Emodis—An End-Based Network Monitoring
and Diagnhosis System

Ningning Hu, Peter Steenkiste

June 2005
CMU-CS-05-146

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Network monitoring and diagnosis capabilities are critioathe seamless operation of a network.
ISPs use sophisticated systems to routinely monitor arghdie their networks, but end users do
not have such capabilities. To address this problem, wela@#modis—a network monitoring
and diagnosis system. In this paper, we describe the atctinigeand the software components of
Emodis. Like other end-user oriented network monitoringtems, Emodis is deployed on a di-
verse set of Internet nodes, so it shares common requirersect as security and robustness with
these systems. However, the focus of Emodis is on routatsensath metrics such as available
bandwidth and packet loss rate, resulting in two uniqueadtaristics: (1) it implements a variety
of measurement techniques, including sophisticated batkdweasurement techniques, but hides
many technical details from end users; (2) it implementd@dualing algorithm to synchronize the
measurements from different vantage points, which refi@red users from complicated network
measurement management.

Ningning Hu and Peter Steenkiste were in part supported &\NBF under award number
CCR-0205266.

Keywords: Architecture, monitoring, diagnosis, measurement

1 Introduction

Improving Internet performance and reliability has alwagen a focus of networking research
and engineering, but network failures such as disconneetie still not rare phenomena. ISP op-
erators deploy sophisticated monitoring systems [7][6}dbect large amount of information so
as to detect, diagnose and fix network problems in a timelgyenaRegular end users, however,
do not have these capabilities. Regular end users do nottheaveecessary knowledge and re-
sources to monitor and diagnose their network connectieosexample, measuring downstream
network performance needs the cooperation of other Intewaes which is hard to obtain. Also,
network failures often disconnect end users thus prevgitiam from diagnosing their network
connectivity. Fortunately, this problem has not escapedatitention of researchers and several
systems, e.g. NIMI [15] and Scriptroute [17], have been e and deployed. They provide
general measurement and monitoring infrastructures,whidude functionalities like automated
deployment, privacy protection, and security. End usensusa these infrastructures to implement
and deploy measurement tools to collect network performamformation.

However, these infrastructures mostly focus on solving‘tesource” problem faced by end
users. Little has been done to address the “knowledge” pattired to do monitoring and diag-
nosis. That is, these systems makpdssiblefor end users to monitor or diagnose their network
performance, but it does not necessarily make it practicalesthey still face non-trivial diffi-
culties. First, in most cases, end users need to install uneaent tools by themselves. That
requires a good understanding of these tools, some of whkehthose used for bandwidth or
packet loss measurements, can be fairly complicated. S8eowamy network properties like delay,
loss rate, available bandwidth, are both path-sensitidedinectional. They have different values
for different paths, or for different directions (upstreandownstream) of the same path. Given a
measurement system deployed on multiple vantage nodesisensineed to choose the right van-
tage node to conduct measurement in order to obtain thedaght This selection often requires
knowing either the network topology or routing properti¢sh® vantage nodes, which is beyond
the grasp of end users.

Finally, existing monitoring systems do not provide measwnt management functionality,
which can be very tedious and time-consuming. A typical exans support for synchronized
measurements. For monitoring or diagnosis purpose, itenafecessary to measure a common
property from multiple vantage poinsmultaneouslyso that they can be compared and corre-
lated. However, measuring the same destination from mei@ntage points can not only trigger
security alarms, but can also increase measurement eredilodhe interference among the mea-
surements from different vantage points. Although this may be a big problem for ping or
traceroute measurements if the number of vantage pointdasvely small, it can be a serious
problem for bandwidth measurement techniques that relyagkgi-train probing. For this reason,
synchronized measurements sometimes have to be condecfaeigially. That is, the measure-
ment from one vantage node to a destination does not starthmtmeasurement from another
node to the same destination has finished. To reduce measuiréme, such sequential measure-
ments have to be done continuously, and that requires thagapoints to closely collaborate with
each other. Meanwhile, since there could be a large numlzrstinations that need synchronized
measurements, the cooperation among measurement vao@ggegan be very complicated.

1

Emodis is designed to address these problems. Although Brhad many similarities with
existing network monitoring systems, it focuses on rehgvend users from the measurement and
management burden. Thatis, Emodis not only makes netwonktarmg and diagnosis possible, it
also make such taslemsier Emodis has the following three distinguishing propertkesst, it im-
plements a variety of network measurement and diagnodisitpaes for delay (using ping), route
(using traceroute), available bandwidth (using IGI/PTR]]1bottleneck location (using Path-
neck [8]), and end-edge bandwidth summary (using BRouténaresm [9] whose measurements
are based on Pathneck). To use this system, end users doetbtananderstand the technical
details of related measurement techniques: they shabijishit a measurement/diagnosis request
and wait for the results. Second, Emodis measurement seftiwanstalled on a diverse set of
network nodes. That makes Emodis service immune to the meti@ibures experienced by end
users. Also, this distributed design makes it possible tasuee downstream network performance
for end users. Finally, Emodis automates measurement agaakis operations, including mea-
surement scheduling and overhead management. Besidastiesof synchronized measurements
that is discussed above, Emodis can also do load balancimgasurement work among multiple
vantage points. This is a very useful functionality for thersario where a large number of destina-
tions need to be measured to get a snapshot of their perfoand@hese scheduling capabilities of
Emodis relieve end users from the complicated and tediousgement operations required when
conducting large measurement studies.

While our focus is on simplifying network measurements fod @isers, we believe that the
same architecture can also help providers monitor theivars since many of the required func-
tions (e.g. tools, scheduling and synchronization) aresétmee or very similar.

Emodis also provides a platform for end users to share n&tpenformance information. In-
formation sharing is not only important for reducing measaent overhead, but it can also help
derive information that is not easily obtainable by a sirgjid user. For example, detecting loss-
link location often requires the use of tomography techegjuvhich require measurement results
from multiple sources. From a research point of view, by sifying the tasks for end users,
Emodis can hopefully attract more end users, which can gecam opportunity for collecting per-
formance information from many real end users, thus allgwis to gain a better understanding
on how to diagnose client network problems.

We use a top-down method in this paper to describe the Emadiginl We first describe
the architecture of Emodis in Section 2, explaining thedhmede types in the system—client,
master, and agent. The next four sections describe thensyigtails: (1) Section 3 explains the
client interface to show the measurement and diagnosisrmpthat an end user can control; (2)
Section 4 describes the main functionality of the mastererescheduling and synchronization;
(3) Section 5 describes probing algorithms that are usdiemgent, and (4) Section 6 deals with
the problem of system nodes leaving and joining. We conchitlea discussion of related work,
conclusions, and future work in Section 7 and Section 8.

diagnosis

end—user master ISP
oriented specific specific

W‘ agent—selection ‘%{ membership ‘

client—side— sched@ 23?1?531'

measurement

‘ agent—measurement ‘

BRoute

‘ping‘ ‘ traceroute ‘ ‘ pathneck ‘ ‘ IGI/PTR‘ , other !
| measurement |

| techniques |

normal udp

‘ raw pkt transmission ‘ pkt xfer

Figure 1: Emodis functional modules

2 Architecture

In this section, we first look at the functional modules in Eiigso We then examine the possible
architectures that can be used for different applicati@macdos.

2.1 Emodis Functional Modules

The functional relationship among Emodis system modulebuistrated in Figure 1. A client
call starts in thecl i ent - r equest module, which provides the end-user interface. Depending
on whether the end-user request is for measuring upstrealovorstream path performance, the
request will be sent either to thd | ent - si de- nmeasur enent module (upstream), or to the
agent - sel ect i on module (downstream). For upstream path performance nerasuts, the
cl i ent - si de- neasur enent module simply conducts the measurements using one of the
techniques implemented in Emodis. The call completes drireegives the measurement results.
For downstream path performance measurement, the pracessch more complicated. The
agent - sel ect i on module needs to first decide which agents should be usedfiid the re-
guest, schedule the measurement work among the selectats &gging thesynchr oni zat i on
module), and then forward measurement requests to themg(tise agent - neasur enent
module). Upon receiving the measurement requests, the agikronduct the actual network

measurements. The measurements techniques supportedllystare ping, traceroute, BRoute [9],
Pathneck [8], and IGI/PTR [10], implemented by the corregiiog module respectively. Except
IGI/PTR, which also uses regular UDP packets (usingntbemal - udp- pkt - xf er module),
the other four techniques all rely on thaw- pkt - t ransm ssi on module, which implements
basic raw packet sending and receiving functions. As shawatashed part of Figure 1, other
measurement techniques can easily be added into Emodis.

Besides the above modules, there are three other importathiles in the system—
access-control ,nmenber shi p- managenent ,anddi agnosi s. Theaccess- cont r ol
module is used to distinguish between the two types of ubatdmodis supports: requesters and
managers. Requesters are regular users, while managéssipee-users”, such as system admin-
istrator, or a small number of authorized researchers wied ngernal system information. The
differences between requesters and managers is that texpuieave more limitations in the use of
the system: (1) the measurement frequency from a requedienited (e.g. less than once per five
minutes) to avoid abuse; (2) a requester cannot query thmadtsystem status, such as agent load,
agent working status, other clients’ information, etc.

Thenmenber shi p- managenent module keeps track of active agents and maintains infor-
mation used by thagent - sel ecti on module. This module is very important for scenarios
like Planetlab [1], where nodes frequently join and leavediistem. We will discuss the imple-
mentation in more detail in Section 6.

Thedi agnosi s module is used to analyze measurement results to deterhereatises for
network problems. This module is the most important modotg aot surprisingly, also the hard-
est module in Emodis. The diagnosis techniques in the deigmoodule are likely to depend
on the application scenario. Figure 1 shows three posstaieasios. The first one can be used
by regular end-users to diagnose their end connection. drsé¢lcond scenario, the master diag-
noses problems that can only be detected by correlating gasunement results from multiple
clients. In the final example, an ISP diagnoses problemddgarustomers, possibly in part based
on information that the ISP collected from other sources.

We describe Emodis functional modules using regular endsiesean example. This system
design however can also be used by ISPs. In the ISP sceraiceduests will be submitted by
ISP network operators, instead of end users.

2.2 Emodis Deployment Architecture

Based on the discussion of the Emodis functional modulessyistem needs to be deployed on
three different types of network nodes - we will call themeal, agent, and master. Thientis

the node that the end users have accesAgentsare nodes that can conduct measurements, i.e.,
the vantage nodes mentioned above. iftasteroversees the overall operation of the system. As a
result, the Emodis system software needs to be separatethiae components: client component,
agent component, and master component. The mapping bethed&mctional modules and the
different types of components may depend on the specifidaghpin scenario. For example,
the scheduling module can either be placed in the master @oemp or in the client component,
depending on the work load we want the master to handle. Thmpimg of Emodis functional
modules to software components and the interactions batteecomponents is what we call

4

client

—_—= e > --- =
client probing measurement
request packets results

Figure 2: Emodis system architecture

the Emodis deployment architecturén this paper, we only focus on a deployment architecture
that supports end user diagnosis. Other possible sceradlgle internal ISP deployment or
collaborative multi-user deployment.

Figure 2 shows the architecture for end node diagnosis. d&eifes of each type of node are
as follows:

1. The client component is the interface between end usergEamodis. The client component
has two responsibilities: (1) communicating with the masitecluding submitting mea-
surement requests to Emodis and receiving measuremeiisrésm the system; and (2)
conducting active measurements to measure upstream [pgtbrpes: upstream path perfor-
mance can only be measured by sending packets from locas nsal¢he client component
must have this capability.

2. The master component is the central controller of Emadtiisinstalled on a pre-determined
single machine, i.e., the master. The master accepts cbeunests, decides which agent
nodes are needed to conduct measurement to resolve thatgqurel forwards the requests
to those agents. When receiving measurement results frentgghe master will first record
status information, and then send the results back to thresmrnding client. As part of the
Emodis scheduling algorithm, the master also serves agtiolsonization point as will be
described in Section 4.

3. The agent component refers to the software that is iestalh all measurement nodes. Each
agent passively waits for measurement commands from theemesnducts the correspond-
ing measurements, and sends the measurement results hheknaster. Agents also par-
ticipates the task scheduling in Emodis (see Section 4 fiaildg

Note that in the above procedure, every client request rteegtsthrough the master. The purpose
of this design is three-fold: (1) it significantly simplifilse synchronization among agents since

Table 1: Client Request Parameters
Measurement techniques

PING measure path delay

TRACEROUTE | measure path route

IGI measure end-to-end available bandwidth using IGI/PTR

PATHNECK locate path bottleneck location using Pathneck

BROUTE this is a measurement algorithm based on Pathneck, it ésntize avail-

able bandwidth for all route branches of an end node
Measurement destinations

default the requesting client itself is the measurement destinatio

explicit clients can specify one or more destinations to measure
Measurement agents

explicit explicitly specify the agents that should be used in measens

ALL _AGENT use all available agents to measure specified destinations
ANY _AGENT | use an arbitrary agent to measure specified destinations

AUTO_AGENT | the master automatically selects a diverse set of agents/&y all the edge
routes [9] of specified destinations. This is the default enod

Measurement scheduling

PM_SYN measurements from different agents to a common destinaged to be
synchronized, i.e., no two different agents probe a samindéisn at the
same time; meanwhile, these measurements should be ceddwanitinu-
ously so that they can finish within the smallest time interva

PM_RAN measurements from different agents do not need to be symigkrh and
different agent measure the same set of destinations ilonadders

Measurement period

N when set with non-zero value, measurement should be cceedlegeryN
seconds, this feature is useful for network monitoring

the master is the natural place to serialize measuremenatopes; (2) except for IGI/PTR mea-
surement, which is a two-end control technique, agents doeed to interact with clients, thus
reducing the number of places that can be attacked by madiaisers; even in IGI/PTR, for the
same security consideration, we always let agent connecigent, while client is not allowed to
connect to agent; (3) the existence of a central point makesy easy to record, aggregate, share,
and extract measurement information from different ce@f course, this centralized design also
has drawbacks, such as being performance bottleneck agié-giaint of failure. We plan to use
well-maintained server machine as the master to partlyessdhis problem.

R ORGE (ORGSR (OREE O Init
o = OO =) BOO = &O O =) = XGRS & Measuring
SO COS@ &0 @0 O Waiting
SRR TR e 0 © Daone

@ @ @)

Figure 3: Example of the scheduling algorithm

3 Client Interface

The client interface provides a set of configuration optithvas clients can use to control how mea-
surements should be conducted. The options allow the s®eat the measurement technique,
measurement destinations, measurement agents, meastisaieduling, and measurement pe-
riod (refer to Table 1).

e Measurement technique:lt is used to specify the probing technique that should bd tse
agent measurements. Emodis supports five techniques:tpaegroute, BRoute, Pathneck,
and IGI/PTR.

e Measurement destinations:This option allows client to specify the destinations thaidd
be measured.

e Measurement agents: This option is used to specify the agents that should be used i
the measurements. There are four ways to do it. The first rdaghto explicitly list the
IP addresses of the corresponding agents. The other thriémaseare listed in Table 1.
They do not need client to know the agent IP addresses, ketithsthe master will decide
which agents should be used. Among them "ARGENT” and “ANY _AGENT” are self-
explanatory. The mostinteresting option is “AUTRISENT”, which means that the selected
agents should cover all the clients’ edge routes that cooddiply be used. In this case, the
selected agents should be as diverse as possible. In Entloidiss implemented as the
landmark selection algorithm, as discussed in the BRowgesy[9].

e Measurement scheduling:As listed in Table 1, PM-SYN and PM-RAN are two parameters
that are used to control the scheduling algorithm in Emotiey control whether the mea-
surements from different agents should be synchronizeddigdriss their implementation
in Section 4.

e Measurement period: Some measurement task needs to be conducted periodicallihia
parameter is used to specify how often measurements sheulpkeated.

4 Scheduling

Scheduling in Emodis specifies the execution times of cliequests. Currently, Emodis treats
all clients equal and processes client requests based otF@ndfrategy. We plan to introduce

7

priority among client requests in our future work. The foofiEmodis scheduling algorithm is to
synchronize multiple client requests and to deal with gkcal monitoring requests. Scheduling
is either controlled by the master or by the agents, depgralinvhether explicit synchronization
is needed.

If a measurement request does not need to be synchronieedsfiecified by PMRAN), the
scheduling is managed by the agents. Each agent maintaisk gueue, where each task is a mea-
surement request forwarded by the master. The tasks in theeqare sorted by their starting times.
Agent always works on the measurement listed at the heaceafubue. After that measurement
is done, the agent recomputes the starting time of the nartrof measurements for that task and
reinserts it into the task queue. It then moves on to the nessurement task in the queue.

If a measurement request needs to be synchronized as spdmifitM.SYN, scheduling is
managed by the master. The master decides which agent ¢ermdaasurements, to which des-
tination, and at what time, thus naturally synchronizing theasurements from different agents.
If there is only one client request, measurement schedigisgnply sequential. When there are
multiple client requests to serve, to reduce the overalliseitime and to maximize the utility of
the agents, Emodis schedules as many measurements asgiogsivallel in a simple round-robin
fashion.

The algorithm works as follows. Assume we want to usagentsz; (1 < ¢ < m) to measure
n destinations/; (1 < j < n) in a synchronized manner. This algorithm first lefsmeasure
dy, a; measurels, ..., a, measurel, (assumer < m for now). After a; finishes measuring;,
it is ready to measuré; ;. The master then checks whethgr, has finished measuring, ;. If
yes,a; can proceed; otherwise, it has to wait until; finishes. For the same reason, whegn
finishes measuring;, the master will also check whether ; is waiting fora;. If yes,a;_; should
be allowed to proceed. When all agents..., a, finish their measurements, agenis i, ..., as,
can start the same procedure. When< n, the procedure is simpler, since only one phase of
measurements is needed. With this scheduling algorithenagfents are parallelized as much as
possible, and the measurements for each destination arensecutive so that the measurements
can be finished within the shortest possible time interval.

Figure 3 shows an example of this scheduling algorithm. Merevant to measure four desti-
nationsd,, ds, ds, d,4 using three agents, a,, as. The scheduling algorithm works as follows:

e In step (1),a, is assigned to measudig, a; measuresds, andas measureds.

e In step (2)a, finishes its measurement and is ready to measgur8inceas is still working
with ds, a; has to wait.

¢ In step (3),a; finishes measuring;, and immediately starts to measukesince no agent is
currently measurings.

e In step (4) 3 finishes measurings, moves on to measutg, at the same timey, is released
to measurels.

e In step (5),as3 finishes measuring, and moves back to measutg

5 Implementation of Measurement Techniques

Except IGI/PTR, all the other measurement techniques imeiged in Emodis relies on raw
packet transmission. Emodis implements these functioasimred module—

raw pkt-transm ssi on. It implements two basic functions: raw packet transmissiaod
raw packet reception. The sending function takes five inptameters—packet size, packet num-
ber, TTL value, packet type, and sending rate. The packet iypsed to specify whether the
probing packets are ICMP ECHO packets or UDP packets. Thast/pes of packets can gener-
ate two types of response packets: ICMP ECHOREPLY packettGviP TIMEXCEED packets.
Consequently, the receiving function only accepts thesetyyes of response packets. For each
packet sent out or received, the sending and the receivirgdiins record the sending time and re-
ceiving time. To match the response packet with the outgpinbing packet, the sending function
uses a sequence number in the packet head, which is alsdeaci the corresponding response
packet.

With thisr aw packet -t ransni ssi on module, it is easy to implement several measure-
ment techniques: ping only needs ICMP ECHO packets; tratenases UDP packets with TTL
values set; Pathneck and BRoute need ICMP ECHO packets aRdpdEkets with TTL values
properly set; and IGI/PTR uses UDP packets. Here traceisuteplemented slightly differently
compared with the standard implementation—our implememtaends out all UDP packets to-
gether, in order to speed up the execution of traceroute.

The implementation of IGI/PTR is different with the othepping techniques due to the fact
that IGI/PTR is a two-end control measurement algorithmchEaun of this algorithm needs to
send multiple probing packet trains, and after finishingds®m each packet train, the sending
node needs the receiving node to send back feedback infiomatadjust the sending rate for the
next probing packet train. We made two design decisionshierimplementation of IGI/PTR in
Emaodis: (1) we allow an agent to establish a TCP connectitimalient for feedback transmission;
the connection can only be initiated by agents, which is &musity consideration; (2) we allow
IGI/PTR to use normal UDP packets as probing packets, sirttes not need special features of
IP packets; this allows non-root users to at least condwstadbte bandwidth measurements.

6 Node Dynamics

Nodes in Emodis can join and leave dynamically, due to reaike software crash or machine
shutdown. Depending on the type of node, Emodis responfiseatitly:

Client departures. Impatient client could simply Kill the client-side processd leave the system
when the measurement time exceeds the client’s tolerantehid case, the master will get a
socket-level disconnection signal (SIGPIPE) when thentliéls the connection. Based on this
signal, the master will carry out the following operatio$) clean up the data structures for the
corresponding client, (2) discard any measurement dataiclient, and (3) if this client request
is a PM-RAN periodic task which is managed by the agents, thsten will send a client-stop
command to all involved agents, instructing them to rembeerélated task from the task queue.
Master departures. Since the master is the “brain” of Emodis, a crash of the masgtedisable

the entire system. In this case, both clients and agentgetila socket disconnect signal. Based
on this signal, all working clients shall exit. Agents do egit—instead they clean up all their task
gueues, and enter an idle state. In the idle state, the agikipewodically try to connect to the
master (the IP address of the master is fixed), so that whemaiséer comes back up, all agents
will automatically connect and register with the mastemc8ithere could be many agents, this
method allows us to reactivate the system by only rebootiegitaster, avoiding restarting each
agent, which is tedious and time consuming when their nunsdarge.

Agent departures. When an agent crashes, the master will be informed by theesdeconnect
signal. The master will (1) clear the corresponding datacstires for this agent; (2) see if any
client is blocked waiting for this agent, and if so, reledsedlient.

The above mechanism relies on the socket disconnect sitigajered by software crashes.
These signals are not triggered if the disconnection isethibry problems in the middle of the
network, as is explained in Section 5.12-5.16 in [18]. Tol de¢h this case, we implement an
application level keep-alive protocol between the masterthe agents. That is, each agent pe-
riodically sends a KEERALIVE message to the master, which updates the correspgriairer
for the agent, and sends a KERRIVE _-REPLY message back to the agent, which also keeps a
timer. If the agent timer expires, the agent considers itseotion to the master broken. In that
case, it will close the socket, clean up the task queue, antugt the reconnect timer. Similarly, if
the timer of an agent in the master expires, the master re¢laatiagent as dead, and removes the
corresponding state information for that agent. By propsefting the waiting time periods in the
master and the agents, we can make sure that the mastersipiees later than the agent’s timer
but before the agent’s reconnection attempt, so that thetage successfully reconnect when its
network connection resumes after a disconnection.

7 Related Work

There are several end-based systems that provide netwakumegnent and monitoring capabil-
ities. These include Scriptroute [17], NIMI [15], [2], andl]]. Scriptroute [17] and NIMI [15]
provide infrastructure support for end users to developaeqploy their own measurement tech-
niques. [2] discusses how to manage and share the huge aoioneasurement data that has been
collected by different research groups. Besides the acthital issues, it also considers many pri-
vacy issues, which are very important in monitoring systefh2] considers collecting data from
regular end users by monitoring traffic on their end hosssfoltus is on supporting a communica-
tion infrastructure that systematically deals with meament data uploading and downloading.

The main difference between Emodis and these systems &rinadis targets regular end-users
instead of the developers and researchers of network nmezasuat techniques. Emodis implements
all the measurement and scheduling functionality, andwes®is only need to submit requests with
a measurement configuration, but do not need to change then@agurements are conducted.

For end-system-based network diagnosis, we are only awarealiagnosis system—~PlanetSeer [20].
PlanetSeer periodically conducts traceroute measuremer@nd nodes that accessed a popular
web proxy, and uses the information from the web proxy todetbanges in end-to-end perfor-
mance. When it detects anomalies for an end connectiorgstitssroute measurements to identify

10

the possible locations of the fault. The difference betwekametSeer and Emodis is that the mea-
surement module in PlanetSeer is manually managed and itheie synchronization between
different measurement modules.

As for the detail measurement techniques, Emodis currantly implements five probing
techniques, but it can integrate many other probing tealesguch as [11, 16, 19, 3, 5, 13].

8 Conclusion and Future Work

In this paper, we described Emodis—a distributed networkitodng and diagnosis system. We
explained the functionality of the three types of nodes egiastem: client, master, and agent. In
particular, we described the client interface that allond esers to request and configure measure-
ments; the scheduling algorithm that manages synchrommessurements; and the ways Emodis
deals with node departures.

However, we only discussed the system architecture of Esnddlie diagnosis and performance
aspects of the system are future work. Specifically, we will:

1. Develop and study diagnosis rules for different typesnof eetwork failures.

2. Address performance issues such as response time uffféeerttimeasurement loads, the
number of clients Emodis can support, etc.

3. Demonstrate that Emodis is really useful by doing a secpiefhcase studies. For example,
we hope to explore how Emodis can help P2P applications suEls# [4]. We also plan to
make Emodis publicly available so end users can use it tochagmose network problems.

4. Continue to refine the system architecture. This incladkting features such as a better
clientinterface (e.g., using SOAP to implement an XML ifdee), adding security, allowing
clients and client requests to have priority, and providingetter way to share and log
measurement information.

5. Add more measurement techniques, such as the packetéassirement and location tool—
Tulip [14], to our system.

References

[1] Planetlab.ht t ps: //ww. pl anet - | ab. org.

[2] M. Allman, E. Blanton, and W. M. Eddy. A scalable system $taring internet measure-
ments. InProc. PAM March 2002.

[3] R. Carter and M. Crovella. Measuring bottleneck link sgen packet-switched networks.
Technical report, Boston University Computer Science Diepent, March 1996.

11

[4] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling cenéang applications on the
Internet using an overlay multicast architecturePhoc. ACM SIGCOMMAugust 2000.

[5] C. Dovrolis, P. Ramanathan, and D. Moore. What do pacisgtedsion techniques measure?
In Proc. of ACM INFOCOM April 2001.

[6] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and Xf&x&l. Netscope: Traffic engi-
neering for ip networkslEEE Network Magazine, special issue on Internet traffideeey-
ing, 200Q 2000.

[7] C. Fraleigh, C. Diot, B. Lyles, S. B. Moon, P. Owezarski,Eapagiannaki, and F. A. Tobagi.
Design and deployment of a passive monitoring infrastmectun Proceedings of the Thyrrhe-
nian International Workshop on Digital Communicatiopsges 556-575. Springer-Verlag,
2001.

[8] N.Hu, L. Li, Z. Mao, P. Steenkiste, and J. Wang. Locatingelnet bottlenecks: Algorithms,
measurements, and implications.Rroc. ACM SIGCOMMAugust 2004.

[9] N. Hu and P. Steenkiste. Exploiting internet route sihgfor large scale available bandwidth
estimation. Under submission.

[10] N. Hu and P. Steenkiste. Evaluation and charactedmatif available bandwidth probing
techniques.lEEE JSAC Special Issue in Internet and WWW Measurementpilt@pand
Modeling 21(6), August 2003.

[11] M. Jain and C. Dovrolis. End-to-end available bandWid¥leasurement methodology, dy-
namics, and relation with TCP throughput.Rroc. ACM SIGCOMMAugust 2002.

[12] C. R. S. Jr. and G. F. Riley. Neti@home: A distributed raggh to collecting end-to-end
network performance measurementsPhoc. PAM April 2004.

[13] K. Lai and M. Baker. Nettimer: A tool for measuring bettleck link bandwidth. IfProc. of
the USENIX Symposium on Internet Technologies and Sydwamsh 2001.

[14] R. Mahajan, N. Spring, D. Wetherall, and T. Andersonetdgvel internet path diagnosis. In
Proc. SOSPOctober 2003.

[15] V. Paxson, A. Adams, and M. Mathis. Experiences with inirm In Proceedings of the
Passive and Active Measurement Workstagoo0.

[16] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. {@rell. pathchirp: Efficient available
bandwidth estimation for network paths. Pnoc. PAM April 2003.

[17] N. Spring, D. Wetherall, and T. Anderson. Scriptroudgpublic internet measurement facil-
ity. In USENIX Symposium on Internet Technologies and System$$))3003.

[18] W. R. StevensUnix Network Programming, Third Edition , Volume Rrentice Hall.

12

[19] J. Strauss, D. Katabi, and F. Kaashoek. A measuremeay sff available bandwidth estima-
tion tools. InProc. ACM IMG October 2003.

[20] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang. é@aer: Internet path failure
monitoring and characterization in wide-area service$rbt. of OSD] December 2004.

13

