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Abstract

Decision procedures for first-order logics are widely applicable in design verifica-

tion and static program analysis. However, existing procedures rarely scale to large
systems, especially for verifying properties that depend on data or timing, in addition

to control.

This thesis presents a new approach for building efficient, automated decision pro-
cedures for first-order logics involving arithmetic. In this approach, decision prob-

lems involving arithmetic are transformed to problems in the Boolean domain, such

as Boolean satisfiability solving, thereby leveraging recent advances in that area. The
transformation automatically detects and exploits problem structure based on new theo-

retical results and machine learning. The results of experimental evaluations show that
our decision procedures can outperform other state-of-the-art procedures by several or-

ders of magnitude.

The decision procedures form the computational engines for two verification sys-
tems, UCLID and TMV. These systems have been applied to problems in computer

security, electronic design automation, and software engineering that require efficient

and precise analysis of system functionality and timing. This thesis describes two such
applications: finding format-string exploits in software, and verifying circuits that op-

erate under timing assumptions.
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Chapter 1

Introduction

Our increasing reliance on computer systems places an ever greater need for ensuring that they per-
form as expected. Errors in system design and implementation as well as malicious attacks pose a

major barrier to exploiting the benefits of computing, creating problems ranging from lagging pro-

ductivity to dangerous vulnerabilities in safety-critical systems. According to a recent survey [117],
the cost of software bugs to the U.S. economy is of the order of 60 billion dollars every year, under-

lining the costs of failure in computer systems.

Errors can be found at various stages in a system’s lifetime, ranging from design-time, through

compile-time, to run-time, and even post-mortem. It is preferable to find errors as early as possible,
as the costs of failure in deployed systems, particularly in unsupervised, safety-critical settings, can

be enormous. Techniques for formal design verification and static program analysis are targeted

towards improving the reliability and security of systems before run-time. The input to every such
technique comprises a system description and a specification, and outputs a yes/no answer as to

whether the system satisfies its specification (and possibly “don’t know” in some cases). The scala-
bility of these techniques depends on that of the computational engines, or decision procedures, that

underlie them. These decision procedures analyze a formal model, usually expressed in mathemat-

ical logic, to provide the yes/no answer.

Decision procedures for decidable fragments of first-order logic have found use in analyzing many
kinds of systems, including application and system software, gate-level circuit designs, hybrid sys-

tems, and high-level microprocessor designs. For example, decision procedures play important

roles in extended static checking [55], predicate abstraction-based software verification (e.g., [11,
36, 69]), finite-state model checking (e.g., [33, 41]), model checking timed systems (e.g., [71]), and

processor verification (e.g., [29, 34]). Of these applications, the previous industrial-scale appli-

cations have been largely restricted to analyzing systems with Boolean state (such as finite-state
systems or pushdown systems) or techniques that generate Boolean abstractions. These successes
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have been driven in large part by the efficiency of techniques for reasoning about and manipulat-

ing Boolean functions, such as Binary Decision Diagrams (BDDs) [27] and Boolean satisfiability
(SAT) solvers (e.g., [63, 104]). In this thesis, these techniques are collectively referred to as Boolean

methods.

The efficiency benefits of modeling systems purely with Boolean state are counterbalanced by a loss

of modeling precision. Reduced precision results in false alarms, and the inability to verify proper-
ties depending heavily on data and timing, in addition to control. The successes of finite-state model

checking and predicate abstraction-based software analysis have been restricted to analyzing control
properties, such as verifying cache-coherence protocols and checking device driver usage protocols.

Examples of analyses that require more precise modeling of data and timing include detection of

malicious code (such as viruses or worms), high-level microprocessor design verification, array-
bounds checking and buffer overrun detection, and verifying real-time systems and timed circuits.

In these tasks, a rich set of non-Boolean data-types must often be modeled, including finite- and

arbitrary-precision integers, real and floating-point numbers, memories, arrays, and data structures
such as queues or lists. The resulting decision problems are only expressible in first-order logics or

sometimes even only in higher-order logics. Previous decision procedures for these more expressive
logics have rarely scaled to industrial-scale systems without some form of manual assistance.

This thesis presents a new approach to building efficient, automated decision procedures for first-
order logics involving arithmetic based on Boolean methods. The practicality of this approach

is demonstrated by incorporating it in verification tools that have been successfully applied to
industrial-scale hardware and software systems. There are two key ideas in this approach.

1. Leverage Boolean methods: The decision procedures presented in this thesis operate by per-

forming a Boolean encoding of the decision problem, either as a Boolean satisfiability (SAT)
problem, or a problem involving manipulation of quantified Boolean formulas (QBF). More-

over, the encoding is eager, meaning that it is done in a single step. This enables us to easily

leverage recent dramatic advances in Boolean methods.

2. Use adaptive encoding: The Boolean encoding algorithms are adaptive, meaning that an en-

coding algorithm or its parameters are automatically chosen based on the structure of its input.
This is achieved by a combination of theoretical results on formalizing problem structure and

the application of machine learning to inputs encountered in the past. The use of adaptive

Boolean encoding enables us to solve the resulting Boolean problems more efficiently, in
many cases by orders of magnitude compared to previous approaches.

The decision procedures proposed in this thesis form the computational engines for two verification

systems, UCLID and TMV. These systems have been applied to a variety of application areas; the
ones explored in this thesis are software security and the verification of timed circuits.
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1.1 Boolean Encoding Techniques

We review and classify previous work on decision procedures based on Boolean methods so as to

place the contributions of this thesis in context. Detailed surveys of previous work on specific topics,
including application areas, are included in the corresponding chapters.

Decision procedures based on Boolean encoding methods fall into two main categories:

1. Eager encoding methods: Decision procedures in this class perform the Boolean encoding in

a single step. For the quantifier-free logics considered in this thesis, the input formula is trans-

lated to an equi-satisfiable Boolean formula in a single step, and a SAT solver is invoked on
the result. For the quantified logic considered, the translation generates a logically equivalent

quantified Boolean formula (QBF), which can be manipulated using well-known techniques

for QBF based on BDDs or SAT.

These methods have been developed for the theories of uninterpreted functions and equal-

ity [29, 122], a restricted set of lambda expressions (which can model arrays, memories, and

some data structures) [30], and various theories of linear arithmetic over the integers and the
rationals [30, 146, 148], with very limited support for quantifiers [89]. Counterexamples at the

level of the original logical theories are easily generated, by mapping back from assignments

generated by the SAT solver.

Eager encoding techniques can be further divided into two kinds. The first kind [28, 30,
122] exploit a small model property of the underlying theory; i.e., if a satisfying assignment

exists for the original formula, then there is one in which the values of ground terms are
bounded. This naturally leads to a bit-vector encoding of the ground terms. The second class

of techniques [32, 62, 148] are direct encoding techniques, in which each atomic predicate

is encoded as a Boolean variable. The resulting Boolean encoding is augmented with the
Boolean encoding of instantiations of first-order axioms, such as congruence and transitivity

of equality, over the ground terms in the formula.

2. Lazy encoding methods: Procedures in this category (e.g., [8, 13, 51, 56]) construct the Boolean

encoding iteratively. Provers based on these methods, such as CVC and CVC-Lite [13, 14],

ICS [51], and VeriFun [56], are designed to handle a fairly general class of first-order logic; in
addition to the theories handled by the afore-mentioned eager techniques, these provers can

handle a subset of the theories of bit-vectors, lists, and records, and some also provide support
for quantifiers. Another advantage of these methods is that they are typically designed to be

proof-generating.

The lazy encoding procedures work, in essence, as follows. They start with a direct Boolean

encoding of the original formula, obtained by replacing each atomic predicate with a corre-



4 CHAPTER 1. INTRODUCTION

sponding Boolean variable. If the SAT solver returns this formula to be unsatisfiable, it means

that the original formula is also unsatisfiable. Otherwise, the SAT solver returns a satisfying
assignment, which must be checked for consistency with the first-order theories. This is per-

formed using a first-order prover for checking the satisfiability of conjunctions, also known
as a ground decision procedure. If the assignment is consistent, then it implies that the orig-

inal formula is satisfiable. Otherwise, the proof of unsatisfiability generated by the ground

decision procedure is analyzed to generate additional clauses that are added to the Boolean
encoding to constrain the search of the SAT solver, and the process repeats.

The differences between the various provers based on lazy encoding methods are mainly with

respect to the tightness of integration between the SAT solver and the ground decision pro-
cedures, and the details of the ground decision procedures themselves. The ground decision

procedures are generally based on a technique for combining decision procedures for individ-

ual theories, such as that given by Nelson and Oppen [109] or Shostak [141].

The lazy encoding approach has also been applied to quantifier-elimination in decidable quan-
tified first-order logics [52].

The decision procedures proposed in this thesis fall into the first category. The quantifier-free logic

considered in this thesis is a combination of the theories of uninterpreted functions and equality,

quantifier-free Presburger arithmetic [125], and the restricted set of lambda expressions mentioned
above (described in Chapter 7). In addition, this thesis presents the first eager encoding approach to

performing quantifier-elimination in quantified difference logic (described in Chapter 8).

Let us compare lazy and eager encoding methods for the quantifier-free fragment of first-order logic

considered in this thesis.

Eager encoding methods have the advantage that the resulting SAT problem has all the “first-order
information” necessary to constrain the SAT solver’s search, whereas adding this information lazily

might cause the SAT solver to explore many assignments that are inconsistent with the first-order

theories (exponentially many in the worst-case). Also, with eager methods, it is trivial to replace
one SAT solver with another, and thus readily leverage any advances in SAT solving; this can be far

harder in lazy techniques depending on how tightly the SAT solver is integrated into the decision

procedure.

On the other hand, it is also possible for eager encoding algorithms to add too much “first-order
information,” generating SAT problems beyond the reach of current SAT solvers. Lazy methods are

particularly effective when very little first-order reasoning is required (for example, when propo-

sitional reasoning suffices to decide unsatisfiability). Furthermore, many lazy methods are proof-
generating, which is useful for certified verification (such as proof-carrying code [106]) as well

as for abstraction refinement [67]. It is not yet clear how to generate proofs with eager encoding
methods, especially those based on the small-domain encoding.
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In the rest of this thesis, we will compare eager and lazy methods for specific theories via experi-

mental evaluation.

1.2 Thesis Contributions

My thesis statement is:

Adaptive Boolean encoding methods enable the construction of efficient and automated

decision procedures for expressive first-order logics involving arithmetic, increasing the
precision and scalability of verification tools for hardware and software systems.

This thesis makes contributions in a number of areas. The main theoretical and conceptual contri-

butions include:

� The first decision procedure for quantifier-free Presburger arithmetic that is based on a polynomial-

time, polynomial-size translation to SAT, and which formally exploits the structure of linear

constraints in software analysis (Chapter 5);

� New theoretical results on bounding the size of solutions for generalized 2SAT constraints

and quantifier-free Presburger arithmetic (Chapters 4 and 5);

� The first approach to automated algorithm selection in a theorem proving context, based on
the use of machine learning (Chapter 6);

� The first eager encoding approach for quantifier elimination in quantified difference logic

(Chapter 8);

� The notion of generalized relative timing for modeling timing assumptions in circuits (Chap-

ter 9).

There are also several applied contributions, including tools and industrial case studies:

� A publicly-available, multipurpose verification tool, called UCLID, for verifying systems

modeled using the quantifier-free fragment of first-order logic mentioned earlier, with demon-
strated applications in processor verification and software security (Chapter 7);

� The application of UCLID to finding a class of security exploits called format-string exploits,

demonstrated on widely-used software packages (Chapter 7);

� A fully symbolic model checker, called TMV, for model checking timed automata (Chapter 9);

� The application of TMV to the verification of timed circuits, including a published circuit of

the Pentium 4 microprocessor (Chapter 9).
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1.3 Thesis Overview

This thesis covers a wide range of areas, spanning theory, hardware, and software. Accordingly,

the thesis is organized into three parts, including one on background material, so that the content of
each main part of the thesis is fairly independent of that of the other.

The first part of the thesis, comprising Chapters 2 and 3, gives background material needed in the rest
of the thesis. Chapter 2 covers basic notation and linear programming concepts. Chapter 3 describes

difference logic, a basic logic that forms the foundation for the concepts in this thesis, and two
Boolean encoding algorithms: the small-domain encoding and the direct encoding algorithm. The

material in Chapter 3 is based on joint work with R. E. Bryant, S. K. Lahiri, and O. Strichman [30,

148].

The second part of the thesis (Part I) presents our new decision procedures for linear arithmetic
over the integers, extensions to handle other theories, and the implementation and application of

the UCLID system. Chapter 4 describes how the small-domain Boolean encoding method can be

extended to a logic of generalized 2SAT linear constraints, and is based on joint work with R. E.
Bryant and K. Subramani [138]. Chapter 5 shows how the same class of encoding algorithms can

be extended to quantifier-free Presburger arithmetic, by exploiting the sparse structure of linear

constraints in software analysis; this is joint work with R. E. Bryant [135]. Chapter 6 compares the
two encoding algorithms for difference logic and shows how they can be combined using machine

learning to automatically select encodings for sub-formulae. A very preliminary version of the work
in this chapter appeared in a joint paper with R. E. Bryant and S. K. Lahiri [133], and the material

in this chapter is a substantial revision of that work. Part I is closed by Chapter 7, which describes

how theories other than integer linear arithmetic are encoded to SAT, along with a description of
the UCLID verification system and an application of UCLID to finding format-string exploits. The

initial part of this chapter is based on joint work with R. E. Bryant and S. K. Lahiri [30]. The
application to format-string exploits is based on joint work with R. E. Bryant, V. Ganapathy, S. Jha,

and T. W. Reps [58]; in particular, the idea of viewing the format-string as a sequence of commands

to printf is due to my co-authors Ganapathy, Jha, and Reps.

The third part of this thesis (Part II) describes how operations in quantified difference logic can
be handled using Boolean methods, and describes an application to model checking timed circuits.

Chapter 8 describes the operations on quantified difference logic (QDL), and is based on joint work

with R. E. Bryant [134]. Although the content of this chapter is used for model checking timed
systems, other applications are possible, and the material is fairly independent of the application ex-

plored in this thesis. Chapter 9 describes how we use the QDL operations in TMV, a model checker

for timed automata, and the application of TMV to the verification of timed circuits. This chapter
also describes the notion of generalized relative timing, which is a new technique for modeling tim-
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ing assumptions in systems. The material in this chapter is based on joint papers with R. E. Bryant

and K. S. Stevens [134, 136].

Finally, Chapter 10 summarizes the major conceptual contributions and design decisions in this
thesis, and proposes several directions for future work.
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Chapter 2

Preliminaries

We introduce notation and concepts from linear programming that are useful in the rest of this thesis.
Standard textbooks (e.g. [111, 131]) can be consulted for additional information.

2.1 Notation

We will use � to denote the number of linear constraints, and � to denote the number of variables.

A system of � linear constraints in � variables is written as follows:

	�

���
(2.1)

In general,
	���� ����� ���

is an ����� matrix with entries in � ,
�

is a ����� vector of real-valued entries,

and



is a �
� � vector of real-valued variables.

System (2.1) defines a polyhedron in �"! formed by the intersection of half-spaces corresponding to

the linear constraints.

For Part I of this thesis, we will only consider integer variables and constants; that is, for all # and $ ,�%��� �'&)(*�+& � �-,/. .

In system (2.1), the entries in



can be negative. A standard transformation (see, e.g., [119]) can
be used to constrain the variables to be non-negative. The transformation involves adding a dummy

variable � � that refers to the “zero value,” replacing each original variable � � by �10�32 � � , and then
adjusting the coefficients in the matrix

	
to get a new constraint matrix

	 0 and the following system:

	 0 
 0 ���
 0 ��4 (2.2)
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Note that � � is an element of the vector

 0 of dimension �657� . Matrix

	 0 has dimensions �8�-�657� ,
where the last column corresponds to �9� . The :�# & $�; th entry of

	 0 is the same as that for
	

for
�=<>$?<@� , and

� 0�A� !'B�C is 2ED !��F C �%��� � .
The transformation from system (2.1) to system (2.2) preserves satisfiability, as shown here:

Proposition 2.1 System (2.1) has a solution if and only if system (2.2) has one.

Proof: For the “if part”, suppose we have a solution

 0 to (2.2). Construct a candidate solution

vector



by setting � �-� �10�G2 � � . Then, consider the # th constraint in
	 0 , for any # . The following

sequence of inequalities holds:

: !H��F C
� 0�A� � � 0� ;35 � 0��� !'B�C � � � (*�

: !H��F C
� ��� � � 0� ;95I: 2 !H��F C

� ��� � ;J�K� � ( �
!H��F C
� ��� � :�� 0� 2 �K�L; � ( �

!H��F C
����� � � � � (*�

Thus, we can conclude that the # th constraint of
	

is satisfied by



for all # . Thus, we have found a
solution to system (2.1).

Now consider the “only if” part, where we start with a solution to system (2.1). Clearly, any value of
 0 that sets �K0� � � � 57� � for all $ will satisfy
	 0 
 0 ��� . But we also need to satisfy


 0 �M4 . If none

of the � � are negative, then simply set � 0� � � � and � � �N4 and we are done. Otherwise, set � � �2/OQPSRUT � VXWZY � � T , and set � 0� � � � 5/� � . Note that � �\[ 4 by construction. Thus, if for a particular $ ,
� � [ 4 , then �]0� [ 4 . Suppose not. Then, � �^� OQPSRUT � V W Y � � T and so �]0� � � � 2>OQPSRUT � V W Y � � T �M4 .
Thus, we have a solution


 0 that satisfies (2.2). _
Finally, we define the quantities

�a`cb+d
and
(*`cb+d

as follows:

��`cb+d � OQegfh ��� ��i6j ���A� � j (2.3)(*`cb+d � OQegfk j ( k j (2.4)

In words, the quantity
(l`cb+d

is the mon norm of the vector
�

. We note that
�p`cb+d

and
(�`cb+d

are (tight)
upper bounds on the absolute values of entries of

	
and
�

respectively.
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2.2 Variable Classes

Given a set of � linear constraints over � variables, the set of variables can be partitioned into

subsets as follows: Two variables are placed in the same subset if there is a constraint in which they
both appear with non-zero coefficients. We will refer each resulting subset as a variable class.

If the set of constraints appears in a system of constraints, like system 2.1, then partitioning variables
into variable classes corresponds to partitioning the system into sub-systems that can be solved

independently of each other. (In matrix terms, the matrix
	

is transformed to block-diagonal form.)
Importantly, note that this partitioning optimization can be performed before adding the “zero”

variable � � . A different zero variable is then used for each variable class.

The notion of variable classes can be extended to Boolean combinations of linear constraints by

applying it to the set of all linear constraints appearing in the formula. For example, consider the
formula

� C 5>�]q � �>rtsu�]q 2 �Kv ��4Mw �]x 2 �]y ��4{z
In this case, variables � C , �Kq , and �Kv fall into one class, while �|x and �Ky will be put into a different
class.

2.3 Fourier-Motzkin Elimination

Fourier-Motzkin (FM) elimination [49] is a classic technique for projecting a variable from a set of

linear constraints.

Consider system (2.1). In order to obtain the system of linear constraints after projecting out variable
� � , FM elimination proceeds as follows:

1. Partition the system of constraints into three sets } � , ~ � , � � as follows. For each constraint # ,
��<@#"<@� , we add it to:

} � , if
����� � [ 4 ;

~ � , if
� ��� �=� 4

;

� � , otherwise.

2. Initialize the set of new constraints, � , to � � .
3. For every pair of constraints ( #�� , #+� ), where #J� , } � and #J� , ~ � , add the following

constraint to � : !HT F C
s �����|� ���L� ���c� T�2 � ���K� T �L�%���c� �Lz�� � T ��()�
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Clearly, the coefficient of � � in every constraint in � is
4
.

If

�, � ! , this transformation preserves satisfiability. In other words, there is a solution to the

system of constraints in � if and only if there is one to the system (2.1). Thus, by using FM
elimination to project out all variables, we can conclude that the original system is satisfiable if and

only if the system with zero variables does not have a trivially false constraint (such as
4�� � ).

In the worst case, the number of new constraints generated by � steps of FM elimination can be

� q�� , i.e., doubly exponential in the input size [37].



Chapter 3

Difference Logic

A simple but extremely useful form of linear constraint is the difference constraint. This chapter
presents Boolean encoding techniques for a logic of difference constraints, termed as difference

logic. These encoding techniques form the basis for many ideas in the rest of this thesis.

Definition 3.1 A difference constraint is a linear constraint of the form � � 2 � ���u��( k or � ���u��( k ,
where � � and � � are real-valued variables,

( k is a real-valued constant, and
�u�

denotes a relational

symbol in the set � [ &Z�-&*��& � & <=� .
A constraint of the form � �"�u��( k can be written as � � 2 � � �u��( k where � � is a special “variable”

denoting zero. This convention is followed in the rest of the thesis, unless stated otherwise.

Difference constraints are also referred to in the literature as difference-bound constraints or sepa-

ration predicates, and difference logic is also commonly termed as separation logic. We will use
DL as an acronym for difference logic.

bool-expr ��� � �X����� j� ¢¡1£�¤ � j bool-var jL¥ bool-expr

j : bool-expr r bool-expr ; j : num-expr
�

num-expr ;
num-expr ��� � � � j num-expr 5 ( j ITE : bool-expr

&
num-expr

&
num-expr ;

Figure 3.1: Difference logic syntax. � � , 4 <¦#�<§� , and
(

denote a variable and constant respec-

tively.

Figure 3.1 summarizes the expression syntax for difference logic. Expressions can be of two types:

numerical or Boolean. Boolean expressions are formed by using Boolean connectives to combine

equalities, inequalities, or Boolean variables. Numerical expressions are either numerical (integer
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or real) variables, or are formed by adding a constant offset to numerical expressions, or by applying

the ITE (“if-then-else”) operator. The ITE operator chooses between two values based on a Boolean
control value, i.e., ITE : �X�����K& � C & �]qL; yields � C while ITE :  ¢¡]£A¤ �]& � C & �]qX; yields �Kq . Boolean and

relational operators not used in Figure 3.1 can be expressed in terms of those employed.

Remarks on notation

Note that the grammar in Figure 3.1 permits real and integer variables to be mixed in relational

comparisons and if-then-else expressions. For the purposes of this thesis, we will consider either

only integer variables, or only real variables, depending on the context. For the remainder of this
chapter, we will restrict all variables and constants to be integer-valued.

Second, as noted in Chapter 2, multiple zero variables will usually be introduced, one for each

variable class. In the rest of this chapter, we will assume that these variables have already been

introduced into the DL formula, so that every difference constraint comprises exactly two variables,
each taking values in ¨ .

Finally, although the syntax permits us to write expressions of the form num-expr
�

num-expr, we

will use notation in which only variables appear only on the left-hand side, and no more than one

constant term appears on the right-hand side. Thus, a difference constraint will usually be written
either as � � 2 � �-�M( k or as � �©� � � 5 ( k .
Complexity of the decision problem

The problem of deciding the satisfiability of a DL formula ªG«�¬ ­ over the integers is NP complete. It
is NP-hard since Boolean satisfiability can be trivially reduced to it. In addition, it is in NP because

the logic has a small-model property: A DL formula ª�«®¬ ­ is satisfiable if and only if there exists a

satisfying assignment whose size, measured in bits, is polynomially bounded in the size of ª�«�¬ ­ . A
proof of the latter property is presented in Section 3.2.

However, if we restrict the syntax of DL by disallowing Boolean variables, ITE expressions, and all

Boolean connectives except r , the satisfiability problem is polynomial-time solvable. This restricted

problem is simply that of finding a feasible solution to a system of difference constraints, and can
be solved using a formulation as a shortest-path problem [43].

Overview

In this chapter, we present two approaches to deciding difference logic via eager encoding to SAT:
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1. Small-Domain Encoding [30]: This approach exploits the small-model property of DL, and

works as follows:

(a) Compute the polynomial bound ¯ on solution size.

(b) Search for a satisfying solution to ª�«�¬ ­ in the bounded space � 4p& � &Z°Z°Z°±&)²%³ 2 �g� ! .
The small-domain encoding approach is also termed as finite instantiation.

In the methods described in this thesis, the search in Step (b) is conducted using a SAT solver.

To do this, ª"«®¬ ­ is translated to a Boolean formula by encoding each integer variable as a
vector of Boolean variables of length ¯ . Arithmetic and relational operators are encoded as

arithmetic circuits and comparators.

However, note that a non-SAT-based search technique can just as well be used.

2. Direct Encoding [148]: A decision procedure based on the direct encoding method operates

in ´ steps:

(a) Eliminate the ITE construct from the formula, to get a formula that is a Boolean combi-

nation of difference constraints.

(b) Replace each unique difference constraint with a fresh Boolean variable to get a Boolean

formula ª¶µ¸·º¹�» .
(c) Generate a Boolean formula ª¶¹�»u¬½¼¿¾ that constrains the values of the introduced Boolean

variables so as to preserve the arithmetic information in the original formula.

(d) Decide the satisfiability of Boolean formula ªGµ¢·+¹�»cr�ª"¹�»u¬¿¼½¾ using a SAT solver.

The direct encoding approach has also been termed as per-constraint encoding.

At the time of writing this thesis, all decision procedures based on eager encoding to SAT can be
viewed as instances of one of the above two methods.

3.1 Constraint Graph

We begin by describing a basic data structure used in the rest of this chapter.

Given a set of � difference constraints involving � variables, we construct a weighted, directed
multigraph as follows:

1. A vertex À � is introduced for each variable � � .
2. For each difference constraint of the form � � 2 � �-�M( k , we add a directed edge from À � to À �

of weight
( k .
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The resulting structure has � edges and � vertices and is termed the constraint graph. It is, in

general, a multigraph since there can be multiple constant (right-hand side) terms for a given left-
hand side expression � � 2 � � . However, we will refer to it simply as a graph.

Example 3.1 Consider the following set of Á constraints involving Â variables:

� C 2 �Kq � 4
�]q 2 �Kv � 4
� v 2 � C � �
�1x 2 �Ky � � 4'4

�Ky 2 �]Ã � Ä�4
�KÃ 2 �1x � 2 � 4'4
� Ã 2 � y � 2 ´%Å
�|Æ 2 �1x � 2 � 4'4

The constraint graph representing the above set of constraints is depicted in Figure 3.2 _
Ç�È
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Ç�Ë
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Ç©ÔÇ�Õ

Figure 3.2: Example of constraint graph

3.2 Small-Domain Encoding

The crucial piece of information needed to implement the small-domain encoding method is the
bound on solution size, ¯ .

In this section, we obtain a bound Ö on the values of variables in a DL formula such that it is

sufficient only to search for satisfying solutions in the space � 4p& � &)²U&Z°Z°Z°©& Ö×� ! . Then, ¯ is computed

using the following equation:

¯ �ÙØ�Ú�Û'Ü :ÝÖ�5I�X;JÞ (3.1)

We prove the following theorem:

Theorem 3.1 Let ªo«�¬ ­ be a DL formula with � variables. Let
(Z`cb+d

be the maximum over the

absolute values of all difference constraints in ªG«�¬ ­ . Then, ª"«�¬ ­ is satisfiable if and only if it has a



3.2. SMALL-DOMAIN ENCODING 17

solution in � 4p& � &)²U&Z°Z°Z°±& Ö×�X! where

Ö � :�� 2 �X; � : (*`cb+d 5I�X;

Proof: The “if” part of the proof is trivial. Let us consider proving the “only if” part.

Assume initially that ªo«®¬ ­ does not have any ITE expressions.

Since ªo«�¬ ­ is satisfiable, let ß be a satisfying assignment. Under ß , each difference constraint
evaluates to

�à�g���
or  J¡1£�¤ � . Construct the set of difference constraints � as follows:

1. If ß � � � 2 � ���M( k �|�M�X����� , add � � 2 � �=�M( k to � .

2. If ß � � � 2 � � �M( k �|�  ¢¡]£A¤ � , add the negation of � � 2 � � ��( k , viz., � � 2 � � � 2 ( k 5I� , to � .

Consider the constraint graph á corresponding to � . There are � vertices, one for each variable, and

at most � edges, one for each constraint or its negation. Note that, while negating constraints, the

constant term can increase by at most � . Therefore, the weight of any edge in á is at most
(�`cb+d 5M�

in absolute value.

The constraint corresponding to each edge in á is
�X�����

under ß . Therefore, there cannot be any

cycles in the graph such that the sum of the weights of the cycle’s edges is positive.

Now, construct a graph á©0 as follows:

1. Negate the weight of every edge in á . Thus, there is an edge from À � to À � of weight
( k in á 0

iff � � 2 � �=� 2 ( k is a constraint in � .

2. Introduce a source vertex À source, and edges of weight
4

from À source to every À � .
Shortest paths â � from À source to every À � are guaranteed to exist since there are no negative cycles
in á�0 . Moreover, for every edge in áã0 from À � to À � of weight

( k , â � <Nâ � 5 ( k . In other words, an

assignment ß 0 such that ß 0 � � ���K� â � is a satisfying assignment to ª�«�¬ ­ .

Any path in á±0 has at most � 2 � edges, each of weight at most
(Z`cb+d 5�� . Therefore, for all # ,

â �9� ß 0 � � �S� <¦:�� 2 �X; � : (*`cb+d 5ä�X; .
Thus, there exists a satisfying solution in � 4p& � &)²U&Z°Z°Z°ã& Ö×� ! where

Ö � :�� 2 �X; � : (*`cb+d 5I�X;
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Finally, if ªo«�¬ ­ has ITE expressions, we can eliminate them using the rewrite rule

ITE : bool-expr
&

num-expr C & num-expr q ; � num-expr vå
� : bool-expr

�9æ
num-expr C � num-expr v ;9r : ¥ bool-expr

�9æ
num-expr q � num-expr v ; �

Application of this rewrite rule cannot decrease the values of � or
(à`cb+d

. Thus, the bound Ö applies
even if ª"«®¬ ­ has ITE expressions. _
We observe that ¯ ��ç : Ú�Û'Ü � �LÚ�Û'Üo(�`cb+d ; , which is polynomial in the input size.

Remark 3.1 Note that the above analysis is conservative in two respects:

1. Suppose that there are multiple variable classes. There are no edges between vertices cor-

responding to different variable classes, and hence a separate bound can be computed and
employed for each class. If � � and

( `cb+d �
are values of � and

( `cb+d
for variable class # , a bound

of :�� � 2 �X; � : (*`cb+d � 5ä�X; suffices for variables in that class.

2. The term :�� 2 �X; � : (�`cb+d 5��X; can be replaced by D !�è3C��F C j (*�êé 5¦� j , where
(��AëZ&)(*��ìà&Z°Z°Z°�&)(*� �Lí ë

are the � 2 � largest elements of
(
, in absolute value.

_
Example 3.2 Consider the following DL formula:

:�� C � �]qÐr��Kq � �]vÐr��Kv � � C 5ä�X;w
:��]x � �]y�5ä� 4'4 r ITE :��Ky � �]Ãc5 Ä�4p& �]Ã & �KÆZ; � �1x 2 � 4'4 ;

There are two variable classes, viz., �L� C & �]q & �Kvg� and �L�1x & �Ky & �]Ã & �KÆà� .
For the first class, � �Iî and

(l`cb+d�� � . The value of Ö is therefore
²��X²^� ´ .

For the second class, � � ´ and
(l`cb+d�� � 4'4 . The value of Ö is therefore

î=� � 4 � �Iî�4{î .
Using the observation made in Part (2) of Remark 3.1 does not improve the above bounds. _
Complexity

Computing � and
(�`cb+d

requires a linear scan of the input DL formula.

The propositional encoding can also be done in polynomial time. Each variable is encoded using ¯
bits, and ¯ is polynomial in the input size. Adder, comparator, and multiplexor circuits (required to
encode the operators 5 ,

�
, and ITE respectively) are all polynomial in the size of their arguments.
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Thus, the small-domain encoding method can be performed in polynomial time. Furthermore, the

resulting encoding is polynomial in the size of the input DL formula.

3.3 Direct Encoding

Given a DL formula ªo«�¬ ­ , the DIRECT method translates it to an equi-satisfiable Boolean formula
ª"µ�ï¢ï®ð in the following ´ steps:

1. Preprocessing: First, all ITE expressions are eliminated from ª6«�¬ ­ by recursively using the
following rewrite rules:

ITE : bool-expr
&

num-expr C & num-expr q ; � num-expr vå
� : bool-expr r num-expr C � num-expr v ; w : ¥ bool-expr r num-expr q � num-expr v ; � (3.2)

num-expr C � ITE : bool-expr
&

num-expr q & num-expr v ;å
� : bool-expr r num-expr C � num-expr q ; w : ¥ bool-expr r num-expr C � num-expr v ; � (3.3)

Next, negations are eliminated from the resulting formula. Let the result be ª6ñ ï�»uò .

2. Generate Boolean skeleton: Each difference constraint � �-� � � 5 ( in ª�ñ ï�»uò is replaced
by a fresh Boolean variable ógô�A� � . This preserves only the Boolean structure of ª�ñ ï�»uò . The

resulting Boolean formula is denoted by ªGµ¸·º¹�» .
3. Generate transitivity constraints: In order to preserve the arithmetic information in ª ñ ï�»uò ,

constraints are generated to disallow satisfying assignments to ª\µ¸·º¹�» that cannot be extended

to a satisfying assignment to ª¶ñ ï�»uò . These constraints, termed as transitivity constraints, are
generated as follows:

(a) Construct the constraint graph á©ñ ï�»uò corresponding to the set of difference constraints
appearing in ª"ñ ï�»uò .

(b) Initialize the Boolean formula ª ¼õ»S¹ ñZö to
�X�����

.

(c) Pick a vertex À � . (Usually, À � is a vertex for which the product of its in-degree and

out-degree is minimum.) If no vertex exists, skip to Step (4).

Let ( À � , À � , ( C ) and ( À � , À T , ( q ) denote a pair of incoming and outgoing edges incident at
À � . For every such pair:
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- If $§÷�ùø , we add the edge ( À � , À T , ( C 5 ( q ). Additionally, we update ª ¼õ»S¹ ñZö as

follows:
ª ¼õ»S¹ ñZöoúûª ¼õ»S¹ ñZö±r7:uó ô ë�®� � r�ó ô ì�A� T �9æ ó ô ë B ô ì�)� T ;

- If $ �Iø , and
( C 5 ( q [ 4 , we update ª ¼õ»S¹ ñZö as follows:

ª ¼õ»S¹ ñZö úûª ¼õ»S¹ ñZö r7:uó ô ë�®� � r�ó ô ì�A� T �9æ  J¡1£�¤ � ;
(d) Delete À � and all its incident edges, and return to Step (3c).

Note that the vertex elimination step in the above procedure is Fourier-Motzkin elimination
viewed graph-theoretically.

4. Assemble Boolean encoding: The final Boolean encoding ª6µ�ï¢ï�ð is ª"µ¢·º¹�»ãrüª ¼õ»S¹ ñZö .
Theorem 3.2 ª"«®¬ ­ and ªoµ�ïJï�ð are equi-satisfiable.

Proof: First, note that ªo«®¬ ­ and ª�ñ ï�»uò are equi-satisfiable. Secondly, if ª¶ñ ï�»uò is satisfiable, so

is ª"µ�ïJï�ð , since the assignment to difference constraints in ª�ñ ï®»uò can be directly applied to satisfy
ªoµAïJï�ð .
We therefore focus on proving that if ª�µ�ïJï�ð is satisfiable, so is ª"ñ ï�»uò . In particular, we claim we can
extend any satisfying assignment ß of ª�µ�ï¢ï�ð to ª�ñ ï�»uò such that

ß � � � � � � 5 ()�|� ß � ó ô�A� � �
We will say that an edge ( À � , À � , ( ) of á�ñ ï�»uò is

�X�����
if ß � ó ô��� � �K���X����� .

The formula ª"ñ ï�»uò is satisfied by ß if á±ñ ï�»uò does not contain any cycles of positive cumulative

weight with all edges
�X�����

. We will show that under ß , at least one edge of each positive weight

cycle must be  ¢¡]£A¤ � .
Consider an arbitrary cycle ý§�{À C & À'q °Z°Z°�& À ! & À C of positive cumulative weight. Let

( q &)( v °Z°Z°9&)( ! &)( C
be the weights of edges :�À C & À'qX; & :�À'q & À'vX; &Z°Z°Z°�& :�À ! & À C ; respectively and let þ�:¸ý^; denote the cumu-

lative weight of cycle ý . Thus, þ�:¸ýÿ; � D !��F C ()� [ 4 .
Assume without loss of generality that the elimination order is À C � À'q � °Z°Z° � À ! . Starting

with ý � � ý , the # th elimination step results in a new cycle ý � such that j ý � j � j ý � è3C j 2 � and
þ�:¸ý � ; � þ�:¸ý � è3C ; . Each projection adds a transitivity constraint. For example, the first elimination

adds ó ô ë! � C rEó ô
ì
C � q �9æ ó ô ë B ô ì! � q . In the :�� 2 �X; th elimination step we are left with a cycle between

À !%è3C and À ! of weight þ�:¸ýÿ; , at which step the projection method replaces the implicant with false.
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All together, the following conjunction of constraints appears in ª ¼õ»S¹ ñZö :
ó ô ë! � C r�ó ô

ì
C � q �9æ ó ô ë B ô ì! � qr

ó ô ë B ô ì! � q r�ó ô��q � v �9æ ó ô ë B ô ì B ô��! � vr
...

r
ó � �Lí ë��� ë ô �! � !�è3C r�ó ô �!�è3C � ! �9æ  ¢¡1£�¤ �

This chain of constraints forces at least one of the edges to be  ¢¡]£A¤ � . _
Example 3.3 We illustrate the DIRECT encoding method using the DL formula introduced in Ex-

ample 3.2, reproduced below:

:�� C � �KqÐr��]q � �KvÐr��]v � � C 5ä�X;w
:��1x � �]yc5ä� 4'4 r ITE :��Ky � �KÃ�5 Ä�4p& �KÃ & �KÆL; � �]x 2 � 4'4 ;

The main steps are outlined below:

1. After eliminating the ITE expression, we obtain the following DL formula:

:�� C � �]qÐr �]q � �KvÐr��]v � � C 5ä�X;w
s �]x � �]y�5�� 4'4 r � :��]y � �]Ãc5 Ä�4 r��]Ã � �]x 2 � 4'4 ; w : ¥ �Ky � �]Ãc5 Ä�4 rü�KÆ � �]x 2 � 4'4 ; � z
Next, we obtain the negation-free form ª¶ñ ï®»uò :

:�� C � �]qÐr �]q � �KvÐr��]v � � C 5ä�X;w
sÝ� x � � y 5�� 4'4 r � :�� y � � Ã 5 Ä�4 r�� Ã � � x 2 � 4'4 ; w :�� Ã � � y 2 ´%Å6r � Æ � � x 2 � 4'4 ; �Az

2. The Boolean skeleton ª�µ¸·º¹�» is:

:uó � C � q r ó �q � v rÙó Cv � C ;w
s ó C ���x � y r � :uó y �y � Ã r�ó è3C ���Ã � x ; w :uó è x��Ã � y r�ó è3C ���Æ � x ; � z
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3. The constraint graph á±ñ ï�»uò corresponding to ªoñ ï�»uò is the graph depicted in Figure 3.2.

Suppose we perform Fourier-Motzkin elimination using the heuristic of picking the vertex
for which the product of in-degree and out-degree is minimum. One order generated by this

heuristic is À{q � À'v � À C � À{Æ � À�x � À'y � À	� . The resulting graph is shown in Figure 3.3.

The formula ª ¼õ»S¹ ñZö comprising of the generated transitivity constraints is

ó � C � q r�ó �q � v ��æ ó � C � vr
ó � C � v r�ó Cv � C ��æ  J¡1£�¤ �

r
ó è3C ���Ã � x r�ó C ���x � y ��æ ó �Ã � y

r
ó �Ã � y r�ó y �y � Ã ��æ  J¡1£�¤ �

r
ó è x��Ã � y r�ó y �y � Ã ��æ  J¡1£�¤ �

_
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Figure 3.3: Illustration of DIRECT encoding. The final state of the constraint graph is shown, with

original edges indicated by solid lines and new edges indicated by dashed lines.

Complexity

In the worst case, the DIRECT encoding can generate exponentially many transitivity constraints in

the problem size. Here is an example that demonstrates this worst-case behavior.

Example 3.4 Consider the constraint graph in Figure 3.4. It is cyclic on � vertices À C & À�q &Z°Z°Z°�& À ! .
There are � edges going from À � to À � B�C for �E< #�< � 2 � and also from À ! to À C to close the
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cycles. The weights on the edges are chosen as follows. For ��< #�<I� 2 � , the weights on edges

going from À � to À � B�C are
4p& � � è3C &)² � � è3C &Z°Z°Z°�& :�� 2 �X;J� � è3C . The weights on edges going from À ! to

À C are
4p& � !%è3C &)² � !�è3C &Z°Z°Z°9& :�� 2 �X;J� !�è3C .

Observe that there are ��! distinct simple cycles in this graph, each with a different cumulative

weight in the range
� 4p& � ! 2 � � .

Thus, no matter what order of vertex elimination we select, in the :�� 2 ² ; th vertex elimination step,

there will be � !�è3C new edges added. Each of these edges will form one edge of a two-edge cycle of
cumulative weight in the range

� 4p& � ! 2 � � .
Since every two-edge cycle yields a corresponding transitivity constraint,

ç :�� ! ; transitivity con-

straints will be generated on this example.

The weight of each edge in the starting graph, encoded in binary, requires
ç :�� Ú�Û'Ü ��; space and

there are � q edges to start with. Thus, this example illustrates the worst-case scenario. _
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Figure 3.4: Example demonstrating exponential blow-up of DIRECT encoding

3.4 Related Work

The small-domain and direct encoding algorithms were originally proposed for deciding equality

logic (and uninterpreted functions) via translation to SAT. Pnueli et al. [122] and Bryant et al. [28]
proposed different small-domain encoding algorithms. The former is based on range allocation,

where the structure of the formulas is analyzed so as to generate a set of values (not necessarily
in a contiguous range) for each variable over which it suffices to search for satisfying solutions.

The latter approach is based on the notion of positive equality, where the polarity of equalities

in the formula is analyzed to reduce the small-domain size for certain variables to singleton sets.
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The origins of the direct encoding algorithm are in a paper by Goel et al. [62], where the Boolean

reasoning is BDD-based. Bryant and Velev [32] later proposed the direct encoding algorithm for
equality logic based on generating transitivity constraints; the encoding algorithm for difference

logic described in this chapter is an extension of their work.

Recently, Talupur et al. [153] have proposed an extension of Pnueli et al.’s range allocation method

for difference logic. While the domains computed using their method can be far more compact than
the one derived in this chapter, the algorithm for computing those domains is currently a perfor-

mance bottleneck.

3.5 Discussion

The small-domain encoding method can be viewed as a “model checking approach” to deciding the
satisfiability of DL, since it searches for a model for the formula over a finite domain. On the other

hand, the direct encoding method can be viewed as a “theorem proving approach,” since it is based
on creating enough Boolean instances of the axiom of transitivity so as to preserve satisfiability.

An experimental comparison of the SD and DIRECT encoding methods will be made in Chapter 6.

In the remainder of this thesis, we will extend the SD and DIRECT encoding methods to apply to
richer logics.



Part I

SAT-Based Decision Procedures





Chapter 4

Generalized 2SAT Constraints

Generalized 2SAT constraints are a special class of linear constraints over integer variables. A
generalized 2SAT (G2SAT) constraint (also called a unit two variable per inequality or UTVPI con-

straint) has at most two variables, and variable coefficients are in � 2 � & �g� . The variables are not

required to have finite upper or lower bounds. Useful optimization problems, such as the mini-
mum vertex cover and the maximum independent set problems, can be modeled using generalized

2SAT constraints, and several applications of constraint logic programming and automated theorem

proving also generate G2SAT constraints (e.g., see [10, 81]).

A G2SAT formula is a Boolean combination of G2SAT constraints. In this chapter, we consider the
problem of checking the satisfiability of G2SAT formulas. It is easily seen that this problem is NP-

complete. However, the special case of checking satisfiability of a conjunction of G2SAT constraints

(i.e., finding a feasible integer point in a G2SAT polyhedron) can be solved in polynomial time; for
example, a modified version of Fourier-Motzkin elimination (reviewed in Section 4.2) runs in

ç :�� v ;
time.

Current approaches (e.g., [10]) to checking the satisfiability of a G2SAT formula employ a combi-

nation of Boolean satisfiability solving and linear constraint solving. Truth values are assigned to
linear constraints so that the G2SAT formula is satisfied. Each such truth assignment corresponds to

a G2SAT polyhedron. If this polyhedron has a feasible integer point, that point satisfies the original
G2SAT formula as well. If not, another truth assignment must be found. Given a G2SAT formula

ª%$®ö ¹�¼ with � constraints and � variables, and assuming that integer feasibility is checked using

the afore-mentioned modified Fourier-Motzkin elimination algorithm, the current techniques have a
worst-case running time of

ç : ²'&�� � v ; .1
In this chapter, we prove that a satisfying solution exists for a G2SAT formula ª($®ö ¹�¼ if and only if

there is a solution to ª $®ö ¹�¼ with each variable taking values in the finite range
� 2 � � : ( `cb+d 5I�X; & � �

1Assuming the trivial worst-case bound of )+*-, �/. for checking satisfiability of a Boolean formula in 0 variables.



28 CHAPTER 4. GENERALIZED 2SAT CONSTRAINTS

: (*`cb+d 57�X; � , where � is the number of variables in ª1$®ö ¹�¼ , and
(*`cb+d

is the maximum over the absolute

values of constant terms in the constraints. That such a bounded solution exists is not surprising,
since satisfiability solving of G2SAT formulas is in NP. However, the previously best known solution

bounds [22, 84, 118, 160] are 2-:�� q � : (*`cb+d 5>�X; �º² !a; . In particular, our result eliminates the
² ! term,

thereby exponentially reducing the solution bound.

Our result can be used to implement a small-domain encoding based decision procedure for G2SAT
formulas. Such a procedure checks satisfiability of G2SAT formulas in worst-case time

ç : ² !#35476	8g;
where Ö � ² � � � : (�`cb+d 5 �X; , by encoding each integer variable with

Ú�Û'Ü Ö Boolean variables.
This yields a more efficient satisfiability checker for highly over-constrained formulas, where � �2-:�� ��Ú�Û'Ü Öp; .2 In our experience, the latter is often the case for theorem proving applications in

program analysis and hardware verification.

A key step in our proof is to show that for a G2SAT polyhedron, if a feasible integer point exists,
then one exists within a unit hypercube centered at any minimal face solution (extreme point). As

a corollary of this result, we obtain a polynomial-time algorithm for approximating optima to an

additive factor in generalized 2SAT integer programs.

Our theoretical results are validated by an experimental evaluation (in Section 4.4) on randomly
generated G2SAT formulas, which shows that a decision procedure based on our approach can

greatly outperform other procedures.

4.1 Previous Work

There has been much previous work on integer programming with two variables per inequality (see,
e.g., the work by Hochbaum et al. [73–75]). The main differences between this work (applied to

G2SAT constraints) and ours are threefold. First, our focus is on satisfiability solving of arbitrary

G2SAT formulas and not linear optimization over G2SAT polyhedra. Second, we do not require
variables to be bounded. Finally, for our approximation result, the objective function can be an

arbitrary linear function, without any restriction on the sign of cost coefficients.

Previous results on bounding solutions have been derived in the context of showing that integer lin-

ear programming is in NP [22, 84, 118, 160]. Even when specialized for G2SAT integer programs,
these bounds are 2-:�� q � : (*`cb+d 5M�X; �Z² ! ; . Our result is therefore an exponential reduction in the so-

lution bound for G2SAT integer programs, and, to the best of our knowledge, has not been obtained

before.

Our results rely on the modified version of Fourier-Motzkin elimination for checking integer feasi-
2For a conjunction of G2SAT constraints, 9 is ):*<; ì . , since one can eliminate redundant constraints. However, for

an arbitrary Boolean combination, this is not the case.
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bility of a G2SAT polyhedron; this algorithm is described by Subramani [149], and an incremental

version has been given by Harvey and Stuckey [66].

Theorem provers that can check G2SAT formulas, such as CVC-Lite [48], are essentially a combi-
nation of a SAT solver and a solver for a system of linear constraints. In the case of CVC-Lite, this

solver is the Omega test [127], which for G2SAT constraints is identical to the modified Fourier-

Motzkin elimination algorithm referenced above.

4.2 Background

We state here, in brief, some definitions and theorems used in the remainder of the chapter. Further

details can be found in standard textbooks on polyhedral theory and integer linear programming

(e.g., [112, 131]).

Following standard linear programming notation, we denote the number of variables by � and num-
ber of constraints by � . We assume that a linear constraint is specified in the form ¡ �*
Ð�M( , where¡ is a � -dimensional integer vector

� � C &c� q &�°Z°Z°�&®� ! � , 
 is a � -dimensional vector of integer-valued

variables
� � C & �]q &Z°Z°Z°�& � ! � , and

(
is an integer. A system of constraints is specified as

	¦��
�� �
,

where
	

is a � ��� matrix with integral entries,
�

is a �ù�Ð� integer vector
�ê( C &)( q &Z°Z°Z°�&)( & � T, and


is a �M��� vector of integer-valued variables. We use
( `cb+d

to denote the m n norm of
�

; i.e.,()`cb+d=� OQegf � j (*� j .
The terms feasible and satisfiable are used interchangeably, as also are lattice point and integer

point.

G2SAT Formulas

Definition 4.1 A constraint ¡ ��
Ð��( is said to be an absolute constraint if exactly one of the
�|�>=

is

non-zero, a pure difference constraint if exactly two of the
�1�?=

are non-zero with one being 5�� and

the other 2 � , and a sum constraint if exactly two of the
� � =

are non-zero with both 5�� or both 2 � .
¡ �'
���( is said to be a G2SAT constraint if it is either an absolute, a pure difference or a sum

constraint.

Note that difference constraints are either absolute or pure difference constraints.

A G2SAT formula is generated by the following grammar:

ª $®ö ¹�¼ ��� � �X����� jl ¢¡]£A¤ � j � C 5 � q �M( j � C 2 � q �M( j � �M(j ¥ ª@$®ö ¹�¼ j ª@$®ö ¹�¼ C r�ª@$®ö ¹�¼ q j ª@$®ö ¹�¼ C w ª@$®ö ¹�¼ q
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Notice that a negation on a G2SAT constraint can be eliminated by rewriting the constraint. A

G2SAT constraint remains G2SAT under such rewriting. The only change is to the sign of variable
coefficients, and to the constant term, which can increase in absolute value by at most � .
Example 4.1 Consider the following G2SAT formula

: ¥ � C 5 � q � 2 �X;/rtsÝ� q 2 � v ��4Mw � x � � z
The constraint � C 5 �]q � 2 � is a sum constraint, �|q 2 �]v �I4 is a pure difference constraint, and
�1x � � is an absolute constraint. The negation can be eliminated to obtain an equivalent G2SAT

formula 2 � C 2 �Kq �M² r s �]q 2 �]v �M4Mw �1x � � z
Note that the value of

(�`cb+d
has increased from � to

²
after eliminating the negation.

Not all families of linear constraints are closed under eliminating negations. For example, the class

of Horn-SAT constraints, which comprises all constraints with at most one variable with a positive

coefficient, are not closed under eliminating negations.

Definition 4.2 Given a G2SAT formula ª1$®ö ¹�¼ , an enumeration bound is an integer Ö such that ª1$)ö ¹®¼
is lattice point feasible if and only if it contains a lattice point in the � -dimensional hypercubeA !��F C � 2 Ö & Ö � . The interval

� 2 Ö & Ö � is termed as an enumeration domain.

Polyhedral Theory

Definition 4.3 A minimal face of a polyhedron is a face that does not contain any other face of the

polyhedron. A point lying on a minimal face is called a minimal face solution (MFS).

When the minimal face is an extreme point (a vertex), a MFS is a basic feasible solution.

We write : 	 0 &6� 0 ;CB : 	^&\� ; to indicate that the polyhedral system
	 0 �g
M�¦� 0 is a subsystem of

the polyhedral system
	��L
>�M�

. Also, for a matrix
	

, let D×: 	 ; denote the rank of
	

. We have the

following characterization of a minimal face.

Theorem 4.1 ([131]) Let E � � 
 � 	ä�X
 ��� � denote a polyhedron. A non-empty subset FGBHE
is a minimal face of E , if and only if F � � 
 � 	 0 �g
 �8� 0�� , for some system

	 0 �g
@�§� 0 , where

: 	 0 &c� 0 ;IB¦: 	ÿ&"� ; , and D×: 	 0 &�� 0 ; � D×: 	ÿ&c� ; .
Suppose we apply Fourier-Motzkin (FM) elimination to project a variable � � from a G2SAT polyhe-
dron E8� 	 �J
 �M� . Denote the resulting polyhedron by JE��LK	 � J
 � J� . In general, JE is not G2SAT.

This is because adding a sum constraint involving � � and � � with a difference constraint involving
those variables can result in a non-G2SAT constraint either of the form

² � �©�M( or 2 ² � �±��( .
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However, it is possible to modify the basic FM elimination procedure by adding a coefficient nor-

malization step, so that the resulting polyhedron remains G2SAT, and moreover, is lattice point
feasible iff E is. The modification hinges on the observation that the only non-G2SAT constraints

in JE are of the form
² � �o� ( or 2 ² � �o� ( . By dividing both sides of a newly created non-G2SAT

constraint by
²
, and rounding up the RHS if it is an odd multiple of Cq , we obtain a G2SAT constraint

with the same integral solutions as the original. In this way, we replace each non-G2SAT constraint

in JE with a corresponding G2SAT constraint to obtain a G2SAT polyhedron E 0 � 	 0 �L
 0 ��� 0 .
We will refer to the modified FM elimination procedure as Fourier-Motzkin elimination with coef-

ficient normalization (FM-CN). It is easy to see that FM-CN preserves integral solutions, i.e., E is

lattice point feasible iff E 0 is. One can use FM-CN to check the feasibility of G2SAT polyhedra in

time
ç :�� v ; , by successively eliminating variables, checking at each step that we do not generate a

trivially false constraint. At any step, we are guaranteed to have a system of no more than
ç :�� q ;

constraints, since there are only ´ � s ! q z possible non-redundant G2SAT constraints on � variables.

4.3 Theoretical Results

Our theoretical results are organized as follows. We begin, in Section 4.3.1, by showing that if a
G2SAT polyhedron has a minimal face solution (MFS), then there exists a MFS with each com-

ponent half-integral and in
� 2 � �%( `cb+d & � �%( `cb+d � . The main theorem, presented in Section 4.3.3,

enables us to go from bounding a MFS to bounding integer solutions. This theorem states that if a
G2SAT polyhedron is integer feasible, then it is possible to find a integral solution within a unit box

centered at any MFS; i.e., by “rounding” a MFS. In this section, we also describe how to extend
results for G2SAT polyhedra to arbitrary G2SAT formulas. Section 4.3.2 presents auxiliary results

on rounding that are used to prove the main theorem. Finally, in Section 4.3.4, we show that the

main theorem can be used to obtain an additive approximation result for optimizing an arbitrary
linear constraint over a G2SAT polyhedron.

4.3.1 Minimal Face Solutions of G2SAT Polyhedra

We begin with a useful lemma.

Lemma 4.1 Let E � 	��L
>�M� represent a system of � pure difference constraints on � variables.

Then, E has a feasible integer solution if and only if it has an integer solution in the hypercubeA !��F C � 4p& :�� 2 �X; �X( `cb+d � .
Proof: Follows from Theorem 3.1. _
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The following lemma considers bounding a MFS of a G2SAT polyhedron in the non-negative or-

thant.

Lemma 4.2 Let E8� 	��Z

���"&�
 �NM
denote an arbitrary G2SAT polyhedron in the non-negative

orthant with � constraints and � variables. Then, if a MFS exists, then there is a MFS with each

component half-integral and at most � �X( `cb+d .
Proof: Suppose polyhedron E has a minimal face solution. Hochbaum et al. [75] have shown that
this MFS must be half-integral. We focus here on showing the � �X(X`cb+d bound.

By definition, the minimal face corresponding to this MFS satisfies a system
	 0 �{
I�Ù� 0 , where

: 	 0 � 0S;OB : 	 � ; , and D×: 	 0�; � D×: 	 ; � ø for some �7< ø < � (assuming, w.l.o.g., that � <
� ). Accordingly, there are

ø
independent variables and � 2 ø dependent variables in the system;

without loss of generality, we assume that the first
ø

variables are independent and set the dependent

variables to
4
. This results in a system EQP � 	 0 0 �à
 0ê0 �N� 0 0 &�
 0 0 �RM

, where the components of
� 0 0

are also components of
�

, and

 0 0 ��� � C & �Kq &Z°Z°Z°�& � T �<S .

The system ELP contains
î

types of constraints (equations), viz., absolute, pure difference, and sum.
We consider each of these types in turn:

1. An absolute constraint is of the form � ��� ( . Since

 0 0 �TM

, the value of � � must be in� 4p&)( `cb+d �
.

2. A sum constraint can be written in the form � � 5�� ��� ( , where
(�� 4

. Since

 0 0 �UM

, it
follows that

4 <@� � & � � < ( < ( `cb+d .
3. From the two cases above, we conclude that the value of any variable appearing in an absolute

or sum constraint must lie in
� 4p&)( `cb+d �

(and moreover, there exists such a half-integral value).

W.l.o.g, let � C & �Kq &Z°Z°Z°9& �WV , X©< ø , be variables appearing in the absolute and sum constraints,

and let �ZY C & �ZYq &Z°Z°Z°�& �[YV be the corresponding half-integral values in
� 4p&)( `cb+d �

satisfying these
constraints. Substituting these values into the pure difference constraints might create new

absolute constraints, but no new pure difference or sum constraints. The constant term in new
absolute constraints generated thus is half-integral and of absolute value at most

²'(�`cb+d
. The

substitution process can be iterated at most
ø 2 � times leading to absolute constraints with

half-integral constant terms at most
ø6�º(Z`cb+d

. Thus, a variable appearing in any of the absolute
constraints generated in this iterative process takes half-integral values in

� 4p&)ø��X(g`cb+dL�
.

When the above iterative substitution process terminates, the only constraints possibly left

are some of the original pure difference constraints, each with an integral constant term of
absolute value at most

( `cb+d
. Since these constraints are satisfiable, we can apply Lemma 4.1

to conclude that there exists a solution to these constraints with each variable taking integral
values in

� 4p& : ø 2 �X; �à(*`cb+dZ� (since at most
ø

variables appear in these constraints).
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Since
ø <@� , we conclude that there exists a solution to E\P with each component at most � �L(l`cb+d .

_
We now generalize the result to an arbitrary G2SAT polyhedron.

Theorem 4.2 Let E�� 	��L
 �ä� denote an arbitrary G2SAT polyhedron with � constraints and �
variables. If a MFS exists, there exists a MFS with each component half-integral and in the interval� 2 � �à(*`cb+d{& � �X(*`cb+dZ� .
Proof: Suppose


 Y is a MFS of E . Let $ C & $Lq &Z°Z°Z°9& $ T be the set of all column indices, �N<
$ C & $Lq &Z°Z°Z°9& $ T <Ù� , such that � Y�^] � 4 for all X , � <_X�< ø . Construct a matrix

	 0 by multiply-

ing the $`V th column of
	

by 2 � for all X , leaving other columns unchanged. We observe that:

1. The polyhedron E^0|� 	 0 �Z

�M��&c
 �aM
is also G2SAT.

2. If we construct

 0 Y from


 Y by negating �ZY� ] for all X , ��<bXo< ø , 
 0 Y satisfies E-0 . Moreover, we

argue that it is a MFS of E 0 as follows:

Let :/K	�& J� ;cBÙ: 	ÿ&®� ; be the constraints satisfied with equality at

 Y , and : K	 0 & J� 0 ;dBÙ: 	 0 &®� 0�; be

the constraints satisfied with equality at

 0 Y . Then, D×: K	 ; � D×:eK	 0 ; , since K	 and K	 0 correspond to

the same rows (of
	

and
	 0 respectively). Also, note that D×: 	 ; � D×: 	 0�; . Finally, since :fK	�& J� ;

define a minimal face of E , D×:gK	 ; � D×: 	 ; [131].

Thus, D×: K	 0 ; � D×: 	 0�; , and so

 0 Y is a MFS of E-0 .

Using an identical argument, we conclude that, from a MFS of E�0 , we can construct a MFS of E by

negating values to � �)ël& � �ºìL&Z°Z°Z°�& � �ºW .
Since E-0 has a MFS, by Lemma (4.2) it must have a MFS with each component half-integral and in� 4p& � �X(*`cb+dL� . It follows that E has a MFS with each component half-integral and in

� 2 � �à(à`cb+d%& � �( `cb+d �
. _

Remark 4.1 Note that the enumeration bound stated in Theorem 4.2 is tight.

First, notice that if
(�`cb+d=�ä4

, then the origin is a MFS, and the bound is tight.

Even if
(*`cb+d [ 4 , the enumeration domain is still tight in that one of its end points can be attained.

For example, suppose that the system of constraints comprises the following � equalities:

� C � (*`cb+d
� � 2 � � è3C � (*`cb+d ² <@#c<@� 2 �
� ! 5 � !%è3C � 2 ( `cb+d

It is easy to see that the solution set spans the interval
� 2 � �à(X`cb+d{& :�� 2 �X; �à(*`cb+dZ� . _
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4.3.2 Rounding and Semi-Rounding

Definition 4.4 A rational number � is said to be odd half-integral if it is an odd multiple of Cq .
Definition 4.5 A vector h is said to be a rounding of a vector



if h is integral and j�j h 2 
 j�j n�< Cq .

Definition 4.6 A vector h is said to be a semi-rounding of a vector



if all of the following conditions

hold: (1) j�j h 2 
 j�j n < Cq ; (2) all components of h are half-integral; and (3) if a component of



is

integral, so is the corresponding component of h .

Lemma 4.3 Let ¡ �a
 � ( be a G2SAT constraint. Let

 Y be a half-integral vector such that¡ �Z
 Y [ ( , and let ijY be an arbitrary semi-rounding of


 Y . Then, ¡ � ijY �M( .
Proof: The proof proceeds by case splitting on the number of variables in the constraint.

1. Suppose the constraint involves only one variable. Then, it is either of the form � �=� ( or2 � �¶�¦( . Correspondingly, we either have � Y� [ ( or 2 � Y� [ ( . Since � Y� is half-integral, in

both cases the LHS exceeds
(

by at least Cq . Thus, any semi-rounding þcY� of �[Y� satisfies the

constraint.

2. Suppose the constraint has two variables, � � and � � . Then, since �#Y� and �ZY� are both half-
integral, one of the following two cases must hold:

(a) The LHS is integral, and exceeds
(

by at least � . But any semi-rounding of � Y� and � Y�
can decrease the LHS by at most � , and hence satisfies the constraint.

(b) The LHS is odd half-integral, i.e., one of �eY� and �ZY� is integral and the other odd half-

integral. Thus, the LHS exceeds
(

by at least Cq . In this case, any semi-rounding of � Y�
and �ZY� can decrease the LHS by at most Cq , and will satisfy the constraint.

_ Since every rounding h of

 Y is also a semi-rounding of


 Y , we obtain the following corollary:

Corollary 4.1 Let ¡ ��
 � ( be a G2SAT constraint. Let

 Y be a half-integral vector such that¡ �Z
 Y [ ( , and let h be an arbitrary rounding of


 Y . Then, ¡ � h �M( .
We now state a useful property of Fourier-Motzkin elimination with coefficient normalization.

Proposition 4.1 Let E8� 	ÿ�ê

��� denote a G2SAT polyhedron in � !�B�C and

 Y � :��[Y C & �ZYq &Z°Z°Z°�& �[Y!'B�C ;

denote a half-integral feasible solution to E . Further, suppose that E is lattice point feasible.

Let E-0¶� 	 0 ��
 0 � � 0 be obtained from E by projecting out variable � !�B�C using Fourier-Motzkin

elimination with coefficient normalization and denote :��/Y C & �[Yq &Z°Z°Z°�& �[Y! ; by

 0 Y . Then, there exists a

semi-rounding i 0 Y of

 0 Y such that i 0 Y is a solution to E 0 .
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Proof: First, note that since E is lattice point feasible, so is E 0 .
If

 0 Y is already a solution to Eÿ0 then the theorem holds trivially.

So suppose that

 0 Y does not satisfy E 0 . The only reason this occurs is because


 0 Y is cut off by

coefficient normalization, i.e., due to the presence of one or both of the following situations:

1. There exists at least one variable � � , # ,lk , such that E has constraints of the form:

� � 2 � !'B�C � (*�
(4.1)

� � 5 � !'B�C � ( 0� (4.2)

which result in the following constraint in E�0 :
� �©�nm (*� 5 ( 0�² o (4.3)

where,
(*� 5 ( 0� is odd.

Since

 0 Y does not satisfy E^0 , the following equality also holds:

� Y� � (*� 5 ( 0�² (4.4)

2. There exists at least one variable � � , $ ,qp
, such that E has constraints of the form:

2 � � 5 � !'B�C � (º�
(4.5)2 � � 2 � !'B�C � ( 0� (4.6)

which result in the following constraint in E�0 :
� � <nr 2 ( � 2 ( 0�² s (4.7)

where,
(º� 5 ( 0� is odd.

Since

 0 Y does not satisfy E 0 , the following equality also holds:

� Y� � 2 (º� 2 ( 0�² (4.8)

Note that for some # ,tk
, and $ ,up

, if # � $ , then we must have ô � B ô>v�q � è ô é è ô>véq . But that would

mean that E 0 is infeasible, since constraints (4.3) and (4.7) would contradict each other. Hence, we

can assume hereafter that the two index sets
k

and
p

are disjoint.

We now give a rounding algorithm that generates a semi-rounding i 0 Y of

 0 Y that satisfies E 0 . The

rounding algorithm is as follows:
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1. Initialize the set of variables to be rounded up, w , to be �L� � j # ,�k � . Similarly, initialize the

set of variables to be rounded down, x as �L� � j $ ,tp � .
2. w � � � w , x � � � x , yo� �ä4 .
3. Compute w k B�C and x k B�C as follows. For every � �±, w k and � �=, x k ,

(a) Include in w k B�C any variable � T such that the following constraints in E�0 , which are
valid for E , hold with equality at


 0 Y :
� TG2 � �t� ( T � (4.9)

� � 5 � T � ( � T (4.10)

(b) Include in x k B�C any variable � T such that the following constraints in E 0 , which are

valid for E , hold with equality at

 0 Y :
2 � T�2 � � � ( 0 T � (4.11)

� � 2 � T � ( 0� T (4.12)

4. If w k B�C Bzw and x k B�C B{x , stop.

Otherwise, perform the assignments w � � w}|~w k B�C , x � � xR|jx k B�C , y\� � y�5I� , and go to

step (3).

It is easy to prove by induction on y , that for any � T , w ,
ø ÷,�k

, there either exists # ,{k
and an

integer
( T � such that

� YT 2 � Y� ��( T � (4.13)

or a $ ,tp
and an integer

( � T such that

� Y� 5 � YT �I( � T (4.14)

Similarly, for each � T , x ,
ø ÷,qp

, there either exists # ,lk and an integer
( 0 T � such that

2 � YT 2 � Y� ��( 0T � (4.15)

or a $ ,tp
and an integer

( 0� T such that

� Y� 2 � YT �I( 0� T (4.16)

Suppose the two sets w and x are disjoint. Then, to obtain a semi-rounding i 0 Y of

 0 Y , we round

up every variable in w and round down every variable in x .

To complete the proof, the following two sub-goals remain to be established:
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1. w��\x �N�
.

2. i 0 Y satisfies E 0 .
Assuming the first sub-goal, consider the second sub-goal first. We observe that:

� By Lemma 4.3, any constraints in Eÿ0 that are not satisfied with equality at

 0 Y will continue

to be satisfied by iü0 Y .
� From Equations (4.13)–(4.16), we note that for all � T , wa|\x , � YT is odd half-integral, since

it is an integral offset from � Y� or �[Y� for some # ,lk or $ ,�p
.

Thus, for all � T , w�|�x , there cannot be any absolute constraint involving � T in E 0 that
holds with equality at


 0 Y . Thus, by Lemma 4.3, the semi-rounding produced by the above

algorithm satisfies these absolute constraints.

� Steps 3(a) and 3(b) of the rounding algorithm ensure that all two-variable constraints of E 0
satisfied with equality at


 0 Y continue to be satisfied by the generated semi-rounding. For
example, if � T\2 � �c��( T � is satisfied with equality at


 0 Y , and �ZY� is rounded up, so is �#YT , so

the constraint continues to be satisfied.

Thus, if the two sets w and x are disjoint, we can conclude that i/0 Y satisfies E-0 . We will now show
that the former is indeed the case.

The proof is by contradiction. Suppose w���x ÷�}�
. Let � T be a variable present in both sets. As we

noted before, for any # ,qk
and $ ,up

, #=÷� $ , so we can assume that
ø

is neither in
k

nor in
p

. We

have the following cases, each of which leads to a contradiction:

1. Equations (4.13) and (4.16) hold. Then, for some integer
(��)�

, we have

� Y� 2 � Y� �I( �)� (4.17)

The above equation corresponds to the following inequality derived by adding Inequali-
ties (4.9) and (4.12), which is valid for both E and E 0 :

� � 2 � �±�M(º�®� (4.18)

Further, from Equation (4.17) and Inequalities (4.1), (4.2), (4.5), and (4.6), we can conclude

that

2 (º�)�|� � Y� 2 � Y� � ()� 5 (º� (4.19)2 (º�)�|� � Y� 2 � Y� � ( 0� 5 ( 0� (4.20)
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Also from Equations (4.4) and (4.8), we know that

2 (º�®�3� � Y� 2 � Y� � (*� 5 (º� 5 ( 0� 5 ( 0�² (4.21)

From (4.19), (4.20), and (4.21) above, we infer that
(X� 5 (º�6�I( 0� 5 ( 0� � 2 (º�)� .

Thus, the inequalities in (4.19) and (4.20) hold with equality. Also, from Inequalities (4.1)
and (4.5), � � 2 � ����()� 5 (º� is valid for E . Thus, we can conclude that Inequality (4.18) holds

with equality for E . This further implies that Inequalities (4.1), (4.2), (4.5), and (4.6) hold
with equality for E .

Since there is a unique solution to Constraints (4.1), (4.2), (4.5), (4.6) and (4.18) that satisfies
them with equality, in every feasible solution of E , � ��� �[Y� , � ��� �[Y� , and � !'B�C � �ZY!�B�C .
Since at least one of � Y� and � Y� is odd half-integral, this contradicts the premise that E has a
lattice point solution.

2. Equations (4.14) and (4.15) hold. This case is identical to Case (1) above.

3. Equations (4.14) and (4.16) hold. Then, we have

� Y� � ( � T 5 ( 0� T² (4.22)

This implies that ô
é W B ô vé Wq � è ô é è ô>véq .

Further, Equation (4.22) corresponds to the following valid cut for EQ0 (i.e., it preserves lattice

point solutions), obtained by adding (4.10) and (4.12):

� � �nm ( � T 5 ( 0� T² o (4.23)

However, Constraints (4.7) and (4.23) contradict each other, implying that EQ0 is not lattice

point feasible, which contradicts the theorem’s premise.

4. Equations (4.13) and (4.15) hold. This case is identical to Case (3) above.

Thus, w��\x �}�
and we obtain a semi-rounding i�0 Y of


 0 Y as required. This completes the proof.

_
4.3.3 Main Theorems

We now arrive at the key result of this chapter.

Theorem 4.3 Let E � 	I�g
 �¦� denote a G2SAT polyhedron and

 Y denote a half-integral MFS.

If E is lattice point feasible, then it contains a lattice point h such that j�j h 2 
 Y j�j n < Cq , i.e., h is a

rounding of

 Y .
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Proof: We prove the theorem by induction on the length of



.

Base Case: Let

7� � , � . If �#Y is a MFS, there exists a constraint � �I( that holds with equality

for � Y . Thus, the theorem holds trivially for h � � Y .
Induction Step: Let us assume that the theorem holds for all vectors



of length up to � .

Consider the case when

�, �c!�B�C . Since E has a MFS, by Theorem (4.2), it has one with half-

integral entries. Let

 Y � :��[Y C & �ZYq &Z°Z°Z°�& �[Y!'B�C ; be one such MFS of E . If


 Y is integral, we set h to
 Y and we are done. So, let us assume that

 Y has some odd half-integral entries. Note that if two

variables � � and � � appear together in a constraint of E that holds with equality, either both � Y� and
�[Y� are integral or both are odd half-integral.

Project variable � !'B�C out of E using Fourier-Motzkin elimination with coefficient normalization
(FM-CN). Let E-0|� 	 0 �L
 0 ��� 0 be the resulting system, where


 0 , � ! .

Suppose there exists a lattice point solution � � :�� C & �{q &Z°Z°Z°�& � !'B�C ; of E . Thus, � 0 � :�� C & �{q &Z°Z°Z°�& � ! ;
is a lattice point solution of Eÿ0 .
Consider


 0 Y � :�� Y C & � Yq &Z°Z°Z°9& � Y! ; . We will show that there exists a rounding h 0 � :>� C & �Xq &Z°Z°Z°�& � ! ;
of

 0 Y which satisfies E^0 . We consider the following three cases:

Case 1:

 0 Y is in the interior of E 0 , i.e., none of the constraints in

	 0 �L
 0 �ä� 0 hold with equality. By
Corollary 4.1, any rounding of


 0 Y yields a lattice point solution h 0 of E 0 .
Case 2: Suppose that


 0 Y is a solution of E-0 that satisfies some constraints with equality. Suppose that
for some : 	 0ê0 &�� 0 0S;(B : 	 0 &�� 0S; , 	 0 0 �à
 0 Y �N� 0 0 , and the remaining constraints are strict, i.e.,

not satisfied with equality. Since

 0 Y is a MFS of

	 0 0 �L
 0 �ä� 0ê0 , by the induction hypothesis,
we can conclude that there exists a lattice point rounding ha0 of


 0 Y , such that h{0 is a solution

of
	 0 0 �X
 0 ��� 0 0 . Since, by Corollary 4.1, any rounding of


 0 Y satisfies the strict constraints,h 0 is also a lattice point solution of E 0 .
Case 3: It is possible that after coefficient normalization,


 0 Y does not satisfy E-0 . By Proposition 4.1,

there exists a semi-rounding i�0 Y of

 0 Y that satisfies E-0 . Thus, either Case (1) or Case (2)

applies with

 0 Y replaced by i 0 Y , and we can obtain a rounding h 0 of i 0 Y that is a lattice point

solution of E-0 . Finally, note that a rounding of i�0 Y is also a rounding of

 0 Y , since integral

components of

 0 Y are preserved in iü0 Y . This completes Case (3).

Thus, we can obtain a lattice point solution h 0 of E 0 that is a rounding of

 0 Y .

Since E is G2SAT, and E^0 is obtained from E using FM-CN, a lattice point solution of E�0 can be

extended to one of E . Thus, there exists an integral � !'B�C such that h � :>� C & �àq &Z°Z°Z°9& � ! & � !'B�C ; is a

solution of E .
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To complete the proof, we show that there exists such an integral � !'B�C that is moreover a rounding

of �ZY!�B�C . Since

 Y is a MFS of E , there exists a subset of constraints :IK	�& J� ; of : 	ÿ&®� ; that hold

with equality at

 Y . The value of � !'B�C is constrained only by the values of other variables � � such

that there exists an equation in K	G
>� J� in which � !'B�C and � � appear together. Let
p

be the index
set of all such variables � � . We now show that there exists a rounding � !'B�C of � Y!'B�C that satisfiesE�P^��K	6

� J� . There are two cases:

1. If � Y!�B�C is integral, so is � Y� for all $ ,qp
. Thus, � !�B�C � � Y!'B�C satisfies ELP , and we are done.

2. If � Y!'B�C is odd half-integral, so is � Y� for all $ ,�p
. In this case, we claim that there exists a

consistent way to round �#Y!'B�C , either up or down, so that the result satisfies E P . Suppose not,

i.e., there exists constraints that force �eY!'B�C to be rounded up as well as down. There are four
instances in which this might occur:

(a) There exist constraints � !'B�C 2 � �ã�M( and � � 2 � !'B�C ��( 0 in E that hold with equality

at

 Y ; furthermore, � � ��� �[Y��� and � � � Ø �[Y� Þ . Thus, we have �#Y��2 �[Y� � ( 5 ( 0 , but� � 2 � � � ( 5 ( 0 . Since � � 2 � �¶�¦( 5 ( 0 is a valid inequality for E , this means that h

does not lie in E , a contradiction.

(b) There exist constraints 2 � !�B�C 2 � �±�M( and � � 5�� !'B�C �M( 0 in E that hold with equality
at

 Y ; furthermore, � �6�_� � Y� � and � ��� Ø � Y� Þ . This case is identical to Case (2a) above.

(c) There exist constraints � � 2 � !�B�C �ä( and � � 5 � !'B�C �M( 0 in E that hold with equality
at

 Y , with � ���T� � Y� � . Thus,

² � Y� �8( 5 ( 0 . Since, � Y� is odd half-integral,
( 5 ( 0 must

be an odd integer. Moreover,
² � �
� ( 5 ( 0 . However, since

² � � � ( 5 ( 0 is a valid

inequality for E , this means that h does not lie in E , a contradiction.

(d) There exist constraints � !�B�C 2 � � ��( and 2 � !'B�C 2 � � �M( 0 in E that hold with equality

at

 Y , with � ���ÙØ �ZY� Þ . This case is identical to Case (2c) above.

Thus, there exists a consistent way to round �eY!'B�C either up or down and satisfy every con-

straint in ELP . Let � !�B�C be this rounding.

Applying Corollary 4.1, any rounding of �eY satisfies the constraints in : 	^&®� ;e��:%K	�& J� ; .
Thus, we can obtain a rounding h of


 Y that is a lattice point solution of E .

_
From Theorem (4.2) and Theorem (4.3), we can conclude the following theorem.

Theorem 4.4 Let E � 	ä�à
 ��� denote a G2SAT polyhedron with � constraints and � variables.

Then, E has enumeration bound � �à(l`cb+d .
The above result is easily generalized for arbitrary G2SAT formulas.
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Theorem 4.5 Let ªI$®ö ¹�¼ denote a G2SAT formula with � constraints, � variables, and let
(X`cb+d

be the maximum over the absolute values of constant terms appearing in ª $®ö ¹�¼ . Then, ª $®ö ¹�¼ has

enumeration bound � � : (l`cb+d 5ä�X; .
Proof: If ª $)ö ¹®¼ has a satisfying integer solution, that solution must satisfy one of the terms in the
disjunctive normal form (DNF) of ª�$)ö ¹®¼ . Each term in the DNF representation of ª�$®ö ¹�¼ is a G2SAT

polyhedron in which the constant term in any constraint has absolute value at most
(g`cb+d 5§� (we

use
(*`cb+d 5¦� in place of

(*`cb+d
to account for eliminating negations on constraints). It follows that

there is a solution to ªI$)ö ¹®¼ in
� 2 � � : (*`cb+d 5ä�X; & � � : ()`cb+d 5ä�X; � . _

4.3.4 Approximation Results for Optimization

Consider the problem of optimizing an arbitrary linear function over a G2SAT polyhedron E . This
problem is NP-hard (minimum vertex cover is a special case). As a corollary of Theorem (4.3),

we obtain the following theorem showing that one can approximate the optimal value to within an

additive factor.

Theorem 4.6 Let E � � 
 � 	ä�à
 � � � denote a G2SAT polyhedron that contains a lattice point.

Let the integer linear program be OQegf �`� �L
 � 
 , E�� .
If the optimum value is finite, solving the LP-relaxation and rounding the solution can yield a fea-

sible lattice point that approximates the optimum to within an additive factor of � � �é � ë	� � é �q . If the

LP-relaxation is unbounded, so is the integer program.

Proof: If the optimum value À�Y of the LP-relaxation is finite, it is attained at a MFS

 Y . SinceE is lattice point feasible, by Theorem 4.3, there exists a lattice point h in E such that such thatj�j h 2 
 Y j�j n < Cq . It follows that � � h is within � � �é � ë � � é �q of À	Y , and hence of the integer optimum.

If the LP-relaxation is unbounded, so must the integer program, since E is lattice point feasi-

ble [112]. _
Moreover, an approximate solution can be obtained in polynomial time in the following three

steps:

1. Check whether E is lattice point feasible using Fourier-Motzkin elimination with coefficient nor-

malization. If E is lattice point infeasible, stop.

2. If E is lattice point feasible, solve its LP-relaxation. If it is unbounded, we conclude that the

original IP is also unbounded. Otherwise, the optimum is attained at a MFS

 Y .

3. Round

 Y to obtain an integer solution that is within � � �é � ë � � é �q of the optimum. The rounding

is performed as follows. For each variable � � that has an odd half-integral value � Y� , we check
whether adding the constraint � ��� Ø � Y� Þ to E preserves lattice point feasibility. If not, we set � �
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to
� � Y��� and iterate, picking another variable to round, until we have obtained a feasible integer

solution.

It is easy to see that each step can be performed in polynomial time. Notice that if lattice point

feasibility is preserved by setting � � either to
Ø � Y� Þ or to

� � Y��� , the direction of rounding can be

chosen heuristically to obtain a tighter approximation.

Our approximation theorem is general, in that it applies to any generalized 2SAT integer program,
including non

4
- � programs with arbitrary coefficients in the objective function. However, the

approximation factor is additive, and the result is more likely to be useful for non
4
- � programs.

In contrast, the results of Hochbaum et al. [75] guarantee a
²
-approximation for G2SAT integer

programs expressed as a minimization problem where the objective function is required to have

non-negative coefficients.

4.4 Experimental Evaluation

We now present experimental results demonstrating that a decision procedure based on the solution
bound derived herein can outperform other state-of-the-art procedures.

4.4.1 Implementation

We implemented a decision procedure that operates in three steps. First, given a G2SAT formula
ª@$®ö ¹�¼ , it computes the enumeration bound � � : (Z`cb+d 5��X; . Second, it translates the input G2SAT

formula to a Boolean formula by replacing each integer variable by a finite-precision, signed bit-

vector that can take any value in the range
� 2 � � : ( `cb+d 5/�X; & � � : ( `cb+d 5��X; � . Arithmetic and relational

operators are then encoded as arithmetic circuits and comparators. Let ª\µ�ï¢ï®ð denote the resulting

Boolean formula. Clearly, ª�µAïJï�ð is satisfiable if and only if ª1$®ö ¹�¼ is satisfiable. Thus, the final step

consists of invoking a Boolean satisfiability (SAT) solver on ª6µ�ï¢ï�ð . Notice that the translation to
SAT takes polynomial time and that the size of ª�µ�ïJï�ð is polynomial in that of ª�$®ö ¹�¼ .
The main reason for using a translation to SAT, as opposed to a non-SAT-based procedure, is that

our benchmarks possess a non-trivial Boolean structure. Also, by this approach, we can leverage
the recent advances in SAT solving (e.g., [63, 104]). For our experiments, we employed the zChaff

satisfiability solver [104]; however, any other SAT solver can be employed instead just as easily.

4.4.2 Setup

A set of randomly generated G2SAT formulas was used for the experimental evaluation. A G2SAT
formula can be viewed as a Boolean circuit where the inputs to the circuit are G2SAT constraints
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rather than being Boolean variables. Each formula was generated based on
î

parameters: the maxi-

mum number of variables, an upper bound on the size of the constant term, and the maximum depth
of the circuit. We varied the maximum number of variables over the set �L´ 4p& Á 4p& ��� 4p&)î'²�4a& �g´ 4 � , the

constant term upper bound over the set �%��� &)²'Ä � & ´ 4 Å'� & � Ä'Ä{î � & � 4 ´%Á Ä Â���� , and the maximum circuit
depth over ��� & Â & Á & Å & � 4 � . For each choice of these three parameters, we generated a formula using

one of three different random seeds; the seed was used in generating, at each level in the circuit,

either a randomly chosen Boolean operator or a G2SAT constraint. The variables and constant term
in each G2SAT constraint were randomly generated as well. Finally, the resulting G2SAT formula

was conjoined with a set of upper and lower bound constraints on each variable, where the bounds

were randomly selected to be between
4

and the upper bound on the constant term. This last opera-
tion was performed in order to generate a mix of both satisfiable and unsatisfiable formulas. Thus,

in total, the benchmark suite comprises
î Â Ä formulas, of which

²�4{²
are unsatisfiable.

We compared our procedure against two other decision procedures. Both are based on a combination

of a SAT solver with a solver for a system of integer linear constraints. The first is a publicly avail-
able theorem prover called CVC-Lite [48] (the version available as of December 2004). CVC-Lite

uses a SAT solver for finding Boolean assignments to the formula, treating G2SAT constraints as
Boolean literals. For every such assignment, it decides the feasibility of the corresponding conjunc-

tion of G2SAT constraints by using the FM-CN procedure (it actually uses the Omega test [127],

which specializes to FM-CN for G2SAT constraints). Details about CVC-Lite’s operation can be
found in the papers by Barrett et al. and Ganesh et al. [13, 17]. The SAT solver used by CVC-Lite

is a modified version of the zChaff solver used by our procedure. The second decision procedure,

written by Daniel Kroening (currently at ETH Zürich), works on similar principles to CVC-Lite,
except that it uses the CPLEX commercial optimization software [46] (version 9.0) instead of the

FM-CN procedure. This procedure also uses the zChaff solver as its SAT solving engine.

Experiments were run on a Linux workstation with a
²

GHz Pentium 4 processor and � GB of RAM.

Our decision procedure, called UCLID, is written mostly in Moscow ML, a dialect of Standard ML.
A timeout of � 4'4 seconds was imposed on each run.

4.4.3 Comparison

Figures 4.1 and 4.2 compare UCLID’s total time (time for both encoding and SAT solving) to that
taken by CVC-Lite and the CPLEX-based solver respectively. In each plot, the y-coordinate of a

point is the time taken by UCLID, and the x-coordinate is the time taken by the decision procedure

we compare it against. UCLID’s total time is dominated by the SAT solving time. Note that the
X and Y axes are on different scales. This is because UCLID finishes within

î�4
seconds on all

benchmarks whereas the run-times for the other solvers are spread out over the entire range
� 4p& � 4'4g� .
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Figure 4.1: Experimental comparison of UCLID versus CVC-Lite for G2SAT formulas. Note

that the scale on the Y-axis is about
²�4

times that of the X-axis.

1
2

5

10

15

20

25

30

1 25 50 100 200 300 400 500 timeout

 T
ot

al
 T

im
e 

fo
r U

C
LI

D
 (s

ec
.) 

 Total Time for CPLEX-based solver (sec.) 

Figure 4.2: Experimental comparison of UCLID versus CPLEX-based solver for G2SAT for-
mulas. Note that the scale on the Y-axis is about

²�4
times that of the X-axis.

First, consider the comparison with CVC-Lite. We observe from Figure 4.1 that CVC-Lite performs

worse than UCLID overall, timing out on Å Ä of the
î Â Ä benchmarks. However, note that there are

�XÂU� benchmarks on which CVC-Lite outperforms UCLID. UCLID completes within � Ä seconds on
all of these benchmarks, and within

Ä
seconds on all but

²'²
of them.

The comparison with the CPLEX-based solver yields similar results, as one can observe in Fig-
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ure 4.2. In fact, the CPLEX-based solver even performs worse than CVC-Lite, timing out on
² ´�� of

the
î Â Ä benchmarks. UCLID is outperformed on only ��� benchmarks, on all of which it terminates

within Â seconds.

We further analyzed our results by dividing the benchmarks into ´ categories, with each category

comprising benchmarks on which UCLID’s time falls within a certain range. For each category, we

computed the percentage of benchmarks on which UCLID outperforms the other two solvers. This
data is displayed in Table 4.1. We note that the benchmarks on which UCLID is outperformed are

those on which both it and the competing solver finish within a few seconds. Note also that UCLID
finishes within

Ä
seconds on over Á 4�� of the benchmarks.

UCLID time range Number of % of benchmarks on which UCLID runs faster

(time in seconds) benchmarks CVC-Lite prover CPLEX-based solver

[0, 5]
î � Ä Ä'²p°¿î Á Å Äp°¿² ´

(5, 10] ´ ² Ä ´ ° Â�� Å{Â ° � ²
(10, 20] � Ä Á 4×° 4'4 � 4'4a° 4'4
(20, 30)

î � 4'4×° 4'4 � 4'4a° 4'4
Table 4.1: Comparing UCLID with other solvers using a time-wise break-up of benchmarks.
The second column indicates the number of benchmarks on which UCLID’s run-time is within the

indicated range.

Thus, one can conclude that the enumerative approach presented herein can greatly outperform a

more traditional approach based on combining a SAT solver with a constraint solver. The main
reason for this seems to be that solvers based on the latter approach enumerate several SAT assign-

ments that, while satisfying the Boolean skeleton of the formula, correspond to infeasible systems
of G2SAT constraints. On the other hand, UCLID’s encoding adds in all the “G2SAT information”

necessary for the SAT solver to significantly prune its search space.

4.5 Summary

We have proposed a new approach to deciding the satisfiability of Boolean combinations of gener-
alized 2SAT constraints. The central insight is that it is sufficient to search for bounded solutions,

where each variable is restricted within the finite range
� 2 � � : ( `cb+d 5��X; & � � : ( `cb+d 5M�X; � . The solu-

tion bound we derive improves over previous results by an exponential factor. The key step in our
derivation is a novel result for G2SAT polyhedra on finding integer solutions by rounding minimal

face solutions. Experiments demonstrate the efficacy of a SAT-based decision procedure based on

our theoretical results.



46 CHAPTER 4. GENERALIZED 2SAT CONSTRAINTS



Chapter 5

Quantifier-Free Presburger Arithmetic

Presburger arithmetic [125] is defined as the first-order theory of the structure ��¨ &)4p& � &� �& 5c¡ , where
¨ denotes the set of natural numbers. The satisfiability problem for Presburger arithmetic is decid-

able, but of super-exponential worst-case complexity [54]. Fortunately, for many applications, such

as in program analysis (e.g., [127]) and hardware verification (e.g., [26]), the quantifier-free frag-
ment suffices. We are concerned, in this chapter, with the satisfiability problem for this fragment.

A formula ª�¢¤£<¥ in quantifier-free Presburger arithmetic (QFP) is constructed by combining linear

constraints with Boolean operators ( r ,
w

, ¥ ). Formally, the # th constraint is of the form

!H�*F C
����� � � �-�M(*�

where the coefficients and the constant terms are integer constants and the variables � C & �]q &Z°Z°Z°�& � !
are integer-valued1 . An integer linear program is a conjunction of linear constraints, and hence is a

special kind of QFP formula.

The satisfiability problem for QFP is NP-complete. The NP-hardness follows from a straightforward
encoding of the

î
SAT problem as a

4
- � integer linear program. That it is moreover in NP can be

concluded from the result that integer linear programming is in NP [22, 84, 118, 160].

Thus, if there is a satisfying solution to a QFP formula, there is one whose size, measured in bits,

is polynomially bounded in the problem size. Problem size is traditionally measured in terms of
the parameters � , � ,

Ú�Û'Ü"� `cb+d
, and

Ú�Û'Ü"( `cb+d
. Recall that � is the total number of constraints in

the formula, � is the number of variables, and
�a`cb+d�� O?egf h �A� ��i j ����� � j and

(*`cb+d�� OQegf � j (*� j are the

maximums of the absolute values of coefficients and constant terms respectively.
1While Presburger arithmetic is defined over ¦ , we interpret the variables over § as it is general and more suitable for

applications. It is straightforward to translate a formula with integer variables to one where variables are interpreted over¦ , and vice-versa, by adding (linearly many) additional variables or constraints.
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Project Maximum Fraction of Maximum Width of a
Non-Difference Constraints Non-Difference Constraint

Blast 0.0255 6

Magic 0.0032 2

MIT 0.0087 3

WiSA 0.0091 4

Table 5.1: Linear arithmetic constraints in software verification are mostly difference con-
straints. For each software verification project, the maximum fraction of non-difference constraints

is shown, as well as the maximum width of a non-difference constraint, where the maximum is taken

over all formulas in the set. The Blast formulas were generated from device drivers written in C, the
Magic formulas from an implementation of openssl written in C, the MIT formulas from Java

programs, and the WiSA formulas were generated in the checking of format string vulnerabilities.

The above result implies that we can use a small-domain (SD) encoding approach to checking the

satisfiability of a QFP formula ª�¢¤£<¥ . To recapitulate, we first compute the polynomial bound ¯ on

solution size, and then search for a satisfying solution to ª:¢¤£<¥ in the bounded space � 4p& � &Z°Z°Z°±&)² ³ 2
�g�L! . However, a naı̈ve implementation of a SD-based decision procedure fails for QFP formulas

encountered in practice. The problem is that the bound on solution size, ¯ , is
ç : Ú�Û'Ü ��5 Ú�Û'Ü�(g`cb+d 5

� � Ú�Û'Ü � 5 Ú�Û'Ü���`cb+dL� ; . In particular, the presence of the � Ú�Û'Ü � term means that, for practical

problems involving hundreds of linear constraints, the Boolean formulas generated are likely to be

too large to be decided by present-day SAT solvers.

In this chapter, we explore the small-domain encoding approach to deciding QFP formulas, but with
a focus on formulas generated in software verification. It has been observed, by us and others, that

formulas from this domain have:

1. Mainly Difference Constraints: Of the � constraints, � 2 ø are difference constraints, whereøO¨ � .

2. Sparse Structure: The
ø

non-difference constraints are sparse, with at most þ variables per
constraint, where þ is “small”. We will refer to þ as the width of the constraint.

Pratt [124] observed that most inequalities generated in program verification are difference con-

straints. More recently, the authors of the theorem prover Simplify observed in the context of the

Extended Static Checker for Java (ESC/Java) project that “the inequalities that occur in program
checking rarely involve more than two or three terms” [53]. We have performed a study of formulas

generated in various recent software verification projects: the Blast project at Berkeley [69], the
Magic project at CMU [36], the Wisconsin Safety Analyzer (WiSA) project [164], and the software
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upgrade checking project at MIT [97]. The results of this study, indicated in Table 5.1, support

the afore-mentioned observations regarding the “sparse, mostly difference” nature of constraints in
QFP formulas. To our knowledge, no previous decision procedure for QFP has attempted to exploit

this problem structure.

The following novel contributions are made in this chapter:

� We derive bounds on solutions for QFP formulas, not only in terms of the traditional param-
eters � , � ,

� `cb+d
, and

( `cb+d
, but also in terms of

ø
and þ . In particular, we show that the

worst-case number of bits required per integer variable is linear in
ø

, but only logarithmic in
þ . Unlike previously derived bounds, ours is not in terms of the total number of constraints
� .

� We use the derived bounds in a sound and complete decision procedure for QFP based on
small-domain encoding, and present empirical evidence that our method can greatly outper-

form other decision procedures.

The rest of this chapter is organized as follows. We begin with a discussion of related work (Sec-
tion 5.1) and some background material (Section 5.2). Our main theoretical results on computing

solution bounds are presented in Section 5.3. Techniques for improving the bound in practice are

discussed in Section 5.4. An experimental evaluation is presented in Section 5.5, followed by a
discussion in Section 5.6.

5.1 Related Work

There has been much work on deciding quantifier-free Presburger arithmetic; we present a brief

discussion here and refer the reader to a recent survey [59] for more details. Recent techniques fall
into four categories.

Enumerating DNF terms

The first class comprises procedures targeted towards solving conjunctions of constraints, with dis-
junctions handled by enumerating terms in a disjunctive normal form (DNF). Examples include the

Omega test [127] (which is an extension of Fourier-Motzkin elimination for integers) and solvers

based on other integer linear programming techniques. The drawback of these methods is the need
to enumerate the potentially exponentially many terms in the DNF representation. Our work is

targeted towards solving formulas with a complicated Boolean structure, which often arise in veri-

fication applications.
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Lazy translation to SAT

The second set of methods attempt to remedy the above problem by instead relying on modern SAT

solving strategies. The approach works as follows. A Boolean abstraction of the QFP formula ª©¢¤£<¥
is generated by replacing each linear constraint with a corresponding Boolean variable. If the ab-
straction is unsatisfiable, then so is ª�¢<£¤¥ . If not, the satisfying assignment (model) is checked for

consistency with the theory of quantifier-free Presburger arithmetic, using a ground decision pro-

cedure for conjunctions of linear constraints (a procedure for checking feasibility of integer linear
programs). Assignments that are inconsistent are excluded from later consideration by adding a

“lemma” to the Boolean abstraction. The process continues until either a consistent assignment
is found, or all (exponentially many) assignments have been explored. Examples of decision pro-

cedures in this class that have some support for QFP include CVC [13, 17] and ICS [51]. (The

general idea for combining a SAT solver with a linear programming engine originates in a paper by
Wolfman and Weld [165].) The ground decision procedures used by provers in this class employ

a combination framework such as the Nelson-Oppen architecture for cooperating decision proce-

dures [109] or a Shostak-like combination method [139, 141]. These methods are only defined for
combining disjoint theories. In order to exploit the mostly-difference structure of a formula, one

approach could be to combine a decision procedure for a theory of difference constraints with one
for a theory of non-difference constraints, but this needs an extension of the combination methods

that applies to these non-disjoint theories.

Eager translation to SAT

Strichman [146] presents SAT-based decision procedures for linear arithmetic (over the rationals)
and QFP. The translation to SAT is a generalization of DIRECT encoding for arbitrary linear con-

straints. For QFP, the basic idea is to create a Boolean encoding of all the possible variable projection
steps performed by the Omega test. Since Fourier-Motzkin elimination (and therefore, the Omega

test) has worst-case double-exponential complexity in both time and space [37], this approach leads

to a SAT problem that, in the worst-case, is doubly-exponential in the size of the original formula
and takes doubly-exponential time to generate.

Our approach also falls in this category. However, in contrast to Strichman’s translation, our encod-

ing algorithm generates SAT problems that are polynomial in the size of the original formulas, and

runs in polynomial time.
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Automata theory-based methods

The final class of methods are based on finite automata theory (e.g., [59, 166]). The basic idea is to

construct a finite automaton corresponding to the input QFP formula ª(¢¤£<¥ , such that language ac-

cepted by the automaton consists of the binary encodings of satisfying solutions of ªC¢¤£<¥ . According
to a recent experimental evaluation with other methods [59], these techniques are better than others

at solving formulas with very large coefficients, but do not scale well with the number of variables

and constraints.

Note that automata-based techniques can handle full Presburger arithmetic, not just the quantifier-
free fragment.

Unique features of our approach

The approach we present in this chapter is distinct from the categories mentioned above. In partic-

ular, the following unique features differentiate it from previous methods:

� It is the first small-domain encoding method and the first tractable procedure for translating

a QFP formula to SAT in a single step. The clear separation between the translation and the

SAT solving allows us to leverage future advances in SAT solving far more easily than other
SAT-based procedures.

� It is the first technique, to the best of our knowledge, that formally exploits the structure of
formulas commonly encountered in software verification.

In addition to the above, the bounds we derive in this chapter are also of independent theoretical in-

terest. For instance, they indicate that the solution bound is independent of the number of difference
constraints.

5.2 Background

We define useful notation and state the previous results on bounding satisfying solutions of ILPs.

5.2.1 Preliminaries

Consider a system of � linear constraints in � integer-valued variables:

	G
 �M�
(5.1)
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Here
	

is an � ��� matrix with integral entries,
�

is a � �>� vector of integral entries, and



is a

�
�Ð� vector of integer-valued variables. A satisfying solution to system (5.1) is an evaluation of



that satisfies (5.1).

As outlined in Section 2.1, the variables can be constrained to be non-negative by adding a zero

variable � � , replacing each original variable � � by �]0��2 � � , and then adjusting the coefficients in the

matrix
	

to get a new constraint matrix
	 0 and the following system:2

	 0 
 0 �M�
 0 �aM (5.2)

Here the system has � 0 � �?5�� variables, and

 0 ��� � 0 C & � 0 q &Z°Z°Z°�& � 0! & � � �<S .

	 0 has the structure that� 0�A� � �ä� ��� � for $ � � &)²U&Z°Z°Z°±& � and
� 0�A� !'B�C � 2 D !��F C � ��� � . Note that the last column of

	 0 is a linear
combination of the previous � columns. Proposition 2.1 shows that system (5.1) has a solution if

and only if system (5.2) has one.

Finally, adding surplus variables to the system, we can rewrite system (5.2) as follows:

	 0 0 
 0ê0 �ä�
 0ê0 ��M (5.3)

where
	 0ê0 �û� 	 j 2 k & � is an � ��:�� 0 5I��; integer matrix formed by concatenating

	
with the

negation of the � ��� identity matrix
k & .

For convenience we will drop the primes, referring to
	 0ê0 and


 0ê0 simply as ª and



. Rewriting
system (5.3) thus, we get

	6
E�ä�


��M (5.4)

Remark 5.1 A solution to system (5.4) also satisfies system (5.2).

We formally define the terms solution bound and enumeration bound for QFP formulas.

Definition 5.1 Given a QFP formula ª�¢¤£<¥ , a solution bound is an integer Ö such that ª+¢¤£<¥ has an

integer solution if and only if it has an integer solution in the � -dimensional hypercube
A !��F C � 4p& Ö � .

Definition 5.2 Given a QFP formula ª1¢<£¤¥ , an enumeration bound is an integer Ö such that ª+¢¤£<¥
has an integer solution if and only if it has an integer solution in the � -dimensional hypercubeA !��F C � 2 Ö & Ö � . The interval

� 2 Ö & Ö � is termed as an enumeration domain.
2Note that this procedure can increase the width of a constraint by « . The statistics in Table 5.1 shows the width before

this procedure is applied, computed from constraints as they appear in the original formulas.
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The following proposition is easily obtained.

Proposition 5.1 A solution bound Ö ��4 for system (5.2) is an enumeration bound for system (5.1).

Proof: Given a solution

 0 Y to system (5.2), we construct a solution


 Y to system (5.1) by setting

�[Y� � �]0� Y 2 �[Y� . Since each �K0� Y and �ZY� are in
� 4p& Ö � , �ZY� ,>� 2 Ö & Ö � for all $ . _

Similarly, if Ö is an enumeration bound for system (5.1), then
² Ö is a solution bound for system (5.2).

5.2.2 Previous Results

The bounds for QFP follow directly from those for integer linear programs. In particular, the results
of this chapter build on a result obtained by Borosh, Treybig, and Flahive [21, 22] on bounding the

solution of systems of the form (5.4). We state their result in the following theorem:

Theorem 5.1 Consider the augmented matrix
� 	 j ��� of dimension � � :�� 0 5>�85��X; . Let ¬ be the

maximum of the absolute values of all minors of this augmented matrix. Then, the system (5.4) has

a satisfying solution if and only if it has one with all entries bounded by :��ü5 ² ;­¬ .

Note that the determinant of a matrix can be more than exponential in the dimension of the ma-

trix [25]. In the case of the Borosh-Flahive-Treybig result, it means that ¬ can be as large as®�¯ h & B�C i>° ¯#± ë³²¤´¢ìq ¯ , where � � OQegf : � `cb+d &)( `cb+d ; .
Papadimitriou [118, 120] also gives a bound of similar size, stated in the following theorem:

Theorem 5.2 If the ILP of (5.4) has a satisfying solution, then it has a satisfying solution where all

entries in the solution vector are bounded by :��±0%5 ��;l:º�"5 ()`cb+d ;l:�� ��`cb+d ; q & B v .
Papadimitriou’s bound implies that we need

ç : Ú�Û'Ü � 5 Ú�Û'Üo(L`cb+d 5�� � Ú�Û'Ü � 5 Ú�Û'Ü���`cb+dL� ; bits to
encode each variable (assuming ��0 �Nç :���; ). The Borosh-Flahive-Treybig bound implies needingç :�� � Ú�Û'Ü � 5 Ú�Û'Ü � � ; bits per variable, which is of the same order.

5.3 Main Theoretical Results

We begin in Section 5.3.1 by deriving bounds for ILPs for the case of
ø���4

, when all constraints
are difference constraints. Then, in Section 5.3.2, we compute a bound for ILPs for arbitrary

ø
.

Finally, in Section 5.3.3, we show how our results extend to arbitrary QFP formulas.
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5.3.1 Bounds for a System of Difference Constraints

Let us first consider computing solution bounds for an ILP for the case where
øI� 4

, i.e., sys-

tem (5.4) comprises only of difference constraints.

In this case, the left-hand side of each equation comprises exactly three variables: two variables � �
and � � where

4 <�# & $ <@� and one surplus variable �#V where �?5ä��<�X±<@�?5>� . The y th equation
in the system is of the form � � 2 � � 2 �WV ��( k .
As we noted in Section 5.2.1, the matrix

	
can be written as

� 	¶µ j 2 k & � where
	·µ

comprises the
first �90 � � 5ä� columns, and

k & is the � ��� identity matrix.

The important property of
	©µ

is that each row has exactly one 5�� entry and exactly one 2 � en-

try, with all other entries
4
. Thus,

	 S µ
can be interpreted as the node-arc incidence matrix of a

directed graph. Therefore,
	 S µ

is totally unimodular (TUM), i.e., every square submatrix of
	 S µ

has
determinant in � 4p& 2 � & 5��g� [120]. Therefore,

	©µ
is TUM, and so is

	I�8� 	Cµ j 2 k & � .
Now, let us consider using the Borosh-Flahive-Treybig bound stated in Theorem 5.1. This bound is

stated in terms of the minors of the matrix
� 	 j �9� . For the special case of this section, we have the

following bound on the size of any minor:

Theorem 5.3 The absolute value of any minor of
� 	 j ��� is bounded above by

=�(à`cb+d
, where

=E�
OQP�R :�� 5I� & ��; .
Proof:

Consider any minor ¸ of
� 	 j ��� . Let D be the order of ¸ .

If the minor is obtained by deleting the last column (corresponding to
�

), then it is a minor of
	

, and

its value is in � 4p& 2 � & 5��g� since
	

is TUM. Thus, the bound of
=±( `cb+d

is attained for any non-trivial
minor with

=-� � and
(�`cb+d^� � .

Suppose the
�

column is not deleted.

First, note that the matrix
	

is of the form
� 	dµ j 2 k & � where the rank of

	Cµ
is at most

= 0 �OQP�R :�� & ��; . This is because
	Cµ

has dimensions �����G5E� , and the last column of
	cµ

, corresponding

to the variable � � , is a linear combination of the previous � columns. (Refer to the construction of

system (5.2) from system (5.1).)

Next, suppose the sub-matrix corresponding to ¸ comprises ¹ columns from the 2 k & part, D 2 ¹ 2 �
columns from the

	Cµ
part, and the column corresponding to

�
. Since permuting the rows and

columns of ¸ does not change its absolute value, we can permute the rows of ¸ and the columns
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corresponding to the 2 k & part to get the corresponding sub-matrix in the following form:º»»»»»»»»»»»»¼
4 °Z°Z° 4 2 � ( k ë4 °Z°Z° 2 � 4 ( k ì	·µ ...
�Z�Z� ...

...
...

part 2 � °Z°Z° 4 4 ( k¾½4 °Z°Z° 4 4 ( k ½ ± ë
...
�Z�Z� ...

...
...4 °Z°Z° 4 4 ( kÀ¿

Á¾ÂÂÂÂÂÂÂÂÂÂÂÂÃ
Expanding ¸ along the last column, we get

j ¸ j � j ( k ë ¸ C 2 ( k ì ¸>q�5 ( k � ¸ v 2 °Z°Z° : 2 �X;ÅÄ è3C ( k ¿ ¸ Ä j
where each ¸ � is a minor corresponding to a submatrix of

	
.

However, notice that ¸ ����4 for all �?<�#\<�¹ , since each of those minors have an entire column

(from the 2 k & part) equal to
4
. Therefore, we can reduce the right-hand side to the sum of D 2 ¹

terms: j ¸ j < j ( k ½ ± ë ¸�Æ B�C j 5 j ( k ½ ± ì ¸�Æ B q j 5 °Z°Z° j ( k ¿ ¸ Ä j
Notice that, so far, we have not made use of the special structure of

	
.

Now, observing that
	

is TUM, j ¸ � j <¦� for all # .
j ¸ j < j ( k ½ ± ë j 5 j ( k ½ ± ì j 5 °Z°Z° 5 j ( k ¿ j

For all # , j ( k � j < (*`cb+d . Further, since each non-zero ¸ � can be of order at most
= 0 , D 2 ¹@< = �

��#¸��: = 0%5�� & ��; .3 Therefore, we get j ¸ j < =�(*`cb+d
_

Using the terminology of Theorem 5.1, we have ¬t< =�(L`cb+d
. Thus, the solution bound Ö in this

case is :�� 5 ² ; =�(�`cb+d .
Thus, ¯ , the bound on the number of bits per variable, is

Ø�Ú�Û'Ü :�� 5 ² ;�5 Ú�Û'Ü�= 5 Ú�Û'Ü"( `cb+d Þ
Formulas generated from verification problems tend to be overconstrained, so we assume � � � .
Thus,

=\� �?5ä� , and the bound reduces to
ç : Ú�Û'Ü �?5 Ú�Û'Üo(Z`cb+d ; bits per variable.

We close this section with the following two observations about Theorem 5.3.
3We use Ç v�È « and not Ç v to account for the case where É¶ÊÌË . The minimum with 9 is taken because Ç v�È « can

exceed 9 but Í has only 9 elements.
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Remark 5.2 The derived solution bound is conservative. From Theorem 3.1, we know that a tighter

solution bound is � �p( `cb+d . This indicates that there might be room for improving the bound in
Theorem 5.1.

Remark 5.3 The only property of the
	

matrix that the proof of Theorem 5.3 relies on is the

totally unimodular (TUM) property. Thus, Theorem 5.3 would also apply to any system of linear

constraints whose coefficient matrix is TUM. Examples of such matrices include interval matrices,
or more generally network matrices. Note that the TUM property can be tested for in polynomial

time [131].

5.3.2 Bounds for a Sparse System of Mainly Difference Constraints

We now consider the general case for ILPs, where we have
ø

non-difference constraints, each refer-
ring to at most þ variables.

Without loss of generality, we can reorder the rows of matrix
	

so that the
ø

non-difference con-

straints are the top
ø

rows, and the difference constraints are the bottom � 2 ø rows. Reordering the

rows of
	

can only change the sign of any minor of
� 	 j �9� , not the absolute value. Thus, the matrix� 	 j �9� can be put into the following form:º»»»»¼ 	 C ( C2 k & ( q	 q ...( &

Á¾ÂÂÂÂÃ
Here,

	 C is a
ø � ��5N� dimensional matrix corresponding to the non-difference constraints,

	 q
is a � 2 ø ����5¦� dimensional matrix with the difference constraints,

k & is the � �E� identity

corresponding to the surplus variables, and the last column is the vector
�

.

For ease of presentation, we will assume in the rest of Sections 5.3.2 and 5.3.3 that
ø <M� 5ä� . We

will revisit this assumption at the end of Section 5.3.

The matrix composed of
	 C and

	 q will be referred to, as before, as
	©µ

. Note that each row of	 C has at most þ non-zero entries, and each row of
	 q has exactly one 5�� and one 2 � with the

remaining entries
4
. Thus,

	 q is TUM.

We prove the following theorem:

Theorem 5.4 The absolute value of any minor of
� 	 j ��� is bounded above by

=�(à`cb+d : ��`cb+d þ�; T ,
where

=6� O?P�R :�� 5ä� & ��; .
Proof:
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Consider any minor ¸ of
� 	 j �9� , and let D be its order.

As in Theorem 5.3, if ¸ includes ¹ columns from the 2 k & part of
	

, then we can infer thatD 2 ¹/< =
. (Our proof of this property in Theorem 5.3 made no assumptions on the form of

	�µ
.)

If ¸ includes the last column
�

, then as in the proof of Theorem 5.3, we can conclude that

j ¸ j <ù:�D 2 ¹3; ()`cb+d�� ÄOQegf��F C j ¸ � j � (5.5)

where ¸ � is a minor of
	Cµ

.

If ¸ does not include
�

, then it is a minor of
	

. Without loss of generality, we can assume that ¸
does not include a column from the 2 k & part of

	
, since such columns only contribute to the sign

of the determinant.

So, let us consider bounding a minor ¸ � of
	·µ

of order D (or D 2 � , if ¸ includes the
�

column).

Since
	·µü�ÏÎÑÐ ëÐ ì`Ò , consider expanding ¸ � , using the standard determinant expansion by minors

along the top
ø

rows corresponding to non-difference constraints. Each term in the expansion is (up
to a sign) the product of at most

ø
entries from the

	 C portion, one from each row, and a minor from	 q . Since
	 q is TUM, each product term is bounded in absolute value by

�1`cb+d T
. Furthermore, there

can be at most þ T non-zero terms in the expansion, since each non-zero product term is obtained
by choosing one non-zero element from each of the rows of the

	 C portion of ¸ � , and this can be

done in at most þ T ways.

Therefore, j ¸ � j is bounded by : �U`cb+d þ�; T . Combining this with the inequality (5.5), and sinceD 2 ¹/< =
, we get j ¸ j < =±( `cb+d : � `cb+d þ�; T

which is what we set out to prove. _
Thus, we conclude that ¬ < =±(�`cb+d : ��`cb+d þ=; T , where

=/� O?P�R :��E5N� & ��; . From Theorems 5.1

and 5.4, and Remark 5.1, we obtain the following theorem:

Theorem 5.5 A solution bound for the system (5.2) is

:�� 5 ² ;­¬ � :�� 5 ² ; �`=��X( `cb+d � : � `cb+d þ=; T
Thus, the solution size ¯ is

Ø�Ú�Û'Ü :�� 5 ² ;�5 Ú�Û'ÜI= 5 Ú�Û'Ü¶()`cb+d 5 ø : Ú�Û'Ü"��`cb+d 5 Ú�Û'Ü þ�;JÞ
Remark 5.4 We make the following observations about the bound derived above, assuming as
before, that � � � , and so

=�� �?5ä� :
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� Dependence on Parameters: We observe that the bound is linear in
ø

, logarithmic in
�K`cb+d

, þ ,

� , and
( `cb+d

. In particular, the bound is not in terms of the total number of linear constraints,
� .

� Worst-case Asymptotic Growth: In the worst case,
ø/� � , þ � �ü5 � , and � �8ç :���; , and

we get the
ç : Ú�Û'Ü � 5 Ú�Û'Üo(�`cb+d 5 � � Ú�Û'Ü � 5 Ú�Û'Ü"��`cb+dZ� ; bound of Papadimitriou.

� Typical-case Asymptotic Growth: As observed in our study of formulas from software verifi-
cation, þ is typically a small constant, so the number of bits needed per variable is

ç : Ú�Û'Ü �^5Ú�Û'Üo(*`cb+d 5 ø¶Ú�Û'Ü"��`cb+d 5 ø ; . In many cases,
�U`cb+d

and
ø

are also bounded by a small constant.
Thus, ¯ is typically

ç : Ú�Û'Ü �/5 Ú�Û'Ü"( `cb+d ; . This reduces the search space by an exponential

factor over using the bound expressed in terms of � .

� Representing Non-difference Constraints: There are many ways to represent non-difference
constraints and these have an impact on the bound we derive. In particular, it is possible

to transform a system of non-difference constraints to one with at most three variables per
constraint. For example, the linear constraint � C 5 �]qc5 �Kv�5 �1x � �Ky can be rewritten as:

� C 5 � 0 C � �]y
�]q�5 � 0 q � � 0 C� v 5 � x � � 0 q

For the original representation,
øQ� � and þ �IÄ , while for the new representation

ø?�Iî
and

þ �Iî . Since our bound is linear in
ø

and logarithmic in þ , the original representation would

yield a tighter bound.

Similarly, one can eliminate variables with coefficients greater than � in absolute value by

introducing new variables; e.g.,
² � is represented as ��5 � 0 with an additional difference

constraint � � �]0 . This can be used to adjust þ ,
�a`cb+d

, and � so that the overall bound is
reduced.

The derived bound only yields benefits in the case when the system has few non-difference con-
straints which themselves are sparse. In this case, we can instantiate variables over a finite domain

that is much smaller than that obtained without making any assumptions on the structure of the

system.

Finally, from Proposition 5.1 and Theorem 5.5, we obtain an enumeration bound for system (5.1):

Theorem 5.6 An enumeration bound for system (5.1) is

:�� 5 ² ; �`=G�à(*`cb+d�� : ��`cb+d þ�; T
Note that the values of

�U`cb+d
and þ in the statement of Theorem 5.6 are those for system (5.2).
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5.3.3 Bounds for Arbitrary Quantifier-Free Presburger Formulas

We now return to our original goal, that of finding a solution bound for an arbitrary QFP formula
ª@¢<£¤¥ .

Suppose that ª�¢<£¤¥ has � linear constraints Ó C & ÓKq &Z°Z°Z°9& Ó & , of which � 2 ø are difference con-

straints, and � variables � C & �]q &Z°Z°Z°�& � ! . As before, we assume that each non-difference constraint
has at most þ variables,

� `cb+d
is the maximum over the absolute values of coefficients

� ��� �
of vari-

ables, and
(*`cb+d

is the maximum over the absolute values of constants
(X�

appearing in the constraints.

Furthermore, let us assume that the zero variable (used in transforming system 5.1 to system 5.2)
have already been introduced into the constraints, and that

� `cb+d
and þ have been computed after

this introduction.

We prove the following theorem.

Theorem 5.7 :�� 5 ² ; � ¬ is a solution bound for ª1¢<£¤¥ where¬ �}= : (*`cb+d 5ä�X;|: ��`cb+d þ�; T
and

=\� OQP�R :�� 5ä� & ��; .
Proof: Let ß be an arbitrary satisfying assignment to ª+¢<£¤¥ . Let ��0 constraints, Ó �AëZ& Ó ��ìà&Z°Z°Z°�& Ó � ¯ v ,
evaluate to

�X�����
under ß , the rest evaluating to  J¡1£�¤ � . Let

	 0 � � ����� ��� be a � 0 ��� matrix in which

each row comprises the coefficients of variables � C & � q &Z°Z°Z°�& � ! in a constraint Ó ��W , ��< ø < ��0 .
Thus,

	 0 �8� �%��� �l� where # , �L# C &Z°Z°Z°�& # & v � .
Now consider a constraint Ó ��W where

ø [ ��0 , that evaluates to  ¢¡1£�¤ � under ß . Ó ��W is the inequality

!H��F C
�%� W � � � �-�M(*� W

Then ß satisfies ¥ Ó ��W which is the inequality

!H��F C
�%� W � � � � � (*� W

or equivalently, !H��F C
2 ��� W � � � ��� 2 (*� W 5��

Let
	 0 0 be a :�� 2 ��0�;�� � matrix corresponding to the coefficients of variables in constraints¥ Ó � ¯ v ± ë , ¥ Ó � ¯ v ± ì , °Z°Z° , ¥ Ó � ¯ . Thus,

	 0 0 ��� 2 ����� ��� where # , �L# & v B�C &Z°Z°Z°�& # & � .
Finally, let

� �8�ê(�� ë &)(*� ì &Z°Z°Z°�&)(*� ¯ v & 2 (*� ¯ v ± ë 5ä� & 2 (*� ¯ v ± ì 5�� &Z°Z°Z°�& 2 (*� ¯ 5ä� � S
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Clearly, ß is a satisfying solution to the ILP given byÔ 	 0	 0ê0ÖÕ 

��� (5.6)

Also, if the system (5.6) has a satisfying solution then ª+¢<£¤¥ is satisfied by that solution. Thus, ª�¢¤£<¥
and the system (5.6) are equi-satisfiable, for every possible system (5.6) we construct in the manner
described above.

By Theorems 5.1 and 5.4, we can conclude that if system (5.6) has a satisfying solution, it has one
bounded by :��ü5 ² ;­¬ where ¬ �H= : (*`cb+d 5ä�X;|: ��`cb+d þ=; T
and

=�� OQPSR :�� 5I� & ��; . Moreover, this bound works for every possible system (5.6).

Therefore, if ª�¢<£¤¥ has a satisfying solution, it has one bounded by :�� 5 ² ;­¬ . _
Thus, to generate the Boolean encoding of the starting QFP formula, we must encode each integer
variable as a symbolic bit-vector of length ¯ given by

¯ �ÙØ�Ú�Û'Ü|� :�� 5 ² ;­¬ � Þ � Ø�Ú�Û'Ü :�� 5 ² ;�5 Ú�Û'Ü�= 5 Ú�Û'Ü : ()`cb+d 5ä�X;95 ø : Ú�Û'Üo�%`cb+d 5 Ú�Û'Ü þ=;JÞ
Remark 5.5 If the zero variable is not introduced into the formula ª:¢<£¤¥ , we can search for solutions
in
A !��F C � 2 Ö & Ö � , where Ö � :���5 ² ;­¬ . As noted earlier, values of

�a`cb+d
and þ used in computing ¬

are those obtained after introducing the zero variable.

Remark 5.6 In Section 5.3.2, we assumed, for ease of presentation, that
ø <���5¦� . If this does

not hold, we can simply replace
ø

in the results of Sections 5.3.2 and 5.3.3 by OQP�R : øK& �ü5��X; . This
is because the dimension of the minor ¸ � of

	·µ
(mentioned in the proof of Theorem 5.4) is limited

by �Q5I� .
Remark 5.7 Let us specialize the derived solution bound for G2SAT formulas. Since, þ < ² ,��`cb+d�� � , the bound specializes to :���5 ² ; = : (l`cb+d 5��X; ² T . This indicates that the derived bound is
conservative.

Summary of notation

We conclude this section by summarizing the symbols used to represent formula parameters and the

quantities derived therefrom. For easy reference, they are listed in Table 5.2.
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Symbol Meaning

� Number of variables

� Number of constraints( `cb+d
Maximum constant term� `cb+d
Maximum variable coefficientø
Number of non-difference constraints

þ Maximum number of non-zero coefficients in any constraint= OQP�R :�� 5I� & ��;¬ =G� : ( `cb+d 5ä�X; � : � `cb+d þ�; T
Ö Solution bound, :�� 5 ² ;­¬
¯ Solution size,

ØgÚ�Û'Ü :ÝÖ�5I�X;�Þ
Table 5.2: Parameters and derived quantities

5.4 Improvements

The bounds we derived in the preceding section are conservative. For a particular problem instance,

the size of minors can be far smaller than the bound we computed. However, this cannot be di-
rectly exploited by enumerating minors, since the number of minors grows exponentially with the

dimensions of the constraint matrix. Also, there is a special case under which one can improve the
:���5 ² ;­¬ bound. If all the constraints are originally linear equalities and the system of constraints

has full rank, a bound of ¬ suffices [20]. However, in our experience, even if the linear constraints

are all equalities, they still tend to be linearly dependent. Thus, we have not been able to make use
of this special case result.

Fortunately, there are other techniques for improving the solution bound that we have found to be

fairly useful in practice. These include theoretical improvements as well as heuristics that are useful

in practice. We describe these methods in this section.

5.4.1 Variable Classes

Recall the notion of a variable class introduced in Section 2.2. The variables and constraints in a

QFP formula can usually be partitioned into several classes. Parameters � ,
ø

,
( `cb+d

,
� `cb+d

, and þ can
be separately computed for each variable class, resulting in a separately computed solution bound

for each class.

The correctness of this optimization follows from a reduction to ILP as performed in the proof of

Theorem 5.7, and the observation that a satisfying solution to a system of ILPs, no two of which
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share a variable, can be obtained by solving them independently and concatenating the solutions.

Moreover, if all the constraints in a variable class are difference constraints (or G2SAT constraints),

one can use the tighter solution bounds derived in Chapters 3 and 4.

5.4.2 Large Coefficients and Widths

In the expression for ¯ , the term involving
�a`cb+d

(and þ ) is multiplied by a factor of
ø

. Thus, any

increase in
Ú�Û'Ü���`cb+d

gets amplified by a factor of
ø

. It is therefore useful to more carefully model
the dependence of ¯ on coefficients. We present two techniques to alleviate the problem of dealing

with large coefficients. These techniques also apply to dealing with large constraint widths.

An � T -fold reduction

The coefficient of the zero variable � � has, so far, been used in computing
�p`cb+d

. We will now show

that we can ignore this coefficient, and also ignore any contribution of � � to the width þ . This

optimization can result in a reduction of up to a factor of � T in the solution bound Ö .
The largest reduction occurs when, in the original formula, we have a constraint of the form D � ��� � �=�( �

, where
� �

is the largest coefficient in absolute value. After adding the zero variable, this constraint

is transformed to : D � �%� � � ; 2 :�� �'�%� ;J� � ��(*� . Thus,
��`cb+d

now equals � �'�U� , a factor of � times

greater than in the original formula.

Let us revisit the transformation performed in Section 5.2.1 to convert system (5.1) to system (5.2).
A different, commonly-used transformation to non-negative variables is to write each � � as � B� 2 � è� ,

where � B� & � è� �M4 for all $ . Let the resulting system be referred to as system (5.2’). Let us assume

that this different transformation is used in place of the original one that generates system (5.2),
leaving all successive transformations the same.

Now, consider the form of the matrix
� 	 j ��� , as used in Section 5.3.2, reproduced below:º»»»»¼ 	 C ( C2 k & ( q	 q ...( &

Á¾ÂÂÂÂÃ
With the new transformation method,

	 C is a
ø � ² � dimensional matrix corresponding to the non-

difference constraints,
	 q is a :�� 2 ø ;c� ² � dimensional matrix with the difference constraints,

k &
is the � ��� identity corresponding to the surplus variables, and the last column is the vector

�
.

Importantly, note that
	 q is still totally unimodular and the ranks of

	 C and
	 q are the same as they

were with the use of the single zero variable � � . This is because any non-singular sub-matrix of
	dµ
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must include exactly one of the columns corresponding to � B� and � è� , since they are negations of

each other. Therefore, the values of þ and
� `cb+d

used in the proof of Theorem 5.4 are those for the
system (5.1).

Thus, if we use the transformation method of replacing � � with � B� 2 � è� , the values of þ and
�U`cb+d

used in the statement of Theorem 5.4 are those for the system (5.1).

Note, however, that by replacing � � with � B� 2 � è� , the number of variables in the problem doubles,

and in particular, the number of input variables in the SAT-encoding is doubled. This is rather
undesirable.

Fortunately, there are two solutions that avoid the doubling of variables at the minor cost of only �
extra bit per variable.

1. The first solution is based on the following proposition that mirrors Proposition 5.1.

Proposition 5.2 A solution bound Ö �§4 for system (5.2’) is an enumeration bound for sys-

tem (5.1).

Proof: Given a solution

 0 Y within the solution bound Ö to system (5.2’), we construct a

solution

 Y to system (5.1) by setting � Y� � � B� Y 2 � è� Y . Clearly, �#Y� ,Ð� 2 Ö & Ö � for all $ . _

Thus, we can restrict our search to the hypercube
A !��F C � 2 Ö & Ö � , where the solution bound Ö is

computed using the values of þ and
� `cb+d

for the system (5.1).

2. The second solution uses the following proposition showing that we can use the technique of
adding a zero variable � � and the values of þ and

�U`cb+d
for the system (5.1), while paying

only a minor penalty of � extra bit per variable.

Proposition 5.3 Suppose Ö �ä4 is a solution bound such that system (5.2’) has a solution in� 4p& Ö � iff system (5.1) is feasible. Then, system (5.2) has a solution in
� 4p&)² Ö � iff system (5.2’)

has a solution in
� 4p& Ö � .

Proof:

(if part): Suppose system (5.2’) has a solution in
� 4p& Ö � ; i.e., � B� & � è� ,�� 4p& Ö � for all $ . Then,

we construct a satisfying assignment to system (5.2) as follows:

� � � is assigned the value OQegf � � è� .� � � , for $ [ 4 , is assigned the value � B� 5I:�� � 2 � è� ; .
Since

4 <�:�� � 2 � è� ;G<IÖ , we can conclude that
4 <ä� � < ² Ö for all $ . It is easy to see that

the resulting assignment satisfies system (5.2).
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(only if part): Suppose system (5.2) has a solution in
� 4p&)² Ö � . This means that the original

system (5.1) is feasible. It follows that system (5.2’) has a solution in
� 4p& Ö � .

_
In both solutions, we must search

² Ö�5§� values for each variable � � , ��<N$>< � . However, the

former avoids the need to add � � , and hence will have fewer input variables in the SAT-encoding.

Hence, the former solution is preferable.

The reader must note, though, that this optimization is only relevant when the introduction of the
zero variable (significantly) affects the value of

�×`cb+d
. (The impact on þ is minor.) If the value of��`cb+d

is unaffected by the introduction of the zero variable � � , using � � can result in a more compact

SAT-encoding than using an enumeration domain of
� 2 Ö & Ö � for each variable. If one uses the � �

variable, one introduces
Ú�Û'Ü Ö input Boolean variables for � � in the SAT-encoding. On the other

hand, without the � � variable, one introduces � additional Boolean variables to encode sign bits.

The relative size of the SAT-encoding, and hence the decision to introduce � � , would depend on
whether � exceeds

Ú�Û'Ü Ö .
Product of

ø
largest coefficients and widths

There is a simpler optimization which we have found to be useful in practice.

In the proof of Theorem 5.4, in deriving the : �a`cb+d�� þ�; T term, we have assumed the worst-case
scenario of each term in the determinant expansion equaling

�1`cb+d T
and there being þ terms to

choose from in each row.

In fact, we can replace
�p`cb+d T

with
A T��F C ��`cb+d � , where

�U`cb+d �
denotes the largest coefficient in row

# , in absolute value. Similarly, þ T can be replaced with
A � þ � , where þ � is the width of constraint # .

5.4.3 Large Constant Terms

For some formulas, the value of
( `cb+d

is very large due to the presence of a single large constant (or

very few of them). In such cases, a less conservative analysis or other problem transformations are

useful. We present two such techniques here.

Product of
=

largest constants

It is easy to see that, in the proof of Theorem 5.4, the
=±(X`cb+d

term can be replaced by DH×�*F C j (*� é j ,
where

(*� ë &)(*� ì &Z°Z°Z°�&)(*�¤Ø
are the

=
largest elements of

(
in absolute value. Similarly, the expression for
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This optimization, like that of Section 5.4.2, has also proved fairly useful in practice.

Shift of origin

Another transformation that can be useful for dealing with large constant terms is to replace a

variable � � by � � 2ÌÜ � ; this corresponds to shifting the origin in � ! by Ü � along the � � -axis.

The # th constraint is then transformed into
D � ����� � :�� � 2�Ü � ; � (*� . Rewriting this, we obtain the

form D � ����� � � ����( 0� , where
( 0� �I(*� 5�: D � ����� � Ü � ; .

The new value of
(�`cb+d

, after the transformation, is OQegf � j ( 0� j . Therefore, we wish to find values ofÜ � s so as to minimize the value of OQegf � j ( 0� j .
This problem can be phrased as the following integer linear program:

OQP�R �
subject to� � ( � 5�: H � � ��� � Ü � ; �=<@#�<@�� � 2 ( � 2 : H � � �A� � Ü � ; ��<�#�<@�� � 4� ,/.�& Ü �-,/. for �=<>$?<@�

The above ILP has � 5ä� variables and
² � 5ä� constraints (including the non-negativity constraint

on � ).

In fact, one can write one such ILP for each variable class, since they do not share any variables or
constraints. Then, the optimum value for each class will indicate the new value of

(�`cb+d
to use for

that class.

5.5 Experimental Evaluation

We used the bound derived in the previous section to implement a decision procedure based on

small-domain encoding. We describe the implementation decisions in Section 5.5.1 and present a
detailed experimental evaluation in Section 5.5.2.
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5.5.1 Implementation

The decision procedure starts by analyzing the formula to obtain parameters, and computes the so-

lution bound. We found that the optimizations of Section 5.4.1 and the first half of Section 5.4.2 are

always useful, especially since formulas tend to contain many variables classes comprising of only
difference constraints. Hence, our base-line implementation always includes these optimizations.

The impact of other optimizations is studied in Section 5.5.2.

Given the solution bound defining a finite range of values, integer variables in the QFP formula are

encoded as symbolic bit-vectors (in twos complement encoding) large enough to express any inte-
ger value within that range. Arithmetic operators are implemented as arbitrary-precision bit-vector

arithmetic operations. In our implementation, we used a ripple-carry adder circuit for encoding

the “ 5 ” and “ 2 ” operators, a shift-and-add circuit to encode multiplication by a constant. Equal-
ities and inequalities over integer expressions are translated to comparator circuits over bit-vector

expressions. The resulting Boolean formula is passed as input to a SAT solver.

We implemented our procedure as part of the UCLID verifier [156], which is written in Moscow

ML [103]. In our implementation we used the zChaff SAT solver [169] version 2003.7.22. In the
sequel, we will refer to our decision procedure as the “UCLID” procedure.

5.5.2 Experimental Results

We report here on a series of experiments we performed to evaluate our decision procedure against
other theorem provers, as well as to assess the impact of the various optimizations discussed in

Section 5.4.

All experiments were performed on a Pentium-IV
²

GHz machine with � GB of RAM running

Linux. A timeout of
î � 4'4 seconds ( � hour) was imposed on each run.

Benchmarks

For benchmarks, we used � 4 formulas from the Wisconsin Safety Analyzer (WiSA) project on

checking format string vulnerabilities, and
î

generated by the Blast software model checker. The

benchmarks include both satisfiable and unsatisfiable formulas in an extension of QFP with uninter-
preted functions. Uninterpreted functions were first eliminated using Ackermann’s technique [2],4

and the decision procedures were run on the resulting QFP formula.
4Ackermann’s function elimination method replaces each function application by a fresh variable, and then instantiates

the congruence axiom for those applications. For instance, the formula Ý	*<Þ . Ê�Ý	*<ß . is translated to the function-free
formula àâá ë Êjàâá ìWã *<Þ:ÊjßqÊ�äåà�á ë Êjà�á ì . .
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Some characteristics of the formulas are displayed in Table 5.3. For each formula, we indicate

whether it is satisfiable or not. We give the values of parameters � , � ,
ø

, þ ,
� `cb+d

and
( `cb+d

corresponding to the variable class for which ¯ � Ø�Ú�Û'ÜK� :�� 5 ² ;­¬ � Þ is largest, i.e, for which we

need the largest number of bits per variable. The values of the parameters for the overall formula
are also given (although these are not used in computing ¯ for any variable class); thus, the values of

� and � in these columns are the total numbers of variables and constraints for the entire formula.

The top � 4 formulas listed in the table are from the WiSA project. One key characteristic of these

formulas is that they involve a significant number of Boolean operators ( r ,
w

, ¥ ), and in particular
there is a lot of alternation of r and

w
. The other important characteristic of these benchmarks is

that, although they vary in � , � , and
(Z`cb+d

, the values of
ø

, þ , and
�p`cb+d

are fixed at a small value.

Three formulas from the Blast suite are listed at the bottom of Table 5.3. All these formulas are

unsatisfiable. Each formula is a conjunction of two sub-formulae: a large conjunction of linear
constraints, and a conjunction of congruence constraints generated by Ackermann’s function elimi-

nation method. Thus, there is only one alternation of r and
w

in these formulas.

Formula Ans. Parameters corr. to max. ¯ Max. parameters overall
� � ø þ ��`cb+d (*`cb+d ¯ � � ø þ �%`cb+d ()`cb+d

s-20-20 SAT 28 263 5 4 4 21 36 64 550 5 4 4 255

s-20-30 SAT 28 263 5 4 4 30 36 64 550 5 4 4 255
s-20-40 UNS 28 263 5 4 4 40 37 64 550 5 4 4 255

s-30-30 SAT 38 383 5 4 4 31 37 82 800 5 4 4 255

s-30-40 SAT 38 383 5 4 4 40 37 82 800 5 4 4 255
xs-20-20 SAT 49 323 5 4 4 21 37 84 632 5 4 4 255

xs-20-30 SAT 49 323 5 4 4 30 38 84 632 5 4 4 255
xs-20-40 UNS 49 323 5 4 4 40 38 84 632 5 4 4 255

xs-30-30 SAT 69 473 5 4 4 31 39 114 922 5 4 4 255

xs-30-40 SAT 69 473 5 4 4 40 39 114 922 5 4 4 255

blast-tl2 UNS 54 67 7 3 1 0 24 145 274 7 3 1 128
blast-tl3 UNS 201 2669 19 6 1 15 70 260 2986 19 6 1 128

blast-f8 UNS 255 6087 0 2 1 2560 20 321 7224 0 2 1 2560

Table 5.3: Benchmark characteristics. The top half of the table consists of the WiSA benchmarks
and the bottom three are generated by the Blast software verifier.

Impact of optimizations

In this section, we discuss the impact of optimizations discussed in Sections 5.4.2 and 5.4.3.
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Table 5.4 compares the following ´ different encoding options based on different ways of computing

the solution bound:

Base: The base-line method of computing the solution bound.

Coeff: Using the optimization of Section 5.4.2 alone.

Const: Using the optimization of Section 5.4.3 alone.

All: Using optimization methods of both Sections 5.4.2 and 5.4.3.

The comparison is made with respect to the largest number of bits needed for any variable class,

and the run-times for both generating the SAT-encoding and for SAT solving.

First, we note that Coeff and Const both generate more compact encodings than Base; on the

WiSA benchmarks, they use about
Ä
- � 4 fewer bits per variable in the largest variable class. The

reduction in the total number of bits, summed over all variables in all variable classes, is similar,

since most variables fall into a single class.

The encoding times decrease with reduction in number of bits; this is just as one would expect.

However, the comparison of SAT solving times is more mixed; on a few benchmarks Coeff and

Const outperform Base, and on others, they do worse. The latter behavior is observed especially
on satisfiable formulas. The reason for this might be the relative ease in finding larger solutions for

those formulas than finding smaller solutions.

When Coeff and Const are both used (indicated as “All”), we find that not only are encoding times

smaller than the Base technique, but SAT solving times are also smaller in all cases except one,
where the difference is only minor. This seems to indicate that a reduction in SAT-encoding size

beyond a certain limit overcomes any negative effects of restricting the search to smaller solutions.

We also performed an experiment to explore the use of the shift-of-origin optimization described in

Section 5.4.3. UCLID automatically formulated the ILP and invoked CPLEX [46], an integer linear
programming solver (version 8.1), to solve it. Since none of the benchmarks listed in Table 5.3 have

especially large constants, we used a different, unsatisfiable formula from the Blast suite which has

only difference constraints, but with large constants.

Table 5.5 summarizes the key characteristics of this formula as well as the results obtained by com-
paring versions of the base-line (Base) implementation with and without the optimization enabled.

We list the values of parameters, with and without the shift-of-origin optimization enabled, for the

variable classes that yield the two largest values of ¯ when the optimization is disabled.

With the optimization turned on, the largest constant in the entire formula falls from
² �p�'� î'î'² ´ ²

to ´ î'²'Ä'î Å , a � 4'4 -fold reduction. However, if we restrict our attention to the largest variable class,
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Formula Ans. Max. #bits/var. Encoding Time (sec.) SAT Time (sec.)

B
as

e

C
oe

ff

C
on

st

A
ll

B
as

e

C
oe

ff

C
on

st

A
ll

B
as

e

C
oe

ff

C
on

st

A
ll

s-20-20 SAT 36 26 31 21 1.66 1.25 1.27 1.00 5.41 9.28 8.34 0.48
s-20-30 SAT 36 26 31 22 1.72 1.24 1.32 1.02 3.99 2.28 4.82 0.50
s-20-40 UNS 37 27 32 22 1.72 1.28 1.30 1.03 1.37 1.35 0.92 0.87
s-30-30 SAT 37 27 32 22 2.27 1.90 1.99 1.57 17.22 0.88 14.31 9.57
s-30-40 SAT 37 28 32 23 2.39 1.96 2.03 1.55 20.17 8.22 4.80 11.99
xs-20-20 SAT 37 28 32 22 2.29 1.88 1.93 1.55 17.67 21.62 11.67 7.15
xs-20-30 SAT 38 28 32 23 2.29 1.95 2.00 1.61 23.21 18.19 1.50 7.18
xs-20-40 UNS 38 29 33 23 2.41 1.99 2.04 1.59 7.32 8.60 10.55 8.01
xs-30-30 SAT 39 29 33 23 3.84 2.71 2.89 2.17 79.10 18.40 20.16 27.92
xs-30-40 SAT 39 30 33 24 3.76 2.83 2.67 2.12 27.60 45.63 13.36 13.45
blast-tl2 UNS 24 24 19 19 1.54 1.48 1.10 1.08 0.05 0.04 0.03 0.03
blast-tl3 UNS 70 53 62 46 29.98 19.34 22.50 17.57 0.78 0.54 0.66 0.46
blast-f8 UNS 20 20 12 12 18.37 17.99 10.71 10.68 6.22 6.15 2.63 2.29

Table 5.4: An experimental evaluation of encoding optimizations. We compare the ´ different

UCLID encoding options with respect to the maximum number of bits needed for any integer vari-

able (“Max. #bits/var.”), the time taken to generate the Boolean encoding, and the time taken by the
SAT solver.

comprising
²'î�4

variables, the reduction in
(L`cb+d

is more modest, about a factor of ´ . This yields a

saving of
²

bits per variable for that variable class. The saving in the total number of bits, summed
over all variable classes, is �{Â'Â . This is, however, not large enough to reduce either the encoding

time or the SAT time. In fact, the encoding time increases by about a second; this is the time required
to run CPLEX and for the processing overhead of creating the ILP.

Even though the shift-of-origin optimization has not resulted in faster run-times in our experiments,
it clearly has the potential to greatly reduce the number of bits, and might prove useful on other

benchmarks.

Comparison with other theorem provers

We compared UCLID’s performance with that of the SAT-based provers ICS [80] (version 2.0) and

CVC-Lite [48] (the new implementation of CVC, version 1.1.0), as well as the automata-based

procedure LASH [92]. While CVC-Lite and LASH are sound and complete for QFP, ICS 2.0
is incomplete; i.e., it can report a formula to be satisfiable when it is not. The ground decision

procedure ICS uses is the Simplex linear programming algorithm with some additional heuristics to

deal with integer variables. However, in our experiments, both UCLID and ICS returned the same
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Shift-of-origin Param. for largest ¯ Param. for
² nd largest ¯ Total Time (sec.)

enabled? � � (�`cb+d ¯ � � (*`cb+d ¯ #bits Enc. SAT

No 230 6417 2162688 29 2 2 261133242 28 7510 24.68 0.70

Yes 230 6417 432539 27 2 2 0 1 6833 25.78 0.71

Table 5.5: Evaluating the shift-of-origin optimization. We list the values of parameters corre-

sponding to variable classes with the two largest values of ¯ , as computed without the shift-of-origin

optimization. “Total #bits” indicates the number of bits needed to encode all integer variables. En-
coding time is indicated as “Enc.” and SAT solving time as “SAT”.

answer whenever ICS terminated within the timeout. The ground decision procedure for CVC-Lite

is a proof-producing variant of the Omega test [17].

LASH was unable to complete on any benchmark within the timeout since it was unable to con-

struct the corresponding automata; we attribute this to the relatively large number of variables and
constraints in our formulas, and note that Ganesh et al. obtained similar results in their study [59].

A comparison of UCLID versus ICS and CVC-Lite is displayed in Table 5.6. From Table 5.6,

we observe that UCLID outperforms ICS on all the WiSA benchmarks, terminating well within a

minute on each one. However, ICS performs best on the Blast formulas, finishing within a fraction
of a second on all. CVC-Lite does not outperform the other procedures on any formula, and was

unable to complete on any of the WiSA benchmarks. We suspect that this time is being mainly spent
in the ground decision procedure based on the Omega test, but have been unable to obtain detailed

statistics.

Let us consider the WiSA benchmarks first. These formulas have a complicated Boolean structure

that requires ICS to enumerate many inconsistent Boolean assignments before being able to decide
the formula. The ICS run-time is dominated by the time taken by the ground decision procedure.

We observe that the number of inconsistent Boolean assignments alone is not a precise indicator of

total run-time, which also depends on the time taken by the ground decision procedure in ruling out
a single Boolean assignment.

The reason for UCLID’s superior performance is the formula structure, where
ø

, þ , and
�|`cb+d

remain fixed at a low value while � , � , and
(Z`cb+d

increase. Thus, the maximum number of bits per
variable stays about the same even as � increases substantially, and the resulting SAT problem is

within the capacity of zChaff. Also, for these benchmarks, the SAT time is almost always the larger
portion of UCLID’s run-time; this is not surprising since Boolean structure of the original formula is

non-trivial, and moreover, the time to compute the parameter values and generate the SAT-encoding

is polynomial in the input size.

Next, consider the results on the Blast formulas. The reason for ICS’s superior performance on
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Formula Ans. UCLID Time ICS CVC-Lite
(sec.) #(Inc. Time (sec.) Total Time

Enc. SAT Total assn.) Ground Total (sec.)

s-20-20 SAT 1.13 1.02 2.15 904 23.32 23.76 *
s-20-30 SAT 1.17 1.02 2.19 1887 51.68 52.29 *

s-20-40 UNS 1.16 1.35 2.51 25776 658.01 669.99 *

s-30-30 SAT 1.73 11.12 12.85 2286 268.21 269.42 *
s-30-40 SAT 1.77 13.81 15.58 14604 1621.27 1625.15 *

xs-20-20 SAT 1.63 8.38 10.01 2307 97.21 98.32 *
xs-20-30 SAT 1.50 7.22 8.72 33103 1519.77 1540.27 *

xs-20-40 UNS 1.65 8.84 10.49 97427 3468.91 * *

xs-30-30 SAT 2.26 29.73 31.99 72585 3287.47 * *
xs-30-40 SAT 2.32 15.65 17.97 33754 3082.34 * *

blast-tl2 UNS 1.08 0.03 1.11 1 0.01 0.01 1.38

blast-tl3 UNS 17.57 0.46 18.03 0 0.00 0.01 37.77

blast-f8 UNS 10.68 2.29 12.97 1 0.01 0.05 179.43

Table 5.6: Experimental comparison with other theorem provers. The UCLID version is the one

with all optimizations turned on (“All”). For ICS, we give the total time, the number of inconsistent

Boolean assignments analyzed by the ground decision procedure (“#(Inc. assn.)”), as well as the
overall time taken by the ground decision procedure (“Ground”). For CVC-Lite, we indicate the

total run-time. A “ æ ” indicates that the decision procedure timed out after
î � 4'4 sec. LASH did not

complete within the timeout on any formula.

these can be gauged by the number of inconsistent Boolean assignments it has to enumerate. On
the formula named “blast-tl3”, purely Boolean reasoning suffices to decide unsatisfiability. For the

other two formulas, the reason for unsatisfiability is a mutually-inconsistent subset amongst all the
linear constraints that are conjoined together, and a single call to ICS’s ground decision procedure

suffices to infer the inconsistency.

On the other hand, UCLID’s run-time is dominated by the encoding time. Once the encoding is
generated, the SAT solver decides unsatisfiability easily.

To summarize, it appears that decision procedures based on a lazy translation to SAT, such as ICS,

are effective when the formula structure is such that only a few calls to the ground decision pro-

cedure are required. UCLID performs better on formulas with complicated Boolean structure and
comprising linear constraints with the sparse structure formalized in this chapter.
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5.6 Discussion

We have presented a formal approach to exploiting the “sparse, mainly difference constraint” nature

of quantifier-free Presburger formulas encountered in software verification. Our approach is based
on formalizing this sparse structure using new parameters, and deriving a new parameterized bound

on satisfying solutions to QFP formulas. We have also proposed several ways in which the bound

can be reduced in practice. Experimental results show the benefits of using the derived bound in a
SAT-based decision procedure based on small-domain encoding.

Table 5.7 summarizes the value of Ö for all the classes of linear constraints explored in this thesis.

We can clearly see that the bound derived in this chapter for quantifier-free Presburger arithmetic is

Class of Linear Constraints Solution Bound Ö
Difference constraints � � : (l`cb+d 5ä�X;

Generalized 2SAT constraints
²�� � � : (Z`cb+d 5ä�X;

Arbitrary linear constraints :�� 5 ² ; � O?P�R :�� 5ä� & ��; � : (Z`cb+d 5��X; � :�þ �L��`cb+d ; T

Table 5.7: Solution bounds for classes of linear constraints. The classes are listed top to bottom

in increasing order of expressiveness.

conservative. For example, if all constraints are difference constraints, the expression for Ö derived

in this chapter simplifies to :��/5 ² ; � OQPSR :���5§� & ��; � : (l`cb+d 5§�X; . This is �/5 ² times as big as

the bound derived in Chapter 3; note that the looseness in the bound is a carry-over from the result
of Borosh, Treybig, and Flahive. For generalized 2SAT constraints, the bound derived for arbitrary

QFP is much looser. In the worst case, it is looser by an exponential factor: if
ø

is
ç :���; , �K`cb+d is � ,

and þ is
²
, then the bound is

ç :�:��ü5 ² ; � O?P�R :�� 5I� & ��; � : (l`cb+d 5ä�X; �g² & ; , whereas the results of

Chapter 4 tell us that the solution bound Ö �¦²-� � � : (Z`cb+d 5I�X; suffices (since � � : (�`cb+d 5��X; is an

enumeration bound).

Due to the conservative nature of the bound derived in this chapter, and in spite of the many opti-
mizations discussed, the computed solution bound can generate a SAT problem beyond the reach of

current solvers. The latter situation can also arise for problem domains that do not generate sparse

linear constraints. There is therefore a need for an efficient algorithm to compute a tighter solution
bound.

Recent work by the author and colleagues [87], implemented in UCLID, presents one approach

towards computing a tighter solution bound. The central idea is to compute the solution bound

incrementally, starting with a small bound and increasing it “on demand”. Figure 5.1 outlines this
lazy approach to computing the solution bound.

Given a QFP formula ª�¢<£¤¥ , we start with an encoding size for each integer variable that is smaller
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Figure 5.1: Lazy approach to computing solution bound

than that prescribed by the conservative bound (say, for example, � bit per variable).

If the resulting Boolean formula is satisfiable, so is ª:¢¤£<¥ . If not, the proof of unsatisfiability gener-

ated by the SAT solver is used to generate a sound abstraction ª�0¢¤£<¥ of ªI¢¤£<¥ . A sound abstraction is
a formula, usually much smaller than the original, such that if it is unsatisfiable, so is the original

formula. A sound and complete decision procedure for QFP (such as the one proposed in this chap-

ter) is then used on ª^0¢<£¤¥ . If this decision procedure concludes that ª�0¢¤£<¥ is unsatisfiable, so is ª1¢¤£<¥ .
If not, it provides a counterexample which indicates the necessary increase in the encoding size. A

new SAT-encoding is generated, and the procedure repeats.

The bound ¯ on solution size that we derive in this chapter implies an upper bound ��¯ on the

number of iterations of this lazy encoding procedure; thus the lazy encoding procedure needs only
polynomially many iterations before it terminates with the correct answer. Of course, each iteration

involves a call to a SAT solver as well as to a decision procedure for QFP.

A key component of this lazy approach is the generation of the sound abstraction. While the details

are outside the scope of this thesis, we sketch one approach here. (Details can be found in [87].)
Assume that ª�¢¤£<¥ is in conjunctive normal form (CNF); thus, ª�¢<£¤¥ can be viewed as a set of clauses,

each of which is a disjunction of linear constraints and Boolean literals. A subset of this set of
clauses is a sound abstraction of ª1¢<£¤¥ . This subset is computed by retaining only those clauses from

the original set that contribute to the proof of unsatisfiability of the SAT-encoding.
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The potential advantage of this lazy approach is twofold: (1) It avoids using the conservative bounds

we have derived in this chapter, and (2) if the generated abstractions are small, the sound and
complete decision procedure used by this approach will run much faster than if it were fed the

original formula.

For the WiSA benchmarks discussed in Section 5.5, we found that a solution bound of
²èç 2 � , i.e., Á

bits per variable, is sufficient to decide satisfiability. However, the time required to derive this bound
using the method of [87] is much greater than the run-times we report in Section 5.5. Still, the lazy

approach can prove especially useful in cases in which ¯ is so large that the SAT problem is outside
the reach of current SAT solvers. Among other things, there is potential to improve its efficiency by

using an incremental SAT solver in the loop.



Chapter 6

Automated Selection of Boolean
Encoding

Chapter 3 introduced two very distinct methods of deciding a difference logic formula via translation

to SAT. This naturally gives rise to the following question: Given a difference logic formula, which
encoding technique should one use to decide that formula the fastest?

In this chapter, we first present evidence that this question cannot be resolved entirely in favor of
either method. We then show that one can select an encoding method based on formula character-

istics using a rule generated by machine learning from past examples (formulas). Moreover, parts
of a single formula corresponding to different variable classes can be encoded using different en-

coding methods. The resulting hybrid encoding algorithm is more robust to variation in formula

characteristics than either of the two techniques of Chapter 3.

6.1 The Need for Algorithm Selection

An experimental study comparing the small-domain (SD) and DIRECT encoding methods over a

range of benchmarks indicates that neither method dominates the other in run-time performance.

Section 6.1.1 presents the results of this study. These findings motivate the use of automated algo-
rithm selection, described in Section 6.1.2.

6.1.1 Comparing the SD and DIRECT Methods

We compare the space and time complexity of the SD and DIRECT decision procedures with respect

to both encoding and SAT-solving steps.



76 CHAPTER 6. AUTOMATED SELECTION OF BOOLEAN ENCODING

Let us first compare the encoding steps of the two decision procedures. The SD encoding algorithm

runs in polynomial time and generates a SAT problem that is polynomial-size in the original formula.
On the other hand, the DIRECT encoding can generate, in the worst case, a SAT problem that is

exponential in the size of the original formula (this is due to a worst-case exponential number of
transitivity constraints; see Example 3.4).

The above comparison suggests always favoring SD over DIRECT, since the SD encoding phase
is polynomial-time and the SAT instance is polynomial-size in the input. Unfortunately, such a

simple judgement cannot be made. First, theoretical worst-case results do not always reflect practice.
Second, the run-times of SAT solvers do not always increase monotonically with the size of the

SAT instance. In this section, we present experimental evidence supporting the latter behavior,

which has also been observed in other contexts (e.g., [77, 126]). We will also formally characterize
the structure of the SAT instances generated by the DIRECT encoding method, showing that even

when they are bigger than those generated by the SD method, the special structure of the DIRECT

encoding method makes the SAT time only polynomially-dependent on the number of transitivity
constraints.

Note also that both encoding methods can generate arbitrary SAT instances. For example, when the

starting formula is purely Boolean, both methods generate identical output.

Experimental setup

All experiments reported in this chapter were based on a set of ´%Å difference logic formulas,1 all

but ´ of which are unsatisfiable. These formulas are drawn from problems encountered in both

hardware and software design verification. The hardware designs include the load-store unit of an
industrial microprocessor, an out-of-order microprocessor design [89], a cache coherence proto-

col [61], and a
Ä
-stage DLX pipeline. The software benchmarks are generated in the verification of

safety properties of device driver code [68], and in translation validation [123].

Experiments were run on a Pentium-IV 2 GHz machine with 1 GB of RAM. A timeout of
î � 4'4

seconds (one hour) was imposed on each run. For the SAT solving phase, we used the zChaff SAT

solver (version 2003.7) with the default options.

Analysis of results

Figure 6.1 shows a scatterplot comparing the total run-time (encoding time and SAT time) for both
encoding methods. In the plot, the x-coordinate of each point is the time taken by DIRECT, and the

y-coordinate is the time taken by SD. We also plot the diagonal line � � � in each plot.
1The formulas originally also included applications of uninterpreted functions, but these are first eliminated using the

method proposed by Bryant et al. [29]. This method is reviewed in Chapter 7.
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Figure 6.1: Comparing SD and DIRECT encoding methods. Note the log scales on both axes.
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Figure 6.2: Comparing SD and DIRECT methods when DIRECT encoding phase completes.
Note the log scales on both axes.

Thus, points above the diagonal correspond to benchmarks on which DIRECT outperforms SD, and

vice-versa for the points below the diagonal. Note that some points are spaced close enough to
appear superimposed on each other.
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The SD method times out on two benchmarks, whereas the DIRECT method does not complete on

� ² . As expected, the SAT solving phase is the reason that the SD method fails to finish. On the other
hand, the DIRECT method fails to reach the SAT solving phase on �'� of the � ² formulas it does not

finish on.

Figure 6.2 shows the scatterplot restricted to the
î Á benchmarks for which the DIRECT method

reaches the SAT solving stage. It is evident that the DIRECT outperforms SD on almost all of these
formulas.

A closer look at the data in Figure 6.2 reveals the non-monotonic behavior of the zChaff SAT solver.

Table 6.1 shows the effect of the encoding method on zChaff’s performance on a representative

sample of benchmarks from out-of-order processor verification [89]. Even though the SD method
generates smaller SAT instances, zChaff does more backtracking and runs slower on SD-instances

as compared to DIRECT-instancs.

Benchmark # of CNF # of CNF # of Conflict SAT Time

Variables Clauses Clauses (sec.)
SD DIRECT SD DIRECT SD DIRECT SD DIRECT

OOO.rf9 14744 15898 43741 47786 84748 7849 152.49 8.61

OOO.tag14 48825 53910 145570 167308 65012 8934 220.38 34.59

Table 6.1: Effect of encoding on zChaff performance. “Conflict Clauses” denotes the conflict

clauses added by zChaff on backtracking.

We have also observed the same behavior for other solvers based on the Davis-Putnam-Logemann-

Loveland (DPLL) method, such as BerkMin [63] and Siege [142].

The structure of SAT instances generated by the DIRECT method can be characterized formally.

Recall from Section 3.3 that a transitivity constraint generated in the DIRECT encoding algorithm
either has the form ó ô ë�)� � r¶ó ô ì��� T �9æ ó ô ë B ô ì�)� T or the form ó ô ë�®� � r¶ó ô ì��� T �9æ  ¢¡]£A¤ � . Rewriting the constraint

as a CNF clause, we either get the expression : ¥ ó ô ë�®� � ; w : ¥ ó ô ì��� T ; w ó ô ë B ô ì�)� T or : ¥ ó ô ë�)� � ; w : ¥ ó ô ì�A� T ; . In

either case, there is at most one positive literal in the generated CNF clause. In other words, each
transitivity constraint is a Horn clause. Since transitivity constraints are the source of exponential

blow-up in the size of SAT problems generated using the DIRECT encoding, one can characterize

the DIRECT encoding as generating mostly-Horn-SAT problems, in the worst-case.

A SAT instance comprising only Horn clauses (a Horn-SAT instance) is linear time solvable, with
unit propagation being the main step [38]. Thus, in the worst-case, the run-time of a SAT solver isç : ²�& ; , where � is the number of original difference constraints; i.e., the run-time does not grow

exponentially in the number of transitivity constraints.
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Although current DPLL-based SAT solvers such as zChaff do not explicitly check for Horn struc-

ture, they can solve mostly-Horn-SAT instances very fast. This appears to be mainly due to the
efficient implementation of unit propagation.

Discussion

We conclude this section with a summary of our findings. We note that:

1. The performance of DPLL-based SAT solvers on instances generated using the DIRECT en-

coding algorithm is superior to their performance on instances generated using the SD encod-

ing, even when the latter instances are larger.

2. The DIRECT encoding algorithm can, in the worst-case, generate a SAT problem that is ex-

ponentially large in the original difference logic formula; moreover, this worst-case behavior

manifests itself in practice sometimes. In contrast, the SD encoding algorithm always gener-
ates a polynomial-size SAT problem.

The bottleneck for the DIRECT encoding, therefore, is the Boolean encoding step. In experiments,

we have observed that if this step completes, it is almost always the case that DIRECT outperforms

SD.

6.1.2 Automated Algorithm Selection

Since neither one of SD and DIRECT encoding methods dominates the other, we are presented with
the following questions:

1. Given an input formula in difference logic, can we automatically select the Boolean encoding

method that is best for that formula?

2. Can the SD and DIRECT encoding methods be combined for the same formula?

Let us consider the second question first. As we saw in Chapter 3, variables and constraints can be

partitioned into equivalence classes. A separate encoding method can be used for each equivalence
class, and this decision is independent of those made for other classes. Thus, we can answer the

second question in the affirmative.

The first question can be viewed as an instance of a more general problem called the algorithm

selection problem [129]. This problem is stated as follows:

Given a portfolio of algorithms for a problem and a specific problem instance, which
algorithm must one select to solve that instance in the least amount of time?
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The algorithm selection problem has been studied in various contexts, but never before for the

specific problem we consider. Algorithm selection arises naturally in the case of NP-hard problems
due to the unpredictability of run-times of heuristic-based algorithms. For example, researchers

have recently considered the problem of selecting one of several different algorithms for integer
linear programming [93]. There has also been work on choosing between different polynomial-time

algorithms for a problem, e.g., for selecting between sorting algorithms [88].

The general framework for algorithm selection is as follows:

1. Select features é C & é�q &Z°Z°Z°�& é T of the input that characterize the run-time of each alternative

algorithm. These features must be computable in (low-degree) polynomial time. Feature
selection is typically done manually.

2. Use machine learning techniques to derive a rule D based on the features from a training set
of problem instances (formulas, in our case). Mathematically, the rule is a function from the

feature space to the set of candidate algorithms.

3. At run-time, compute the values of features for the input, and evaluate the rule: D×:�é C & é�q &Z°Z°Z°�& é T ;
is the selected algorithm.

In the next section, we present an approach based on the above framework to automatically selecting
between the SD and DIRECT Boolean encoding algorithms.

6.2 Learning-Based Approach

Applying the above learning-based approach in our specific context requires making two design

decisions. First, a suitable set of input features must be selected. This is addressed in Sections 6.2.1
and 6.2.2. Second, a machine learning algorithm must be chosen; this is discussed in Section 6.2.3.

In addition, modifications must be made to the Boolean encoding algorithm so as to permit com-

bining both SD and DIRECT methods whilst using automated algorithm selection. We discuss these
modifications in Section 6.2.4.

6.2.1 Complexity of Counting Transitivity Constraints

Our first task is to pick a feature of the input formula that best characterizes the run-times of the
SD and DIRECT algorithms. We observed in Section 6.1.1 that the DIRECT algorithm outperforms

SD when the DIRECT encoding phase completes. Thus, a predictor of the run-time of the DIRECT

encoding phase is a natural choice of formula feature. The best predictor of the DIRECT encoding
time is the number of transitivity constraints.
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Unfortunately, the following result shows that the number of transitivity constraints is not a suitable

formula feature.

Theorem 6.1 A polynomial-time algorithm for counting the number of transitivity constraints can-

not exist.

Proof: The proof is by contradiction. Suppose a polynomial-time algorithm ê does exist.

Every transitivity constraint involving three variables involves the addition of an edge to the con-

straint graph, if it did not already exist. We show that ê must keep track of (i.e., maintain at least
one bit of storage for) every new edge added to the constraint graph. As illustrated in Example 3.4,

the number of new edges added at a node elimination step can be exponential in the size of the

original formula (the starting constraint graph for Example 3.4 is reproduced in Figure 6.3, for con-
venience). This implies that, in the worst-case, ê performs exponentially many writes, which is a

contradiction.
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Figure 6.3: Exponential blow-up of DIRECT encoding, revisited

Suppose ê does not keep track of every newly added edge. Consider the graph in Figure 6.3. We

observe that:

1. There are � T paths of distinct weight between
ø

adjacent vertices.

2. Each new edge that is added in the DIRECT encoding algorithm, as a result of eliminating
some vertex À � , accumulates the weights of edges on a distinct path between a subset of

adjacent vertices containing À � .
3. Every newly added edge is generated by applying the transitivity rule to a unique pair of

previously existing edges, and this procedure continues until only two vertices remain.
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Thus, if the edge ó missed by ê was added at the # th node elimination step, ê will fail to record the

� !�è � è q new edges that are generated transitively from ó . In other words, the count maintained byê will fall short of the correct count by at least � !�è � è q .
Thus, ê must keep track of every newly added edge, implying that a polynomial-time algorithm for

counting the number of transitivity constraints cannot exist. _
6.2.2 Feature Selection

The hardness of counting transtivity constraints, expressed in Theorem 6.1, implies that we must
look for other formula features to base the algorithm selector on.

Four features were selected for the results reported here. The features and the rationale for selecting

them are as follows:

1. � , the number of difference constraints: Constraint graphs with very few edges (bounded by
a small constant) are likely to generate few transitivity constraints.

2. � , the number of variables: The rationale is similar to that for � .

3.
& ! : This ratio is the average number of edges per vertex. If a vertex has a large number of

both incoming and outgoing edges, eliminating it is likely to generate many new edges.

4.
&
!
ì
: This ratio is the average number of edges per node-pair, and is a measure of the density

of the graph.

Thus, each difference logic formula is represented by a corresponding feature vector :�� & � & & ! & &! ì ; .
Note that all four features, by themselves, are not perfect predictors of the number of transitivity
constraints. For example, if the starting constraint graph is a directed acyclic graph (DAG), elimi-

nating vertices in a topologically sorted order will result in no edges being added, even if � is very

large. There is also no formal reason why this set of features is adequate. The only justification of
our choice is the experimental validation presented in Section 6.3.

A major advantage of our choice of features is that they are computable in low-degree polynomial

time. In the absence of ITE expressions, all four features are exactly computable in linear time, by

performing a scan of the formula. However, if ITE expressions are present, it is preferable not to
eliminate them since the elimination step itself can lead to an exponential blow-up. Therefore, we

instead estimate � by performing a cross-product operation at each relational operator. A detailed
description of this operation are deferred to Section 6.2.4.
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6.2.3 Machine Learning Technique

The choice of a machine learning technique depends on the domain and range of the function to be

learnt. In our situation, we wish to learn a binary-valued decision function D×:�� & � & & ! & &! ì ; such thatD×:�� & � & � � & �� q ; � ÿ��� � if DIRECT must be selected4
if SD must be selected

(6.1)

The domain of the decision function D is
. � . �o�-�"� . A particularly suitable technique for learning

a binary function of numerical parameters is the support vector machine [157]. Given a set of points

in �ã! with some points labeled
4

(negative examples) and some labeled � (positive examples),

a support vector machine (SVM) attempts to find the “best possible” separation of the negative
examples and the positive examples. In the simplest case, the examples are linearly separable,

and the generated separator is a linear function defining the half-space of ��! in which the positive

examples lie. However, in practice, examples are not usually linearly separable and the data can also
be noisy. The real strength of SVMs lies in their ability to learn non-linear separators that optimally

separate the examples (for a suitable definition of optimality). The key idea is to project the points
into a higher dimensional space in which an optimal linear separator can be found.

Further details on SVMs are outside the scope of this thesis. We refer the interested reader to
Christopher Burges’ tutorial on the subject [35].

In our context, an SVM learner is used as follows. First, we generate feature vectors for a set of

training examples, viz., a set of formulas used to learn a decision rule. The SVM learner is applied

to the resulting set of feature vectors to obtain a decision rule. Note that this process of learning
is off-line. Second, given a new formula to decide, the learned decision rule is used to classify it

according to Equation 6.1.

Details on the SVM implementation we used are discussed in Section 6.3.

6.2.4 Hybrid Encoding Algorithm

The choice between SD and DIRECT encoding algorithms is local, made separately for each variable

class. Since a difference logic formula typically corresponds to several variable classes, making

local decisions based on the learned decision rule D leads to a hybrid encoding algorithm.

Figure 6.4 re-defines difference logic syntax for easy reference in this section.

Given a difference logic formula ª�«�¬ ­ , the hybrid encoding algorithm generates an equi-satisfiable

Boolean formula ª�µAïJï�ð in the following six steps.

1. Generate variable classes. Let � denote the set of variables. We start by assigning each
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bool-expr ��� � �X����� j� ¢¡1£�¤ � j bool-var jL¥ bool-expr j : bool-expr
w

bool-expr ;
j : bool-expr r bool-expr ; j : int-expr

�
int-expr ; j : int-expr

�
int-expr ;

int-expr ��� � � � j int-expr 5 ( j ITE : bool-expr
&

int-expr
&

int-expr ;
Figure 6.4: Difference logic syntax, revisited. � � , 4 <�#o<�� , and

(
denote an integer variable and

constant respectively.

variable to its own class. We then compute the dependency set for each term in ª6«�¬ ­ , denoting
some subset of variables in � to which this term could evaluate. While doing this, some of

the classes are merged so that each dependency set is a subset of some class. For term � °� � � ,
its dependency set is �L� � � . For term � °� � C 5 ( , its dependency set is the same as that of� C . For � °�

ITE :Ýª & � C & �3qX; , its dependency set is the union of those of � C and �3q . If the

dependency sets of � C and � q are subsets of two distinct classes, then we merge those classes.

For each equation � C � �3q and each inequality � C � �3q , we perform a similar merging if
the dependency sets of � C and �3q are subsets of distinct classes. Let � C &Z°Z°Z°9& ��� be the �
different variable classes generated by this procedure.

2. Generate ground terms. A ground term is an expression of the form � � 5 ( , viz., an integer

offset from a variable. We transform the formula to generate ground terms by repeatedly

applying the following rewrite rules until a fixed point is reached.

� 5 4	� �
:
� 5 ( C ;35 ( q � � 5�: ( C 5 ( q ;

ITE :Ýª & � C & �3qX;95 (�� ITE :Ýª & � C 5 (X& �3q�5 ( ;
At this point, the terms at the leaves of the formula (viewed as a expression graph) consist

only of ground terms.

3. Compute solution bounds for each variable class. Recall from Remark 3.1 in Section 3.2

that the solution bound Ö � for a variable class � � with � � variables is given by

Ö �9� !
� è3CH��F C j (*� é 5�� j (6.2)

where
(*��ëZ&)()��ìà&Z°Z°Z°�&)(*� �Xí ë are the � � 2 � largest constants appearing in constraints correspond-

ing to class � � .
The quantity � � is easily computable, but computing the constants takes a little more work

due to the presence of ITE expressions. The constants are computed as follows. For each
equation � C � �|q and each inequality � C � �3q corresponding to class � � , we find the set of
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ground terms �?:
� C ; and �Q:
�3qX; that � C and �3q can evaluate to, respectively. This is done

by modifying the algorithm for computing the dependency set (described above) to include
ground terms in addition to variables. For every pair :�� T ë 5 ( T ë & � T ì 5 ( T ì ; in the cross product�?:
� C ;��
�Q:
�3qL; , where

ø C ÷�Nø q , we compute the constant term j ( T ë 2 ( T ì j 5�� . The � � 2 �
largest such terms are recorded, and used for computing Ö � .
Given Ö � , we obtain the length ¯ � of the bit-vector required to encode each variable in class� � .

4. Compute an upper bound on the number of difference constraints for each class. For

each of the classes � � , we compute an upper bound ��� ������� � on the number of difference

constraints � � . This is done as follows. Initially, ��� ������� � � 4 , for each class � � . Then, for
each equation � C � �3q and each inequality � C � �3q corresponding to � � , we find the set of

ground terms �Q:
� C ; and �Q:
�3qL; that � C and �3q can evaluate to, respectively. For every pair
:�y C & y+qX; in the cross product �?:
� C ;����Q:
�3qZ; that has not been encountered yet, and where y C
and yºq are distinct from each other, we increment ��� ������� � by � .
Note that ��� ������� � is an upper bound on � � because we count constraints that disappear after

eliminating ITEs, e.g., counting :�� C & �]qX; at the node ITE :Ýª & � C & �KqZ; � ITE : ¥ ª & �Kq & � C ; .
5. Perform hybrid encoding. At this point, we have all the information we need to encode the

difference logic formula into a Boolean formula.

The algorithm proceeds by recursing on the formula structure. A Boolean variable retains the
same encoding. For a node é C r�é q (or é C w é q ), we recursively encode the subexpressionsé C , é�q and conjoin (or disjoin) the results. Similarly, ¥ é C is evaluated by encoding é C and

negating the result. The more interesting cases involve equation or inequalities.

For each equation � C � �|q or an inequality � C � �3q , we find the class � T which contains the
variables that appear in �?:
� C ; and �?:
�3qX; .
We then evaluate the SVM classifier for � T . The result of the classifier for � T isD×:���� ������� T & � T & ��� ������� T� T & ��� ������� T� qT ;
Note that the classifier has to be evaluated only once for each variable class.

If the classifier returns
4
, then we encode � C , �3q using the SD method. The encodings of � C

and �3q are symbolic bit-vectors of size ¯ T . Bitwise equality or comparison is used to translate
a relational operator to a Boolean expression. The arithmetic operations 5 and 2 are encoded

using binary arithmetic, and ITE expressions are encoded as multiplexors.

Otherwise, if the classifier returns � , we use the DIRECT method to encode � C and � q , using

the technique proposed by Bryant et al. [29]. Suppose � C evaluates to a ground term � � under
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the condition �gC� , and �3q evaluates to � � under � q� . For example, the term ITE :Ýª & � C & �KqX;
evaluates to � q under ¥ ª . The encoding of the predicate � C �u� � q , where

�u�p, � ��& � � , is
given by � ��� � � C� r�� q� r ó� "!# � � # é , where ó� "!# � � # é is a symbolic Boolean constant to encode the

constraint � �|�u� � � .
6. Generate ªoµ�ïJï�ð . Let ªoµ¸·º¹�» denote the formula obtained by performing the hybrid encoding

on ª"«�¬ ­ . We generate the conjunction ª ¼õ»S¹ ñZö of all transitivity constraints for predicates in
ª"«�¬ ­ encoded using the DIRECT method. The final Boolean formula ª6µ�ï¢ï�ð is then generated

as ( ª ¼õ»S¹ ñZö �9æ ªoµ¢·+¹�» ).
Hereafter, the hybrid encoding algorithm will be denoted as HYBRID.

6.3 Experimental Evaluation

The HYBRID encoding algorithm was implemented in UCLID. We report her on experiments com-
paring HYBRID with the SD and DIRECT encoding methods. We also report comparisons with

CVC-Lite [13, 48] (the latest version at the time of writing), a publicly-available SAT-based de-
cision procedure that is sound and complete for integers. CVC-Lite is the successor to SVC, the

Stanford Validity Checker [12].

The experimental setup was identical to that used in Section 6.1.1; we used the same ´%Å benchmarks,

the zChaff SAT solver, and the same platform and timeout (
î � 4'4 sec.) settings.

Implementation of HYBRID

The implementation of HYBRID exactly follows the algorithm described in Section 6.2.4. The only

remaining details concern our use of SVM learning.

We used a publicly available package called SVM-Light [83, 151]. About one-third of the formulas

( �XÂ out of ´%Å ) were used as a training set. For each of these formulas, we ran both SD and DIRECT

encoding algorithms. If the DIRECT encoding algorithm ran out of memory on a formula, we

marked it as a negative example; if not, we marked it as a positive example. The input to SVM-

Light comprised the labeled feature vectors corresponding to these training examples. Note that the
� values in the feature vectors were computed exactly, since we ran the DIRECT encoding algorithm

which eliminates ITE expressions as a first step. The only preprocessing step applied to the feature

vectors before running the SVM-Light learner on them was to scale all features to be of the same
order by multiplying by a constant (for our case, in and around the range

� 4p& � � ), as recommended

by Hsu et al. [79]. This is to avoid larger-valued features (such as � ) dominating smaller ones (such
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as
&
!
ì
), and also to avoid numerical computation errors. We used SVM-Light to learn a non-linear

separator by choosing a degree-three polynomial kernel with unit coefficients.

Results

Figure 6.5 shows a scatterplot comparing the total run-time (encoding + SAT) of the SD method to

that for the HYBRID method. The format of this plot is identical to those in Figures 6.1 and 6.2.
We observe that HYBRID outperforms SD on almost all benchmarks, including one on which SD

times out while HYBRID completes within about
²

minutes. There is one benchmark on which both

HYBRID and SD fail to complete within the timeout; this is an example on which neither SD nor
DIRECT complete due to the time taken by the SAT solver. There are a few benchmarks on which

SD outperforms HYBRID, but both run-times are either very close or on the order of a few seconds.
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Figure 6.5: Comparing SD and HYBRID encoding methods. Note the log scales on both axes.

Figure 6.6 shows the comparison of HYBRID with DIRECT. Again we see that HYBRID outperforms

DIRECT on the majority of formulas, including �'� on which DIRECT times out while HYBRID

finishes. There are also two examples on which DIRECT outperforms HYBRID by about a factor

of four and on which both methods take longer than a minute. The reason for DIRECT’s superior

performance on these benchmarks is to due to misclassification by the SVM learner, which, in turn,
is likely because the set of features is inadequate to fully characterize the number of transitivity

constraints.

Figure 6.7 compares HYBRID with CVC-Lite. CVC-Lite terminates within the timeout on �LÅ of the
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Figure 6.6: Comparing DIRECT and HYBRID encoding methods. Note the log scales on both

axes.

´%Å benchmarks. HYBRID outperforms CVC-Lite on all but Á benchmarks, on all of which HYBRID

terminates within a minute. These Á benchmarks are all conjunctions of atomic predicates which
requires CVC-Lite to only make a single call to its ground decision procedure that solves a system

of difference constraints using Fourier-Motzkin elimination. On the remaining �'� benchmarks on

which CVC-Lite terminates, we can see that HYBRID sometimes outperforms CVC-Lite by over a
factor of � 4'4'4 .
In summary, the improvement of HYBRID over DIRECT is due to reduction in the number of tran-

sitivity constraints, while the improvement over SD is due to reduced SAT time. We have also

demonstrated that HYBRID can greatly outperform a state-of-the-art procedure such as CVC-Lite.

6.4 Discussion

We presented a novel hybrid Boolean encoding method for difference logic, making two main con-

ceptual contributions. First, we demonstrated the complementary strengths of the SD and DIRECT

encodings and showed how they can be combined. Second, we showed how machine learning can be

used to automatically select between the two encoding algorithms based on past examples. Experi-

mental results demonstrate the robustness of the resulting HYBRID method to variations in formula
characteristics.

The work in this chapter is just a first step towards automated algorithm selection in the context
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Figure 6.7: Comparing CVC-Lite and the HYBRID encoding method. Note the log scales on

both axes.

of decision procedures, in general, and for SAT-based procedures, in particular. There are many

directions for future work.

The problem of misclassification and feature selection need further study. The feature set can be

expanded, and techniques for feature subset selection [50] can be employed. Other methods for
learning a binary function of numerical inputs, such as logistic regression [78], deserve further

exploration.

Although the number of transitivity constraints cannot be counted exactly in polynomial time, there

is still the possibility of finding an approximation algorithm. A somewhat related problem, that of
counting the number of cycles in a directed graph, has been proved to be hard to approximate to a
�o5%$ factor [82]. This problem appears to be related since the goal of adding transivity constraints

is to ensure that the constraint graph corresponding to a satisfying assignment does not contain a
positive weight cycle. The implications of the hardness result for counting transivity constraints are,

however, unclear.
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Chapter 7

Extended Logic and Applications

The decision procedures described in this thesis are implemented in a verification system called
UCLID. The logic underlying UCLID includes not only linear arithmetic over integers, but also two

other logical constructs, viz., uninterpreted functions and a restricted form of lambda expressions.

These additional constructs are very useful in modeling a variety of both hardware and software
systems.

The first half of this chapter describes the extensions to the logic and the corresponding extensions to

UCLID’s decision procedures. In the second half, we describe the verification techniques available

in UCLID, for which the decision procedures form the computational engine. We also illustrate
how one of these techniques, bounded model checking, has proved useful in analyzing software for

a class of security bugs known as format-string vulnerabilities.

7.1 Extended Logic

Figure 7.1 gives the syntax for the extended logic that includes the following three theories:

1. Uninterpreted functions

2. Quantifier-free Presburger arithmetic

3. Restricted lambda expressions (these can be used to express arrays, for example)

Expressions in the extended logic are of four different types. As before, two of the types are Boolean

and integer. Boolean expressions, or formulas, yield true or false. Integer expressions, also referred
to as terms, yield integer values. Predicate expressions denote functions from integers to Boolean

values. Function expressions, on the other hand, denote functions from integers to integers.
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bool-expr ��� � �à�g��� jZ ¢¡1£�¤ � jZ¥ bool-expr j : bool-expr r bool-expr ; j : bool-expr
w

bool-expr ;
j : !H��F C

���¶�
int-expr

� ��( ; j : !H�*F C
���¶�

int-expr
� � ( ;

j predicate-expr : int-expr
&Z°Z°Z°�&

int-expr ;
int-expr ��� � int-var j ( j int-expr 5 int-expr j �ÿ� int-expr

j ITE : bool-expr
&

int-expr
&

int-expr ;
j function-expr : int-expr

&Z°Z°Z°�&
int-expr ;

predicate-expr ��� � predicate-symbol j'& int-var
&Z°Z°Z°�&

int-var
°
bool-expr

function-expr ��� � function-symbol j'& int-var
&Z°Z°Z°�&

int-var
°
int-expr

Figure 7.1: Expression syntax for extended UCLID logic. Expressions can denote computations

of Boolean values, integers, or functions of integers yielding Boolean values or integers.
� �

and
(

denote integer constants.

The simplest Boolean expressions are the values true and false. Boolean expressions can also be

formed as a linear equation or inequality over integer expressions, by applying a predicate expres-
sion to a list of integer expressions, and by combining Boolean expressions using Boolean connec-

tives. Relational and Boolean operators not shown in the figure can expressed in terms of those

employed.

Integer expressions can be integer variables, used only as the formal arguments of lambda expres-
sions, or an integer constant (note the difference here with the syntax used earlier in the thesis). They

can also be formed by combining integer expressions with the operators (interpreted functions) for

linear arithmetic, by applying a function expression to a set of integer expressions, or by applying
the ITE (“if-then-else”) operator.

Function expressions can be either function symbols, representing uninterpreted functions, or lambda

expressions, defining the value of the function as an integer expression containing references to a

set of argument variables. Function symbols of arity zero are also called symbolic constants. They
denote arbitrary integer values, and play the same role in this chapter as integer variables (denoted
� � ) in previous chapters. Since these symbols are instantiated without any arguments, we will omit

the parentheses, writing é instead of éã:¸; .
Similarly, predicate expressions can be either predicate symbols, representing uninterpreted predi-
cates, or lambda expressions, defining the value of the predicate as a Boolean expression containing

references to a set of argument variables. Predicate symbols of arity zero are also called symbolic

Boolean constants. They denote arbitrary Boolean values, and play the same role as Boolean vari-
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ables in previous chapters. We will also omit the parentheses following the instantiation of such a

predicate.

Notice that we restrict the parameters to a lambda expression to be integers, and not function or
predicate expressions. There is no way in our logic to express any form of iteration or recursion.

An integer variable � is said to be bound in expression ( when it occurs inside a lambda expression

for which � is one of the argument variables. We say that an expression is well-formed when it

contains no unbound variables. The value denoted by a well-formed expression is defined relative to
an interpretation

k
of the function and predicate symbols. Interpretation

k
assigns to each function

symbol of arity
ø

a function from
. T

to
.

, and to each predicate symbol of arity
ø

a function

from
. T

to � �à�g���K&  ¢¡1£�¤ � � . Given an interpretation
k

of the function and predicate symbols and a
well-formed expression ( , we can define the valuation of ( under

k
, denoted

� ( �*) , according to its

syntactic structure. The valuation of ( is either a Boolean value, an integer, a function from integers
to Boolean values, or a function from integers to integers, according to whether ( is a Boolean

expression, an integer expression, a predicate expression, or a function expression, respectively. We

omit the details. A well-formed formula ª is true under interpretation
k

if
� ª �+) is true. It is valid

when it is true under all possible interpretations.

Note that our logic is quantifier-free. It is well-known that adding quantifiers to even the sub-logic

of uninterpreted functions and equality results in undecidability [19, 65].

We now show how the newly added logical constructs can be used for modeling a range of hardware

and software constructs.

7.1.1 Uninterpreted Function Symbols

Uninterpreted functions and predicates satisfy no particular property other than functional consis-

tency, viz., that they evaluate to the same value on the same arguments. Functional consistency is

formalized in the theory of uninterpreted functions as the congruence axiom. This axiom is stated
below for an arbitrary uninterpreted function symbol é of arity

ø
:, � C�C & � C q &Z°Z°Z°�& � C T & �]q C & �Kq�q &Z°Z°Z°9& � q T �:�� C�C � �]q C rü� C q � �]q�q�r °Z°Z° r � C T � � q T ; �9æ éã:�� C�C & � C q &Z°Z°Z°9& � C T ; � éã:��]q C & �Kq�q &Z°Z°Z°9& � q T ;

(7.1)

Uninterpreted functions and predicates are used in hardware verification to abstract word-level val-
ues of data and implementation details of functional blocks. Similarly, in software analysis, op-

erators for non-linear functions such as multiplication and division can be abstracted using unin-

terpreted functions. In addition, uninterpreted functions and predicates are particularly useful in
modeling data access functions, such as array and memory operations.
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Uninterpreted functions are useful when comparing two systems for behavioral equivalence, such

as a specification and its implementation. This is because using the same function symbol in a
symmetric way in the two systems ensures that it will return the same values when applied to equal

arguments. For example, one successful use of the UCLID system is in the verification of pipelined

microprocessor designs, where a pipelined implementation is compared with an instruction set ar-

chitecture (ISA) model [89]. Similarly, in software analysis, uninterpreted functions find use in

applications such as translation validation [123], where two program fragments are checked for
behavioral equivalence.

7.1.2 Lambda Expressions

Lambda expressions are extremely useful in modeling data structures. In this section, we give a few

representative examples. We use a record notation to represent data structures that are characterized

by multiple expressions.

Memories

Lambda notation allows us to model the effect of a sequence of read and write operations on a
memory (the select and update operations on an array). At any point of system operation, a memory

is represented by a function expression - denoting a mapping from addresses to values (for an array,

the mapping is from indices to values). The initial state of the memory is given by an uninterpreted
function symbol � � indicating an arbitrary memory state. The effect of a write operation with

integer expressions
	

and . denoting the address and data values yields a function expression -80 :
- 0 � &	/ �0��1 ° ITE : / �2��1 ��	ÿ& . & - : / �0��1%;�;

Reading from array ¸ at address
	

is simply yields the function application ¸ : 	 ; .
Multi-dimensional memories or arrays are easily expressed in exactly the same way. Moreover,
lambda expressions can express parallel-update operations, which express the result of updating

multiple memory locations in a single step. This is particularly relevant for hardware, and can also

be used in modeling concurrent software. For instance, to express the result of resetting to zero all
memory locations that have negative values, we can write

- 0 � &	/ ° ITE :3- : / ; � 4p&14p& - : / ;�;
The ability to model the select and update array operations raises a natural question about whether
the lambda notation introduced in this section is more (or less) expressive than the standard non-

extensional theory of arrays [34, 110]. In fact, these two theories are incomparable, for the following
reasons:
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1. The standard theory of arrays cannot model parallel-update operations. As we have shown,

these can be easily expressed with our lambda notation.

2. The standard theory of arrays allows two arrays to be compared for equality. Formally, such
a comparison between arrays ¸ C and ¸ q can be written as

, # ° ¸ C :�#º; � ¸>q{:�#º; . Since our

logic is quantifier-free (with implicit universal quantification on all symbols at the top level),
such a comparison can only be made when it appears in the formula under an even number of

negations, by applying both arrays to a fresh symbol that is universally quantified at the top

level.

Other forms of memory can be modeled as well using lambda expressions. For example, we can

model a Content Addressable Memory (CAM) that stores associations between keys and data. We
represent a CAM 4 at any point in the system operation by two expressions: a predicate expression4 ° 5 17698�6:��� such that 4 ° 5 1�6:8�6����L: ø ; is true for any key

ø
that is stored in the CAM, and a function

expression 4 ° � / � / , such that 4 ° � / � / : ø ; yields the data associated with key
ø

, assuming the key is
present. As an initial state in invariant checking we can represent a CAM 4 having an arbitrary state

by letting 4 ° 5 1�6:8�6:��� � ¹ � and 4 ° �<;����*6:���=8 � � � , where ¹ � (respectively, � � ) is an uninterpreted
predicate (resp., function).

Insertion into a CAM is expressed by the operation >?�@8�6:1:�L:�4 &?A
&?B ; . This operation yields a new
CAM 4 0 where:

4 0 ° 5 17698�6:��� � &DC 6:E ° C 6:E � � w 4 ° 5 1�6:8�6����L: C 6�Ep;4 0 ° � / � / � &DC 6:E ° ITE : C 6:E � � & . & 4 ° � / � / : C 6:Ea;�;
On the other hand, the effect of deleting the entry associated with key � is expressed by the opera-

tion
B 6:FG6��*6�:�4 &?A ; . This operation yields a new CAM 4�0 where

4 0 ° 5 1�6:8�6���� � &HC 6�E ° ¥ : C 6:E � � ;3r%4 ° 5 17698�6:���L: C 6:E×;4 0 ° � / � / � 4 ° � / � /
Ordered Data Structures

We show how an ordered data structure, such as a queue, can be modeled using lambda notation and

linear arithmetic.

A queue of arbitrary length can be modeled as a record I having components I ° �?;����*6:���=8 , I °KJ 6 / � ,

and I ° � / �
F . Conceptually, the contents of the queue are represented as some subsequence of an
infinite sequence, where I ° �<;����*6:���=8 is a function expression mapping an integer index # to the

value of sequence element # . I °KJ 6 / � is an integer expression indicating the index of the head of the
queue, i.e., the position of the oldest element in the queue. I ° � / �=F is an integer expression indicating
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the index at which to insert the next element. In general, we require I °KJ 6 / ��<LI ° � / �
F as an invariant

property. M is modeled as having an arbitrary state by letting I ° �?;����*6:���=8 � �g� , I °KJ 6 / � �ON � , andI ° � / �=F � y � , where � � is an uninterpreted function and
N � and y � are symbolic constants satisfying

the constraint
N � <}y � . This constraint is enforced by including it in the antecedent of the formula

whose validity we wish to check.

The operation testing if the queue is empty can be expressed quite simply as:

�
8�P'Q 5 �REK::I-; � ::I °KJ 6 / � � I ° � / �=FÝ;
Using this operation we can define the following three operations on the queue:

1. ST; 5 ::I-; : The pop operation on an non-empty queue returns a new queue M�0 with the first

element removed; this is modeled by incrementing the head.

I 0 °KJ 6 / � � ITE :U�
8�PVQ 5 �RE9::I-; & I °KJ 6 / � & I °KJ 6 / �ÿ5ä�X;
2. WX�=1<8:�L::I=; : This operation returns the element at the head of the queue, provided the queue is

non-empty. It is defined as I ° �<;����*6:���=8�::I °KJ 6 / �]; .
3. S'YZ8 J ::I &<[ ; : Pushing data item

[
into I returns a new queue M 0 where

I 0 ° � / �
F � I ° � / �=F×5ä�I 0 ° �<;����*6����=8 � & # ° ITE :�# � I ° � / �
F &]\�& I ° �<;����*6����=8�:�#+;�;
Assuming we start in a state where

N � <Ry � , I °KJ 6 / � will never be greater than I ° � / �
F because of

the conditions under which we increment the head.

Bounded length queues can be similarly expressed, with an additional constraint in the case of the
push operation disallowing a push when the queue is full. In particular, to bound a queue to a

maximum length of
ø

(where
ø

is an integer, not a symbolic constant), we add the condition for

pushing that I ° � / �
F is incremented only when I ° � / �=F � I °KJ 6 / �ÿ5 ø .
Partially Interpreted Functions

We noted earlier that non-linear arithmetic operations can be abstracted using uninterpreted func-

tions. Lambda expressions allow us to assign a partial interpretation to such operations.

For instance, for integer multiplication, we can express the property that the constant � is the multi-

plicative identity and
4

is the annihilator, by defining multiplication as follows:

Q^Y_F � & # & $ ° ITE :�# ��46w $ ��4p&]4p& ITE :�# � � & $ & ITE :�$ � � & # & Q^Y_FK�l:�# & $�;�;�;�;
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Here the uninterpreted function Q^Y_F"� is the default in case none of the special cases are matched.

The use of such partially interpreted functions can reduce the imprecision that abstraction of non-

linear operators introduces.

7.2 Decision Procedure Extensions

Given a formula ªa`9bJð in the extended logic of UCLID, we decide its validity by performing a
satisfiability-preserving translation to a Boolean formula ª6µ�ïJï�ð in a single step, and then invoking a

SAT solver on ª¶µAïJï�ð . The translation operates in three steps:

1. All lambda expressions are eliminated, resulting in a formula ªGñ ï�»uò .

2. Function and predicate applications of non-zero arity are eliminated to get a formula ª�¹�»u¬½¼½¾ .
3. Formula ªo¹�»u¬¿¼½¾ is in quantifier-free Presburger arithmetic. We translate ªG¹�»u¬¿¼½¾ to an equi-

satisfiable Boolean formula ª�µ�ï¢ï®ð using the methods described in Chapters 3–6.

A brief description of the first two steps of translation follows. Details on eliminating function

applications are outside the scope of this thesis and can be found in earlier work [2, 29].

7.2.1 Elimination of Lambda Expressions

Recall that the extended logic syntax does not permit recursion or iteration. Therefore, each lambda
application in ªa`:b¢ð can be expanded by beta-substitution, i.e., by replacing each argument variable

with the corresponding argument term. Denote the resulting formula by ªGñ ï�»uò .

This step can result in an exponential blow-up in formula size. Suppose that all expressions in our

logic are represented as directed acyclic graphs (DAGs) so as to share common sub-expressions.
Then, the following example shows how we can get an exponential-sized DAG representation of

ªcñ ï�»uò starting from a linear-sized DAG representation of ª�`9bJð .
Example 7.1 Let ªa`:b¢ð be defined recursively by the following set of expressions:

ªX`9bJð °� }?:Ým C : ( ;�;m C
°� & � ° é C :Ým"q{:��|; & m�q{:
� C :��|;�;�;m�q °� & � ° é�q':Ým"v{:��|; & m�v{:
�'q{:��|;�;�;

...
...

m !%è3C
°� & � ° é !�è3C :Ým ! :��|; & m ! :
� !%è3C :��3;�;�;m !
°� � !
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Notice that the representation of ªV`9bJð is linear in � . Suppose we perform beta-substitution on m C .
The sub-expression m C : ( ; gets transformed to é C :Ým q : ( ; & m q :
� C : ( ;�;�; . Next, if we expand m q , we
get four applications of m¶v , viz., m"v{: ( ; & m�v{:
� C : ( ;�; & m"v%:
�'q{: ( ;�; &®� �9Ö%m"v%:
�'q{:
� C : ( ;�;�; . Notice that there

were originally only two applications of m�v .
Continuing the elimination process, after

ø 2 � elimination steps, we will get
² T è3C distinct appli-

cations of m T . This can be formalized by observing that after
ø 2 � steps each argument to m T

is comprised of applications of functions from a distinct subset of c?:J��� C & �'q &Z°Z°Z°�& � T è3C �g; . Thus,

after all lambda elimination steps, ª¶ñ ï�»uò will contain
² !%è3C distinct applications of � ! , and hence is

exponential in the size of ªd`9bJð . _
In practice, however, we have never encountered this exponential blow-up. This is because the

recursive structure in most lambda expressions, including those for memory operations, tends to be
linear. For example, here is the lambda expression corresponding to the result of the memory write

operation: &	/ �0��1 ° ITE : / �0��1 ��	ÿ& . & -8: / �2��1%;�;
Notice that the “recursive” use of - occurs only in one of the branches of the ITE expression.

7.2.2 Elimination of Function and Predicate Applications

The second step in the transformation to a Boolean formula is to eliminate applications of function
and predicate symbols of non-zero arity. These applications are replaced by symbolic constants

(integer or Boolean, as the case may be), but only after encoding enough information to maintain

functional consistency.

There are two different techniques of eliminating function (and predicate) applications. The first is
a classic method due to Ackermann [2] that involves creating sufficient instances of the congruence

axiom (as stated in Equation 7.1). The second is a recent technique introduced by Bryant et al. [29]

that exploits the polarity of equations and is based on the use of ITE expressions. We briefly review
each of these methods.

Ackermann’s method

We illustrate Ackermann’s method using an example.

Suppose that function symbol é has three occurrences: éã: � C ; , éã: � qL; , and éã: � vZ; . First, we generate
three fresh symbolic constants e7f C , e�f q , and e7f v to replace all instances of these applications in

ª ñ ï�»uò .
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Then, the following set of functional consistency constraints for é is generated:

� C ��� q ��æ e�f C � e�f q� C ��� v ��æ e�f C � e�f v� q ��� v ��æ e�f q � e�f v
In a similar fashion, functional consistency constraints are generated for each function and predicate

symbol in ª�ñ ï�»uò . Denote the conjunction of all these constraints by ª bÝï ñ?g . Then, ª"¹�»u¬½¼½¾ is the
formula ª bÝï ñ?g �9æ ªcñ ï�»uò .

Bryant et al.’s method

The function elimination method proposed by Bryant et al. exploits a property of function appli-

cations called positive equality. The general idea is to determine the polarity of each equation in
the formula, i.e., whether it appears under an even (positive) or odd (negative) number of negations.

Applications of uninterpreted functions can then be classified as either p-function applications, i.e.,
used only under positive equalities, or g-function applications, i.e., general function applications

that appear under other equalities or under inequalities. The p-function applications can be encoded

in propositional logic with fewer Boolean variables than the g-function applications, thus greatly
simplifying the resulting SAT problem. We omit the details.

In order to exploit positive equality, Bryant et al. eliminate function applications using a nested

series of ITE expressions. As an example, if function symbol é has three occurrences: éã: � C ; ,éã: � qX; , and éã: � vL; , then we would generate three new symbolic constants e7f C , e�f q , and e7f v . We
would then replace all instances of éã: � C ; by e7f C , all instances of éã: � qL; by ITE : � q �/� C & e�f C & e�f q ; ,
and all instances of éã: � vL; by ITE : � v �7� C & e�f C & ITE : � v �7� q & e�f q & e�f v ;�; . It is easy to see that this

preserves functional consistency.

Predicate applications can be removed by a similar process. In eliminating applications of some
predicate ¹ , we introduce symbolic Boolean constants e 5 C & e 5 q &Z°Z°Z° .
Function and predicate applications in the resulting formula ª6¹�»u¬¿¼½¾ are all of zero arity.

7.2.3 Summary

We conclude this section with observations on the worst-case blow-up in formula size in going from

the starting formula ªVb¢ð ` to the quantifier-free Presburger formula ª�¹�»u¬¿¼½¾ . The lambda elimination
step can result in a worst-case exponential blow-up. In going from the lambda-free formula ª ñ ï®»uò
to ª"¹�»u¬¿¼½¾ , the worst-case blow-up is only quadratic. Thus, if the result of lambda expansion is linear
in the size of ªdbJð ` , as is typically the case, ª¶¹®»u¬¿¼½¾ is at most quadratic in the size of ª'b¢ð ` .
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7.3 Verification Techniques in UCLID

UCLID is a tool for specifying and verifying systems modeled in the extended logic described in

this chapter. The UCLID system has been publicly available on the Web [156] since May 2001.
It has been applied to a range of systems, including out-of-order, pipelined, microprocessor de-

signs [89, 90, 95], a complex load-store unit of an industrial microprocessor, a cache coherence

protocol [61], and analyzing software for security vulnerabilities [58]. The last application is the
subject of Section 7.4.

Specifying Infinite-State Systems in UCLID

The UCLID specification language can be used to specify an infinite-state system. The state vari-
ables can either have one of three primitive types — Boolean, enumerated, and integer — or are

functions of integer arguments that evaluate to one of these primitive types. The initial (reset) state

of each state variable is described by an expression in the extended logic. The transition relation
is specified by assigning an expression for computing the value of a variable in state # , given the

values of variables in states # 2 � and # . Specifically, the next state of a state variable is specified as

an expression in the extended logic in which references to the values of state variables in the current
and next state can appear in place of symbolic constants. Details on the specification language and

UCLID usage are given in Appendix A; we only mention here that the language was inspired by
and is similar to that of the CMU version of the SMV model checker [42, 98].

It is also worth mentioning one notable feature about the internal encoding of enumerated types in
UCLID. An enumerated type ( of

ø
values is encoded as an integer sequence �`�Zh & �ih65�� &Z°Z°Z°�& �ihG5ø 2 �g� , where a different symbolic constant ��h is used for each type ( . The type checker in the

UCLID front-end enforces the restriction that variables of an enumerated type can only be compared

for equality against other variables of the same enumerated type. Thus, each enumerated type gen-

erates a unique singleton variable class �`��ho� . If the small-domain encoding is used, ��h is encoded
with a constant bit encoding. On the other hand, if the DIRECT encoding is used, each equation

corresponding to an enumerated type gets reduced to either
�X�����

or  ¢¡1£�¤ � after ITE expressions are

eliminated.

Verification Techniques

Figure 7.2 shows how the UCLID verification system is structured. The UCLID verification engine

comprises two main components:

1. A symbolic simulator that can be configured by the user for different kinds of verification
tasks.
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Figure 7.2: Structure of the UCLID system

2. A decision procedure for the extended logic described in this chapter.

In addition, there is a front-end that includes a type checker, and a back-end that translates the result

of the decision procedure into an output either stating that the system satisfies the property being
verified, or giving a counterexample comprising a sequence of states showing how the property is

violated.

The following verification methods are supported:1

1. Bounded model checking: The system is symbolically simulated for a fixed number of steps,

specified by the user, starting from a reset state. At each step, the decision procedure is
invoked to check the validity of a safety property. If the property fails, UCLID generates a

counterexample trace from the reset state.

2. Inductive invariant checking: The system is initialized in a most general state satisfying the

invariant to be proved. It is symbolically simulated for one step, and the invariant is checked
on the resulting state by the decision procedure.

3. Proving commutative diagrams: In this method, we attempt to show that a specification ma-

chine simulates an implementation machine. This includes the method of correspondence

checking for superscalar processors, such as in the style of Burch and Dill [34]. UCLID al-

lows the user to set the values of certain designated state variables at different steps of the

symbolic simulation. For example, in verifying pipelined processors, this allows the user to
specify the steps at which the pipeline must be flushed.

UCLID’s decision procedure can check the satisfiability of the Boolean formula ¥ ª�µAïJï�ð using either

a BDD package or a SAT solver. We have found SAT solvers to outperform BDDs in all practical
1We only describe the methods supported by the base version of UCLID. Shuvendu Lahiri has built a predicate

abstraction-based verifier [91] on top of UCLID, but describing that tool is outside the scope of this thesis. We only
mention that the Boolean encoding methods described in Chapters 3–7 can be used with Lahiri’s work as well.
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applications explored thus far; however, we have also encountered artificially generated examples

on which BDDs outperform SAT.

A very useful feature of UCLID is its ability to generate counterexample traces, like a model
checker. A counterexample to a formula ª'`9bJð in UCLID’s logic is a partial interpretation

k
to

the function and predicate symbols in the formula, which is generated from a satisfying assign-

ment to ¥ ªoµ�ï¢ï®ð . If the system has been symbolically simulated for
ø

steps, then the interpretationk
generated above can be applied to the expressions at each step, thereby resulting in a complete

counterexample trace for
ø

steps.

Unbounded model checking of infinite-state systems that can be modeled in UCLID is undecid-

able [31].

7.4 Case Study: Finding Format-String Exploits

Format-string vulnerabilities [76, 113] are a dangerous class of security bugs that allow an attacker

to execute arbitrary code on the victim machine. printf is a variable-argument C function that

treats its first argument as a format-string.2 A format-string contains conversion specifications,
which are instructions that specify the types that this call on printf expects for its arguments, and

instructions on how to format the output. For instance, the conversion specification "%s" instructs
printf to look for a pointer to a char value as its next argument, and print the value at that loca-

tion as a string. When arg does not contain conversion specifiers, the statements printf("%s",

arg) and printf(arg) have the same effect. However, if printf(arg) is used in an application,
and a user can control the value passed to arg, then the application may be susceptible to a format-

string vulnerability. A possible fix for such vulnerabilities is to do a source-to-source transformation

that replaces all occurrences of printf(arg) with printf("%s", arg), but this may not al-
ways be possible, for instance when the source code of the application is not available, or when the

application generates format-strings dynamically.

Shankar et al. [140] have built a tool, Percent-S, to analyze source code and identify “tainted”

format-strings that can be controlled by an attacker. Potentially vulnerable printf locations can
also be identified in binary executables [76]. However, the aforementioned techniques do not pro-

duce format-string exploits, i.e., strings that exploit the vulnerabilities they identify.

We present a novel way to analyze and understand printf-family format-string vulnerabilities.

The format-string can be viewed as a sequence of commands that instructs printf to look for
different types of arguments on the application’s runtime stack. We have used UCLID to analyze

potentially vulnerable call sites to printf and determine if an exploit is possible. If an exploit is
2While we restrict our discussion to printf, the concepts discussed apply to other printf-family functions as

well, e.g., syslog, sprintf.
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possible, UCLID produces a format-string that demonstrates the exploit. Our technique does not

require the source code of the application and can analyze potentially vulnerable printf locations
from binary executables. We have also used UCLID in conjunction with Percent-S to generate

format-strings that exploit the vulnerabilities identified (see Section 7.4.3). Our discussion and
implementation make the following platform-specific assumptions, although the technique applies

to other platforms as well:

1. We work with the x86 architecture. In particular, the runtime stack of an application grows from
higher addresses to lower addresses, and the machine is assumed to be little-endian.

2. The arguments to a function are placed on the stack from right to left. A call to foo(arg C ,
arg q ) first places arg q on the stack, followed by arg C . This is a popular C calling convention

implemented by several compilers.

3. We analyze printf from the glibc-2.3 library.

7.4.1 Background

This section reviews the working of printf and describes how an attacker can read from or write
to an arbitrary location.

Understanding printf

Consider the code fragment shown in Figure 7.3. Procedure foo accepts user input, which is copied

(1) int foo (char *usrinp) {

(2) char fmt[LEN];

(3) int a, b;

(4) strncpy(fmt, usrinp, LEN - 1);

(5) fmt[LEN - 1] = ’\0’;

(6) printf(fmt);

(7) }

Figure 7.3: A procedure with a vulnerable call to printf

into the local variable fmt, a local array of LEN characters. printf is then called with fmt as its

argument. Because the first argument to printf can be controlled by the user, this program can

potentially be exploited. When printf is called on line (6), the arguments passed to printf are
placed on the stack, the return address and frame pointer are saved, and space is allocated for the

local variables of printf, as shown in Figure 7.4(A). In this case, printf is called with a pointer
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to fmt, which is a local character buffer in foo. This pointer is shown as the darkly shaded region

in Figure 7.4(A).
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Figure 7.4: Runtime execution stack for the program in Figure 7.3

As mentioned earlier, printf assigns special meaning to the first argument passed to it, and treats

it as a format-string. Any other arguments passed to printf appear at higher addresses than the

format-string on the runtime stack. In our case, only fmt was passed as an argument, and hence
there are no other arguments on the runtime stack.

The printf implementation internally maintains two pointers to the stack; we will refer to these

pointers as FMTPTR and ARGPTR. The purpose of FMTPTR is to track the current formatting char-

acter being scanned from the format-string, while ARGPTR keeps track of the location on the stack
from where to read the next argument. Before printf begins to read any arguments, FMTPTR is

positioned at the beginning of the format-string and ARGPTR is positioned just after the pointer to

the format-string fmt, as shown in Figure 7.4(A).

When printf begins to execute, it moves FMTPTR along format-string fmt. Advancing a pointer
makes it move towards higher addresses in memory, hence FMTPTR moves in the direction opposite

to which the stack grows. printf can be in one of two “modes”. In printing mode, it reads bytes

off the format-string and prints them. In argument-capture mode, it reads arguments from the stack
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from the location pointed to by ARGPTR. The type of the argument, and thus the number of bytes

by which ARGPTR has to be advanced as it reads the argument, is determined by the contents of
the location pointed to by FMTPTR. As FMTPTR and ARGPTR move toward higher addresses, they

reach intermediate configurations, as shown in Figure 7.4(B). Note that ARGPTR advances only if
the contents of fmt causes printf to enter argument-capture mode at least once.

To take a concrete example, suppose that fmt is "Hi%d" when printf is called in Figure 7.3.
printf starts off in printing mode, and advances FMTPTR, printing Hi to stdout as a result.

When FMTPTR encounters the byte "%", it enters argument-capture mode. When FMTPTR is ad-
vanced, it points to the byte "d" – which instructs printf to read four bytes from the location

pointed to by ARGPTR and print the resulting value to the terminal as an integer. This also results in

ARGPTR being advanced by four bytes, the size of an integer. Note that no integer arguments were
explicitly passed to printf in Figure 7.3, hence instead of reading a legitimate integer value off

the stack, in this case ARGPTR reads the values of local variables in the stack frame of foo. As a

result, it is possible to read the contents of the stack, which may possibly contain values of interest
to an attacker, such as return addresses.

Format-String Exploits

The key observation in understanding format-string exploits is that each byte in the format-string is
an instruction to printf to move FMTPTR and ARGPTR by an appropriate amount, and to interpret

the arguments passed to it. In the format-string exploits discussed herein, the goal of the attacker

is to control the contents of the format-string in such a way that ARGPTR advances along the stack
until it enters the format-string itself. By doing so, the attacker can control the arguments read by

printf as well as how those arguments are interpreted.

Each call to printf is characterized by two parameters, namely the values DIS and LEN shown

in Figure 7.4. The format-string vulnerabilities we consider occur when the format-string is a buffer
on the runtime stack. LEN denotes the length of this buffer. DIS denotes the number of bytes that

separate the pointer to the format-string from the format-string itself. Figure 7.4 shows a simple
scenario where the stack frame containing the format-string and the stack frame of printf are ad-

jacent. In general, they can be separated by stack frames of several intermediate functions, resulting

in larger values of DIS. From the attacker’s viewpoint, ARGPTR has to move by at least DIS bytes
by the time FMTPTR moves LEN 2 � bytes.

There are two main kinds of format-string exploits:

1. Read exploits: One of the ways an attacker can print the contents of memory at address� x � v � q � C , where
� x is the most-significant byte, is to construct a format-string that satisfies

the following property: The format-string must move FMTPTR and ARGPTR such that when
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printf is in printing mode and FMTPTR points to the beginning of a "%s", ARGPTR points

to the beginning of a sequence of four bytes whose value as a pointer is
� x � v � q � C . Then,

when printf reads the "%s", it interprets the argument at ARGPTR as a pointer and prints

the contents of the memory location specified by the pointer as a string, which would let the
attacker achieve his goal.

2. Write exploits: Another kind of format-string exploit allows an attacker to write a value of
his choice at a location in memory chosen by him. To do so, he makes use of the "%n"

feature provided by printf. When printf is in printing mode and encounters a "%n" in

the format-string, it reads an argument off the stack, which it interprets to be a pointer to an
integer. It then writes to this location the number of bytes that have been output by this call

on printf. As the write location is of the attacker’s choice, it could be the return address

of printf, for example, making printf return to an attack script instead of the function it
was called from.

Note that the values of the address bytes
� C &®� q &®� v &®� x must be non-zero, because a zero value is

interpreted as ‘ � 0’, and terminates the format-string. For ease of explanation, we impose the
additional restriction that

�p� ÷� "%", for # , �%� &)²U&)îU& ´p� . If
�U���

"%", the address can contain (parts

of) a conversion specifier. However, UCLID can also discover exploits where the address
� x � v � q � C

contains "%".

7.4.2 Formal Specification

The main insight in deriving a formal model of the problem is to view printf as the system being

subverted and the format-string as the input to printf that is under the attacker’s control. We will
show in this section how printf can be modeled as an infinite-state system and how the two kinds

of exploits described in Section 7.4.1 can be formalized as violations of safety properties.

Formal Model of printf

We can model printf as an infinite-state system expressible in UCLID with the following three
components:

1. State Variables: The set of state variables s is simply the set of local variables in the im-

plementation of printf that captures the current state. We identified
² ´ local variables

(or “flags”) with integer and Boolean values3 by examining the source code and manuals of
3In the actual implementation of printf, the flags are C integer and pointer data types, i.e., finite-precision bit-

vectors. In our model, flags that just take two values, Ë and « , are defined as Boolean variables, while the rest are treated
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printf. While our implementation considers all these flags, for ease of explanation we re-

strict ourselves to describing just four flags: FMTPTR, ARGPTR, DONE, and IS LONGLONG.
FMTPTR and ARGPTR are pointers whose functionality was discussed earlier. We shall treat

these as integer values. DONE is an integer that counts the number of bytes printed, and
IS LONGLONG is a Boolean variable that determines whether the argument on the stack is a

long long value or not (a long long int is Á bytes in length). In addition to the local

variables in printf, s also includes a variable MODE that models the program counter.

In addition to the state variables mentioned above, we needed to model the runtime stack. This
was modeled using an uninterpreted function 8:� / � C just as illustrated for modeling memories

in Section 7.1.2.

2. Initial State: The initial state of printf is determined by the initial values of the flags ins . We assume that all addressing is relative to the initial location of ARGPTR. Thus, the
assignment of initial values to the four flags discussed here are as follows: ARGPTR =

4
,

FMTPTR = DIS, DONE =
4
, and IS LONGLONG = FALSE.

3. Transition Relation: As described earlier, each byte in the format-string is interpreted as an

instruction to printf. Thus, the next state of each state variable is a function of the current

and next state of other variables as well as current byte at the stack location pointed to by
FMTPTR. For each variable, the next state function involves several cases, far too many to be

listed here. We will therefore just illustrate how one of the
²'Ä � possible values of the current

entry in the format-string buffer affects the next state values of the four variables highlighted
here.

Consider the effect of reading the character ‘%’. If printf is in printing mode (deter-

mined by the value of MODE), FMTPTR is incremented, and printf enters argument-capture
mode. If printf is in argument-capture mode, then FMTPTR and DONE are incremented,

and printf enters printing mode (corresponds to printing a "%" to stdout). Formally,

[(MODE = printing)
�

(FMTPTR 0 = FMTPTR + 1) r (MODE 0 = argument-capture)] r [(MODE

= argument-capture)
�

(FMTPTR 0 = FMTPTR + 1) r (DONE 0 = DONE + 1) r (MODE 0 = print-

ing)], where, following customary notation, primed variables denote next-state values of the

corresponding variables.

The model of printf described above was manually extracted from the glibc-2.3 source code.

All arithmetic operations performed by printf are expressible as linear arithmetic operators.

as (unbounded) integers. While this approach achieves efficiency by raising the level of abstraction, it does not model
integer overflow, and may lead to imprecision.



108 CHAPTER 7. EXTENDED LOGIC AND APPLICATIONS

Safety Property Formulation

Each kind of format-string exploit is formalized using a predicate we shall denote by Bad. This

predicate is a formula on the elements of s in UCLID’s logic; viz., it involves quantifier-free Pres-

burger arithmetic, uninterpreted functions, and the theory of memories.

Figure 7.5 shows the values of the predicate Bad for the read-exploit and write-exploit described in
Section 7.4.1.

(A) Bad for Read Exploit (B) Bad for Write Exploit

�
FMTPTR

�
DIS + (LEN 2 1) 2 1

�
r � ARGPTR [ DIS

�
r � ARGPTR

�
DIS + (LEN 2 1) 2 4

�
r � æ FMTPTR

�
‘%’
�

r � æ�: FMTPTR 5I�X; � ‘s’
�

r � æ ARGPTR
�ä� C �r � æ�: ARGPTR 5ä�X; �ä� q �

r � æ�: ARGPTR 5 ² ; �ä� v �
r � æ�: ARGPTR 5 î ; �ä� x �
r �MODE

�
printing

�

�
FMTPTR

�
DIS + (LEN 2 1) 2 1

�
r � ARGPTR [ DIS

�
r � ARGPTR

�
DIS + (LEN 2 1) 2 4

�
r � æ FMTPTR

�
‘%’
�

r � æ�: FMTPTR 5ä�X; � ‘n’
�

r � æ ARGPTR
�ä� C �r � æ�: ARGPTR 5ä�X; �ä� q �

r � æ�: ARGPTR 5 ² ; �ä� v �
r � æ�: ARGPTR 5 î ; �ä� x �
r � DONE

�
WRITEVAL

�
r �MODE

�
printing

�

Figure 7.5: The predicate Bad used for read and write exploits. We use the notation *PTR as a

short-form for 89� / � C (PTR).

Note the following two points about the entries in Figure 7.5:

1. The little-endianness of the machine is reflected in the formulation of Bad: bytes are arranged

from most-significant to least-significant as addresses decrease; for example,
� C appears at a

lower address than
� x .

2. Symbolic values of different stack locations, such as those at FMTPTR and ARGPTR, appear in
Bad, and show the need to track stack contents precisely.

Verification Method

We chose to use the bounded model checking capabilities of UCLID, checking at each step whether
the predicate Bad is satisfied. If so, the counterexample generated by UCLID is directly translated

to a format-string that demonstrates the exploit. At each call-site to printf, we only need to
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examine format-strings of length less than or equal to LEN 2 � (we exclude the terminating ‘ � 4 ’).

Hence, a bound of LEN 2 � suffices to make bounded model checking complete at that call-site;
i.e., a printf location deemed safe using our tool with the bound LEN 2 � will indeed be safe with

respect to class of exploits being checked.

7.4.3 Results

Given the UCLID model for printf constructed as described in Section 7.4.2 and the predicate

Bad for a family of exploits, the only remaining details are the values of DIS and LEN. Note

that these values are the only details that are specific to the software being analyzed. The values
of DIS and LEN for each printf call are obtained by disassembling the binary executable of

the application that calls printf, and examining the call graph and the sizes of stack frames of

relevant functions.

In this section, we describe the results obtained by analyzing the UCLID model for a range of values
of DIS and LEN, both for toy models and for real software packages.

Analysis for a range of values of DIS and LEN

Figure 7.6 shows some examples of read-exploits produced by the tool for various values of DIS
and LEN. For instance, line (3) shows that the format-string "

� C � q � v � x %d%s" can be used to read

the contents of memory at
� x � v � q � C when DIS and LEN are 4 and 16, respectively. The exploit

proceeds as follows: initially FMTPTR points to the format-string, and ARGPTR is 4 smaller than
FMTPTR. printf starts execution in printing mode; it advances FMTPTR and prints the bytes

� C ,� q , � v , and
� x to stdout. When printf reads the ‘%’, it advances FMTPTR by one and enters

argument-capture mode. When it reads ‘d’, it advances FMTPTR by one, reads an integer (4 bytes)
from the location pointed to by ARGPTR, prints this integer to stdout, and returns to printing

mode. As a result ARGPTR points to the beginning of the format-string, and FMTPTR is positioned at
the beginning of the sequence "%s". When printf processes the "%s", the contents of memory

at location
� x � v � q � C are printed to stdout.

We make a few more observations on the entries in Figure 7.6:

1. In line (2), the tool is able to infer that an exploit is not possible. Intuitively, this is because the

format-string is too small to contain a sequence of commands that carry out the exploit.

2. Lines (3) and (4) present two format-strings for the same parameters. We achieved this by first
observing case (3), and running the tool again, appending a suitable term to Bad to exclude

case (3). This technique can be iterated to infer as many variants of this exploit as desired.

Figure 7.6 also gives examples of write-exploits, where the integer
²'î ´ is to be written to memory
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Sl.no. DIS LEN Read exploit Write exploit
Exploit string discovered Time (sec.) Exploit string discovered Time (sec.)

(1) 0 7 " t ë t ì t � tiu %s" 0.2 No exploit possible. 0.3
(2) 4 7 No exploit possible. 0.3 No exploit possible. 0.3
(3) 4 16 " t ë t ì t � tiu %d%s" 0.4 "%234Lg%n t ë t ì t � tiu " 4.8
(4) 4 16 "%Lx%ld%s t ë t ì t � tiu " 1.0 " t ë t ì t � tiu %%%229X%n" 13.1
(5) 8 16 " t ë t ì t � t u %Lx%s" 0.9 " t ë t ì t � t u %230g%n" 22.2
(6) 16 16 "%Lg%Lg%s t ë t ì t � t u " 1.1 " t ë t ì t � t u %137g%93g%n" 106.5
(7) 20 20 " t ë t ì t � t u %Lg%g%s" 5.3 " t ë t ì t � t u %210Lg%20g%n" 148.7
(8) 24 20 " t ë t ì t � t u %Lg%Lg%s" 2.1 " t ë t ì t � t u %61Lg%169Lg%n" 204.2
(9) 32 24 " t ë t ì t � t u %g%Lg%Lg%s" 13.5 " t ë t ì t � t u %78Lg%80g%72Lg%n" 343.5

Figure 7.6: Some format-string exploits generated by UCLID. For the write exploit, we chose to

write the integer
²'î ´ to the memory location with a specific address

� x � v � q � C .
address

� x � v � q � C . Consider line (5) for instance; for the values Á and ��� for DIS and LEN, respec-
tively, the tool inferred the format-string "

� C � q � v � x %230g%n". When printf starts execution,

it is in printing mode, and ARGPTR is 8 bytes below FMTPTR on the stack. As FMTPTR moves along

the format-string,
� C , � q , � v , and

� x (4 bytes) are printed to stdout, thus incrementing DONE by
4. The next byte "%" increments FMTPTR by 1 byte and forces printf into argument-capture

mode. The next 3 bytes, ‘2’, ‘3’ and ‘0’ are treated as a width parameter, and printf stores
the value

²'î�4
in an internal flag WIDTH (part of s for printf). When printf processes the

next byte, ‘g’, it advances ARGPTR by 8 bytes, reads a double value from the stack, prints this

value (appropriately formatted) to stdout, increments DONE by the value of WIDTH, and returns
to printing mode. At this point, ARGPTR points to the beginning of the format-string, whose first

four bytes contain
� C � q � v � x , DONE is

²'î ´ , and FMTPTR points to the beginning of the sequence

"%n". When printf processes "%n", the value of DONE is written to
� x � v � q � C , completing the

exploit.

The execution times shown in Figure 7.6 were obtained on a machine with an Intel Pentium-4

processor running at 2GHz, with 1GB of RAM, running Redhat Linux-7.2. For these experiments,

UCLID used the Siege SAT solver [142]. All runs completed within a few minutes. As a general
trend, the time taken increases as LEN increases, although not monotonically. The reason is that

for larger values of LEN, it is necessary to run the bounded model checker UCLID for more steps,
leading to a larger formula for it to check; the largest formulas were Boolean combinations of several

thousand linear constraints over about a hundred integer variables. Note also that the time taken for

finding read exploits is much lower than that for finding write exploits. This is because finding a
write exploit involves solving a more constrained problem than for the read exploit: In addition to

finding a sequence of conversion specifications that moves ARGPTR into the format-string, one needs
to find associated width values that add up to the desired value (

²'î ´ in Figure 7.6). Furthermore,
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the length of this sequence can be at most LEN 2 � (of course, this holds for read exploits as well).

Optimizations

In our model of printf, each byte in the format-string requires one step of execution. As an
optimization we can augment the model so that more than one character is processed at a time. For

example, we could augment the model so that the group of three characters "%Lg" moves FMTPTR

by 3 bytes, ARGPTR by 12 bytes, and reads a long double value. Similarly, aggregated groups

of characters can include conservative width specifiers;4 e.g., "%60Lg" increments DONE by � 4 in

addition to changing the other flags as described above. Augmenting the model in this way does not
affect soundness because we retain all previously modeled behavior. Thus, all the format-strings

that UCLID could previously generate can still be generated. It is an optimization because longer

strings can potentially be found with fewer iterations of bounded model checking.

Comparison with existing tools

To demonstrate the effectiveness of our tool, we compared it with Percent-S [140], a tool that an-

alyzes source code using type-qualifiers [57] to identify “tainted” (i.e., user-controlled) inputs that
could potentially be used as format-strings. We report on two experiments here: the first show-

ing how we can reduce the false alarm rate, and the second showing how we can confirm a true

vulnerability by generating an exploit.

Consider the program in Figure 7.3. When compiled on our machine, the value of DIS is 28 bytes.
Irrespective of the value of LEN, the size of the buffer fmt, Percent-S reports that the printf

statement on line (6) is exploitable. Clearly, small values of LEN preclude the possibility of attack.

As a result, Percent-S produces false alarms, because it does not account for the values of the
parameters DIS and LEN.

On the other hand, using our model of printf, we were able to infer that a read-exploit (similar to

the one reported earlier) is not possible unless LEN is at least � Ä bytes, and a write-exploit (to write

the integer
²'î ´ ) is not possible unless LEN is at least

²�4
bytes. In each of these cases, our analysis

produces a format-string that demonstrates the exploit, while Percent-S does not.

We also used the tool to analyze known format-string vulnerabilities in software packages; Fig-

ure 7.1 has the details. php-3.0.16 is a language-processor for the widely-used web-scripting

language php, qpopper-2.53 is a POP3 mail server, and wu-ftpd-2.6.0 is a popular file-
transfer daemon. We explain in detail the exploit against wu-ftpd-2.6.0; the others are similar.

4The number of bytes printed is the maximum of the width specifier and that needed to precisely represent the output;
so the width specifier must be conservatively large.
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No. Software DIS LEN Exploit Exploit string discovered
(1) php-3.0.16 [45] 24 1024 Write 0xbfff8cc3 to " v ë v ì v � v u %36000Lg%31Lg%n" +

0xbfff88c3 ( v u v � v ì v ë ) "? ô ë ô ì ô���ô u %13000Lg%111g%n"
(2) qpopper-2.53 [132] 2120 1024 Read contents ("%Lg")

ì uxw + ("?") y ì +
at 0xbfff88c3 ( v u v � v ì v ë ) "%Ld%Ld%d%d%s v ë v ì v � v u "

(3) wu-ftpd-2.6.0 [154] 9364 4096 Write 0xbfffbcab to " v ë v ì v � v u %99g ô ë ô ì ô���ô u " +
0xbfff88c3 ( v u v � v ì v ë ) ("%60Lg") zxzR{ + "%912g%600Lg%n%852X%n"

Table 7.1: Exploits generated against vulnerabilities in real-world software packages. "?"

represents a non-zero non-% ASCII character. The address
( x ( v ( q ( C is

� x � v � q � C 5 ² .
Percent-S correctly identified the location of the vulnerability in wu-ftpd-2.6.0, but did not
produce a format-string demonstrating the exploit. The value of DIS and LEN for this example

were Å î �g´ and ´ 4 Å'� , respectively, which we obtained by disassembling the binary executable. For

these values of DIS and LEN, we checked whether the attacker could perform the following ex-
ploit: The attacker uses the buffer that stores the format-string to additionally store malicious code,

and then overwrites the return address in the stack frame of printf using a write exploit so as to

point to the beginning of the malicious code sequence instead. We assumed that the return address
to be overwritten is at the stack location 0xbfff88c3, and that the malicious code is located at

the address 0xbfffbcab, � î'² Á'Á bytes above (and hence located within the buffer that stores the
format-string). These address values are easily read off the stack using another exploit, as explained

in Section 7.4.1. Because the value to be written is fairly large, we used a variant of the predicate

Bad that allows for writing to a single address using multiple, slightly misaligned writes of smaller
values. (Details on doing such misaligned writes can be found in [113, 154].)

Because the values of DIS and LEN are quite large, we had to use the optimizations described in

Section 7.4.3. We were able to infer, in about � 4 minutes, a format-string that is the concatenation of

the following three strings: A prefix " |_}�|�~<|��<|�� %99g �<}���~9���<��� ", a middle part � "%60Lg" �+�U�+� consist-
ing of Â'Â�Á repetitions of group of characters ”%60Lg”, and a suffix "%912g%600Lg%n%852X%n",

where
� x � v � q � C is 0xbfff88c3 and

( x ( v ( q ( C =
� x � v � q � C 5 ² . It can be verified that this string

writes the desired value to the desired location. One write is performed by each "%n": the first
writes 0xbcab to

� x � v � q � C and the second writes 0xbfff to
( x ( v ( q ( C .

Existing format-string exploit generators attempt to construct format strings from fixed conversion

specifiers. For instance, Thuemmel [154] constructs format-strings with the "%.8x" conversion

specifier as the only building block. As a result, these techniques lack soundness: there may be
exploit strings outside the space of strings explored by these tools. By doing an exhaustive search

of the state space, our technique guarantees soundness within our model of printf. In addition,
existing tools are incapable of finding variants of an exploit. As demonstrated in lines (3) and (4) of

Figure 7.6, our technique can be used to discover variants of an exploit for the same values of DIS
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and LEN.

7.5 Summary

This chapter extended quantifier-free Presburger arithmetic with uninterpreted functions and re-
stricted lambda expressions. The resulting logic, which forms the underlying logic for the UCLID

verification system, is expressive and the eager approach to translating to SAT can be easily extended

to it. We have demonstrated the practical applicability of UCLID by applying it to the analysis of
format-string vulnerabilities and the generation of exploit strings for real software packages.
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Part II

Model Checking Timed Systems





Chapter 8

Quantified Difference Logic

Quantified difference logic (QDL) is the logic obtained by extending difference logic with universal
and existential quantifiers. QDL has applications in model checking timed systems, expressed, for

example, as timed automata [3, 5], since the fundamental model checking operations are expressible

in QDL.

Formally, a QDL formula � is generated by the following grammar:

�@��� � Ó jL¥ � j � C r��±q j � C w �©q j�� � ° � j�� ó ° � j , � ° � j , ó ° � (8.1)

We will denote real-valued variables by � & � C & �Kq &Z°Z°Z° , Boolean variables by ó & ó C & óLq &Z°Z°Z° , and real-
valued constants by � & � C & � q &Z°Z°Z° . As before, �|� denotes a special variable representing the constant4
. The symbol Ó denotes an arbitrary difference logic formula over Boolean and real-valued vari-

ables. Unlike in Chapters 3–7, Boolean and reals are the only primitive data types. We will also not
employ the ITE construct.

We will denote QDL formulas by � & � C & �©q &Z°Z°Z° . The satisfiability problem for QDL is known to be

PSPACE-complete [86].

In this chapter, we show how to perform operations in QDL using Boolean methods. The general

strategy is to transform the problem of eliminating quantifiers on real-valued variables to one of
eliminating quantifiers on Boolean variables. Specifically, given a QDL formula � with quantifiers

over real-valued variables, we transform it to an equivalent QDL formula � ô µ­µ V that has quanti-

fiers only over Boolean variables. These quantifiers can then be eliminated using standard Boolean
techniques (e.g., [33, 99]) that are based on Binary Decision Diagrams (BDDs) or Boolean satisfi-

ability (SAT) solvers. Compared to previous quantifier elimination approaches, ours has the twin
advantages of leveraging previous work on finite-state model checking as well as avoiding the need

to enumerate terms in the Disjunctive Normal Form (DNF) of the quantifier-free portion of the

formula. Moreover, for a special class of QDL formulas occurring in model checking of timed
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automata, the transformation can be greatly optimized.

We begin in Section 8.1 by describing how quantifiers over real-variables are replaced by those over

Boolean variables. The Boolean encoding method employed is very similar to the DIRECT encoding
algorithm introduced in Chapter 3. Next, in Section 8.2, we describe a modified version of the

DIRECT encoding algorithm for DL formulas over real-valued variables. Section 8.3 describes how

DL formulas are represented and manipulated as Boolean formulas. Finally, Section 8.4 describes
several optimizations that have proved useful in practice. We will defer a discussion of related work

to Section 9.1, as all prior work has been done in the context of model checking timed systems.

8.1 Quantifier Elimination Using Boolean Methods

Let Ó denote a DL formula over � real variables � C & �Kq &Z°Z°Z°9& � ! , and
ø

Boolean variables ó C & óXq &Z°Z°Z°�& ó T .
Also, let

�u�p&®�u� C &®�u� q , � [ &Z� � .
Consider the QDL formula � v °� � � v ° Ó , where

� ,>� � °�° � � .
We transform � v to an equivalent QDL formula � ô µ­µ V with quantifiers over only Boolean variables

in the following three steps:

1. Encode difference constraints:

Consider each difference constraint in Ó of the form � �ÿ�u� � � 5�� where either # � � or
$ �§� . For each such predicate, we generate a corresponding Boolean variable ó  �! � ��A� � . Differ-
ence constraints that are negations of each other are represented by Boolean literals (true or

complemented variables) that are negations of each other; however, for ease of presentation,
we will extend the naming convention for Boolean variables to Boolean literals, writing ó�� � è ��)� �
for the negation of ó0� � ���� � .

Let the added Boolean variables be ó  "! � ë � � � ë��ë�� v & ó  "! � ì � � � ì��ì�� v &Z°Z°Z°�& ó  "! � ¯ � � � ¯� ¯ � v for the upper bounds on

� v , and ó  "! é ë � � é ëv � �)ë & ó  "! é ì � � é ìv � �+ì &Z°Z°Z°9& ó  "! é ¯ v � � é ¯ vv � � ¯ v for the lower bounds on it.

We replace each predicate � v �u� � � 5�� (or � �9�u� � v 5�� ) in Ó by the corresponding Boolean
variable ó  �! � �v � � (or ó  �! � ���� v ). Let the resulting DL formula be Ó vô µ­µ V .

2. Add transitivity constraints:

Notice that there can be assignments to the ó  �! � ���� v and ó  "! � �v � � variables that have no corresponding

assignment to the real-valued variables. To disallow such assignments, we place constraints

on these added Boolean variables. Each constraint is generated from two Boolean literals that
encode predicates containing � v . Following the terminology introduced in Chapter 3, we will

refer to these constraints as transitivity constraints for � v .
A transitivity constraint for � v has one of the following types:
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(a) ó  �! ë�� � ë�A� v r�ó  �! ì�� � ìv � � �9æ :�� �3�u� � � 5�� C 5��lqL; ,
where if

�u� C ���u� q , then
�u�%���u� C , otherwise, we must duplicate this constraint for both�u�%���u� C and for

�u�%���u� q .
(b) ó  �! ë�� � ë�A� � �9æ ó  "! ì�� � ì��� � , where � C [ ��q and either # ��� or $ �I� .
(c) ó�� � ��A� � �9æ ó�� � ���� � , where either # �ä� or $ �ä� .

Note that a constraint of type (a) involves a difference constraint :�� �ã�u� � � 5�� C 5%�lqL; . This

predicate might not be present in the original formula Ó .

After generating all transitivity constraints for � v , we conjoin them to get the DL formulaÓ v� µ ! × .
3. Finally, generate the QDL formula � ô µ­µ V given below:

� ó  "! � ë � � � ë��ëº� v & ó  �! � ì � � � ì��ì*� v &Z°Z°Z°�& ó  �! � ¯ � � � ¯� ¯ � v ° � ó  "! é ë � � é ëv � �)ë & ó  �! é ì � � é ìv � �ºì &Z°Z°Z°�& ó  "! é ¯ v � � é ¯ vv � � ¯ v °S� Ó v� µ ! × r Ó vô µ­µ V �
We formalize the correctness of the preceding transformation in the following theorem.

Theorem 8.1 � v and � ô µ­µ V are equivalent.

Proof: To show that � v and � ô µ­µ V are equivalent, we show that � v �9æ � ô µ^µ V and � ô µ­µ V �9æ � v .
Denote the formula � v �9æ � ô µ­µ V by � C and the formula � ô µ^µ V �9æ � v by � q . Note first that
the free variables in both implications are the real-valued variables � C & �]q &Z°Z°Z°�& � v è3C & � v B�C &Z°Z°Z°�& � !
and the Boolean variables ó C & óLq &Z°Z°Z°9& ó T . For all # and $ , the values assigned to � � and ó � by an
assignment ß are denoted by ß � � �A� and ß � ó �Z� respectively.

1. We first show that �GC is valid.

Let ß denote an arbitrary assignment to all free variables and to the bound real variable � v
in � v such that ß � � v �\� �X����� . We extend ß with an assignment to the Boolean variables
ó  �! � ë � � � ë�Aë�� v & ó  "! � ì � � � ì��ì*� v &Z°Z°Z°�& ó  "! � ¯ � � � ¯� ¯ � v and ó  "! é ë � � é ëv � �)ë & ó  �! é ì � � é ìv � �ºì &Z°Z°Z°�& ó  "! é ¯ v � � é ¯ vv � � ¯ v , such that ß � � ô µ­µ V ����X�����

and hence ß � � C �K�ä�X�g��� .
Define an evaluation of the newly added Boolean variables according to the following rules:

ß � ó � �  "!v � � �|� ß � � v �u� � � 5�� � , $�÷�ä� , for all constants � and relations
�u�

(8.2)

ß � ó � �  "!��� v �|� ß � � �3�u� � v 5�� � , #G÷�ä� , for all constants � and relations
�u�

(8.3)

Since ß � � v �"�8�à�g��� , ß � Ó �o� �X����� . Further, using Equations 8.2 and 8.3, we can conclude
that ß � Ó vô µ­µ V ��� ß � Ó � because Ó vô µ­µ V is obtained from Ó by replacing predicates :�� v �u� � � 5��L;
and :�� �G�u� � v 5���0S; (for all # & $ and for all constants � & �L0 ) with Boolean variables ó � �  �!v � � and
ó � v �  "!�A� v . Therefore, ß � Ó vô µ­µ V �3���X����� .
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To show that ß � � ô µ^µ V ���ù�X�g��� , we need to additionally show that ß � Ó v� µ ! × ���ù�à�g��� . We

consider an arbitrary transitivity constraint of each type:

(a) ó  �! ë)� � ë��� v r�ó  "! ì�� � ìv � � �9æ :�� �3�u� � � 5�� C 5��lqX; .
Suppose ß � ó  �! ë*� � ë�A� v �ã� ß � ó  "! ì�� � ìv � � �ã���X�����

. Then, by Equations 8.2 and 8.3, we conclude
that ß � � �A�?�u� C ß � � v � 5�� C and ß � � v �?�u� q ß � � �l� 5��lq . If

�u� C ���u� q ���u� , we can infer

ß � � ���3�u� ß � � �l� 5�� C 5%�lq , and thus ß � � �©�u� � � 5%� C 5��lq �±�¦�X����� . If
�u� C ÷�=�u� q , then we

can infer ß � � �K�u� C � � 5�� C 5��lq �|� ß � � �K�u� q�� � 5�� C 5��lq �|�ä�X�g��� .
(b) ó  �! ë)� � ë��� � ��æ ó  "! ì�� � ì��� � , where � C [ � q and either # �ä� or $ �ä� .

Suppose ß � ó  "! ë � � ë��� � �|���X�����
. Then, by Equations 8.2 and 8.3, ß � � �3�u� C � � 5�� C �|�ä�X����� .

Since � C [ �lq , ß � � �|�u� q�� � 5��lq �K���à�g��� , and hence ß � ó  �! ì�� � ì�A� � �|�ä�X�g���
.

(c) ó�� � ���� � �9æ ó�� � ��A� � , where either # �I� or $ �ä� .
Exactly as for type (b) constraints, ß � ó � � ���� � ��� ß � � � [ � � 5�� ���ù�X����� . Therefore,
ß � � �©� � � 5�� �|�M�X����� and hence ß � ó � � ��A� � �K���X����� .

Thus, ß satisfies all transitivity constraints, and hence ß � Ó v� µ ! × �|���X����� , completing the proof

for the first part.

2. We now show that � q is valid.

Let ß denote an arbitrary assignment to all free variables and to the bound Boolean variables
in � ô µ­µ V such that ß � � ô µ^µ V �±� �X����� . We extend ß with an evaluation of � v such that ß � � v ����à�g���

and hence ß � � q �|���X����� .
Since ß � � ô µ­µ V �o���X����� , we know that ß � Ó v� µ ! × �o���X����� (i.e., the transitivity constraints are

satisfied by ß ) and ß � Ó vô µ^µ V �K���X����� .
Suppose we can find a value ß � � v � that satisfies the following equations:

ß � � v �u� � � 5�� �|� ß � ó � �  "!v � � � , $�÷�ä� , , constants � (8.4)

ß � � � �u� � v 5�� �|� ß � ó � �  "!��� v � , #�÷�ä� , , constants � (8.5)

Then, ß � Ó vô µ­µ V �K� ß � Ó � because Ó vô µ­µ V is obtained from Ó by replacing predicates :�� v �u� � � 5��L;
and :�� ���u� � v 5��*0�; (for all # & $ and for all constants � & �L0 ) with Boolean variables ó � �  "!v � � and
ó � v �  �!��� v . Since ß � Ó vô µ­µ V �K���X����� , ß � Ó �3�M�X����� , and hence ß � � v �|���à�g��� .
A value ß � � v � that satisfies Equations 8.4 and 8.5 exists if:

ß � � v �9� ß � � �l� 5�� if ß � ó � � �v � � �K���X����� (8.6)

ß � � v � � ß � � �l� 5�� if ß � ó � � �v � � �|�  ¢¡1£�¤ � (8.7)

ß � � v � [ ß � � �l� 5�� if ß � ó � � �v � � �K���X����� (8.8)

ß � � v � <�ß � � �l� 5�� if ß � ó � � �v � � �|�  ¢¡1£�¤ � (8.9)
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In the above equations, w.l.o.g., we use literals encoding lower bounds on � v (e.g., ó � � �v � � ) in

place of those encoding upper bounds (e.g., ó è � � ��®� v ).

Let � v � ��#¸��)� � ×7� k ���+�+� ���  � é F¢¡¤£i¥�¦*§ :Ýß � � � � 5��L;
and

m v � � � ��)� � ×�� k �7� �*� �¨�  � é F�©Uª�«�§ :Ýß � � �l� 5��L;� v and m v are respectively the tightest upper and lower bounds on ß � � v � .
Define the ordering relation ¬ as follows

¬ � ÿ� � � if the tightest bounds are non-strict, i.e., ß � � v � < � v and ß � � v ��� m v
[ otherwise

(8.10)

Then, the inequalities 8.6 to 8.9 can be satisfied if:� v ¬Mm v (8.11)

In other words, if the minimum upper bound on ß � � v � is greater (or greater than or equal to)

the maximum lower bound on ß � � v � .
To show that the above is true, it is enough to show that for any pair of upper and lower bounds

on ß � � v � , the relation ¬ holds, and so it holds in particular for the minimum upper bound and

the maximum lower bound. For example, for the two inequalities ß � � v � � ß � � �l� 5�� C and
ß � � v �9� ß � � T � 5�� q to be true we need that ß � � � � 5�� C [ ß � � T � 5�� q .
Therefore, consider two arbitrary indices $ and

ø
different from

�
. We need to consider four

cases based on evaluations of the Boolean literals ó � ëº�  "!v � � and ó � ì)�  �!v � T . Note that cases in which

both literals evaluate to
�à�g���

or both to  J¡1£�¤ � only give rise to two lower bounds or to two

upper bounds. By the transitivity constraints of types (b) and (c), if the minimum upper bound
(or maximum lower bound) is satisfied, then every other upper bound (or lower bound) will

be satisfied.

The four cases are enumerated below:

(a) ó � ëº� �v � � �  ¢¡1£�¤ �]& ó � ì*� �v � T ���à�g��� .
This implies that

ß � � �Z��� ß � � v � 2 � C and ß � � v �9� ß � � T � 5���q
We need to show that

ß � � �l� 5�� C � ß � � T � 5���q
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Or

ß � � � ��� ß � � T � 5I:R� q 2 � C ;
The last inequality is true, since ß satisfies the transitivity constraint ó è � ë � ��)� v r-ó � ì � �v � T ��æ
:�� �=� � T 5���q 2 � C ; .

(b) ó � ë�� �v � � �  ¢¡]£A¤ �1& ó � ì)� �v � T �ä�X�g��� .
This case is identical to the one above, with

�
and [ interchanged.

(c) ó � ë�� �v � � �  ¢¡]£A¤ �1& ó � ì)� �v � T �ä�X�g��� .
This implies that

ß � � �l�9� ß � � v � 2 � C and ß � � v � [ ß � � T � 5��lq
We need to show that

ß � � �l� 5�� C [ ß � � T � 5��lq
Or

ß � � �l� [ ß � � T � 5I:R�lq 2 � C ;
The last inequality is true, since ß satisfies the transitivity constraint ó è � ëº� ��)� v r-ó � ì)� �v � T ��æ
:�� � [ � T 5���q 2 � C ; .

(d) ó � ë�� �v � � �  ¢¡]£A¤ �1& ó � ì)� �v � T �ä�X�g��� .
This case is identical to the one above, with

�
and [ interchanged.

Thus, we can conclude that Equation 8.11 is satisfied, completing the proof of this part.

_
We illustrate the transformation with a simple example.

Example 8.1 Let � v � � � v ° Ó where Ó � � v < � � r>� C � � v r>�Kq@< � v . Then, Ó vô µ­µ V �ó � � �� � v r�ó � � �C � v r�ó �
� �v � q . Ó v� µ ! × is the conjunction of the following constraints:

1. ó�� � �� � v r�ó�� � �v � q �9æ � � � �Kq
2. ó � � �C � v r�ó �

� �v � q �9æ � C � �Kq
Then, � ô µ­µ V � � ó � � �� � v & ó � � �C � v & ó � � �v � q °S� Ó v� µ ! × r Ó vô µ­µ V � evaluates to � � � �]qcrü� C � �]q . _
The quantifier transformation procedure described here works even when Ó is replaced by a QDL

formula with quantifiers only over Boolean variables. In the general case, Ó can be replaced by� ó C & óXq &Z°Z°Z°�& ó`V ° Ó 0 where Ó 0 is a DL formula. The transformation extends to this more general case
for the following reason: any satisfying assignment ß for � v can be extended to one for � ô µ­µ V
(and vice-versa), as in the proof of Theorem 8.1, keeping the partial assignment to ó C & óLq &Z°Z°Z°9& ó�V
unchanged.
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8.2 Satisfiability Checking of DL Formulas over ­
Suppose we want to decide the satisfiability of a DL formula Ó . The DIRECT encoding method

introduced in Chapter 3 cannot directly be used as it assumes that the DL formula has integer
variables and constants, and hence that every difference constraint can be re-written as a non-strict

inequality.

We use a Boolean encoding algorithm that differs slightly from the DIRECT encoding algorithm

and is based on the following fact: The DL formula Ó is satisfiable iff the QDL formula � C ��� ! �� � C & �]q &Z°Z°Z°�& � ! ° Ó is satisfiable.

We can transform � C ��� ! to an equivalent QDL formula � ô µ­µ V with existential quantifiers only over
Boolean variables encoding all difference constraints. This is done by first imposing an order on

the variables � C & �]q &Z°Z°Z°�& � ! , and then eliminating the quantifiers over those variables in that order,
one at a time, using Theorem 8.1. The resulting formula � ô µ­µ V is a quantified Boolean formula with

only existential quantifiers. Therefore, its satisfiability can be decided by simply discarding the

quantifiers and using a Boolean satisfiability solver to decide the resulting Boolean formula.

The order in which variables are eliminated from � C ��� ! can have an impact on the size of the resulting
Boolean formula. For instance, suppose that Ó � � C � �]q�r��Kq � �]v . If we choose to eliminate
�]q first, we will generate a new inequality � C � �]v and a corresponding transitivity constraint.

However, if instead we eliminated � C first, we will generate no transitivity constraints. Observe that
none are required to preserve satisfiability.

A good variable elimination order is the one used in the DIRECT encoding algorithm in Chapter 3.

For each quantified real-valued variable � � , we count the number of upper and lower bound con-

straints for it and compute the product of the counts. (The counts are updated as new constraints are
added.) Variables are eliminated in increasing order of their corresponding products.

Note that the procedure described above can be viewed as one way to implement the algorithm given

by Strichman et al. [148].

8.3 Representation and Manipulation of DL Formulas

The material discussed up to this point does not rely on any specific representation of DL formu-
las. However, since we make use of Boolean methods for quantifier elimination and satisfiability

solving, it is convenient to encode a DL formula Ó as a Boolean formula ® .

The encoding is performed as follows. Consider each difference constraint � �3�u� � � 5�� in Ó . As in

Section 8.1, we introduce a Boolean variable ó  �! � ���� � for � �|�u� � � 5¯� , only this time we do it for every
single difference constraint. Also as before, difference constraints that are negations of each other
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are represented by Boolean literals that are negations of each other. We then replace each difference

constraint in Ó by its corresponding Boolean literal. The resulting Boolean formula is ® . Standard
representations of Boolean functions, such as Binary Decision Diagrams (BDDs) [27], can be used

to represent ® .

Clearly, ® , by itself, stores insufficient information for generating transitivity constraints. There-

fore, we also store the 1-1 mapping of difference constraints to the Boolean literals that encode
them. However, this mapping is used only lazily, i.e., when generating transitivity constraints dur-

ing quantification and in deciding DL formulas.

Substitution

A common operation in model checking is to substitute a “next-state” version of a state variable

(Boolean or real-valued) by a the “current-state” version or by an expression of the corresponding

type.

Given the Boolean representation described above, we implement substitution of a real-valued vari-
able � � by substituting the Boolean variables corresponding to difference constraints containing � � .
Specifically, for a real-valued variable � � , we perform the substitution

� � � úû� T 5 Ö � (where
ø �I4

or Ö � 4 ), by replacing all Boolean variables of the form ó  "! � ���� � and ó  "! v � � v�)� � , for all $ , by variables
ó  "! � � è 8T � � and ó  "! v � � v BZ8�)� T respectively, creating fresh replacement variables if necessary.

Substitution of a Boolean variable by the Boolean encoding of a difference logic formula is done by

Boolean function composition.

8.4 Optimizations

The quantifier elimination method presented in Section 8.1 can be optimized in a few ways.

First, we can use the Boolean structure of the QDL formula to be more selective in deciding when

to add transitivity constraints. Second, the quantifier elimination method can be optimized for a
special class of QDL formulas that arise commonly in model checking timed systems. We describe

these two optimizations in Sections 8.4.1 and 8.4.2 respectively.

There is one other optimization, described in Section 8.4.3, that is specific to a BDD representa-

tion of DL formulas. This optimization eliminates paths in the BDD representation that violate
transitivity constraints.
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8.4.1 Determining if Bounds are Conjoined

Suppose Ó is a DL formula with Boolean encoding ® , and we wish to eliminate the quantifier in� � v ° Ó . As described in Section 8.1, a transitivity constraint for � v involves two Boolean literals

that encode difference constraints involving � v . For a syntactic representation of ® , as the number
of constraints grows, so does the size of

� ® v� µ ! × r°® vô µ­µ V � , the Boolean encoding of
� Ó v� µ ! × r�Ó vô µ­µ V � .

Further, new difference constraints can be added when a transitivity constraint is generated from an

upper bound and a lower bound on � v . For a BDD-based implementation, this corresponds to the
addition of a new BDD variable. We would therefore like to avoid adding transitivity constraints

wherever possible.

In fact, we only need to add a constraint involving an upper bound literal and a lower bound literal

if they are conjoined in a minimized DNF representation of ® .1 From a geometric viewpoint, this
means that we check that the predicates corresponding to the two literals are bounds for the same

convex region. This check can be posed as a Boolean satisfiability problem, which is easily solved
using a BDD representation of ® . Let the literals be ó C and óXq . Then, we use cofactoring and

Boolean operations to compute the following Boolean formula:

ó C r�óXq�r � ® j � ëJF�©Uª�«�§ r ¥ :=® j � ëJF¢¡¤£i¥�¦3§ ; � r � ® j � ì�F�©�ª�«�§ r ¥ :=® j � ì�F¢¡¤£i¥�¦3§ ; � (8.12)

Consider the subformula ó � r � ® j � � F�©Uª�«�§ r ¥ :=® j � � F¢¡¤£i¥�¦3§ ; � for # � � &)² . This formula represents the

set of input combinations ó in which ó � must be set to
�X�����

in order for ®": óg; to evaluate to
�X�����

.
Thus, the conjunction of the subformulas for # � � and # � ² is satisfiable only if there exists a

non-empty set of input combinations ó in which both ó C and óLq must be set to
�X�����

for ®o: óg; to
evaluate to

�X�����
. Viewed alternately, Formula 8.12 expresses the Boolean function corresponding

to the disjunction of all terms in the minimized DNF representation of ® that contain both ó C and óLq
in true form. Therefore, if Formula 8.12 is satisfiable, it means that ó C and óXq are conjoined, and we
must add a transitivity constraint involving them both.

Note however, that since ® does not, by itself, represent the original DL formula Ó , finding that

ó C and óXq are conjoined in ® does not imply that they are bounds in the same convex region of Ó .

However, the converse is true, so our method is sound.

8.4.2 Quantifier Elimination by Eliminating Upper Bounds on ± �
A special class of formulas that appear in the model checking of timed systems is expressed as the

formula �³² below:

� ² � � $ ° $ � � � r Ó�5�$ (8.13)

1A conservative, syntactic variant of this idea has been proposed earlier by Strichman [147].
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In the above equation, Ó is an arbitrary DL formula, and Ó95´$ denotes the formula obtained by adding$ to all real variables occurring in Ó , computed as Ó � � � 5µ$?¶à� � & � <§#\<§� � , where � C & � q &Z°Z°Z°�& � !
are the real variables in Ó � excluding the zero variable � � . Note that even though Ó�5�$ is not in

QDL as described above, it can be rewritten to be in QDL; this rewriting procedure is described in
Section 9.3 and we omit it here as it is not relevant to the discussion.

From a geometric viewpoint, Ó is a region in �o! and � ² is the shadow of Ó for a light source at ·�! .
Examples of Ó and the corresponding � ² are shown in Figures 8.1(a) and 8.1(c) respectively.

We can transform � ² to an equivalent DL formula Ó¹¸ ô by eliminating upper bounds on � � , i.e.,

Boolean variables of the form ó  "! � ���� � . The transformation is performed iteratively in the following

steps:

1. Let Ó � � Ó . Let ó  �! ë)� � ë��ë�� � & ó  �! ìZ� � ì��ìl� � &Z°Z°Z°�& ó  "! ¯ � � ¯� ¯ � � be Boolean literals encoding all upper bounds on
�K� that occur in Ó .

Note that an upper bound literal ó  "! éL� � é� éZ� � occurs in Ó , if it appears in some term in the min-

imized DNF representation of Ó . This can be checked by evaluating the Boolean function� ® j � �¨� é � � é� é � w F�©�ª�«�§ r ¥ :=® j � ��� é � � é� é � w F¢¡¤£i¥�¦3§ ; � , where ® is the Boolean encoding of Ó , and checking that

it is not  ¢¡1£�¤ � .
2. For $ � � &)²U&Z°Z°Z°±& � , we construct Ó � as follows:

(a) Replace all occurrences of � � é �u� � �K��5�� � in Ó � è3C with ó  "! éL� � é� éL� � to get Ó � � � è3Cô µ­µ V .

(b) Construct Ó � � � è3C� µ ! × , the conjunction of all transitivity constraints2 for � � involving ó  "! éZ� � é� éZ� �
and real-valued variables in Ó � � � è3Cô µ­µ V .

(c) Construct the formula Ó � , a disjunction of two terms:Ó �\� ��:�Ó � � � è3Cô µ^µ V rjÓ � � � è3C� µ ! × ; j � �¨� é � � é� é � w F�©�ª�«�§ � w � � ¥ :�� � é��u�L� � � 5¯� � ; � r � Ó � � � è3Cô µ^µ V j � �¨� é � � é� é � w F¢¡¤£i¥�¦3§ � �
The first disjunct is the region obtained by dropping the bound � � é��u�L� � � 5�� � from

convex sub-regions of Ó � è3C where it is a lower bound on � �êé , while enforcing existing
and transitively implied bounds. The second disjunct corresponds to sub-regions where¥ :�� � é��u�L� � � 5�� � ; is an upper bound; these regions are left unchanged.

The output of the above transformation, Óº¸ ô , is given by Ó¢¸ ô � Ó & . The correctness of this proce-

dure is formalized in the following theorem.

Theorem 8.2 � ² and Ó�¸ ô are equivalent.

Proof: We make use of the following lemmas.
2We can use the optimization technique of Section 8.4.1 in this step.
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Lemma 8.1 For all $ � � &Z°Z°Z°�& � , � $ ° $ � � � rjÓ � è3C 5%$ is equivalent to � $ ° $ � � � rjÓ � 5�$ .
Proof:(Lemma 8.1)

We give the proof for an arbitrary $ satisfying ��<¦$Ð< � . Let � � è3C and � � respectively denote� $ � è3C ° $ � è3C � � � rLÓ � è3C 5»$ � è3C and � $ ��° $ �=� � � rLÓ � 5»$ � . Notice that we have renamed the bound
variable $ .

1. First, we show that � � è3C �9æ � � . Let ß be an assignment to the free and bound variables in� � è3C such that ß � � � è3C �±�¦�X����� . This means that ß � Ó � è3C 5%$ � è3C ���¦�X����� . Extend ß so that
ß � $ �l�K� ß � $ � è3C � . Thus, ß � $ � è3C � � � �|� ß � $ �=� � � �|���X����� .
We consider two cases.

(a) Case 1: ß � :�� � é6�u�L� � � 5�� � ;35�$ � è3C �K���X����� .
Note that by construction,Ó � � � è3Cô µ^µ V � Ó � è3C � ó  �! éX� � é� éZ� � ¶p:�� � é �u� � �]��5�� � ; �
From the two equalities above, and since ß � $ �l�K� ß � $ � è3C � , we get

ß � Ó � è3C 5�$ � è3C �K� ß � Ó � � � è3Cô µ­µ V j � �¨� é � � é� é � w F�©Uª�«�§ 5�$ �l�
In addition, the transitivity constraints are satisfied, i.e.,

ß � Ó � � � è3C� µ ! × j � �¨� é � � é� é � w F�©�ª�«�§ 5�$ �Z�K���X�����
because Ó � � � è3C� µ ! × j � �¨� é � � é� é � w F�©Uª�«�§ 5�$ � only involves real-valued variables. Therefore,

ß � Ó � è3C 5�$ � è3C �K� ß � :�Ó � � � è3Cô µ­µ V r Ó � � � è3C� µ ! × ; j � �¨� é � � é� é � w F�©�ª�«�§ 5�$ �l�
Thus, we conclude that

ß � Ó � è3C 5�$ � è3C �3� ß � Ó � 5�$ �l�K���X�����
which in turn implies that

ß � $ � è3C � � � r Ó � è3C 5�$ � è3C �K� ß � $ �-� � � r Ó � 5%$ �l�K�ä�X�g���
and so

ß � � � è3C �3� ß � � ���3���X�����
This concludes the first case.
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(b) Case 2: ß � :�� �êéG�u�L� � � 5�� � ;95�$ � è3C �|�  J¡1£�¤ � .
Since Ó � � � è3Cô µ­µ V � Ó � è3C � ó  "! éX� � é� éL� � ¶p:�� � é6�u�L� � � 5�� � ; �
and, in addition, ß � $ �l�K� ß � $ � è3C � , we have

ß � Ó � è3C 5�$ � è3C �K� ß � Ó � � � è3Cô µ­µ V j � �¨� é � � é� é � w F¢¡¤£i¥�¦3§ 5�$ ���
Now, since ß � Ó � è3C 5%$ � è3C �K�ä�X�g��� , we get

ß � Ó � � � è3Cô µ­µ V j � �¨� é � � é� é � w F¢¡¤£i¥�¦*§ 5�$ � �K���X�����
and

ß ��� ¥ :�� � éG�u�L� � � 5�� � ;3r Ó � � � è3Cô µ^µ V j � �¨� é � � é� é � w F¢¡¤£i¥�¦3§ � 5�$ ���3�M�X�g���
and so, we conclude that

ß � Ó � 5�$ ���|� ß � $ �=� � � rjÓ � 5�$ �l�K� ß � � �l�K���X�����
which concludes case 2.

Thus, � � è3C �9æ � � .
2. We next show that � � ��æ � � è3C .

Let ß be an assignment to the free and bound variables in � � such that ß � � � �c�8�X����� . This
means that ß � Ó � 5¼$ ���ü� �X����� . We wish to extend ß by an assignment to $ � è3C so that
ß � Ó � è3C 5�$ � è3C �|���X����� and ß � $ � è3C � � � �K���X����� .
We consider two cases.

(a) Case 1: ß � :�Ó � � � è3Cô µ­µ V r Ó � � � è3C� µ ! × ; j � ��� é � � é� é � w F�©�ª�«�§ 5�$ �Z�K���X����� .
Therefore,

ß � Ó � � � è3Cô µ­µ V j � �¨� é � � é� é � w F�©Uª�«�§ 5�$ ���|���X����� (8.14)

and

ß � Ó � � � è3C� µ ! × j � �¨� é � � é� é � w F�©Uª�«�§ 5�$ � �|���X�����
If ß � :�� �êéG�u�L� � � 5�� � ;95�$ ���|���à�g��� , then using the equalityÓ � � � è3Cô µ­µ V � Ó � è3C � ó  "! éX� � é� éL� � ¶p:�� � é6�u�L� � � 5�� � ; � (8.15)

we can set ß � $ � è3C �ã� ß � $ �l� , which yields ß � :�� � é��u�L� � � 5µ� � ;±5�$ � è3C �c�N�X����� , and so

using Equations 8.14 and 8.15, we get

ß � Ó � è3C 5�$ � è3C �|� ß � Ó � 5%$ ���|�ä�X�g��� (8.16)
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However, if ß � :�� � éG�u�L� � � 5½� � ;g5�$ ���K�  ¢¡1£�¤ � , then we must find an alternate assignment

to $ � è3C , such that ß � :�� � é �u� � �]�15¾� � ;%5�$ � è3C �|���X����� . Then, we can conclude, as above,
that Equation 8.16 holds.

Consider, w.r.t. the assignment ß , all lower bounds on � � that occur in Ó � è3C 5�$ � (and

hence in Ó � � � è3Cô µ­µ V 5¿$ � ); more precisely, a lower bound on � � is a predicate :�� � �u� T
� � W 5�� T ;�5�$ � such that ß � :�� � �u� T � � W 5�� T ;35�$ ���|���à�g��� .
If no such lower bound on � � exists, then we can set $ � è3C to any value that results in
ß � :�� �êé\�u�L� � � 5%� � ;95�$ � è3C �9�ä�X����� , because there is no lower bound to be violated by
increasing the value of a real-valued variable.

So suppose at least one lower bound on � � exists in Ó � è3C . Define the value À × as

À × � ��#¸�T ×7� k �7À0Á h V w  �! W V � W B � W i B ² é�Â½F�©�ª�«�§ : 2 � TG2 ß � � ��W 5�$ � � ; (8.17)

Note that À × ��4 since ß � :��K� �u� T � ��W 5�� T ;35%$ � �|�ä�X�g��� for all
ø

in Equation 8.17.

Let X be the
ø

for which the minimum on the right-hand side of Equation 8.17 is attained.

If there are many such
ø

, say
ø C &)ø q &Z°Z°Z°�&)ø 8 , set X according to the following rules:

i. If there exists
ø%�

for which
�u� T � � [ , set X to any one such

ø%�
.

ii. Otherwise select X to be any one of
ø C &)ø q &Z°Z°Z°�&)ø 8 .

Thus,

À × � 2 ��V 2 ß � � �¤] 5�$ � � (8.18)

Next, we define a positive real number Ã as follows:

Ã � ÿ��� Ã � if
�u� V � [ , and where Ã � , : 4p& ß � � � é 2 � �<] 2 � � 2 ��V � ;4

otherwise
(8.19)

Note that ß � � � é 2 � � ] 2 � � 2 ��V � is non-negative and is strictly positive when
�u� V � [ . This

is because there exists a transitivity constraint in Ó � � � è3C� µ ! × of the form

:uó  "! éX� � é� éL� � rü� � �u� V×� � ] 5���VA; ��æ :�� � é��u�L� � � ] 5�� � 5���VA;
which occurs in Ó � � � è3C� µ ! × j � �¨� é � � é� é � w F�©�ª�«�§ as

:��]� �u� V1� �<] 5���VA; �9æ :�� � é �u� � � �<] 5�� � 5���V�;
If
�u�L� ÷���u� V , the following constraint also holds:

:�� � �u� V×� � ] 5���VA; �9æ :�� � éG�u� V1� � ] 5�� � 5���VA;
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Since ß � :�� � �u� V×� � ] 5���VA;�5�$ ���3���X����� , the following equalities hold:

ß � :�� � éG�u�L� � � ] 5�� � 5��âVÝ;35�$ �l�|� ß � � � éG�u�L� � � ] 5�� � 5��âV �K���X����� (8.20)

ß � :�� �êéG�u� V×� �¤] 5�� � 5���VA;95�$ ���|� ß � � � é6�u� V×� �¤] 5�� � 5��âV �K���X����� (8.21)

Thus, ß � � � é 2 � � ] 2 � � 2 ��V � is non-negative and is strictly positive when
�u� V � [ .

We now show that À × 2 Ã � 4 . If Ã �N4 , clearly À × 2 Ã � 4 . So, assume that
�u� V � [ ,

and thus Ã , : 4p& ß � � � é 2 � �<] 2 � � 2 ��V � ; . Then we can conclude the following:

À × 2 Ã � 2 �âV 2 ß � � �<]A� 2 ß � $ ��� 2 Ã
[ 2 �âV 2 ß � � � ] � 2 ß � $ ��� 2 ß � � �êé 2 � � ] 2 � � 2 ��V �� 2 �âV 2 ß � � � ] � 2 ß � $ ��� 2 ß � � �êéZ� 5 ß � � � ] � 5�� � 5��âV� � � 2 ß � � � él� 2 ß � $ �Z�� 4

(since ß � :�� � é��u�L� � � 5�� � ;95�$ �l�|�  ¢¡]£A¤ � )
Intuitively, À × 2 Ã is a non-negative real number we can add to all real-valued variables

without violating lower bounds on � � in Ó � è3C 5�$ � .
Now, define ß � $ � è3C � as follows:

ß � $ � è3C �|� ß � $ �l� 5 À × 2 Ã (8.22)

Since À × 2 Ã ��4 , ß � $ � è3C ��� ß � $ � � .
Given the above assignment to $ � è3C , we first show that ß � :�� � é��u�L� � � 5µ� � ;©5�$ � è3C �©��à�g���

. We have the following sequence of equalities:

ß � :�� �êé6�u�L� � � 5�� � ;35�$ � è3C �� ß � � �êéZ� 5 ß � $ � è3C �1�u�L� � �� ß � � �êé �]�u� � � � 2 ß � $ � è3C �� ß � � �êéZ�]�u�L� � � 2 À × 5�Ã 2 ß � $ �Z�� ß � � �êéZ�]�u�L� Ã�5�� � 2 ��#¢�T : 2 ß � � � W 5�$ ��� 2 � T ; 2 ß � $ �l�� ß � � �êé �]�u� � Ã�5�� � 5I:Ýß � � �<] 5�$ � � 5��âVÝ; 2 ß � $ � �� ß � � �êéZ�]�u�L� Ã�5 ß � � � ] � 5�� � 5��âV� �X����� : since Ã , : 4p& ß � � � 2 �[V 2 � � 2 ��V � ; and from Eqn. 8.20 ;
We next show that the assignment to $ � è3C in Equation 8.22 preserves the truth assign-

ment to other bounds on � � ; i.e., bounds in Ó � è3C 5�$ � other than :�� � é��u�L� � � 5�� � ;|5¯$ � .
Formally, we show that for all bounds � � �u� T � ��W 5�� T where

ø ÷� $ :
ß � :�� � �u� T � � W 5�� T ;95�$ � è3C �|� ß � :�� � �u� T � � W 5�� T ;95�$ �l�
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Note that the value of difference constraints of the form � � W ë �u� � � W ì 5Ä� T ë T ì is unaffected

by the assignment to $ � or $ � è3C .
If ß � :�� � �u� T � � W 5%� T ;�5�$ �����  ¢¡1£�¤ � , then ß � :�� � �u� T � � W 5�� T ;95%$ � è3C ���  J¡1£�¤ � , since
ß � $ � è3C �9� ß � $ �l� .
On the other hand, if ß � :�� � �u� T � ��W 5�� T ;35�$ �l�K���à�g��� , then

ß � :�� � �u� T � � W 5�� T ;35�$ � è3C �� 4-�u� T ß � � ��WL� 5�� T 5 ß � $ � è3C �� 4-�u� T ß � � � W � 5�� T 5 ß � $ �Z� 5 À × 2 Ã� 4-�u� T :R� T 5 ß � � � W � ;35 ß � $ �Z� 5I: 2 ��V 2 ß � � � ] 5%$ ��� ; 2 Ã� : 2 � T62 ß � � ��WL� ; �u� T : 2 ��V 2 ß � � �¤]A� ; 2 Ã� �X�����
(since Ã ��4 and from Equations 8.17 and 8.18)

To sum up, we have shown that ß � :�� � éÐ�u�L� � � 5�� � ;"5�$ � è3C �ÿ� �X����� , even though
ß � :�� �êé �u� � �K��5�� � ;95�$ � �|�  J¡1£�¤ � . Thus, we can conclude that

ß � Ó � è3C 5�$ � è3C �3� ß � Ó � 5�$ �l�K���X�����
This completes the proof for the first case.

(b) Case 2: ß ��� ¥ :�� � é6�u�L� � � 5�� � ;3r Ó � � � è3Cô µ­µ V j � �¨� é � � é� é � w F¢¡¤£i¥�¦*§ � 5�$ �Z�K���X����� .
Thus

ß � Ó � � � è3Cô µ^µ V j � �¨� é � � é� é � w F¢¡¤£i¥�¦3§ 5�$ ���3���X�����
and

ß � :�� � é6�u�L� � � 5�� � ;35�$ �l�K�  J¡1£�¤ �
Letting ß � $ � è3C �|� ß � $ ��� and from Equation 8.15, we get

ß � Ó � è3C 5�$ � è3C �K���X�����
as required.

Thus, � �M��æ � � è3C .
From parts 1 and 2 above, we conclude that � � è3C and � � are equivalent.

_
Lemma 8.2 Suppose the DL formula Ó does not contain any difference constraints that are upper

bounds on � � ; i.e., any satisfying assignment to Ó sets all upper bounds on � � to  J¡1£�¤ � , and all

lower bound predicates to
�X�g���

. Then, � $ ° $ � � � r Ó�5�$ is equivalent to Ó .
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Proof:(Lemma 8.2)

We first show that Ó �9æ : � $ ° $ � �|��rjÓQ5%$*; .
Let ß be an assignment to the variables in Ó such that ß � Ó �|���X����� . We extend ß with an evaluation
of $ so that ß � $ �9�I4�� ß � � � � . Then, ß � $ � � � rlÓ�5�$ �9�ä�X����� , since ß � Ó?5�$ �9� ß � Ó � . Therefore,

ß � � $ ° $ � � � r Ó�5�$ �K���à�g��� . Thus, Ó ��æ : � $ ° $ � � � rjÓQ5�$�; .
Next, we show that : � $ ° $ � � � rtÓ�5O$*; �9æ Ó . Let ß be an assignment such that ß � � $ ° $ �
� � r�Ó�5�$ �¶� �X����� . Thus, ß � $ � � � �����X����� and ß � Ó�5�$ �¶� �X�g��� . Since Ó does not contain
any difference constraints that are upper bounds on � � , for any lower bound � � �u� T � T 5%� T on � � ,
ß � :�� � �u� T � T 5Å� T ;à5Æ$ �|���X����� and for an upper bound �ZV �u� V1� � 5Æ��V on � � , ß � :��[V �u� V1� � 5Æ��VA;X5½$ �K� ¢¡]£A¤ � .
Then, since ß � $ ����4 ,

ß � :�� � �u� T � T 5�� T ;95�$ �K���X������� ß � � � �u� T :�� T 5�$�;35�� T �3� ß � � � �u� T � T 5�� T �
Similarly, for an upper bound predicate on �9� , ß � �[V �u� V×�K��5���V �K�  J¡1£�¤ � .
It then follows that ß � Ó �|���à�g��� .
_

From Lemma 8.1, we infer that �Ç² � � $ ° $ � �]�Gr�ÓK�G5�$ is equivalent to � $ ° $ � �|�Gr�Ó & 5�$ .
Additionally, since Ó & does not contain any upper bounds on � � , using Lemma 8.2, we conclude

that � ² is equivalent to Ó & � Ó�¸ ô . This completes the proof of Theorem 8.2. _
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Figure 8.1: Eliminating upper bounds on �9�
Example 8.2 Let the subformula Ó of �Ç² beÓ � :�� C � � � 5 î r��]q\<@� � 5 ² ; w :�� C � � � 5 î rü�Kq � � � 5 î ;Ó is depicted geometrically as the shaded region in Figure 8.1(a). It comprises two sub-regions, one

for each disjunct. The lower bounds on these regions, � C � � � 5 î and �Kq � � � 5 î , are upper
bounds on � � . We encode these by ó2� � vC � � and ó�� � vq � � .
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Figure 8.1(b) shows Ó C , the result of eliminating ó2� � vC � � . Formally, we calculateÓ � � �ô µ­µ V � :uó�� � vC � � rü�Kq�< � � 5 ² ; w : ¥ ó��
� vC � � rü�Kq � � � 5 î ;Ó � � �� µ ! × � :uó�� � vC � � rü�Kq�< � � 5 ² ; ��æ :�� C � �Kq�5ä�X;

Then, applying step 2(c) of the transformation, we getÓ C � :��]q�<@� � 5 ² rü� C � �]qc5ä�X; w :�� C � � � 5 î rü�]q � � � 5 î ;
Similarly, in the next iteration, we introduce and eliminate ó_� � vq � � to get ÓKq , shown in Figure 8.1(c),

which is equivalent to � ² . _
8.4.3 Eliminating Infeasible Paths in BDDs

Suppose ® is the Boolean encoding of DL formula Ó . Let Ó � µ ! × denote the conjunction of transitivity

constraints for all real-valued variables in Ó , and let ® � µ ! × denote its Boolean encoding. Finally,

denote the BDD representations of ® and ® � µ ! × by ÏÑÐ2Ð1:=®©; and ÏÑÐ2Ð]:=® � µ ! × ; respectively.

We would like to eliminate paths in ÏÑÐZÐ]:=®±; that violate transitivity constraints, i.e., those corre-
sponding to assignments to variables in ® for which ® � µ ! × �  ¢¡1£�¤ � . We can do this by using the

BDD Restrict operator, replacing ÏÑÐZÐ1:=®±; by Restrict( ÏÑÐZÐ�:=®±; & ÏÑÐZÐK:=® � µ ! × ; ). Informally,

Restrict( ÏÑÐ2Ðp:=®±; , ÏÑÐZÐ1:=® � µ ! × ; ) traverses ÏÑÐ2ÐK:=®±; , eliminating a path on which ® � µ ! × is  ¢¡]£A¤ �
as long as it doesn’t involve adding new nodes to the resulting BDD. Details about the Restrict

operator may be found in the paper by Coudert and Madre [44].

Since eliminating infeasible paths in a large BDD can be quite time consuming, we do not apply

this optimization very often. For example, in model checking timed automata, this optimization is
applied only to the BDD for the set of reachable states, and only once on each fixpoint iteration.

8.5 Summary

This chapter showed how to eliminate quantifiers over real-valued variables in a quantified dif-

ference logic (QDL) formula by transforming the problem to one of eliminating quantifiers over
Boolean variables from a quantified Boolean formula. Satisfiability solving of DL formulas over

Boolean and real-valued variables was discussed, as also were techniques of representing and ma-

nipulating DL formulas. Several optimizations can be used to improve on the quantifier elimination
method in practice.

In the next chapter, we will see how the Boolean methods for QDL discussed in this chapter can be

applied to the problem of model checking timed automata.
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Chapter 9

Model Checking and Timed Circuits

A timed system is a generalization of a finite-state system with real-valued clock or timer variables.
A particularly expressive formalism for timed systems is the timed automaton [3, 5].

A timed automaton is a generalization of a finite automaton with a set of real-valued clock variables.
The state space of a timed automaton thus has a finite component (over Boolean state variables) and

an infinite component (over clock variables). Several model checking techniques for timed automata
have been proposed over the past � Ä years. These can be classified, on the one hand, as being either

symbolic or fully symbolic, and on the other, as being bounded or unbounded. Symbolic techniques

use a symbolic representation for the infinite component of the state space, and explicit represen-
tations for the finite component. In contrast, fully symbolic methods employ a single symbolic

representation for both finite and infinite components of the state space. Bounded model checking

techniques work by unfolding the transition relation Ö times, finding counterexamples of length up
to Ö , if they exist. As in the untimed case, these methods suffer from the limitation that, unless

a bound on the length of counterexamples is known, they cannot verify the property of interest.
Unbounded methods, on the other hand, can produce a guarantee of correctness.

The theoretical foundation for unbounded, fully symbolic model checking of timed automata was
laid by Henzinger et al. [71]. The characteristic function of a set of states is a formula in differ-

ence logic (DL). The most important model checking operations involve deciding DL formulas and
eliminating quantifiers on real variables from quantified difference logic (QDL) formulas.

This chapter describes the first approach to unbounded, fully symbolic model checking of timed
automata that is based on a Boolean encoding of DL formulas and that preserves the interpretation

of clocks over the reals. Unlike some other fully symbolic techniques, our method can be used to
model check any property in the timed � calculus or Timed Computation Tree Logic (TCTL) [4].

The method is based on the results of Chapter 8, and especially on the technique for transforming

the problem of eliminating quantifiers on real variables to one of eliminating quantifiers on Boolean
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variables.

We begin this chapter with a discussion of related work. Section 9.2 gives background information

on timed automata and the timed � calculus. We describe our fully symbolic model checking algo-
rithm in Section 9.3, including a description of our implementation and results on a toy example.

Section 9.4 describes our experience applying this model checking algorithm to the verification of

timed circuits.

9.1 Related Work

We discuss the related work that is most relevant to our approach to fully symbolic model checking

of timed automata. A more detailed survey of techniques for model checking timed systems can be

found in the recent paper by Wang [162].

The work that is most closely related to ours is the approach based on representing DL formulas us-
ing Difference Decision Diagrams (DDDs) [102]. A DDD is a BDD-like data structure, where the

node labels are generalized to be difference constraints rather than just Boolean variables, with the

ordering of constraints induced by an ordering of clock variables. This constraint ordering permits
the use of local reduction operations, such as eliminating inconsistent combinations of two con-

straints that involve the same pair of clock variables. Deciding a DL formula represented as a DDD
is done by eliminating all inconsistent paths in the DDD. This is done by enumerating all paths in

the DDD and checking the satisfiability of the conjunction of constraints on each path using a con-

straint solver based on the Bellman-Ford shortest path algorithm. Note that each path can be viewed
as a disjunct in the Disjunctive Normal Form (DNF) representation of the DDD, and in the worst

case there can be exponentially many calls to the constraint solver. Quantifier elimination is per-

formed by the Fourier-Motzkin technique [49], which also requires enumerating all possible paths.
In contrast, our Boolean encoding method is general in that any representation of Boolean functions

may be used. Our decision procedure and quantifier elimination scheme use a direct translation to
SAT and Boolean quantification, respectively, avoiding the need to explicitly enumerate each DNF

term. In theory, the use of DDDs permits unbounded, fully symbolic model checking of TCTL;

however, the DDD-based model checker [102] can only check reachability properties (these can
express safety and bounded-liveness properties [1]).

UPPAAL2K and KRONOS are unbounded, symbolic model checkers that explicitly enumerate the

discrete component of the state space. KRONOS uses Difference Bound Matrices (DBMs) as the

symbolic representation [168] of the infinite component. UPPAAL2K uses, in addition, Clock Dif-
ference Diagrams (CDDs) to symbolically represent unions of convex clock regions [15]. In a CDD,

a node is labeled by the difference of a pair of clock variables, and each outgoing edge from a node
is labeled with an interval bounding that difference. Note that while KRONOS can check arbitrary
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TCTL formulas, UPPAAL2K is limited to checking reachability properties and very restricted live-

ness properties such as ª\Fg¹ .

RED is an unbounded, fully symbolic model checker based on a data structure called the Clock
Restriction Diagram (CRD) [161]. The CRD is similar to a CDD, labeling each node with the

difference between two clock variables. However, each outgoing edge from a node is labeled with

an upper bound, instead of an interval. RED represents difference formulas by a combined BDD-
CRD structure, and can model check TCTL formulas.

A fully symbolic version of KRONOS using BDDs has been developed by interpreting clock vari-

ables over integers [24]; however, this approach is restricted to checking reachability for the subclass

of closed timed automata1, and the encoding blows up with the size of the integer constants. Rab-
bit [18] is a tool based on this approach that additionally exploits compositional methods to find

good BDD variable orderings. In comparison, our technique applies to all timed automata and its
efficiency is far less sensitive to the size of constants. Also, the variable ordering methods used in

Rabbit could be used in a BDD-based implementation of our technique.

Many fully symbolic, but bounded model checking methods based on SAT have been developed

(e.g., [9, 114]). McMillan [100] has recently combined bounded model checking methods with an
interpolating theorem prover to perform unbounded model checking of a sub-class of infinite-state

systems that includes timed automata.

9.2 Background

We begin with a brief presentation of background material, based on papers by Alur [3] and Hen-
zinger et al. [71]. We refer the reader to these papers for details.

9.2.1 Timed Automata

A timed automaton Ò is a tuple �RÓ & Ó � &?Ô\&?Õ�&xÖG&�× ¡ , where Ó is a finite set of locations, Ó � BOÓ is

a finite set of initial locations,
Ô

is a finite set of labels used for product construction,
Õ

is a finite
set of non-negative real-valued clock variables,

Ö
is a function mapping a location to a DL formula

(called a location invariant), and
×

is the transition relation, a subset of Ó>�½Ø��ÅÙ�� Ô �ÆÓ , whereØ is a set of DL formulas that form enabling guard conditions for each transition, and Ù is a set of

clock reset assignments. A location invariant is the condition under which the system can stay in that

location. A clock reset assignment is of the form � � � � � � 5»� or � � � � � � , where � �+& � �-,ÚÕ and �
is an integer constant,2 and indicates that the clock variable on the left-hand side of the assignment

1Clock constraints in a closed timed automaton do not contain strict inequalities.
2The assignment Þ �]Û ÊÝÜ is represented as Þ �@Û ÊjÞ w È Ü . Wherever we use Þ � to denote a clock variable, Þ]ßOË .
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Figure 9.1: Example of a timed automaton. Reproduced from [3].

is reset to the value of the expression on the right-hand side. We will denote guards by ë & ë C &Z°Z°Z° .
Example 9.1 An example of a timed automaton is given in Figure 9.1.

For this example, Ó � �`X � & X C & XSq & XAvg� , Ó � � �`X � � , ÔM� � �1&)(à& � & Öa� , Õ � �L� C & �]qg� , Ö :>X � ; �%Ö :>XSvL; ��X�����
,
Ö :>X C ; ��Ö :>XAqL; � � C � � . The latter location invariant ensures that the transition labeled �

from XAq to XSv occurs within � time unit of the occurrence of
�
. Similarly, the guard ��q [ ² on the

transition from X�v to X � ensures that the time between that transition and the one labeled with
(

is at

least
²

units. _
Two timed automata are composed by synchronizing over common labels. We refer the reader to

Alur’s paper [3] for a formal definition of product construction. Note that in contrast to the definition
of timed automata given by Alur [3], we allow location invariants and guards to be arbitrary DL

formulas, rather than simply conjunctions over difference constraints involving clock variables.

The invariant
Öíì

for the timed automaton Ò is defined as
ÖÌì��ïî VGð�ñ � óZ�º�':>X¸; �9æ Ö :>X¸; � , where

óZ�º�':>X¸; denotes the Boolean encoding of location X . We will also denote a transition y ,ï×
asë �9æ ê , where ë is a guard condition over both Boolean state variables (used to encode locations)

and clock variables of the system, and ê is a set of assignments to clock and Boolean state variables.

Timed Guarded Commands

Henzinger et al. [71] show how timed automata can be expressed as timed guarded command pro-

grams. A guarded command is of the form ë �9æ ê , where ë is a guard condition over both

Boolean state variables (used to encode locations) and clock variables of the system, and ê is a set
of assignments to clock and Boolean state variables. In general, we have one guarded command

corresponding to each transition between two locations. A timed guarded command program corre-

sponding to a timed automaton is a pair :=c &xÖÌò ; where c is a set of guarded commands, and
Öíò

is
the program invariant defined as

Ö ò ��Öºì
.

We will use the timed guarded command program representation of a timed automaton where suit-

able.
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9.2.2 Timed ó Calculus and TCTL

We express properties of timed automata in a generalization of the � calculus called the timed �
( ô^� ) calculus. A formula õ of the ô-� calculus is generated by the following grammar:

õ>��� ��\ j Ó jL¥ õ j õ C w õ±q j õ C � õ±q j � ° õ j � \/° õ j�ö \/° õ (9.1)� is a specification clock variable (i.e., ��÷,�Õ ) and
\

is a formula variable used in fixpoint compu-

tation. The formula õ C � õ±q means that the formula õ C is true at the present state, and remains true
(as time elapses) until some transition is taken, at which time formula õoq becomes true; thus “

�
”

is essentially a next-state operator. The formula � ° õ is true in a state where õ is true after setting
specification clock variable � to zero. The expression � \/° õ stands for the least fixpoint of õ , where\

is a formula variable bound inside õ ; ö denotes the greatest fixpoint operator.

Henzinger et al. [71] show that the ô^� calculus can express the dense-real-time version of Com-

putation Tree Logic (CTL), Timed CTL (TCTL) [4]. TCTL generalizes CTL by allowing atomic
propositions to be any DL formula, and in addition contains formulas of the form � ° õ where � is

a specification clock variable and õ is a TCTL formula in which � appears free; the latter class

enables one to write time-bounded properties. We omit the details for brevity.

Several model checkers are specialized to check reachability properties. Using the notation of theô-� calculus, a reachability property is a formula of the formÓ � ! � k �9æ ¥ � \/°S� Ó � Ä^Ä w : �X�����6�V\ ; �
where Ó � ! � k is the initial set of states, and Ó � Ä­Ä characterizes the bad states; the formula evaluates to�X�g���

if no error state is reachable from any initial state.

9.3 Fully Symbolic Model Checking

Our model checking algorithm can be viewed as an implementation of one given by Henzinger
et al. [71], where we perform operations in QDL using Boolean methods. This algorithm checks

that a timed automaton Ò satisfies a specification given as a ô^� formula õ . The algorithm always

terminates, and generates a DL formula j õ j , such that, if Ò is non-zeno (i.e., time can diverge from
any state), then j õ j is equivalent to

Ö ì
.

The algorithm is fully symbolic since it avoids the need to enumerate locations by representing sets

of values of both Boolean state variables and clock variables as DL formulas. It performs backward

exploration of the state space and uses the following three special operators over DL formulas:

1. Time Elapse: Ó Cd÷ ÓKq denotes the set of all states that can reach the state set Ó�q by allowing
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time to elapse, while staying in state set Ó C at all times in between. Formally,Ó Cd÷ Ó]q °� � â'�àâ � � � rjÓKq�5 â�r , $ � � � <µ$�<�â �9æ Ó C 5�$ � � (9.2)

where Óü5�â denotes the formula obtained by adding â to all clock variables occurring in Ó ,
computed as Ó � � � 5Eâ�¶à� � & �-<@#�<@� � , where � C & � q &Z°Z°Z°�& � ! are the clock variables in Ó � (i.e.,

not including the zero variable � � ).
2. Assignment: Ó � ê � , where ê is a set of assignments, denotes the formula obtained by simul-

taneously substituting in Ó the right hand side of each assignment in ê for the left hand side.

Formally, if ê is the list ó C � � Ó C &Z°Z°Z°�& ó T � � Ó T & � C � � � �®ë 5�� C &Z°Z°Z°�& � ! � � � � � 5�� ! , where
each ó � is a Boolean variable, each � � is a clock variable, and for each � � ] , $�V �§4 or ��V �§4 ,
then Ó � ê �K� Ó � Ó C ¶�ó C &Z°Z°Z°�& Ó T ¶�ó T & � �)ë 5�� C ¶à� C &Z°Z°Z°�& � � � 5�� ! ¶à� ! �
Assignments are thus performed via substitutions of Boolean and real-valued variables by

expressions of the corresponding type. We use the techniques described in Section 8.3 to
perform these substitutions.

3. Weakest Pre-condition: ¹ D{ó ì Ó denotes the weakest precondition of Ó with respect to the
timed automaton Ò . Formally,¹ D{ó ì Ó ��Ö ì r
:�Ó w�øk ðúù ¹ D{ó k : Ö ì r Ó3;�;
where for a transition y � ë ��æ ê ¹ D{ó k :�Ó3; � ë7r Ó � ê �
Note that ¹WD'ó ì is defined using assignments and Boolean operations.

The model checking algorithm is defined inductively on the structure of ô^� formulas, as shown
below:

� j Ó j � ��Ö ì r Ó� jê¥ õ j � ��Ö ì r ¥�j õ j� j õ C w õ±q j � � j õ C j w j õ�q j� j õ C � õ±q j � � j : j õ C j w j õ±q j ; ÷ ¹ D{ó ì : j õ±q j ; j� j � ° õ j � � j õ j � �?� �I4g�� j � \�° õ j is the result of the following iteration:
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As can be seen from the algorithm description above, apart from Boolean operators, the main com-

ponents of the algorithm are: quantifier elimination in the time elapse operation, substitution of
state variables in an assignment, and the decision procedure used to check containment in fixpoint

computation. For a fully symbolic model checker that represents state sets as DL formulas, these
model checking operators can be defined as operations in QDL. We elaborate below.

Time Elapse

Consider the formula on the right hand side of Equation 9.2, the definition of the time elapse opera-

tor. This formula is not in QDL, since it includes expressions that are the sum of two real variables
(e.g., ��5§â ). However, it can be transformed to a QDL formula, by using, instead of â and $ ,
variables â and $ that represent their negations:

� â'� â�<@� � r ÓKq�5I: 2 â';3r , $ � â�< $�<@� � �9æ Ó C 5I: 2 $*; � � (9.3)

Formula 9.3 is expressible in QDL, since the substitution Ó � � � 5 : 2 â�;�¶à� �º& �M< #E< � � can be
computed as Ó � â�¶à� � � .3 This yields,

� â'� â�<@� � r ÓKq � â�¶à� � � r , $L: â�< $�<@� � �9æ Ó C � $?¶à� � � ;)� (9.4)

Finally, we can rewrite Formula 9.4 purely in terms of existential quantifiers:

� â%� âÿ<@� � r Ó]q � â�¶à� � � r ¥Ç� $L: $G<@� � r âÿ< $©r ¥ Ó C � $?¶à� � � ;)� (9.5)

A procedure for performing the time elapse operation therefore requires one for eliminating (exis-

tential) quantifiers over real variables from a DL formula. For this purpose, we use the quantifier
transformation technique described in Section 8.1.

In addition, we can exploit the special structure of Formula 9.5 so as to avoid introducing $ alto-
gether. Thus, we can avoid adding new quantified Boolean variables encoding predicates involving$ .

3Note that substituting Þ w by � or � can be viewed as shifting the zero reference point to a more negative value, thus
increasing the value of any clock variable relative to zero (e.g., [9, 102]).
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Consider the inner existentially quantified DL formula in Formula 9.5, reproduced here:

� $L: $�<@� � r âÿ< $�r ¥ Ó C � $9¶à� � � ;
Grouping the inequality âÿ< $ with the formula ¥ Ó C � $?¶à�K� � , we get:

� $�� $G<@� � r : â�<�� � r ¥ Ó C ; � $9¶à� � � � (9.6)

Finally, treating â as a clock variable, we can revert back to $ from $ , transforming Formula 9.6 to
the following form:

� $ � $ � � � r7: â�<@� � r ¥ Ó C ;�5�$ � (9.7)

Formula 9.7 is a special case of the formula � ² given in Equation 8.13. Therefore, we can employ
the optimization described in Section 8.4.2.

Checking Containment

Containment of one set of states, Ó ! �+û , in another, Ó µ V 8 , is checked by deciding the validity of the

DL formula Ó °� Ó ! �+û �9æ Ó µ V 8 (or equivalently, the satisfiability of ¥ Ó ). The satisfiability of ¥ Ó
is decided using the technique of Section 8.2.

Reachability Analysis

A simple but very useful special case of model checking is to compute the set of reachable states of

the timed automaton. This can be used for checking safety properties.

Let Ó � denote a DL formula characterizing the initial set of states of a timed automaton Ò . The

following three-step algorithm computes a DL formula Ó reach representing the set of reachable states
of Ò .

1. Ó ! �*û � � Ó � .
2. Do

(a) Ó µ V 8 � � Ó ! �+û
(b) Ó]0|� � posttime :�Ó µ V 8 ; � Let time elapse �
(c) Ó]0ê0K� � post

ò :�Ó]0S; � Fire a transition �
(d) Ó ! �*û � � Ó µ V 8 w Ó 0 0 � Union of sets �

While ( Ó µ V 8 ÷� Ó ! �+û ) � Check termination �
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3. Ó reach � � Ó ! �+û .

The symbolic “next-state” operators posttime and post
ò

are defined as follows:

posttime :�Ó|; °� � â{�àâ ��4 r Ó 2 â�r , $ � 4 <µ$�<�â ��æ Ö ì 2 $ � � (9.8)

where Ó 2 â denotes the formula obtained by subtracting â from all clock variables occurring inÓ , computed as Ó � � � 2 â�¶à� �º& ��<N#=<§� � , where � C & �]q &Z°Z°Z°�& � ! are the clock variables in Ó � (and

similarly for
Öíì 2 $ ).

Intuitively, â is the time elapsed since the last transition fired. The inner quantified formula in Equa-

tion 9.8 ensures that while allowing time to elapse, the values of clock variables must always respect
the invariant

Ö ì
. The formula obtained after eliminating quantifiers from posttime :�Ó3; represents all

states reachable from Ó by allowing some duration of time to elapse within the constraints imposed

by
Öºì

.

The operation post
ò

, when applied to a set of states Ó , returns the set of states reached from Ó by
making some transition. Formally,

post
ò :�Ó3; °� øh�� F�����i ðúù :�ÓQr�ë¶; � ê � (9.9)

9.3.1 Implementation and Results

We implemented a model checker called TMV that uses BDDs to represent Boolean functions and
incorporates all the optimizations described in Section 8.4. The model checker is written in the

O’Caml language and uses the CUDD package [47] for BDD manipulation.

We have performed experiments comparing the performance of our model checker for both reacha-

bility and non-reachability ô^� properties. For reachability properties, we compare against the other
unbounded, fully symbolic model checkers, viz., a DDD-based checker (DDD) [102] and RED ver-

sion 4.1 [161], which have been shown to outperform UPPAAL2K and KRONOS for reachability

analysis. For non-reachability properties, such as checking that a system is non-zeno, we compare
against KRONOS and RED, the only other unbounded model checkers that check such properties.

As an illustrative example, we use Fischer’s protocol for mutual exclusion. Tools such as DDD and

RED that we compare against have been shown to perform well on this example for reachability

properties. The automaton for the # th process in this protocol is shown in Figure 9.2. We ran two
experiments with this example. The first experiment compared our model checker against DDD and

RED, checking that the system preserves mutual exclusion (a reachability property). In the second

experiment, we compared against KRONOS and RED for checking that the product automaton is
non-zeno (a non-reachability property). All experiments were run on a notebook computer with a 1
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GHz Pentium-III processor and 128 MB RAM, running Linux. We ran DDD, KRONOS, and RED

with their default options. For our implementation, we turned off dynamic variable reordering in
CUDD. To come up with a static variable ordering, we classified the BDD variables in our Boolean

encoding as follows. The first class, ý	��
 , consists of variables encoding the shared integer id. For
each # , class ýQ:�#º; contains the BDD variables encoding locations and clock constraints for process

# . Finally, class ýQ:�# & $U; encodes predicates relating clock variables from processes # and $ . We used

a static variable ordering that groups together variables in the same class, places class ý���
 at the
top, orders ý?:�#+; before ýQ:�$�; if # � $ , and places ýQ:�# & $�; right after ýQ:�$�; for $ [ # . New BDD

variables added during model checking are inserted into the order at positions that depend upon the

class they fall into. The same static variable order was used for the corresponding Boolean variables
and difference constraints in DDD.

x[i]<=10
id!=i

x[i]>10 & id=i

x[i]:=0; id:=iid:=0

idle[i]
rdy[i]

x[i]<=10

id=0   x[i]:=0

crit[i] wait[i]

Figure 9.2: Fischer’s mutual exclusion protocol. The timed automaton for the # th process is
shown. Edges are labeled with guards and assignments, omitting either where unnecessary.

Table 9.1 shows the results of the comparison against DDD and RED for checking mutual exclusion
for increasing numbers of processes. For DDD and TMV, the table lists both the run-times and

the peak number of nodes in the decision diagram for the reachable state set. We find that DDD
outperforms TMV due to the blow-up of BDDs. In spite of the optimizations of Section 8.4, the

peak node count in the case of DDD is less than that for TMV for the larger benchmarks. In

particular, in addition to eliminating infeasible paths as TMV does, the local reduction operations
performed by DDD during node creation can eliminate unnecessary DDD nodes without adding

any time overhead. For example, DDD can reduce a function of the form ó C r7óXq�r�óXv under the

transitivity constraint
� ó C r�óLq � �9æ óLv to simply the conjunction ó C r/óXq . The BDD Restrict

operator cannot always achieve this as it is sensitive to the BDD variable ordering. Furthermore,

TMV contains many other BDDs, such as those for the transitivity constraints, to which we do not
apply the Restrict optimization due to its runtime overhead. Finally, in comparison to RED,
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we see that while TMV is faster on the smaller benchmarks, RED’s superior memory performance

enables it to complete for 7 processes while TMV runs out of memory.

Number of RED DDD TMV
Processes Time Time Reach Set Time Reach Set

(sec.) (sec.) (peak nodes) (sec.) (peak nodes)
3 0.21 0.06 130 0.11 101
4 1.13 0.14 352 0.38 316
5 4.53 0.33 854 1.85 1127
6 15.11 0.90 2375 17.41 4685
7 46.31 2.65 6346 * *

Table 9.1: Checking mutual exclusion for Fischer’s protocol. A “*” indicates that the model
checker ran out of memory.

Table 9.2 shows the comparison with KRONOS and RED for checking non-zenoness. The time for

KRONOS is the sum of the times for product construction and backward model checking. We notice
that while KRONOS does better for smaller numbers of processes, the product automaton it con-

structs grows very quickly, becoming too large to construct at 6 processes. The run times for TMV,

on the other hand, grow much more gradually, demonstrating the advantages of a fully symbolic ap-
proach. For this property, the BDDs remain small even for larger numbers of processes. Thus, TMV

outperforms RED, especially as the number of processes increases. These results indicate that when

the representation (BDDs) remains small, Boolean methods for quantifier elimination and deciding
DL can outperform non-Boolean methods by a significant factor.

Number of KRONOS RED TMV
Processes Time (sec.) Time (sec.) Time (sec.) Reach Set

(peak nodes)
3 0.03 0.28 0.24 28
4 0.23 1.30 0.44 39
5 1.98 5.05 0.80 54
6 * 17.80 2.15 69
7 * 57.95 6.61 88

Table 9.2: Checking non-zenoness for Fischer’s protocol. A “*” indicates that KRONOS exited

with an “out of memory” error.
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Discussion

The results in this section, although limited, indicate that our model checker based on a general

purpose BDD package can outperform methods based on specialized representations of DL formu-

las. The drawback of our BDD-based implementation is its poor memory performance on some
examples. However, there is scope for improving our implementation, especially in finding more

efficient ways of eliminating unnecessary BDD nodes as is possible with DDDs. Furthermore, note

that the memory problems we face arise from our use of BDDs, while the techniques proposed in
this thesis can make use of any representation of Boolean functions. In particular, a SAT-based

implementation of our method might better handle the growth in the number of Boolean variables.

While Fischer’s protocol is an interesting toy example, the real test of our model checker is how

it performs on practical problems. In the next section, we describe an application of our model
checker to the verification of timed circuits.

9.4 Verification of Timed Circuits

Timing assumptions are commonly used in the design of both asynchronous and synchronous cir-

cuits in order to improve performance. Examples include the GasP circuits [150], the Global STP
circuit in the Intel Pentium 4 processor [72], and the RAPPID instruction decoder [143]. However,

the use of timing assumptions comes at an added verification cost: The circuit behavior must be
verified under these constraints, and furthermore, the constraints must themselves be verified pre-

and post-layout.

A promising recent approach to this verification problem is to use a design methodology based on

relative timing [145]. In the relative timing (RT) paradigm, timing assumptions are made explicit,
by adding constraints on the relative ordering of signal transitions to an otherwise untimed design.

In contrast, other methods use implicit timing assumptions, where the timing assumptions are either

implicit in a design style (such as Burst-Mode techniques, e.g. [115]) or imposed at the gate-level in
the circuit model (such as metric timed circuit design [105]). Using the RT paradigm, verification

proceeds in two steps:

1. Checking correctness under timing constraints: RT constraints are identified and the correct
operation of the circuit is verified under those constraints. Typically, one either checks that

the implemented circuit
Ö

only exhibits behaviors of a specification 
 , or that it satisfies a

specific property õ formulated in a suitable temporal logic.

2. Verifying that the circuit obeys timing constraints: The identified RT constraints are them-

selves verified using standard simulation or static timing analysis techniques. The constraints
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can be verified pre-layout to ensure that they have sufficient margin based on expected de-

sign parameters. The constraints also must be validated post-layout with extracted data to
ensure that place and route, sizing, and buffer insertion have not skewed the delays beyond

acceptable values.

The RT approach of explicitly stating timing constraints has the advantage that it applies to many
asynchronous design styles [145]. It supports a design philosophy of adding timing constraints

incrementally and of giving the designer flexibility in using timing constraints. Also, unlike gate-

level metric timing, it does not rely on conservatively set min-max bounds on gate delays.

However, current RT-based verification techniques (e.g., [85, 121]) fall short in three respects. First,
not all timing constraints can be expressed as the relative ordering of signal transitions. Secondly,

current verification tools are yet to scale up to relatively large circuits and achieve the success

obtained by symbolic methods for untimed systems (e.g., [33]). Finally, previous work on relative
timing-based verification [85, 121] does not satisfactorily address the problem of verifying that the

circuit obeys the constraints.

In this section, we address these shortcomings by making the following novel contributions:

� A generalized notion of relative timing: We introduce the concept of a generalized relative

timing (GRT) constraint, one that specifies a relative ordering not just between events, but

between the time intervals between pairs of events. This generalization adds the capability

to model some metric timing information which is formally modeled using real-valued clock
variables. The resulting circuit model is a timed automaton. However, since metric timing

constraints are typically far fewer than non-metric GRT constraints, we employ relatively few
clock variables.

� Application of fully symbolic verification methods: We use the new fully symbolic model
checking algorithm introduced earlier in this chapter. Along with the modeling methodol-

ogy described above, this enables us to verify circuits that are significantly larger than those

verifiable with other methods. As an example we have efficiently analyzed the Global STP
circuit [72], finding an error in the published circuit, and then successfully verifying a fixed

version.

This section is organized as follows. We introduce the idea of generalized relative timing in Sec-
tion 9.4.2. In Section 9.4.3, we describe how timed circuits are formalized as timed automata. Case

studies are presented in Section 9.4.4.
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9.4.1 Previous Work

Several techniques have been proposed in the past � Ä years to model timing constraints in circuit

design. A common approach is to specify upper and lower bounds on the delay between when a

transition is enabled and when it fires. Formalisms such as timed transition systems [70], timed
Petri nets [128] and timed event and event/level structures [16, 101, 105] are used for this purpose,

and the constraints are referred to as gate-level metric timing constraints. This is an intuitive model,

but since the timing information is provided at the gate-level, verification tools based on this model
are restricted to relatively small circuits. Even with the use of partial order reduction methods

(e.g., [16, 101]), the size of the untimed state space still presents a performance bottleneck. The
min-max delay bounds can impose unnecessary timing constraints on unrelated parts of the circuit.

Furthermore, designers must be relatively conservative on how they set the bounds, since these can

depend on post-layout information.

Another formalism for modeling timed systems is that of timed automata [5], which is more expres-
sive than timed transition systems [6], in that it can model “more global” timing constraints. Maler

and Pnueli [94] model asynchronous circuits using timed automata, but their model is also at the

gate-level, requiring one clock variable per gate. Thus, it suffers from the same scaling problems
as the afore-mentioned metric timing methods. Our work also uses timed automata as the model-

ing formalism, but in an entirely different way: We model timing constraints at a higher level of

abstraction, and introduce clock variables only where necessary.

The observation that enables us to selectively use clock variables is that most timing constraints
are on pairs of events that have a common start event, i.e., a “point-of-divergence.” A similar

observation was made by Negulescu and Peeters [107, 108], who present the notion of a chain

constraint, which specifies that one sequence of transitions must occur before another with both
sequences sharing a common prefix. A “point-of-divergence” constraint is more restrictive than a

chain constraint in a logical sense (it specifies a relative ordering for all intermediate sequences of
transitions between the start and end events), but for the same reason, it is more compact to specify.

Moreover, we can model more general kinds of constraints, as we describe in Section 9.4.2.

There has been prior work on RT-based verification, with a focus on automatically generating con-

straints. Peña et al. [121] present an approach based on the notion of lazy transition systems. Their
approach automatically and iteratively generates RT constraints to rule out spurious counterexam-

ples; however, the process of adding RT constraints relies on knowing min-max bounds on gate

delays. Kim et al. [85] present a verification methodology based on a different technique of au-
tomatically generating RT constraints, but do not address the problem of verifying that the circuit

obeys the constraints. While we do not automatically generate timing constraints, our work targets
a more general class of timing constraints, and provides ways of verifying that the constraints hold

for the circuit.
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Clarisó and Cortadella [40] present a gate-level modeling approach that represents gate delays by

symbols, rather than by constant bounds. Thus, this model is more expressive than metric timing.
However, the verification problem is even harder than for timed transition systems, and the approach

is restricted to very small circuits.

In the context of asynchronous circuits, there has been much work on algorithms for model checking

timed systems; see, for example, the work by Myers, Yoneda, et al.(e.g., [16, 101, 105, 167]). The
main difference with our work is that these methods are symbolic in the real-valued part, but explicit-

state in the Boolean part; hence, in spite of incorporating partial-order reduction, large circuits are
often outside their capacity.

There has also been work on methods that use compositional reasoning or abstraction to achieve
better scalability (e.g., [170]). Our focus, in this thesis, is on demonstrating scalability without using

compositional reasoning or abstraction; however, nothing precludes using the techniques presented
herein along with such methods.

9.4.2 Modeling Timed Circuits

A timed circuit is a triple :=s & Ù & Ò�; , where s is a set �LÀ C & À�q &Z°Z°Z°�& À ! � of circuit signals, Ù is a set
��D C & DXq &Z°Z°Z°�& D & � of rules, and Ò is a set ��� C & �Zq &Z°Z°Z°�& �7ÆU� of timing constraints. The set of initial

values of signals in s is specified as a Boolean formula
k��

.

The circuit signals, which are the state variables of the system, are comprised of inputs, outputs,
and intermediate signals. A transition (also referred to as event) is a change in logic level of a signal.

Transition À ��� corresponds to the transition of À � from
4

to � , and À � å to the transition from � to
4
.

We will use the symbol � � to refer to either transition for signal À � .
The untimed circuit behavior is defined by the set of rules Ù , which comprises � �N² � rules, one
for each signal transition.4 The

²
rules for the # th signal À � are written as×�� � ���� À ��� and

×�� � ���� À � å
where

×�� � is a Boolean formula over s indicating the enabling condition for transition � � to fire.

Although we have only introduced two events per signal (corresponding to up and down transitions),

it would be straightforward to add finitely-many instances of each event. That is, for a given event
� � , we can keep track of not only each instance of � � , but also every second, third, ...,

ø th instances

of � � for a constant
ø

, with the use of additional state bits to keep track of a “count.” However, we
have rarely needed to track more than one instance of each event.

We will assume an inertial gate model (but without bounds on gate delays). Thus, it is allowed for
a transition that was enabled to become disabled without having fired, as long as the circuit satisfies

4Notice that this is similar to the language of production rules [96].
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its specification. In the absence of an explicit timing constraint involving transition � � , the time

taken for � � to fire after being enabled can be any value in
� 4p& ·@; ; i.e., rules, by themselves, are

purely untimed.

Generalized Relative Timing

The novel aspect of how we model circuits is in the formulation of generalized relative timing

constraints, which combine relative timing with a capability to incorporate some metric timing

information.

Let ¬�:�� �J& � � ; denote the time interval between an occurrence of � � and the occurrence of � � imme-

diately preceding it.

The following definition formalizes the notion of generalized relative timing (GRT):

Definition 9.1 Let � � & �'0� & � � & � T be four transitions such that � � ÷� � T . Then, a generalized relative

timing constraint on � �+& �'0� & � �'& � T is of the form:

For all occurrences of transitions � � and � T ,¬/:�� �+& � � ; � ¬�:�� 0� & � T ;35 Ö
where Ö is a rational constant.

It is sometimes useful to use a non-strict inequality ( < ) instead of the strict inequality used above,

or to drop one of the ¬�: ��&Z� ; terms in the inequality so as to impose an upper or lower bound on the

time interval between events.

Point-of-divergence constraint. An extremely common sub-class of GRT constraints are those
such that � ��� � 0� , Ö � 4 , and the same occurrence of � � immediately precedes all occurrences of

both � � and � T . In this case, the timing constraint specifies that measuring time from the point � �
occurs, � � must always occur before � T . We will refer to this special case as a point-of-divergence

(POD) constraint. (The name comes from the divergence in two paths starting from transition � � .)
We write a POD constraint as � � � � ��� � T .
Typically, � � and � T causally depend on � � . However, note that this need not be the case! By the

definition of ¬�:�� �J& � � ; , the point-of-divergence in the constraint is simply the occurrence of � � that
is closest in time to � � and � T , which need not have caused either of them.

Note also that the concept of a POD constraints is essentially the same as that of the original RT

constraint, since, in order to implement a relative ordering between events, one would have to trace

them back to a point-of-divergence; hence the name generalized relative timing.

Metric timing constraints. The presence of Ö in the definition allows us to express a limited form of
metric timing constraints. In particular, we can express constraints of the form Ö C <�¬�:�� �+& � � ;¶<�Ö%q .
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Note, however, that we cannot directly specify the min-max timing assumptions used in timed tran-

sition systems [70] and related formalisms, since that would require constraining the delay between
when a transition is enabled and when it fires.5

Compound timing constraints. In some cases, such as the Global STP circuit that is our primary

case study, we have observed the need for compound timing constraints formed as an XOR of two

(simple) timing constraints. Such a constraint is written as � � XOR � � . We have needed such
compound constraints to reason about relative ordering between instances of events from different

cycles of circuit operation. Further discussion of such constraints is deferred to the case study in
Section 9.4.4.

In all our case studies to date, we have found the class of generalized relative timing constraints
to be sufficient. In fact, most constraints tend to be simple (i.e., not compound) POD constraints.

Metric timing constraints are used only when there is explicit use of delay values in the design.

We present two examples to illustrate our methodology for modeling timing constraints.

Example 9.2 Consider the implementation of a C-element using three AND gates and an OR gate,

as shown in Figure 9.3.

c

ab

ac

bc

a

b

Figure 9.3: Implementation of a C-element

 and ! denote the input signals, and " is the output. It is easy to see that in order to work correctly, it

is sufficient for the circuit in Figure 9.3 to respect the following two fundamental mode constraints,
formulated here as POD constraints: " ���  " �#� ! å and " ��� !$" �#�  å . _
While POD constraints suffice for the preceding example, in general, we might need a more expres-

sive timing constraint. The following example demonstrates the need for increased expressiveness.

Example 9.3 Figure 9.4 depicts a simple buffer stage element generated from the CASH compiler

that compiles ANSI-C programs into asynchronous circuits [159]. For correct operation, this circuit
relies on two timing assumptions: data transfers between stages use a bundled data protocol, and a

stage incorporates a matched delay element.
5However, note that the formalism that we use, viz. timed automata, is general enough to express such constraints [6].
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DELAY

REG

AC

Creq_in

data_in

ack_in

data_out

ack_out req_out

data_in_aux

enable

trigger

Figure 9.4: Buffer stage from CASH compiler

The matched delay can be formalized with the following two timing assumptions � CASHC and � CASHq :¬/:�%  '&� (*) �]& %  '&� (*)  ,+.- � ; � ¬�:0/ )1 !32'/ �]& &543(76�6 / 4 � ; ( � CASHC )¬/:�%  '&� (*) å & %  '&� (*)  ,+.- å ; � ¬�:0/ )1 !32'/ �]& &543(76�6 / 4 � ; ( � CASHq )

To ensure that the stage respects the bundled data protocol, we additionally need to impose two POD

constraints: / )1 !32'/ ��� %  '&� 8,+�& �#� 4 /59 87+.& � , and / )1 !32'/ �%� %  :&. 8,+�& å � 4 /59 87+.& � .
_

Note that the matched delay assumptions � CASHC and � CASHq in Example 9.3 can be reformulated as

POD constraints by tracing back to the / ); !325/ signal of the previous stage. However, this breaks
modularity, since the timing constraints involving signals of a module reference internal signals of

another module. In general, we have found that while it is often possible to reformulate metric

timing constraints as POD constraints, it is at the cost of modularity.

Verifying Timing Constraints

The verification methods presented in this chapter prove that the timed circuit design is correct given
the set of timing constraints Ò . However, it does not prove that the constraints actually hold given

the true delays in the design. Timing constraints can be constructed that do not hold in a design,
as will be shown later in Section 9.4.4. Therefore, these must be proved separately, in addition to

verifying the logical functionality of the circuit. We briefly describe this process to show a consistent

design flow exists for our verification method.

Given a POD constraint � �»� � �<� � T we must prove that any sequence of events from � � to
� � always occurs before the events from � � to � T . This is accomplished by tracing and timing the
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maximum and minimum delay paths from the POD to the end points, and comparing the results. We

compute the maximum delay of the left path ( � �>= � � ) and the minimum delay for the right path
( � � = � T ). This ensures that no combination of delays will cause � T to occur before � � . The same

conditions exist for the general form of constraints ¬�:�� �J& � � ;"<�¬/:�� 0� & � T ;'5�Ö where the tracing may
occur to different starting points, and a constant delay is added when the path delays are compared.

We illustrate static timing validation using the circuit in Figure 1. There are two POD constraints, the
first of which is " �%�  " �?� ! å . Validating this constraint requires evaluation of the max-delay

path from " � to  " � . This is simply the maximum rise delay through the gate corresponding to  "
since signal  is already asserted. Similarly, the minimum delay path from " � to ! å , which depends

on how the gate is connected to its environment, is calculated and compared with the maximum

rising delay of the gate  " to validate this constraint. The second constraint " �O� !@" �A�  å is
similarly validated.

The capability of automatically tracing and timing maximum and minimum delay paths, and com-

paring the results is supported in most commercial timing tools such as PrimeTime [152]. Therefore,

it is possible to automatically validate all the constraints in Ò . However, some complications arise
in automatically tracing signals through sequential elements (such as the C-element of Figure 9.3),

since static tools may not correctly cut feedbacks that exist solely to retain state. Fully automatic

translation and validation of GRT constraints using static timing tools is left to future work.

The timing constraints used in this chapter were identified manually, many with the assistance of a
relative-timing enhanced verification engine [144]. Automatic generation of GRT constraints is left

to future work.

9.4.3 From Circuits to Timed Automata

We describe how we formally model timed circuits as timed automata. The timed guarded com-

mands representation of timed automata is used, as it is more intuitive in the current context.

The translation of a timed circuit :=s & Ù & ÒQ; to a timed automaton Ò is performed in three steps.

Initialization. The set of Boolean state variables of Ò is initialized to be the set of signals s , while

the set of clock variables
Õ

is initialized to
�
.

Each rule of the timed circuit gets translated to a corresponding guarded command of the timed

automaton; thus, there is exactly one guarded command for each transition � . For transition � with
corresponding rule

×1� �� � , we initialize its guarded command to be
×3���9æ � .

The invariant
Ö ì

is initialized to be
�X�g���

, and Ó � is set to be
k �

(the set of initial signal values).

Adding auxiliary variables. For each timing constraint, we add an additional Boolean or clock
variable to store timing information.
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Let � � be the # th timing constraint.

If � � is a POD constraint, we only introduce a fresh Boolean state variable
(g�

into s .

Suppose � � is not a POD constraint, and is of the form ¬�:�� �+& � � ;o<�¬/:�� 0� & � T ;×57Ö . Then we not only

introduce a fresh Boolean state variable
(L�

into s , but also add two clock variables � � � � � é and � � v� � �+W
to
Õ

.

Encoding timing constraints. We encode timing constraints in sequence, running through the setÒ � ��� C & �Zq &Z°Z°Z°�& �7ÆU� . As we encounter timing constraints containing a transition � , we update the

guarded command corresponding to it.

Suppose we are encoding timing constraint � k , which mentions transition � . Let the current form of

the guarded command B for � be ë ��æ ê .

How we modify B depends on whether the timing constraint is a POD constraint or not, and on the
role of � in the constraint, as elaborated below:

� POD constraint: Suppose the constraint is of the form � �H� � ��� � T . There are three cases,

with B being modified differently in each case:

Case � � � � : B�� � ë ��æ ê 0 ,
where ê�0 � ê}|E� ( k � � .

Case � � � � : BE� � ë �9æ ê�0 ,
where ê�0 � ê}|E� ( k å � .

Case � � � T : B�� � ë�0 �9æ ê ,

where ë 0 � ë r ¥ ( k .
The intuition is that we take the product of the timed automaton (constructed so far) with a

two-state monitor automaton as shown in Figure 9.5(a) to enforce the ordering specified by
the POD constraint. The variable

( k encodes the states of this automaton. Transition � T can

only occur in the state labeled ¥ ( k ; i.e., the state in which
( k is  J¡1£�¤ � .

� Non-POD constraint: Suppose the constraint is of the form ¬�:�� �+& � � ;�< ¬�:��'0� & � T ;©5�Ö . To

encode this constraint, we introduce a non-negative constant Ö 0 such that ¬�:�� �J& � � ;�<�Ö 0 5
Ö and Ö 0 <n¬�:�� 0� & � T ; . The value of Ö 0 is usually known at design time since a non-POD

constraint arises only in design styles that make use of some form of metric timing, such the

matched delay assumption used in the circuit in Figure 9.4.

We have four cases to consider:

Case � � � � : B�� � ë ��æ ê 0 ,
where ê�0 � ê}|E� ( k �×& � � � � � é � �ä4 � .
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Figure 9.5: Monitor automata for timing

Case � � � 0� : B�� � ë �9æ ê 0 ,
where ê�0 � êN|��L� � v� � � W � �ä4 � .

Case � � � � : BE� � ë �9æ ê�0 ,
where ê�0 � êN|�� ( k å � .

Case � � � T : B�� � ë"0 �9æ ê ,

where ë 0 � ë
rü� � v� � � W � Ö 0 .
In addition, we update the invariant

Ö ì
of the timed automaton by conjoining the current

invariant with the DL formula
( k ��æ � � � � � é <�Ö=5 Ö{0 .

The intuition behind this translation is as follows. First, notice that the Boolean variable
( k

encodes, as before, the state of a monitor automaton, depicted in Figure 9.5(b). However, in
this case, when

( k is
�X�����

, � � � � � é cannot progress beyond Ö�5 Ö�0 , as enforced by the invariantÖ ì
. Since the clock variable � � � � � é is reset when � � fires, this forces � � to occur within Ö=5 Ö 0

time units of � � . Secondly, clock variable � � v� � �ºW is reset when �%0� fires, and the augmented
guard for � T ensures that � T can only fire Ö�0 time units after �%0� . The above two mechanisms,

in conjunction, ensure that the timing constraint � k is enforced.

The extension of the translation to handle compound timing constraints is straightforward; a XOR

of two constraints can be encoded by making a non-deterministic choice to either monitor one

constraint or the other. The monitor automaton for the compound constraint � × XOR � k , where
� × °� � × ë � � × ì � � × � and � k °� � k ë � � k ì � � k � is shown in Figure 9.5(c). We omit the details.

Example

Consider the circuit in Figure 9.4. The rule corresponding to the transition &�4;(,6�6 / 4 � is

¥ &543(,656 / 4 rX/ ); !;25/ �� &�43(76�6 / 4 �



156 CHAPTER 9. MODEL CHECKING AND TIMED CIRCUITS

Timing constraints � CASHC and � CASHq both mention the transition &543(76�6 / 4 � .

Following the translation scheme described in this section, we introduce
î

clock variables �ZY\[^]\_�`HY � � acb ��dcd Y b � ,
� 
 ] a ] � [ � � 
 ] a ] � [ ]\egf � , and � 
 ] a ] � [ � � 
 ] a ] � [ ]\egf � . The final guarded command for &543(76�6 / 4 � is

¥ &�4;(,656 / 4 rX/ )1 !;25/6r
:��3Y\[^]\_�`HY � � acb ��dcd Y b � � Ö 0 ; ��æ &543(,656 / 4 �

where Ö 0 is the delay corresponding to the delay element in the figure.

The invariant
Ö ì

is the Boolean formula

: ( C �9æ � 
 ] a ] � [ � � 
 ] a ] � [ ]\egf � � Ö 0 ;3r : ( q �9æ � 
 ] a ] � [ � � 
 ] a ] � [ ]\egf � � Ö 0 ;
( C and

( q are set by %  '&� (*) � and %  '&� (*) å respectively, and are reset by %  '&. (*)  ,+.- � and
%  :&. (�)  ,+1- å respectively. Thus, our encoding simply formalizes the constraint that the delay
through the buffer is less than that of the delay element.

9.4.4 Case Studies

We have applied our model checker, TMV, to several case studies. The main industrial case study is

a published version of the Global STP circuit, a self-timed circuit used in the integer unit in the Intel

Pentium 4 processor [72]. Other case studies include the GasP FIFO control circuit [150], STAPL
circuits [116], and the STARI circuit [64].

Experiments reported on here were run on a Linux workstation with a
²

GHz Pentium 4 processor

and � GB of memory.

Global STP Circuit

The Globally Reset Domino with Self-Terminating Precharge (Global STP) circuit [72] is a self-

resetting domino circuit used in the integer unit of the Pentium 4 processor. The circuit uses both
footed and unfooted domino inverters, shown in Figure 9.6. Figure 9.7 is a hierarchical, gate-level

depiction of the Global STP circuit. The circuit we discuss here, shown in Figure 9.7, is the simplest

form of the published circuit [72], with N-logic blocks replaced by wires, and static blocks replaced
by inverters; our verification methods apply to the more general circuits as well.

The top-level circuit is shown in Figure 9.7(d), with the input "�h being a ´ -GHz clock and the

output being a delayed version of the same clock. In the beginning of the clock cycle, the last footed

domino gate is being reset, while the first three STP stages go through an evaluation. After the
precharge of the last domino gate has been turned off, the evaluate signal propagates to the output,

where it is held until the next cycle. Interestingly, note that the three STP stages are reset in the
same cycle in which they evaluate.
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Figure 9.6: Unfooted and footed domino inverters
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Figure 9.7: Global STP circuit

This circuit relies on a number of timing constraints to ensure correct operation. We were able to

formulate all these timing constraints either as POD constraints or as a XOR of two POD constraints.
We discuss some of the more interesting timing constraints here.

Consider the # th STP stage, for all # , �%� &)²U&)î � (refer to Figure 9.7(a)). Short circuit current in the

domino inverter must be avoided by ensuring that the pullup and pulldown transistors are not both

conducting. This is avoided with the following POD constraint that does not allow the pullup to
assert until after the pulldown has been turned off. This constraint states that for stage i:j5kml , the

delay of a clock phase must be shorter than the delay through the n�o.i3l block:

"�h ��� i,j�k%# ° % (*) å � i,j�k%# ° 4 /;p ( å ( � GSTPC � � )

The pulse width of the outputs in the n�o.i stage of Figure 9.7(b) are determined by the delay through
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the output buffers and the self-resetting loop. The following constrains the minimum pulse width

on n�o1i5q ° 4 q :
n�o1i�q ° 4 q æ ��� n�o1i5q ° 4 q �#� n�o1i5q ° 4 qèæ å ( � GSTPq )

Next, consider the footed domino inverter in Figure 9.7(d). The reset phase must terminate before

the data is removed to guarantee the domino gate correctly latches data. Tracing the paths from the
clock, we can express this in terms of the following ordering between two sequences of transitions:

"*h � n�o.i3l ° 4 l �'r k ° s "*t å r k ° s "*t[æ �:r k ° 9 å r k ° s "�t ��
"�h � i:j5kml ° % 8,+�& � i,j�k.q ° % 87+.& � i:j5k.u ° % 8 æ å i,j�k�u ° h sv� i:j5k.u ° 4 /;p ( å i,j�k�u ° % 8 æ � i:j5k.u ° % 8,+�& å

This ordering is enforced with the following constraint:

"*h ��� r k ° s "*t �#� i:j�k�u ° % 8,+.& å ( � GSTPv )

To prevent incorrect overlap of the reset of the domino gate in each STP stage we need a constraint
stating that i:j5k�# ° 4 /;p å triggered by the previous rising edge of "*h must occur before i:j�k%# ° h s>� trig-

gered by the current rising edge of "�h . This is a multi-cycle constraint, which when written in terms
of a sequence of transitions, is "�h � i,j�k%# ° 4 /;p � i:j5kU# ° 4 /1p å � "�h � "�h å "�h � i,j�k%# ° % (*) � i:j�k%# ° % 8 æ å i,j�k%# ° h sw� .

We can rephrase this multi-cycle constraint as a compound timing constraint � GSTPx � � XOR � GSTPy � � ,

where � GSTPx � � and � GSTPy � � are two POD constraints given below:

"*h ��� i:j5k�# ° 4 /1p å � i:j5k�# ° h s>� ( � GSTPx � � )

"*h ��� i:j5k�# ° 4 /1p å � "�h � ( � GSTPy � � )

To see why this is so, let us perform a case analysis. The first case is when the second instance

of transition "�h � occurs before i:j5kU# ° 4 /1p å . In this case, the same instance of "�h � precedes both
i:j5k�# ° h sw� and i:j5kU# ° 4 /1p å , and hence we can simply write it as the POD constraint � GSTPx � � . However,

if the second instance of "�h � does not precede i:j�k%# ° 4 /1p å , it simply means that i,j�k%# ° 4 /;p å occurs

before "�h � fires again; i.e., � GSTPy � � holds, and so does the multi-cycle constraint.

Finally, consider the domino inverter in the LP stage, depicted in Figure 9.7(c). To avoid a short-
circuit in this inverter, the following constraint is necessary:

"*h ��� r k ° s "*t[æ å � n�o1i;l ° 4 l å ( � GSTPÃ )

In all, we needed
î'î

timing constraints, as shown in Table 5.6 (we count a compound timing con-
straint as a single constraint). We model checked the circuit to verify the absence of short-circuits
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in all the domino inverters. The model checker’s run-time was within a few minutes (see Table 5.6)

and memory consumption was less than � Ä�4 MB.

Next, we turned to verifying all the timing constraints, successfully verifying all but one: � GSTPÃ .
Consider this constraint. It takes only

Ä
gate delays going from "�h � to n�o1i;l ° 4 l å , while it takes

Â going from "�h � to
r k ° s "�tZæ å . This means that the circuit, as described in the paper [72], has a

short-circuit error. The main impact of this error appears to be increased power consumption and a
greater propensity for device failure in the unfooted domino inverter.

To eliminate this error, we replaced the unfooted domino inverter in the LP stage by a footed domino

inverter. With this replacement, constraint � GSTPÃ becomes unnecessary. Correctness of the modified

circuit was verified without using this constraint in about ´ minutes.

Other Circuits

Among the other circuits we verified, we briefly report here on the modeling of two: the GasP

control circuit [150] and the STAPL left-right buffer circuit [116].
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Figure 9.8: GasP stage

A single stage of the GasP control circuit is depicted at the gate-level in Figure 9.8 with normally

distributed pullup and pulldown collapsed into the unfooted domino inverter. To ensure correct

operation of this circuit, we needed to specify ´ POD constraints for each stage. A sample constraint
is

k�x'j5y ° 2 8 å � k�x'j5y ° 43( å � k�x5j5y ° p å ( � GASPC )

We connected � 4 GasP stages together in a ring with exactly one full stage, and model checked it

for absence of short circuits and to verify that exactly one stage was full at any given point of time.
Both verification runs completed within a minute, as shown in Table 9.3.
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The STAPL left-right buffer, shown in Figure 9.9, is different from the other two circuits in that

it uses metric timing constraints. Figure 9.9 shows a single FIFO stage that passes a single bit
encoded using dual rail encoding (with signals 2'z and 2;l ) to the output (as signals 4 z and 4 l ).
For correct operation, the circuit employs two pulse generators (shown in Figure 9.9 as square
boxes) with pulse-lengths less than constants ß ©Uª�«�§ and ß ¡¤£i¥�¦3§ respectively. Corresponding to the

pulse generators, there are two paths in the circuit that are respectively required to take longer than

constants { ©Uª�«�§ and { ¡¤£i¥�¦*§ . An additional constraint is imposed that { ©�ª�«�§
� ß ©�ª�«�§ and { ¡¤£i¥�¦3§ �
ß ¡¤£i¥�¦3§ . These timing constraints naturally lend themselves to being modeled as metric constraints

with clock variables, with
²

constraints ( ´ clock variables) per buffer stage. In addition to these

constraints, each stage also requires � POD constraints. Each stage has � 4 Boolean signals (not
counting its inputs; note that the pulse generators have one internal Boolean signal each). We

model checked a ring of
î

STAPL buffers (for same properties as the GasP circuit); both verifications
completed successfully within a few minutes.

l1

l0

R4 ρ

re r0

r1

r0_

r1_

rv

Figure 9.9: STAPL left-right buffer. Reproduced from [116]. The pulse generator with pulse width

less than ß ©Uª�«�§ is shown with a dashed circle while that with width less than ß ¡¤£i¥�¦3§ is shown using

a dotted circle. The corresponding paths are dashed and dotted respectively.

Comparison with Other Tools

Table 9.3 summarizes our experimental results on the
î

circuits discussed so far.
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Circuit j s j j Ò j TMV Run-Time
POD XOR Metric (seconds)

Global STP 28 27 6 0 �'� °¿î'²
GasP-10 60 40 0 0

² � ° � 4
STAPL-3 30 18 0 6

² Â�Á ° 4{Ä

Table 9.3: Summary of experimental results with TMV. j s j is the number of signals, and j Ò j is
the number of timing constraints with associated break-up into categories.

We compared the performance of TMV to ATACS [155], which is based on metric timing. ATACS

uses model checking algorithms that are explicit-state in the Boolean component and prune the
search space using partial-order reduction methods.6 In modeling the Global STP (the corrected

version) and STAPL circuits, we assigned min-max delay ranges to all gates so that timing is anal-

ogous to counting transitions, but for the GasP circuit we had to assign ranges more carefully so
that all POD constraints were satisfied. For all three circuits, ATACS did not finish within an hour,

running out of memory for the STAPL and Global STP circuits.

For the circuits discussed so far, most timing constraints are simple POD constraints, and very few

constraints are metric. Hence, we only needed to introduce few clock variables, if any. This enabled
TMV to scale well on these circuits.

As mentioned in Section 9.4.2, metric constraints can usually be reformulated as POD constraints,

but at the cost of modularity. Using the STARI circuit [64], we studied the relative performance

of TMV for two different ways of modeling constraints. (The reader is referred to Greenstreet’s
thesis [64] for a description of the circuit.) All timing constraints for this circuit can be modeled as

POD constraints, where the POD is the clock that is distributed to both sender and receiver modules.
This breaks modularity, since timing constraints for each buffer stage between the sender and the

receiver require tracing back to the global clock. One can also formulate these constraints as metric

timing constraints specifying that, for each buffer stage, an output data bit and  "�h must follow an
input within a clock phase. In our circuit model, we abstracted the data-path to only one bit, and

modeled only one of the two bits making up the dual rail encoding. Thus, each stage contributes

only two Boolean state variables. The resulting timed automaton has ´ clock variables (one per
metric constraint) for every two stages; thus, there is exactly one clock variable for every Boolean

signal in a stage.

We computed the set of reachable states for STARI circuits (initialized to be half-full) for increasing

numbers of buffer stages and in three different ways: (1) using ATACS, (2) using TMV with purely
POD constraints, and (3) using TMV with modularly specified metric constraints. The results are

6The results reported for ATACS are for the partial-order reduction option that yielded best results.
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Figure 9.10: Results for STARI circuit. Note that the Y-axis is on a log scale. A timeout of
î � 4'4

seconds was imposed on all runs.

displayed in Figure 9.10. Using TMV with purely POD constraints is the most scalable approach,

followed by ATACS. When used on a model with metric constraints, TMV scales very poorly. The
reason for this appears to be that each clock zone has few corresponding Boolean states, since the

ratio of clock variables to Boolean signals, per stage, is fairly high (compared to the STAPL buffer,
for instance). This reduces the benefits of using fully symbolic Boolean methods of quantifier

elimination. On the model based purely on POD constraints, TMV runs an order of magnitude

faster than ATACS.

9.5 Summary

In this chapter, we presented a new approach for fully symbolic model checking of timed automata

based on the Boolean methods for quantified difference logic proposed in Chapter 8. We have ap-

plied this model checker to the verification of timed circuits, including industrial examples. Results
demonstrate the utility of our approach.



Chapter 10

Conclusion

This concluding chapter discusses the main theoretical results and design decisions in this thesis,
summarizes the thesis contributions, and suggests directions for future work.

10.1 Summary of Contributions

Adaptive Boolean encoding methods provide a new way of building efficient, automated decision

procedures for first-order logics involving arithmetic. This thesis has made a first step towards
extending Boolean encoding methods to a rich subset of logic that is useful for a wide range of

applications, and has demonstrated the efficiency of the approach.

A central design decision in our approach is to use eager Boolean encoding techniques. This en-

ables us to leverage future advances in Boolean methods far more easily than the lazy encoding
methods. In our experience, this clean separation of encoding and SAT can lead to orders of magni-

tude speedup on some problems. It also allows us to generate counterexamples fairly easily.

The eager encoding techniques are based on new theoretical results giving solution bounds for

arbitrary quantifier-free Presburger arithmetic, as well as for specialized fragments such as the logic
of G2SAT constraints. These results improve over previous solution bounds, in the typical case, by

an exponential factor. The exponential improvement directly translates into an exponential reduction

in the search space of the SAT solver.

Boolean encoding methods can be made adaptive by incorporating machine learning for automated
algorithm selection. Our experience shows that the use of machine learning can not only relieve

the user of the burden of setting the right combination of command-line options, but can also yield

orders of magnitude speedup compared to previous approaches.

The UCLID verification system incorporated all of the above ideas, and has been applied to a wide
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range of applications in hardware and software verification. In this thesis, we demonstrated its ap-

plication to finding format-string exploits, a class of security vulnerabilities in software that requires
precise modeling of data.

Boolean encoding methods can also be used for quantifier elimination in quantified logics that ad-

mit such elimination. One such useful logic, explored in this thesis, is quantified difference logic.

We have shown how quantifier elimination based on Boolean methods can be applied in the fully
symbolic model checking of timed systems. In conjunction with a new approach to modeling tim-

ing assumptions in circuits, our fully symbolic model checker, TMV, has scaled to industrial-size
circuits.

10.2 Open Problems

While this dissertation has answered many questions, it has also posed several new problems. We

discuss some of the open problems here.

Theoretical Problems

There are many open theoretical problems that deserve further exploration.

In deciding quantifier-free Presburger (QFP) arithmetic, we made use of the bound :��\5 ² ; � ¬ given

by Borosh, Treybig, and Flahive (see Theorem 5.1). In their 1992 paper [23], Borosh and Treybig
conjecture that this bound can be improved to just ¬ . As far as we know today, this conjecture is

still open.

In Chapter 5, we showed how the presence of a large number of difference constraints can be

exploited in computing a compact solution bound. Chapter 4 shows that the solution bound for
G2SAT formulas is very similar to that for difference formulas. It is therefore a natural question

as to whether the results of Chapter 5 can be generalized to apply to formulas comprising mainly
G2SAT constraints.

The results of Chapter 5 apply to arbitrary-precision integer arithmetic. It would be interesting to
see if similar results could be obtained for finite-precision (modular) integer arithmetic. In the latter

case, we already have a (trivial) finite bound on solution size, but would like to find a tighter bound,
or perhaps a way of performing a sparse encoding over the trivial finite bound.

SAT and Machine Learning

In Chapter 6, we observed the impact of the structure of SAT instances generated by the DIRECT

encoding on the relative performance with the SD encoding. More work needs to be done to formally
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understand the structure of SAT instances generated by both encoding algorithms. In particular, for

the SD encoding, we have used only one choice of arithmetic circuits throughout this thesis (e.g.,
using ripple carry adders for addition). There needs to be a more comprehensive evaluation of

different choices of arithmetic circuits in the SD encoding with respect to the ease with which the
resulting SAT instances are solved.

Our experience with SAT solvers has been very positive, indicating the presence of hidden structure
in the instances we generate (using all the different encoding algorithms). Formalizing this structure

can help in designing more efficient SAT solvers, besides providing valuable theoretical insight into
our application domains. The work of Hoos [77] and Williams et al. [163] are good starting points

for tackling this problem.

Our work on using machine learning for automated algorithm selection, although demonstrated just

for the SD and DIRECT encoding algorithms for difference logic, has wider applicability. Specifi-
cally, it could be used for different logical theories at multiple levels in the UCLID decision proce-

dure. For example, it could be used for selecting between Ackermann’s technique [2] for eliminating

function applications and that given by Bryant et al. [29].

Applications

Automating the generation of formal models from descriptions of real hardware and software sys-

tems, in languages such as C and Verilog, is critical to make the techniques proposed in this thesis
easier to use.

While there has been work on automatically generating finite-state models from source code using

techniques such as predicate abstraction (e.g., [11, 36]), similar methods for generating infinite-state

models have yet to be demonstrated. The recent work by Andraus and Sakallah [7] on generating
UCLID models from Verilog is a first step in this direction.

Similarly, an important next step in our work on verifying timed circuits is to automate the gener-

ation of timing constraints. There has been past work on automatically generating relative timing

constraints by attempting to rule out spurious counterexamples [85, 121], but they do not scale well,
and require the use of min-max delay bounds. An approach worth exploring is to infer affine rela-

tions over time intervals between events based on applying machine learning to simulation traces;
to our knowledge this has never been attempted before.

10.3 Looking Ahead

Boolean methods have the potential to greatly increase the scalability of decision procedures for
first-order logics involving arithmetic, thereby enabling a whole new range of applications.
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There are two directions in which a future research plan could be mapped out. The first involves

extending the framework for decision procedures based on eager Boolean encodings that has formed
the basis for this dissertation. The second concerns new applications that would benefit from a use

of decision procedures.

Many applications generate not one, but a whole stream of formulas (queries) to a theorem prover.

Often, these formulas differ from each other only slightly. For instance, in bounded model checking,
the formula generated after symbolically simulating a system for

ø
steps, is likely to share several

common sub-expressions with that generated after
ø 2 � steps. It is therefore advantageous to

make the Boolean encoding algorithms incremental, with the ability to re-use work from previous

translations. For the UCLID logic considered in this thesis, an incremental encoding algorithm

will work in tandem with an incremental SAT solving algorithm. Algorithms and implementations
for incremental SAT solving already exist [169]. In particular, one would like to prove theoretical

results about the extent of additional work needed in the incremental translation, given a measure of

how successive input formulas differ.

The decision procedures proposed in this thesis do not directly generate proofs. Proof-generating
decision procedures are useful for at least two reasons. First, it provides the user with a certificate

of the implementation’s correctness on the input formula, making the system more trustworthy.

Second, it can be used in verification tools that use proofs for refining abstractions, such as the Blast
software model checker [69].

This dissertation has only explored purely eager Boolean encoding methods, and has demonstrated

their advantages over lazy techniques for specific logics. However, eager methods suffer two limita-

tions: the encoding phase can be a performance bottleneck, and it is harder to extend these methods
for new theories. I believe that these limitations can be mitigated by an integration with lazy encod-

ing techniques, for two reasons. First, when very little first-order reasoning is required for a given
problem (e.g., if propositional reasoning suffices to decide unsatisfiability), lazy encoding methods

are extremely effective. Second, lazy methods can easily build upon any method for deciding a

combination of theories, such as Nelson and Oppen’s method [109]. Some ideas on integrating
eager and lazy algorithms are incorporated in the recent paper by Ganzinger et al. [60].

The second broad direction for future work is on new applications. New applications exist in hard-

ware and software verification, as well as in other areas. Software security seems to be a particularly

rich space for future applications. Finding security vulnerabilities in software often requires reason-
ing about data in addition to control, and theorem proving is particularly effective at analyzing data-

dependent properties of systems. Some specific near-term applications are malware detection [39]

and verifying secure information flow [130]. The work on timed circuits described in this thesis can
be extended to other systems operating under timing assumptions, such as distributed systems and

real-time embedded systems. Finally, automated reasoning in expressive logics has a wide range of



10.3. LOOKING AHEAD 167

potential applications, from established fields like constraint programming and operations research

to emerging areas like systems biology.

Decision procedures will continue to play an important role in reasoning about the reliability and
security of computer systems. Boolean methods can be exploited to build decision procedures that

scale to industrial-scale problems. The theoretical concepts and practical techniques presented in

this thesis form a foundation for future work on leveraging Boolean reasoning methods for richer
logics.
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Appendix A

UCLID

.

This appendix describes the syntax and semantics of the specification language for UCLID version

2.0, along with some of the verification methods that are supported in UCLID.

A.1 The UCLID Specification Language

We present the semantics informally in the discussion accompanying the description of each syn-
tactic construct.

The syntax of UCLID is very similar to the input language of the CMU version of the SMV model
checker [98]. However, there are several differences, and we will point these out where necessary.

A specification in UCLID is divided into two logical sections. The first part describes the model of

the system to be verified. The format of this part is very similar to that of SMV. The second part,

also called the control section or module, specifies how the symbolic simulation is to be configured
for the verification task at hand. One can view this latter portion as comprising of commands that

one might ordinarily type at the cursor of an interactive tool.

A.1.1 Format

The overall format of a UCLID specification is as follows:

MODEL <modelname>

<typedefs>
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<Global Constants>

<modules>

<Control module>

<modelname> denotes the name of the specification being checked. <typedefs> is an optional

section containing type definitions of user-defined enumerated types. Constants with global scope

are defined in the following <Global Constants> section. This is followed by the specification
of one or more modules. Each module has five subsections: an INPUT section that has declarations

of inputs to the module, a VAR section for declaring state variables and macro variables, a CONST
section for declaring constants, a DEFINE section for defining macros, and a ASSIGN section

for defining the initial state and state transition relation of the module. The last section is the

<Control module> section. This includes three mandatory subsections: the EXTVAR section
for declaring external variables, the STOREVAR section for declaring storage variables, and the

EXEC section for listing the commands to be used in the simulation. The optional subsections are

VAR, CONST and DEFINE, which serve the same function as for ordinary modules. Note that the
term “MODEL” is somewhat of a misnomer, since a UCLID specification contains both the model as

well as commands to run the simulation.

A.1.2 Language Overview

Before describing the language in detail, we present a simple example of a UCLID specification.

Consider the example of a traffic light that changes based on the value of an internal timer, as shown

in figure A.1.

Yellow Green

timer = 5

timer=10timer=12
(timer := 0)Red

timer < 5 timer < 12 timer < 10

Figure A.1: A timed traffic light

The UCLID specification of this system is given below:
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MODEL timedSignal

typedef signal : enum{red, yellow, green};

MODULE trafficLight

INPUT

VAR

(* state variables *)

light : signal;

timer : TERM;

(* macro variables *)

FIVE : TERM;

TEN : TERM;

TWELVE : TERM;

CONST

DEFINE

FIVE := succˆ5(ZERO);

TEN := succˆ5(FIVE);

TWELVE := succˆ2(TEN);

ASSIGN

init[light] := red;

next[light] := case

(light = red) & (timer < FIVE) : red;

(light = red) & (timer = FIVE) : green;

(light = green) & (timer < TEN) : green;

(light = green) & (timer = TEN) : yellow;

(light = yellow) & (timer < TWELVE) : yellow;

(light = yellow) & (timer = TWELVE) : red;

default : light;

esac;

init[timer] := ZERO;

next[timer] := case

(light = yellow) & (timer = TWELVE) : ZERO;

default : succ(timer);

esac;

(*----- CONTROL MODULE -----*)

CONTROL
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EXTVAR

STOREVAR

initRedCondition : TRUTH;

VAR

redCondition : TRUTH;

CONST

DEFINE

redCondition := (trafficLight.light = red) =>

(trafficLight.timer <= trafficLight.FIVE);

EXEC

initRedCondition := redCondition;

print(trafficLight.light);

decide(initRedCondition);

simulate(1);

decide(redCondition);

simulate(1);

decide(redCondition);

simulate(1);

decide(redCondition);

A traffic signal is modeled as a enumerated type with three values. Constants in UCLID can be

Boolean, integer, of enumerated type, or uninterpreted symbols (we refer to such uninterpreted

symbols as symbolic constants). In particular, the keyword ZERO refers to the integer constant4
. Within the module trafficLight, the VAR and CONST segments consist of variable and

constant declarations respectively. Variables and constants declared here have names local to the
module; however, these identifiers may be referenced anywhere outside the module by prefixing the

identifier with the name of the module followed by a “.”. The DEFINE segment has the same role as

in CMU SMV – it is used to define “macros” for commonly occurring shared sub-expressions. The
ASSIGN segment consists of assignments of initial values to state variables and specifications of

the next state functions. The case expression is used for conditional assignments, just as in SMV.

The main syntactic additions (to the SMV style) illustrated in this example include the successor

function symbol(succ), and the CONTROL module. The condition redCondition, defined in
the control module, checks that the timer in the red state is always less than 5. We can easily see that

this condition is always true for the specified model. The storage variable initRedCondition

is used to store the initial value of this condition. In the above example, bounded model checking
has been used to check the validity of redCondition for 3 steps. A print command is used to

print the initial value of the state variable trafficLight.light. Note that the storage variable
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is unnecessary in this example; the formula stored in initRedCondition may be decided by

inserting a decide(redCondition) statement before the first simulate command.

A.1.3 Keywords and Lexical Conventions

The lexical analyzer of UCLID is case-sensitive. The following alphabetic strings are reserved

keywords(some are reserved for future use).

MODEL CONTROL EXTVAR STOREVAR EXEC typedef enum initialize simulate

decide print printexpr FORALL MODULE INPUT VAR of CONST DEFINE ASSIGN

SPEC TERM TRUTH FUNC PRED ZERO succ pred case esac default init next Lambda

EXISTS verify model define if then else for endfor while do switch

array vector process function module procedure include boolean

integer signal input output OUTPUT local in end assert prove

Names of identifiers (state variables, macro variables, constants of all types) may be any sequence
of symbols in � A-Z,a-z,0-9, � beginning with an alphabetic character. Space, newline and tab

are white spaces and are ignored. UCLID has ML-style comments, where the comment is enclosed
begins with “(*” and ends with “*)”. Nesting of comments is allowed.

While describing syntax in the discussion that follows, we will enclose within quotes all strings
recognized as tokens by the parser. Identifiers will be denoted by the strings “id”, “id0”, “id1”, etc.

A.1.4 Data Types and Type Declarations

There are six classes of data types in UCLID, as listed below:

1. TRUTH, the Boolean data type;

2. TERM, the integer data type (uninterpreted function symbols of arity 0);

3. FUNC, the data type for uninterpreted function symbols of arity greater than 0. Functions of

this type take arguments of type TERM and return a value of type TERM;

4. PRED, the data type for uninterpreted predicate symbols of arity greater than 0. Predicates

of this type take arguments of type TERM and return a value of type TRUTH;

5. Enumerated Types, which are C-style enumerated types;

6. Functions returning enumerated types.
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Enumerated types are the only user-defined types in UCLID. They must be declared at the very

beginning of the UCLID specification using a typedef declaration, as given below:

type_decl ::= "typedef" id0 ":"

"enum" "{" id1 "," ... idn "}" ";"

An example is illustrated below:

typedef signal : enum{red, yellow, green};

The scope of typedef declarations is global. A typedef declaration is mandatory for each
enumerated type. After the typedef declaration, the enumerated type is to be referred by the type

defined in that declaration.

Variable and constant declarations are made in INPUT, VAR, or CONST sections.1 Types have the

syntax

type ::= "TERM" | "TRUTH" | "FUNC" "[" integer "]"

| "PRED" "[" integer "]" | id

| "FUNC" "[" integer "]" "of" id

Consider the following examples. Identifiers of type TERM and TRUTH are declared in a straight-
forward manner as shown below:

foo : TRUTH;

bar : TERM;

For functions and predicates, in additional to declaring the type, the user must also declare the arity.

For functions returning an enumerated type, the enumerated type is also specified. In the examples

below, f is a function of 10 arguments, p is a predicate of 4 arguments, and manySignalLights
is a function of one argument that returns the type signal.

f : FUNC[10];

p : PRED[4];

manySignalLights : FUNC[1] of signal;

Identifiers of type FUNC or PRED are useful in modeling arrays, lookup tables or memories, queues

and similar data structures, using lambda expressions, as described in Chapter 7.
1External and storage variables are also declared in a similar fashion, but we will deal with these separately in sec-

tion A.1.12.
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Note that a function and a predicate of arity 0 may also be defined; however, in general, these do

not always behave the same as if they were defined as TERM and TRUTH respectively. Functions or
predicates of arity 0 are best defined as having TERM, TRUTH, or an enumerated type, as necessary.

A.1.5 Constants

UCLID constants are of two kinds: primitive constants, and symbolic constants. Primitive constants
are either of type TRUTH or of enumerated type. The primitive constants of type TRUTH are 1 and

0. There is only one primitive constant of type TERM: ZERO, standing for the integer constant
4
.

Primitive constants of an enumerated type E are the values in the set specified in the type declaration
for E. Primitive constants do not have to be declared in a CONST declaration.

All constants other than primitive constants are symbolic. In UCLID version 2.0, there can be

no symbolic constants of enumerated type, or of a FUNC type that returns enumerated type. All

symbolic constants must be declared in a CONST declaration, either globally or within a module.

The syntax of a CONST declaration is as follows:

const_decl ::= "CONST"

id1 ":" type1 ";"

id2 ":" type2 ";"

...

Examples of CONST declarations are given below:

CONST

b0 : TRUTH; (* symbolic Boolean constant *)

T0 : TERM; (* symbolic constant of type TERM *)

f0 : FUNC[3]; (* symbolic constant of type FUNC and arity 3 *)

A.1.6 Input Variables

Inputs to a module must be declared in the INPUT section of the module. Variables declared in this
manner are called input variables.

Input variables are typically used to provide inputs to a module from the CONTROL module, where

the value of the input signal in a given step may be controlled by the user. An input variable for

module ¸ might also be a variable in another module ¸ 0 that ¸ references; the declaration is
needed only if ¸ precedes ¸ 0 in the file.

The syntax of an INPUT declaration is as follows:
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input_decl ::= "INPUT"

id1 ":" type1 ";"

id2 ":" type2 ";"

...

UCLID version 2.0 does not support instantiation of modules within another module. We plan to im-
plement this in the next version, and that will make different use of the INPUT section (substituting

actual arguments for formal arguments).

A.1.7 State Variables

A state of a UCLID model is an assignment of values to state variables.

The state variables of each module are declared in the VAR section of that module. A state variable

may be of any of the six kinds of types discussed in section A.1.4. The syntax of a state variable
declaration is as follows

var_decl ::= "VAR"

id1 ":" type1 ";"

id2 ":" type2 ";"

...

In addition, to state variables, auxiliary and macro variables may be used to improve readability of

the specification, and in verification. These variables must also be declared in a VAR declaration.
They are typically defined in the DEFINE section.

A.1.8 Macro Definitions

The DEFINE section of a module is used to define macros, especially for shared subexpressions, so

as to improve readability. The syntax of a DEFINE declaration is as follows

defines ::= "DEFINE"

id1 ":=" expr1 ";"

id2 ":=" expr2 ";"

...

Whenever any identifier that appears on the left hand side (LHS) of a DEFINE statement appears
in an expression subsequent to its definition, it is replaced by the expression on the right hand side

(RHS) of its DEFINE statement. It is an error to use a DEFINE identifier before its definition;
circular definitions will also result in an error.
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The RHS of a DEFINE statement is an expression whose syntax is defined in section A.1.10.

A.1.9 State Assignments and the Transition Relation

The initial state assignment and the transition relation for state variables within a module are defined
in the ASSIGN section.

The syntax of an ASSIGN declaration is as follows

assigns ::= "ASSIGN"

lval1 ":=" expr1 ";"

lval2 ":=" expr2 ";"

...

lval ::= "init" "[" id "]" | "next" "[" id "]"

Notice that UCLID syntax differs from SMV syntax in that we use square brackets instead of paren-

theses with the init and next strings.

An l-value, denoted above by lval, denotes either the initial state value of a state variable v (written
init[v], or the next state value of v (written next[v]). The expression on the RHS of an init

assignment is evaluated prior to the simulation’s run-time, and assigned to be the initial value of

the state variable referenced on the LHS. For a next assignment, the expression is evaluated as the
simulation is run, and will be the next state value of the state variable referenced on the LHS.

Expressions on the RHS of a next state assignment of a variable may reference the next state values

of other state variables. It is therefore possible to have a combinational dependency amongst state

variables arising from next state assignments. The UCLID interpreter extracts these dependencies
automatically and evaluates the state variables in a suitable order. Circular dependencies are reported

as errors; the interpreter in UCLID version 2.0 does not reproduce the dependencies in case of an

error. The RHS of an initial state assignment may include other state variables, but no combinational
dependencies are resolved, and if one arises, it is reported as a compile-time error. If the initial or

next state of a state variable is assigned more than once, the last assignment is the only one that
applies.

A.1.10 Expressions

Expressions in UCLID are generated according to the following syntax:

expr ::= simple-expr
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| case-expr /* Case expression */

| nondet-expr /* Nondeterministic expression */

simple-expr ::= truth-expr /* Truth expression */

| term-expr /* Term expression */

| enum-expr /* Enum type expression */

| func-expr /* Function expression */

| enum-fexpr /* Enum type Function expression */

| pred-expr /* Predicate expression */

Note that parentheses can always be put around expressions, except for case-expressions and nonde-

terministic expressions, which don’t need any. Parentheses also cannot be placed around FORALL

expressions, which are introduced in Section A.1.12.

Truth expressions

Truth expressions or Boolean expressions, have type TRUTH. Their syntax is as follows:

truth-expr ::= 1 | 0 /* primitive Boolean constants */

| id /* symbolic Boolean constant or variable */

| "next" "[" id "]"

/* Next state value of state variable */

| "˜" truth-expr1 /* Not */

| truth-expr1 "&" truth-expr2 /* And */

| truth-expr1 "|" truth-expr2 /* Or */

| truth-expr1 "=>" truth-expr2 /* Implication */

| truth-expr1 "<=>" truth-expr2 /* Equivalence */

| term-expr1 "=" term-expr2 /* Equality */

| term-expr1 "!=" term-expr2 /* Not-equality */

| enum-expr1 "=" enum-expr2 /* Equality */

| enum-expr1 "!=" enum-expr2 /* Not-equality */

| term-expr1 "<" term-expr2 /* Less than */

| term-expr1 ">" term-expr2 /* Greater than */

| term-expr1 "<=" term-expr2 /* Less than or Equal */

| term-expr1 ">=" term-expr2 /* Greater than or Equal */

| pred-expr "(" term-expr1 "," term-expr2 ... ","

term-exprn ")" /* Predicate application */

The precedence of logical and relational operators is given below, from highest to lowest precedence.
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=, !=, <, >, <=, >=

˜

&

|

=> <=>

All operators of equal precedence associate to the left, except for =>, which associates to the right.

Term expressions

Term expressions have type TERM; they may be viewed as integers, although there are no primitive
integer constants defined. Their syntax is as follows:

term-expr ::= id /* symbolic constant or variable */

| "next" "[" id "]"

/* Next state value of state variable */

| "ZERO" /* the integer constant 0 */

| "succ" "(" term-expr ")" /* term-expr + 1 */

| "pred" "(" term-expr ")" /* term-expr - 1 */

| "succˆ" k "(" term-expr ")"

/* term-expr + k, for constant

positive integer k */

| "predˆ" k "(" term-expr ")"

/* term-expr - k, for constant

positive integer k */

| term-expr1 "+" term-expr2 /* integer addition */

| term-expr1 "-" term-expr2 /* integer subtraction */

| k "*" term-expr /* multiplication by a positive integer

constant k */

| func-expr "(" term-expr1 "," term-expr2 ... ","

term-exprn ")" /* Function application */

Enumerated type expression

Enumerated type expressions evaluate to a user-defined enumerated type; their syntax is very similar

to that of term expressions.

enum-expr ::= id /* primitive constant or variable */
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| "next" "[" id "]"

/* Next state value of state variable */

| enum-fexpr "(" term-expr1 "," term-expr2 ... ","

term-exprn ")" /* Enum Function application */

Function expressions

Function expressions evaluate to functions that take arguments of type TERM and return values of

type TERM. A powerful feature of UCLID is to be able to define functions whose body changes over

steps. This allows functions to model memories, queues, lists and other useful data structures.

func-expr ::= id /* symbolic constant or variable */

| "next" "[" id "]"

/* Next state value of state variable */

| "Lambda" "." "(" id1 "," id2 ... "," idn

")" term-expr

The list of arguments to the Lambda operator must have at least one element. Also, the arguments
to a Lambda must be declared as symbolic constants. Both of these hold good for the Lambda

operator in sections A.1.10 and A.1.10.

Function expressions returning enum type

Function expressions that take arguments of type TERM and return values of a user-defined enumer-
ated type are also very useful.

enum-fexpr ::= id /* symbolic constant or variable */

| "next" "[" id "]"

/* Next state value of state variable */

| "Lambda" "." "(" id1 "," id2 ... "," idn

")" enum-expr

Predicate expressions

Predicate expressions evaluate to functions that take arguments of type TERM and return values of

type TRUTH. Using the ability of UCLID to express lambda expressions, we can build, for example,
predicate expressions that represent boolean state tables of arrays of processes.
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pred-expr ::= id /* symbolic constant or variable */

| "next" "[" id "]"

/* Next state value of state variable */

| "Lambda" "." "(" id1 "," id2 ... "," idn

")" truth-expr

Nondeterminism

The UCLID syntax allows for expressions that evaluate to sets of values. Internally, fresh symbolic

Boolean constants are generated to encode sets of values as an “if-then-else” expression conditioned
on the values of these constants. These fresh Boolean constants have names of the form pN where

N is a natural number, and sometimes get assigned values in a counterexample.

The syntax of nondeterministic expressions is as follows:

nondet-expr ::= "{" simple-expr1 "," simple-expr2 ... ","

simple-exprn "}"

Case expressions

Conditional assignments are made using case expressions. The syntax of a case expression is as

follows.

case-expr ::= simple-case-expr

| lambda-case-expr

simple-case-expr ::= "case"

truth-expr1 ":" gen-expr1 ";"

truth-expr2 ":" gen-expr2 ";"

...

default ":" gen-exprn ";"

"esac"

lambda-case-expr ::= "Lambda" "." "(" id1 "," id2 ... "," idm ")"

"case"

truth-expr1 ":" gen-expr1 ";"

truth-expr2 ":" gen-expr2 ";"

...

default ":" gen-exprn ";"
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"esac"

gen-expr ::= truth-expr

| term-expr

| enum-expr

| "{" truth-expr1 "," ... "," truth-exprn "}"

| "{" term-expr1 "," ... "," term-exprn "}"

| "{" enum-expr1 "," ... "," enum-exprn "}"

Note that we use the C-style default for the last item in the case as opposed to the SMV-style 1.

Nesting of case expressions is not allowed.

A.1.11 Modules

A module is used to collect together related state variables and associated constants, macro defini-
tions and state assignments. UCLID version 2.0 has limited module support, and provides essen-

tially two features. First, we allow local naming, where variables with same names can be declared

in different modules. Second, we also allow the use of input signals from other modules, including
the Control module. This latter feature allows the user to configure a simulation as needed. Note

that UCLID version 2.0 does not allow one to instantiate modules within other modules.

The syntax of a module definition (other than the Control module) is as follows:

module ::= "MODULE" id

"INPUT"

... /* input variable declarations */

"VAR"

... /* state variable and macro declarations */

"CONST"

... /* symbolic constant declarations */

"DEFINE"

... /* macro definitions */

"ASSIGN"

... /* state variable assignments */

A.1.12 The Control Module

The Control module allows the user to configure the symbolic simulation for the verification task at
hand. In section A.2, we describe some of the verification techniques that UCLID can be used for,
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and how the Control module can be used for those techniques.

The syntax of the Control module is as follows:

control ::= "CONTROL"

"EXTVAR"

... /* external variable declarations */

"STOREVAR"

... /* storage variable declarations */

"VAR"

... /* macro variable declarations */

"CONST"

... /* symbolic constant declarations */

"DEFINE"

... /* macro definitions */

"EXEC"

... /* simulator commands */

The VAR, CONST and DEFINE segments of the Control module serve exactly the same purpose

as for any other module, and have the same syntax. The VAR, CONST and DEFINE sections are
optional. The VAR segment will not contain any declarations for state variables as there are no state

variables in the Control module.

External Variables

In symbolic simulation, the user might sometimes wish to control the value a state variable takes at

a specific step. For example, in correspondence checking using the method pioneered by Burch and
Dill, one side of the commutative diagram is a simulation that first performs flushing, projection, and

then executes a step of the specification machine, while the other side of the diagram first executes a
step of the implementation machine, and then performs flushing. In this case, the flush signal needs

to take on specific values at specific steps, and these steps are different depending upon which side

of the commutative diagram we are trying to simulate.

The external variable is a feature of UCLID that addresses this problem. An external variable is a
user-controlled input to the system that can be assigned specific values at specific steps. An external

variable declaration includes, in addition to the type declaration, an assignment of the default value

that the variable takes, as shown here:

extvar_decl ::= "EXTVAR"

id1 ":" type1 ":=" expr1 ";"
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id2 ":" type2 ":=" expr2 ";"

...

External variables are also declared as inputs to modules before they are declared in the Control

module (however, when they are declared as inputs, no default value is assigned). It is an error to
declare an external variable that is not an input to any module.

The value of an external variable at step # is used in the simulation at step #�5 � . For example, for

external variable flush, the assignment

flush[3] := 0;

means that the value of flush used in the fourth step of simulation is
4
.

External variables find use in verification tasks where the values of variables at certain steps must

be user-specified, such as in correspondence checking. For example, they are used in the flushing
operation for verifying pipelined processor designs by the Burch-Dill method [34].

Storage Variables

During symbolic simulation, one might wish to store intermediate values of variables and expres-

sions for later reference. Storage variables serve precisely this purpose.

The syntax of a storage variable declaration is as follows:

storevar_decl ::= "STOREVAR"

id1 ":" type1 ";"

id2 ":" type2 ";"

...

Commands and Assignments

The EXEC section of the Control module contains 4 kinds of commands and two kinds of assign-

ments. The syntax of an EXEC section is as follows:

exec ::= "EXEC"

stmt1 ";"

stmt2 ";"

...

stmt ::= "simulate" "(" integer ")" /* Simulate command */
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| "initialize" /* Re-initialize all state */

| "decide" "(" gen-truth-expr ")" /* Decide command */

| "print" "(" id ")" /* Print the value of a state variable */

| "print" "(" ‘"‘ string ‘"‘ ")" /* Print any arbitrary string

enclosed in double quotes */

| "printexpr" "(" expr ")" /* Print the value of an expr */

| id ":=" expr /* Storage variable assignment */

| id "[" integer "]" ":=" expr

/* external variable assignment */

The simulate command takes an integer argument
ø

that specifies the number of steps the sym-
bolic simulation is to be run for, and simulates the system for

ø
steps. The initialize command

re-initializes all state variables in the system to their initial value. This is useful, for instance, while

doing correspondence checking.

The decide command takes as argument a “generalized” truth-expression. The syntax of this gener-
alized truth expression is given below:

gen-truth-expr ::= truth-expr

| forall-truth-expr "=>" truth-expr

| forall-truth-expr1 "=>" forall-truth-expr2

forall-truth-expr ::= "FORALL" "(" id1 "," id2 ... "," idn ")"

truth-expr

A generalized truth expression is either an ordinary truth-expression, as introduced in section A.1.10,

or an expression of the form
	 æ ý where the antecedent

	
has some variables (of type TERM)

universally quantified, while the consequent ý may or may not have universally quantified variables
(of type TERM). The list of arguments to the FORALL operator must have at least one element. We

will describe how this syntactic feature is used in section A.2.

UCLID version 2.0 provides two commands for printing: print and printexpr. The print command

has two variants. The first allows one to print the value of any state variable at any step. The second
allows the user to print an arbitrary string enclosed in double quotation marks, primarily for pretty

formatting of the output. The printexpr command allows one to print the value of any expression
(respecting the syntax of expr) at the current simulation step.

The size of the output generating by printing the values of state variables and expressions produces
blows up very quickly as the number of simulation steps increases; we therefore strongly discourage

printing state variables and expressions after a very large number of simulation steps unless they are
known to be small.
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Assignments to storage variables are similar to macro definitions. The storage variable name appears

on the LHS of the assignment, and it can be assigned an expression of its type. Assignments to
external variables also need to specify the step of simulation the RHS expression is to be evaluated

at. At that step, the expression is evaluated and the value is used wherever the external variable is
used. The natural number specifying the simulation step is written in square brackets on the LHS

next to the external variable name.

A.2 Verification with UCLID

UCLID version 2.0 can be used with several verification methods, as was briefly described in Sec-
tion 7.3. We describe the more commonly used techniques in this section using the language con-

structs introduced in Section A.1. Using the primitive constructs described in Section A.1, the user

can easily develop techniques based on symbolic simulation other than those listed below.

Bounded Model Checking

Plain symbolic simulation or bounded model checking can be done by simply running the simu-

late command, specifying the number of steps as an argument. The decide command can then
be used to check the validity of a property of interest in a given state. This can be a very useful

bug-finding tool.

Bounded model checking can be used to check safety properties (state invariants) for a bounded

number of simulation steps. If the property does not hold for any state, UCLID generates a coun-
terexample that can be used to generate a trace showing how the bug may be exploited. However, if

the property holds for all states in the simulation, we cannot make any assertions about whether it

will continue to hold for future steps.

Limited checking of liveness properties is also possible. For example, if we wish to check if a
process releases a lock eventually (starting from an initial state) and if the symbolic simulation

leads to such a state, then, we can assert that the property does indeed hold. However, we cannot

find counterexamples for such a liveness property (if it does not hold on a truncated run).

The example in section A.1.2 illustrates the use of UCLID for bounded model checking. In bounded
model checking, all state variables are initialized to their initial state values using the init state-

ment. To check the validity of safety properties of interest after each step of simulation, the user

inserts decide commands after the corresponding simulate commands. If the formulas are
valid at each step up to

ø
steps starting from an initial state

= � , then the safety property of interest

holds for the first
ø

steps starting from
= � . We have found bounded model checking to be useful in

catching bugs, especially as a first step before trying to verify the system using techniques such as
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correspondence checking or inductive invariant checking.

Correspondence Checking

Correspondence checking involves simulating two different sides of a commutative diagram and
checking the validity of the property of interest at the end [34, 158]. Thus, the outline of the verifi-

cation task, as specified in the Control module of a UCLID specification, will be as follows:

1. Assign values of external variables at specific steps in the simulation, using external variable
assignments.

2. Run the simulation for one side of the diagram, using the simulate command.

3. Save the values of relevant state variables using storage variables.

4. Re-initialize to the start state, using the initialize command.

5. (Re-)Assign values of external variables at different steps.

6. Run the simulation for the other side of the diagram.

7. (Optional) Save the values of relevant state variables in storage variables.

8. Construct a formula for the property of interest, and check its validity by using the decide
command.

Deductive Verification

Another verification technique that UCLID can be used on is to prove the inductive invariant of
a system. In this technique, the starting state is initialized to a most general state. The system is

symbolically simulated for one step. Then, a property of the form
k �3À æ ~7óZ�Wyl: k �3Àp; is checked,

where
k �3À denotes a formula for the invariant property we wish to verify, and ~7óZ�Wyl: k �3Àp; is its

next-state version.

In general, the property
k �3À will need to be augmented by several other auxiliary invariants, just as

is often the case in theorem proving. The user has to come up with “lemmas” to prove the inductive

invariant, but the process of checking the validity of these lemmas is entirely automatic. The UCLID
counterexample generator is very useful in providing hints for lemmas.
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Quantifiers and Antecedent Instantiation

Formulas that are checked for validity using the decide command are formulas in the CLU logic.

This logic can express any property in quantifier-free first order logic involving counter arithmetic. It

is often the case that properties of interest involve quantifiers. In particular, many properties involve
the use of the universal (

,
) quantifier. UCLID version 2.0 provides limited support for specifying

properties with universal quantifiers.

There are three classes of quantified formulas that UCLID version 2.0 can handle:

1. Universal Quantification on the outside of a quantifier-free formula: The general form of a
property of this kind is , # C ° , #¢q °Z°Z° , # T ° }?:�# C & #Jq &Z°Z°Z°�& # T ;
where }?:�# C & #¢q &Z°Z°Z°�& # T ; is an arbitrary formula in CLU where the # � s have type TERM. Since
a universally quantified formula is valid if and only if the a formula without the quantifiers

is valid (i.e., a formula in which the # � s appear free), this case can be expressed by simply

dropping the quantifiers, and expressing the quantifier-free formula in UCLID syntax.

For example, consider the formula below:, # ° , $ ° :�#6÷� $U; æ :�éã:�#+;�÷� éã:�$�;�;
This can be expressed in UCLID syntax quite simply as

(i != j) => (f(i) != f(j))

We have found that most properties fall under this case.

2. Universal Quantification only over variables appearing in the antecedent: The general form

of a formula ¹ of this kind is

: , # C ° , # q °Z°Z° , # T ° 	 :�# C & # q &Z°Z°Z°�& # T ;�; æ ý
where

	 :�# C & # q &Z°Z°Z°�& # T ; and ý are arbitrary formulas in CLU, and # C & # q &Z°Z°Z°�& # T do not appear
free in ý .

Notice that by pulling out the universal quantifiers, ¹ can be rewritten as

� # C ° � #¢q °Z°Z° � # T ° : 	 :�# C & #¢q &Z°Z°Z°�& # T ; æ ý^;
Formula ¹ can be verified in UCLID in two ways. The first method involves proving a more

conservative version of ¹ , namely the formula, # C ° , #¢q °Z°Z° , # T ° : 	 :�# C & #¢q &Z°Z°Z°�& # T ; æ ý^;
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Notice that the above formula is of the kind handled in item 1 above, and so can be translated

to an equivalent formula in CLU.

Often, the more conservative property fails to hold, and other techniques are needed. The
second method involves the use of instantiation. Instantiation is the process by which the

universal quantifier over the antecedent of ¹ is converted to a finite conjunction of instances
of the antecedent. Each instance is generated by assigning a symbolic constant to a quantified

variable, and dropping the universal quantifier over that variable. For example, the above

formula ¹ would get translated to a new formula ¹ � ! × k given below

: !
ëº� ! ì)� ����� � ! W|�)ëº� ����� � � W F C

	 :�y �®ëZ& y �ºìL&Z°Z°Z°�& y � W ;�; æ ý
This procedure is sound, but necessarily incomplete, because it would otherwise imply the

decidability of first-order logic. In other words, if ¹ � ! × k is valid, so is ¹ , but ¹ could be valid
without ¹ � ! × k being valid. We have found that using an instantiation technique is often useful

in proving the validity of the property of interest.

UCLID version 2.0 incorporates a simple heuristic strategy to instantiate the antecedent,

which has had some success. The strategy essentially involves instantiating each quanti-
fied variables with all relevant terms from the consequent formula ý . Further details of this

procedure are available elsewhere [89].

Instantiation may be specified in the UCLID language as follows. For the property ¹ given
above, the user would write a corresponding UCLID formula (of type TRUTH) as given below

(assume
ø �I²

)

FORALL(i1, i2) A(i1, i2) => C

where A and C are UCLID truth-expressions corresponding to
	

and ý above, respectively.

3. Universal Quantification performed separately over variables appearing in the antecedent

and in the consequent: The general form of a formula } of this kind is

: , # C ° , #¢q °Z°Z° , # T ° 	 :�# C & #¢q &Z°Z°Z°�& # T ;�; æ : , $ C ° , $Lq °Z°Z° , $ ! ° ý?:�$ C & $Xq &Z°Z°Z°�& $ ! ;�;
where

	 :�# C & #¢q &Z°Z°Z°9& # T ; and ý?:�$ C & $Xq &Z°Z°Z°�& $ ! ; are arbitrary formulas in CLU so that # C & #Jq &Z°Z°Z°9& # T
do not appear free in ýQ:�$ C & $Xq &Z°Z°Z°�& $ ! ; , and $ C & $Lq &Z°Z°Z°�& $ ! do not appear free in

	 :�# C & #¢q &Z°Z°Z°�& # T ; .
} is equivalent to the following formula, $ C ° , $Xq °Z°Z° , $ ! ° : , # C ° , #Jq °Z°Z° , # T ° 	 :�# C & #Jq &Z°Z°Z°9& # T ; æ ý?:�$ C & $Lq &Z°Z°Z°9& $ ! ;�;



190 APPENDIX A. UCLID

which in turn is equivalent to

: , # C ° , #¢q °Z°Z° , # T ° 	 :�# C & #¢q &Z°Z°Z°�& # T ; æ ýQ:�$ C & $Lq &Z°Z°Z°�& $ ! ;�;
Notice that the last formula above is in the form of item 2 above. Therefore, we can handle
this formula using the conservative approach and the instantiation techniques described in

item 2.

However, UCLID version 2.0 allows the user to be explicit about which variables are being

universally quantified in the consequent ý . Thus, for
ø�� � and � �N² , } may be written in

UCLID as

FORALL(i1) A(i1) => FORALL(j1, j2) C(j1, j2)

In UCLID version 2.0, this will have exactly the same effect as writing

FORALL(i1) A(i1) => C(j1, j2)

Automatic instantiation is a fairly expensive operation — the formula blows up exponentially with
increase in the number of variables to be instantiated. Fortunately, automatic instantiation need

not always be done. Consider the class of properties that impose constraints on the values of state

variables. In these cases, the user can encode the invariant into the init state assignment to those
variables. Such an invariant has the form À � } , where À is a state variable and } is a case

expression enumerating all the possible expressions À can evaluate to along with the conditions
under which À can equal them.

In the case of inductive invariant checking, if the invariant formula on a variable À is denoted byk �3À , then instead of checking the validity of a formula of the form
k �3À æ ~7óZ�Wyl: k �3Àp; , we merely

encode
k �3À into the initial state of À , simulate for one step, and then check ~7óZ�Wyl: k �3Àp; .

Consider the example of section A.1.2. Suppose we wanted to prove the following property using
inductive invariant checking:

(trafficLight.timer = ZERO) => (trafficLight.light = red)

We could encode the invariant into the initial state as follows:

init[light] := case

timer = ZERO : red;

default : {red, yellow, green};

esac;

Further Information

More information on UCLID usage can be found in the user’s manual [137].
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