Simplifying Cyber Foraging for Mobile

Devices
Rajesh Krishna Balan Darren Gergle
Mahadev Satyanarayanan Jim Herbsleb
August 2005

CMU-CS-05-157

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Cyber foraging is the transient and opportunistic use of pater servers by mobile devices. The
short market life of such devices makes rapid modificatioapglications for remote execution an
important problem. We describe a solution that combinestée“language” for cyber foraging
with an adaptive runtime system. We report results from a ssgly showing that even novice
developers are able to successfully modify large, unfamdpplications in just a few hours. We
also show that the quality of novice-modified and expert-tined applications are comparable in
most cases.

This research was partially supported by the National Seidroundation (NSF) under grant numbers ANI-
0081396 and CCR-0205266, and by an equipment grant from ¢hddti-Packard Corporation (HP). Rajesh Balan
was supported by an IBM Graduate Fellowship in 2003-20053sredUSENIX Graduate Fellowship in 2002. Darren
Gergle was supported by an IBM Graduate Fellowship in 200362 Any opinions, findings, and conclusions or
recommendations expressed in this material are those @futimrs and do not necessarily reflect the views of the
NSF, HP, IBM, USENIX or Carnegie Mellon University. All uradtified trademarks mentioned in the paper are
properties of their respective owners.

Keywords: Mobile Systems, User Study, Software Engineering

1 Introduction

By a curious paradox, applications of highest value to a tealser are the hardest to support
on lightweight and compact hardware with long battery lifdatural language translation and
speech recognition, for example, would be helpful to a flewén a foreign country. Optical
character recognition of signs in a foreign script coulgteelost traveller find his way. A wearable
computer with an eyeglass display and a camera for face né¢mgcould serve as an augmented-
reality system for assisting an Alzheimer’s patient. Athg CPU, memory and energy demands
of these applications far outstrip the capacity of devites people are willing to carry or wear
for extended periods of time. On such hardware, improving,sveight and battery life are higher
priorities than enhancing compute power.

One way to resolve this paradox is for a mobile device to peri@mote execution on a nearby
compute server over a wireless link. Cheap commodity mashividely dispersed for public use
could act as compute servers for mobile devices in theinitici We refer to this transient and
opportunistic use of resources agber foraging. Although deployment of compute servers for
public use is not imminent, our work addresses future enwirents where they may be as common
as water fountains, lighting fixtures, chairs or other pubbnveniences that we take for granted
today. When public infrastructure is unavailable, othetfamys may exist. For example, the body-
worn computer of an engineer who is inspecting the underside bridge may use a compute
server in his truck parked nearby.

Implementing cyber foraging involves three steps. Firshabile device must find a compute
server. Second, it must establish trust in that server. dTitiust partition the application be-
tween local and remote execution. This decision may haviedoge with fluctuations in operating
conditions such as wireless bandwidth and battery level.

We focus on the third problem in this paper, deferring to gHier solutions to the first two.
Service discovery [34] is an active area of research in garga&omputing, with solutions such as
Jini [49], UPnP [22], and Bluetooth proximity detection [13®]. Establishing trust in hardware is
a major goal of the security community, especially the TedsEomputer Group [47]. The recent
work on trusted platform modules at IBM [37, 38], and Chen Biairis’ work on tamper-evident
remote execution [7] are of particular relevance here.

Our goal is to enableapid modification of applications for cyber foraginghis is important
because of the short useful life of mobile devices. Smattpteines, wearable computers, PDAs
and other mobile devices are emerging at a dizzying ratesti@ts no sign of slowing [10, 17, 24,
50]. With a typical market life of barely a year, fast deliy&f new hardware with a full suite of
applications is critical.

We propose a solution based on the well-known approatlitileflanguageg2]. By developing
abstractions that are well-matched to the problem of cydr@ging, our solution makes possible a
compact static description of all the meaningful partis@f an application. Complementing this
static description is a powerful runtime system that presithe dynamic components necessary for
adaptation to fluctuating operating conditions. A stubegation tool creates application-specific
interfaces to the runtime system.

We report results from a user study showing that novice dg@esk can modify large, unfamiliar
applications in just a few hours. These applications spaedn natural language, and computer

1

vision technologies and are relevant to domains such aslidagalth care, and engineering. We
also report results showing that the quality of novice-rfiediand expert-modified applications
are comparable in most cases.

2 Design Considerations

2.1 Language-Independent & Coarse-Grained

An obvious design strategy for cyber foraging would reqalleapplications to be written in a
language that supports transparent remote execution ceg@uoes. Java would be an obvious
choice for this language, though other possibilities exi$te modified language runtime system
could monitor operating conditions, determine which poaes to execute remotely and which
locally, and re-visit this decision as conditions change application modifications would be
needed. This language-based, fine-grained approach tag@xecution has been well explored,
dating back to the Emerald system [23] of the mid-1980s.

We rejected this strategy because of its restriction tHadpglications be written in a single
language. An informal survey of existing applications frdme domains mentioned in Section 1
reveals no dominant language in which they are written.ebudtthe preferred language depends
on the existence of widely-used domain-specific libraried #ools; these in turn depend on the
evolution history and prior art of the domain. For example; walidation suite in Section 4 in-
cludes applications written in C, C++, Java, Tcl/Tk and Ada.

Our decision to be language-independent had a number oéqoasces. First, it eliminated the
use of fully automated code-analysis techniques since tteesl to be language-specific. Second,
it implied that applications had to be manually modified te ustime support for cyber foraging.
Third, it led to a coarse-grained approach in which entirduhes rather than individual procedures
are the unit of remote execution. Without language supgedry procedure would need to be
manually examined to verify if remote execution is feasilaled then modified to support it. By
coarsening granularity, we lower complexity but give up @tdvering the theoretically optimal
partitioning. This is consistent with our emphasis on rédgierogrammer burden and software
development time, as long as we are able to produce an abteptdoer foraging solution.

2.2 Support for Runtime Adaptation

The fickle nature of resource availability in mobile compgtenvironments has been well docu-
mented by researchers such as Forman et al. [13], Katz [@8]Satyanarayanan [40]. Dynamic
change offidelity (application-specific output quality) has been shown to fiectve in coping
with fluctuating resource levels by Fox et al [14], Noble effa2], de Lara et al [8] and Flinn et
al. [12].

These findings, including the causes of resource variatianunderlie them, also apply to a
mobile device that uses cyber foraging. The device may besutio additional resource variation
if its compute server is shared. Many factors affect thisatem, including the demands of other

mobile devices, the admission control policy used in serdiscovery, and the compute server’s
resource allocation policy.

Clearly, a good design for cyber foraging must support thecept of fidelity. It must also
include the runtime support necessary for monitoring resmlevels and selecting an appropriate
fidelity. The selection mechanism must take user prefergrioeaccount when there are multiple
dimensions of output quality. For example, a user in a cagualersation may prefer quick natural
language translation even if it involves some loss of aayyri®r a business negotiation, however,
accuracy may be much more important than speed.

2.3 Port Early, Port Often

Short device life and its implications for software devetggmnt were dominant considerations in
our design. Our target context is a vendor who must rapidlygio market a new mobile device

with a rich suite of applications. Some applications mayehlagen ported to older devices, but
others may not. To attract new corporate customers, theovandst also help them rapidly port

their critical applications. The lower the quality of pragtming talent needed for these efforts,
the more economically viable the proposition.

This leads to the central challenge of our woHow can novice software developers rapidly
modify large, unfamiliar applications for cyber foragin¥e assume that application source code
is available; otherwise, the problem is intractable. Junstifig one’s way around a large body of
code is time consuming. Our design must help a developedlyaigientify the relevant parts of
an unfamiliar code base and then help him easily create tbessary modifications for coarse-
grained remote execution. Obviously, the quality of theultasg port must be good enough for
serious use. In rare cases, a hew application may be writtem$cratch for the new device. Our
design does not preclude this possibility, but we do notudischis case further in this paper.

3 Our Solution

3.1 Properties of a Good Solution

Given these considerations, how can we tell if we are sutid@sgvhat defines a good solution?
Such a solution would enable novice developers to do theviaig:

e Face complex applications confidently with little traininigess required training is always
better, of course, but some training will be needed beforewace can use our solution.
About an hour of training is acceptable in commercial sgijrand is probably close to the
minimum time needed to learn anything of substance.

¢ Modify complex applications quicklyt is not easy to become familiar with the source code
of a complex new application, and then to modify it for adéptaand cyber foraging. Based
on our own experience and that of others we expect the tyjimsalfor this to be on the order
of multiple weeks. Shortening this duration to a day or lessil be a major improvement.

e Modify complex applications with few errorSince programming is an error-prone activity,
it is unrealistic to expect a novice to produce error-fredecwith our solution. A more
realistic goal is a solution that avoids inducing systematisolution-specific coding errors
by novices. The few errors that do occur should only be orglipaogramming errors that
are likely in any initial coding attempt.

e Produce modified applications whose quality is comparabkhbse produced by an expert
When fidelity and performance metrics are carefully exachunader a variety of cyber for-
aging scenarios, the adaptive applications produced big@eswusing our solution should be
indistinguishable from those produced by an expert.

3.2 Solution Overview

Our solution is in three parts. First, we provide a “little¢mage” calledvivendifor expressing
application-specific information that is relevant to cytmeaging. A developer examines the source
code of an application and creates a Vivendi file called thetits file.” The tactics file contains
the function prototype of each procedure deemed worthyrabte execution, and specifies how
these procedures can be combined to produce a result. Eecltanbination is referred to as a
remote execution tactior justtactic. For many applications, there are only a few tactics. In other
words, the number of practically useful ways to partitioa #pplication is a very small fraction
of the number of theoretical possibilities. A tactics fileshhia be created once per application. No
changes are needed for a new mobile device.

The second part of our solution is a runtime system callacbmathat provides support for
resource monitoring, adaptation, and learning-basedigirea. Chroma supports history-based
predictive resource management in a manner similar to #sdrtbed by Narayanan et al. for the
Odyssey system [29]. A call to Chroma allows the applicatodiscover the tactic and fidelity it
should use for the next compute-intensive operation. Chroases its estimate on current resource
levels and predicted resource consumption of the next tpar&Chroma has to be ported once to
each new mobile device, and is then available to all appiinat

The third part is the Vivendi stub generator, which uses #leéids file as input and creates a
number of stubs. Some of these stubs perform the well-knaekipg and unpacking function
used in remote procedure calls [3]. Other stubs are wragpefshroma calls. Calls to stubs are
manually placed in application source code by the developer

Although not a tangible artifact, there is an implicit fdudomponent to our solution. This is a
set of application-independent instructions to develspeiguide them in using the three solution
components mentioned above. This includes documentad®nvell as a checklist of steps to
follow when modifying any application.

To modify an application for cyber foraging, a developergameds as follows. She first ex-
amines the application source code and creates the tadticdN\fext, she runs the Vivendi stub
generator to create stubs. Then she modifies the applidayiamserting calls to the stubs at ap-
propriate points in the source code. Finally, she compiteslimks the modified application, stubs
and Chroma. On occasion, there may be an additional step difyimg the user interface of an
application for a new mobile device. Our work does not adilths step, but defers to ongoing

4

APPLICATION graphix;
REMOTEOP render;

IN int size DEFAULT 1000; // parameters
OUT float quality FROM 0.0 TO 1.0; // fidelities

// TACTIC definitions
// do step 1 followed sequentially by step 3
TACTIC do_simple = step_1 & step_3;

// do steps 1 & 2 in parallel followed by step 3
TACTIC do_all = (step_1, step_2) & step_3;

// RPC definitions

RPC step_1 (IN string input, OUT string bufl);

RPC step_2 (IN string input, OUT string buf2);

RPC step_3 (IN string bufl, IN string buf2,
OUT string final);

Figure 1: Example Tactics File in Vivendi

work on automated user interface generation [9, 30]. Werdesour solution components in more
detail in Sections 3.3 t0 3.5.

3.3 Vivendi

Vivendi enables concise description of the tactics andifidelof an application. Figure 1 shows
the tactics file for a hypothetical application callethphix. Each application code component
that may benefit from remote execution is callecemoteop(short for “remote operation”) and
is identified in Vivendi by the ta@EMOTEOP. A remoteop’s size and complexity determine the
granularity at which cyber foraging occurs. We expect onlgvaremoteops for each application,
possibly just one. For example, Figure 1 shows a single reopatalled-ender for the application
graphix.

Next, the tactics file specifies the critical variables thdluience the amount of resources con-
sumed by executing this remoteop. In language translatorexample, the number of words in
the sentence to be translated is the (single) critical bgiaA scene illumination application may
have two such variables: the name of the 3D image model amaiitent viewing position. We
refer to such variables gmrameterf the remoteop. Figure 1 shows a single parameter, called
size for the remoteopender. Vivendi passes parameter information to Chroma, which thses
knowledge in its history-based resource prediction meishanChroma’s prediction specifies the
fidelity at which the remoteop should be executed. Figuredicates thatjuality is the vari-
able corresponding to fidelity for the remotepgnder. Parameters and fidelities are specified
like C variables, with the keywor@lN indicating parameters art¥T indicating fidelities. Vivendi
supports a full suite of C-like primitive data types.

The tagTACTIC identifies a tactic for this remoteop. Each tactic represendifferent way
of combining RPCs to produce a remoteop result. Chromatsellee appropriate tactic and the
binding of RPCs to compute servers. These choices are ffozéine duration of a remoteop, but

5

From
Utilit Selected tactic L
. 'y |External Solver o . |Application
unctions| source and fidelities
Resource Predicted
availability resource usage

Resource Demand
Predictor

Resource Monitors

(actual resource consumption
fed back to improve prediction)

Figure 2: Main Components of Chroma

are re-evaluated for the next remoteop. Vivendi syntaxnallany combination of sequential and
parallel RPCs to be specified as a tactic. It also providegaloover placement of specific RPCs
on servers. This might be useful, for example, where a |aRZ Ras to be run on the same server
as an earlier RPC to take advantage of a warm cache or to avippisg a large intermediate
result. For brevity, we omit these syntax details. A tastehef syntax can be obtained from
Figure 1, which specifies two tacticgs_simple anddo_all. Sequential RPCs are separated by
ang operator while parallel RPCs are separated by commas amdamithin parentheses.

Finally, the RPCs used in tactics are specified using a sysmaiar to that for standard func-
tion prototype definitions. The taRPC identifies the RPCs of remoteagender in Figure 1.
Although we omit the details here, a wide range of basic dgtes can be used as RPC arguments.
This includes uninterpreted binary data objects and filabtes.

3.4 Chroma

Chroma provides resource measurement, prediction andgtfidelection functions that comple-
ment Vivendi. Through integration with Linux, Chroma is @ltb perform these functions even
when concurrent applications use cyber foraging. Figurefvs the main components of Chroma.

At the heart of Chroma is solverthat responds to queries from Vivendi stubs regarding the
tactics and fidelity to use for a remoteop. The solver cootdra solution space of tactic-fidelity
combinations and then exhaustively searches this spadtdozurrent optimum. The space is
relatively small since there are few tactics. The goodnéssspecific point in this space is com-
puted by autility functionthat quantifies informal directives such as “conserve battemaximize
quality” or “give best quality under 1 second”. Our prototypses closed-form utility functions
provided by an entity outside Chroma. A more complete systenid derive the utility function
from current user preferences.

The inputs to the solver include resource supply measurenae resource demand predic-
tions. The supply measurements are provided bydbleurce monitorshown in Figure 2. These
are software sensors in the mobile client and compute séraéreport values of network band-
width, CPU utilization, memory usage, battery level and 8o As shown in Figure 2, resource
demand predictions are made by a history-based predichas. predictor continuously improves
its accuracy by comparing previous predictions with actesburce usage, and refining its predic-
tion model. The predictor can be initialized using off-limaining or history from an older mobile
device. Parameter values from the Vivendi stub are factmtedhe prediction model.

/* APIs to interface with adaptive runtime */
int graphix_render_register ();
int graphix_render_cleanup ();
int graphix_render_find_fidelity ();
int graphix_render_do_tactics (char *input,
int input_len, char *final, int *final_len);

/* Parameters and fidelity variables */
void set_size (int value);
float get_quality ();

Figure 3: Vivendi Wrapper Stubs for Chroma Interactions

3.5 Generated Stubs

The Vivendi stub generator creates two kinds of stubs froacads file: standard RPC stubs and
wrapper stubs. The standard RPC stubs perform packing gratkimg of arguments. They also
provide a server listener loop with opcode demultiplexivge omit further discussion of these
since they follow well-known RPC practice. The wrapper stainplify application modification
by customizing the Chroma interface to the application.

Figure 3 shows the wrapper stubs for the tactics file showrigarE 1. A developer inserts
graphix _render register at the start of the application angtaphix_render_cleanup just
before its exit. She inserggraphix_render_find fidelity just before the code that performs
the render remoteop. Right before this, she insests:_size to set the parameter value for
this remoteop. Right after this, she insegts&_quality to obtain the fidelity recommended by
Chroma. Finally, she removes the actual body of code forgheoteop and replaces it by a call to
graphix_render_do_tactics. This will create the client that performs the operation réesho
using a tactic selected by Chroma.

To create the server, starting with an unmodified applicasbe inserts two APl callservice_init
andrun_server into the application’s main routine to initialize the saread to start the server’s
listening loop respectively. Finally, she creates the meguRPC server functions using the remo-
teop code removed from the client.

4 Validation Approach

The primary goal of our validation study was to assess howeuglsolution meets the goodness
criteria laid out in Section 3.1. A secondary goal was to gatletailed process data to help identify
areas for future research. Our approach combines weltledtad user-centric and system-centric
evaluation metrics. User-centric metrics for programnfi@ecsls on measures such as ease-of-use,
ease-of-learning, and errors committed [43]. Systemrentetrics focus on measures such as
application latency or lines of generated code.

We combined these techniques in a laboratory-based usdty wiith two parts. In the first
part, novice developers modified a variety of real appla&ifor cyber foraging. We describe this
part in Section 4.1 and report its results in Sections 5 ton7thé second part, we compared the

performance of these modified applications to their perboroe when modified by an expert. We
describe this part in Section 4.2 and report its results ctiGe 8

4.1 User-Centric Evaluation

Following the lead of Ko et al. [27] and Klemmer et al [26], va®k user-centric evaluation meth-
ods originally developed for user interface investigati@amd adapted them to the evaluation of
programming tools.

4.1.1 Control Group

In designing the user study, a major decision was whethendorporate a control group in our
design. When there is substantial doubt about whether atqmiocess improves performance, it
is customary to have one condition in which the tool is usetaacontrol condition where subjects
perform the task without the tool. This allows reliable caripon of performance. However, the
practicality and value of control groups is diminished im&osituations. For example, it is difficult
to recruit experimental subjects for more than a few houtsther, the value of a control group
is negligible when it is clear to task experts that perforgrartask without the tool takes orders of
magnitude longer than with it.

Our own experience, and that of other mobile computing rebeas, convinced us that modi-
fying real-world applications for adaptive mobile use is altiiweek task even for experts. Given
this, our goal of one day is clearly a major improvement. Rogia control condition under these
circumstances would have been highly impractical and té NMalue. We therefore chose to forego
a control group.

4.1.2 Test Applications

We chose eight applications of the genre mentioned at thiatieg of this paper. Table 1 shows
their salient characteristics. The applications w&eVU [46], a virtual walkthrough application

that allows users to navigate a 3D model of a buildiRgnlite [15], an English to Spanish trans-
lator; Radiator[51], a 3D lighting modelerface[41], a face recognition applicatiodanus[48],

a speech recognizeflite [4], a text to speech convertdvjusic[20], an application that records
audio samples and finds similar music on a server@GOE€R[42], an optical character recognizer.

None of these applications was written by us, nor were anyheift designed with remote
execution, adaptation, or mobile computing in mind. As @ablshows, the applications ranged
in size from 9K to 570K lines of code, and were written in a wiggiety of languages such as
Java, C, C++, Tcl/Tk, and Ada. The application GOCR, was ws#y for training participants;
the others were assigned randomly.

4.1.3 Participants and Setup

We selected participants whose characteristics matcle thiosovice developers, as discussed in
Section 2.3. In many companies, the task of porting cods faljunior developers. We modeled

8

S | & 2 :
(@) o (0] Q

5 | & 3| C s,
%) Q = ElE|lnlZ |O
@ S 2 o 8O |8 | g
L 2= =) I S| c || o|®
Application 3 z — (I W I =
Face(Face Recognizer) 20K | 105| Adaw/Cinterfacel 0 | 1 |1 | 2 | 1
Flite (Text to Speech) 570K | 182 C o112 |1
GLVU (3D Visualizer) 25K | 155| C++,0OpenGL |1 (151 18| 1
GOCR(Character Recognizer) 30K | 71 C++ Oj|11]2]1
JanugSpeech Recognizer) | 126K | 227 | C, Tcl/Tk,Motif | 1 | 1 | 3| 9 | 2
Music (Music Finder) 9K 55 C++, Java 02|12]|1
Panlite(Lang Translator) | 150K | 349 C++ o1 4117
Radiator(3D Lighting) 656K | 213| C++,OpenGL |2 |1 1|4 |1

Table 1: Overview of the Test Applications

this group by using undergraduate seniors majoring in cder@cience. In addition, we used a
group size large enough to ensure the statistical validiuo findings. While the exact numbers
depend upon the variability within the participants and akierall size of the effects, widely ac-
cepted practices recommend between 12 and 16 users [31]s&deli3 participants, which falls
within this range and represents the limit of our resourceteims of time (six hours per data
point).

On average, our participants were about 21 years old. Oectsah criteria required them
to know C programming and be available for a contiguous bloickix hours. None of them
were familiar with the research of our lab, any of the tooldemdevelopment, or any of the test
applications. Table 8 shows the assignment of particip@népplications. As the table shows,
several participants returned for additional applicatiom keeping with standard HCI practice,
we counter-balanced the assignment of participants tacgpioins to avoid any ordering effects.
These additional data allowed us to investigate learnifegtsf and to determine whether our one-
time training was adequate.

Participants were compensated at a flat rate of $120 for atioplof a task. We stressed that
they were not under time pressure, and could take as longgasdeded to complete the task. We
made certain that they understood the motivation was gqueatitl not speed. This was a deliberate
bias against our goal of short modification time.

The participants worked alone in a lab for the duration ofghely. We provided them with
a laptop and allowed them to use any editor of their choice dibplays of the participants were
captured throughout the study using Camtasia Studio [4Bis provided us with detailed logs of
user actions as well as accurate timing information.

4.1.4 Experimental Procedure

Training Process: Upon arrival, participants were given a release form andegureed with a
brief introduction to the user study process. They were tio&d they were going to be making

9

some existing applications work on mobile devices, and ttiey would be learning to use a set
of tools for making applications work within an adaptive tiome system. The participants were
then introduced to the concepts of remoteops, parametdedifits, RPCs and tactics. We then
conducted a hands-on training session using the GOCR afiphicwhere we demonstrated how
to identify and describe these concepts in Vivendi. Theigpents were provided with docu-
mentation on Vivendi syntax, with many examples. We thenlgdithe participants in modifying
GOCR. Training sessions lasted less than one hour in alscase

Testing Process: After training, each participant was randomly assignedri@pplication to
be modified. They were given all accompanying documentdtorthe application written by
the original application developer that explained how tppliaation worked and explained the
functional blocks that made up the application. This docutat@on did not mention anything
about making the application adaptive as that was not thginali developer’s intention. The
participants were also provided with domain informatioonfirwhich it was possible to extract
the parameters and fidelity variables. For example, the domérmation might say that for 3D
graphics applications, the name of the model, the size offrthéel, the current viewing position
and current perspective affect the resource usage of tHigatppn. It was up to the participants to
determine exactly which application variables these gamridelines mapped to.

Task Structure: We provided participants with a structured task and a seea€ml instruc-
tions. The task structure consists of three stages, as simWable 2. In Stage A, the primary
activity is creating the tactics file; in Stage B, it centersaveating the client code component;
in Stage C, it centers on creating the server component. Wieddo cleanly isolate and in-
dependently study the ability of novices to perform eachheke stages. We therefore provided
participants with an error-free tactics file for use in SeaBeand C. This ensured that errors made
in Stage A would not corrupt the analysis of Stages B and C.

As Table 2 shows, each stage consists of a structured sexjaésubtasks. For each subtask,
participants were given a general set of instructions, nstamized in any way for specific appli-
cations. After completion of each subtask, we asked ppéids to answer a set of questions about
it.

4.1.5 Data Collected

Timing: Using Camtasia recordings, we obtained completion timegd&ch subtask. These
could be aggregated to find completion times for stages dh#ooverall task.

Task Process: From Camtasia recordings, we collected data on how paatitgpcompleted all
of the subtasks, noting where they had trouble, were codfugenade mistakes.

Self-Report: We collected questionnaire data of several types, incuduality of training,
ease of use of our solution, and performance in each subtask.

10

Stage A Stage B Stage C
Tactics file | Client component Server component
Read docs Read docs Read docs

Application Include file Include file header
In Register serviceinit API call
Out Cleanup Create RPCs
RPC Find Fidelities | run.server API call
Tactic Do Tactics Compile and fix
Compile and fi%

This table shows the task stages and the subtasks withinstagé. ! Note that in Stages B and C, the
participants compiled their code, but did not run it.

Table 2: Task Stages

Solution Errors: We noted all errors in the participants’ solutions. We fixedlydrivial errors
that kept their code from compiling and running. This allovus to collect performance data from
their solutions.

4.2 System-Centric Evaluation

The goal of the system-centric evaluation was to understdrather rapid modification by a novice
resulted in adequate application quality. For each apjdicawe asked an expert who had a good
understanding of our solution and the application to createell-tuned adaptive version of the
application. The performance measurements from this &xpedified application were then used
as a reference against which to compare the performancevafeamodified applications under
identical conditions.

4.2.1 Testing Scenarios

Ideally, one would compare novice-modified and expert-tediapplications for all possible re-
source levels and user preferences. Such exhaustivegiéstihearly not practical. Instead, we
performed the comparisons for six scenarios that mightaflyi occur in cyber foraging.

These six scenarios are shown in Table 3. We used two values@fon compute servers:
light (1% utilization) and heavy (95% utilization). We usieb bandwidth values: high (5 Mb/s)
and low (100 Kb/s), based on published measurements froni 80%vireless networks [28]. This
yielded four scenarios (labeled “LH,” “HH, “LL" and “HL” in @ble 3). All four used the same
user preference: return the highest fidelity result thagésako more than X seconds, where X is
representative of desktop performance for that applinaflowas 1 second except for Face (20 s)
and Radiator (25 s). The other two scenarios are corner:casesario “Q,” specifying highest
fidelity regardless of latency; and scenario “T,” specifyfastest result regardless of fidelity.

11

ID || Load| BW | User Prefs Typical Scenario
Q || Low | High | Highest quality result | Conducting an important business meeting using
a language translator
T Low | High | Lowest latency result | Field engineer just wanting to navigate a quick
3D model of a building to understand the build-
ing’s dimensions
LH || Low | High | Highest quality resul{ Sitting in an empty cafe with plentiful bandwidth

within X's and unused compute servers
HH || High | High | Highest quality resulf Bandwidth is available in cafe but long lived re-
within X's source intensive jobs are running on the compute
servers
LL || Low | Low | Highest quality resulf Cafe’s compute servers are unused but other cafe
within X 's users are streaming high bitrate multimedia con-

tent to their PDAs
HL || High | Low | Highest quality resulf The cafe is full or people either streaming mul-
within X 's timedia content or using the compute servers|for
resource intensive jobs

Load is the compute server load. BW is the available bandwidser Prefs are the User Preferences. X
is 20s for Face, 25s for Radiator, and 1s for the rest.

Table 3: Scenario Summary

4.2.2 Experiment Setup

To model a resource-poor mobile device, we used an old Thithi§B0X laptop with a Pentium
266 MHz processor and 64 MB of RAM. We modeled high and low emdpgute servers using two
different kinds of machinesSlow with 1 GHz Pentium 3 processors and 256 MB of RAM, and
Fast with 3 GHz Pentium 4 processors and 1 GB of RAM. The mobilentlcould also be used as a
very slow fallback server if needed. All machines used thei@®3.1 Linux software distribution,
with a 2.4.27 kernel for the client and a 2.6.8 kernel for thevers. To avoid confounding effects
due to Chroma’s history-based mechanisms, we initialize@a with the same history before
every experiment.

4.2.3 Procedure

Each novice-modified and expert-modified application watetkon 3 valid inputs in each of the 6
scenarios above. These 18 combinations were repeatedfasiramd slow servers, yielding a total
of 36 experiments per application. Each experiment wasatedes times, to obtain a mean and
standard deviation for metrics of interest. Our systentrgeresults are presented in Section 8.

5 Results: Little Training

The first criterion for a good solution relates to trainingation, as listed in Section 3.1: “Can
novices face complex applications confidently with littl@iming?” Our training process was pre-
sented in Section 4.1.4. As stated there, the training@esss one hour or less for all participants,

12

~
|

Scale ranges from:
61 1—Incredibly certain to 7-Completely uncertain
<
> Bad
2
.E 4 ...
8 Good
@
g9
2
| m m ﬂ m m
Jaom B OB B M H
Face Flite Janus GLVU Music Panlite Radiator

For each application, the height of its bar is the mean uatgyt score on the Likert scale shown in the
legend, averaged across all participants. Error bars shewtandard deviation.

Figure 4: Self-Reported Uncertainty Scores

300 -
250 -
200 A +
150 4
100 -

N m
0 T T

Face Flite Janus GLVU Music Panlite Radiator

Completion Time (minutes)

For each application, the height of its bar is the mean cotiopldime averaged across all participants.
Error bars show the standard deviation.

Figure 5: Measured Application Completion Times

7 -

Scale ranges from:

61 1-Really easy to 7—Incredibly hard

o
L

Lanmlas

Face Flite Janus GLVU Music Panlite Radiator

Difficulty Score
©w N

n

For each application, the height of its bar is the mean difficscore on the Likert scale shown in the
legend, averaged across all participants. Error bars shewtandard deviation.

Figure 6: Self-Reported Task Difficulty Scores

thus meeting the above criterion. What is left to be deteeahiis whether this training was ad-
equate. The ultimate test of adequate training is task padoce, as shown by the success our
participants have in actually modifying applications. $@eesults are reported in the rest of the
paper. A secondary test is the subjective impression oiggaaihts. We asked participants several
guestions after task completion to help us judge whethgrfleadequately prepared.

13

Our questions probed directly about the value of the trgiaimd training materials. Participants
responded on a 5-point Likert scale (1 — Helped immenselyQiite a lot, 3 — Somewhat, 4 —
A little bit, 5 — Didn't help at all). In response to the questj “Was the training helpful?” the
average participant response fell between 1 (Helped imehgnand 2 (Quite a lot), with a mean
value of 1.33 and a standard deviation of 0.48. The resulte gienilar for the question “Was the
documentation helpful?” The mean response was 1.64 andahéasd deviation was 0.76.

In addition, after every subtask of Table 2, we probed pgditts’ confidence in their work
through the question, “How certain are you that you perfattie subtask correctly?” Responses
were provided on a 7-point Likert scale (1 — Incredibly certa 7 — Completely uncertain). As
shown in Figure 4, participants reported a high degree ofidence across the range of applica-
tions. The mean response ranged from 1.3 for Face, to 2.2 tisidV

These self-report ratings correlate highly with the taskgrenance times presented in Sec-
tion 6. The correlation coefficient)is 0.88, indicating a strong positive correlation. Th&alue
of 0.009 indicates that it is highly unlikely this correlation wd occur by chance. We will dis-
cuss these results in more detail in Section 10, where weifg@pportunities for improving our
solution. Overall, these results suggest that the paaintgpbelieved their training prepared them
well for the modification tasks they faced.

6 Results: Quick Modifications

In this section, we address the second criterion listed ati@e3.1: “Can novices modify complex
applications quickly?” To answer this question, we examioeerall task completion times across
the range of applications in our validation suite. We foumak the average completion time was
just over 2 hours, with a mean of 2.08 and a standard deviatidh86. Figure 5 shows the
distribution of task completion times, and Table 4 presémesbreakdown of these times across
task stages. These data show mean completion times ramgimg70 to 200 minutes, with no
participant taking longer than 4 hours for any applicatiéor two applications, some participants
only needed about an hour.

The proportion of the original code base that was modifiech@tlger measure of task simplic-
ity. Table 5 shows the relevant data. These data show thyaeadimy fraction of the code base was
modified in every case, and that there was roughly ten timawa$ stub-generated code as hand-
written code. In addition to the reduction in coding effahe use of stubs allowed participants to
get away with minimal knowledge of Chroma.

Finally, we asked participants the question “How easy dud fyad this task?” Responses were
provided on a 7-point Likert scale (1 — Really easy to 7 — Idibdy hard). As Figure 6 shows,
the responses were heavily weighted toward the easy ene aictie for all applications. These
self-report ratings also correlate highly with the task ptetion times reported earlier € 0.82,

p = 0.02), increasing our confidence that these results araingdal. As an additional validation,
the self-reported confidence and task difficulty scores e strongly correlated € 0.88,p =
0.01). Taken together, these pieces of evidence convesyggest that the participants were able
to quickly and easily modify the complex applications reygr@ed in our validation suite.

14

App Stage A Stage B Stage C Total

Face 10.3(1.7) | 36.6(4.5) | 33.6(17.8)| 80.5 (22.7)
Flite 12.6(7.8) | 37.7(6.7) | 20.6(16.4) | 70.9(20.4)
Janus || 29.3(14.0)| 31.0(6.5) | 42.1(10.2) | 102.4(26.2)
GLVU || 66.3(20.8) | 65.1(22.5)| 40.3(7.7) | 171.7(33.8)
Music || 49.6(15.7)| 68.2(17.1) | 83.0(23.0) | 200.8(45.4)
Panlite || 36.2(7.7) | 48.7(20.2) | 32.8(14.7) | 117.8(36.6)
Radiator| 17.2(6.0) | 45.3(8.7) | 39.4(7.0) | 101.9(11.7)

Each entry gives the completion time in minutes for a tasfjestaveraged across all participants who were

assigned that application. Values in parentheses areasthddviations.

Table 4. Completion Time by Task Stage

App Lines File | Tactic Stage B: Client Modifications Stage C: Server Modifications
of Code| Count|| File Lines Lines Stub Files Lines Lines Stub Files
Size Added | Removed| Lines | Changed| Added | Removed| Lines | Changed

Face 20K 105 10 31-68 | 12-15 | 556 2 26—-45 | 15-24 | 186 2
Flite 570K 182 10 29-39 1-5 556 2 13-30 3-87 186 2
GLVU 25K 155 38 62-114| 3-21 | 1146 2 88-148 | 12-32 | 324 2
Janus 126K 227 25 28-47 2-7 1538 3 59-130| 7-70 434 4
Music 9K 55 11 61-77 4-6 1127 2 131-269| 23-147| 203 2
Panlite 150K 349 21 30—-66 | 1-39 | 1481 3 12-73 | 18-39 | 406 3
Radiator|| 65K 213 15 41-51 1-47 643 2 49-106 | 17-32 | 202 2

Any a-b value indicates a lower bound afand an upper bound &t Lines of Code and File Count show

the size and number of files in the application. Tactic FileSjives the number of lines in the application’s
tactics file. The Lines Added and Removed columns show howyhiraes were added and removed when
performing the task. Stub Lines gives the number of stutegand lines of code. Files Changed gives the

maximum number of files that were actually modified by theipgants.

Table 5: Application Modifications
7 Results: Low Error Rate

In this section, we examine the third criterion listed in 8@t 3.1: “Can novices modify complex

applications with few errors?” Since programming is an epi@ne activity, we expect novice-
modified applications to contain ordinary programming exraf the types described by Pane et
al. [33]. In addition, we expect a few additional simple esrbecause participants could not test
their solution, except to verify that it compiled cleanlye\8vide the analysis into two parts; errors
in creating tactics files (Stage A); and errors in modifyipglécation code (Stages B and C). An

expert scored both parts through code review.

Table 6 shows the errors for Stage A. The parameter, RPCaatid errors were due to spec-
ifying too few parameters, RPC arguments, and tactics otispy. Too few parameters can lead
to poor predictions by Chroma. Too few tactics could hurtli@ggon performance because the
tactics-fidelity space is too sparse. Too few RPC argumestdts in a functionally incorrect so-

15

lution. There were also 4 harmless errors that would not lsaused any performance problems.
In particular, the participants specified extra fidelitiesttChroma would ignore.

For Stages B and C, we classified the errors found as diikil or non-trivial. Trivial errors
are those commonly occurring in programming assignmenx@miples include being off by one on
a loop index, or forgetting to deallocate memory. Triviabes also include those that would have
been detected immediately if our procedure allowed padiais to test their modified applications.
An example is forgetting to insertiegister_API call to Chroma. All other errors were deemed
non-trivial.

Table 7 shows the error distribution across applicationsotal of 25 trivial errors were found,
yielding an average incidence rate of one trivial error pedification attempt. The bulk of these
errors (80%) were either a failure to register the applcagarly enough or an incorrect specifica-
tion of the output file. The register error was due to partiois not placing the register call at the
start of the application. This prevented the applicatiomficonnecting to Chroma. The output file
errors were due to incorrect use of string functions (a comprogramming error); this resulted
in the application exiting with an error when performing aP@® Both of these errors would have
been discovered immediately if the participants had beéntaliest their applications.

A total of 10 non-trivial errors were found, giving an incrte rate of 0.4 per modification
attempt. These took two forms: incorrectly setting paramedlues, or incorrectly using fidelities.
The parameter errors appeared across many applicatiotestivifidelity errors occurred only in
GLVU. Neither of these errors would be immediately appavemen running the application. We
examine the performance impact of these errors in Section 8.

In summary, we achieved a good success rate with 72% (18 aifabe Stage A tactics files
having no harmful errors and 64% (16 of 25) of the Stage B andice-modified applications
having no non-trivial errors. At first glance, these numbeey seem unimpressive. However,
no novice-modified application had more than 1 non-triviabe This is very low given that
the applications being modified consisted of thousandsnefsliof code and hundreds of files.
We are confident that any manual attempt, even by expertspthfynthese applications would
result in far larger numbers of non-trivial errors. This lewor rate is also an upper bound as
the participants were not able to actually test their modlifipplications — they only confirmed
that it compiled cleanly. The low error rate also substdigtimproves standard testing phases as
the applications are mostly correct. In addition, any errmaught during testing can be rapidly
traced to the offending code lines, because relatively fie@slof code were inserted or deleted. In
Section 10 we examine ways to reduce this error rate evemeiurt

8 Results: Good Quality

The fourth criterion listed in Section 3.1 pertains to thaldy of modified applications: “Can
novices produce modified applications whose quality is canaiple to those produced by an ex-
pert?” To answer this question, we conducted the systerricezvaluation described in Sec-
tion 4.2.

For each novice-modified application, we conducted 36 exysmts comparing its perfor-
mance to that of the same application modified by an experexfptained in Section 4.2.3, these

16

Apps Params RPCs Tactics Harmlesst Apps Okay
Face 0 0 0 0 3 3
Flite 1 0 0 0 3 2
GLVU 1 1 0 3 5 4
Janus 0 0 0 1 3 3
Music 0 1 0 0 3 2
Panlite 0 0 2 0 5 3
Radiator 0 2 0 0 3 1
Total 2 2 0 4 25 18

The # Apps column lists the no. of tactics files created fohegap. Okay lists how many tactic files had
no harmful errors.

Table 6: Total Errors for Stage A Across All Participants

36 experiments explored combinations of compute serveislasetwork bandwidths, user prefer-
ences, and server speeds. For each experiment, we repbty iahel latency of the result. Fideli-
ties are normalized to a scale of 0.01 to 1.0, with 0.01 bdiegntorst possible fidelity, and 1.0 the
best. Fidelity comparisons between different versionfiefsame application are meaningful, but
comparisons across applications are not. We report laterssconds of elapsed time.

We deemed applications to be indistinguishable if theifgrarance onall 36 experiments
came within 1% of each other on both fidelity and latency rogtiThis is obviously a very high
bar. Data points differing by more than 1% were deemed anemale evaluated the performance
of client and server components of each application seggrdtio anomalies were observed for
server components: all 25 were indistinguishable fronrtgdert-modified counterparts.

Table 8 presents our client component results. The tabtg Bmteach participant, and appli-
cation modified by that participant, gives the percentagth®f36 experiments for which novice-
modified and expert-modified applications were within 1%. cAre of 100% indicates indistin-
guishable applications; a lower percentage indicatesrimepce of anomalies. Table 8 shows that
novice- and expert-modified applications were indistisgable in 16 out of 25 cases.

Table 9 shows details of the anomalies. To save space, itstraws the performance of one
anomalous version of GLVU; the other 3 anomalous versione sinilar. For each application,
we provide the relative fidelity and latency obtained forZaihputs in all 6 scenarios. The relative
fidelity is expressed as H (Higher), S (Same), or L (Lowerhtlize expert-modified version.
Latency is given as a ratio relative to the expert. For examplvalue of 11.9 indicates that the
novice-modified application had 11.9 times the latency efékpert-modified application, for the
same input.

We observe that GLVU was the source of most of the anomaliés. nbvices’ solutions se-
lected an inappropriately high fidelity resulting in theshgtions exceeding the latency goals for the
T, LH, HH, LL, and HL scenarios. Code inspection of the ananalversions of GLVU revealed
that all 4 anomalous versions made the same mistake. Tossfathg modify GLVU, participants
needed to use a fidelity value returned by Chroma to set thecappn state before performing the

17

Trivial Errors Non-Trivial
Errors
Apps Reg. Output Output Mem. Other Params Fids
Late File Space Freed

Face 0 3 0 0 0 1 0
Flite 0 3 0 0 1 0 0
GLVU 3 0 1 0 1 1 4
Janus 1 2 0 0 0 0 0
Music 1 0 0 2 0 1 0
Panlite 4 0 0 0 0 1 0
Radiator| 2 1 0 0 0 2 0
Total 11 9 1 2 2 6 4

Observed trivial errors include: did not register appimatearly enough; did not create output file prop-
erly; did not allocate enough space for output; freed stagenory. Observed non-trivial errors include:
did not set parameters correctly; did not use fidelities tapplication state properly

Table 7: Total Errors for Stages B and C Across All Partictpan

chosen tactic. In all 4 cases, the participants read the\@dlthe fidelity but forgot to insert the 2
lines of code that set the application state. As a resulsetdeapplications always performed the
chosen tactic using the default fidelity, and were unableweet fidelity for better latency.

The other 5 anomalies (1 Face, 1 Flite, 1 Panlite and 2 Radvatsions) were due to mis-
specified parameters. In 4 of the 5 cases, the participanéspsgameter value that was too small.
For Panlite, the parameter was set to the length of the enpre string instead of just the number
of words in the input string. For Flite, the participant fotgo set the parameter value, which
then defaulted to a value of 0. For Face, the parameter was ggiut file name length instead
of file size. For Radiator (participant 12), the parametes set to a constant value of 400 instead
of the number of polygons in the lighting model. These migesiications of parameter values
led Chroma to recommend fidelity and tactic combinations éx@eeded the scenario latency
requirements.

In the last case (Participant 4’s version of Radiator), @n@meter was set to a far higher value
than reality. In particular, it was set to the size of the midite2on disk instead of just the number
of polygons in the model being used. This caused Chroma todye pessimistic in its decision
making than it should have been. So this application veraaimeved lower fidelity than it could
have.

In summary, our results confirm that novice-modified appiicacode is of high quality. All
25 of the server components, and 16 of the 25 client compsmeatlified by participants were
indistinguishable from their expert-modified counterpaMVhere there was divergence, analysis
of the anomalies give us ideas for improving our solution. #&russ these improvements in
Section 10.

18

Participant Number

1 2 3 4 5 6 7 8 9 10 11 12 13
Face|| 100% 100% 67%
Flite 100% 100% | 67%
GLVU || 44% 44% 44% 100% 44%
Janus 100% | 100% 100%
Music 100% 100% 100%
Panlite 100% 83% 100% 100% 100%
Radiator 94% 100% 78%

A score of 100% indicates that the participant’s client i@rsnatched the performance of the expertin all
36 experiments. A blank entry indicates that the partidipeas not asked to create a modified version of
that application.

Table 8: Relative Performance of Novice-Modified Client Gament

9 Why Our Solution Works

At first glance, the results of the previous sections seengtoal to be true. Modifying a complex

application for cyber foraging, a task that one expects take a novice multiple weeks, is ac-
complished in just a few hours. The modified application @enfs close to what one could expect
from an expert. Yet, it is not immediately clear what accsuot this success. Vivendi, Chroma
and the stub generator are each quite ordinary. Somehawgctimebined effect is greater than the
sum of the parts. What is the magic at work here?

The key to explaining our success is to recognize the existeha deep architectural unifor-
mity across modified applications. This is in spite of divtgrén application domains, program-
ming languages, modular decompositions, and coding stytearises from the fact that, at the
highest level of abstraction, we are dealing with a singlerg®f applications: mobile interactive
resource-intensive applications.

In a mobile environment, all sensible decompositions ohsaplications place interactive
code components on the mobile client, and resource-ineesimponents on the compute server.
This ensures low latency for interactive response and aoypigute power where needed. This
space of decompositions is typically a tiny fraction of abkpible procedure-level decompositions.
The challenge is to rapidly identify this “narrow waist” in anfamiliar code base.

In examining a broad range of relevant applications, we \sarprised to observe that every
unmodified application of interest to us was already stmectto make such decomposition easy. In
hindsight, this is not so surprising. Code to deal with ustgriaction is usually of a very different
flavor from code that implements image processing, speedyniion, and so on. Independent of
mobile computing considerations, a capable programmetfdagitucture her application in a way
that cleanly separates these distinct flavors of code. Taragon would be defined by a small
procedural interface, with almost no global state shareaksadhat boundary — exactly the criteria
for a narrow waist.

In addition to this similarity of code structure, there is@kimilarity in dynamic execution
models. First, there is a step to obtain input. This could bpesech utterance, a natural language

19

Scenarios Scenarios
Q T LH HH | LL | HL Q| T LH HH LL HL
Slow S,5.24| S,5.22 Slow S,2.33| ... | S,245
S,5.26 | S,5.24 S,2.77| ... | S,2.74
S,5.20| S,5.25 S,251| ... | S,242
Fast S,14.21| S, 14.22 Fast S,291| ... | S,2.97
S,14.37| S, 14.29 S,356| ... | S,3.23
S,14.17| S, 14.25 . S, 3.16 S, 3.38
(a) Face (Participant 11) (b) Flite (Part|C|pant 12)
Q T LH HH LL HL Q| T LH HH LL HL
Slow H,11.26| ... H, 3.04 H, 3.06 Slow H,768| ... | H, 757
H,13.29| H,1.16| H,4.65| H, 1.15| H, 4.61 H,6.89| ... | H,6.93
H, 8.31 H, 2.47 H, 2.45 H,754| ... | H,7.49
Fast H, 11.34 H, 3.06 H, 3.02 Fast
H,13.40| ... H, 4.59 H, 4.67
H, 7.85 H, 2.46 H, 2.48 R
(c) GLVU (Partmpant 1) (d) Panlite (Participant 4)
Q| T LH HH | LL | HL Q| T LH HH LL HL
Slow Slow
L,0.17 H,3.98| H,1.14| H,1.10| H, 1.15
Fast Fast
L, 0.05 H,1.11| H,1.12| H,1.16 | H, 1.14

(e) Radiator (Participant 4)

(f) Radiator (Participant 12)

Each entry consists of a relative fidelity followed by a riglatatency for a single input. The relative
fidelity is either L—lower than expert, S—same as expert, -enhigher than expert. The relative latency

gives the ratio between the participant’s version versesetp

ert. E.g., a latency of 11 indicates the

participant’s version had 11 times the latency of the expg@nly the anomalous values are presented. All

other values are replaced by the symbol “..

.” to avoid vislatter.

Table 9: Detailed Results for Anomalous Application Vensio

20

fragment, a scene from a camera, and so on. Then, resouecesive processing is performed on
this input. Finally, the output is presented back to the.uBRis may involve text or audio output,
bitmap image display, etc.

In modifying such an application for mobile computing, thaimchange is to introduce an
additional step before the resource-intensive part. Thestep determines the fidelity and tactic
to be used for the resource-intensive part. It is in this gtepadaptation to changing operational
conditions occurs. A potential complication is the needdd tne concept of fidelity to the appli-
cation. Fortunately, this has not been necessary for anvyrodpplications. Most applications of
this genre already have “tuning knob” parameters that majpyea fidelities — another pleasant
surprise.

Our solution exploits these similarities in architectunel @xecution model. The architectural
similarity allows us to use a “little language”(Vivendi) tepresent application-specific knowledge
relevant to cyber foraging. This knowledge is extracted bgweeloper from the source code of an
application and used to create the tactics file. The simylariexecution model allows us to use a
common runtime system (Chroma) for adaptation across pliagtions. The use of stubs raises
the level of discourse of the runtime system to that of thdiegjon. It also hides many messy
details of communication between mobile device and comgerteer.

The net effect of executing the solution steps using a cistdklto quickly channel attention
to just those parts of application source code that areyliteebe relevant to cyber foraging. At
each stage in the code modification process, the develogea besp and narrow goal to guide
his effort. This focused approach allows a developer torigmoost of the bewildering size and
complexity of an application.

In addition to reducing programmer burden, there is alsqaifgtant software engineering
benefit to the clean separation of concerns implicit in osigte The application and the runtime
system can be independently evolved, with many interfae@g@és only requiring new stubs.

10 Improving the Solution

Our solution could be improved in several ways: eliminatatigerrors, further reducing the time
required, and ensuring it applies to the widest possiblgeai potential mobile applications. In
order to chart out these future directions, we analyze allnbn-trivial errors, examine how the
subjects spent their time, and examine the differences jyqy the solution to the range of
applications. Since our solution is already fast, we foauswproving the solution quality.

The non-trivial errors in Stage A took 3 forms; specifying few parameters, specifying too
few RPC arguments, and specifying too few tactics. Thesesewere distributed randomly across
participants and applications.

All of the non-trivial errors in Stages B and C occurred in aqubtask, “Find Fidelities”,
while creating the client, and were of only two types. In oyygetof error, all for GLVU, novices
successfully read the fidelity values returned by Chromafaled to use those values to set the
application state. In the other cases, novices failed tthegtarameters correctly to reflect the size
of the input. There were no errors associated with any othteask involved in creating either the
client or server.

21

40 1 Stage A 40 1 Stage B 40 1 Stage C

NGLVU
30 1 W Musicmatch 30 1
Panlite
O Other

Completion Time (min)

Scale ranges from:
1-Incredibly certain to
7-Completely uncertain

o
L

o
L

Difficulty Score
w £

N
L

Read In RPC Read Docs Find Do Tactics Other (4) Compile and Other (5)
Docs Fidelities Fix

Only the largest time values (top row) and self-reportefidlifty scores (bottom row) are shown. The
Other bar presents either the sum (for times) or the avefagdifficulty) of the remaining subtasks (no.
of subtasks shown in parentheses on the x-axis).

Figure 7: Time and Difficulty of Each Individual Subtask

In order to eliminate these errors, we need to determinehveinéihe programmers were unable
to understand the task or simply forgot to complete all nesmgssteps. If the latter, straightforward
improvements in the instructions may be sufficient to elawérall observed errors. An examination
of the evidence summarized in Figure 7 suggests that farigets is the likely cause. Subjects
did not report that the “Find Fidelities” subtask was padiely difficult, rating it only 2.6 on
a 7-point difficulty scale where 4 was the midpoint. They alg&b not report a high degree of
uncertainty (not shown) in their solution, giving it a 1.7 @7-point uncertainty scale (midpoint
at 4). Table 8 shows that, of the seven programmers who mddasitone non-trivial error, five
successfully modified a second application with no errorsth® other two, one modified only a
single program, and the other made non-trivial errors oh pobgrams they modified. Together,
these results suggest that nearly all the subjects werbleapigperforming all tasks correctly. This
implies forgetfulness was the problem. This analysis lesd® believe that forcing developers to
pay more attention to these error-prone parts of the “FidélRies” task, perhaps with an extended
checklist, will eliminate most of the errors.

Figure 7 also suggests that the difficult and time-consurtaslgs vary considerably across
application types. For example, GLVU required more timeha tIn” and “RPC” subtasks of
Stage A as it had a large number of parameters and RPC arguaseshown in Table 1. It also
had larger times for the “Find Fidelities” and “Do Tacticsitdasks of Stage B as “Find Fidelities”
required participants to set each of the parameters while TBctics” required participants to
manage each of the RPC arguments. Similarly, Panlite redjuirore time during the “Tactic”
subtask of Stage A as it had a large number of tactics thatdbd tdentified and described. In
each of these cases, we suspect that instructing prograaomérow to keep track of the minutiae
of these subtasks, and ensuring that each is completeddweuwf substantial benefit.

Finally, Music had a very large “Compile and fix” time for Se@. This was because Mu-
sic was originally written as a non-adaptive, desktop dedrclient—server application. Thus it

22

already used a specific on-wire data format that particgphatl to reuse, requiring them to write
large amounts of relatively simple buffer manipulationeodrivial errors in this code led to the in-
creased subtask times. This suggests that there will bedspecific to some types of applications
that may make them less amenable to our solution.

11 Related Work

Our work spans mobile computing, software engineering a@t At their juncture lies the prob-
lem of rapid modification of resource-intensive applicatidor cyber foraging. To the best of our
knowledge, we are the first to recognize the importance sfhdbblem and propose a solution.
Our solution and its validation build upon work in three aelittle languages, adaptive systems,
and HCI evaluation methods.

The power of little languages was first shown by early versiohthe Unix programming
environment. Make [11] is perhaps the best-known example of a little languags. Bentley
explains [2], the power of a little language comes from thet fhat its abstractional power is
closely matched to a task domain. Our use of tactics and thigref Vivendi apply this concept
to cyber foraging.

Chroma’s approach to adaptation builds on ideas first pexgpas Odyssey [32]. Its use of
history-based prediction follows the lead of Narayanan.d28] and Gurun et al [18]. The use
of remote execution to overcome resource limitations han kexplored by many researchers,
including Rudenko [36] and Flinn [12].

We used well-established techniques from HCI to conductiear-centric evaluation. Nielsen [31]
gives a good overview of these techniques. Ko et al. [27] aledniher et al. [26] show how these
techniques could be applied to the evaluation of progrargrtunols.

From a broader perspective, our work overlaps with autanratitargeting systems such as
IBM’s WebSphere [6] and Microsoft’'s Visual Studio [52]. Té¢ee systems allow developers to
quickly port applications to new target systems. Unfortahathey use a language-specific ap-
proach, which runs counter to our design considerations.

Finally, dynamic partitioning of applications has a longlaith history in distributed systems
and parallel computing. In the space available, we canrilyt ditribute this large body of prior
work. A sampling of relevant work includes Mentat [16], Jd88], Nesl [5], Abacus [1] and
Coign [21]. None of these efforts focus specifically on melsibmputing.

12 Conclusion

Mobile computing is at a crossroads today. A decade of swedagffort by many researchers
has developed the core concepts, techniques and mechawoigrsvide a solid foundation for
progress in this area. Yet, mass-market mobile computigg flar behind the frontiers explored
by researchers. Smart cell phones and PDAs define the eXtemlmle computing experience
for most users. Laptops, though widely used, are best vieageportable desktops rather than

23

true mobile devices that are always with or on a user. Weai@ashputers have proven effective in
industrial and military settings [44, 53], but their impaets been negligible outside niche markets.

An entirely different world, sketched in the first paragraytthis paper, awaits discovery. In
that world, mobile computing augments the cognitive absitof users by exploiting advances
in areas such as speech recognition, natural languagesgingeimage processing, augmented
reality, planning and decision-making. This can transforminess practices and user experience
in many segments such as travel, health care, and engige&kiii we find this world, or will it
remain a shimmering mirage forever?

We face two obstacles in reaching this world. The first is hrtexal obstacle: running resource-
intensive applications on resource-poor mobile hardwBemote execution can remove this ob-
stacle, provided one can count on access to a compute séavemureless network. The second
obstacle is an economic one. The effort involved in creatipglications of this new genre from
scratch is enormous, requiring expertise in both the agiptin domain and in mobile computing.
Further, there is no incentive to publicly deploy computevees if such applications are not in
widespread use. We thus have a classic deadlock, in whidicappns and infrastructure each
await the other.

Our work aims to break this deadlock. We lower the cost oftangaesource-intensive mobile
applications by reusing existing software that was crefdedliesktop environments. Using our
approach, relatively unskilled programmers can do a cledit of rapidly porting such software
to new mobile devices. Even if the result is not optimal imtgof performance, itis typically good
enough for real use. We have validated our approach on s@gdications. The next step is, of
course, to enlarge the suite of applications. This will hedgoroaden the validity of our approach,
and improve it along the lines discussed in Section 10. Hetedforts meet with continued success,
we are confident that our work can help stimulate the transftion of mobile computing.

References

[1] Amiri, K., Petrou, D., Ganger, G., Gibson, G. Dynamic Etian Placement for Data-Intensive Cluster
Computing. Proceedings of the USENIX 2000 Annual Technical ConfereBaa Diego, CA, June
2000.

[2] Bentley, J. Little LanguagesCommunications of the ACN9(8):711-721, 1986.

[3] Birrell, A.D., Nelson, B.J. Implementing Remote Prooegl Calls. ACM Transactions on Computer
Systems2(1):39-59, February 1984.

[4] Black, A.W., Lenzo, K.A. Flite: a small fast run-time sfresis engine4th ISCA Tutorial and Research
Workshop on Speech Synthe&isrthshire, Scotland, August 2001.

[5] Blelloch, G.E., Chatterjee, S., Hardwick, J.C., Sipeils, J., Zagha, M. Implementation of a Portable
Nested Data-Parallel Languageroceedings of the fourth ACM SIGPLAN Symposium on Priesipl
and Practice of Parallel Programming (PPoPRan Diego, CA, May 1993.

[6] Budinsky, F., DeCandio, G., Earle, R., Francis, T., 3k, Li, J., Nally, M., Nelin, C., Popescu, V.,
Rich, S., Ryman, A., Wilson, T. WebSphere Studio OvervitBM Systems Journa#t3(2):384-419,
May 2004.

24

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Chen, B., Morris, R. Certifying Program Execution witlkec&ire Processord?roceedings of the 9th
Workshop on Hot Topics in Operating Systems (HOTQ8ue, HI, May 2003.

de Lara, E., Wallach, D.S., Zwaenepoel, W. Puppeteem@ment-based Adaptation for Mobile Com-
puting. Proceedings of the 3rd USENIX Symposium on Internet Tecbieal and Systems (USITS)
Berkeley, CA, March 2001.

Eisenstein, J., Vanderdonckt, J., Puerta, A. Applyingddl-Based Technigues to the Development of
Uls for Mobile ComputersProceedings of the International Conference on Intelligdser Interfaces
(IU1), Santa Fe, NM, January 2001.

Federal Communications CommisiorLicense Databasehttps://gullfoss2.fcc.gov/prod/
oet/cf/eas/reports/GenericSearch.cfm, March 2003.

Feldman, S.I. Make-A Program for Maintaining CompuBeograms.Software - Practice and Expe-
rience 9(4):255-265, 1979.

Flinn, J., Satyanarayanan, M. Energy-Aware Adaptefa Mobile Applications.Proceedings of the
17th ACM Symposium on Operating Systems Pringiplesvah Island, SC, December 1999.

Forman, G., Zahorjan, J. The Challenges of Mobile Cotimgu IEEE Computer27(4):38-47, April
1994,

Fox, A., Gribble, S.D., Brewer, E.A., Amir, E. Adapting Network and Client Variability via On-
Demand Dynamic DistillationProceedings of the Seventh International ACM Conferencarohi-
tectural Support for Programming Languages and Operatiggt&ns (ASPLOSTambridge, MA,
October 1996.

Frederking, R., Brown, R.D. The Pangloss-Lite Machimanslation SystemExpanding MT Hori-
zons: Proceedings of the Second Conference of the AssocfatiMachine Translation in the Ameri-
cas Montreal, Canada, October 1996.

Grimshaw, A.S., Liu, J.W. MENTAT: An Object-Orientedaa-Flow SystemProceedings of the sec-
ond ACM Conference on Object-Oriented Programming Systeamguages and Applications (OOP-
SLA) Orlando, FL, October 1987.

Gross, D.Buy Cell: How many mobile phones does the world needlate. http://slate.msn.
com/id/2101625/, June 2004.

Gurun, R., Krintz, C., Wolski, R. NWSLite: A Light-Welg Prediction Utility for Mobile Devices.
Proceedings of the Second International Conference on lel@mmputing Systems, Applications and
ServicesBoston, MA, June 2004.

Haartsen, J. The Bluetooth Radio SystetREE Personal Communicationg(1):28-36, February
2000.

Hoeim, D., Ke, Y., Sukthankar, R. SOLAR: Sound Objectchlization and Retrieval in Complex
Audio Environments.Proceedings of the 30th IEEE International Conference oaustics, Speech,
and Signal Processing (ICASSPhiladelpha, PA, March 2005.

Hunt, G.C., Scott, M.L. The Coign Automatic Distribdt@artitioning SystemProceedings of the 3rd
Symposium on Operating System Design and Implementat®bDIjNew Orleans, LA, Feb. 1999.

Jeronimo, M., Weast, JJPnP Design by Exampléntel Press, 2003.

25

[23] Jul, E., Levy, H., Hutchinson, N., Black, A. Fine-Grauh Mobility in the Emerald SystemACM
Transactions on Computer SysterB€l):109-133, February 1988.

[24] Kanellos, M. Nation: Techno-revolution in the making CNET news.com. http:
//news.com.com/Nation+Techno-revolution+in+the+making+-+Part+1+of+/South+
Koreas+Digital+Dynasty/2009-1040_3-5239544 .html, June 2004.

[25] Katz, R.H. Adaptation and Mobility in Wireless Infortian Systems.|[EEE Personal Communica-
tions, 1(1):6-17, 1994.

[26] Klemmer, S.R., Li, J., Lin, J., Landay, J.A. Papier-Mac Toolkit Support for Tangible InputPro-
ceedings of the ACM Conference on Human Factors in Comp@&yrsgems (CH))Vienna, Austria,
April 2004.

[27] Ko, A.J., Aung, H.H., Myers, B.A. Eliciting Design Reaments for Maintenance-oriented IDEs: A
Detailed Study of Corrective and Perfective Maintenancek3zProceeding of the 27th International
Conference on Software Engineering (ICSE). To App8ar_ouis, MO, May 2005.

[28] Lakshminarayanan, K., Padmanabhan, V.N., Padhye afdBidth Estimation in Broadband Access
Networks. Proceedings of the 4th ACM/USENIX Internet MeasurementeZemnce (IMC) Taormina,
Sicily, Italy, October 2004.

[29] Narayanan, D., Satyanarayanan, M. Predictive Resddianagement for Wearable ComputirRyo-
ceedings of the 1st International Conference on Mobilegbyst Applications, and Services (MobiSys)
San Francisco, CA, May 2003.

[30] Nichols, J., Myers, B.A., Higgins, M., Hughes, J., HasiT.K., Rosenfeld, R., Pignol, M. Generating
Remote Control Interfaces for Complex AppliancBsoceedings of the 15th Annual ACM Symposium
on User Interface Software and Technology (UlSJgtober 2002.

[31] Nielsen, J.Usability Engineering Academic Press, San Diego, CA, 1993.

[32] Noble, B.D., Satyanarayanan, M., Narayanan, D., ijltd.E., Flinn, J., Walker, K.R. Agile
Application-Aware Adaptation for Mobility. Proceedings of the 16th ACM Symposium on Operat-
ing Systems PrincipleSaint-Malo, France, October 1997.

[33] Pane, J.F., Myers, B.A. Usability Issues in the Desif§iNovice Programming Systems. Technical
Report CMU-HCII-96-101, Carnegie Mellon University, Blitirgh, Pennsylvania, August 1996.

[34] Richard Ill, G.G.Service and Device Discovery: Protocols and ProgrammixigGraw-Hill Profes-
sional, 2002.

[35] Rinard, M.C., Lam, M. S. The Design, Implementationd &valuation of JadeACM Transactions
on Programming Languages and Syste43):483-545, May.

[36] Rudenko, A., Reiher, P., Popek, G.J., Kuenning, G.HvirfgpaPortable Computer Battery Power
through Remote Process ExecutioMobile Computing and Communications Revi€{l1):19-26,
January 1998.

[37] Sailer, R., van Doorn, L., Ward, J.P. The Role of TPM intéprise Security. Technical Report
RC23363(W0410-029), IBM Research, October 2004.

[38] Sailer, R., Zhang, X., Jaeger, T., van Doorn, L. Desigd Bmplementation of a TCG-based Integrity
Measurement ArchitectureProceedings of the 13th USENIX Security Symposibam Diego, CA,
August 2004.

26

[39] Salonidis, T., Bhagwat, P., Tassiulas, L. Proximity ak@ness and Fast Connection Establishment in
Bluetooth. Proceedings of the 1st ACM International Symposium on Mobd Hoc Networking &
Computing (MobiHog)Boston, MA, 2000.

[40] Satyanarayanan, M. Fundamental Challenges in Mobilmfiiting. Proceedings of the Fifteenth
ACM Symposium on Principles of Distributed Computing (PQiladelphia, PA, May 1996.

[41] Schneiderman, H., Kanade, T. A Statistical ApproacB@oObject Detection Applied to Faces and
Cars.Proceedings of the IEEE Computer Society Conference on Qamyision and Pattern Recog-
nition (CVPR) Hilton Head Island, South Carolina, June 2000.

[42] Schulenburg, JGocRrsource code and online documentatidittp: //jocr.sourceforge.net/,
Feb. 2004. (Version 0.39).

[43] Shneiderman, B. Empirical Studies of Programmers: Tdretory, Paths, and DestinationBroceed-
ings of First Workshop on Empirical Studies of Programméisxandria, VA, Jan 1996.

[44] Smailagic, A., Siewiorek, D. Application Design for f@able and Context-Aware ComputetEEE
Pervasive ComputindlL(4), October-December 2002.

[45] TechSmith CorporationCamtasia Studiohttp://www.techsmith.com/, June 2004.

[46] The Walkthru Project.GLvU source code and online documentatiohttp://www.cs.unc.edu/
“walk/software/glvu/, Feb. 2002. (Accessed on July 23 2002).

[47] Trusted Computing Group. Trusted Platform Module Main Specification, Version 1.2,rtPa
1. Design Principles, Part 2: TPM Structures, Part 3: Comrmdgn October 2003.
https://www.trustedcomputinggroup.org.

[48] Waibel, A. Interactive Translation of ConversatiofgdeechlEEE Computer29(7):41-48, July 1996.

[49] Waldo, J. The Jini Architecture for Network-centric @puting. Communications of the ACM
42(7):76-82, 1999.

[50] Walko, J. Handset sales reach new high in 2004EE Times. http://www.eetimes.com/
showArticle. jhtml;7articleID=59100009, January 2005.

[51] Willmott, A.J. Radiator source code and online docutagon. http://wuw.cs.cmu.edu/ ajw/
software/, Oct. 1999. (Accessed on July 23 2002).

[52] Yao, P., Durant, D. Microsoft Mobile Internet Toolkielts Your Web Application Target Any Device
Anywhere.MSDN Magazingl7(11), November 2001.

[53] Zieniewicz, M.J., Johnson, D.C., Wong, D.C., FlatD JThe Evolution of Army Wearable Computers.
IEEE Pervasive Computind.(4), October-December 2002.

27

