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Abstract

Recent advances in Nuclear Magnetic Resonance (NMR) spectroscopy present new opportunities
for investigating the conformational dynamics of proteins in solution. In particular, tensors for
motions relevant to biological function can be obtained via experimental measurement of resid-
ual dipolar couplings (RDCs) between nuclei. These motion tensors have been used by others to
characterize the magnitude and anisotropy of the dynamics of individual bond vectors. Here, we
extend these results and demonstrate that RDCslsatve used to characterize thbal nature

of the protein’s motion (e.g., hinge motions, shear motions, etc.). In particular, we introduce the
first method for classifying protein motions from RDC data. Our classifier consists of a discrimi-
native model trained on 2,454 different molecular dynamics trajectories spanning seven categories
of motion. The classifier achieves precision and recall accuracy of 90.6% and 90.9%, respectively,
using 10-fold cross-validation over these seven categories.






1 Introduction

A protein’s three dimensional structure can be dynamic. Structural dynamics often play an impor-
tant role in the functioning of the protein; mobility is essential to many processes including muscle
contraction, transport, and catalysis [8, 17]. Qualitative functional characterizations are often me-
diated by specific, coordinated motions of many atoms. Examples include molecular “trapdoors”,
such as triosephosphate isomerase (e.g., [7, 10, 11]), lactate dehydrogenase (e.g., [25]), and tyrosyl
tRNA synthetase (e.g., [22]); and molecular “switches”, such as thymidylate synthase (e.g., [27])
and hexokinase (e.g., [16]).

Macromolecular motions relevant to biological function can occur on many timescales up to
and including the microsecond to millisecond range (e.g., [13]). Motions may be localized, involv-
ing a few residues, or global, involving the reorganization of multiple domains. Nuclear Magnetic
Resonance (NMR) spectroscopy is well suited to the study of molecular motions because the re-
laxation processes which give rise to the data are sensitive to the internal dynamics of the protein.
NMR dynamics studies are also capable of probing motions over an extraordinary range: fluctua-
tions from the femtosecond to millisecond timescales can be measured.

Until recently, however, these experimental measurements could only be used to quantify the
magnitude of an individual atom’s motion; it was not possible, for example, to obtain direct evi-
dence for a) the orientation of the motion or b) correlated movements between groups of atoms.
Recent theoretical and experimental breakthroughs in NMR have addressed the first problem, but
not the second. It is difficult to obtain a coherent model of the molecule’s dynamics if correlations
between the motions of the individual atoms are unknown. Molecular dynamics simulations are
one means for obtaining dynamic models (e.g., [19]), but such simulations are usually limited to
motions in the nanosecond timescale.

This paper introduces a novel method for characterizing a protein’s global dynamics from NMR
data over arbitrary timescales. We believe our technique has two important applications. First, by
characterizing the global nature of the dynamics, our technique can be used to derive constraints
for molecular dynamics simulations. These constraints could potentially be used to explore mo-
tions on timescales that are presently out of reach to modern simulations. Second, we believe our
technique may assist biologists in characterizing the function of proteins in terms of both structure
and dynamics.

The outline of this paper is as follows. In section 2, we present a brief review of experimental
techniques for studying molecular motions. In section 3 we discuss the specific class of NMR data
for which our method was designed. In section 4, we describe the data set used in our experiments.
We present our method in Section 5, and the results of our experiments in Section 6. Finally, we
discuss our results and future plans in Section 7.



2 Background

A protein that lacks a single, well defined structure is said to be disordered. Disorder may be local,
involving only a few residues, or global, involving many different parts of the protein. Moreover,
the disorder can be either static or dynamic. A protein that is statically disordered will have multi-
ple, discrete conformations present within a population. A protein that is dynamically disordered
inter-converts between different conformations through time. The size of the energy barrier sepa-
rating the different configurations largely determines whether the disorder is static or dynamic. We
are concerned with dynamically disordered proteins in this paper.

It is possible to detect and characterize disorder experimentally in a variety of ways. Broadly
speaking, these techniques can be classified by whether they reveal aggregate or atom-specific dy-
namics. For example, techniques based on optical absorbtion report aggregate behaviors while
techniques based on fluorescence are residue-specific. It is worth noting, however, that fluores-
cence studies are limited to those residues which can act as fluorophores (i.e., aromatic residues).
In this paper, we are interested in experimental techniques capable of probing the dynamics at an
atomic scale for (essentially) all atoms. Given this criterion, X-ray crystallography and NMR are
obvious candidates.

In X-ray crystallography, static disorder will result in two (or more) alternative regions of
electron density for the same group of atoms. Occupancy percentages within a Protein Data Bank
(PDB) [4] file, for example, reflect the fraction of the molecules in a crystal for which the position
specified in a givemTtoM record is valid. Temperature factors (also known as B-factors), which
are calculated during the refining process in X-ray crystallography, can also be used to identify
disorder. However, it is not possible, generally speaking, to classify the disorder as either static
or dynamic (or both) from temperature factors alone. A variety of measurements can be made to
probe dynamics via NMR. These measurements are made in addition to those required for structure
determination. Amide-exchange rates, spin-lattice and spin-spin relaxation rates, and the Nuclear
Overhauser effect (which is a special case of spin-lattice relaxation), can all be used to characterize
the motion of individual atoms within the structure.

We wish to emphasize three important considerations when studying macromolecular motions
experimentally. The first is that motions can occur on a variety of timescales. Ideally, an experi-
mental method should be able to characterize motions on many different timescales. As previously
mentioned, NMR has this property. The second consideration is how much information is re-
vealed about the motion of a given atom. Here, NMR, and other techniques have historically been
limited. The mathematical formalisms for measuring dynamics from NMR data agsatragpic
motion. That is, the motion of the atom is assumed to be uniform within a sphere. In essence,
what one obtains from from the data is the size of the sphere. In reality, however, the motion may,
in fact, beanisotropic Here, a more accurate model might use an ellipse to describe the motion,
and not a sphere. The third consideration is whether any direct evidence for coordinated motions
between atoms can be obtained. NMR and other techniques are not able to do so. In practice,
given the descriptions of the motions of individual atoms, one must either infer, or demonstrate
via molecular dynamics simulations, that a group of atoms are moving in concert. As previously
mentioned, molecular dynamics simulations are usually limited to very fast timescales, depending
on the size of the molecule. Thus, the full range of motions cannot be explored adequately via
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Figure 1. Weak alignment in liquid crystalline phase Schematic of the interaction between an
aligning agent, depicted as circular disks, and the protein ubiquitin. The surface of the aligning
agent creates a steric barrier for the protein. The four panels show four possible orientations of the
protein when the center of mass of the protein is at a fixed distance (depicted by the dashed line)
from the surface of the aligning agent. As this distance decreases, the size of the set of possible
orientations decreases. All NMR measurements are made over the entire ensemble of instances
of the molecule. Thus, in an aligned medium, there is effectively an incomplete averaging over
orientations, resulting in a dominant orientation of the molecule in solution.

molecular dynamics simulation. In summary, NMR is well suited to studying motions at a vari-
ety of timescales, but the measurements have traditionally been limited to the magnitudes of the
motions of individual atoms.

3 Residual Dipolar Couplings

A residual dipolar couplindRDC) is a measure of the dipolar interaction between pairs of atoms.
The interaction is sensitive to the orientation of the vector between the two atoms, relative to the
external magnetic field of the NMR spectrometer. Thus, RDCs carry important information about
the orientation of inter-nuclear vectors. In solution NMR, RDCs are normally measured between
atoms that are covalently bonded. Hence, RDCs are often used to determine the orientation of
specific bond-vectors. The ability to record RDCs in solution has been perfected only recently
[29, 30], but RDCs have already begun to play an important role in structure determination (e.g.,
[1, 15, 35, 36, 23)).

RDCs are only measurable in solution when the protein is in a so-called dilute crystalline form.
Here, large molecules, often larger than the protein, are added to the solution. These agents align
with the magnetic field of the spectrometer due to their own magnetic properties. The interactions
between the aligning agent and the protein effectively reduce the number of possible orientations
for the protein (Fig. 1) resulting in a “average” orientation to the protein. It is the presence of a
dominant orientation that allows for RDCs to be measured.

The experimental measurements are scalar values. For each dipolar cotiphied)ave
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Figure 2: Motion Tensors. The motions of atoms can be characterized via RDCs. Here, the
motions of H, and H" of adjacent residues are contrasted. 5 parameters describing the motion of
each atom can be obtained (see test); n, «, 3, andy. S? corresponds to the magnitude of the
motion. The radius of the sphere, and the length of the major axis of the ellipsoid are proportional
to S2. o and 3 are the polar coordinates describing the average orientation of the bond vector in
3D. n describes the anisotropy. Here, tHé&" motion is isotropic (and thus depicted as a sphere)
while the H,, is anisotropic (and thus depicted as an ellipsoid). When the motion is anisotropic,
~ reveals the orientation of the movementis proportional to the rotation about axis that goes
through the bond vector.

ool
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where~, and-, are the gyromagnetic ratios of spif2 nucleia andb, % is Plank’s constant;,
is the internuclear distance betweeandb, 1 is free-space magnetic permeabiliy;, is the unit
column vector between andb relative to anarbitrary coordinate frame, anfl is thealignment
tensor[26]. In essenceS describes the overall orientation of the molecule. When resonance
assignments and a three dimensional model of the protein are available, it is possible tdSextract
using Equation 1. Different aligning agents can induce different average orientations. Thus, for a
given protein, there are different alignment tensors associated with each aligning agent.

In addition to their use in establishing the orientation of bond vectors, RDCs have also been
used to study the dynamics of proteins (e.g., [6, 21, 32]). RDCs are sensitive to motions up to the
millisecond timescale [19, 21, 33, 32], and are thus very useful. More recently, important contri-
butions made by both Griessinger [19] and Tolman [31] have introduced methods for extracting
complete motion tensors for each atom, from whiogth the magnitude and orientation of the
motion can be measured (Fig. 2). This is a significant departure from traditional methods for ex-
tracting dynamics using NMR, which were limited to measuring magnitude alone. Following the
notation of [31], the motion tensors for each atom can be computed as
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whereD is ann x m matrix wheren is the number of experimentally measured RDCs, and

is the number of independent aligning media. THss constructed from the experimental data.

In order to extract the motion tensors it is necessaryhat 5. MatricesA andB areb5 x M
andN x 5, respectively. The columns & encode the alignment tensors (which have 5 degrees
of freedom) for each of thex media. The rows oB contain the motion tensors for each atom.
The motion tensors also have five degrees of freedom. From each motion tensor, 5 parameters of
interest can be computed. The variab#sn;, «;, 3;, and~; are used to denote these 5 parameters
for atoms. S? is the magnitude of atonis motion;7; is a measure of the anisotropy of atéis
motion; «; and j3; are related to the polar coordinates of the bond vector expressed in the initial
arbitrary reference frame (i.e., the PDB frame). If the motion of the atom is anisotropic (i.e.,
n # 0), the final parametery; measures the principal orientation of the motion.

Note that the RDC-derived motion parameterslacal measurements. That is, it is not pos-
sible, mathematically, to measure any coordination of motion between bond vectors. In practice,
molecular dynamics simulations are run to establish the global nature of the motion. However,
these simulations are limited to very fast (nanosecond) timescales. In contrast, our method infers
the global motion using statistical methods which are not, in principle, limited to any timescale.
Thus, our method can make full use of the range of motions measurable via RDCs

Our justification for using statistical methods is based on the observation that the number of
distinct protein folds is small, relative to the number of proteins. If one assumes that a protein’s
range of motion is determined by its fold, then one can argue that the number of motions is also
limited. Our method makes the assumption that there are distinct classes of motion. Our method
doesnot, however, assume that a given fold can only experience a single kind of motion.

4 Simulations

Our experiments were run on simulated data. The reasons for using simulated data are two-fold.
First, our method currently requires 5 sets of independent, assigned RDCs (i.e., five different align-
ing media) and at this time, there is only one protein for which such data have been published. Our
primary aim was to demonstrate that such a method might work on a large number of different pro-
teins representing different fold families and different kinds of motion. We are presently exploring
extensions to our work that would relax either the requirement for RDCs from 5 independent me-
dia, resonance assignments, or both. The second reason our experiments are limited to simulated
data is that the one protein for which the required data are published [21], ubiquitin, is known to
be almost entirely rigid [9, 28, 29], and thus does not exhibit motions of the sort explored in this
paper. In this section, we describe our source for models of protein motions, and the means by
which we simulated RDCs in 5 media.

The Gerstein lab has developed the Database of Macromolecular Movements [12]. This database
contains dynamics trajectories for several hundred different proteins from many different fold fam-
ilies. The trajectories for each protein are often generated by interpolating between different ex-
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Figure 3: Simulation and Classification. (A) The flowchart for simulating the RDCs. (B) The
flowchart for the classification step.

perimentally determined structural conformations of the same protein. Thus, these trajectories are
not necessarily the result of actual molecular dynamics simulation, nor the result of experimental
studies of dynamics. However, we feel that these trajectories are still representative of molecular
motions, even if the details for any particular protein are not exact. In particular, the end-points of
each trajectory are usually based on experimentally determined structures. Our method concerns
the overall dynamics regime, and not the details of the motion.

In addition to serving as a repository of dynamics trajectories, the Database of Macromolecu-
lar Movements also defines a taxonomy of molecular motions. The different categories are largely
defined by a) the size of the motion (e.g., fragment motions, domain motions), and b) a qualita-
tive description (e.g., hinge motions, shear motions). For each protein in the database, there are
often several different trajectories available. The trajectories are encoded as a set of ordered PDB
files where each file reveals the configuration of the protein at a different point in “time”. Our
experiments were on 2,454 trajectories obtained from this database.

Five sets of RDCs were simulated for each of the 2,454 trajectories as follows (Fig 3 A). The
programREDCAT [34] is capable of simulating the RDCs obtained under dynanRERCAT re-
qguires an alignment tensor, and a description of the dynamics of each atom, which we extract
directly from the PDB files. For each trajectory, we randomly generated 5 independent align-
ment tensors. These alignment tensors, and the descriptions of the local dynamics were passed
to REDCAT which generated the RDCs. We limited our experiments to RDCs for the backbone
N — C, bond. These simulated RDCs, and a single PDB file, representing the protein in a single
configuration, are the inputs to our method, which is described in the next section.



5 Method

We treat the problem of characterizing a protein’s global motion from RDCs as a classification
problem (Fig 3 B). Using the taxonomy of motions defined by the Database of Macromolecular
Movements, we separated the 2,454 trajectories into seven classes; 1) fragment motion, hinge; 2)
fragment motion, shear; 3) domain motion, hinge; 4) domain motion, shear; 5) domain motion,
partial refolding; 6) subunit motion, allosteric transition; 7) subunit motion; non-allosteric transi-
tion. Table 1 summarizes the number of trajectories falling into these seven classes. The terms
“fragment”, “domain”, and “subunit” describe the size of the mobile element. Fragment motions
can be as small as a single loop, while subunit motions are very large, potentially involving multi-
ple domains. “Hinge”, “shear”, “partial refolding”, and “allosteric” are qualitative descriptions of

the motion, defined by the Database of Macromolecular Movements.

5.1 Features

Using Equation 2, it is possible to obtain 5 parameters describing the motion of each atom given

a) a static model of the protein (e.g., a crystal structure), and b) the set of 5 assigned RDCs per
atom. The five parameterS?, n, «, 3, andy, were discussed in Section 3. Our feature set consists

of statistics of the distributions over these parameters. That is, the actual features are not atom-
specific, but rather based on aggregates of atoms. This use of distributions is motivated by the
need to handle “missing” data. Features based on distributions are more robust to these kinds of
real-world concerns. Distribution-based features are also a natural way of dealing with proteins of

different lengths, and therefore different numbers of atoms.

Our initial experiments were limited to passing in simple statistics (mean, variance, skewness,
kurtosis) over distributions of the 5 parameters. These experiments were not successful. We then
enriched our feature set substantially in three ways. First, we partitioned the backbeng,
bonds (i.e., the bonds for which we simulated RDCs) of each protein by amino acid category using
the following types: non-polar, polar, acidic, basic. Thus, for each of these four residue types, we
compute the mean, variance, skewness, and kurtosis for each of the 5 parameters. The motivation
for this particular partitioning is that these categories are correlated with the expected location of
the residue (surface, core, etc). Second, we computed a separate partitioning (independent of the
first) based on which octant of the unit sphere edth- C,, bond vector is orientéd That is,
we bucketed the bonds by theif and ;. The motivation for this partitioning is that it captures
difference in relative motions in different orientations. Third, we considered the covariance of the
RDCs among the different aligning media.

Our training set consisted of labeled examples. For each trajectory in the training set, the re-
quired features are extracted using the associated crystal structure and the assigned RDCs. The
class label for each instance was one of the seven categories. We applied the discriminative learn-
ing technique oBagging[5] to construct our classifier. Baggin@gotstrap Aggregatingis an
ensemble method of learning where the members of the ensemble are weak learners. Each of the
weak learners is trained on a different bootstrap replicate (with replacement) of the training data. In

1The orientation of the bond vector is computed as going from the N t6'the



| Motion Scale| Motion Type | Number of trajectorie$ Precision (%) Recall (%)]

Fragment | Hinge 508 86.2 91.5

Shear 146 90.5 78.3

subtotal 654 88.1 89.6

Domain Hinge 646 95.7 92.1

Shear 244 89.9 90.9

Partial Refolding 241 81.6 84.9

subtotal 1131 89.2 88.8

Subunit Allosteric Transition 656 97.4 97.6
Non-Allosteric Transition 13 0 0

subtotal 669 95.5 95.7

] Total \ \ 2,454 \ 90.6 \ 90.9 \

Table 1: Results A total of 2,454 molecular dynamics trajectories were used in our experiments.
The table summarizes both the content of our training and test set and the accuracy of our method.
For the purpose of comparison, the 2,454 trajectories are grouped by classes based on the size of the
motion (column one) and the kind of motion (column two). Subtotals within each size subcategory
are also given. Column three specifies the number of trajectories within a given class. Columns 4
and 5 report the precision and recall of our predictions, respectively. Precision and recall scores for
subtotals are weighted averages. Note that our classifier makes predictions for all seven categories
at once, and not just within a subcategory. The final row reports the overall scores over all seven
categories and all 2,454 trajectories using 10-fold cross-validation.

the trained classifier, each of the weak learners is allowed to vote for the class for a given instance.
The final prediction is the majority vote for classification tasks. In the language of statistical learn-
ing theory (e.g., [14]) and the bias-variance tradeoff, Bagging is a variance reduction technique.
As such, it is a general method for resisting overfitting of training data. Intuitively, this can be un-
derstood by noticing that each of the weak learners is trained on a subset of the training set; thus,
no learner can overfit the entire training set. Bagging is also very efficient and amenable to parallel
implementations. We used a decision tree algorithm as our weak learner in our experiments.

6 Results

Using the 2,454 trajectories previously outlined, we evaluated the performance of our classifier
using 10-fold cross-validation. The results of these experiments are presented in Table 1. The
overall accuracies, in terms of precision and recall, were 90.6% and 90.9, respectively. Precision
is the percentage of predictions that are correct. Recall is the percentage of the total number of
instances of a given class that are correctly classified. Table 1 also presents accuracy statistics for
various combinations of classes. The statistics reported for groups of classes are weighted by the
number of instances in each class.



Small motions (fragment) are divided into two classes, hinge and shear. Our data contained
nearly 3.5 times as many instances of hinge as shear. While fairly similar, the precision statistic for
hinge was lower than that for shear. The recall statistic for hinge, however, is significantly higher
than that for shear. Recall is essentially a measure of the fraction false-negative predictions; it may
be that for very small, localized motions, a shearing motion is not as well characterized by our
feature set as a hinge motion. Itis also possible that the category itself is not well-defined.

Medium size motions (domain) are divided into three classes, hinge, shear, and partial refold-
ing. Hinge motions are again much more common than either of the other two classes, but in this
category, hinge motions are uniformly more accurate in terms of both precision and recall. How-
ever, the recall statistic on the shearing motion is now comparable to the recall statistic of the hinge
motion suggesting that larger scale motions are more easily detected and classified. Considering
only shear and partial refoldings, the method does better at predicting shear motions than predict-
ing partial refoldings. One possible explanation for this tendency may be that refoldings within
different proteins may simply involve a variety of different motions.

Large scale motions are divided into two classes, allosteric, and non-allosteric motions. Notice
that the number of instances of non-allosteric motions is very small — just 13 instances. The clas-
sifier does very well predicting allosteric motions and terribly predicting non-allosteric motions.
This behavior is almost certainly due to the small number of training instances.

While the preceding discussion has been in terms of motions of different scales, we stress that
the classifier made its predictions over all classes simultaneously, and not merely within a single
scale of motion. Thus, it is appropriate to consider the accuracies among the scales, and overall.
The precision and recall statistics between small and medium scale motions are very similar, within
1.1% in all cases. By comparison, the precision and recall for the largest motions is about 6%
higher. This also suggests that it may be easier to identify large scale motions than it is smaller
motions. This seems reasonable; our feature set is largely based on statistics on distributions of
bonds, and a large movement will involve the motions of a larger number of bonds than a small
one. Finally, the overall accuracy across all seven categories is quite high, suggesting that our
approach works well both across different scales of motion, and across qualitatively different kinds
of motion.

7 Discussion and Conclusion

The results presented in this paper suggest that it may be possible to classify a protein’s global
dynamics regime using RDCs. This is of interest because the RDCs report on the local dynamics of
individual atoms; correlated motions among atoms, and thus global motions, cannot be extracted
directly from the data. However, we note that the actual range of motions experienced by any
protein is likely to be limited by the structure of the protein itself. It is known that there are far
fewer distinct protein folds than there are proteins. Thus, the range of motions is also likely to
be small. This would suggest that it is possible to construct statistical models of the relationships
between distributions of local motions and the global regime. Our results support this hypothesis.
We note that the method is very general; the proteins used in this study come from well over
100 CcATH [20] categories. Furthermore, while the technique does consider distributions of amino



acids types (polar, non-polar, etc), it does not use sequence identity. Thus, it is unlikely that our
training set has significant biases in terms of fold types or sequence composition. Additionally,
the fact that the technique makes use of distributions of motion tensors suggests that it should be
robust to real-world issues such as missing, or corrupted data.

Our results are promising, but very preliminary. There are several important areas for future
work. The first is that the Database of Macromolecular Movements, while very useful, does not
represent the entire range of motions. Recently, @M database [2] has made available the
normal mode analyses for all PDB entries. These normal mode analyses are computed using the
Gaussian Network Model [3] of motion. We intend to apply our technique to this larger database
of motions. Secondly, the classification scheme defined by the Database of Macromolecular Mo-
tions, is not necessarily the only that can be used; alternative schemes have been considered by
other investigators (e.g., [18]). Next, it would be interesting to establish the effective resolution
of the classification method in terms of the minimum size of detectable motions, as well as the
number of differentiable categories of motion. Fourth, our results are limited in that the RDCs
used in this study were simulated. We believe that the performance of the method should not de-
grade significantly on real data. As previously mentioned, our feature set considers distributions
of experimental values, so it should be robust to noise and missing data. Furthermore, RDCs are,
in fact, very accurate measurements. That is, in practice, the difference between the experimen-
tally recorded and the theoretically computed values is usually small (e.g., [24]). Thus, a classifier
trained on simulated data may not degrade significantly when applied to real data. We are working
with our experimental collaborators to obtain the required data. Finally, the requirement for 5 in-
dependent media is the most restrictive experimental consideration. We are exploring the behavior
of the technique when fewer than five media are available and the null-space of the tensors needs
to be considered.

We believe that a method like ours, could potentially be used in two ways. First, motion
tensors obtained via RDCs capture motions up to the millisecond range. The classifications made
by our method could potentially be used to generate external constraints for molecular dynamics
simulations. This opens the possibility for performing simulations over long timescales. Second,
we feel that the predictions may be useful to biologists in interpreting existing functional data, and
more generally, as an aid when investigating the relationships between structure, dynamics, and
function.
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