synopsis has been effectively included into the synopsis z of that parent. For exam-

ple, in Figure 5.2(a), node 3 can infer that its synopsis is effectively included in the synop-

sis sent by node 4, since (c)10110100 OR (d)11110100 = (d)11110100. Otherwise, it

can infer that its message to that parent has been lost. For example, in Figure 5.2(b), node

3 can infer that its synopsis has not reached node 4, since (c)10110100 OR (d)11110000

= 11110100 6= (d)11110000. Thus, overhearing a synopsis z = SF (x, z) acts as an im-

plicit acknowledgement for the node n.

98 Chapter 5. Adaptive Aggregation Schemes

1100000011110000 10110100

2 3 4

1

11110100

(a) (b) (c)

(d)

1100000011110000 10110100

2 3 4

1

11110000

(a) (b) (c)

(d)

10110100

2 3 4

1

11110100

(a) (b) (c)

(d)

1100000011110000

(a) Nodes 2-4 successfully (b) Node 4’s transmission (c) Node 3’s transmission
transmits to node 4 is lost is lost

In (b), node 4 can infer that its message is lost just by overhearing node 1’s transmission.

Figure 5.2: Implicit Acknowledgements provided by an ODI synopsis.

Note that we say that z = SF (x, z) implies x is effectively included in z because the

condition does not precisely imply that the transmission from n has been received by n′;

rather it implies that even if the transmission is lost, the loss has no effect on the final

output because it has been compensated by inclusion of the synopses from other children

of n′. For example, in Figure 5.2(c), even though the synopsis from node 3 is lost, the

loss remains undetected to it by the above Equation 5.2. However, as mentioned, the

loss has no effect on the final output, since even if it were received by node 1, the final

synopsis (d) would not have changed.

Note that, implicit acknowledgement provides an estimation of the outgoing loss rate

of a node. This is more effective that the scheme where nodes measure loss rate by

counting on incoming messages, since links are often asymmetric and incoming loss rate

may be significantly different from outgoing loss rates.

5.2.2 Multi-path Topology Adaptation

We now explain how to use implicit acknowledgement and to modify the Rings2 topology

described in Chapter 4 to construct an Adaptive Rings topology. The basic idea is to let

each node decide whether it has sufficiently good connectivity with its current parents,

and if not, assign itself to a different ring so that it gets a new set of parents. To be

assigned to a new ring i, a node needs to update its ring number and wake up during the

time slot assigned for the i’th ring in the epoch; since the nodes in ring (i− 1) wake up

during the adjacent time slot, they readily become its new parents.

The Adaptive Rings topology adapts the ring assignments of the nodes as follows. A

node x in the ring i uses implicit acknowledgements to keep track of ni−1, the number of

times the transmissions from any node in ring i−1 have effectively included x’s synopses

5.3. Tributary-Delta Details 99

in last k (an application defined parameter) epochs. When ni−1 is below some threshold,

x tries to assign itself to a new ring. To do that, it computes nj, the number of times it

overhears the transmissions of any nodes in a nearby ring j for the last k epochs. Since

nodes in different rings transmit at different time slots of an epoch, x can compute nj by

listening during the appropriate time slot. The node x in ring i then uses the following

heuristics:

1. Assign itself to ring i + 1 with probability p if (i) ni > ni−1, and (ii) ni+1 > ni−1

and ni+2 > ni.

2. Assign itself to ring i− 1 with probability p if (i) ni−2 > ni−1 and (ii) ni−1 > ni+1

and ni−2 > ni.

Intuitively, the heuristics try to assign x to a ring so that it can have a good number

of nodes from the neighboring ring to forward its synopses toward the base station at ring

0. For example, consider the first heuristic above. Condition (1) ensures that x will now

have parents with better connectivity after switching rings, and condition (2) hints that

higher rings have smaller loss rates than lower rings and hence switching to a higher ring

is probably good. Although, condition (2) makes the switching decision conservative, our

experience shows that it is effective in avoiding repeated switching between rings. The

probabilistic nature of the heuristics avoids synchronous ring transition of the nodes and

provides better stability of the topology. In our evaluation in Section 5.4.1, we use k = 10

and p = 0.5.

ODI synopses play two key roles in this adaptation. First, implicit acknowledgement

provides ni−1, an estimation of the quality of the existing links and second, it ensures

that double counting a value during the adaptation does not hurt.

5.3 Tributary-Delta Details

Running Synopsis Diffusion over Adaptive Rings provides an adaptive multi-path aggre-

gation scheme. We now show how this can be combined with an adaptive tree-based

scheme (e.g., TAG over a repairing tree) in order to exploit the tradeoffs mentioned in

Table 5.1.

To enable simultaneous use of the tree and multi-path aggregation schemes, we must

resolve several challenges. For example, how do the sensor nodes decide whether to use

the tree or the multi-path aggregation scheme? How do nodes using different schemes

communicate with each other? How do nodes convert partial results when transitioning

100 Chapter 5. Adaptive Aggregation Schemes

between schemes? We identify and address these and other challenges in this section,

through a careful system design and algorithmic study. We also discuss how a large

number of aggregates can be computed within the Tributary-Delta framework.

Although the general framework encompasses optimizing many possible metrics based

on the criteria in Table 5.1, we here focus on the following setting. Users provide tar-

get thresholds on the communication error (e.g., at least 90% of the nodes should be

accounted for in the answer).2 Our goal is to achieve these thresholds while incurring

minimal latency, using a minimal number of messages, and minimizing the message size.

5.3.1 The General Framework

In our Tributary-Delta aggregation scheme, we leverage the synergies between the existing

energy-efficient schemes, by combining the efficiency and accuracy of (small) trees under

low loss rates with the robustness of multi-path schemes. Specifically, part of the network

runs a multi-path scheme while at the same time the rest of the network runs tree schemes.

In the extreme, all nodes might either run a multi-path or a tree scheme. We dynamically

adjust the use of trees and multi-path, based on current message loss rates. In this section

we provide an overview of our Tributary-Delta scheme.

We begin by defining a directed graph G representing the aggregation topology during

a Tributary-Delta aggregation. The sensors and the base station form the set of vertices of

G, and there is a directed edge for each successful transmission. Each vertex is labelled

either M (for multi-path) or T (for tree) depending on whether it runs a multi-path

aggregation algorithm or a tree aggregation algorithm. An edge is assigned the same

label as that of its source vertex. Note that both the set of edges and the labels of

individual vertices and edges may change over time. Figure 5.1 depicts an example graph

G. Figure 5.3 depicts a portion of another example graph, where T1–T5 are T vertices

and M1–M4 are M vertices.

There are many ways to construct an aggregation topology with both M and T
vertices. The basic correctness criteria is that no two M vertices with partial results

representing an overlapping set of sensors are connected to a T vertex. This is neces-

sary, since otherwise the corresponding T vertex, whose local aggregation algorithm is

duplicate-sensitive, may double-count the same sensor data and provide an incorrect an-

swer. Formally, for every maximal subgraph G′ consisting of M vertices but not the base

station, there is exactly one vertex m ∈ G′ directly connected to a T vertex in G − G′

2Users can also provide a bound on the approximation error (e.g., the answer should be within 10%
of the actual answer of the query applied to the “accounted for” nodes); such bounds can be achieved
trivially by adjusting the synopsis size.

5.3. Tributary-Delta Details 101

T1

1M

2M

Bit−vector
(bv)

bv

bv

bv

bv

3

1

1

1

1

T

T

T

4

3

2

M

M

4

3

T5

bv

Figure 5.3: Combining Tree and Multi-path algorithms for computing Count
in the Tributary-Delta framework. Bit vector (bv) is the multi-path synopsis
for the Count aggregate (described in Chapter 4).

and every vertex v ∈ G′ has a path to m. Ensuring this requires electing a suitable leader

(m) within G′. This general construction, although achievable, thwarts our objectives:

it restricts the amount of available redundancy an M vertex can exploit and the leader

election process complicates the aggregation process.

We therefore restrict ourselves to a simpler model where a sensor receiving a partial

result from an M vertex uses a multi-path aggregation scheme. This ensures that a

partial result from an M vertex never reaches a T vertex downstream toward the base

station, and therefore a T node never gets the chance to double-count sensor data.

In terms of the graph, this correctness condition can be formulated as either an Edge

Correctness property (Property 5.1) or a Path Correctness property (Property 5.2).

The two properties are equivalent—both formulations are useful depending on the con-

text.

Property 5.1 Edge Correctness: An M edge can never be incident on a T vertex,

i.e., an M edge is always between two M vertices.

Property 5.2 Path Correctness: In any directed path in G, a T edge can never appear

after an M edge.

An implication of path correctness is that the M vertices will form a subgraph (a

multi-path “delta”) that includes the base station, which is fed by trees of T vertices

(“tributaries”), as depicted in Figure 5.1. Let the delta region of G be the set of M
vertices. Coincidentally, any graph G satisfying path correctness is also desirable for

102 Chapter 5. Adaptive Aggregation Schemes

high accuracy—partial results near the base station account for larger numbers of sensor

readings than partial results near the leaves of G, and hence the additional robustness

provided by the delta region significantly improves answer accuracy.

Our Tributary-Delta scheme requires multi-path algorithms that can operate on (ap-

proximate or exact) partial results from both tree and multi-path schemes. For example,

M3 in Figure 5.3 receives inputs from both a T vertex and two M vertices. We address

this algorithmic challenge in Section 5.3.4.

Dynamic Adaptation

Our goal is to dynamically adapt where in the sensor network we use trees versus where

we use multi-path, based on current message loss rates in various regions of the network.

However, an implication of edge correctness is that individual vertices cannot switch

between the two modes independently. We say an M vertex is switchable (to a T vertex)

if all its incoming edges are T edges or it has no incoming edges. Similarly, a T vertex is

switchable if its parent is an M vertex or it has no parent. In Figure 5.3, vertices T3, T4,

T5, M1, and M2 are switchable. Based on these two definitions, we make the following

observation.

Observation 5.1 All children of a switchable M vertex are switchable T vertices.

Note that a delta region uniquely defines the set of switchable M and T vertices in G.

The next lemma implies that by considering only the switchable T and M vertices, it is

always possible to expand (or shrink) the delta region if desired. Let G′ be the connected

component of G that includes the base station. Then expanding (shrinking) the delta

region only makes sense if there is a T vertex (an M vertex, respectively) in G′. A simple

induction proof yields the following result:

Lemma 5.1 If the set of T vertices in G′ is not empty, at least one of them is switchable.

If the set of M vertices in G′ is not empty, at least one of them is switchable.

Proof. If the base station is a T vertex, it is switchable by definition. Otherwise, either

there is a T vertex in the next level (which would be a switchable vertex) or all nodes in

next level are M. In this latter case, the argument proceeds inductively.

Similarly, if at least one leaf vertex (vertices with no incoming edges) is an M, that

vertex is switchable. Otherwise, all leaves are T vertices and we proceed inductively by

considering vertices whose children are all leaves.2

In the next section, we study strategies for adapting the tributary and delta regions

to changing network conditions.

5.3. Tributary-Delta Details 103

5.3.2 Adapting to Network Conditions

We first discuss a number of practical issues that arise in designing our adaptation strate-

gies.

Adaptation Decision

Recall from Section 5.3.1 that the only possible ways to adapt to changing network

conditions are (1) to shrink the delta region by switching switchable M vertices (multi-

path nodes) to T vertices (tree nodes) or (2) to expand the delta region by switching

switchable T vertices (tree nodes) to M vertices (multi-path nodes). However, because

of the different types of errors introduced by the tree and multi-path schemes (recall

Table 5.1), it is unclear how switching one or more nodes impacts the answer accuracy.

Therefore, we require users to specify a threshold on the minimum percentage of nodes

that should contribute to the aggregate answer. It then becomes natural for the base

station to be involved in the decision process: depending on the percentage of nodes

contributing to the current result, the base station decides whether to shrink or expand

the delta region for future results. Because there is only minimal communication error in

multi-path schemes (recall Figure 1.5), increasing the delta region always increases the

percentage of contributing nodes. Similarly, decreasing the delta region always decreases

the percentage of contributing nodes. The system seeks to match the target percentage

of contributing nodes, in order to take advantage of the smaller approximation error in

tree aggregation. Because this design does not rely on the specifics of any one query, the

resulting delta region is effective for a variety of concurrently running queries. Designs

specialized to particular queries are part of our future work.

Synchronization

A key concern in switching individual nodes from tree aggregation to multi-path aggrega-

tion (and vice-versa) is how to ensure that nodes that should be communicating after the

switch are indeed sending and receiving during the same epoch. When a node switches

from M to T , it needs to change its sending epoch to match its new parent’s listening

epoch and change its new children’s sending epoch to match its listening epoch, etc.

Conversely, when a node switches from T to M, it needs to change its sending epoch

to match the listening epoch of its neighboring nodes in the next level and change its

children’s sending epoch to match its listening epoch, etc. This re-synchronization over-

head could arise, for example, if TAG were to be used together with rings for multi-path,

and it would be a large deterrent to switching between tree and multi-path schemes. To

104 Chapter 5. Adaptive Aggregation Schemes

ensure that no such re-synchronization is necessary, we make a simplifying design choice:

a node in level i when switching from M to T must choose its tree parent from one of its

neighbors in level i− 1. Similarly, when the node switches from T to M, it transmits to

all its neighbors in level i− 1, including its parent. In other words, all tree links should

be a subset of the links in the ring. This ensures that the switched node can retain its

current epoch, since the new parent in level i− 1 is already synchronized to receive data

from the node in level i. Trees constructed with this restriction may have inferior link

quality; however, this is mitigated with Tributary-Delta because (1) we use multi-path to

overcome poor link quality and (2) the above tree construction algorithm produces bushy

trees that are effective in reducing total communication errors (further optimizations for

producing bushy trees can be found in [MNG05]).

Oscillation

The base station’s desire to match the accuracy of the final result to the user-defined

threshold may lead to a repeated expansion and shrinking sequence of the delta region.

This can happen when expansion of the delta region improves the accuracy to significantly

above the threshold so that the base station decides to shrink the delta region in order to

reduce the overhead of multi-path aggregation; but shrinking the delta region reduces the

accuracy to below the threshold, and hence it needs to be expanded again. This situation

can be common when a large number of nodes simultaneously switch their states. Such

an oscillation can unnecessarily increase the adaptation overhead. There are two ways

to prevent such oscillations. First, the delta region can be expanded or shrunk at a

small granularity, e.g., one node at a time. After a small adjustment of the delta region

boundary, the base station can wait to see the result of the adjustment before further

adjustment. Second, the base station can use heuristics to damp down the oscillation.

For example, if it experiences a repeated sequence of expansion and shrinking, it can

simply stop the repetition or can gradually reduce the frequency of adjustments.

5.3.3 Adaptation Strategies

In this section, we present two alternative strategies to shrink and expand the delta

region. In both strategies, we augment the messages being sent between nodes with an

(approximate) Count of the number of nodes contributing to the partial result being

sent. Assuming that the base station knows the number of sensors in the network, it can

compute the percentage of nodes contributing to the current result.

5.3. Tributary-Delta Details 105

Strategy TD-Coarse

In the first strategy, TD-Coarse, if the percentage of contributing nodes is below the user-

specified threshold, the base station expands the delta region by broadcasting a switching

message asking all the current switchable T nodes to switch to M nodes. This effectively

widens the delta region by one level. Similarly, if the percentage of contributing nodes

is well above the threshold, it shrinks the delta region by one level by asking all current

switchable M nodes to switch to T nodes. The coarse-grained control of TD-Coarse is

well-suited to quickly adapting the size of the delta region to network-wide fluctuations.

However, it can not adapt well to different conditions in different parts of the network;

for this, we introduce the following more fine-grained strategy.

Strategy TD

In the second strategy, TD, we use the existence of the parent-child relationship among

switchable M nodes and switchable T nodes (Observation 5.1), as follows. Each switch-

able M node includes in its outgoing messages an additional field that contains the

number of nodes in its subtree that did not contribute.3 As the multi-path aggregation

is done, the maximum, max, and the minimum, min, of such numbers are maintained.

If the percentage of contributing nodes is below the user-specified threshold, the base

station expands the delta region by sending a switching message asking to switch from

T to M all children of switchable M nodes belonging to subtrees that have max nodes

not contributing. In this way, subtrees with the greatest robustness problems are tar-

geted for increased use of multi-path. Shrinking is done by switching each switchable M
node whose subtree has only min nodes not contributing. The fine-grained control of TD

facilitates adapting to non-uniform network conditions, at a cost of higher convergence

time and additional switching message overhead because the base station needs to send

one message every time it switches a small number of nodes. Note that there are many

possible heuristics to improve the adaptivity of TD, such as using max/2 instead of max

or maintaining the top-k values instead of just the top-1 value (max). Exploration of

optimal heuristics is part of our future work.

5.3.4 Computing Aggregates over Tributary-Delta

To compute an aggregate in our Tributary-Delta framework, we need a corresponding

tree algorithm, a multi-path algorithm, and a conversion function that takes a partial

3Note that there is no double-counting here because it follows from the path correctness property that
the node is the root of a unique subtree.

106 Chapter 5. Adaptive Aggregation Schemes

result generated by the tree algorithm and outputs a synopsis that can be used by the

multi-path algorithm. For example, in Figure 5.3, the node M3 receives two multi-path

partial results (denoted as bv) and one tree partial result (3). The conversion function

needs to transform the tree result to a synopsis so that M3 can use its synopsis fusion

function to combine it.

The synopsis generated by the conversion function must be valid over the inputs

contributing to the tree result. Fortunately, all the multi-path algorithms described in

Chapter 4 have simple conversion functions. For example, the conversion function for the

Count aggregate should take the output of the tree scheme–a subtree count c–and generate

a (Sum) synopsis that the multi-path scheme equates with the value c. Intuitively, this

enables a node running a multi-path algorithm to become oblivious to whether an input

synopsis is from a multi-path node or the result of a conversion function applied to a tree

result.

Many aggregates (e.g., Count, Sum, Min, Max, Average, Uniform sample, etc.) with

known efficient multi-path (described in the previous chapter) and tree algorithms have

simple conversion functions,4 and hence can be efficiently computed in our Tributary-

Delta framework. Moreover, the Uniform sample algorithm can be used to compute

various other aggregates (e.g., Quantiles, Statistical moments) using the framework. Fi-

nally, in [MNG05], we have presented an efficient Tributary-Delta algorithm to identify

frequent items in a sensor network.

5.4 Evaluation

In this section, we evaluate Adaptive Rings and Tributary-Delta, implemented within

the simulator we used to evaluate Synopsis Diffusion in Chapter 4. We use the same

experimental setup (e.g., 600 sensors in a 20× 20 area, realistic message level loss rates,

etc.) we used in Chapter 4. Unless noted otherwise, in each simulation run, we use Sum

(of sensor ids ranging from 1 to 600) as the aggregate collecting an aggregate value every

epoch for 100 epochs. We first evaluate Adaptive Rings and then present experimental

results showing the effectiveness of our Tributary-Delta scheme.

4Since the multi-path algorithms for computing Min, Max, and Uniform sample have no approxima-
tion error, the tree algorithms can be the same as their multi-path counterparts. For these aggregates
then, the “identity function” suffices as the conversion function. For Count and Sum aggregates, the
Sum synopsis generation function in Chapter 4 can be used as the conversion function. Lastly, a separate
conversion function for Average is not required since Sum and Count can be used to compute Average.

5.4. Evaluation 107

5.4.1 Evaluation of Adaptive Rings

In this evaluation, we compare Adaptive Rings with the schemes TAG, Rings, Rings2,

and Flood described in Chapter 4. We seek to understand the effectiveness of Adaptive

Rings in coping with node- and link-failures. Note that link-failures can arise because

of transient losses, node failures, node mobility, or asymmetric communication. We want

to study the effect of all such failures by answering the following questions:

• How well can Adaptive Rings react to node- or link-failures?

• How effective is it in the face of node mobility?

• How effective is it’s use of implicit acknowledgement in identifying and avoiding

asymmetric links.

Effect of Failures

To show the effectiveness of topology adaptation in the Adaptive Rings scheme, we sim-

ulate two scenarios. Figure 5.4(a) shows the first scenario where at time t = 300, we kill all

the sensors within the rectangular region given by the endpoints {(3, 6), (3, 15), (9, 15), (9, 6)}
of the 20 × 20 grid, with the bottom-left corner given by the point (0, 0). This causes

a loss of 14% of the total nodes and emulates a geographically correlated set of node

failures that might happen, for example, due to a natural disaster.

As the graph shows, Adaptive Rings performs better (with a higher percentage of

nodes and lower variance) than the other schemes even when there is no drastic network

dynamics (i.e., t < 300). Rings2 perform better than Rings showing the effectiveness

of the nodes in ring 1 sending twice. Immediately after t = 300, all the schemes suffer

because the dead sensors break all paths from a significant portion (≈ 8%) of the live

sensors to the base station. However, Adaptive Rings gradually adapts its routing

around the dead sensors and, thus, lets almost all the live sensors communicate again to

the base station. In contrast, in Rings2, 8% of the nodes who could contribute to the

computed aggregate before t = 300 fail to do so after t = 300. The convergence time of

Adaptive Rings after t = 300 depends on how often the adaptation is done and how

long link histories are considered in selecting the ring number for a node. This result

shows the contributions of both the ring adaptation and ring 1’s retransmissions to the

robustness of the Adaptive Rings scheme.

In the second scenario, we kill 20% randomly selected sensors. As Figure 5.4(b) shows,

Adaptive Rings effectively copes with the broken multi-path routes and lets almost

108 Chapter 5. Adaptive Aggregation Schemes

 100

 90

 80

 70

 60

 50
 0 100 200 300 400 500 600

%
 C

on
tr

ib
ut

in
g

Epoch #

Live nodes
Adapt. Rings

Rings2
Rings

 100

 90

 80

 70

 60

 50
 0 100 200 300 400 500 600

%
 C

on
tr

ib
ut

in
g

Epoch #

Live nodes
Adapt. Rings

Rings2
Rings

(a) Correlated Failures (b) Sparse Failures

In this experiment, we kill a significant number of nodes at time = 300. The Adaptive
Rings topology can repair the broken topology and let the live nodes contribute to the final
answers. The lines in the graphs are in the order of the corresponding legends.

Figure 5.4: The effectiveness of the Adaptive Rings scheme to cope with node
failures.

all the live sensors report to the base station. However, both the Rings and Rings2

schemes fail to do so.

Effect of Mobile Sensors

Sensors may be mobile for a number of reasons. They may be deployed on mobile objects

(e.g., Robots) [DRS+05], or they may be moved passively by the environment (e.g.,

by wind or water currents). Mobility can cause a number of challenges, including: 1)

the same sensor transmitting its readings from multiple locations (creating duplicate

messages), and 2) sensor movement changing the connectivity of the network. Due to

Synopsis Diffusion’s resilience to losses, duplicate messages and connectivity changes, it

is able to handle mobility much more easily than schemes like TAG.

The results to quantify the impact of mobility on these schemes are shown in Fig-

ure 5.5(a). We assign the same velocity to all sensors in our simulation – we do vary

this velocity between simulations. In addition, each sensor picks a random direction of

motion at each time step. Each node checks for possible adaptation on every 4th epoch.

TAG relies on the continued existence of the links that form the aggregation tree, and

hence it must repair the aggregation tree whenever sensor mobility removes one of these

key links. In TAG, whenever a node is disconnected from its parent, it connects to the

5.4. Evaluation 109

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

R
M

S
 E

rr
or

Speed(Ft/Epoch)

TAG
Rings

A.Rings
Flood

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

To

po
lo

gy
 R

ep
ai

rs

Speed (Ft/Epoch)

TAG
A. Rings

(a) RMS Error (b) Adaptation Overhead

In this experiment, we let individual sensors move. Adaptive Rings can readjust the
topology and avoid double-counting, thus providing small RMS errors. The bars in the
first graph show 95% confidence intervals.

Figure 5.5: The impact of random motion on accuracy and topology adapta-
tion overhead.

next node that it hears from. In addition, to prevent loops, the disconnected node also

disconnects from all its children. This essentially forces the entire disconnected subtree

to be recreated. As a result, TAG performance degrades with higher rates of mobility as

seen in Figure 5.5(a).

The resilience of Synopsis Diffusion to connectivity changes depends closely on the

type of propagation used. For example, Flood (described in Section 4.6.1) uses no

history of past connectivity to collect results. As a result, changes in connectivity should

have little effect on the behavior of the system or its performance. Note that Figure 5.5(a)

does indicate some performance degradation. We suspect that this is a result of the

diameter of the network changing as a result of mobility – preventing the flood from

completing.

The performance of the Adaptive Rings scheme with mobility depends on a number

of factors including frequency of the adaptation and the size of the history of the link

quality.

The Rings propagation relies on past measurements of hop count distance between

a sensor and the base station to construct the propagation schedule. If a sensor moves

to a different distance from the base station, the ring topology must be repaired. As

expected, Figure 5.5(b) shows that the frequency of these repairs is much lower than the

frequency of repairs to the TAG topology. In addition, each repair operation is simple

since a node simply assigns itself a ring number one greater than it hears from any of

110 Chapter 5. Adaptive Aggregation Schemes

Table 5.2: Effect of asymmetric links.
In this experiment, we model the links with a realistic asymmetry distribution observed
in [ZG03] and a realistic loss rate mentioned in Section 4.6. We here report the average
percentage of nodes contributing to the final answer. As shown, asymmetry affects all the
schemes, however, Adaptive Rings can adapt itself to avoid asymmetric links. Therefore,
the performance of Adaptive Rings degrades only slightly.

Percentage of contributing nodes
Scheme Symmetric links Asymmetric links Change

TAG 15% 12% 15%
Rings 65% 60% 10%
Rings2 90% 83% 9%

Adaptive Rings 95% 94% 3%

its reliable neighbors. These factors allow Rings to maintain good performance despite

hi-speed mobility.

Effect of Asymmetric Links

Asymmetric links are very common in real sensor network deployments. To see the effect,

we model asymmetric links in our simulation, using a realistic asymmetry distribution

observed in [ZG03], with a realistic loss rate mentioned in Section 4.6. Table 5.2 shows the

results. Due to asymmetric links, the performance of TAG and Rings gets significantly

worse (around 15% worse for TAG and 10% worse for Rings) than the case when all links

are symmetric. The problem comes from the fact that even if a node x hears from a node

y and based on that x selects y as its parent in the aggregation tree, without expensive

per sender explicit acknowledgement, there is no guarantee that the transmission of x

actually reaches y. However, the implicit acknowledgement of Synopsis Diffusion provides

a solution for this problem: the transmission of y tells x whether x’s transmission has

effectively reached y, and thus the topology can be adapted accordingly. Thus, the

performance of Adaptive Rings degrades only slightly (< 3%).

5.4.2 Evaluation of Tributary-Delta

In this section we evaluate our two proposed Tributary-Delta schemes, TD-Coarse and

TD, in varying network conditions, using the pure tree-based scheme TAG (TAG with

a self-repairing tree) and the pure multi-path-based scheme SD (Synopsis Diffusion over

Adaptive Rings) as baselines. We first show the different ways in which TD-Coarse and TD

5.4. Evaluation 111

adapt to changes in network conditions. Then we use a simple aggregate (Sum) to report

the error reductions due to our proposed schemes over the baseline schemes. Finally, we

consider a more complex aggregate (Frequent Items). Recall from Section 5.3 that the

adaptivity decisions in our proposed schemes are guided by a threshold on the percentage

of nodes contributing to the aggregate. We use 90% as the threshold for our evaluation.

We use LabData, a scenario reconstructing a real deployment, and Synthetic, a

synthetic scenario with several failure models, for our experiments. Using actual sensor

locations and knowledge of communication loss rates among sensors, LabData simulates

a deployment of 54 sensors recording light conditions in the Intel Research Berkeley labo-

ratory [Int05]. The dataset contains around 2.3 million sensor readings. The Synthetic

scenario is a deployment of 600 sensors placed randomly in a 20 × 20 area, with a base

station at location (10, 10). We study two failure models for Synthetic: Global(p), in

which all nodes have a message loss rate of p, and Regional(p1, p2), in which all nodes

within the rectangular region {(0, 0), (10, 10)} of the 20× 20 deployment area experience

a message loss rate of p1 while other nodes have a message loss rate of p2.

Adaptivity of TD-Coarse and TD

To demonstrate the different ways in which our two strategies adapt to changes in net-

work conditions, we study the Synthetic scenario under the two failure models. First,

we apply the Global(p) failure model with increasing values of p. Figure 5.6(a) and

Figure 5.6(b) show snapshots of the TD-Coarse scheme when the loss rates are 0.2 and 0.3

respectively. As expected, the delta region expands as the loss rate p increases—depicted

by an increase in the number of larger dots from Figure 5.6(a) to Figure 5.6(b). The

snapshots for the TD scheme are similar, except that the delta region increases gradually,

instead of expanding by all switchable nodes at a time.

Second, we apply the Regional(p1, p2) failure model with increasing p1 and a fixed

p2 = 0.05. In TD-Coarse, because the delta region expands uniformly around the base

station, all nodes near the base station are switched to multi-path, even those experi-

encing small message loss. In TD, this problem does not arise because the delta region

expands only in the direction of the failure region. Figure 5.6(c) and Figure 5.6(d) cap-

ture pictorially the response of TD to such localized failures. Even at a high loss rate, in

TD, the delta region mostly consists of nodes actually experiencing high loss rate.

112 Chapter 5. Adaptive Aggregation Schemes

0 5 10 15 200

5

10

15

20

0 5 10 15 200

5

10

15

20

(a) Global(0.2) (b) Global(0.3)
with TD-Coarse

0 5 10 15 200

5

10

15

20

0 5 10 15 200

5

10

15

20

(c) Regional(0.3,0.05) (d) Regional(0.8,0.05)
with TD

Each dot depicts a sensor located at the given coordinates in the deployment area. The
larger dots comprise the delta region and smaller dots comprise the tributary region. The
base station is at (10, 10).

Figure 5.6: Evolution of the TD-Coarse and TD topologies for varying loss rates.

5.4. Evaluation 113

Evaluation Using a Simple Aggregate

In this section we evaluate the error reduction of our two proposed schemes, TD-Coarse

and TD, in varying network conditions, using the TAG and SD schemes as baselines. We

restrict ourselves to simple aggregates like Count and Sum for which the partial results

can fit in a single TinyDB packet for both TAG and SD. To ensure that all schemes

use comparable energy levels, we disallow retransmissions (as in the original TinyDB

implementation).

We measure the error as the relative root mean square (RMS) error—defined as
1
V

√∑T
t=1(Vt − V)2/T , where V is the actual value and Vt is the aggregate computed

at time t. The closer this value is to zero the closer the aggregate is to the actual value.

Real scenario. We find the RMS error in evaluating the Sum aggregate on LabData

to be 0.5 for TAG and 0.12 for SD. Both TD and TD-Coarse are able to reduce the error to

0.1 by running Synopsis Diffusion over most of the nodes.

Synthetic scenarios. For the remainder of this section, we use Synthetic scenarios.

Figure 5.7(a), the complete graph for Figure 1.5, presents the RMS error of different

schemes under the Global(p) failure model. At all loss rates in both cases, the error

for either TD-Coarse or TD is no worse than the minimum of TAG or SD. In particular,

the error is reduced significantly at low loss rates (0 ≤ p ≤ 0.05), when some tree nodes

can directly provide exact aggregates to the base station. This effect is more pronounced

in Figure 5.7(b) with the TD strategy under a Regional(p, 0.05) failure model. TD

uses multi-path aggregation only in the failure region and so exact aggregation over a

significant portion of nodes can be carried out using tree aggregation.

Next, to evaluate how well our Tributary-Delta schemes adapt to dynamic scenarios,

starting with the Global(0) failure model, we first introduce Regional(0.3, 0) at time

t = 100. Then at t = 200, we switch to Global(0.3). Finally, at t = 300, we restore the

Global(0) failure model. Figure 5.8 shows the relative errors of the answers provided

by different schemes over time. We use relative error instead of RMS error because each

data point corresponds to just a single aggregate answer.

As expected (Figure 5.8(a)), TAG is more accurate when loss rates are low (t ∈ [0, 100]

or t ∈ [300, 400]) whereas SD is more accurate when loss rates are high (t ∈ [100, 300]).

Figure 5.8(b) and Figure 5.8(c) compare the relative errors of TD-Coarse and TD with

the smallest of the errors given by TAG and SD. At a high level, both TD-Coarse and

TD, when converged, have at most the error given by any of the two existing schemes.

However, the graphs reveal a number of subtle differences between the two Tributary-

Delta schemes. First, because TD can adjust its delta region at a finer granularity, it can

114 Chapter 5. Adaptive Aggregation Schemes

 0.2

 0.4

 0.6

 0.8

 1

 0 0.25 0.5 0.75 1

R
M

S
 E

rr
or

Loss Rate p

TAG
SD

TD-Coarse
TD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.25 0.5 0.75 1

R
M

S
 E

rr
or

Loss Rate p

TAG
SD

TD-Coarse
TD

(a) Global(p) failure (b) Regional(p, 0.05) failure

In this set of experiments, we keep the message size, and hence the energy consumption,
same for all the schemes. The graph shows that Tributary-Delta improves robustness
without additional energy.

Figure 5.7: RMS errors of the Count query under different loss rates

converge to provide a more accurate result. Second, the coarse granularity of TD-Coarse

adversely affects its convergence: the delta region continues to expand and shrink around

the optimal point (e.g., for t ∈ [100, 150] in Figure 5.8(b)). The base station can use

simple heuristics to stop the oscillation (e.g., at t = 150), but even then it may end up

using a delta region larger than necessary. Finally, the benefits of TD come at the cost of

a higher convergence time compared to TD-Coarse. As shown in Figure 5.8(c), TD takes

around 50 epochs to converge after the network condition changes. The time can be

reduced by carefully choosing some parameters (e.g., how often the topology is adapted),

a full exploration of which is part of our future work.

Evaluation Using a More Complex Aggregate

We now consider a more complex aggregate, finding frequent items [MNG05]. The goal

is to find all the items that appear more than a given threshold s (expressed as a fraction

of the total number of items) in the network. In contrast to the Sum or the Count

aggregate studied in Section 5.4.2, a multi-path partial result for the Frequent Items

aggregate can consist of more TinyDB messages than a tree partial result (3 times on

average in this experiment). Thus the robustness of the multi-path algorithm comes at the

cost of additional message overhead. In other words, if we allow both the tree-based and

multi-path-based schemes comparable energy to consume, tree can afford retransmission

of lost messages. It is not immediately clear how the robustness of multi-path without

5.4. Evaluation 115

 0.8

 0.6

 0.4

 0.2

 400 300 200 100 0

R
e
la

tiv
e
 E

rr
o
r

Epoch

TAG
SD

(a) TAG and SD

 0.4

 0.3

 0.2

 0.1

 400 300 200 100 0

R
e
la

tiv
e
 E

rr
o
r

Epoch

Best(TAG, SD)
TD-Coarse

 0.4

 0.3

 0.2

 0.1

 400 300 200 100 0

R
e
la

tiv
e
 E

rr
o
r

Epoch

Best(TAG, SD)
TD

(b) TD-Coarse (c) TD

We start this set of experiments with the Global(0) failure model. We then introduce
Regional(0.3, 0) at epoch = 100, Global(0.3) at epoch = 200, Global(0) at epoch =
300. Both TD-Coarse and TD can adapt to this dynamics.

Figure 5.8: Timeline showing relative errors of different aggregation schemes.

116 Chapter 5. Adaptive Aggregation Schemes

 75

 60

 45

 30

 15

 1 0.8 0.6 0.4 0.2 0

%
 F

a
ls

e
 N

e
g
a
tiv

e

Loss Rate

TAG
SD
TD

 75

 60

 45

 30

 15

 1 0.8 0.6 0.4 0.2 0

%
 F

a
ls

e
 N

e
g
a
tiv

e

Loss Rate

TAG
SD
TD

(a) Global loss (b) Regional loss

In this experiment, both tree and multi-path schemes avoid retransmission. However,
multi-path messages for the Frequent Items algorithm are around 3 times larger than tree
messages. Thus, the multi-path scheme uses more energy than the tree scheme.

Figure 5.9: False negatives in the frequent items estimated without retrans-
mission. (False positives are < 3%.)

retransmission and tree with retransmission compare.

We compare different schemes in terms of false positives (percentage of rare items

reported as frequent items) and false negatives (percentage of frequent items not reported)

in finding frequent items from LabData. As shown in [MNG05], with no communication

failure, tree has no false positives and multi-path has a small (< 3%) false positive

rate. Communication failures further reduce the false positive rate, but introduce false

negatives in the estimated results because some of the items with frequency above the

given threshold s% are not reported due to under-estimation (mostly in the tree part)

resulting from message loss.

Without Retransmission. We first consider tree without retransmission. Figure 5.9(a)

and Figure 5.9(b) show the false negative rates of different aggregation schemes under

the Global(p) and Regional(p, 0.05) failure models, respectively. As in our previous

results, TD performs as well as (for Global) or better than (for Regional) the TAG or

SD schemes alone. However, the better robustness of multi-path in this experiment comes

at the cost of additional energy to transmit longer partial results.

With Retransmission. Next, to make both tree- and multi-path-based schemes use

comparable energy while keeping the latency, which increases linearly with the number

of retransmissions, acceptable, we let the tree nodes retransmit their messages twice.5

5Note that, in practice, two retransmissions would incur more latency than a single transmission of

5.4. Evaluation 117

 75

 60

 45

 30

 15

 1 0.8 0.6 0.4 0.2 0
%

 F
a
ls

e
 N

e
g
a
tiv

e

Loss Rate

TAG
SD
TD

In this experiment, we permit the tree nodes to retransmit upto 3 times. Multi-path nodes
do not retransmit, but since they use longer messages, both tree nodes and multi-path
nodes consume a comparable amount of energy.

Figure 5.10: False negatives in the frequent items estimated with Global loss
& retransmission. (False positives are < 3%.)

Keeping the latency low is particularly important for many real-time monitoring and

control applications [SMAL+04]. The results are shown in Figure 5.10. As expected,

retransmission significantly reduces the false negatives of TAG. Still, at loss rates greater

than 0.5, the multi-path algorithm outperforms the tree algorithm and TD can effectively

combine the benefits of both the algorithms.

5.4.3 Discussion

Our evaluation shows that Adaptive Rings is effective in adapting to long term node-

and link-failures, node mobility, and asymmetric links. Our results show that Tributary-

Delta, that uses Synopsis Diffusion over Adaptive Rings, performs not just as good as

TAG or Synopsis Diffusion, but in fact better than both these schemes under typical loss

rates, without additional energy overhead. We have shown its effectiveness with a simple

aggregate where both TAG and Synopsis Diffusion have the same energy overhead, and

with a more complex aggregate where TAG can afford retransmissions to match Synopsis

Diffusion’s larger message overhead.

a 3 times longer message, because each retransmission occurs after waiting for the intended receiver’s
acknowledgment. Other limitations of retransmission include a reduction in channel capacity (by ≈ 25%)
and the need for bi-directional communication channels (often not available in practice) [ZG03].

118 Chapter 5. Adaptive Aggregation Schemes

Table 5.3: Properties of different adaptive aggregation schemes.
Adaptive Rings, unlike TAG, adapts its multi-path topology and does not require explicit
message acknowledgements. Tributary-Delta, unlike other schemes, adapts both topology
and algorithm and uses global adaptation decisions based on application feedback.

Adapting Component Adaptation Control Message
Scheme Topology Algorithm Decision Mechanism overhead

TAG Yes
(Tree)

No Local (on bad
link to parent)

Local (parent
switching)

ACKs (for link qual-
ity estimation)

Synopsis
Diffusion +
Adaptive
Rings

Yes
(Multi-
path)

No Local (on bad
links to neigh-
bors)

Local (ring
switching)

None (implicit ac-
knowledgements)

Tributary-
Delta

Yes (Tree
+ multi-
path)

Yes Local (for topol-
ogy) and Global
(for algorithm)

Local (parents
and algorithm
switching)

ACKs (for tree link
quality estimation)
and Switching mes-
sages (for algorithm
switching)

5.5 Summary

In this chapter, we have developed Tributary-Delta, a novel adaptive aggregation scheme

that enables application-aware adaptation of aggregation algorithm and aggregation topol-

ogy. Tributary-Delta combines existing tree-based aggregation schemes with Synopsis

Diffusion over Adaptive Rings. Adaptive Rings is an adaptive multi-path topology that

we have developed in this chapter. It uses implicit acknowledgements, provided by Syn-

opsis Diffusion, to efficiently decide when and how to repair the topology. We believe that

Tributary-Delta is a practical and useful technique to cope with the inherent dynamics

of sensor networks.

Table 5.3 shows how different components of existing schemes and our schemes com-

pare. Adaptive Rings is more robust than existing schemes, since it adapts a multi-path

topology. Moreover, it is more energy-efficient than them because of its use of implicit

acknowledgements. Tributary-Delta is more robust than all other schemes for its careful

adaptation of both the aggregation topology and the aggregation algorithm.

There are several ways our Tributary-Delta scheme can be improved. One can imagine

a scheme with more distributed control for adjusting the delta region; or a scheme that can

have delta regions anywhere in the network, not just around the base station; or a scheme

5.5. Summary 119

that adjusts the delta region not just based on the percentage of nodes contributing, but

on the observed errors in aggregate results. We discuss these future research directions

in Chapter 8.

Chapter 6

Subtleties in Tolerating

Correlated Failures

In the previous two chapters, we discussed techniques that can be used by the data

collection component of a sensing system (e.g., SAs of IrisNet) to achieve robust data

collection from wireless sensors. Data collected from different types of sensors are indexed

and stored within the storage component of the sensing system (e.g., OAs in IrisNet). In

this chapter and the next chapter, we will discuss techniques that significantly improve

the availability of the data storage component.

Designing highly available distributed database (or, general storage) systems has long

been an active area in systems research. The standard availability techniques include

replication, regeneration, and dynamic load balancing. Replication helps in tolerating

transient crash-failures, regeneration helps in adapting to long-term crash-failures, and

dynamic load balancing avoids failures due to the overload caused by flash-crowd like

events. Although each of these components is well studied in the context of many existing

systems, we face the following two key challenges in using them within an Internet-scale

sensing system:

• Existing distributed databases, unlike the future sensing systems we envision, are

not designed to scale to thousands of poorly maintained nodes in the Internet.

Although one might think that we could use previously proposed availability tech-

niques in our target sensing system, our experience shows that, surprisingly, these

techniques are less effective in real-world deployments than one might hope, often

resulting in system designs that are far from optimal. We identify that failure cor-

relation, events when a large number of nodes fail almost simultaneously, is the

primary reason behind this. Since large-scale correlated failures are common in to-

121

122 Chapter 6. Subtleties in Tolerating Correlated Failures

day’s Internet, the design and evaluation of an Internet-scale sensing system must

consider them. For example, in using replication, a sensing system must choose

suitable replication parameters (e.g., number of replicas, quorum systems, etc.) re-

quired to achieve a target availability despite the correlated failures common in the

real world. The challenge is to understand the nature and impact of these correlated

failures and to use the findings in system design and evaluation.

• Existing availability techniques have not yet been used in the context of sensing sys-

tems. Although, in general, they are not very effective in the presence of correlated

failures, sensing systems have many unique properties (e.g., hierarchically scoped

queries, tolerance for occasional data inconsistency, absence of write-sharing, easily

serializable writes, etc.) that, we believe, can significantly simplify the problems.

However, since the area of Internet-scale sensing is still unexplored, we need to find

suitable replication, regeneration, and load balancing algorithms that can exploit

the above properties, and thereby significantly improve the availability of a sensing

system.

We address the first challenge in this chapter and the second challenge in the next

chapter. In this chapter, we use a combination of experimental and mathematical analysis

of several real-world failure traces to understand the failure properties of large distributed

systems. We revisit previously proposed techniques for addressing correlated failures, and

debunk four common myths about how to design systems to tolerate such failures. Based

on our analysis, we identify a set of design principles that system builders can use to

build applications more capable of tolerating correlated failures. In the next chapter,

we address the second challenge above—we use the design principles and insights from

this chapter to develop efficient techniques that can improve the availability of a sensing

system by orders of magnitude. We describe the design, implementation within IrisNet,

and evaluation of these techniques in the next chapter.

Note that although the design principles developed in this chapter allow us to exploit

unique properties of sensing systems in order to improve their availability, they can be

generalized and the insights can be used in a large class of distributed storage systems.

6.1 Myths Debunked: A Preview

In this chapter, we show that previously proposed availability techniques, although plau-

sible, are less effective than one might hope under real-world failure correlation, often

6.1. Myths Debunked: A Preview 123

resulting in system designs that are far from optimal. Our study also reveals the sub-

tleties that cause this discrepancy between the perception (the myth) and the reality.

These new findings lead to four design principles for tolerating correlated failures in dis-

tributed storage systems. Specifically, our study reveals the following four myths about

tolerating correlated failures, along with the corresponding realities, overlooked subtleties,

and design principles.

• Myth 1: Correlated failures can be avoided using previously proposed

failure pattern prediction techniques. We find that avoiding correlated failures

by predicting the failure pattern (as in Oceanstore [WMK02]) provides negligible

benefits in alleviating the negative effects of correlated failures. The subtle reason

is that the top 1% of correlated failures (in terms of size) have a dominant effect

on system availability, and their failure patterns seem to be the most difficult to

predict. Thus, system designs must not overlook the unpredictability of these large

failures.

• Myth 2: Simple modelling of failure sizes is adequate. We find that con-

sidering only a single (maximum) failure size (as in Glacier [HMD05]) leads to

suboptimal system designs. Under the same level of failure correlation, the system

configuration as obtained in [HMD05] can be both overly-pessimistic for lower avail-

ability targets (thereby wasting resources) and overly-optimistic for higher availabil-

ity targets (thereby missing the targets). The subtle cause stems from the fact that

system availability is determined by the combined effects of failures with different

sizes. Even the largest 1% of the failures, which have the dominant effect, still cover

a wide range of failure sizes (e.g., 15 to 60 nodes in one of our traces). Such effects

cannot be summarized by failures with the same sizes, even with scaling factors. On

the other hand, we show that using our bi-exponential model to capture the failure

size distribution can help avoid overly-optimistic or overly-pessimistic designs.

• Myth 3: Additional fragments/replicas are always effective in improving

availability. For popular (n/2)-out-of-n encoding schemes (used in OceanStore [KBC+00,

WK02] and CFS [Cat03]), as well as majority voting schemes [Tho79] over n repli-

cas, it is well known that increasing n yields an exponential decrease in unavailabil-

ity under independent failures. In contrast, we find that under correlated failures,

additional fragments/replicas result in strongly diminishing returns in availability

improvement for many schemes including the previous two. The diminishing return

effects are so strong that even doubling or tripling n provides only limited benefits

124 Chapter 6. Subtleties in Tolerating Correlated Failures

after a certain point. These findings imply that designing systems assuming inde-

pendent failures and then using overprovisioning (by increasing n) can easily fail to

achieve availability targets in practice.

• Myth 4: Better designs under independent failures remain better under

correlated failures. We find that the better system design (for availability) under

independent failures is often not the better design under correlated failures. For

example, our results show that while 8-out-of-16 encoding achieves 1.5 more nines

of availability than 1-out-of-4 encoding under independent failures, it achieves 2

fewer nines of availability under our real traces with correlated failures. The subtle

cause is that, with m-out-of-n encoding, the above diminishing return effect is

more dramatic for larger m. Thus, system designs must be explicitly evaluated

under correlated failures.

Our findings depend unavoidably on the failure traces we used. Among the four myths

above, the first myth regarding failure pattern prediction may be the most dependent on

the specific traces. The other three findings, on the other hand, are likely to hold as long

as failure correlation is non-trivial.

In the rest of the chapter, we describe our analysis methodology and findings in greater

details.

6.2 Methodology

Our study is based on mathematical analysis, system implementation, and experimental

evaluation. The experiments mostly use a combination of trace and model driven sim-

ulation. In Chapter 7, we show that the results from our event driven simulator closely

match the results obtained from real deployments of an IrisNet application.

For simplicity, we limit most of our discussion to a simple read-only system, although

we show at the end of this chapter that the results naturally extend to read-write systems

such as IrisNet (or any generic sensing systems). Use of a read-only system keeps our dis-

cussion simpler and provides better intuition behind our findings. We use Erasure(m, n)

to denote an m-out-of-n read-only erasure coding system. Also, to unify terminology, we

often refer to replicas as fragments of an Erasure(1, n) system. Unless otherwise men-

tioned, all designs we discuss in this chapter use regeneration to compensate for lost

fragments due to node failures.

For the purpose of studying correlated failures, a failure event (or simply failure)

crashes one or more nodes in the system. The number of nodes that crash is called

6.2. Methodology 125

Table 6.1: Three traces used in our study.
Trace Duration Nature of

nodes
of nodes Probe inter-

val
Probe method

WS trace
[BWWG02]

09/2001-
12/2001

Public web
servers

130 10 mins HTTP GET from a CMU ma-
chine

PL trace
[Str04]

03/2003-
06/2004

PlanetLab
nodes

277 on avg 15 to 20
mins

all-pair pings; 10 ping packets
per probe

RON trace
[And05]

03/2003-
10/2004

RON testbed 30 on avg 1 to 2 mins all-pair pings; 1 ping packet
per probe

the size of the failure. To distinguish a failure event from the failures of individual

nodes, we explicitly call the latter node failures. A data object is unavailable if it can

not be reconstructed due to node failures. We present availability results using standard

“number of nines” terminology (i.e., log10(1/φ), where φ is the probability the data object

is unavailable).

6.2.1 Failure traces

We use three real-world wide-area failure traces (Table 6.1) in our study. WS trace is

intended to be representative of public-access machines that are maintained by different

administrative domains, while PL trace and RON trace potentially describe the behavior

of a centrally administered distributed system that is used mainly for research purposes,

as well as for a few long running services.

We call a complete round of all-pair pings or Web server probes as a probe interval.

As mentioned in the table, the PL trace and RON trace traces consist of periodic probes

between every pair of nodes. Each probe consists of multiple pings; we declare that a

node has failed if none of the other nodes can ping it during that interval. We do not

distinguish between whether the node has failed or has simply been partitioned from all

other nodes—in either case it is unavailable to the overall system. The WS trace trace

contains logs of HTTP GET requests from a single source node at CMU to multiple

Web servers. Our evaluation of this trace is not as precise because near-source network

partitions make it appear as if all the other nodes have failed. To mitigate this effect,

we assume our probing node is disconnected from the network if 4 or more consecutive

HTTP requests to different servers fail.1 We then ignore all failures during that probe

1This threshold is the smallest to provide a plausible number of near-source partitions. Using a
smaller threshold would imply that the client (on Internet2) experiences a near-source partition > 4%
of the time in our trace, which is rather unlikely.

126 Chapter 6. Subtleties in Tolerating Correlated Failures

Table 6.2: Gap analysis of PL trace.
We group gaps by the number of nodes affected (i.e., no probe information is available for
those nodes during the gap period), and then count the number of gaps in each category.
Note that, 7 gaps affect all the nodes, a clear evidence of the failure of the central data
collection server. We ignore these gap periods in our study.

nodes affected by the gap number of such gaps
all 7
7 1
6 3
4 1
3 6
2 22
1 123

period. Note that this heuristic may still not perfectly classify source and server failures,

but we believe that the error is likely to be minimal.

In PL trace, many large gaps (i.e., periods of time) appear in the trace where probe

information is not available for all nodes. We call each such period of time as a gap. For

those nodes that do not have probe information in a given gap, we say they are affected

by the gap. These gaps occur in the trace primarily due to two reasons – (1) the affected

node is removed from the production list of PlanetLab and added back later to the list,

because of some problem with the node; (2) the central server that collects all-pair-ping

measurements failed. In our study, we consider gaps due to the first reason as the failures

of the affected nodes, since these nodes are removed from the infrastructure and not

available for use. For gaps due to the second reason, we assume that the status (i.e, up

or down) of the affected nodes do not change during those gaps. To determine which

gap is due to which reason, we classify the gaps in the trace by the number of affected

nodes in the gaps (Table 6.2). All together we find 163 gaps in the trace. Seven gaps

affect all nodes (over 300 nodes). This is a clear evidence of central server failure. On the

other hand, all other gaps affect 7 or fewer nodes, which are indications of node removals.

Not having gaps affecting more than 7 but less than 300 nodes confirms that the gaps

are most likely caused by the previous two reasons (which result in quite different gap

behavior).

In PL trace, the set of nodes in each interval are constantly changing due to node

join and leave. The same is true in WS trace because of the previous filtering step we use,

which filters some of the nodes in certain intervals. The change in WS trace, however, is

6.2. Methodology 127

rather small. In these two traces, when counting the number of failed nodes that were not

failed as of the previous interval, the nodes counted must be present in both intervals, so

that we can say it transits from up to down. Similarly, when calculating MTTF (mean

time to failure), we must first observe one transition from down to up (where the node

must be present in two adjacent intervals), and then observe a transition from up to

down (similarly, the node must be present in two adjacent intervals). Further, the node

must always be in the trace between the two transitions. Only in such a scenario will

the time between the two transitions contribute to our calculation of MTTF. The same

is true when we calculate MTTR (mean time to repair). This is the same methodology

as in previous studies [CV03] of these traces. Finally, due to the limited duration of the

traces, and also because failures (especially large correlated failures) are rare events, we

do not observe occurrences of all failure sizes. On the other hand, we cannot simply use

a probability of zero for those failure sizes, since zero would be negative infinity on log-

scale. We thus use the following smoothing technique. Consider a sequence of consecutive

failure sizes x, x + 1, . . . , x + k − 1 for which we do not observe any events, but we do

observe z failure events with size of x + k. Then we treat the z events as z/k failure

events for each of the failure sizes of x, x + 1, . . . , x + k − 1, x + k. Notice that such

processing will only underestimate the strength of correlation, since it treats some of the

larger failures as smaller failures. Also, the processing has larger impact on WS trace

than on PL trace and RON trace.

In studying correlated failures, each probe interval is considered as a separate failure

event whose size is the number of failed nodes that were available during the previous

interval.

6.2.2 Limitations

As mentioned in Section 6.1, although the findings from this chapter depend on the traces

we use, the effects observed in this study are likely to hold as long as failure correlation

is non-trivial. One possible exception is our observation about the difficulty in predicting

failure patterns of larger failures. However, we believe that the sources of such large

failures (e.g., DDoS attacks) make accurate prediction difficult in any deployment.

Besides the traces studied in this chapter, there are many other wide-area failure traces

available, such as for peer-to-peer (P2P) systems [BSV03,SGG02]. Failure correlation in

P2P systems can be dramatically different from other wide-area systems, because many

failures in P2P systems are due to user departures. It is part of our future work to extend

our study to P2P environments. Another limitation of our traces is that the long probe

128 Chapter 6. Subtleties in Tolerating Correlated Failures

interval prevents the detection of short-lived failures. This makes our availability results

slightly optimistic.

6.2.3 Steps in our study

Section 6.3 constructs a tunable failure correlation model from our three failure traces;

this model allows us to study the sensitivity of our findings beyond the three traces.

Sections 6.4–6.6 present the four myths, and their corresponding realities, overlooked

subtleties, and design principles. These sections focus on read-only Erasure(m,n) sys-

tems, and mainly use trace-driven simulation, supplemented by model-driven simulation

for sensitivity study. Section 6.7 shows that our conclusions for read-only systems readily

extend to read-write systems. Note that most of the results in this chapter uses a custom

simulator driven by traces and models; we validate the accuracy of the simulation results

in Chapter 7.

6.3 A Tunable Model for Correlated Failures

This section constructs a tunable parameterized failure correlation model from the three

failure traces. The primary purpose of this model is to allow sensitivity studies and

experiments with correlation levels that are stronger or weaker than in the traces. In

addition, the model also later enables us to avoid overly-pessimistic and overly-optimistic

designs, as well as to perform analytical studies for deeper understanding. The model

balances idealized assumptions (e.g., Poisson arrival of correlated failure events) with

realistic characteristics (e.g., mean-time-to-failure and failure size distribution) extracted

from the real-world traces. In particular, it aims to accurately capture large (but rare)

correlated failures, which have a dominant effect on system unavailability.

6.3.1 Correlated Failures in Real Traces

We start by investigating the failure correlation in our three traces. Figure 6.1 plots the

PDF of failure event sizes for the three traces. While RON trace and WS trace have a

roughly constant node count over their entire duration, there is a large variation in the

total number of nodes in PL trace. To compensate, we use both raw and normalized

failure event sizes for PL trace. The normalized size is the (raw) size multiplied by a

normalization factor γ, where γ is the number of nodes in the interval divided by the

average number of nodes (i.e., 277) in PL trace. Because of the finite length of the traces,

we cannot observe events with probability less than 10−5 or 10−6.

6.3. A Tunable Model for Correlated Failures 129

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60

P
ro

b
a
b

ili
ty

Failure Event Size

G(0.009, 0.4, 0.95)
Trace (Normalized)

Trace

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60
P

ro
b

a
b

ili
ty

Failure Event Size

G(0.0012, 0.4, 0.98)
Trace

(a) PL trace (b) WS trace

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30

P
ro

b
a
b

ili
ty

Failure Event Size

G(0.0012, 0.32, 0.95)
Trace

(c) RON trace

Figure 6.1: Probability distribution of correlated failures in three real-world
traces. G(α, ρ1, ρ2) is our correlation model.

130 Chapter 6. Subtleties in Tolerating Correlated Failures

In all traces, Figure 6.1 shows that failure correlation has different strengths in two

regions. In PL trace, for example, the transition between the two regions occurs around

event size 10. In both regions, the probability decreases roughly exponentially with

the event size. However, the probability decreases significantly faster for small-scale

correlated failures than for large-scale ones. We call such a distribution bi-exponential.

Although we have only anecdotal evidence, we conjecture that different failure causes

are responsible for the different parts of the distribution. For example, we believe that

system instability, some application bugs, and localized network partitions are responsible

for the small scale failure events. It is imaginable that the probability decreases quickly

as the scale of the failure increases. On the other hand, human interference, attacks,

viruses/worms and large ISP failures are likely to be responsible for large scale failures.

This is supported by the fact that many of the larger PlanetLab failures can be attributed

to DDoS attacks (e.g., on 12/17/03), system software bugs (e.g., on 3/17/04), and node

overloads (e.g., on 5/14/04). Once such a problem reaches a certain scale, extending its

scope is not much harder: the probability decreases relatively slowly as the scale of the

failure increases.

6.3.2 A Tunable Bi-Exponential Model

In our basic failure model, failure events arrive at the system according to a Poisson

distribution. The entire system has a universe of u nodes. The model does not explicitly

specify which of the u nodes each failure event crashes, for the following reasons: Predict-

ing failure patterns is not effective in improving availability, and pattern-aware fragment

placement achieves almost identical availability as a pattern-oblivious random placement

strategy (see Section 6.4). Thus, our availability study needs to consider only the case

where the m fragments of a data object are placed on a random set of m nodes. Such a

random placement, in turn, is equivalent to using a fixed set of m nodes and having each

failure event (with size s) crash a random set of s nodes in the universe. Realizing the

above point helps us to avoid the unnecessary complexity of modelling which nodes each

failure event crashes – each failure event simply crashes a random set of s nodes.

To capture the bi-exponential property, we use a model that has two exponential

components, one for each region. Each component has a tunable parameter ρ between

0 and ∞ that intuitively captures the slope of the curve and controls how strong the

correlations are. When ρ = 0, failures are independent, while ρ = ∞ means that every

failure event causes the failure of all u nodes. Specifically, for 0 < ρ < ∞, we define the

following geometric sequence: f(ρ, i) = c(ρ) · ρi. The normalizing factor c(ρ) serves to

6.3. A Tunable Model for Correlated Failures 131

make
∑u

i=0 f(ρ, i) = 1.

We can now easily capture the bi-exponential property by composing two f(ρ, i). Let

pi be the probability of failure events of size i, for 0 ≤ i ≤ u. Our correlation model,

denoted as G(α, ρ1, ρ2), defines pi = (1 − α)f(ρ1, i) + αf(ρ2, i), where α is a tunable

parameter that describes the probability of large-scale correlated failures. Compared to

a piece-wise function with different ρ’s for the two regions, G(α, ρ1, ρ2) avoids a sharp

turning point at the boundary between the two regions.

Figure 6.1 shows how well this model fits the three traces. We here provide a brief

comparison among the traces here. The parameters of the model are different across the

traces, in large part because the traces have different universe sizes (10 failures out of 277

is quite different from 10 failures out of 30). As an example of a more fair comparison, we

selected 130 random nodes from PL trace to enable a comparison with WS trace, which

has 130 nodes. The resulting trace is well-modelled by G(0.009, 0.3, 0.96). This means

that the probability of large-scale correlated failures in PL trace is about 8 times larger

than WS trace.

Failure arrival rate and recovery

Up to this point, the correlation model G(α, ρ1, ρ2) only describes the failure event size

distribution, but does not specify the event arrival rate. To study the effects of different

levels of correlation, the event arrival rate should be such that the average mean-time-

to-failure (MTTF) of nodes in the traces is always preserved. Otherwise with a constant

failure event arrival rate, increasing the correlation level would have the strong side effect

of decreasing node MTTFs. To preserve the MTTF, we determine the system-wide failure

event arrival rate λ to be such that 1/(λ
∑u

i=1(ipi)) = MTTF/u.

We observe from the traces that, in fact, there exists non-trivial correlation among

node recoveries as well. Moreover, nodes in the traces have non-uniform MTTR and

MTTF. However, our experiments show that the above two factors have little impact on

system availability for our study. Specifically, for all parameters we tested, the availability

obtained under model-driven simulation (which assumes independent recoveries and uni-

form MTTF/MTTR) is almost identical to that obtained under trace-driven simulation

(which has recovery correlation and non-uniform MTTF/MTTR). For example, later in

Figure 6.6, we demonstrate the matching of simulation results driven by WS trace and

the simulation results driven by G(0.0012, 0.4, 0.98). Therefore, our model avoids the un-

necessary complexity of modelling recovery correlation and non-uniform MTTF/MTTR.

132 Chapter 6. Subtleties in Tolerating Correlated Failures

6.3.3 Stability of the Model

Two important factors that decide the usefulness of our correlation model are how fast it

converges and how long it remains stable. Fast convergence implies a small failure trace

is sufficient to build a reasonable model. Better stability implies that a model remains

effective for a long period of time.

Convergence

We first study the convergence properties of our model, using PL trace and RON trace

(we do not use WS trace because of its short duration). For each trace, we obtain a

“reference model” using the entire trace. Then, we consider successively longer portions

of the trace, and compute the difference the model built from this smaller trace and the

reference model. For our metric, we use mean relative difference (MRD), defined as the

average of |pi,t − pi,m|/pi,m for all i’s, where pi,t (pi,m) is the probability of size-i failures

from the trace portion (from the model, respectively). Intuitively, a small MRD means

that the trace portion matches the reference model well.

Figure 6.2 plots the MRD between the reference models and suffixes of the traces, as

a function of the length of the suffixes. For both traces, the figure shows that the MRD

roughly monotonically decreases as we use a longer and longer trace. Also, the curves

somewhat flatten after roughly 4 or 5 months. This means that the model does converge

and the convergence time is roughly several months. We believe this convergence time is

quite good given the rarity of large correlation events. For both traces, the MRD after 5

months is below 0.8. Note that the MRD from the model fittings in Figure 6.1 are 0.64,

0.60, and 0.24 for PL trace, WS trace, and RON trace, respectively. This means that an

MRD of 0.8 is quite satisfactory.

Effectiveness over time

Our model will later be used (among other things) to configure IrisNet to provide a given

availability target. To be effective for such purposes, the model built (“trained”) using

a prefix of a trace should reflect well the failures occurring in the rest of the trace. To

test this, we build models using the 2003 portions of RON trace and PL trace, and then

compare these models to the 2004 portions of the respective traces. We find that the

MRD is roughly 0.3 and 0.7 for RON trace and PL trace, respectively. Figures 6.3(a)

and (b) provide a direct comparison of the availability achieved under the 2003-based

models versus under the 2004 traces. In all cases, the availability difference is below half

6.4. Myth: Correlated Failures Can Be Avoided 133

 2

 1.5

 1

 0.5

 0
 0 5 10 15 20

M
ea

n
R

el
at

iv
e

D
iff

er
en

ce

Trace Length (months)

PLTrace
RONTrace

For each trace, we obtain a “reference model” using the entire trace. Then, we consider
successively longer portions of the trace, and compute the difference the model built from
this smaller trace and the reference model. The differences decrease quickly over time,
implying a fast convergence to the reference model. We do not consider WS trace here
because of its short duration.

Figure 6.2: Convergence of the correlation model. The Y-axis shows the
difference between reference models and traces of different lengths.

a nine. These results suggest that configuring IrisNet using the 2003-based model would

have indeed been effective for reaching availability targets in 2004.

6.4 Myth: Correlated Failures Can Be Avoided Us-

ing Previously Proposed Failure Pattern Predic-

tion Techniques

We present our four myths starting from this section. Unless otherwise stated, all our

results will be based on the three real failure traces. The bi-exponential model is used

only when we need to tune the correlation level, in which cases we will explicitly mention

its use.

The Myth

Chun et al. [CV03] point out that node failure histories can be used to discover a relatively

stable pattern of correlated failures (i.e., which set of nodes tend to fail together), based

on a fraction of the PL trace used in this study. Weatherspoon et al. [WMK02] (as part

of the OceanStore project [KBC+00]) reach a similar conclusion by analyzing a four-week

134 Chapter 6. Subtleties in Tolerating Correlated Failures

 6

 5

 4

 3

 2

 1
 50 40 30 20 10 5

A
va

ila
b
ili

ty
 (

#
9
s)

Fragments (n)

Erasure(n/3,n), Model
Erasure(n/3,n), Trace
Erasure(n/2,n), Model
Erasure(n/2,n), Trace

 6

 5

 4

 3

 2

 1
 50 40 30 20 10 5

A
va

ila
b
ili

ty
 (

#
9
s)

Fragments (n)

Erasure(n/3,n), Model
Erasure(n/3,n), Trace
Erasure(n/2,n), Model
Erasure(n/2,n), Trace

(a) RON trace (b) PL trace

The Y-axis shows the predicted availability (based on our model computed from the first
half of the trace) and the actual availability (given by the second half of the trace) under
different traces. In each graph, the predicted availability closely matches the actual avail-
ability, showing that our model computed from the first half of the trace remains stable
over the second half of the trace. We do not consider WS trace here because of its short
duration.

Figure 6.3: Stability of the correlation model.

failure trace of 306 web servers2. Based on such predictability, they further proposed a

framework for online monitoring and clustering of nodes. Nodes within the same cluster

are highly correlated, while nodes in different clusters are more independent in failure

characteristics. They showed that the clusters constructed from the first two weeks of

their trace are similar to those constructed from the last two weeks. Given the stability of

the clusters, they conjectured that by placing the n fragments (or replicas) in n different

clusters, the n fragments will not observe excessive failure correlation among themselves.

In some sense, the problem of correlated failures goes away.

The Reality

We revisit this technique by using the same method as in [WMK02] to process our failure

traces. For each trace, we use the first half of the trace (i.e., “training data”) to cluster

the nodes using the same clustering algorithm [SM00] as used in [WMK02]. Then as a

case study, we consider two placement schemes of an Erasure(n/2, n) (as in OceanStore)

system. The first scheme (pattern-aware) explicitly places the n fragments of the same

object in n different clusters, while the second scheme (pattern-oblivious) simply places

2The trace actually contains 1909 web servers, but they only analyze 306 servers because those are
the only ones that ever fail during the four weeks.

6.4. Myth: Correlated Failures Can Be Avoided 135

the fragments on n random nodes. Finally, we obtain availability under the second half

of the trace.

We first observe that most (≈ 99%) of the failure events in the second half of the

traces affect only a very small number (≤ 3) of the clusters computed from the first half

of the trace. This implies that the clustering of correlated nodes is relatively stable over

the two halves of the traces, which is consistent with [WMK02].

On the other hand, Figure 6.4 plots the achieved availability of the two placement

schemes under WS trace and PL trace. We do not use RON trace because it contains

too few nodes for the clustering to be meaningful. The graph shows that explicitly

choosing different clusters to place the fragments gives us only negligible improvement

on availability. We also plot the availability achieved if the failures in WS trace were

independent. This is done via model-driven simulation and by setting the parameters

in our bi-exponential model accordingly. For a fair comparison, we ensure that the

machine MTTF and MTTR (and hence the machine unavailability) in the model match

the MTTF and MTTR in WS trace. Note that when the failures are independent, the

two placement schemes do not make any difference. The large differences between the

curve for independent failures and the other curves show that there are strong negative

effects from failure correlation in the trace. Identifying and exploiting failure patterns,

however, has almost no effect in alleviating such impacts. We have also obtained similar

findings under a wide-range of other m and n values for Erasure(m,n).

A natural question that arises is whether the above findings are because our traces

are different from the traces studied in [CV03, WMK02]. Our PL trace is, in fact, a

superset of the failure trace used in [CV03]. On the other hand, the failure trace studied

in [WMK02], which we call Private trace, is not publicly available. Is it possible that

Private trace gives even better failure pattern predictability than our traces, so that

pattern-aware placement would indeed be effective? To answer this question, we directly

compare the “pattern predictability” of the traces using the metric from [WMK02]: the

average mutual information among the clusters (MI) (see [WMK02] for a rigorous defini-

tion). A smaller MI means that the clusters constructed from the training data predict

the failure patterns in the rest of the trace better. Weatherspoon et al. report an MI of

0.7928 for their Private trace. On the other hand, the MI for our WS trace is 0.7612.

This means that the failure patterns in WS trace are actually more “predictable” than

in Private trace.

136 Chapter 6. Subtleties in Tolerating Correlated Failures

 5

 4

 3

 2

 1
 40 30 20 10 0

A
va

ila
b
ili

ty
 (

#
9
s)

Fragments (n)

Independent
Pattern-aware

Pattern-oblivious

 5

 4

 3

 2

 1
 40 30 20 10 0

A
va

ila
b
ili

ty
 (

#
9
s)

Fragments (n)

Independent
Pattern-aware

Pattern-oblivious

(a) WS trace (b) PL trace

In this experiment, we compare two replica placement strategies. In the pattern-aware
strategy, we first cluster all the nodes based on their failure correlation such that nodes
from different clusters have minimal correlation. Then we place replicas on different
clusters such that individual replicas do not experience enough failure correlation. In the
pattern-oblivious strategy, we choose random nodes as replicas. The graph shows that
the pattern-aware strategy does not provide significant benefit over the simple pattern-
oblivious strategy. We do not consider RON trace here because of its small node popula-
tion.

Figure 6.4: Negligible availability improvements from failure pattern predic-
tion for Erasure(n/2, n) systems.

6.4. Myth: Correlated Failures Can Be Avoided 137

The Subtlety

To understand the seemingly contradictory observations in the previous section, we take a

deeper look at the failure patterns. To illustrate, we classify the failures into small failures

and large failures based on whether the failure size exceeds 15. With this classification,

in all traces, most (≈ 99%) of the failures are small.

Next, we investigate how accurately we can predict the failure patterns for the two

classes of failures. We use the approach used in [HBD97] for showing that UNIX processes

running for a long time are more likely to continue to run for a long time in the future.

For a random pair of nodes in WS trace, Figure 6.5(a) plots the probability that the

pair crashes together (in correlation) more than x times because of the small failures.

The straight line in log-log scale indicates that the data fits the Pareto distribution

of P (#failure ≥ x) = cx−k. In Figure 6.5(b) and Figure 6.5(c), we observe similar

fits for PL trace (P (#failure ≥ x) = 0.3x−1.45) and RON trace (P (#failure ≥ x) =

0.02x−1.4), respectively. Such a fit to the Pareto distribution implies that pairs of nodes

that have failed together many times in the past are more likely to fail together in the

future [HBD97]. Therefore, past pairwise failure patterns (and hence the clustering)

caused by the small failures are likely to hold in the future.

Next, we move on to large failure events (Figure 6.5(d)). Here, the data fit an ex-

ponential distribution of P (#failure ≥ x) = ae−bx. The memoryless property of the

exponential distribution means that the frequency of future correlated failures of two

nodes is independent of how often they failed together in the past. This in turn means

that we cannot easily (at least using existing approaches) predict the failure patterns

caused by these large failure events. Intuitively, large failures are generally caused by ex-

ternal events (e.g., DDoS attacks, worms, etc.), occurrences of which are not predictable

in trivial ways. We observe similar results in the other two traces: Figure 6.5(e) and

Figure 6.5(f) show exponential distribution fits for the large failure events in RON trace

and PL trace, respectively.

Thus, the pattern for roughly 99% of the failure events (i.e., the small failure events)

is predictable, while the pattern for the remaining 1% (i.e., the large failure events) is not

easily predictable. On the other hand, our experiments show that large failure events,

even though they are only 1% of all failure events, contribute most to unavailability.

For example, the unavailability of a “pattern-aware” Erasure(16, 32) is 0.0003 under

WS trace. If we remove all of the small failure events, unavailability is still 0.0003. The

intuition behind this result is that because small failure events only affect a small number

of nodes, those failure events can be almost completely masked by data redundancy and

138 Chapter 6. Subtleties in Tolerating Correlated Failures

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

P
ro

b
a

b
ili

ty

Failures

P(x)=0.15x-1.5

Small failures

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

P
ro

b
a

b
ili

ty

Failures

P(x)=0.44e-1.1x

Large failures

(a) Small failures in WS trace (a) Big failures in WS trace

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000

P
ro

b
a
b
ili

ty

Failures

P(x)=0.02x-1.4

Small failures

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100

P
ro

b
a

b
ili

ty

Failures

P(x)=0.03e-0.3x

Large failures

(c) Small failures in RON trace (d) Big failures in RON trace

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000

P
ro

b
a

b
ili

ty

Failures

P(x)=0.03x-1.45

Small failures

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100

P
ro

b
a

b
ili

ty

Failures

P(x)=0.3e-0.9x

Large failures

(c) Small failures in PL trace (d) Big failures in PL trace

For two nodes selected at random, the plots show the probability that the pair will fail
together (in correlation) more than x times during the entire trace. Distributions fitting
the curves are also shown. Small failures show Pareto distributions, implying that their
patterns can be predicted based on history. Big failures show exponential distributions,
implying that their patterns can not be predicted in trivial ways.

Figure 6.5: Predictability of pairwise failures.

6.4. Myth: Correlated Failures Can Be Avoided 139

regeneration. This explains why on one hand, failure patterns are largely predictable,

while on the other hand, pattern-aware fragment placement is not effective in improving

availability. It is also worth pointing out that the sizes of these large failures still span

a wide range (e.g., from 15 to over 50 in PL trace and WS trace), which means that

capturing the distribution over all failure sizes is still important in the bi-exponential

model.

The Design Principle

Large correlated failures (which comprise a small fraction of all failures) have a dominant

effect on system availability, and system designs must not overlook these failures. For ex-

ample, because failure pattern prediction that works well for the bulk of correlated failures

fails for large correlated failures, it is not effective in alleviating the negative effects of

correlated failures.

Discussion

We have established above that pattern-aware fragment placement is not effective because

patterns of large failures can not be easily predicted in our wide-area failure traces.

However, in some other scenarios the patterns of large failures can be predicted. For

example, if the nodes in the systems are more heterogenous in terms of the software they

run, nodes running the same version of the operating system may fail together because of

some worm exploiting some bugs in that OS. Similarly, if we have several LAN clusters

each with thousands of nodes, then clearly the patterns of some large failures (e.g., power

outages that crash a whole cluster) can be predicted. In such cases, it is beneficial to place

the fragments on different LANs. The same is true in P2P systems where failures are

actually user leaves, which follow a clear diurnal pattern determined by the timezone of

the user. In wide-area non-P2P systems, at least in our traces, there does not seem to exist

large-scale strong correlations that would make the pattern of large failures predictable

in this manner.

140 Chapter 6. Subtleties in Tolerating Correlated Failures

6.5 Myth: Simple Modelling of Failure Sizes Is Ad-

equate

The Myth

A key challenge in system design is to obtain the “right” set of parameters that will

be neither overly-pessimistic nor overly-optimistic in achieving given design goals. Most

previous work on how to choose the data redundancy level for a given availability tar-

get assumes failure independence. Because of the complexity in availability estimation

introduced by failure correlation, system designers sometimes make simplifying assump-

tions on correlated failure sizes in order to make the problem more amenable. For ex-

ample, Glacier [HMD05] considers only the (single) maximum failure size, aiming to

achieve a given availability target despite the correlated failure of up to a fraction f

of all the nodes. Such simplification allows the system to use a closed-form formula of

availability =
∑n

k=m

(
n
k

)
(1 − f)kfn−k, which is in fact the same as the formula under

independent failures (with f being the failure probability). Using this formula, Glacier

is then able to calculate the needed m and n values in Erasure(m,n).

The Reality

Figure 6.6 plots the number of fragments needed to achieve given availability targets

under Glacier’s model (with f = 0.65 and f = 0.45) and under WS trace. Glacier does

not explicitly explain how f can be chosen in various systems. But at least, we can expect

that f should be a constant under the same deployment context (e.g., for WS trace).

A critical point to observe in Figure 6.6 is that for the real trace, the curve is not a

straight line (we explore the shape of this curve later). Because the curves from Glacier’s

estimation are roughly straight lines, they always significantly depart from the curve

under the real trace, regardless of how we tune f . For example, when f = 0.45, Glacier

over-estimates system availability when n is large: Glacier would use Erasure(6, 32) for

an availability target of 7 nines, while in fact, Erasure(6, 32) only achieves slightly above

5 nines availability. Under the same f , Glacier also under-estimates the availability of

Erasure(6, 10) by roughly 2 nines. If f is chosen so conservatively (e.g., f = 0.65) that

Glacier never over-estimates, then the under-estimation becomes even more significant.

As a result, Glacier would suggest Erasure(6, 31) to achieve 3 nines availability while

in reality, we only needs to use Erasure(6, 9). This would unnecessarily increase both

the storage required for an object and the bandwidth used to create or update the object

by over 240%.

6.5. Myth: Simple Modelling of Failure Sizes Is Adequate 141

 50

 40

 30

 20

 10

 0
 7 6 5 4 3 2 1 0

re

qu
ire

d
fr

ag
m

en
ts

 (
n)

#9s in availability

Glacier(0.65)
Glacier(0.45)

WSTrace
G(0.0012, 0.4, 0.98)

Figure 6.6: Number of fragments in Erasure(6, n) needed to achieve certain
availability targets, as estimated by Glacier’s single failure size model and
our distribution-based model of G(0.0012,0.4,0.98). We also plot the actual
achieved availability under the trace.

The Subtlety

The reason behind the above mismatch between Glacier’s estimation and the actual

availability under WS trace is that in real systems, failure sizes may cover a large range.

In the limit, failure events of any size may occur; the only difference is their likelihood.

System availability is determined by the combined effects of failures with different sizes.

Such effects cannot be summarized as the effects of a series of single-sized failures (even

with scaling factors).

To avoid the overly-pessimistic or overly-optimistic configurations resulting from Glacier’s

method, a system must consider a distribution of failure sizes rather than a single failure

size. IrisNet uses the bi-exponential model for this purpose. Figure 6.6 also shows the

number of fragments needed for a given availability target as estimated by our simulator

driven by the bi-exponential model. The estimation based on our model matches the

curve from WS trace quite well. It is also important to note that the difference between

Glacier’s estimation and our estimation is purely from the difference between single fail-

ure size and a distribution of failure sizes. It is not because Glacier uses a formula while

we use simulation. In fact, we have also performed simulations using a single failure size,

and the results are similar. We choose to use Glacier’s formula to adhere to the original

method in [HMD05].

The Design Principle

Correlated failures should be modelled via a distribution instead of a maximum failure

142 Chapter 6. Subtleties in Tolerating Correlated Failures

size.

6.6 Impact of Failure Correlation

Systems researchers have long been aware of the negative effects of correlated failures.

However, systematically evaluating a design under correlated failures is quite difficult.

Given such difficulty, system designs are often selected based on their evaluation under

independent failures and then some overprovisioning is added in the hopes of offsetting

the negative effects of failure correlation. This section discusses two myths associated

with this approach.

6.6.1 Myth: Additional Fragments Are Always Effective in Im-

proving Availability

The Myth

Under independent failures, distributing the data always helps to improve availability,

and any target availability can be achieved by distributing fragments across more and

more machines, without increasing the storage overhead. For this reason, system de-

signers sometimes fix the ratio between n and m (so that the storage overhead, n/m,

is fixed), and then simply increase n to achieve the required availability target. As an

example, in OceanStore, n/m is always kept at a constant of 2 (i.e., Erasure(n/2, n)

is used for some n), and OceanStore targets better availability by increasing n. For in-

stance, under independent failures, Erasure(16, 32) gives much better availability than

Erasure(12, 24), which, in turn, gives better availability than Erasure(8, 16). CFS

uses a similar Erasure(n/2, n) scheme in its design. Given independent failures, we

can even prove that increasing the number of fragments in these schemes exponentially

decreases unavailability:

Theorem 6.1 Consider n nodes where each node fails independently with probability p

and p < 0.5. Then there exists a constant q, 0 < q < 1, such that Prob[more than n/2

nodes fail] ≤ qn for all n.

Proof: Directly from Hoeffding’s inequality [Hoe63]. 2

Thus, we can plausibly overprovision an Erasure(m, n) system using a larger n to

offset the negative effects of failure correlation, without increasing the storage overhead.

6.6. Impact of Failure Correlation 143

 6

 5

 4

 3

 2

 1

 0 10 20 30 40 50 60

A
va

ila
b
ili

ty
 (

#
9
s)

Fragments (n)

Erasure(4,n)
Erasure(n/3,n)
Erasure(n/2,n)

 6

 5

 4

 3

 2

 1

 0 10 20 30 40 50 60

A
va

ila
b
ili

ty
 (

#
9
s)

Fragments (n)

Erasure(4,n)
Erasure(n/3,n)
Erasure(n/2,n)

(a) WS trace (b) PL trace

Figure 6.7: Availability of Erasure(m,n) under different traces.

There is a similar myth regarding read-write replication systems (i.e., overprovision-

ing by adding more replicas). Here the storage overhead increases with overprovision.

Later in Section 6.7, we will show that a read-write replication system using majority

voting [Tho79] for consistency has the same availability as Erasure(n/2, n). Thus our

discussion in this section also applies to read-write replication systems.

The Reality

We will show that, perhaps surprisingly, overprovisioning is not effective under correlated

failures, even if we double or triple n. Figures 6.7(a) and 6.7(b) plot the availability of

Erasure(4, n), Erasure(n/3, n) and Erasure(n/2, n) under WS trace and PL trace,

respectively, as a function of n. We do not use RON trace because it only contains 30

nodes. Both Erasure(n/3, n) and Erasure(n/2, n) suffer from a strong diminishing

return effect. For example, increasing n from 20 to 60 in Erasure(n/2, n) provides less

than a half nine’s improvement. On the other hand, Erasure(4, n) does not suffer from

such an effect. By tuning the parameters in the correlation model and using model-driven

simulation, we further observe (see Figure 6.8 and Figure 6.9) that the diminishing return

effects become more prominent under stronger correlation levels as well as under larger

m values.

The above diminishing return shows that correlated failures prevent a system from

effectively improving availability by overprovisioning (without increasing storage). In

read-write systems using majority voting, the problem is even worse: the same dimin-

ishing return effect occurs even allowing for significant increases in storage. Thus, for

both popular erasure coding schemes and majority voting schemes, overprovisioning by

increasing n is effective under independent failures, but not under correlated failures.

144 Chapter 6. Subtleties in Tolerating Correlated Failures

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

U
n
a
va

ila
b
ili

ty

n

ρ2 = 0.98
ρ2 = 0.95

ρ2 = 0.8
 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

U
n
a
va

ila
b
ili

ty

n

ρ2 = 0.98
ρ2 = 0.95

(a) Erasure(n/2, n) (b) Erasure(3, n)

Diminishing return of availability becomes stronger as correlation level (ρ2) increases or
a larger m is used. In (b), when ρ2 = 0.8, the unavailability is always below 10−5.

Figure 6.8: Availability under the model G(0.009, 0.4, ρ2).

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

P
ro

ba
bi

lit
y

Failure Size

ρ2 = 0.98
ρ2 = 0.95

ρ2 = 0.8

Figure 6.9: Failure size distribution under the model G(0.009, 0.4, ρ2).

6.6. Impact of Failure Correlation 145

The Subtlety

To find out the subtle cause behind the previous results, we analyze system availability

under correlated failures using our bi-exponential model G(α, ρ1, ρ2). Let P (j, n) be

the probability that a failure event on a universe of u nodes causes exactly j failures

among the n fragments (0 ≤ j ≤ n ≤ u). As in our correlation model, we let pi =

(1 − α)f(ρ1, i) + αf(ρ2, i) be the probability that a failure event causes i failures in a

universe of u nodes. Let P (i, j, n), where j ≤ i ≤ u, be the probability that a failure

event causes exactly i failures in the universe and causes exactly j failures among the n

fragments. Then P (j, n) =
∑u

i=j P (i, j, n). We observe that if there are j failures out of

n fragments, then there are n− j non-failures among the n fragments, and hence at most

u − (n − j) failures in the universe. Thus P (i, j, n) = 0 whenever i > u − (n − j). This

gives P (j, n) =
∑u−n+j

i=j P (i, j, n).

We will now derive an equation for P (i, j, n). Each P (i, j, n) is the product of (1)

the probability pi that a failure event causes i failures and (2) the probability, call it

Q(i, j, n), that such a failure event causes j failures among n fragments. We can analyze

Q(i, j, n) by considering all the
(

u
i

)
possible ways of selecting i out of u nodes for failure,

and how many of these select exactly j out of the n fragments. There are
(

n
j

)
ways of

selecting j out of n and for each of these, there are
(

u−n
i−j

)
ways of selecting the remaining

i − j failures out of the u − n nodes not holding the n fragments. Because all
(

u
i

)
ways

are equally likely, we have:

Q(i, j, n) =

(
n
j

)
·
(

u−n
i−j

)
(

u
i

)

Thus, it follows that:

P (i, j, n) = pi ·Q(i, j, n)

P (j, n) =
u−n+j∑

i=j

pi ·Q(i, j, n)

= (1− α)c(ρ1)
u−n+j∑

i=j

ρi
1 ·Q(i, j, n) +

αc(ρ2)
u−n+j∑

i=j

ρi
2 ·Q(i, j, n)

To simplify the above equation, we define the following and simplify it by letting k = i−j:

h(ρ, j, n) = c(ρ)
u−n+j∑

i=j

ρi ·Q(i, j, n)

146 Chapter 6. Subtleties in Tolerating Correlated Failures

 1

 0.01

 0.0001

 1e-06

 1e-08

 1e-10
10.80.60.40.20

P
ro

ba
bi

lit
y

Fraction of fragments failed (Normalized to n)

(0.95, 10)
(0.95, 30)

(0.8, 10)
(0.8, 30)

Figure 6.10: Fraction of fragments failed for u = 277, α = 0.009 and ρ1 = 0.4.
The legends are in the form of (ρ2, n).

=

(
n
j

)
(1− ρ)ρj

1− ρu+1

u−n∑

k=0

ρk

(
u−n

k

)
(

u
k+j

)

With the above definition of h(ρ, j, n), we have:

P (j, n) = (1− α) · h(ρ1, j, n) + α · h(ρ2, j, n) (6.1)

A closer examination of this formula reveals a subtle, yet fundamental effect of cor-

related failures. Based on equation 6.1, Figure 6.10 plots the probability that a single

failure event causes a certain fraction of node failures within the n nodes holding the

n fragments, for two different values of ρ2. Erasure(n/2, n) is able to mask all the

failure events that cause less than 50% of the fragments to fail, meaning that only the

probabilities of the failure events causing more than 50% fragment failures matter. When

ρ2 = 0.8, increasing n from 10 to 30 significantly decreases the probability that over 50%

of the fragments will all fail. However, when ρ2 = 0.95, as in PL trace, tripling n only

slightly decreases this probability. The intuition for this is as follows. Although more

fragments allow the system to tolerate more failures, they also mean that the scope of

the vulnerability has increased – the same failure event may cause more failures within

the n fragments. Such effects of a larger vulnerability scope become stronger when the

correlation level increases. Ultimately, when ρ2 = 0.95, such negative effects almost com-

pletely offset the benefits of being able to tolerate a larger absolute number of fragment

failures.

To directly relate P (j, n) to availability, we next provide a first-order approximation

of the unavailability of Erasure(n/2, n) by (1) considering that a single failure event

6.6. Impact of Failure Correlation 147

that fails at least half the fragments is needed to initiate unavailability, and (2) ignoring

that additional failure events may arrive while waiting to completely recover from this

initial failure event:

U(n/2, n) ≈ λ
n∑

j=n/2

P (j, n)
j∑

i=n/2

MTTR

i
, (6.2)

where U(n/2, n) is the unavailability of Erasure(n/2, n) and λ is defined in Section 6.3.2.

Using the above two approximations, we can study how doubling or tripling n affects

availability. Let x be an integer that is not too large with respect to n and suppose

P (xj, xn) ≈ P (j, n) (as in our earlier example), we have:

U(xn/2, xn)

≈ λ
xn∑

j′=xn/2

P (j′, xn)
j′∑

i′=xn/2

MTTR

i′

≈ λ
n∑

j=n/2

xj+x−1∑

j′=xj


P (j′, xn)

xj∑

i′=xn/2

MTTR

i′




≈ λ
n∑

j=n/2

xj+x−1∑

j′=xj


P (j′, xn) ·

j∑

i=n/2

(
xi+x−1∑

i′=xi

MTTR

i′

)


≈ λ
n∑

j=n/2

x · P (xj, xn)
j∑

i=n/2

MTTR

i

≈ x · λ
n∑

j=n/2

P (j, n)
j∑

i=n/2

MTTR

i

≈ U(n/2, n) [See below how the coefficient x gets cancelled out]

This means that under certain correlation levels (so that P (xj, xn) ≈ P (j, n) holds,

as in our earlier example), even doubling or tripling n will not be effective in improving

availability under Erasure(n/2, n).

A closer look at the above analysis may appear that U(xn/2, xn) could actually be

larger than U(n/2, n) by x folds, if P (xj, xn) actually equals P (j, n). However, notice

that it is impossible for P (xj, xn) to equal (or be larger than) P (j, n). The reason

is that
∑n

j=0 P (j, n) =
∑xn

j′=0 P (j′, xn) = 1. If P (xj, xn) actually equals P (j, n), then
∑xn

j′=0 P (j′, xn) will be larger than 1.0. In fact, the closest P (xj, xn) can get with respect

to P (j, n) is around 1/x · P (j, n) (in order to keep
∑xn

j′=0 P (j′, xn) = 1). This factor of

1/x exactly cancels out the x coefficient in the previous analysis.

148 Chapter 6. Subtleties in Tolerating Correlated Failures

The only way to lessen these diminishing return effects is to non-trivially increase the

n/m ratio (i.e., the storage overhead) as we increase n, by keeping m small. When m is

small, the previous analysis no longer holds. Thus, unlike Erasure(n/2, n), Erasure(4, n),

for example, is able to mask an increasingly large fraction of failed fragments as n in-

creases, as confirmed by Figures 6.7(a) and 6.7(b).

The Design Principle

System designers should be aware that correlated failures result in strong diminishing

return effects in Erasure(m,n) systems unless m is kept small. For popular systems

such as Erasure(n/2, n), even doubling or tripling n provides very limited benefits after

a certain point.

6.6.2 Myth: Better Designs under Independent Failures Re-

main Better under Correlated Failures

The Myth

If failure correlation affects all designs roughly equally, then we can plausibly still compare

designs under independent failures. Namely, designs that are better under independent

failures would remain better under correlated failures.

The Reality

We find that, unfortunately, this is not always true—correlated failures hurt some designs

much more than others. Such non-equal effects are demonstrated via the example in

Figure 6.11. Here, we plot the unavailability of Erasure(1, 4) and Erasure(8, 16)

under different failure correlation levels, by tuning the parameters in our correlation

model in model-driven simulation. These experiments use the model G(0.0012, 2
5
ρ2, ρ2)

(a generalization of the model for WS trace to cover a range of ρ2s), and a universe of

130 nodes, with MTTF = 10 days and MTTR = 1 day. Erasure(1, 4) achieves around

1.5 fewer nines than Erasure(8, 16) when failures are independent (i.e., ρ2 = 0). On the

other hand, under the correlation level found in WS trace (ρ2 = 0.98), Erasure(1, 4)

achieves 2 more nines of availability than Erasure(8, 16)3.

3The same conclusion also holds if we directly use WS trace to drive the simulation.

6.7. Read-Write Systems 149

 6

 5

 4

 3

 2

 1
 1 0.8 0.6 0.4 0.2 0

A
va

ila
bi

lit
y

(#
9s

)

ρ2

Erasure(8,16)
Erasure(1,4)

ρ2 = 0 indicates independent failures, while ρ2 = 0.98 indicates roughly the correlation
level observed in WS trace. Erasure(8, 16) is better under independent failure, but
worse under correlated failures, than Erasure(1, 4).

Figure 6.11: Effects of the correlation model G(0.0012, 2
5
ρ2, ρ2) on two systems.

The Subtlety

The cause of this (perhaps counter-intuitive) result is the diminishing return effect de-

scribed earlier. As the correlation level increases, Erasure(8, 16), with its larger m,

suffers from the diminishing return effect much more than Erasure(1, 4). In general,

because diminishing return effects are stronger for systems with larger m, correlated

failures hurt systems with large m more than those with small m.

The Design Principle

A better design under independent failures may not be better under correlated failures.

In particular, correlation hurts systems with larger m more than those with smaller m.

Therefore, system designs should be explicitly evaluated and compared under correlated

failures.

6.7 Read-Write Systems

Thus far we have discussed the four myths in the context of read-only Erasure(m, n)

systems. Interestingly, our results extend quite naturally to a sensing system, or to

any read-write system that uses quorum systems or voting techniques to maintain data

consistency.

Consider a quorum system (or voting system) that has a replica count of n and a

150 Chapter 6. Subtleties in Tolerating Correlated Failures

quorum size of m—an operation can be performed if any m of the n replicas are available.

From an availability perspective, this is exactly the same as a read-only Erasure(m, n)

system. Therefore, our results on Erasure(n/2, n) holds directly for a majority quorum

system. Similarly, the availability of SQS with a quorum size of c is same as that of

Erasure(c, n).

Regeneration makes the equivalency slightly more complex. It is quite tricky to ensure

data consistency during regeneration in a read-write system. In IrisNet, we adopt previ-

ous regeneration designs from RAMBO [LS02], and use the Paxos distributed consensus

protocol [Lam98] to ensure consistency during regeneration. Paxos needs n/2 out of the

n nodes to be available in order to terminate.4 Thus, a read-write, SQS-based regener-

ating system with a quorum size of m requires n/2 (instead of m) replicas to regenerate,

even though only m replicas are needed for normal reads and writes. In comparison, a

read-only Erasure(m,n) system requires m fragments to regenerate, as well as m frag-

ments for user accesses. We have performed extensive analysis and simulation of these

SQS-based regenerating systems and found that our previous design principles still apply.

Finally, quorum systems can also be used over erasure-coded data [GWGR04]. De-

spite the complexity of these protocols [GWGR04], they all have simple threshold-based

requirements on the number of available fragments. As a result, their availability can

also be readily captured by properly adjusting m in Erasure(m,n) in our results.

In the next chapter, we will show that IrisNet uses SQS with replica count 7 and

quorum size 2. Thus, all the results of Erasure(2, 7) we presented in this chapter

readily hold for IrisNet. IrisNet also uses a simplified version of RAMBO, as described

above.

6.8 Artifacts

The traces mentioned in Table 6.1 can be found at http://www.intel-iris.net/traces.

We have also developed Correlated Failure Benchmark (CFB), a failure benchmark

generator tool that produces synthetic failure traces according to the bi-exponential model

we developed in this section. It takes as input the number of nodes in the system and the

parameters of the model (either the built-in models (PlanetLab, RON, or WebServers)

or the bi-exponential parameters (α, ρ1, and ρ2)), and outputs a stream of failure- and

4It is possible to use a completely different set (and a much larger number) of nodes for Paxos to
maximize its success probability [YMV+03]. Such a design will make the results for Erasure(m,n)
directly apply to a read-write replication system with a quorum size of m. Namely, the extra adjustment
as described in this section is no longer needed.

6.9. Summary 151

recover-events with their timestamps. Currently, the tool has several limitations, e.g.,

it does not distinguish between node- and link-failures, does not consider recovery cor-

relation (based on our analysis we believe that node recoveries often show significant

correlation), etc. Addressing these limitations is part of our future work. The tool is

available at http://www.intel-iris.net/benchmarks.

6.9 Summary

In this chapter, we have shown that previously proposed approaches for combating corre-

lated failures, although plausible, are less effective than one might hope under real-world

failure correlation, often resulting in system designs that are far from optimal. Our

study also reveals the subtleties that cause this discrepancy between the perception (the

myth) and the reality. These new findings lead to the following four design principles for

tolerating correlated failures in distributed storage systems.

[P1] Large correlated failures (which comprise a small fraction of all failures and whose

patterns are difficult to predict) have a dominant effect on system availability, and

system designs must not overlook these failures.

[P2] Correlated failures should be modelled via a distribution instead of a maximum

failure size.

[P3] System designers should be aware that correlated failures result in strong dimin-

ishing return effects in systems with large quorums.

[P4] A better design under independent failures may not be better under correlated

failures.

We have shown that the above design principles hold for both read-only or read-write

systems.

Implications of Designing Sensing Systems. P4 implies that correlated failures

should be explicitly considered in our design of a sensing system. An important corollary

of P3 is that weak quorum systems (e.g., SQS) are more suitable for Internet-scale sensing

systems since such systems can tolerate occasional data inconsistency caused by weak

quorum systems and as a result can significantly improve availability. A corollary of P1

is that the random replica placement strategy required by SQS provides near optimal

availability. Finally, P2 implies that a sensing system should use the failure distribution

152 Chapter 6. Subtleties in Tolerating Correlated Failures

to determine the configuration parameters in order to optimize the target availability and

the resource usage.

In the next chapter we show how we incorporate these principles in IrisNet’s design.

Chapter 7

Design and Implementation of

Sensor Data Storage in IrisNet

In this chapter, we show how several unique properties of a sensing system can be ex-

ploited to make its data storage component highly available. Our discussion here focuses

on three components that are crucial for the storage component’s high availability: repli-

cation, regeneration, and load balancing. We discuss the following techniques in this

chapter:

• We use the principles from Chapter 6 to design effective replication techniques.

By exploiting the weak data consistency requirements of sensing applications, we

use Signed Quorum Systems (SQS) and show how it can be incorporated in a

hierarchical sensor database design.

• We show how the easily serializable timestamped writes and the absence of write-

sharing in a sensing system simplify an existing regeneration algorithm (RAMBO [LS02]).

We also show how to deal with SQS’s occasional inconsistency in the regeneration

algorithm.

• We show how the hierarchical structure of the sensor database and the typical

routing of user queries can be exploited in order to efficiently make complex load

balancing decisions. Our techniques guard against unavailability due to node over-

load (e.g., during flash crowds).

We design and implement these techniques in IrisNet, and therefore, our description

of these techniques uses the context of IrisNet. We start this chapter with a discussion

of the general design space and the rationale behind our design choices (Section 7.1).

153

154 Chapter 7. Design and Implementation of Data Storage in IrisNet

Table 7.1: Terminology used in this Chapter.

Term Meaning
Node An IrisNet OA node
Global database The XML database that contains sensor data and is distributed

among IrisNet OAs.
Local database The portion of the global database stored by a node.
Tree The logical hierarchy of the global database. The tree is used

for query routing and in-network aggregation.
Element An XML element. Represents a node in the tree.
Object An element. We use the terms “element,” “XML element,” and

“object” interchangeably.
Fragment Part of the local database required to transfer to a remote OA.
Replica group Set of all the replicas of an object.

Then, in Section 7.2, we describe IrisNet’s data replication and its use of SQS for access-

ing data. In Section 7.3, we describe IrisNet’s automatic replica regeneration algorithm.

In Section 7.4, we describe IrisNet’s dynamic load balancing algorithm. Finally, in Sec-

tion 7.5, we evaluate these techniques with a combination of real deployment, emulation,

and simulation.

To refresh the reader’s memory, we here briefly repeat IrisNet’s data indexing and

query processing mechanism. Each IrisNet application stores its sensor data such as

timestamped temperature data collected from motes, and user data such as installed

triggers in a distributed XML database. The XML database can be viewed as an ag-

gregation tree defining a hierarchy, where each tree node is an XML element. Table 7.1

lists the terminology we use in this section. The global database can be fragmented and

replicated among a set of nodes; the OA running on each node maintains its fragments

in a local database. IrisNet supports a flexible fragmentation of the XML database—any

subset of XML elements can be placed in any set of nodes. Figure 7.1 shows part of the

hierarchy used in IrisLog (described in Section 3.4.2) and a hypothetical fragmentation

of it among four nodes.

IrisNet supports two types of queries. A snapshot query asks for a subset of the

sensor data stored in the leaf elements of the tree. A query is routed to the nodes

holding the relevant XML elements. A typical query is routed top down the tree, with

query predicates being evaluated in intermediate elements of the tree (more details in

Chapter 3). In a continuous query sensor data from the leaf elements are continuously

pushed up the tree, and aggregate (derived) data are stored in the non-leaf elements of

7.1. Desiderata and Design Rationale 155

MIT

USA−West

Region

CMU

Harvard

Site Machine

MIT−3

MIT−1

PlanetLab USA USA−East MIT−2

Country

Non−USA

USA−Mid

The black solid circles denote XML elements. The database is fragmented and placed in
four nodes (shown as shaded).

Figure 7.1: Part of the XML database used by our IrisLog application.

the tree.

7.1 Desiderata and Design Rationale

We aim to make the storage layer highly available, despite large correlated failures caused

by catastrophes common in today’s Internet. We use standard techniques, e.g., data

replication, to tolerate such failures. We consider the following two types of correlated

failures, and want IrisNet to be available during and survive these failures.

• Crash-failures: These failures happen because of IrisNet nodes crashing (e.g., due

to attacks or software bugs) or being partitioned from the network. Such failures are

generally untargeted—they do not directly target the nodes in a particular replica

group. For example, suppose 10 of the 100 nodes on which IrisNet is deployed fail.

For untargeted failures, in any 10 nodes that IrisNet may have chosen to use as a

replica group, we will likely see 1 instead of 10 simultaneous failures. We expect

most system software or hardware failures to be untargeted as long as we choose

replicas randomly. Likewise, we expect most external attacks on IrisNet to result

in untargeted failures as long as we are able to conceal the membership of replica

groups.

• Overload-failures: These are the failures caused by IrisNet nodes getting highly

overloaded (e.g., due to a flash crowd) and therefore not being able to provide

the intended service (e.g., not returning query answer in a reasonable time). Such

156 Chapter 7. Design and Implementation of Data Storage in IrisNet

failures are generally targeted to the nodes in a particular replica group—a burst

of queries or updates involving some specific sensor data can overload all of its

replicas.

Standard techniques for tolerating crash-failures include replication along with auto-

matic regeneration, and those for tolerating overload-failures include dynamic load bal-

ancing. Below we present the general design space and the rationale behind the particular

solutions we adopt in the IrisNet design. Most of our design decisions are influenced by

the target domain of sensing applications.

7.1.1 Replication Design

Important replication design decisions include choosing the appropriate quorum systems,

replica count, and replica placement strategy. Being motivated by the design principle P4

in Chapter 6, we explicitly take correlated failures into account in making these decisions.

Quorum Systems

As shown in the previous chapter, systems with smaller quorums are more effective in

tolerating correlated failures (design principle P3). Strict quorum systems like majority

voting suffers from diminishing availability returns. This implies the tradeoff between a

system’s strong data consistency and its tolerance for large correlated failures.

We choose to favor the tolerance for correlated failures in this tradeoff, and decide

to use weak quorum systems in IrisNet. As we discussed in Chapter 1, most sensing

applications can tolerate occasional data inconsistency, either by reissuing queries or by

exploiting temporal or spatial correlation of sensor data. In contrast, at the cost of

this small inconsistency, IrisNet can significantly improve its availability in the presence

of catastrophic failures. Another advantage of using smaller quorums is reduced access

overhead—readers and writers need to contact fewer nodes for each read and write.

Of the two weak quorum systems we discussed in Section 2.2.2, we choose Signed Quo-

rum Systems (SQS) in IrisNet. We choose it for its smaller quorum sizes and simplicity.

Note that the previous work on SQS [Yu04] only focuses on its theory; correlated failures

were not considered and SQS were neither implemented nor studied in real systems. Our

design, implementation, and evaluation show its performance in a real system.

7.1. Desiderata and Design Rationale 157

Replica Count

The standard approach to determining the replica count necessary to provide a certain

availability target is to use mathematical analysis based on individual node availability.

Existing systems use either an independent failure assumption or a maximum failure

size (as in Glacier) in determining the necessary number of replicas. For example, given

the average failure probability of an individual node to be p, a quorum size m and a

target system availability A, the replica count n can be computed by solving the equation

A =
∑n

k=m

(
n
k

)
(1−p)kpn−k. However, as we have shown in the previous chapter, real-world

failures are correlated and correlated failures should be modelled via a distribution instead

of a maximum failure size (design principle P2). Therefore, we use a different approach

in IrisNet design. Our design explicitly quantifies and compares configurations (replica

count and quorum size) via online simulation with our correlation model (described in

Section 6.3) and chooses a configuration that achieves the target availability. As we have

shown in Chapter 6, configurations chosen based on our simulation closely achieve the

target availability.

Replica Placement

Many systems, including OceanStore and Phoenix, try to predict correlation pattern by

finding nodes with mutually independent failure properties and then place replicas on

these independent nodes with the hope of avoiding correlated failures. As we have shown

in the previous chapter, such techniques are not effective in an Internet-scale system

(design principle P1). We therefore do not use such techniques in IrisNet—each replica

in IrisNet is just a randomly chosen node.

7.1.2 Regeneration Design

The biggest challenge in automatic replica regeneration in a read-write system is to avoid

replica divergence due to false failure detection (recall the discussion in Section 2.2.3).

The standard trick to avoid this is to use a regeneration quorum system, independent of

the data access quorum system, to ensure that replicas agree on the membership of the

new replica group. Existing regeneration systems differ on their choice of such quorum

systems. For example, RAMBO [LS02] uses a majority quorum system—replicas must

coordinate (using the Paxos consensus protocol [Lam98]) with a majority of the existing

replicas to start regeneration. In contrast, Om [YV04] uses a randomized consensus

protocol and a witness model [Yu03] that achieves similar functionality as a quorum

158 Chapter 7. Design and Implementation of Data Storage in IrisNet

system. In the witness model, quorum intersection is not always guaranteed, but is

extremely likely. In return, a quorum in the witness model can be as small as a single

node and therefore Om provides better availability than RAMBO.

Despite Om’s improved availability, we adopt RAMBO’s design in IrisNet. The choice

is motivated by the following observations. First, regeneration is often not time sensitive;

it is necessary to regenerate only before the next failure hits. Therefore unavailability of

regeneration has a small effect on unavailability of data access. Second, since Om uses the

witness model for regeneration, there is a certain probability of replica divergence. Once

this happens, the system will remain inconsistent until the bad scenario (e.g., large-scale

network partition) goes away. No guarantee is provided on how long such a scenario

will last. We like to avoid such scenarios since we want to reduce human intervention

and data may be accessed (written or read) frequently in a sensing application. Finally,

since regeneration is rare (as rare as failures) compared to data access, improving the

performance of regeneration has little impact on the overall system performance.

Note that IrisNet’s use of weak data quorum systems and a strict regeneration quorum

systems presents a different design point than Om (that uses strict data and weak regen-

eration quorum systems) and RAMBO (that uses strict data and regeneration quorum

systems).

7.1.3 Load Balancing Design

To avoid overload-failures, an overloaded IrisNet node fragments its local database and

sends the fragments to a lightly loaded node (so that the overloaded node does not see the

queries and updates involving the transferred fragments). The design of IrisNet’s dynamic

load balancing algorithm is influenced by the data indexing and access characteristics of a

typical sensing system (and of IrisNet): 1) each node hosts a portion of the hierarchically

organized data, and 2) data is accessed in a top-down fashion (beginning with the starting

point OA for the query—recall Section 3.3.2), with query predicates being evaluated at

each level of the hierarchy. To efficiently process a query, it is desirable that it does not

traverse a large number of nodes in its top-down traversal of the tree, since the fixed

latency (and other overheads) of accessing the local database of each node adds up to

the end-to-end latency of the query. This motivates careful fragmentation and placement

strategies of hierarchically organized data such that a typical query needs to access a few

number of nodes. Our solution, called Post, achieves these requirements.

As we show later, finding an optimal solution for the formal fragmentation and place-

ment problem is NP-hard. To develop a practical solution, we make three simplifications.

7.2. Replication in IrisNet 159

First, we let each host partition its local database using efficient heuristics, instead of

using expensive optimal algorithms. Second, we let an overloaded host partition its lo-

cal database independently, based on its local load statistics. Finally, to mitigate the

suboptimal results of these local decisions, we use placement heuristics that aim to yield

“good” global clustering of data. When a node approaches overload, Post examines

the workload and identifies portions of the local database that should be offloaded to

other nodes. Compared to previous approaches [Luk74, SW03], Post exploits both the

hierarchical structure of the sensor database and the typical routing of user queries, in

order to make the complex fragmentation decisions efficiently.

In the rest of this chapter, we describe IrisNet’s replication design in Section 7.2,

regeneration design in Section 7.3, and load balancing design in Section 7.4. Finally, we

evaluate the designs in Section 7.5 by implementing them in IrisLog.

7.2 Replication in IrisNet

7.2.1 Replication Basics

For robustness, each object in the global database is replicated on multiple nodes. Each

such node is called a replica. Different from such a design, a few previous systems such as

SplitStream [CDK+03] achieve robustness using multiple trees. A simple analysis show

that replication at the node level achieves better availability than replication at the entire

tree level. Suppose we have n nodes in the tree and each one fails independently with a

probability p. Suppose, in our approach, we use k replicas for each of the n tree nodes.

The failure probability of the tree is roughly npk when p → 0. On the other hand, with

k different trees, the probability of not having any tree available is (np)k > npk.

A replica is a primary of a replica group if it believes that it has the smallest IP

among all live replicas in the replica group.1 Such belief is obtained using inaccurate

failure detection, and it is possible for one replica group to have multiple primaries.

On receiving a snapshot query, a node first reads from the read quorum of the relevant

elements. This provides consistent data on which the node can evaluate query predicates

to decide where to send subsequent subqueries. For continuous queries, a primary of

a replica group containing particular XML elements periodically (every 10 seconds in

IrisLog) pushes corresponding updates to the replica groups containing the parent XML

elements. A primary does not necessarily push updates upon every update in order to

1In our design, it is not necessary to use IPs for such ordering purpose. Any ordering among the
replicas suffices as long as all replicas agree on such ordering.

160 Chapter 7. Design and Implementation of Data Storage in IrisNet

control the traffic incurred. Otherwise if the XML elements on a replica group have

many children XML elements, the replica group will constantly receive updates from

below and try to push them upward. When the sensor has some critical data that needs

to be propagated promptly, we also allow the sensor to flag the update which will incur

immediate push.

A primary is also responsible for periodically evaluating user triggers installed at the

replica group. We choose the primary to do this in order to avoid unnecessary redundant

push traffic or trigger evaluation. The correctness of our system is not affected by multiple

primaries, since multiple push of the same data will be filtered by the upper level replica

group. While it is possible that a trigger is triggered multiple times, such a scenario is

provably unavoidable in a failure-prone environment (since it reduces to the Coordinated

Attack Problem [Lyn97]). This implies that IrisNet triggers are designed to be idempotent.

The above simple design would be sufficient if there were no failures. However, the

presence of failures and inaccurate failure detection in WANs makes this design unable

to ensure data consistency. We need to use quorum systems to ensure data consistency.

7.2.2 Providing Consistency

In IrisNet, our consistency model is to require any read that starts (in global physical

time) after a write finishes to observe that write. Note that we assume that all writes

commute and hence we do not serialize writes. This is motivated by our sensing context

where writes from the same sensor have version numbers or timestamps to indicate which

write to an element is fresher. On the other hand, writes from different sensors update

different data items and do not conflict.

For better tolerance against correlated failures, IrisNet uses SQS for data consistency.

The SQS construction in IrisNet is adopted from the optimal construction in [Yu04]: n

replicas are used, with quorum size m (a constant). A writer or reader probes the replicas

according to the same fixed order (e.g., an ordering based on the hash of IP addresses

and element names) until either m replicas are successfully accessed or all replicas have

been probed. In the former case, it can easily be proved that if the writer and reader do

not intersect, there are at least m mismatches. In the latter case, the replica group is

unavailable. The quorum size m can be tuned, and may be much smaller than n/2, as

used by majority voting systems. A larger m decreases the probability of stale reads but

increases unavailability. SQS also reduces the overhead of reads and writes, because they

must access only m replicas rather than a majority. Note that although the particular

SQS construction we use does not balance load within a single replica group (because

7.2. Replication in IrisNet 161

replicas are accessed in a specific order), an IrisNet node contains replica of multiple

objects. Thus, on average, load is evenly distributed among nodes.

At this point, it may appear strange why we use m smaller than n/2. With majority

voting, we can tolerate n/2 simultaneous failures before the system becomes unavailable,

while with only m fresh replicas, we can tolerate only m simultaneous failures before we

always have stale reads on that data. However, a critical point is that the probability

of n/2 simultaneous failures out of n nodes can be much larger than the probability of

m simultaneously failures out of m nodes. More specifically, when m = n/2, the former

probability is
(

n
n/2

)
(e.g., 252 when n = 10) times the latter probability. As discussed

above, the choice of m is an application-dependent trade-off: a smaller m achieves higher

availability while a larger m achieves fewer stale reads.

It is obvious that the above SQS construction improves availability because we now

need only m instead of n/2 available replicas. This becomes critically important in the

presence of highly correlated failures, because once n/2 replicas have failed, we are unable

to regenerate and must wait for nodes to recover. With majority voting, the replica group

is unavailable during this time, while with IrisNet, reads and writes can still proceed as

long as m ¿ n/2 remain available. A less obvious, but equally important advantage

is that each read and write now accesses only m replicas instead of n/2 replicas. In a

large-scale distributed system, sometimes the limiting factor on the number of replicas

is not whether there are sufficiently many nodes or sufficient disk space. For example, a

popular web object can be replicated in a large number of proxy caches, and the same is

true for a DNS entry. It is more likely that the overhead of reads and writes limits the

number of replicas. Because SQS potentially decouples read and write overhead from the

number of replicas, we are able to use a larger number of replicas than was previously

feasible.

We can now explain why a primary replica must read data from a read quorum before

it can push the data or evaluate any triggers or predicates. Suppose a replica group

has three replicas A, B and C, of which A is the primary and an SQS with m = 2 is

used. Imagine that this replica group is the parent of three sensors S1, S2 and S3 in

the tree. With SQS, suppose S1 updates A and B, S2 updates B and C (for it finds A

unreachable), and S3 updates A and C (for it finds B unreachable). Clearly, none of the

three replica sees all three updates. For A to either push the data upward or evaluation

a trigger (that potentially needs all three updates), A thus must first read from a SQS

quorum. This ensures that the latest data is pushed above the tree.

162 Chapter 7. Design and Implementation of Data Storage in IrisNet

7.2.3 Choosing SQS Parameters

Applications configure IrisNet by specifying an availability target, a bi-exponential failure

correlation model, as well as a cost function. IrisNet decides to use the appropriate

number of replicas n and quorum size m required to achieve the target availability.

The correlation model can be specified by saying that the deployment context is

“PlanetLab-like,” “WebServer-like,” or “RON-like.” In these cases, IrisNet will use one

of the three built-in failure correlation models from Chapter 6. We also intend to add more

built-in failure correlation models in the future. To provide more flexibility, IrisNet also

allows applications to directly specify the three tunable parameters in the bi-exponential

distribution. It is our long term goal to extend IrisNet to monitor failures in the deploy-

ment, and automatically adjust the correlation model if the initial specification is not

accurate.

The cost function is an application-defined function that specifies the overall cost

resulting from performance overhead and inconsistency (for read/write data). It takes

three inputs, m, n, and i (for inconsistency), and returns a cost value that the system

intends to minimize given that the availability target is satisfied. For example, a cost

function may bound the storage overhead (i.e., n/m) by returning a high cost if n/m

exceeds certain threshold. Similarly, the application can use the cost function to ensure

that not too many nodes need to be contacted to retrieve the data (i.e., bounding m).

We choose to leave the cost function to be completely application-specific because the

requirements from different applications can be dramatically different.

With the cost function and the correlation model, IrisNet uses online simulation to

determine the best values for m and n. It does so by exhaustively searching the parameter

space (with some practical caps on n and m), and picking the configuration that minimizes

the cost function while still achieving the availability target. The amount of inconsistency

(i) is predicted [Yu03,Yu04] based on the quorum size. Finally, this best configuration

is used to instantiate the system. Currently, IrisNet does not allow the configuration

to change on the fly. Our simulator takes around 7 seconds for each configuration (i.e.,

each pair of m and n values) on a single 2.6GHz Pentium 4; thus IrisNet can perform

a brute-force exhaustive search for 20,000 configurations (i.e., a cap of 200 for both n

and m, and m ≤ n) in about one and a half days. Many optimizations are possible to

further prune the search space. For example, if {n = 32,m = 16} does not reach the

target, then {n = 32,m = 17} replication can never reach the target either. Exploring

such optimizations is part of our future work. This exhaustive search is only performed

at system initialization time; its overhead does not affect system performance.

7.3. Regeneration in IrisNet 163

7.2.4 Improving Data Freshness in SQS

In this section we discuss two new techniques for reducing SQS’s data inconsistency: data

refresh and read auditing.

Transient node or network failures can cause data inconsistency in IrisNet. Consider

a scenario with 5 replicas: A, B, C, D, and E, and an SQS quorum size of 2. If A and B

are temporarily unavailable, data will be written to C and D. Later suppose C crashes

(or gets partitioned from the network) and A recovers. Now, to ensure consistency, we

need to refresh the object, so that A and D have fresh data and the reader can read

it. The original design [Yu04] of SQS targets scenarios where the read happens not

long after the write, so that the probability of such a scenario is negligible. In IrisNet

however, a user may pose a query long after the data is written by the sensor, and replica

failures/recoveries may result in a scenario where some of the first m replicas have stale

data. As a result, we need to monitor the status of the replicas so that we always try to

ensure the first m live replicas have the fresh data.2 Specifically, each live replica monitors

the preceding (according to the same order as used in SQS) live replica and ensures that

this replica’s data is at least as fresh. The very first live replica monitors the status of all

replicas in the replica group, and rewrites the data to the first m live replicas whenever

failures or recoveries occur. In IrisNet, these data refresh checks are performed every 30

seconds.

In addition, we observe that stale reads can often be detected later, when a replica

receives an update it previously missed. We incorporate into IrisNet a read auditing

and recall mechanism, which can be used to inform users when a stale read is detected.

To achieve this, each replica maintains the log of processed reads and corresponding

responses over the past 10 minutes. If the replica later receives an update (e.g., by the

data refresh mechanism) that would have affected a read, it notifies the corresponding

user. Stale reads will be detected as long as multiple mismatches do not last longer than

10 minutes and the replicas with the logs and the fresh data do not all crash within that

period.

7.3 Regeneration in IrisNet

The replica regeneration protocol in IrisNet is a simplified version of RAMBO’s proto-

col [LS02] with some small modifications. Below we provide a brief description, focusing

2Note that this refresh is fundamentally different from replica regeneration (in the next section) and
we do not need to invoke a consensus protocol.

164 Chapter 7. Design and Implementation of Data Storage in IrisNet

public class ReplicaGroup {
int sequenceNum;
Node[] replicas;
long TTL;

}
public class Token {

String objectID;
// List of replica groups sorted by sequenceNum
ReplicaGroup[] repGroupList;

}

Figure 7.2: A regeneration token.

on the differences between IrisNet and RAMBO.

The reads and writes in IrisNet use a much simplified protocol than RAMBO’s two-

phase protocol that serves to achieve linearizability [HW90] for reads and writes. Because

updates from sensors are all commutable, IrisNet does not attempt to serialize writes.

Thus in IrisNet, a read simply reads from a read quorum and a write writes to a write

quorum.

Regeneration is tricky in the face of false failure detection. For example, two replicas

may simultaneously believe the failure of each other and then regenerate independently.

This may result in two disjoint new replica groups for the same object. To avoid such

scenarios, as in RAMBO, the old replica group for an object uses the Paxos consensus

protocol [Lam98] to guarantee that the new replica group for that object is unique.

Whereas RAMBO had only one replica group system-wide, IrisNet has one replica group

per object because different objects may reside on different sets of nodes. Paxos requires

a majority of the old replica group to be up and to coordinate with each other. It is

important to note that this majority can be different from the quorum system we use

for data access. In IrisNet, data access uses the SQS approach discussed above, whereas

regeneration uses Paxos (which requires a majority). Because generally, m < n/2, there

are scenarios where the replica group is still available but it cannot regenerate.

After regeneration, care must be taken so that the old replica group is properly retired,

otherwise it is possible that a reader uses the old replica group while a writer uses the

new replica group. In RAMBO, old replica groups are explicitly garbage collected using

the data access quorums. Any later reads or writes will see such information from their

quorums, and thus realize that the replica group has expired.

In IrisNet, because we use SQS for accessing data and SQS does not always guarantee

7.3. Regeneration in IrisNet 165

intersection, directly adopting RAMBO’s design would potentially result in inconsistency

regarding whether a replica group has expired. Thus we use the following design that

utilizes loosely synchronized clocks on replicas. Every replica group, once established,

has a time-to-live (TTL) of one day in IrisNet. We use a token (Figure 7.2) to denote the

list of currently unexpired replica groups for a given object. A new token is created as

the result of the Paxos protocol by appending the new replica group at the end of the list.

The token is then published into IrisNet’s naming layer. A token is valid if its TTL for

the latest replica group has not expired. For a read-write to access the data, the reader or

writer must obtain a valid token and then access a quorum from every unexpired replica

group in the token. To ensure that there always exist valid tokens for an object, Paxos

is executed once every 12 hours even when there is no need for regeneration.

Requiring the reader or writer to access a quorum from all unexpired replica groups

may appear suboptimal. However, from a practical perspective, since regeneration occurs

only when there are failures, the list of unexpired replica groups is likely to be short.

Further, the different replica groups will have many replicas in common, so the cost of

accessing one quorum from k replica groups is likely to be much smaller than the cost of

accessing k disjoint quorums.

7.3.1 Replica Regeneration Optimizations

IrisNet is the first system that runs multiple concurrent instances (one for each failed

replica group) of the Paxos protocol in WAN. Since Paxos is a heavy-weight protocol

requiring coordination with a majority of the replicas in a replica group, concurrent

execution of many instances of Paxos raises several practical problems. We here describe

two major challenges.

Flooding Problem

After a large correlated failure, one instance of the Paxos protocol needs to be executed

for each of the objects that have lost at least one replica. For example, our IrisLog

application has 3530 objects storing PlanetLab sensor data, and each object has 7 replicas.

A failure of 42 out of 206 PlanetLab nodes has been observed to flood the system with

around 2,478 instances of Paxos. Due to the message complexity of Paxos, that many

instances incur excessive overhead and stall the entire system.

166 Chapter 7. Design and Implementation of Data Storage in IrisNet

Positive Feedback Problem

Determining whether a distant node has failed is often error-prone due to unpredictable

communication delays and losses. Regeneration activity after a correlated failure increases

the inaccuracy of failure detection due to the increased load placed on the network and

nodes. Unfortunately, inaccurate failure detections trigger more regeneration which, in

turn, results in greater inaccuracy. This positive feedback loop can easily crash the entire

system.

To address these two problems, we design and implement the following two optimiza-

tions.

Opportunistic Paxos-Merging

One way to avoid the flooding problem would be to group the objects residing on exactly

the same set of nodes into clusters and use one replica group per cluster. Then we could

reduce the number of Paxos instances by invoking one Paxos for each cluster instead

of for individual objects. However, it may be necessary to split and merge clusters for

balancing load among nodes (details in the next section). The clustering needs to be

dynamic such that when a cluster grows too large for some overloaded node, it can split

the cluster into smaller clusters and shed load by transferring a cluster to another suitable

node where it may get merged with other clusters. However, since Paxos is run in the

granularity of clusters, the following invariant is required to guarantee the correctness

of the regeneration: an object can not be part of more than one clusters. This in turn

implies that a consensus needs to be run (e.g., by invoking Paxos) among the relevant

nodes before every merge/split operation such that they all can synchronously do the

same operation, introducing significant complexity into the already intricate RAMBO

protocol.

To avoid these overheads, IrisNet instead uses opportunistic Paxos-merging. Paxos is

still invoked for individual objects. However, if multiple such objects happen to reside on

the same set of replicas, the regeneration module merges all the related Paxos invocations

into one. The difference from the above clustering approach is that replica groups are

maintained in the granularity of individual objects, and only the Paxos invocations are

merged lazily, if possible. This avoids the need to maintain consistent split and merge

operations on clusters and lets each node independently take load balancing decisions.

This approach is particularly effective in the context of our fragmentation algorithm (see

Section 7.4), which tends to place two objects either on exactly the same set of replicas

or on completely disjoint sets of replicas.

7.4. Load Balancing in IrisNet 167

Paxos Admission-Control

To avoid the positive feedback problem, we use a simple admission control mechanism on

each node to control its CPU and network overhead, and to avoid excessive false failure

detections. Specifically, each node, before initiating a Paxos, samples (by piggybacking on

the periodic ping messages) the number of ongoing Paxos instances on the relevant nodes.

Paxos is initiated only if the average and the maximum number of ongoing Paxos instances

are below some thresholds (2 and 5, respectively, in our current IrisLog deployment).

Otherwise, the node queues the Paxos and backs off for a small random time before

trying again. With admission control, a Paxos invocation may be delayed. Right before

a delayed Paxos is started, IrisNet rechecks whether regeneration is still necessary (i.e.,

whether there are still failures in the replica group). This helps to further improve failure

detection accuracy, and also avoids regeneration when the failed replicas have already

recovered.

7.4 Load Balancing in IrisNet

The replication and regeneration design described so far is the most effective to cope with

crash-failures. Another important source of correlated failures in IrisNet is simultaneous

overload of nodes due to query or update bursts. In this section, we describe how IrisNet

uses load-shedding to guard against such overload-failures. We focus on CPU overload

and network overload in our discussion, though our techniques can be applied to other

resources.

At a high level, an overloaded IrisNet node sheds load by transferring portions of its

local database to lightly-loaded nodes. This help reducing load in two ways. First, the

local database access overhead, which is roughly proportional to the local database size,3

is reduced. Second, the overloaded node no longer sees the queries and updates involving

the transferred portion of the local database. The whole load-balancing process involves

answering the following questions:

• Reaction: When should a node start shedding load?

• Selection: Which set of objects does the overloaded node transfer to other nodes?

3Current XML database engines [Apa01, Bel03] use the Document Object Model (DOM) that pro-
cesses queries and updates in-memory. An update, for example, requires first reading the entire XML
document and building an in-memory tree structure. After the update is applied to the tree, it is then
converted to an XML document and written to disk. The whole operation takes time roughly propor-
tional to the size of the XML document. We anticipate that future XML database engines will not suffer
from this limitation.

168 Chapter 7. Design and Implementation of Data Storage in IrisNet

• Placement: Where are the transferred object’s placed?

As we will show, the constraints posed by IrisNet’s hierarchical data indexing and

query processing make answers to the above questions, particularly the last two, non-

trivial. In the rest of the section, we elaborate on these components. A more detailed

description can be found in [NGS05].

7.4.1 Reaction

Each node in IrisNet maintains exponentially weighted moving averages (EWMA) of the

rates of queries and updates to each object in its database. Each node is configured with

two thresholds, given in terms of the rates of queries and updates it can support without

severely degrading the quality of service. An overloaded node starts load shedding when

the load is above a high-watermark threshold until the load goes below a low-watermark

threshold. Such use of two thresholds provides stability to the load balancing process.

7.4.2 Selection

To minimize CPU and network overhead for processing queries and updates, the objects

transferred from a local database must be carefully chosen. A query requires accessing a

set of XML elements in a given (partial) order, in order to properly evaluate the predicates

and wildcards in the query. For most queries, this is a top-down order in which parent

elements are accessed before their child elements. For example, in Figure 7.1, a query on

all the MIT data requires first accessing the MIT element and then accessing its children

elements (MIT-1, MIT-2, and MIT-3). Now, if the node containing all the MIT data

(i.e., the rightmost shaded node) transfers its MIT element, the same query will generate

three new subqueries, one for each child element, sent on the network and therefore three

additional database accesses.4 On the other hand, if the MIT-1 element is transferred

instead, that will result in only one new subquery and one more database access.

The Problem

More formally, the local database fragmentation problem can be stated as follows: Given

the global database, replica count of each object, the nodes where data can be placed, and

the capacities (storage and load) of the nodes, adapt to the dynamic workload by deter-

mining in an online fashion (1) the fragments of the global database, possibly overlapping,

4Each subquery results in one independent database access. With replication, these numbers are
multiplied by the quorum size.

7.4. Load Balancing in IrisNet 169

to be placed at different nodes, and (2) the assignments of these fragments to the nodes

such that the capacity of each node is respected, the replica count is maintained for each

object, the average query latency is low, and the wide-area traffic is low.

Since the global database can be modelled as a tree, selecting fragments and assigning

fragments can be abstracted as a graph partitioning problem and a graph embedding

problem respectively. Because of the complex data access patterns of sensing applications,

the fixed capacities of individual nodes, and dynamic read-write workloads, the problem

is nontrivial. Even dramatically simplified versions of this problem are NP-hard. For

example, even when there is an unbounded number of nodes, all nodes have the same

capacity C, all pairs of nodes have the same latency, the query workload is known, and

there are no database writes, the problem of fragmenting a global database into a set

of fragments of size at most C, such that the average query latency is below a given

threshold, is NP-hard.5 Likewise, the simplified problem of assigning a collection of

fragments to a set of available nodes, such that either the average network latency or the

wide area traffic is below a given threshold, is NP-hard.6

The Post Fragmentation Algorithm

Many approximation algorithms have been proposed for graph partitioning and graph

embedding problems (e.g., in the VLSI circuit optimization literature [KK98, SW03]).

None of these proposed solutions address the complex problem we consider. However,

we get the following two (intuitive) insights from the existing approximation algorithms,

which we use in IrisNet. First, the optimal partitions are highly-connected clusters. If,

as in our case, the given graph is a tree, each partition is a subtree of the graph. Second,

if the edges are weighted (in our case, the weights reflect the frequency in which a hop

in the object hierarchy is taken during query routing), and the objective is to minimize

the cost of the edges between partitions, most of the highly-weighted edges are within

partitions.

To develop a practical solution, we make two simplifications. First, we permit each

node to fragment its local database independently, based on its local load statistics.

This may result in suboptimal global fragmentation, but our placement heuristics (Sec-

tion 7.4.3) try to offset this negative effect and our evaluation shows that the final frag-

mentation produced by our local algorithm is reasonably good. Second, we use heuristics

to reduce the computational overhead of local fragmentation. The goal is to partition the

local database (represented as a tree) to minimize the wide-area traffic and to make local

5Can be shown by a reduction from the Knapsack Problem.
6Can be shown by a reduction from the Hamiltonian Path Problem.

170 Chapter 7. Design and Implementation of Data Storage in IrisNet

105
10

15 15 2525

GE

GI

T 1
T 2

55

10

10

15 5

GI represents the local XML fragment of the node and GE is a set of XML elements on
other nodes. The edges and nodes are labelled with the load on the corresponding edge.
The circles labelled T1 and T2 represent two partitions of size 3.

Figure 7.3: The workload graph of a node.

load below a threshold. However, previous tree partitioning algorithms [Luk74, SW03]

tend to incur high computational costs with their O(n3) (n = number of objects) com-

plexity, and hence prevent a node from shedding load promptly. With a 3 GHz machine

with 1 GB RAM, the algorithms in [Luk74,SW03] take over an hour to partition a frag-

ment with 1000 objects. Such excessive computational overhead would prevent IrisNet

from shedding load in a prompt fashion. On the other hand, trivial algorithms (e.g.,

the greedy algorithm in Section 7.5.5) do not yield “good” fragmentation. To address

this limitation, we exploit properties of typical query workloads to devise heuristics that

provide near optimal fragmentation with O(n) complexity. We call our algorithm Post

(Partitioning into Optimal SubTrees). As a comparison, under the same experimental

setup used with the previously mentioned optimal algorithms, Post computes the result

in a few seconds. Below we describe the algorithm.

We use the following terminology in our discussion. For a given node, let GI denote

the set of (Internal) objects in the local database, and GE denote the set of non-local

(External) objects and the set of query sources. Define the workload graph (Figure 7.3)

to be a DAG where the nodes are the union of GI and GE, and the edges are pointers

connecting parent objects to child objects in the XML database and sources to objects.

Under a given workload, an edge in the workload graph has a weight corresponding to

the rate of queries along that edge. The weight of a node in GI is defined as the sum of

the weights of all its incoming edges (corresponding to its query load) and the weights of

all its outgoing edges to nodes in GE (corresponding to its message load).

For any set T of objects within GI , we define T ’s cost to be the sum of the weights of

7.4. Load Balancing in IrisNet 171

nodes in T . The cutinternal of T is the total weight of the edges coming from some node

in GI to some node in T , and it corresponds to the additional communication overhead

incurred if T were transferred. The cutexternal is the total weight of the edges coming from

some node in GE to some node in T , and it corresponds to the reduction of load on the

node if T were transferred. In Figure 7.3, the cutinternal of T1 is 10, while the cutexternal

is 15.

The node passes a constant C to Post to indicate the maximal cost T may have.

The value of C is determined by the extra load that other nodes may take. Post tries to

find a “good” T under such constraints. Intuitively, we may want to minimize cutinternal

(achieved by T2 in Figure 7.3) so that it introduces the minimum number of additional

subqueries or maximize cutexternal (achieved by T1 in Figure 7.3) so that it is the most

effective in reducing external load.

To design an efficient fragmentation algorithm in IrisNet, we exploit the following

important characteristics in the workload: A typical monitoring query in a hierarchical

database accesses all objects in a complete subtree of the tree represented by the monitoring

database, and IrisNet routes the query directly to the root of the subtree. This observation

is well supported by the real IrisLog query trace (more details in Section 7.5.5), which

shows that > 99% of user requests select a complete subtree from the global database.

Moreover, users make query on all the levels in the hierarchy, with some levels more

popular than the others. Under such access patterns, the optimal T is typically a subtree.

The reason is that transferring only part of a subtree T from a node N1 to another node

N2 may imply that a top-down query accesses objects in N1 (the top of T) then in N2 (the

middle of T) and then back in N1 (the bottom of T), resulting in a suboptimal solution.

The above observation enables Post to restrict the search space and run in linear

time. Post sequentially scans through all the nodes of the workload graph, and for each

node it considers the whole subtree rooted at it. For all the subtrees with cost smaller

than the given capacity C, it outputs the one with the optimal objective. The search

space is further decreased by scanning the nodes in the workload-graph in a bottom-up

fashion, thus considering the lower cost subtrees near the leaves before the higher cost

subtrees further up the tree. As mentioned before, in typical settings, Post takes a

few seconds to run. Yet, as we will show in Section 7.5.5, the quality of the resulting

fragmentation in practice is very close to that of the O(n3) optimal algorithms that take

tens of minutes to run.

Finally, we note that each time Post decides to transfer a fragment T from the

overloaded node to a lightly-loaded node, it must coordinate with all the relevant replicas.

Specifically, for each object in T , a consensus protocol must be run among the replicas

172 Chapter 7. Design and Implementation of Data Storage in IrisNet

for that object, in order to drop the old node from the replica group and add the new

node.

7.4.3 Placement

The simplest approach to place a fragment it to select a random node capable of taking

the extra load. For better performance, we use two heuristics that exploit IrisNet’s query

and data source characteristics to improve the overall performance.

Our first heuristic uses our previous observation that subtrees of the global database

should be kept as clustered as possible. Therefore, IrisNet first considers the neighboring

nodes as possible destinations for a fragment. A node N1 is a neighbor of fragment f if

N1 owns an object that is a parent or child of some object in f . Thus, a node N2, trying

to split or replicate a fragment f , first sees if any of the neighboring nodes of f can take

the extra load. If such a node N1 is found, the fragment is sent to it. If more than one

neighboring nodes are capable of taking the extra load, then the one having the highest

adjacency score is chosen. The adjacency score of a node N1 with respect to the fragment

f is the total weight of the edges from any object in f to any object in N1. This heuristic

helps maintaining large clusters throughout the system.

When no neighboring node is found, IrisNet’s second heuristic searches for any node

which is capable of taking the extra load of the fragment f to transfer and is the closest

to the optimal location. The optimal location for an object is the weighted mid-point of

its read and write sources. We account for the location of sources using the GNP [NZ02]

network mapping system. Specifically, each IrisNet node has corresponding GNP coordi-

nates and the cartesian distance between hosts is used to estimate the latency between

them. If the read and write loads of an object are R and W , and the average read and

write source location coordinates are GNPread and GNPwrite, then the optimal location

is given by GNPopt = (R ·GNPread + W ·GNPwrite)/(R + W). The optimal location of a

fragment is the average of the optimal locations of all the objects in the fragment. This

heuristic tends to place objects near the sources of reads and writes.

7.4.4 A Simple Run

We illustrate a simple run of IrisNet’s load balancing in Figure 7.4. Rectangular boxes

represent nodes and the trees represent their local databases. Initially the global database

is placed at one node (1), which experiences high read and write load. To shed write load

the node then determines two fragments (one containing object 5 and the other containing

objects 3 and 6) for splitting. The fragments are then placed at newly-discovered nodes

7.5. Evaluation 173

���
�

���
�
������
������
���

������
������
���

������
������
���

������
������
���

	�		�	
	�		�	
	�		�	

�

�

�

�

�

�

������
������
���

������
������
���

1

2
3

54
6

1

�
�

���
�

3

6��
��
�

2

���
�

���
�

���
�

2

4 5

1

���
�

���
�

�������������������������

������
������
���

���
�

 !
!

""#
#

$$%
%

&&'
'

(()
)

*�**�*
*�**�*
�

+�++�+
+�++�+
+�+

,�,,�,
,�,,�,
,�,,�,

-�--�-
-�--�-
-�--�-

1

3

6

2

5

3

4

.�..�.
.�..�.
.�.

/�//�/
/�//�/
/�/

001
1

223
3

445
5

Figure 7.4: A simple adaptive data placement scenario.

near the write sources (2). To shed read load, it then determines two more fragments

and places them in nodes already owning objects adjacent to the fragments (3).

7.4.5 Related Work

The general load balancing problem involves fragmentation—dynamically replicating and

partitioning the contents of nodes, and placement—allocating the replica/partitions on

available nodes. These problems have been extensively studied by the theory community

(see [DF82] for a survey). The general problem has been found to be NP-Hard [WM91].

Practical approximate solutions for this problem can be categorized into two classes. The

offline solutions assume that the complete workload, set of nodes, and their capacities are

known a priori. Such solutions have been proposed in the context of theory [KDW01], dis-

tributed databases [Ape88,KP97,LY80], read-only content distribution networks [KR01],

the Web [QPV01], etc. The online solutions dynamically replicate/partition and place

data on available nodes as the workload is applied. Such solutions have been proposed

in the context of theory [ABF93,WJH97], distributed databases [BLS95, SAS+96b], file

systems [SKKM02], general storage systems [LA00], etc.

In [NGS05], we have provided a more comprehensive list of related work and shown

that the overall load balancing problem is significantly more complex for a typical sensing

system. The complexity comes from its data source characteristics (e.g., write-intensive

data) and query characteristics (e.g., hierarchical in-network aggregation). As we have

shown in [NGS05], existing solutions are not very effective in the context of sensing

systems.

7.5 Evaluation

In this section, we evaluate the techniques presented in this chapter to answer the fol-

lowing questions.

174 Chapter 7. Design and Implementation of Data Storage in IrisNet

• How well does IrisNet react to a single large (untargeted) crash-failure?

• How well does our implementation perform in a real deployment?

• What is the long-term availability of IrisNet?

• How much inconsistency does IrisNet experience because of its use of SQS?

• How effective is Post in tolerating correlated overload-failures?

We use a real deployment of IrisLog, an IrisNet application, to answer the first two

questions. Our experiments use IrisLog deployed on 200+ PlanetLab nodes. The last

three questions are answered by using a combination of PlanetLab deployment, emulation,

and simulation with real-world traces and failure models.

Throughout our evaluation, we use IrisLog(m) as the legend for IrisLog with a

quorum size of m. Unless otherwise stated, we use 7 replicas for each object. In some

experiments, we compare IrisLog with a hypothetical application Majority that uses

majority quorum systems with the same number of replicas as IrisLog. Some of our

experiments are based on replaying PL trace (the PlanetLab failure trace described in

Chapter 6) in either a PlanetLab or an EmuLab [Flu05] deployment of IrisLog. To replay

a long trace in a reasonable amount of time, we speed up the replay by compressing the

timescale of the trace. Namely, for two events that are t time apart such that t > t′,

where t′ is the time needed for the system to stabilize, we replay the events time t′ apart.

7.5.1 Individual Crash-Failures

We here present IrisNet’s behavior (in terms of availability, regeneration overhead, etc.)

just after a single large failure. We use the event on 3/28/2004 that caused 42 out of the

206 live PlanetLab nodes to crash in a short period of time (an event found by analyzing

PL trace). We replay this event by deploying IrisLog on 206 PlanetLab nodes and

then killing the IrisLog process on 42 random nodes.7 The assignment of objects to

nodes are based on running Post against the real IrisLog query trace (described in

Section 7.5.5). Our IrisLog deployment on PlanetLab has 3530 objects representing

different sensor data collected from different PlanetLab nodes. In steady state, each of

these objects has 7 replicas.

7At the time of this experiment, a total of 218 PlanetLab nodes were up and we randomly chose 204
of them. Note that these are not the same set of nodes available during the original failure event we
emulate.

7.5. Evaluation 175

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 200 400 600 800 1000

A
vg

 #
R

ep
lic

a

Time (sec)

Optimized
No AC

No AC and no PM

In this experiment, we inject a large failure at time=100 in our PlanetLab deployment of
IrisNet. After that, replica groups start automatic regeneration. The graphs shows that
the regeneration process does not converge without our optimizations.

Figure 7.5: Average number of replicas per object during the regeneration
after a large failure in PlanetLab. (AC = Admission-Control, PM = Paxos-
Merging.)

Effectiveness of Paxos Optimizations

Figure 7.5 plots the average number of replicas per object and shows how the system

gradually regenerates failed replicas after the failure at time = 100s. Before the failure,

the average number of replica is 7. The failure causes the failed nodes to lose the replicas

they store, and so the average number of replicas suddenly decreases to 5.8. In particular,

the failure affects 2478 of the replica groups. We can easily see that without Paxos

admission-control or opportunistic Paxos-merging, the system enters a vicious cycle of

regeneration → overload → false failure detection → more regeneration, the regeneration

process does not converge, and the average number of replicas actually drops.

Paxos-merging reduces the total number of Paxos invocations from 2478 to 233, while

admission-control helps the regeneration process to converge. Note that the average

number of replicas does not reach 7 even at the end of the experiment because some

replica groups (total 140) lose a majority and cannot regenerate. Moreover, the positive

feedback effect still appears in our experiment which explains the fact that the average

number of replicas occasionally drops slightly (e.g., at time = 420). In particular, we

noticed 19 unnecessary regenerations (due to inaccurate failure detection), which can

be reduced by tuning the admission control parameter as a tradeoff with the overall

convergence time.

176 Chapter 7. Design and Implementation of Data Storage in IrisNet

Table 7.2: Breakdown of the average regeneration time.
Task Time (sec)

Paxos 7.28
Data copy 14.28

Total 21.57

 0.001
 0.01
 0.1

 1
 10

 100
 1000

 10000

 0 200 400 600 800 1000

B
an

dw
id

th
 (

K
B

/s
ec

)

Time (sec)

Maximum
Average

Figure 7.6: Bandwidth consumption during the regeneration after a large
failure in PlanetLab.

Paxos Overhead

Table 7.2 breaks down the time required by different phases of the regeneration pro-

cess. A single regeneration takes around 21.6 seconds on average which is dominated by

the time for data transfer (14.3 seconds) and Paxos (7.3 seconds). The time for data

transfer is determined by the amount of data and can be much larger. The convergence

time of around 12 minutes is largely determined by the parameters of the admission con-

trol mechanism and may be further improved. However, regeneration is typically not a

time-sensitive task, because we only need to finish regeneration before the next failure

hits. Our simulation study based on PL trace shows that 12-minute regeneration time

achieves almost identical availability as say, 1-minute regeneration time. Thus we believe

IrisLog’s regeneration mechanism is adequately efficient.

Figure 7.6 shows the bandwidth used during regeneration. We observe that on average,

each node only consumes about 3KB/sec bandwidth, out of which 2.8KB/sec is used to

perform necessary regeneration (including data transfer), 0.27KB/sec for unnecessary

regeneration (caused by false failure detection), and 0.0083KB/sec for failure detection

(pinging) (Table 7.3). The worst-case peak for an individual node may reach 100KB/sec,

which is however still sustainable with even home DSL links.

7.5. Evaluation 177

Table 7.3: Breakdown of the bandwidth usage during the regeneration phase
(time = 100 to 720 in Figure 7.6).

Task BW per node (KB/sec)
Periodic Ping 0.0083

Necessary Regeneration 2.8176
Unnecessary Regeneration 0.2672

 0.001

 0.01

 0.1

 100 1000 10000 100000 1e+06F
ra

c.
 U

na
va

ila
bl

e
O

bj
ec

ts

Time (sec)

Majority
IrisLog(2)

Figure 7.7: Fraction of unavailable objects after a large failure in PlanetLab

Availability

Figure 7.7 shows the fraction of unavailable objects (not having live quorums) in Iris-

Log(2) and Majority. IrisLog has fewer unavailable objects than Majority because

of its smaller quorum size. Note that regeneration only helps to restore the replica num-

ber for available objects (to guard against additional failures). For an unavailable object

to become available, some failed replica of that object needs to recover so that Paxos

may regain a majority. To demonstrate the effect, we replay PL trace for around 6 more

days after the failure. As shown, the first such recovery happens at around 20000 sec-

onds. The availability increases with time as more and more nodes come up. However,

IrisLog is affected less by the failure, it offers 100% availability long (around five days)

before Majority does.

To further understand the robustness of IrisLog under large correlated failure events,

Figure 7.8 plots how Majority and IrisLog are affected by a number of large correlated

failures in PlanetLab. These failures are caused by several reasons including DoS attacks

(e.g., on 12/17/03), software bugs and maintenance purposes (e.g., on 3/17/04), node

overloads (e.g., on 5/14/04), etc. As shown in the graph, in all cases, the total number

of unavailable objects in Majority is at least one order of magnitude larger than that

178 Chapter 7. Design and Implementation of Data Storage in IrisNet

12/17/03
(58/202)

3/17/04
(41/198)

3/28/04
(42/206)

5/14/04
(39/226)

6/10/04
(43/218)

1e-4

1e-3

1e-2

1e-1

F
ra

c.
 U

na
va

ila
bl

e
O

bj
ec

ts

Majority
IrisLog(2)

The x-axis shows the dates of the events and the corresponding (number of nodes died)
/ (total live nodes before the failure). For example, just before the failure event on
12/17/2003, 202 PlanetLab nodes were alive of which 58 died because of the event.

Figure 7.8: Availability of Majority and IrisLog, under several large corre-
lated failure events of PL trace.

in IrisLog.

7.5.2 IrisLog in the Wild

To demonstrate the robustness of our design and implementation in a harsh deployment

environment, we here report IrisLog’s availability over a 15-hour period, 2 days before

the SOSP 2005 conference deadline (03/25/2005). This was one of the busiest periods of

PlanetLab, with many researchers running their experiments on it to meet the conference

deadline. Nodes were highly overloaded and many of the live nodes appeared to be dead

to IrisLog users (because the nodes failed to respond within a reasonable time). Note

that this is an unusually high failure-prone period; PlanetLab is relatively more stable

during other times. We intentionally chose this harsh period because this enabled us to

experience many failures in a short period of time. Moreover, this will test IrisLog’s

resiliency in the wild.

At the beginning of this experiment, IrisLog was running on around 200 nodes.

During the experiment, we issued one query every five minutes. Each query involved all

the objects stored in IrisLog’s distributed database. Some queries failed to access some

of the nodes, because either the nodes had crashed/partitioned or were so overloaded

that subqueries timed out before receiving the expected data. We use 15 seconds as the

timeout period. We compare IrisLog(2) and Majority, and each query returned the

number of IrisLog objects accessible by these two schemes.

7.5. Evaluation 179

 1

 0.9

 0.8

 0.7
 900 600 300 0

 1

 0.9

 0.8

 0.7

Q
ue

ry
 A

va
ila

bi
lit

y

A
va

ila
bl

e
no

de
s

Time (Minutes after 03/23/2005 2pm EST)

IrisLog(2) avalibality
Majority avalibality

Available nodes

This graph shows the availability of IrisLog deployed on PlanetLab, during a period when
PlanetLab was excessively being used by users. It also shows the number of nodes acces-
sible within a timeout period at different times. Query availability denotes the fraction of
relevant objects returned by a query.

Figure 7.9: Availability of IrisNet in the wild.

Figure 7.9 shows the fraction of available (i.e., accessible by IrisLog subqueries)

nodes and the fraction of available (i.e., with accessible quorums) objects under Iris-

Log(2) and Majority. We observed two reasonably large correlated failures in this 15

hours period (≈ 45 nodes after ≈ 1 hour and ≈ 25 nodes after ≈ 10 hours failed in short

time). IrisLog(2) could tolerate these failures well, as shown by very small degradation

of its availability. In contrast, Majority performs poorly in tolerating such failures.

The experiment also shows that IrisLog was relatively stable during this period, and

could regenerate and balance load automatically as evidenced by its high availability.

Note that, according to PL trace, IrisLog(2) is configured to achieve around 99.9%

availability. Although the instantaneous availability, as shown in this graph, sometimes

goes as low as 98%, the long term availability (i.e., averaged over time) reaches the target

99.9%. This is evidenced by our availability measurement over a two-month long period;

Figure 7.9 represents a subset of this entire period.

7.5.3 Long-Term Availability under Crash-Failures

This section studies IrisNet’s availability dynamics over a long period of time (much

longer than the period considered in Section 7.5.2) as nodes in the system continuously

fail and recover.

180 Chapter 7. Design and Implementation of Data Storage in IrisNet

Methodology

Our basic methodology for such evaluation is to replay a stream of failure and recovery

events, based on either PL trace or the correlation model. However, doing this in a real

system is tricky. The fundamental stumbling block is the requirement of exposing the

system to a significantly, potentially a year or more, long (real or synthetic) failure trace

capturing a reasonable distribution of different types of failures. This is necessary since

failures, specially big failures that cause most of the unavailability, are rare events and

only a long failure trace can capture most of them to provide a better confidence in long-

term availability. For example, a system with slightly less than three nines of availability

may have only two five-hour long failure events in a one-year period. A trace spanning

few months may miss these events and show the system availability to be 1, a significant

over-estimation.

The requirement of replaying long failure traces in real systems introduces two diffi-

culties. First, evaluation takes a long time. Compressing the time scale of failure traces

does not help much—even with a compression factor of 100, a one-year long trace would

require several days to replay. Worse, in practice, such a large compression factor is not

feasible since the system must be given enough time to stabilize before injecting two suc-

cessive events in the compressed trace. Second, if a real testbed is used for such a long

evaluation period, it is not trivial to isolate the effects of the experiment from the effects

of the (unpredictable) failures on the testbed during the experiments.

However, we conjecture that an event-driven simulator can avoid the above problems

and can evaluate the availability of a replicated system like IrisNet with reasonable ac-

curacy. This is supported by our results in the previous section: network bandwidth and

latency do not seem to be limiting factors for system availability, because each node on

average consumes only 3KB/sec bandwidth during regeneration and network latency is

orders of magnitude lower than regeneration time. This means, the simulation results for

Erasure(2, 7) presented in the previous chapter represent the long term availability of

IrisNet.

We therefore validate the simulator (and thus the simulation results of Erasure(2, 7)

representing IrisNet) we used in the previous chapter. To show that our simulation results

match with the results obtained from the real deployment of IrisNet, we take the following

steps.

• First, we deploy IrisLog on PlanetLab and measure its long-term availability. The

real system constraints limit us to use only a small part of PL trace. Even after

compressing the timescale of the trace, replaying a 6-days long trace in PlanetLab

7.5. Evaluation 181

takes almost 12 hours.

• Then, we deploy IrisLog in EmuLab. Unlike PlanetLab, the EmuLab nodes com-

municate over a LAN, which provides much lower latency and higher bandwidth.

This lets us replay a longer trace, including the part replayed in PlanetLab. By

compressing timescale, we can replay a 30-days portion of the trace in 1 days.

• Finally, we replay the whole PL trace over the event-driven simulator we used in

Chapter 6 to compute the long term availability. The simple simulator, written

in Java, models only node failures and recoveries, and ignores processing speed,

bandwidth, etc. of the nodes.

We now show that results from each step match fairly well with the next step, con-

firming that our simulation results of Erasure(2, 7) in Chapter 6 represent IrisNet’s

availability in real world.

PlanetLab vs. EmuLab Results

To validate EmuLab experiments, we replay the same 7-day-long portion of PL trace

on both PlanetLab and EmuLab deployments of IrisLog. This validation is performed

using two different configurations: 7 replicas with a quorum size of 4 (majority voting),

and 7 replicas with a quorum size of 2 (SQS). Figure 7.10 plots the fraction of unavailable

objects as measured in the two testbeds. Notice that the two curves from the EmuLab

emulation almost exactly match the two curves from the PlanetLab deployment. We also

inject the same big failures shown in Figure 7.8 in both the deployments, and find the

results to be exactly the same for both of them. These results are not surprising since as

shown in the previous section, each node on average consumes only 3KB/sec bandwidth

during regeneration, and network latency is orders of magnitude lower than regeneration

time. As a result, network bandwidth and latency do not tend to significantly impact

system availability. Therefore, the emulation results closely match the results from a real

deployment of IrisNet.

Emulation vs. Simulation Results

Next, to validate our simulation results, we replay the same 30-day-long portion of

PL trace on EmuLab and in our simulator. Figure 7.11 plots the unavailability ob-

served from EmuLab experiments and from simulation. As we can see, the results from

simulation match the emulation results nicely. These results are also expected since in

our context, availability is minimally impacted by factors such as machine speed, latency,

182 Chapter 7. Design and Implementation of Data Storage in IrisNet

 0.001

 0.01

 0.1

 0 20 40 60 80 100 120 140F
ra

c.
 U

na
va

ila
bl

e
O

bj
ec

ts

Time (Hours)

PlanetLab(4,7)
EmuLab(4,7)

PlanetLab(2,7)
EmuLab(2,7)

In this experiment, we replay the same 7-day-long portion of PL trace in a PlanetLab
deployment and an EmuLab deployment of IrisLog. The legend PlanetLab(m,n) (or,
EmuLab(m,n)) represents IrisLog running on PlanetLab (or in EmuLab, respectively)
with a configuration where each object has n replicas and the quorum size is m. The
corresponding points from the PlanetLab and the EmuLab experiments fall on top of each
other. This implies that the EmuLab results closely match the results obtained from the
real PlanetLab deployment.

Figure 7.10: Validation of EmuLab results against PlanetLab results.

and bandwidth. Thus, the simulation results presented in Chapter 6 closely match with

the results found from our emulation (and hence the real deployment).

7.5.4 Inconsistency from SQS

So far we have shown that IrisNet’s use of SQS makes it more available than traditional

systems (e.g., those using majority quorum systems). However, the benefit comes at the

cost of small inconsistency (probability of stale reads), due to the smaller quorums used

by SQS. In this section, we experimentally quantify the inconsistency.

There are two causes of inconsistency in an IrisNet application (or, in any SQS-based

system). First, because of network failures, a reader may not be able to read from the

nodes updated by the sensors. Such inconsistency would persist as long as the reader and

the sensors remain partitioned. Second, after a transient node failure, scenarios like the

one mentioned in Section 7.2.4 can arise and readers can get stale data. The probability

of such inconsistency depends on the refresh rate by the sensors. In IrisNet, data is

refreshed every 30 seconds.

To quantify the effects of these two causes, we conduct the following trace-driven

simulation with varying quorum sizes. First, we consider only network failures. The

7.5. Evaluation 183

 1
 0.1

 0.01
 0.001

 0.0001
 1e-05

 0 5 10 15 20 25 30 35

U
na

va
ila

bi
lit

y

Replicas

Majority:Emulation
Majority:Simulation

IrisLog(2):Emulation
IrisLog(2):Simulation

In this experiment, we replay the same 30-day-long portion of PL trace in our custom
event-driven IrisLog simulator and in our EmuLab deployment of IrisLog. The legend
IrisLog(m) represents a configuration where each object has 7 replicas and the quo-
rum size is m. The graph shows that results from these two experiments match closely,
validating our simulation results.

Figure 7.11: Validation of simulation results against EmuLab results.

all-pair ping data of PL trace provides us reachability data of any two pairs of nodes.

We fix two nodes in PL trace as the reader and the writer, and choose 7 random nodes

as the replica of an IrisLog object. We then replay the whole PL trace to compute

the inconsistency, the fraction of time the read quorum reachable by the reader does

not intersect with the write quorum reachable from the writer. We repeat this with 100

different reader-writer pairs, and report the average inconsistency. The curve labelled

“Without Failure” in Figure 7.12 shows the amount of inconsistency as a function of SQS

quorum size.8 To understand the effect of node failures on inconsistency, we repeat the

above experiment except that we let the replicas fail according to PL trace. The curve

labelled “With Failure” in Figure 7.12 shows the resulting inconsistency. Both these

graphs confirm that the amount of inconsistency is extremely small, even with a small

quorum size of 2. As described in Chapter 1, sensing applications can easily tolerate such

small inconsistency. Further, we observe that our recall mechanism recalls 90% of all the

stale reads within 10 minutes.

To understand SQS’s inconsistency beyond PL trace, we evaluate it with our corre-

lation model. Figure 7.13 plots inconsistency in IrisLog under different ρ2 values and

quorum sizes m. The “No failures” curve in the graph represents network failures (mis-

8The inconsistency in SQS is largely determined by the quorum size m, and is not sensitive to the
total number of replicas, since inconsistency means mismatches on the first m live replicas.

184 Chapter 7. Design and Implementation of Data Storage in IrisNet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 4 3 2

In
co

ns
is

te
nc

y

Quorum Size

With Failures
Without Failures

Figure 7.12: Inconsistency of IrisLog under PL trace.

matches) and is generated based on the simple closed-form formula of 0.1i given in [Yu03]

as the probability of having i simultaneous mismatches. The graph shows that larger ρ2

has a negative effect on inconsistency, because correlated failures result in fewer nodes

with fresh data (until the data is refreshed) and, hence, make it more likely for all the

nodes with fresh data to fail simultaneously. Once this happens, IrisLog must wait for

a relatively long time (i.e., MTTR/m time on average) for one of these nodes to recover.

An important observation, however, is that while larger ρ2’s have a devastating effect on

the availability of Majority, they have only a modest effect on the consistency (and

availability) of IrisLog. The curve for ρ2 = 0.9 is still close to the (idealized) curve

where there are no node failures (and hence no dependence on ρ2) and the only source of

inconsistency is reachability mismatches. Even when ρ2 = 1.0, the curve is still decreasing

roughly linear in our log-scale graph. We also find that these results are fairly robust to

different parameter settings. For example, with small quorum size (≤ 12), increasing the

time between data refresh checks from 30 seconds to 10 minutes increases inconsistency

only slightly, because MTTR/m is still an order of magnitude larger than the refresh

time.

7.5.5 POST under Targeted Node Overload

In this section, we evaluate how Post enables IrisLog to mask targeted overload-

failures. We drive our evaluation by using IrisLog trace, a real user query trace col-

lected from our IrisLog deployment on 310 PlanetLab nodes from 11/2003 to 8/2004

(Table 7.4). The trace consists of 6467 user queries, 99.1% of which select complete

7.5. Evaluation 185

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2 3 4 5 6 7 8 9 10

In
co

ns
is

te
nc

y

Quorum Size

ρ2 = 1
ρ2 = 0.95

ρ2 = 0.9
No failures

Figure 7.13: Inconsistency of SQS under synthetic traces with different values
of the correlation level ρ2 in the model G(0.95, 0.45, ρ2).

Table 7.4: IrisLog trace: Trace of user queries from 11/10/2003 to 8/27/2004
for the IrisLog service deployed on 310 PlanetLab nodes.

Total queries 6467 (100%)

Queries selecting a complete subtree 6409 (99.1%)
Queries selecting all nodes 401 (6%)
Queries selecting a country 1215 (19%)
Queries selecting a region 3188 (49%)
Queries selecting a site 1469 (23%)

Queries selecting a machine 136 (2%)

Queries not selecting a complete subtree 58 (0.9%)

subtrees rooted at different levels of the hierarchy.9

We compare Post with three other algorithms: Greedy, Local OPT and Oracle.

In Greedy, overloaded nodes evict individual objects in decreasing order of their loads.

As a result, nodes make decisions in finer granularity, but do not try to keep the objects

hierarchically clustered. In Local OPT, each node partitions its local database using

an optimal tree partitioning algorithm [Luk74] with O(n3) complexity. However, because

each invocation of Local OPT takes hours of computation time, we do not use it for

our live experiments on PlanetLab. Oracle is an offline approach that takes the whole

global database and the query workload, and computes the optimal fragmentation (again

using the algorithm in [Luk74]). Oracle cannot be used in a real system and only serves

9This large fraction of pure hierarchical queries is probably biased by IrisLog’s query interface that
makes it relatively easier to pose queries over subtrees. However, we believe that queries over subtrees
are natural and therefore this fraction would be reasonably high for any typical sensing application.

186 Chapter 7. Design and Implementation of Data Storage in IrisNet

as a lower bound for comparison purposes.

Our evaluation consists of two phases. In Phase 1, we fragment the IrisLog global

database by using all but the last 1000 queries of IrisLog trace as the warm-up data.

To do this within a reasonable time, we perform this phase on EmuLab and speed up

the replay such that we can finish it in an hour. We start with a single node holding the

entire database, and then we inject the workload and let the overloaded nodes dynamically

perform fragmentation and place the fragments on other lightly loaded nodes. In Phase

2 of our experiment, we place the fragments resulted from Phase 1 in our PlanetLab

deployment and inject the last 1000 queries from IrisLog trace. Each fragment is

replicated in 7 nodes, and we use a quorum size of 2. An object is considered available

if a query can retrieve it within 30 seconds timeout period (similar results are obtained

using a 15 second time-out). For this set of experiments, we define availability to be the

percentage of available objects out of the objects required by the queries. To emulate

targeted node overload, we increase the replay speedup factor, defined as the ratio between

the original duration of the trace and the replay time. Because our trace has a low average

load, we use a relatively large speedup factor.

Fragmentation Overhead. Figure 7.14 plots the cumulative overhead of the fragmen-

tation algorithms over time during the warm-up phase of the experiment. The overhead

is measured as the number of objects transferred over the network due to load-shedding.

(The cost of Paxos during the split/merge operations is proportional to the number of

split/merge operations.) The graph shows that the amount of fragmentation decreases

over time, which means that our load-based invocations of the algorithms do converge

under this workload. Greedy incurs higher overhead than Post because Greedy’s

non-clustering fragmentation increases the overall system load which makes the nodes

fragment more often. We do not use Local OPT or Oracle in this experiment due to

their excessive computation overhead.

Adaptation Effectiveness. To understand the advantage of Post’s adaptive fragmen-

tation, we also use Static-Post which, under all speedup factors, starts from the same

warm-up data (generated from Phase 1 with a speedup factor of 1200) and does not

further fragment the database during Phase 2. Figure 7.15 shows the unavailability of

IrisLog under different fragmentation algorithms and under different speedup factors.

Greedy is very sensitive to node overload and suffers from high unavailability even under

relatively smaller speedup factors (i.e., smaller load). Post is significantly more robust

and satisfies more queries even at a higher speedup factor. This is because Greedy

produces suboptimal fragments and overloads the system by generating a large number

of subqueries per query (Figure 7.16). The effectiveness of Post comes from its superior

7.6. Summary 187

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 200 400 600 800 1000 1200 1400

O

bj
ec

ts
 M

ov
ed

 (
x1

00
)

Time (sec)

Greedy
POST

We start this experiment by placing the complete IrisLog database in one EmuLab node.
We then inject all but the last 1000 queries in IrisLog trace. As nodes get overloaded,
they fragment their local databases and transfer the fragments to other nodes. We use two
online fragmentation schemes, and for each scheme, we measure the number of objects
transferred between nodes over time. Post incurs less overhead and converges faster.

Figure 7.14: Fragmentation cost of different fragmentation algorithms.

choice of fragments, which generate a near optimal number of subqueries (as shown in

Figure 7.16). The difference between Static-Post and Post in Figure 7.15 demonstrates

the importance of adaptive load-shedding for better robustness against targeted node

overload.

7.6 Summary

In this section, we have described the design, implementation, and evaluation of the

mechanisms IrisNet uses to ensure high availability of its storage layer. We have presented

the following components of IrisNet.

• Replication: We have exploited sensing applications’ tolerance for occasional data

inconsistency to use SQS in IrisNet. We have shown how to use SQS with IrisNet’s

hierarchical database. IrisNet is the first implementation of SQS. We have shown

that evaluating availability in a real replicated system is difficult, mainly because it

takes a long time. However, availability is only minimally impacted by a system’s

hard-to-model factors such as latency, CPU load, etc. Therefore, availability can

be accurately evaluated with a simple event-driven simulator that ignores these

factors.

188 Chapter 7. Design and Implementation of Data Storage in IrisNet

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 5 10 15 20 25

U
na

va
ila

bi
lit

y

Replay speedup factor (x100)

Greedy
Static-POST

POST

In this experiment, we consider an object to be unavailable if it can not be retrieved within
8 seconds. An object is unavailable when all of its replicas are overloaded.

Figure 7.15: Unavailability caused by overload with different fragmentation
algorithms.

Greedy POST Local OPT Oracle
0

20

40

60

80

S
ub

qu
er

ie
s/

Q
ue

ry

For each query, we count the number of subqueries it generates between nodes. More
subqueries are generated if the objects are not clustered and the query needs to access
more nodes in its top-down traversal along the hierarchy. Thus, a good fragmentation
scheme provides a small number of subqueries.

Figure 7.16: Network overhead per query with different fragmentation algo-
rithms.

7.6. Summary 189

• Regeneration: We have exploited several sensing-specific properties (e.g., single

writer, timestamped data, etc.) to design a simplified version of RAMBO’s regen-

eration protocol for IrisNet. We have, for the first time, shown how to use a large

number of concurrent instances of the Paxos consensus protocol in a wide-area sys-

tem. We have proposed several optimizations that are necessary for the convergence

of the protocol.

• Load balancing: We have exploited a sensing system’s hierarchical database and

access patterns to propose a novel and efficient dynamic load balancing algorithm

called Post. It produces near-optimal solutions at a significantly smaller overhead

compared to locally optimal algorithms.

Replication and regeneration cope with crash-failures, whereas dynamic load balanc-

ing guards against overload-failures. They in combination make IrisNet highly available.

Chapter 8

Conclusion

We conclude this thesis with a summary of our contributions and directions for future

work.

8.1 Summary

This thesis identifies two fundamental challenges that affect the end-to-end availability

of an Internet-scale heterogenous sensing application.

• Robust and energy-efficient data collection from wireless sensor networks.

Existing in-network aggregation schemes require tree topologies for correctness. The

inherent fragility of the tree topology makes the schemes susceptible to node- and

link-failures. Existing robust solutions sacrifice energy-efficiency by using reliable

communication, thus showing a strong tradeoff between energy-efficiency and ro-

bustness. Existing adaptive solutions use low-level observations of network char-

acteristics to repair the tree topology, without taking application semantics into

account.

• Highly available distributed storage in Internet-connected nodes.

Replication and regeneration are two standard techniques to build highly available

storage systems. However, the availability of a distributed storage system on the

Internet is severely limited by correlated failures. Existing storage systems either

ignore failure correlation or use simple techniques that fail to provide a target

availability without large resource overhead. The fundamental stumbling block

(prior to our work) in combatting correlated failures is the poor understanding of

their nature and impact on real systems.

191

192 Chapter 8. Conclusion

8.1.1 Our Approach

We argue that traditional techniques of buying robustness with additional resources (e.g.,

energy, storage) are not feasible for sensing applications because of their inherent con-

straints. A more suitable approach is to exploit several deployment- and application-

specific properties of sensing systems, which weakens the robustness and resource effi-

ciency tradeoffs, which in turn enables robust and resource-efficient sensing systems. We

showed the feasibility of this approach through several novel techniques that significantly

improve the availability of a sensing system, without significant resource overhead.

We addressed the first challenge above with Synopsis Diffusion, a novel aggregation

scheme that decouples aggregation algorithms from aggregation topologies. This decou-

pling enables aggregation over highly robust and energy-efficient multi-path topologies.

To adapt to long-term dynamics in the deployment environment, we proposed Tributary-

Delta, a novel scheme that enables highly robust aggregation by efficiently combining

tree- and multi-path-based aggregation and dynamically adapting topologies according

to application-level semantics.

To tolerate correlated failures in Internet-scale storage of sensor data, we used the

following solutions. First, to combat crash-failures of nodes, we used recently proposed

Signed Quorum Systems (SQS) that, as we showed, are more effective than traditional

strict quorum systems in tolerating correlated failures. Second, in determining the con-

figuration parameters of SQS, we used a correlation model that we developed by studying

several large real-world systems. Finally, we used a novel load balancing algorithm that

exploits sensing applications’ hierarchical data indexing and access patterns to quickly

shed load from an overloaded node and to avoid overload-failures during a flash crowd.

8.1.2 Contributions

This thesis has made contributions in two major areas. The first area is conceptual and

consists of the novel ideas and design principles generated by our work. The second area

of contribution is a set of artifacts—a few major components of IrisNet and a number of

sensing applications that we implemented to validate some of our ideas.

Conceptual Contributions

In this thesis, we addressed the aforementioned challenges and propose solutions that

result in significant improvement in end-to-end robustness of an Internet-scale, heteroge-

neous sensing system. Because there is a tremendous heterogeneity and diversity in the

8.1. Summary 193

problems, there is no single panacea for all of them. We recognized this heterogeneity

and developed a suite of algorithms, techniques, and design principles to combat these

problems. The components of this solution suite include the following:

1. Synopsis Diffusion: Synopsis Diffusion is a general framework for computing

aggregates over an arbitrary (multi-path) topology. It decouples aggregation al-

gorithm and aggregation topology, providing the opportunity to optimize them

independently. We provided the formal foundation of this framework, example

algorithms, and evaluation results. Synopsis Diffusion is the first to show the fea-

sibility of general in-network aggregation over an arbitrary topology.

2. Adaptive aggregation: We proposed Tributary-Delta, an energy efficient scheme

that combines the benefits of existing tree-based and our multi-path-based aggre-

gation by simultaneously running them on different parts of the network and auto-

matically balancing the proportion of these two components as operating conditions

change. Tributary-Delta is the first to demonstrate application-aware adaptation

of aggregation algorithms to cope with long-term dynamics of operating conditions.

In developing Tributary-Delta, we also proposed Adaptive Rings , a multi-path ag-

gregation topology that can automatically adapt to link- or node-failures in an

energy-efficient manner.

3. Design principles to tolerate correlated failures: Using a combination of

experimental and mathematical analysis of several real-world failure traces, we de-

bunked a number of common myths about how to design highly available systems.

Based on our analysis, we identified a set of design principles that can be used to

build Internet-scale sensing systems capable of tolerating correlated failures. Al-

though the design principles allow us to exploit unique properties of sensing systems,

they can be generalized and used in a large class of distributed storage systems.

4. Lessons from availability evaluation: Aside from evaluating our own ideas,

we implemented in IrisNet and evaluated a number of existing techniques that

were either not implemented (e.g., SQS) or not evaluated (e.g., the Paxos consen-

sus algorithm) before in a large-scale WAN system. These implementations have

demonstrated the behavior of these algorithms in practice; e.g., we showed that a

number of important optimizations are required for a large number of concurrent

Paxos instances to converge on WAN. Our experiments with IrisNet’s storage com-

ponent have identified important differences between the methodologies for evaluat-

ing availability and performance. We showed that, unlike performance, availability

194 Chapter 8. Conclusion

can be accurately evaluated with simple simulation, with a realistic failure trace

collected over a reasonably long period of time.

The first two contributions aid in robust data collection from wireless sensor networks,

while the last two contributions are in the area of reliable storage of sensor data in

Internet-connected nodes. In combination, they provide the end-to-end robustness of a

sensing system, without any significant resource overhead.

Artifacts

In the course of this thesis, we developed the following artifacts in the context of IrisNet:

1. We designed and implemented the basic architecture of IrisNet that demonstrates

the viability of our ideas related to Internet-scale sensing. The source code of IrisNet

is available at http://www.intel-iris.net.

2. We developed a number of prototype applications on IrisNet that have validated

our ideas. One application, IrisLog, has been publicly available since September

2003, letting users make live queries regarding resource usage of 450+ PlanetLab

machines. IrisLog can be accessed at http://www.intel-iris.net/irislog.

The source code of this application comes with the standard IrisNet distribution.

3. We designed and implemented IrisNet’s distributed storage component that can

tolerate correlated crash failures of system components and provide high availability

of archived sensor data. It uses SQS, which we showed to be better in tolerating

correlated failures. It automatically regenerates new replicas when existing ones

fail. In choosing replication parameters, it explicitly considers failure correlation in

real systems. The storage component allows the system administrator to specify a

target availability; it then uses our empirically validated failure model to choose the

replication parameters required to achieve the target availability. To avoid overload

failures, we developed and implemented an efficient load balancing mechanism that

quickly spreads load across multiple nodes when a flash-crowd approaches. The

source code comes with the standard IrisNet distribution.

4. We developed a failure benchmark that generates failure traces (i.e., information

about when individual nodes in a system fail and recover) for certain classes of

distributed systems. The benchmark uses realistic models capturing certain failure

properties (e.g., failure correlation) that we identified by studying the aforemen-

tioned failure traces. We believe that such a benchmark will be extremely useful in

8.2. General Remarks 195

more accurately evaluating availability of distributed systems. The benchmark can

be found at http://www.intel-iris.net/benchmark.

The first two artifacts are specific to Internet-scale sensing. However, the last two

artifacts are more general and can be used by a large class of distributed systems.

8.2 General Remarks

Our contributions in this thesis demonstrate a useful approach to addressing robustness

in sensing systems. Our techniques, although designed for sensing systems, can help a

large class of non-sensing systems as well.

This thesis argues that traditional techniques of improving robustness with additional

resources (e.g., energy, storage) are not well suited for sensing applications because of their

inherent constraints. A more suitable approach is to exploit applications’ tolerance for

approximate or slightly inconsistent data, which weakens the robustness and resource

efficiency tradeoffs, which in turn enables robust and resource-efficient sensing systems.

In a dynamic environment, such domain-specific techniques often pose weak tradeoffs

between resource usage and performance/robustness. This thesis argues for application-

aware adaptation in resolving these tradeoffs. Although such adaptation has been found

effective in other domains such as mobile computing, sensor networks pose a different

set of challenges because of their resource constrained and distributed nature. Through

examples of such adaptation, we showed that this is feasible and cost-effective. We believe

that the general ideas of exploiting domain-specific properties and adapting according

to application semantics will remain the primary ways to address robustness of sensor

networks. Such properties are definitely not limited to the ones we exploited; for example,

one might improve robustness by exploiting spatial and temporal correlation of data in

order to infer missing information.

Many systems other than sensor networks can benefit from the techniques and design

principles we developed in this thesis. Aggregation is an important construct that many

distributed systems can use to collect the global statistics necessary for their automatic

adaptation. Synopsis Diffusion might be a suitable aggregation technique for non-sensing

applications where an approximate answer is sufficient and the loss rate is high (e.g.,

systems using wireless or unreliable communication such as UDP). Its resilience against

node mobility could make it useful in the context of mobile computing. Its independence

of aggregation topology might make it appropriate for large-scale peer-to-peer systems,

where building a dedicated tree aggregation topology in the face of high churn rate can

196 Chapter 8. Conclusion

be extremely challenging. Similarly, the general idea of our Tributary-Delta can be used

in other domains to design efficient multi-modal protocols [ABNS02] that change their

operating modes depending on operating conditions. The design principles we developed

for wide area storage can be applied to a wide variety of Internet-scale systems. Although

the storage layer that we designed and implemented is specific to sensing systems, it has

a number of tuning knobs that could be adjusted for being used in other systems. For

example, one could tune the quorum size of SQS to be a majority, and thus use our system

for applications that do not allow inconsistency; one could also tune our system to use

erasure-coding, instead of replication, and use it in a read-only system. In summary,

we believe that although our techniques are designed in the sensing context, many other

systems can be benefited from them.

8.3 Future Directions

Robust sensing remains a relatively new area in systems research. Consequently, each of

the components on which we have worked on has opportunities for further improvement.

In the rest of this section, we discuss some of the interesting paths for future research

that we have not yet had time to explore.

8.3.1 Robust Aggregation in Wireless Sensors

We here list several future research directions related to Synopsis Diffusion.

A Relaxed Synopsis Diffusion Framework

Our formal framework of Synopsis Diffusion provides a set of easy-to-check properties

that someone can use to prove correctness of a new algorithm. One drawback of this

framework is its strict deterministic nature; it guarantees that the final answers produced

by a Synopsis Diffusion algorithm are exactly the same irrespective of duplication and

reordering of sensor data during in-network aggregation. The necessary conditions for

this guarantee, as given by our framework, severely limit the set of functions that one

can use within a Synopsis Diffusion algorithm.

However, in many situations, such a strong guarantee is unnecessary—an approximate

answer within a small specified error margin is sufficient if that can be computed energy-

efficiently. In such cases, the aggregation algorithm can produce any answer within

the error margin; the answers do not need to always be the same. For example, the

ε-approximation algorithm provided by Greenwald and Khanna [GK04] computes an

8.3. Future Directions 197

approximate median V of N sensor data such that V ’s rank is at most εN away from

N/2, the rank of the true median. Similarly, the ε-deficient counting algorithm by Manjhi

et al. [MSDO05] can efficiently compute all the items with frequencies above a given

threshold T , as well as a few false positive items whose frequencies exceed T − εN but

not T , where N is the total number of items. Depending on the order in which sensor data

gets combined within the network, different executions may produce different answers,

although each answer satisfies the error guarantees.

It is possible to compute ε-approximate answers in the Synopsis Diffusion framework.

In [MNG05], we provided a Synopsis Diffusion algorithm for computing Frequent Items,

based on the ε-deficient counting technique mentioned above. The false positives in the

answer of this algorithm can differ over executions. This relaxed requirement lets us

use functions beyond those allowed by our original Synopsis Diffusion framework. For

example, the Synopsis Fusion function SF () used in the above Frequent Items algorithm

is not associative. In contrast, our current framework does not allow this flexibility; it

requires that SF () must be associative, which is an essential property to ensure that the

final answers will be the same irrespective of the duplication and reordering. Therefore, we

can not directly use our current framework to prove the correctness of an ε-approximation

algorithm.1 This poses a big problem in developing new such algorithms.

An open research problem is to find a suitable formal framework for ε-approximate

Synopsis Diffusion algorithms. The framework would provide a set of easy-to-check prop-

erties (like the ones provided by our current framework) that one can use to prove the

correctness of a new algorithm. Since the final answers of an ε-approximate algorithm do

not need to strictly be the same, this new formal model is likely to be a relaxed version

of our current formal framework. This model would enable using more general functions

(e.g., those that are not associative) to design new ε-approximate Synopsis Diffusion

algorithm.

More Examples

Another interesting direction for future research is to develop Synopsis Diffusion algo-

rithms for new aggregates. Although we provided algorithms for a large number of useful

aggregates, algorithms for many aggregates (such as wavelets, isobars, etc.) are still

unknown. One approach to addressing this is to take the corresponding tree-based algo-

rithms (e.g., the tree-based algorithm in [HHMS03] for computing wavelets), and replace

1To show the correctness of the Frequent Items algorithm in [MNG05], we showed that after every
application of the Synopsis Fusion function, the intermediate result remains ε-approximate with respect
to the input data. However, this technique is not always feasible.

198 Chapter 8. Conclusion

the basic functions (e.g., additions) within them with equivalent ODI functions. We used

this approach in designing the Frequent Items algorithm in [MNG05]. The challenge

here is to deal with functions whose ODI equivalents are not known. For example, in

the above mentioned Frequent Items algorithm, we had to devise ways to deal with the

subtraction function (we do not know of any existing ODI subtraction function with good

error guarantees using only a small sysnopsis).

A more fundamental question is whether there always exists an equivalent Synopsis

Diffusion algorithm for any tree-based algorithm. After having an answer to this question,

the next logical step would be to explore whether it is possible to automatically generate

a Synopsis Diffusion algorithm from a tree-based algorithm.

Multi-sink Aggregation Topology

As is the norm in common aggregation topologies, our topologies for Synopsis Diffusion

use a single base station. However, one can imagine a wireless sensor network that

has multiple base stations (sinks). In such a topology, each base station independently

collects aggregate data from a subset of sensors and sends its final synopses to a common

point, such as an IrisNet SA. The SA, after collecting synopses from all the base stations,

evaluates the fused synopsis to the final aggregate answer. Such a multi-sink topology

makes the aggregation process more robust—even if sensors in some part of the network

get disconnected from one base station, they still can contribute to the final answer

through other base stations. Note that, this opportunity is unique to Synopsis Diffusion—

in a multi-sink topology, the reading from a single sensor may reach multiple base stations

and therefore an aggregation scheme that is not duplicate insensitive can no longer provide

correct answers.

An interesting future direction would be to explore issues such as how to efficiently

construct a multi-sink topology, how many base stations to use, where to place them in

the network, how to organize the sensors to communicate with nearby base stations, etc.

Studying the tradeoffs of energy-efficiency and robustness of such topologies would also

be useful.

8.3.2 Aggregation over Imprecise and Incorrect Data

Our aggregation techniques assume that the data reported by sensors is exact. However,

in practice, sensor data can often be imprecise because of environmental noise, calibration

error, and resource optimizations. Providing robustness against such imprecise, and

possibly incorrect, data is challenging. One can imagine two interesting schemes to deal

8.3. Future Directions 199

with such impreciseness. In the first scheme, one could use techniques to remove noise

from sensor data before aggregating it. Several properties of sensed data, such as temporal

and spatial correlation, could be used for this data cleaning purpose. In the second

scheme, sensors could represent all possible values of the sensed data with a probability

distribution. For example, a motion sensor could report that what it has detected is a

human with 70% probability and a vehicle with 30% probability. A suitable aggregation

scheme could report a probability distribution of the final result, instead of a single final

result. For example, for the query “total number of people”, it could return the result

“40 to 50 people with 70% probability, and 50 to 60 people with 30% probability”. Such

a probabilistic result seems to be more natural for imprecise, probabilistically defined

sensor data. Although previous efforts [CKP03, EN03] have investigated some of these

issues, incorporating them with multi-path-based aggregation would be useful.

One could also imagine sensors to be malicious, reporting wrong data. However, given

that sensor readings are spatially correlated, in a sufficiently dense deployment, neighbors

of a malicious sensor might be able to detect its malicious intention. Thus peers could

provide feedbacks about each others’ activities, building a distributed reputation system

of the sensors. A robust aggregation scheme could then consider the reputation of a

sensor while using its data. Such a scheme would be robust against malicious sensors.

8.3.3 Adaptation of Aggregation Schemes

We here list a number of interesting area of future research related to adaptive aggregation

from wireless sensors.

Application-aware Adaptation

Our Tributary-Delta construction uses application-semantics to dynamically adapt ag-

gregation algorithm and topology. In doing so, it uses a simple algorithm based on a

count-threshold—it adapts the topology to ensure that the number of nodes contributing

to the final answers at base station is above the given threshold (e.g., 90%). However, it

is often impossible to directly relate such a threshold with the errors in the final aggre-

gate answers. For example, an Average value computed over 90% of the sensors may be

very close to or it can be very different from the Average computed over all the sensors,

depending on the data in the 10% sensors not contributing to the final answer. Applica-

tions generally like to have guarantees about errors in the final answers (e.g., an Average

answer within 95% of the true Average), but a count-threshold-based scheme does not

help to obtain that.

200 Chapter 8. Conclusion

One could improve our Tributary-Delta scheme with strategies that provide guarantees

based on an error-threshold, instead of a count-threshold. For example, it can adapt the

topology such that the Average value computed at the base station is within 5% of the

true Average. In general, it is a difficult problem since the uncertainties due to missing

data prevent a system from making such guarantees.2 However, sensor data is often

spatially and temporally correlated. This correlation might be used to approximately

infer the missing data. This correlation, along with the knowledge of the total number

or sensors, can provide an approximate error margin and confidence of the final answer.

The aggregation scheme could use this approximate information to adapt itself and reduce

errors.

More general Tributary-Delta

There are several ways our Tributary-Delta construction can be improved. First, the

multi-path region can be used anywhere in the network, not just around the base station.

Such a construction would be effective when the region with high loss rate is far from the

base station; in such cases, our existing constructions would unnecessarily use multi-path

between that lossy region and the base station. Such a more general topology needs to

be carefully constructed to ensure correctness; namely, there must be exactly one egress

node in the multi-path region that is reachable from all other nodes in the region and

that connects to some tree node outside the region. Selecting such a node would require

an appropriate leader election algorithm.

Second, the adaptation control can be decentralized. In our current construction,

the base station controls the size and shape of the delta region by broadcasting control

messages. In a network that needs to be adapted frequently, the control overhead, spe-

cially for TD, can be high, since the control messages need to be propagated from the

base station to the switchable nodes. One simple way to address this is to divide the

whole network into multiple regions and to assign one particular node in each region to

be the controller of that region. The controller nodes then can control adaptation of their

respective regions. However, to ensure that the final answer is within the global (count-

or error-) thresholds, controllers would require to collaborate with each other. Doing

this in energy efficient way might be challenging. It would be interesting to explore the

feasibility of such designs with extensive analysis, simulation, and real deployments.

2This problem does not arise with count-threshold, since we assume that the base station knows the
total count a priori.

8.3. Future Directions 201

Multi-modal Protocols

The basic idea of Tributary-Delta can be used in designing new multi-modal protocols for

sensor networks. A multi-modal protocol changes its mode depending on the operating

conditions. For example, one can imagine a routing protocol that uses energy-efficient

unreliable communication when the loss rate is low or when the data to deliver can

tolerate losses while it uses energy-expensive reliable communication when loss rate is

high or when the data to deliver is too important to lose. The protocol even could use

a mixture of reliable and unreliable communication in different parts of the network.

To change operating mode, the protocol would need information about the operating

conditions, and in most cases aggregate information (e.g., the average loss rate) would

be sufficient for this purpose. Therefore, such protocols could use aggregation algorithms

(e.g., Synopsis Diffusion) as building blocks to monitor the sensor network.

8.3.4 Wide-area Robustness

Understanding wide-area correlated failures and addressing them in system design is a

relatively new area. In the following, we describe a number of areas in which our work

can be extended.

Better Understanding of Wide-area Failures

Our study of wide-area failures is restricted due to several limitations of the traces we

used. For example, our traces do not contain information about causes of failures. More-

over, some of them have long probe intervals (e.g., PL trace), some have few nodes (e.g.,

RON trace), and some have small length (e.g., WS trace). These limitations restrict our

study. For example, our study fails to answer the following important questions:

1. What are the different types of failures and what is their distribution? Which ones

are the most common? In our study, we have seen that failure sizes show a bi-

exponential property. What types of failures span different regions of the curve? If

we consider only a certain class of failures (e.g., network failures), what does the

curve look like?

2. What failure types have the most drastic impact on system availability? The impact

can be different on different systems, e.g., a network partitioning may not have

enough impact on SETI@Home type systems, small failure events may not have big

impact on replicated systems, etc.

202 Chapter 8. Conclusion

3. Can we model/predict patterns of certain types of failures? Is there any spa-

tial/temporal correlation within different types of failures?

One could collect traces that do not suffer from the limitations of our traces and

study them to understand the above questions. Findings from such study, along with our

previous understanding of failure size distribution, could be useful in generating better

failure workloads and studying a variety of availability problems. Such a study would

also provide better insights for building highly available distributed systems.

Dynamic Adaptation

Our replication design in IrisNet uses a failure model in the beginning of configuration

to determine parameters and does not support changing parameters on the fly. We can

imagine a better system, one which is autonomous and can dynamically adapt its config-

uration as required. Such a system would require i) automatically monitoring the failure

properties of the system, and ii) dynamically changing system parameters accordingly to

ensure the target availability. A key challenge in online monitoring is scalability. In par-

ticular, monitoring network connectivity scales very poorly with the number of nodes.3

The challenge of dynamic reconfiguration is to ensure availability and consistency of data

during the change in replication parameters.

Single-server Regeneration

Our regeneration design could be greatly simplified by using a single regeneration server.

In this novel design, the regeneration server works as the serialization and arbitration

point of the regeneration protocol. When multiple replicas of the same replica group

want to initiate regeneration, they all contact the regeneration server which then decides

which replica can actually start the regeneration. In this way, a replica group never

diverges into multiple groups. The use of a single server eliminates the necessity of

complicated consensus protocols. However, one might raise three concerns regarding this

design. We here briefly outline how these concerns might be addressed.

• Scalability: Can a single server scale to handle regeneration of millions of replica

groups?

3For example, J. Stribling has been collecting the all-pair ping traces of PlanetLab [Str04]. The
monitoring daemon pings each pair of nodes once every 15 minutes. As of this writing, the number of
nodes in PlanetLab is approaching 600 and he is planning to stop the service because of its excessive
overhead [Str05].

8.4. Closing Remarks 203

Note that regeneration is a rare event (as rare as failures), therefore the load imposed

on the regeneration server will not be excessive. To further reduce load, the total

replica groups in the system can be partitioned into smaller sets a priori such

that each set has its own regeneration server. The correctness of this design is

ensured by the condition that a replica group does not change its regeneration

server. Therefore, we believe that scalability is not a major concern for this design.

• Availability: Does the single server become the bottleneck of availability? If the

regeneration server is down, no replica groups depending on that server can regen-

erate.

The key insight we use to address this concern is that regeneration is not a time

sensitive task—a replica group needs to regenerate only before all the read quorums

become unavailable. For the failure patterns in the traces we studied, this time is

more than half a day. So, as long as the MTTR of the server is no more than half

a day, the regeneration process would remain available. This requirement can be

met easily; since there is only a single regeneration server, it can be maintained well

enough to make the MTTR less than half a day.

• Security: Is the server the single point of failure? An attacker can launch a DoS

attack on the server to stop regeneration of the whole system.

Addressing this concern is challenging. One possible solution can be to manually

shut down the old server, start a new one, and broadcast the identity of the new

server to all the relevant replica groups through a secure channel. The correctness

of this scheme is given by the requirement that a human shuts down the old server

before starting a new one, and in this way the human acts as the serialization

point during the transition. Finding more practical and effective solutions requires

further research.

We believe that the approach of single server regeneration is promising. However, its

feasibility needs to be explored with careful design, analysis and deployment.

8.4 Closing Remarks

It appears likely that robustness will continue to be a significant challenge of sensing

systems for the foreseeable future. Since failures are prevalent in harsh deployment en-

vironments and masking them is not trivial given the constraints of sensing systems

204 Chapter 8. Conclusion

(such as their resource constraints, large scale, and unattended nature), finding efficient

techniques capable of addressing them will continue to be an important research area.

In this thesis, we argued that traditional techniques of improving robustness with

additional resources (e.g., energy, storage) are not well suited for sensing applications be-

cause of their inherent constraints. A more suitable approach is to exploit applications’

tolerance for approximate or slightly inconsistent data, which weakens the robustness and

resource efficiency tradeoffs, which in turn enables robust and resource-efficient sensing

systems. We showed the feasibility of this approach through algorithm designs, experi-

ments, and analysis. Our results have shown that this approach can improve robustness

by up to several orders of magnitude, without significant resource overhead.

Moving forward, we believe that the general idea of exploiting domain-specific prop-

erties will remain the primary way to address robustness of sensor networks. Such prop-

erties are definitely not limited to the ones we exploited: weak data semantics, broadcast

medium, etc. For example, one might improve robustness by exploiting spatial and tem-

poral correlation of data in order to infer missing information. Such domain-specific

techniques appear to be practical and cost-effective, and they will play a significant role

in addressing the grand challenge of building critical sensing systems that we can count

on.

Bibliography

[ABB+03] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito,

Rajeev Motwani, Itaru Nishizawa, Utkarsh Srivastava, Dilys Thomas, Ro-

hit Varma, and Jennifer Widom, STREAM: The Stanford stream data man-

ager, IEEE Data Engineering Bulletin 26 (2003), no. 1, 19–26.

[ABF93] Baruch Awerbuch, Yair Bartal, and Amos Fiat, Competitive distributed

file allocation, Proceedings of the Annual ACM Symposium on Theory of

Computing (STOC), 1993.

[ABGM90] Rafael Alonso, Daniel Barbara, and Hector Garcia-Molina, Data caching

issues in an information retrieval system, ACM Transactions on Database

Systems (TODS) (1990).

[ABKM01] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris,

Resilient overlay networks, Proceedings of the ACM Symposium on Oper-

ating Systems Principles (SOSP), 2001.

[ABNS02] Aditya Akella, Ashwin Bharambe, Suman Nath, and Srinivasan Seshan,

Multimodal network protocols: Adapting to highly variable operating con-

ditions, Tech. Report CMU-CS-02-170, Carnegie Mellon University, Com-

puter Science Department, 2002.

[Aka05] Akamai, Akamai: The trusted choice for online bussiness,

http://www.akamai.com/, 2005.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy, The space complexity of

approximating the frequency moments, Journal of Computer and System

Sciences 58 (1999), 137–147.

[And05] David G. Andersen, The MIT RON trace, Private communication, 2005.

[Apa01] Apache, Apache Xindice project, http://xml.apache.org/xindice/, 2001.

205

206 BIBLIOGRAPHY

[Ape88] Peter M. G. Apers, Data allocation in distributed database systems, ACM

Transactions on Database Systems (TODS) 13 (1988), no. 3, 263–304.

[AS93] Divyakant Agrawal and Soumitra Sengupta, Modular synchronization in

distributed, multi-version databases: Version control and concurrency con-

trol, IEEE Transactions on Knowledge and Data Engineering (1993).

[Atm03] Atmel Corporation, Atmel AVR microcontroller datasheet.

http://www.atmel.com/dyn/resources/prod documents/2467s.pdf, 2003.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jen-

nifer Widom, Models and issues in data stream systems, Proceedings of the

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems (PODS), 2002.

[BDET00] William J. Bolosky, John R. Douceur, David Ely, and Marvin Theimer,

Feasibility of a serverless distributed file system deployed on an existing set

of desktop PCs, ACM SIGMETRICS Performance Evaluation Review 28

(2000), no. 1, 34–43.

[Bel03] Bell Labs, Galax: An implementation of XQuery,

http://www.galaxquery.org/, 2003.

[BGGMM04] Mayank Bawa, Aristides Gionis, Hector Garcia-Molina, and Rajeev Mot-

wani, The price of validity in dynamic networks, Proceedings of the ACM

SIGMOD International Conference on Management of Data, 2004.

[BGM87] Daniel Barbara and Hector Garcia-Molina, The reliability of voting mech-

anisms, IEEE Transactions on Computers (1987), 1197–1208.

[BGS01] Philippe Bonnet, J. E. Gehrke, and Praveen Seshadri, Towards sensor

database systems, Proceedings of the IEEE Mobile Data Management,

2001.

[BK00] Atul Butte and Isaac Kohane, Mutual information relevance networks:

functional genomic clustering using pairwise entropy measurements, Pro-

ceedings of the Pacific Symposium on Biocomputing, 2000, 2000.

[BLS95] Anna Brunstrom, Scott T. Leutenegger, and Rahul Simha, Experimental

evaluation of dynamic data allocation strategies in a distributed database

BIBLIOGRAPHY 207

with changing workloads, Proceedings of the 4th International Conference

on Information and Knowledge Management, 1995.

[BRY+04] Maxim A. Batalin, Mohammad Rahimi, Yan Yu, Duo Liu, Aman Kansal,

Gaurav S. Sukhatme, William J. Kaiser, Mark Hansen, Gregory J. Pottie,

Mani Srivastava, and Deborah Estrin, Call and response: experiments in

sampling the environment, Proceedings of the International Conference on

Embedded Networked Sensor Systems (SenSys), 2004.

[BSV03] Ranjita Bhagwan, Stefan Savage, and Geoffrey M. Voelker, Understanding

availability, Proceedings of the International Workshop on Peer-to-Peer

Systems (IPTPS), 2003.

[BTC+04] Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Savage, and Ge-

off M. Voelker, TotalRecall: Systems support for automated availability

management, Proceedings of the USENIX/ACM Symposium on Networked

Systems Design and Implementation (NSDI), 2004.

[BWWG02] Mehmet Bakkaloglu, Jay J. Wylie, Chenxi Wang, and Gregory R. Ganger,

On correlated failures in survivable storage systems, Tech. Report CMU-

CS-02-129, Carnegie Mellon University, May 2002.

[BYKS01] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar, Sampling algorithms:

lower bounds and applications, Proceedings of the Annual ACM Sympo-

sium on Theory of Computing (STOC), 2001.

[Cat03] Josh Cates, Robust and efficient data management for a distributed hash

table, Masters Thesis, Massachusetts Institute of Technology, May 2003.

[CDK+03] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,

Antony Rowstron, and Atul Singh, SplitStream: High-bandwidth multicast

in a cooperative environment, Proceedings of the ACM Symposium on Op-

erating Systems Principles (SOSP), 2003.

[CE04] Alberto Cerpa and Deborah Estrin, ASCENT: Adaptive Self-Configuring

sEnsor Networks Topologies, IEEE Transactions on Mobile Computing 3

(2004), no. 3, 272–285.

[CEG+04] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Kleiman,

James Leong, and Sunitha Sankar, Row-diagonal parity for double disk fail-

208 BIBLIOGRAPHY

ure correction, Proceedings of the USENIX Conference on File and Storage

Technologies (FAST), 2004.

[CGMR05] Graham Cormode, Minos Garofalakis, S. Muthukrishnan, and Rajeev Ras-

togi, Holistic aggregates in a networked world: distributed tracking of ap-

proximate quantiles, Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, 2005.

[CGN+05a] Jason Campbell, Phillip B. Gibbons, Suman Nath, Padmanabhan Pillai,

Srinivasan Seshan, and Rahul Sukthankar, IrisNet: An Internet-scale ar-

chitecture for multimedia sensors, Proceedings of the ACM Multimedia,

November 2005.

[CGN05b] Shimin Chen, Phillip B. Gibbons, and Suman Nath, Database-centric pro-

gramming for wide-area sensor systems, Proceedings of 1st International

Conference on Distributed Computing in Sensor Systems (DCOSS), 2005.

[CIL03] CIL (Coastal Imaging Lab), College of Oceaninc and Atmospheric

Sciences, Oregon State University, The Argus program, http://cil-

www.oce.orst.edu:8080/, 2003.

[CKP03] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar, Evaluating

probabilistic queries over imprecise data, Proceedings of the ACM SIGMOD

International Conference on Management of Data, 2003.

[CLFK01] Robert T. Collins, Alan J. Lipton, Hironobu Fujiyoshi, and Takeo Kanade,

Algorithms for cooperative multisensor surveillance, Proceedings of the

IEEE 89 (2001), no. 10, 1456–1477.

[CLKB04] Jeffrey Considine, Feifei Li, George Kollios, and John Byers, Approximate

aggregation techniques for sensor databases, Proceedings of the Interna-

tional Conference on Data Engineering (ICDE), 2004.

[CM05] Graham Cormode and S. Muthukrishnan, An improved data stream sum-

mary: the count-min sketch and its applications, Journal of Algorithms 55

(2005), no. 1, 58–75.

[Com04] ComputerWorld.com, Akamai now says it was targeted by DDoS at-

tack, http://www.computerworld.com/securitytopics/security/story/

0,10801,93862,00.html, 2004.

BIBLIOGRAPHY 209

[CP92] S. W. Chen and C. Pu, A structural classification of integrated replica con-

trol mechanisms, Tech. Report CUCS-006-92, Columbia University, 1992.

[CSK02] Weidong Cui, Ion Stoica, and Randy H. Katz, Backup path allocation based

on a correlated link failure probability model in overlay networks, Proceed-

ings of the IEEE International Conference on Network Protocols (ICNP),

2002.

[CV03] Brent Chun and Amin Vahdat, Workload and failure characterization on a

large-scale federated testbed, Tech. Report IRB-TR-03-040, Intel Research

Berkeley, November 2003.

[DF82] Lawrence W. Dowdy and Derrell V. Foster, Comparative models of the file

assignment problem, ACM Computing Surveys 14 (1982), no. 2.

[DGM+02] Amol Deshpande, Carlos Guestrin, Sam Madden, Joseph M. Hellerstein,

and Wei Hong, Model-driven data acquisition in sensor networks, Proceed-

ings of the International Conference on Very Large Data Bases (VLDB),

2002.

[DKK+01] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion

Stoica, Wide-area cooperative storage with CFS, Proceedings of the ACM

Symposium on Operating Systems Principles (SOSP), October 2001.

[DLS+04] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek,

and Robert Morris, Designing a DHT for low latency and high through-

put, Proceedings of the USENIX/ACM Symposium on Networked Systems

Design and Implementation (NSDI), 2004.

[DNGS03] Amol Deshpande, Suman Nath, Phillip B. Gibbons, and Srinivasan Seshan,

Cache-and-query for wide area sensor databases, Proceedings of the ACM

SIGMOD International Conference on Management of Data, 2003.

[DP02] Brian A. Davey and Hilary A. Priestley, Introduction to lattices and order,

2002.

[DRS+05] Karthik Dantu, Mohammad H. Rahimi, Hardik Shah, Sandeep Babel, Amit

Dhariwal, and Gaurav S. Sukhatme, Robomote: Enabling mobility in sensor

networks, Proceedings of the IEEE/ACM Fourth International Conference

on Information Processing in Sensor Networks (IPSN), 2005.

210 BIBLIOGRAPHY

[DW01] John R. Douceur and Roger P. Wattenhofer, Competitive hill-climbing

strategies for replica placement in a distributed file system, Proceedings

of the International Symposium on Distributed Computing (DISC), 2001.

[EDHD02] Ahmed Elgammal, Ramani Duraiswami, David Harwood, and Larry S.

Davis, Background and foreground modeling using nonparametric kernel

density estimation for visual surveillance, Proceedings of the IEEE, vol. 90,

July 2002.

[EN03] Eiman Elnahrawy and Badri Nath, Cleaning and querying noisy sensors,

Proceedings of the ACM International Workshop on Wireless Sensor Net-

works and Applications, 2003.

[Flu05] Flux Research Group, The University of Utah, Emulab - network emulation

testbed home, http://www.emulab.net, 2005.

[FM85] Philippe Flajolet and G. Nigel Martin, Probabilistic counting algorithms

for database applications, Journal of Computer and System Sciences 31

(1985), 182–209.

[GGSE02] Deepak Ganesan, Ramesh Govindan, Scott Shenker, and Deborah Estrin,

Highly-resilient, energy-efficient multipath routing in wireless sensor net-

works, Mobile Computing and Communications Review (M2CR) 1 (2002),

no. 2.

[GHOS96] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha, The dangers of

replication and a solution, Proceedings of the ACM SIGMOD International

Conference on Management of Data, 1996.

[GK04] Michael Greenwald and Sanjeev Khanna, Power-conserving computa-

tion of order-statistics over sensor networks, Proceedings of the ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-

tems (PODS), 2004.

[GKK+03] Phillip B. Gibbons, Brad Karp, Yan Ke, Suman Nath, and Srini Seshan,

Irisnet: An architecture for a worldwide sensor web, IEEE Pervasive Com-

puting 2 (2003), no. 4.

[GM99] Phillip B. Gibbons and Yossi Matias, Synopsis data structures for massive

data sets, Proceedings of the Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), 1999.

BIBLIOGRAPHY 211

[GT01] Phillip B. Gibbons and Srikanta Tirthapura, Estimating simple functions

on the union of data streams, Proceedings of the ACM Symposium on

Parallel Algorithms and Architectures (SPAA), 2001.

[GT02] , Distributed streams algorithms for sliding windows, Proceedings of

the ACM Symposium on Parallel Algorithms and Architectures (SPAA),

2002.

[GWGR04] Garth Goodson, Jay Wylie, Gregory Ganger, and Michael Reiter, Efficient

byzantine-tolerant erasure-coded storage, Proceedings of the International

Conference on Dependable Systems and Networks (DSN), June–July 2004.

[HBD97] Mor Harchol-Balter and Allen B. Downey, Exploiting process lifetime dis-

tributions for dynamic load balancing, ACM Transactions on Computer

Systems 15 (1997), no. 3, 253–285.

[HHMS03] Joseph M. Hellerstein, Wei Hong, Samuel Madden, and Kyle Stanek, Be-

yond average: Towards sophisticated sensing with queries, Proceedings of

the International Workshop on Information Processing in Sensor Networks

(IPSN), March 2003.

[HMD05] Andreas Haeberlen, Alan Mislove, and Peter Druschel, Glacier: Highly

durable, decentralized storage despite massive correlated failures, Proceed-

ings of the USENIX/ACM Symposium on Networked Systems Design and

Implementation (NSDI), 2005.

[Hoe63] Wassily Hoeffding, Probability inequalities for sums of bounded random

variables, Journal of the American Statistical Association 58 (1963),

no. 301, 13–30.

[HSOH03] Rob Holman, John Stanley, and Tuba Özkan Haller, Applying video sensor

networks to nearshore environment monitoring, IEEE Pervasive Computing

2 (2003), no. 4.

[HSW+00] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and

Kristofer Pister, System architecture directions for networked sensors, Pro-

ceedings of the International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), 2000.

212 BIBLIOGRAPHY

[HTB+05] Wen Hu, Van Nghia Tran, Nirupama Bulusu, Chun tung Chou, Sanjay Jha,

and Andrew Taylor, The design and evaluation of a hybrid sensor network

for cane-toad monitoring, Proceedings of the 4th Information Processing

in Sensor Networks (IPSN), 2005.

[HW90] Maurice Herlihy and Jeannette Wing, Linearizability: A correctness condi-

tion for concurrent objects, ACM Transactions on Programming Languages

and Systems 12 (1990), no. 3.

[IGE+03] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Hei-

demann, and Fabio Silva, Directed diffusion for wireless sensor networking,

IEEE/ACM Transactions on Networking (TON) 11 (2003), no. 1, 2–16.

[Int03a] Intel Research Pittsburgh, IrisLog: A distributed syslog, http://www.intel-

iris.net/irislog.php, 2003.

[Int03b] , IrisNet: Internet-scale resource-intensive sensor network services,

http://www.intel-iris.net/, 2003.

[Int05] Intel Research Berkeley, Intel lab data, http://berkeley.intel-

research.net/labdata/, 2005.

[JBH+05] Flavio Junqueira, Ranjita Bhagwan, Alejandro Hevia, Keith Marzullo, and

Geoffrey M. Voelker, Surviving Internet catastrophe, Proceedings of the

USENIX Annual Technical Conference, 2005.

[JM96] David B. Johnson and David A. Maltz, Dynamic source routing in ad hoc

wireless networks, Mobile Computing (Imielinski and Korth, eds.), vol. 353,

1996.

[JM02] Flavio Junqueira and Keith Marzullo, Designing algorithms for dependent

process failures, Proceedings of the International Workshop on Future Di-

rections in Distributed Computing (FuDiCo), 2002.

[KB91] Narayanan Krishnakumar and Arthur J. Bernstein, Bounded ignorance in

replicated systems, Proceedings of the ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems (PODS), 1991.

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick

Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-

erspoon, Chris Wells, and Ben Zhao, OceanStore: an architecture for global-

BIBLIOGRAPHY 213

scale persistent storage, Proceedings of the International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems

(ASPLOS), 2000.

[KDG03] David Kempe, Alin Dobra, and Johannes Gehrke, Gossip-based computa-

tion of aggregate information, Proceedings of the Annual IEEE Symposium

on Foundations of Computer Science (FOCS), 2003.

[KDW01] Konstantinos Kalpakis, Koustuv Dasgupta, and Ouri Wolfson, Optimal

placement or replicas in trees with read, write, and storage costs, IEEE

Transactions on Parallel and Distributed Systems 12 (2001), no. 6, 628–

637.

[KK98] George Karypis and Vipin Kumar, A fast and high quality multilevel scheme

for partitioning irregular graphs, SIAM Journal on Scientific Computing 20

(1998), no. 1, 359–392.

[KP97] Kamalakar Karlapalem and Ng Moon Pun, Query-driven data allocation

algorithms for distributed database systems, Database and Expert Systems

Applications, 1997.

[KR01] Jussi Kangasharju and James Roberts Keith W. Ross, Object replication

strategies in content distribution networks, Proceedings of 6th International

Web Caching and Content Distribution Workshop, 2001.

[KRA+03] Dejan Kostic, Adolfo Rodriguez, Jeannie R. Albrecht, Abhijeet Bhirud,

and Amin Vahdat, Using random subsets to build scalable network ser-

vices, Proceedings of the USENIX Symposium on Internet Technologies

and Systems (USITS), 2003.

[KT02] Greg Kogut and Mohan Trivedi, A wide area tracking system for vision sen-

sor networks, Proceedings of 9th World Congress on Intelligent Transport

Systems, 2002.

[LA00] Thanasis Loukopoulos and Ishfaq Ahmad, Static and adaptive data repli-

cation algorithms for fast information access in large distributed systems,

Proceedings of the International Conference on Distributed Computing

Systems (ICDCS), 2000.

[Lam98] Leslie Lamport, The part-time parliament, ACM Transactions on Com-

puter Systems 16 (1998), 133–169.

214 BIBLIOGRAPHY

[LGC05] Philip Levis, David Gay, and David Culler, Active sensor networks, Pro-

ceedings of the USENIX/ACM Symposium on Networked Systems Design

and Implementation (NSDI), 2005.

[LMG+04] Philip Levis, Sam Madden, David Gay, Joe Polastre, Robert Szewczyk,

Eric Brewer, Alec Woo, and David Culler., The emergence of networking

abstractions and techniques in TinyOS, Proceedings of the USENIX/ACM

Symposium on Networked Systems Design and Implementation (NSDI),

2004.

[LR00] Qun Li and Daniela Rus, Sending messages to mobile users in disconnected

ad-hoc wireless networks, Proceedings of the Annual International Confer-

ence on Mobile Computing and Networking (MobiCom), 2000.

[LS02] Nancy Lynch and Alex A. Shvartsman, RAMBO: a reconfigurable atomic

memory service for dynamic networks, Proceedings of the International

Symposium on Distributed Computing (DISC), 2002.

[Luk74] J. A. Lukes, Efficient algorithm for the partitioning of trees, IBM Journal

of Research and Development 18 (1974), no. 3, 217–224.

[LY80] K. Lam and Clement T. Yu, An approximation algorithm for a file-

allocation problem in a hierarchical distributed system, Proceedings of the

ACM SIGMOD International Conference on Management of Data, 1980.

[Lyn97] Nancy Lynch, Distributed algorithms, 1997.

[Mad03] Samuel Madden, The design and evaluation of a query processing architec-

ture for sensor networks, Ph.D. thesis, U. C. Berkeley, December 2003.

[MCC04] Matthew L. Massie, Brent N. Chun, and David E. Culler, The Ganglia

distributed monitoring system: Design, implementation, and experience,

Parallel Computing 30 (2004), no. 7, 817–840.

[MD88] Paul V. Mockapetris and Kevin J. Dunlap, Development of the Domain

Name System, Proceedings of the ACM SIGCOMM Conference on Appli-

cations, Technologies, Architectures, and Protocols for Computer Commu-

nication, 1988.

[MFHH02] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong,

TAG: A tiny aggregation service for ad hoc sensor networks, Proceedings

BIBLIOGRAPHY 215

of the USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI), 2002.

[MFHH03] , The design of an acquisitional query processor for sensor networks,

Proceedings of the ACM SIGMOD International Conference on Manage-

ment of Data, 2003.

[MNG05] Amit Manjhi, Suman Nath, and Phillip B. Gibbons, Tributaries and deltas:

Efficient and robust aggregation in sensor network streams, Proceedings

of the ACM SIGMOD International Conference on Management of Data,

2005.

[MPD04] Shoubhik Mukhopadhyay, Debashis Panigrahi, and Sujit Dey, Model based

error correction for wireless sensor networks, Proceedings of the First IEEE

Communications Society Conference on Sensor and Ad Hoc Communica-

tions and Networks (SECON), 2004.

[MRW97] Dahlia Malkhi, Michael Reiter, and Rebecca Wright, Probabilistic quorum

systems, Proceedings of the Annual ACM Symposium on Principles of Dis-

tributed Computing (PODC), 1997.

[MSDO05] Amit Manjhi, Vladislav Shkapenyuk, Kedar Dhamdhere, and Christopher

Olston, Finding (recently) frequent items in distributed data streams, Pro-

ceedings of the International Conference on Data Engineering (ICDE),

2005.

[MSFC02] Samuel Madden, Robert Szewczyk, Michael J. Franklin, and David Culler,

Supporting aggregate queries over ad-hoc wireless sensor networks, Pro-

ceedings of Fourth IEEE Workshop on Mobile Computing Systems and

Applications (WMCSA), 2002.

[Mut03] S. Muthukrishnan, Data streams: Algorithms and applications, Tech. re-

port, Rutgers University, 2003.

[NGS05] Suman Nath, Phillip B. Gibbons, and Srinivasan Seshan, Adaptive data

placement for wide-area sensing services, Proceedings of the USENIX Con-

ference on File and Storage Technologies (FAST), 2005.

[NGSA04] Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. An-

derson, Synopsis diffusion for robust aggregation in sensor networks, Pro-

216 BIBLIOGRAPHY

ceedings of the International Conference on Embedded Networked Sensor

Systems (SenSys), 2004.

[NKG+04] Suman Nath, Yan Ke, Phillip B. Gibbons, Brad Karp, and Srinivasan

Seshan, A distributed filtering architecture for multimedia sensors, Pro-

ceedings of the First Workshop on Broadband Advanced Sensor Networks

(BaseNets), 2004.

[NZ02] TS Eugene Ng and Hui Zhang, Predicting Internet network distance with

coordinates-based approaches, Proceedings of the Annual Joint Conference

of the IEEE Computer and Communications Societies (INFOCOM), 2002.

[OSM+04] A. J. Oliner, R. K. Sahoo, J. E. Moreira, M. Gupta, and A. Sivasubrama-

niam, Fault-aware job scheduling for BlueGene/L systems, Proceedings of

the International Parallel and Distributed Processing Symposium (IPDPS),

2004.

[OW02] Chris Olston and Jennifer Widom, Best-effort cache synchronization with

source cooperation, Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, 2002.

[PACR02] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe, A

blueprint for introducing disruptive technology into the Internet, Proceed-

ings of the First Workshop on Hot Topics in Networks (HotNets-I), 2002.

[PG03] Mark A. Paskin and Carlos E. Guestrin, A robust architecture for dis-

tributed inference in sensor networks, Tech. Report IRB-TR-03-039, Intel

Research Berkeley, 2003.

[PGF02] Christopher R. Palmer, Phillip B. Gibbons, and Christos Faloutsos, ANF:

A fast and scalable tool for data mining in massive graphs, Proceedings of

the 8th ACM SIGKDD International Conference on Knowledge and Data

Mining, 2002.

[PL91] Calton Pu and Avraham Leff, Replica control in distributed system: An

asynchronous approach, Proceedings of the ACM SIGMOD International

Conference on Management of Data, 1991.

[Pla97] James Plank, A tutorial on reed-solomon coding for fault-tolerance in

RAID-like systems, Software – Practice & Experience 27 (1997), no. 9,

995–1012.

BIBLIOGRAPHY 217

[Pla05] PlanetLab Consortium, PlanetLab, http://www.planet-lab.net/, 2005.

[PSP03] Bartosz Przydatek, Dawn Song, and Adrian Perrig, SIA: secure informa-

tion aggregation in sensor networks, Proceedings of the International Con-

ference on Embedded Networked Sensor Systems (SenSys), 2003.

[QPV01] Lili Qiu, Venkata N. Padmanabhan, and Geoffrey M. Voelker, On the place-

ment of web server replicas, Proceedings of the Annual Joint Conference

of the IEEE Computer and Communications Societies (INFOCOM), 2001.

[RRH00] Ram Ramanathan and Regina Rosales-Hain, Topology control of multihop

radio networks using transmit power adjustment, Proceedings of the Annual

Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM), 2000.

[SAS+96a] Jeff Sidell, Paul M. Aoki, Adam Sah, Carl Staelin, Michael Stonebraker,

and Andrew Yu, Data replication in mariposa, Proceedings of the Interna-

tional Conference on Data Engineering (ICDE), 1996.

[SAS+96b] , Data replication in mariposa, Proceedings of the International

Conference on Data Engineering (ICDE), 1996.

[SGG02] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble, A measure-

ment study of peer-to-peer file sharing systems, Proceedings of Multimedia

Computing and Networking (MMCN), 2002.

[SGW01] Loren Schwiebert, Sandeep K.S. Gupta, and Jennifer Weinmann, Research

challenges in wireless networks of biomedical sensors, Proceedings of the

Annual International Conference on Mobile Computing and Networking

(MobiCom), 2001.

[SH03] Fred Stann and John Heidemann, RMST: Reliable data transport in sensor

networks, Proceedings of 1st IEEE International Workshop on Sensor Net

Protocols and Applications (SNPA), 2003.

[SKKM02] Yasushi Saito, Christos Karamanolis, Magnus Karlsson, and Mallik Ma-

halingam, Taming aggressive replication in the pangaea wide-area file sys-

tem, Proceedings of the USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2002.

218 BIBLIOGRAPHY

[SM00] Jianbo Shi and Jitendra Malik, Normalized cuts and image segmenta-

tion, IEEE Transactions on Pattern Analysis and Machine Intelligence 22

(2000), no. 8, 888–905.

[SMAL+04] Gyula Simon, Miklós Maróti, Ákos Lédeczi, György Balogh, Branislav

Kusy, András Nádas, Gábor Pap, János Sallai, and K. Frampton, Sen-

sor network-based countersniper system, Proceedings of the International

Conference on Embedded Networked Sensor Systems (SenSys), 2004.

[SMP01] Mani Srivastava, Richard Muntz, and Miodrag Potkonjak, Smart kinder-

garten: sensor-based wireless networks for smart developmental problem-

solving enviroments, Proceedings of the Annual International Conference

on Mobile Computing and Networking (MobiCom), 2001.

[SMP+04] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson, and

David Culler, An analysis of a large scale habitat monitoring application,

Proceedings of the International Conference on Embedded Networked Sen-

sor Systems (SenSys), 2004.

[Str04] Jeremy Stribling, PlanetLab - all pair pings,

http://www.pdos.lcs.mit.edu/∼strib/pl app/, 2004.

[Str05] , The fate of all pairs pings, PlanetLab mailing list. The

users archive. http://lists.planet-lab.org/pipermail/users/, 2005, Email on

6/24/2005.

[SW03] CN Sze and Ting-Chi Wang, Optimal circuit clustering for delay minimiza-

tion under a more general delay model, IEEE Transactions on Computer-

Aided Design of Integrated Circuits System 22 (2003), no. 5.

[Tho79] Robert H. Thomas, A majority consensus approach to concurrency con-

trol for multiple copy databases, ACM Transactions on Database Systems

(TODS) 4 (1979), 180–209.

[TI92] Dong Tang and Ravishankar K. Iyer, Analysis and modeling of correlated

failures in multicomputer systems, IEEE Transactions on Computers 41

(1992), no. 5, 567–577.

[TKC+04] Yufei Tao, George Kollios, Jeffrey Considine, Feifei Li, and Dimitris Papa-

dias, Spatio-temporal aggegration using sketches, Proceedings of the Inter-

national Conference on Data Engineering (ICDE), 2004.

BIBLIOGRAPHY 219

[WCK04] Chieh-Yih Wan, Andrew T. Campbell, and Lakshman Krishnamurthy, Re-

liable transport for sensor networks: PSFQ - Pump Slowly Fetch Quickly

paradigm, Wireless Sensor Networks (2004), 153–182.

[WJH97] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang, An adaptive data repli-

cation algorithm, ACM Transactions on Database Systems (TODS) 22

(1997), no. 2, 255–314.

[WK02] Hakim Weatherspoon and John Kubiatowicz, Erasure coding vs. replica-

tion: A quantitative comparison, Proceedings of the International Work-

shop on Peer-to-Peer Systems (IPTPS), 2002.

[WM91] Ouri Wolfson and Amir Milo, The multicast policy and its relationship

to replicated data placement, ACM Transactions on Database Systems

(TODS) 16 (1991), no. 1, 181–205.

[WMK02] Hakim Weatherspoon, Tal Moscovitz, and John Kubiatowicz, Introspective

failure analysis: Avoiding correlated failures in peer-to-peer systems, Pro-

ceedings of International Workshop on Reliable Peer-to-Peer Distributed

Systems, October 2002.

[WWW99] WWWC : The World Wide Web Consortium, XML Path Language

(XPATH), http://www.w3.org/TR/xpath, 1999.

[XHE00] Ya Xu, John Heidemann, and Deborah Estrin, Adaptive energy-conserving

routing for multihop ad hoc networks, Tech. Report 527, USC/Information

Sciences Institute, October 2000.

[XRC+04] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan,

Alan Broad, Ramesh Govindan, and Deborah Estrin, A wireless sensor

network for structural monitoring, Proceedings of the International Con-

ference on Embedded Networked Sensor Systems (SenSys), 2004.

[YG03] Yong Yao and Johannes Gehrke, Query processing in sensor networks, Pro-

ceedings of the First Biennial Conference on Innovative Data Systems Re-

search (CIDR), 2003.

[YMV+03] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and

Mike Dahlin, Separating agreement from execution for byzantine fault tol-

erant services, Proceedings of the ACM Symposium on Operating Systems

Principles (SOSP), 2003.

220 BIBLIOGRAPHY

[YNY+04] Praveen Yalagandula, Suman Nath, Haifeng Yu, Phillip B. Gibbons, and

Srinivasan Seshan, Beyond availability: Towards a deeper understanding of

machine failure characteristics in large distributed systems, Proceedings of

the First Workshop on Real, Large Distributed Systems (WORLDS), 2004.

[Yu03] Haifeng Yu, Overcoming the majority barrier in large-scale systems,

Proceedings of the International Symposium on Distributed Computing

(DISC), October 2003.

[Yu04] , Signed quorum systems, Proceedings of the Annual ACM Sympo-

sium on Principles of Distributed Computing (PODC), 2004.

[YV01] Haifeng Yu and Amin Vahdat, The costs and limits of availability for repli-

cated services, Proceedings of the ACM Symposium on Operating Systems

Principles (SOSP), 2001.

[YV04] , Consistent and automatic replica regeneration, Proceedings of the

USENIX/ACM Symposium on Networked Systems Design and Implemen-

tation (NSDI), 2004.

[ZG03] Jerry Zhao and Ramesh Govindan, Understanding packet delivery perfor-

mance in dense wireless sensor networks, Proceedings of the International

Conference on Embedded Networked Sensor Systems (SenSys), 2003.

[ZGE03] Jerry Zhao, Ramesh Govindan, and Deborah Estrin, Computing aggregates

for monitoring wireless sensor networks, Proceedings of 1st IEEE Interna-

tional Workshop on Sensor Network Protocols and Applications, 2003.

[ZKOS05] Rui Zhang, Nick Koudas, Beng Chin Ooi, and Divesh Srivastava, Multiple

aggregations over data streams, Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, 2005.

[ZSC+03] Stanley B. Zdonik, Michael Stonebraker, Mitch Cherniack, Ugur

Çetintemel, Magdalena Balazinska, and Hari Balakrishnan, The Aurora

and Medusa projects, IEEE Data Engineering Bulletin 26 (2003), no. 1,

3–10.

Index

Adaptive Rings, 73

IrisNet

applications, 42

IrisLog, 42

Ocean Monitor, 43

Parking Space Finder, 44

caching and consistency, 40

load balancing, 122, 129

OA, see Organizing Agent

Organizing Agent, 37

query processing, 39

regeneration, 121, 126

replication, 41, 120, 123

SA, see Sensing Agent

senselet, 34

Sensing Agent, 34

load balancing, 122, 129

ODI-Correctness, 53

POST, 122, 130

regeneration, 121, 126

replication, 120, 123

Rings, 49

Adaptive, see Adaptive Rings

Rings2, 51

Signed Quorum Systems, 26

choosing parameters, 125

improving freshness, 125

in IrisNet, 123

interaction with regeneration, 127

read auditing and recall, 126

SQS, see Signed Quorum Systems

Synopsis Diffusion, 48, 46–72

approximation errors, 61

correctness test, 53

implicit acknowledgement, 74

Synopsis Diffusion algorithms, 55

count, 56

count distinct, 57

count-min sketch, 60

median, 59

popular items, 59

sum, 57

uniform sample, 58

union counting over sliding window,

60

Tributary-Delta, 79, 79–92

221

