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Abstract

Access control to sensitive information available in pervasive computiagosments is challenging for
multiple reasons: First, access control must support flexible acceds tigi include context-based con-
straints. Second, a client requesting access to sensitive information neigkb@w which of its access
rights are necessary in order to be granted access to the requestethiida. Third, pervasive computing
environments consist of a multitude of information services, which makes simplagament of access
rights essential. Given this setting, we discuss the shortcomings of existiegsacontrol schemes that
rely either on information services encrypting sensitive information befaraling it over to clients or on
clients presenting a proof of access to a service before being gramtteska To address these shortcomings,
we develop a solution based on hierarchical identity-based encryptamely, we present an encryption-
based access control architecture that exploits hierarchical idensgdlEncryption in order to deal with
multiple, hierarchical constraints on access rights. Furthermore, we irteoa proof-based access con-
trol architecture that employs hierarchical identity-based encryptiondardo enable services to inform
clients of the required proof of access in a covert way, without leakifogrimation. We present an example
implementation of our proposed schemes and discuss its performance.
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1 Introduction

Whereas access control to sensitive information has been well invedtigateaditional distributed systems
(e.g., file systems), there are additional challenges for pervasive tmgmnvironments. For example,
access rights need to be more flexible; it should be possible to issue dgb¢sshat depend on a person’s
context, such as her location or the current time. In addition, there migbbvsat access requirements
Namely, a client accessing some complex information might not know which afdtsa rights are required
for gaining access. For instance, a person’s calendar entry réhveddeation of the people that the person is
currently meeting with. In order to be granted access to this entry, a cliealdsat least have access rights
to each of these people’s location information. However, since the cliexst imlat know who the person is
meeting with, it does not know which of its access rights are required.

There areencryption-basedndproof-basedaccess control schemes. In an encryption-based scheme, a
service provides sensitive information to any client, but only in an enatyfioten. Only clients authorized
to access the information have the required decryption key. This appi®attractive for scenarios where
there are lots of queries to a service since it shields the service fromghtvimin client-specific access
control. It is straightforward to add support for covert accessirements to existing encryption-based
schemes [1, 15, 20, 25, 30]. In particular, a service encrypts intfoymas usual, but it does not tell a client
which decryption key to use. Instead, the client needs to search itsastryption keys for a matching key.
However, it is less straightforward to add support for constraints oaesacrights to the proposed schemes,
especially when considering that key management should remain simple.

In a proof-based access control scheme, a client requesting docgsssitive information needs to
assemble access rights irpeof of accesswhich demonstrates to the service that the client is authorized
to access the requested information. This approach is attractive fargmewhere flexible, client-specific
access rights are required. A proof of access prevents a sergioehfaving to locate the required access
rights itself, which can be an expensive task. Since access rightsdldeflét is easy to include support
for constraints in them. When validating a proof of access, a service tsostalidate all the constraints on
the access rights in the proof. However, it is difficult to add supportdoert access requirements to proof-
based access control. Existing schemes [2, 17] assume that a servicgoren a client of the required
proof of access. However, in our example mentioned above, a serficeing a client of the identity of
the people that the owner of the calendar entry is meeting with would resultinicamation leak. A n&ve
solution is to have the client transmit a proof of access for all individuatsserthocation it can access. This
solution has privacy and bandwidth issues: a service can learn a lat aletient, and a client might have
to transmit a lot of data. Therefore, a service must be able to let a client &hout the required proof of
access in a way such that only authorized clients can learn about thenation being part of this proof
description, otherwise this information will leak.

We present two novel applications of hierarchical identity-based ptiorythat address the above men-
tioned shortcomings of encryption-based and proof-based schemaes ¢oritext of pervasive computing
environments (Section 3). In identity-based encryption, public keys igaay strings, which simpli-
fies management of access rights and constraints. First, we develomechiesl identity-based encryp-
tion scheme for encryption-based access control that supports muliigdardhical constraints on access
rights. Second, we employ hierarchical identity-based encryption to impleroeert access requirements
in proof-based access control. Our contributions include extensions &xiating hierarchical identity-
based encryption scheme to support constraints on access rightsvehavags of dealing with expiration
of access rights in identity-based encryption. We have implemented our salirtia pervasive computing
environment (Section 4). Finally, we provide an overall evaluation antldssthe relative strengths and



weaknesses of our example implementation (Section 5).

2 AccessControl to Information in Pervasive Computing

In this section, we discuss the concepts of access control and aigteésda information in the context of
pervasive computing. We present a list of requirements and our threktimo

2.1 Overview

In pervasive computing environments, such as CMU’s Aura [12], thesea lot ofservicesthat provide
potentially sensitive information tdients Clients need to havaccess rightén order to be granted access
to sensitive information. An access right has an issuer, a recipient, @amiation item, and a set of con-
straints. For example, Alice grants Bob access to her location informatiamgdoifice hours. Multiple
services may offer the same type of information (e.g., cell phone-basatioloénformation, WiFi-based
location information, badge-based location information,...). To simplify manageoiewcess rights, we
want service-independent access rights, that is, access rightisl fleoabout information, not about in-
formation offered by a specific service. For example, there should ¢tesscights for Alice’s location
information, not for Alice’s location information as offered by her cell pbervice.

It should be possible to constrain access rights. In this paper, we limiglgassto constraints whose
current value is always available to a client (e.g., current time or locatitheaflient). Having other types of
constraints (e.qg., location of the queried individual) requires more comptEsa control in order to avoid
information leaks, which is out of the scope of this paper. In addition,sacdghts should be granularity
aware. Some information (e.g., location information) is available at differeetdeof granularities (e.g.,
“CMU”, “CMU Wean Hall”, “CMU Wean Hall 8220"). Having an access hgfor fine-grained informa-
tion should imply having an access right for coarse-grained informatioanuarity-aware access rights
simplify management of access rights.

Access rights are managed pglicymakers Typically, an individual is the policymaker for her own
personal information. Depending on the access control schemesaigges can be represented in different
forms. For encryption-based access control, an access right igyptien key, whereas for proof-based
access control, it typically is a signed statement (i.e., a digital certificate)didgguthe policymaker. Re-
gardless of the form, it should be simple to deal with access rights for alvien@ntities (clients, services,
and policymakers).

We now discuss how encryption-based and proof-based accetsslgoret the requirements of gran-
ularity awareness and constraints. We also elaborate on some additiqniaéneents, namely, indistin-
guishability, asymmetry, and personalization.

2.2 Encryption-based Access Control

If there are lots of requests for some information, encryption-basegsaamntrol is attractive since it is
independent of the individual clients issuing these requests. For exampézvice can encrypt an infor-
mation item once and use the ciphertext for answering multiple requests &skihg item. However, the
uniform treatment of requests makes dealing with constraints on accessaighwith granularity-aware
access rights difficult. Covert access requirements and serviceeindept access rights present further
challenges. Let us summarize the requirements:

Constraints. Each possible value of a constraint must require a separate decrypyidiorkdecrypting
some encrypted information that should be accessible only under the giwnstraint/value combination.
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For example, a decryption key that allows a client to access some encigfiigdation on “January 1”
must not allow decryption on “January 2”. This requirement leads to asase in the number of keys. The
problem becomes worse when there are multiple constraints on some aghedsuckily, we observe that
many constraints are of a hierarchical nature. Therefore, we wagy adheme that supports hierarchical
constraints. For example, given the decryption key for “January’cavederive the key for “January 17,
“January 2”,... Similarly, the key for (“January 1", “Wean Hall 8220'grcbe derived from the key for
(“January, “Wean Hall”). This feature can drastically simplify key mamaget.

Granularity awareness. To enforce that access rights to coarse-grained information do nutageess to
fine-grained information, we require separate decryption keys for thecages. Similar to constraints, a
nave implementation of granularity-aware access rights can lead to an inaméhsanumber of keys. With
a hierarchical key scheme, we can avoid this increase. In particuladetivgption key for coarse-grained
information should be derivable from the decryption key for fine-giinérmation.

I ndistinguishability. To implement covert access requirements, encrypted information retoyraeskervice
must not reveal any knowledge about the used encryption key ordeed decryption key. Only a client
having this decryption key should be able to gain this knowledge.

Asymmetry. Service-independent access rights grant access to some informagpeivtgnt of the service
offering this information. This concept implies that if multiple services offergame information, this
information will be decryptable with the same decryption key. Therefore, synametric cryptosystem, a
service encrypting information would be able to access the same informafgsadby some other service.
For example, a cell phone service offering Alice’s cell phone-baseatitin information would be able to
access her WiFi-based location information as offered by some othéreséiWe can avoid this problem by
using an asymmetric cryptosystem.

2.3 Proof-based Access Control

Proof-based access control is attractive since it offloads the assefrbly proof of access to a client. If
the client does not know about the required proof of access, a eaniligive it a description of this proof.
However, when this proof description contains sensitive information, éndéce must obscure the proof
description. Let us summarize the requirements for this case:

Indistinguishability. The service must obscure the description such that only clients authtoizedess
the sensitive information can learn about the policymaker responsibleiddantormation and the nature of
the information.

Granularity awareness. Understanding obscured proof description should be granularityealBaing able
to interpret an obscured proof description for fine-grained informagiuuld imply being able to interpret
an obscured proof description for coarse-grained information.

Constraints. Since access rights can have constraints on them, these constraints alkowgply to a
client’s ability to interpret an obscured proof description. For exampleyveahclient’s access right for some
information expires, the client should no longer be able to interpret obdqroof descriptions asking for a
proof of access for this information.

Per sonalization. We want obscured proof descriptions to be personalized for a clietftisiway, if a client
leaked its secret knowledge required for understanding an obsgrgefidescription for some information,
other clients being able to understand a proof description for the samenation would not be affected.
Clients do not have to be malicious to leak their secret knowledge; sinceribhadue for them (as opposed
to their private key), they might neglect keeping it secret. (We do natiregersonalization for encryption-
based access control since it is is client independent by design.)



Asymmetry. Based on the same argument as in the case of encryption-based amtesk a service
generating an obscured description of the required proof of acoeserhe information must not be able to
identify an obscured proof description for the same information genebbgtedme other service.

2.4 Threat Mode

In our threat model, an attacker can corrupt clients or services, bpblioymakers. Corrupted clients try to
gain non-authorized access to information provided by a service, thatdisnation to which a client does
not have any access rights. Corrupted clients can collude. A corrapteite tries to gain non-authorized
access to information provided by some other service, the information cahtbe same type as the one
that it offers. Corrupted services can collude. Attackers can alsf) srmiflify, or inject traffic between
clients, services, and policymakers. We do not explicitly address ddrsahace attacks, though we try to
limit load on services.

3 Access Control based on Hierarchical |dentity-based Encryption

We want an access control architecture where access rights are simpbnége, aware of granularity,
and constrainable. In addition, the architecture has to be asymmetric, @liadigtinguishability, and be
personalizable in the case of proof-based access control. Idensiggteancryption (IBE) is a good fit for
environments that have these requirements. It is asymmetric and providamndshability. Since public
keys are arbitrary strings, key and access right management are slmplddition, a hierarchical version
of identity-based encryption lends itself to the implementation of hierarchicat@nts and granularity
awareness. Some modifications also allow for the support of personalizatiwerefore, we propose an
access control architecture for pervasive computing environmentsstibaised on hierarchical identity-
based encryption (HIBE). In this section, we review HIBE and discogswe extend it to build an access
control architecture satisfying our requirements.

3.1 Hierarchical Identity-based Encryption

In an IBE scheme, the public key of an individual is an arbitrary stringctlly corresponding to her ID
(e.g., her email address) [21]. The individual gets her private kay @& third party, called a Private Key
Generator (PKG). The third party also provides additional, public parasetquired for the cryptographic
operations. Boneh and Franklin [4] present one of the first pradBfalschemes. Based on this work,
Gentry and Silverberg [13] introduce a HIBE scheme. In this schemeptaPtdG gives out private keys
to sub PKGs, which in turn give out private keys to individuals in their domé&m further sub PKGSs).
The public key of an individual corresponds to the IDs associated withothtePKG, any sub PKGs on the
path from the root PKG to the individual, and the individual. For encryptiregsages, additional public
parameters are required only from the root PKG.

The limited success of PKI has lead to the development of simpler public keysinictures (e.g,.
SPKI [9]), that do not require (hierarchical) certification authorities.SPKI, a user’s public key is her
identity, and not her name as certified by an authority. In our work, weysua similar approach. Instead
of requiring the existence of a hierarchical PKG infrastructure, wedeh @olicymaker have its own PKG.
The policymaker uses its PKG for managing access rights to its information. Aypualker can set up
a hierarchical PKG infrastructure, where it controls both the root PK& any sub PKGs. In this way,
a policymaker will be able to establish granularity-aware access rights iaratdhical constraints (see



Section 3.3). Boneh and Franklin [4] also suggest a deployment $soevizre individuals become PKGs.
In the rest of this paper, we refrain from talking about PKGs and useethe“policymaker” instead.

Our architecture builds on the HIBE scheme proposed by Gentry andi&bheerTheir proposed scheme
supports only a single hierarchy for a root PKG, which is too limiting for qapli@ation scenarios, where
we might have multiple, hierarchical constraints on some access righteforegwe extend the scheme to
support multiple hierarchies.

A HIBE scheme has the advantage that it reduces the amount of requiragesand the complexity of
the access right management. As we will see in Section 3.3, the public kemefistbrmation corresponds
directly to the identification string of the information. There is no need for gjaairseparate public key
(obtained from a conventional cryptosystem such as RSA) or some ptitdic value, as suggested in
earlier work [19], for each information item. Maintaining the mappings fromedformation to a key or a
public value would also make access right management more difficult. Wesditoeladvantages of using
a HIBE scheme in more detail in Section 3.6.

3.2 Basic Operations

Our architectures for encryption-based and proof-based acoesslceach employ four basic, randomized
operations. We discuss these operations in this section and their applicagiocryption-based and proof-
based access control in the next two sections. Our operations aik draskee operations introduced by
Gentry and Silverberg [13], we extend them to support multiple hierarchietetailed discussion, giving
the exact cryptographic steps for each operation, is in Appendix Ardaatability reasons, we omit some
of the parameters of the operations here.

We assume that all the policymakers agree on a set of public parametetisps. We require this
agreement in order to achieve indistinguishability. The basic operationBarneSetup(), Extract(),
Encrypt(), andDecrypt().

e Root_Setup(params) — Qo:
A policymaker runs this operation in order to generate the policymaker’s nmesesteet. In addition,
the operation returns the policymaker’s public k&y,

o Extract((ID;a,...,I1D;4,), Sit,—1, params) — S;, with t; > 1:
This operation returns the private ke, , of a node at leved; in hierarchy:. Unlesst; = 1, this key
is derived from the private key of the ancestor nalg, . If ¢; = 1, this operation needs to be run
by a policymaker, since it requires its master sec(éf); 1, ...,ID;,) is the sequence of node IDs
along the path from the root node of hierarehy the node in question.

o Encrypt((ID11,....I1D14,),...;(IDp1, ..., IDpy, ), M, Qo, params) — C-
After choosing a node in each hierarchy, a service uses this operagociygpt a messag®l using
the nodes’ public keys. For each of thénierarchies, the operation accepts a sequence of node IDs,
(IDj1,...,1D;4,), from the root node to the chosen node. The operation returns ciph€tte

o Decrypt((Sit,,---s Sht,), C,params) — M:
A client uses this operation to decrypt ciphertékt The operation requires the private key of each
node chosen by the service in its callAmcrypt() and the ciphertext.



1. Root_Setup()
2. Define hierarchies.
4. Extract()

5. Private keys of nodes, sequences 3. Alice’s public ke
of node IDs, and sub hierarchi and hierarchies

9. Encrypted
6. Extract() ; 8. Encrypt()
10. Decrypt() Information

Figure 1:Architecture for encryption-based access control. Alice sets up hestBBEme and hierarchies,
informs the service, and grants access to Bob. Bob issues a query trtiees

location_fine 2004 always

location_medium January February office_hours spare_tim

/!

location_coarse 1

(@) (b) (©)
Figure 2: Hierarchies. Alice establishes hierarchies for her location information (& #or each of her
constraints (b, c).

3.3 Encryption-Based Access Control

Figure 1 gives an overview of the architecture for encryption-baseess control, which consists of three
entities: the policymaker managing access rights to her personal inform&iae?), the client trying

to access this information (“Bob”), and the service offering this informatiorour architecture, we keep
key management simple by using the identification string of the information as ili€ jpels. To support
granularity-aware access rights and constraints on them, we let Aliceeage§iat of hierarchies that reflect
the granularity properties of her information and her constraints. We rsmusk the individual steps shown
in Figure 1 in detail.

Setup. Alice runs Root_Setup() to set up her IBE scheme (1) and to retrieve her public key. She also
establishes multiple hierarchies (2): She first defines a hierarchy résgrtiie granularity properties of
some information about hemformation hierarchy. Figure 2 (a) gives an example hierarchy for location
information. The rule for a hierarchy is that anyone who has accesstwriafion covered by a node should
also have access to information covered by a child node. Alice then estabéisbther hierarchy for each
of the constraints that she wants to include in her access rightstfaint hierarchies Figure 2 (b) shows

a hierarchy that restricts the lifetime of an access right, and Figure 2dsgpts a hierarchy for limiting
access based on time of the day. (Non-hierarchical constraints dtevithasimilarly; there, the hierarchy
has only one level and lists all possible values.) Alice then informs the ses¥iber public key and
her hierarchies (3). Since none of this information is confidential, theread onnly for an authenticated
channel. Instead of defining her own hierarchies and submitting them tcethiees Alice can exploit
predefined hierarchies that the service is already aware of. For éxamwg expect that there will be a
widely accepted hierarchy for location information, which is commonly usetbtgtion services and to



which Alice can refer.

Alice grants Bob access to some of her information. In her information leigyashe chooses the node
corresponding to the information to which she wants Bob to have accessl@gtion medium”). She then
walks the path from the root node to this node. In particular, she keegzpi@isce of node IDs and, for each
node on the path, she calia:tract() with the current sequence (e.g.xtract((locationfine), null, params)
— 51,1 and Eztract((locationfine, locationmediun), S 1, params) — S 2) (4). Ultimately, this pro-
cess will return the private key of the chosen node. Similarly, for each ¢fonstraint, she picks the
appropriate node in the corresponding constraint hierarchy aneeddhie private key by repeated calls to
Extract(). For each hierarchy, Alice will end up with a private key. She then givesuple of private keys
to Bob, together with the corresponding sequences of node IDs andltgesarchies rooted in the chosen
nodes (5). Transfer of the private keys requires a secret channe

Given the tuple of private keys and the sub hierarchies from Alice, Bobderive additional tuples of
private keys for nodes in the sub hierarchies by (repeatedly) callingact() (6). For example, given the
private key for(locationfine, locationmediun) and the sub hierarchy “locatiocparse”, Bob can extract
the private key folocationfine, locationmedium,locationcoarse. It is possible for Bob to delay this step
till he receives encrypted information from a service requiring a partitufde of private keys derivable by
Bob.

Access Control. When queried by Bob for information about Alice (7), the service ertsriipe informa-
tion (8) and returns the encrypted information to Bob (9). Namely, the sespiits up the information based
on its granularity properties and encrypts each piece separately. &opk the information “CMU Wean
Hall 8220" is split up into “CMU”, “Wean Hall”, and “8220". Then, for el piece, the service locates the
node in Alice’s information hierarchy that describes the piece and gatieiBs of all the nodes along the
path from the root node to this node. In our example, the ID sequenedseationfine, locationmedium,
locationcoarse, (locationfine, locationmediunj, and(locationfine), respectively. Similarly, for each of
the constraint hierarchies, the service chooses the leaf node thansdgh&&current value of the constraint
and gathers the IDs along the path from the root node. The servicealsacrypt() with the gathered
sequences of node IDs (e.@ncrypt((locationfine, locationmedium, locationcoarse,

(2004, February, 2 (always, officehours, “CMU” | Qy, params)). Note that the public keys used for en-
cryption correspond directly to the identification strings of nodes. Bolygesthe received ciphertexts
by calling Decrypt() with the required tuple of private keys (10) for each ciphertext. He camygt a
ciphertext only if the encrypted information is of a granularity that he hasszcto.

Discussion. Bob typically has multiple tuples of private keys, either by deriving them cabse he has
been given multiple tuples by a or multiple policymakers. As explained in Sectibe fight not know
which tuple to use for decryption, and the service cannot tell him in orderdim information leaks. In this
case, Bob has to search his tuples till he finds a tuple that allows sudabssfyption. We discuss ways to
limit the search space in Section 3.5.

Our IBE-based scheme fulfills the requirements of being asymmetric anddhiea and supporting
multiple, hierarchical constraints. Using the identification string of some infliomar of a constraint di-
rectly as its public key drastically simplifies key management. Compared to a pseapproach for dealing
with expiration [4], which makes the current date part of the identificationgstf some information, our
approach does not require handing out separate private keyadompessible date.

Security Analysis. The security of the scheme is based on the hardness of the Bilinear Déffliedih
problem. (Please refer to Appendix A for details.) Given this assumptionirgsand Silverberg [13]
show that their HIBE scheme has adaptive chosen ciphertext securitg imldom oracle model. 1t is
straightforward to adapt their proof for multiple hierarchies. Therefooerupted clients and services and



1. Root_Setup()
2. Define hierarchies.
4. Extract()

5. Private keys of nodes, sequence 3. Alice’s public key
of node IDs, and sub hierarchies and hierachies

9. Challenge
6. Extract() 11. Proof 8. Encrypt()
10. Decrypt() "= 12. Proof validatio
13. Information

Figure 3:Architecture for proof-based access control. The service senddieeba to Bob. Upon resolving
this challenge, Bob sends a proof of access to the service.

traffic sniffers cannot decrypt encrypted information without havirgrétquired decryption key or modify
encrypted information. In the case where a client (or traffic sniffegsdwot know which decryption key
to apply, we need to ensure that the client cannot learn from the ciphertésh public key of which
policymaker was used to produce this ciphertext (indistinguishability). Hdalt. ¢16] prove this property
for the scenario where all the policymakers share the same set of pubdim@rs, as assumed in our
model.

Our scheme is not secure if a client is given access rights to differees tyjonformation by the same
policymaker. For example, for the hierarchies given in Figure 2, assuahd@tb has the tuple of private
keys for (locationfine), (2004, (always). In addition, Bob has access to some information other than
location information, for example, he has the tuple of private keys(foedica}, (2004, Januany (always,
office_hourg). This setup allows Bob to derive the tuple fgmedica}, (2004, (always). We can fix
this problem by including the ID of the root node of an information hierarichthe root nodes of the
corresponding constraint hierarchies. For example, for the conshigrarchies in Figure 2, their root
nodes would become “2004cationfine” and “alwayslocationfine”. This fix has the drawback that it
makes key management for the policymaker more difficult. The policymaken@donger reuse private
keys of a constraint hierarchy when it wants to grant access to diffgnees of information under the same
constraint.

Our scheme is not secure against collusion. For example, for the WiEsugiven in Figure 2, assume
that Bob has the tuple of private keys fdlocationfine), (2004, (always, officehourg) and that Carol has
the tuple for (locationfine), (2004, Januarty (always). If Bob and Carol colluded, they could determine
the tuple for (locationfine), (2004, (always). Yao et al. [28] propose a collision resistant HIBE scheme.
However, the complexity of th&ncrypt() and Decrypt() operations in their scheme @(n™), wheren
is the depth of a hierarchy and is the number of hierarchies. As we will see in Section 5, the complexity
of the operations in our scheme@gmn).

3.4 Proof-Based Access Control

If Alice hands over an access right for some information to Bob, she will gige him a personalized
secret. When Bob receives an obscured proof description for tiasniation from a service, this secret
will allow him to interpret the description. In the rest of this paper, we useadha challengefor such
an obscured proof description. We keep management of the challeéngde by using the identification
string of some information for generating a challenge for it. In our architectu challenge corresponds
to a ciphertext and a secret corresponds to a tuple of private kepirenthe decryption of ciphertexts.



To support granularity-aware, constrainable challenges and sesliets also defines a set of hierarchies.
The architecture for proof-based access control is given in Figuiei8 similar to the architecture for
encryption-based access control given in Figure 1. We now revieshidneges.

Setup. Alice defines an information hierarchy and constraint hierarchies @)sahmits them to the ser-
vice (3). To allow Alice to issue personalized secrets to clients, she cofittedmother hierarchy listing
all the clients. However, as we will see in Section 5, the cost for some ofryfpographic operations is
proportional to the number of hierarchies. Therefore, we refraim fitroducing another hierarchy. In-
stead, we have Alice personalize the information hierarchy by adding thttidef a client to its root node.
For example, for the hierarchy given in Figure 2 (a), the root nodernes “locationfine_Bob.! Since this
personalization is done in the same way for each client, there is no neediderté submit each person-
alized information hierarchy to the service. To avoid collusion attacks betelgnts, Alice should also
personalize each of her constraint hierarchies.

When issuing an access right to Bob for some information (e.g., in the foandigital certificate), Alice
also gives Bob a personalized secret, corresponding to the informatioa atcess right and limited to the
same constraints (5). She generates this secret by calliigact() for the information hierarchy and for
each of the constraint hierarchies (4). The tuple of private keyseduny these calls serve as the secret.
Access Control. Bob issues a query to the service and fails to submit a proof of accesd450ming that
the requested information requires covert access requirements,\tlee samputes a challenge for it (8). In
particular, the service callEncrypt() to encrypt a random plaintext/. The public keys required for this
operation come from the information hierarchy and the constraint higesrohthe policymaker responsible
for the requested information (e.duncrypt((locationfine_Bob), (2004 locationfine_Bob, February, 2
(alwayslocationfine_.Bob, officehourg, M, Qo, params)). Plaintext) and the obtained ciphertext;,
serve as challenge, and the service sends them to Bob (9). If thestequeformation covers multiple
individuals, there will be multiple challenges. Sending a challenge to Bobresqonly an authenticated
channel, since a challenge is personalized to a client and useless to lehes @vithout knowing the
corresponding personalized secret).

To resolve challengéM, C'), Bob needs to find a tuple of private keys that makes cipheftedecrypt
to plaintext)M . In particular, Bob calldecrypt() for each of his (potentially derived) tuples of private keys
given to him by Alice (and other policymakers) (10). He stops when theretuplaintext is identical to
M. We discuss ways to limit the search space in Section 3.5. If Bob sucltgssfinlves the challenge(s),
he will resubmit the query, together with the required proof of access (Ilie service will validate the
proof (12) and return the requested information (13). Steps (11)18)ddquire a secret channel.
Discussion. The benefits of our scheme are secrets that are personalized, tstggiraints, and are gran-
ularity aware. Because the challenge for some information is based on ttidigcddéion string of the infor-
mation, challenges are simple to manage. Since all the policymakers use theesaifeublic parameters,
the challenges generated by a service are indistinguishable.

A client uses its secrets to resolve a challenge before submitting the reguiretdof access to the
service. However, for some scenarios, this second step can be omittedregolving the challenge(s)
already gives the client all the information it is asking for. For example, ittlemt asks for the people in
a room, the client will require access to all these people’s location informalibe service thus sends a
challenge for each person’s location information to the client. After resplihiese challenges, the client
knows all the policymakers in the room and thus all the originally requestedniaition and can skip
submission of a proof of access. An obvious question is why not skip doisnsl step all the time and
stop using proofs of access? In this model, the service would encrypdiested information instead of

1In the actual implementation, Bob is identified by his public key.



a random plaintext (as suggested by Holt et al. [16]). We refrain fadapting this model because, as we
will see in Section 5, especially decryption of information is an expensieeadipn. \We view covert access
requirements as a special case. For most queries, we expect clientswtavkat they need to deliver a proof
of access for. Therefore, we do not place the burden of decryjtiognation on them for every request to
sensitive information.
Security Analysis. As mentioned in Section 3.3, the security of the scheme is based on the saofines
the Bilinear Diffie-Hellman problem. (Please refer to Appendix A for detailshewchoosing a random
plaintext, a service should choose it long enough to make the probability oli¢iné seeing a false positive
while resolving the challenge small. (For a plaintext of lengtthe probability of a false positive when
using random tuples of private keyslig2'.) A false positive will make the client send a wrong access right
to the service. If the access right contained private information, thisnrdton would leak to the service.
Internally, theEncrypt()/Decrypt() operations compute a random value, use it as an exponent in a
modular exponentiation, hash the resulting value into the domain of the plaintekiX@R the hashed
value with the plaintext. In proof-based access control, instead of ésiegypt()/ Decrypt() on a known,
random plaintext, we could omit the XORing step and directly use the resuke @qgbonentiation step as a
challenge. This approach relies on the hardness of the Decision BilinkiariBellman problem. (Please
refer to Appendix A for details.) We choose an approach basddenypt()/Decrypt since it allows us to
use the same basic routines for both encryption-based and proaf-dasess control and since the Bilinear
Diffie-Hellman problem is at least as hard as the Decision Bilinear Diffie-Hellprablem.

3.5 Limiting the Search Space

For covert access requirements, Bob does not know which of hisnfedte derived) tuples of private keys
to use for theDecrypt() operation, and he has to search through his tuples. We discuss some dimiza
strategies in this section.

We first concentrate on the scenario where the challenge or the entipf@emation returned by a
service cover a single individual only, that is, Bob needs to find onlytgple of private keys. As described
in Section 3.3, when a policymaker gives a tuple of private keys to Boliiggahim access to some infor-
mation under some constraints, Bob can potentially derive additional tuplastifiis tuple. We argue that
among the original tuple and the derived tuples, at most one tuple is of meletar the search. In particu-
lar, since we assume that Bob is aware of the current value of a comsBamknows which private key is
relevant for each constraint hierarchy, and he can throw out all flesgumot having this private key within
them. In practice, we expect that Bob can also limit the search space fofdh@ation hierarchy. In many
cases, it is safe for the service to inform Bob of the nature and the lgragwf the information for which
he needs to resolve a challenge, but not about the identity of the policythekieformation is about. This
observation exploits the fact that the composition of most types of informatisaliknown. For example,
calendar information is composed of fine-grained location information atdtaénformation, but not of
medical information. Therefore, when Bob asks the service for caténfdemation, the service can safely
inform him that a challenge involves fine-grained location information. mreary, for all tuples of private
keys given to Bob by a single policymaker and all tuples derivable frosetheples, we expect at most one
tuple to be relevant for a search. In summary, the number of tuples thatdmls to search is at most one
per policymaker.

If the information returned by a service covers multiple individuals (e.g.ndacgeencrypts informa-
tion multiple times or returns multiple challenges), Bob will have to locate multiple tuplps\afte keys.
Therefore, Bob’s search cost is proportional to the number of tupleswvate keys given to him by policy-
makers multiplied by the number of individuals covered by the information retubly the service. While
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this sounds expensive, Bradshaw et al. [5] present an optimizatiomettpaites the client to perform the
most expensive cryptographic operation in this search only once ébrteple of private keys and not for
each combination of a tuple of private keys and covered individuals.

3.6 Discussion

A motivation for the design of IBE was to simplify certificate management in ematesys [21]. For
example, IBE allows Bob to encrypt email to Alice simply by using her email addas public key. There
is no need for Bob to contact Alice beforehand to acquire a separatie gal. In our IBE scheme, we
seem to lose this advantage: Alice needs to inform a service of her higsend her public key. However,
as mentioned in Section 3.3, we do not expect each policymaker to defineitsedwf hierarchies. Instead,
there can be a shared set of hierarchies, which a service is awdneagfdition, we argue that a setup step
is also necessary for IBE in an email system: First, IBE schemes typicalljreesset of public parameters
for encryption. Bob must acquire these parameters before he cayperenail for Alice. Second, Bob
should ensure that the email address he is going to use to encrypt semgdivnation destined for Alice
really belongs to Alice. He should use this address only if he was giveneitttlirby Alice (or a trusted
third entity) in a setup step.

In our HIBE scheme, the public key of some information corresponds to itdifidation string in the
hierarchy. An alternative design approach is to have the policymakignasgublic key of a conventional
asymmetric cryptosystem (e.g., RSA) to each node in the hierarchy. Wimelingaout the hierarchy to
services, the policymaker also gives them all the public keys in the higra@imilarly, when handing
out a sub hierarchy to clients, the policymakers also gives them all thespamding private keys. This
approach has the drawback that it increases the key material thattodestored and transferred. Instead
of assigning a key to each node in a hierarchy, Ray et al. [19] suggeste sophisticated scheme in which
the public key of a node can be derived from the public key of the paiaid and in which the private key
of a node can be used to decrypt information encrypted with the publicfies/ahild node. However, this
scheme (and similar algorithms [1, 15, 25, 20]) still requires more key mateitd stored and transferred,
since for each node, we would have to keep not only its ID, but also ditiauhl, public value required by
the algorithm. Moreover, this scheme makes management of access rightiiffircark when a policymaker
uses a shared hierarchy instead of defining its own. Namely, the policywaked still have to generate
its own set of public values for all the nodes in the shared hierarchy @ndisthese values to individual
information services. Our HIBE scheme does not require any such pdhlies for each node.

The access control mechanism proposed in this paper is also suitabléramarents other than perva-
sive computing. In general, the mechanism targets scenarios where multgrl@ation services, run by
different organizations, need to distribute the same kind of information toatime set of clients. For ex-
ample, another deployment scenario is in the context of medical informatf@argwnultiple hospitals, run
by different HMOs, need to grant the same set of researcherssaoc® same kind of sensitive statistical
information gathered in a hospital.

As we will see in Section 5, our proposed HIBE scheme can be expensteems of performance.
This could become a problem in a pervasive computing environment, whentscnight employ com-
putationally weak devices for accessing information (e.g., a cell phonepn#mon architecture for such
environments is to have agents perform tasks on behalf of clients [7WELtould have this agent decrypt
information for its client. For performance and availability reasons, it mag&esesto run this agent on a
more powerful processing platform and to run only a lightweight proxg atient’s personal device.
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4 Prototype Implementation

The Aura ubiquitous computing environment [12] serves as a testbedfwnfiiementation and deployment
of our proposed access control mechanisms. Because the enviroisrmeostly Java, we implemented
our discussed HIBE scheme in Java. In particular, we ported a C implementdtiBE [14] to Java
and added support for (multiple) hierarchies. The operations intraduc8ections 3.3 and 3.4 require
expensive cryptographic computations. This is especially troublesontleeféincrypt () operation since it
is performed by a service. However, upon closer examination of thistpeywe realize that a service can
precompute most of the expensive computations. We refer to Appendix dgfails. We employ a hybrid
encryption scheme, that is, we symmetrically encrypt information with a seksjoand encrypt only this
session key wittEncrypt().

We also implemented a few sample information services that require accéss.cbhere are several
location services, each exploiting a different approach for locatinglpedhey can run either proof-based
access control or encryption-based access control. There is asd@eghat provides calendar information
and has covert access requirements. In proof-based access,costuse SPKI/SDSI [9] certificates for
expressing access rights. Alice provides the public parameters of mgitydeased cryptographic scheme
and her hierarchies in SPKI/SDSI “auto-certificates” [10], whosegse is to make information about
their issuer available in an authentic way. Alice also uses auto-certificatémifoling out private keys.
Obviously, recipients of such an auto-certificate should keep it sechareTis a command line tool for
issuing certificates, setting up IBE schemes, and extracting private keys.

We use the SSL protocol for communication between entities [24], whicls givauthentication of peers
and confidentiality and integrity of the transmitted data. Strictly speaking, wetequire confidentiality
of the (already encrypted) information returned by a service in encry@sed access control and of a
challenge in proof-based access control. Server authentication ang epnfidentiality and integrity are
required to deal with attackers listening, modifying, or injecting traffic. Fargption-based access control,
we require data integrity since our IBE implementation is only semantically seloureloes not provide
chosen-ciphertext security. A similar argument holds for challengesdaffrased access control. We
decided against implementing the required features, together with IBE, intecpt of our own, since,
as history has shown, correctly implementing protocols is hard. SSL hasvireresearched, and the
overhead caused by the redundant, symmetric encryption is low. We enligloyauithentication only for
proof-based access control.

While not being part of our threat model, a deployed system needs tddwaleal with attackers learn-
ing private keys or, worse, the compromise of a policymaker’'s mastegtsable can exploit mechanisms
proposed earlier [4, 23] for this purpose, that is, adding a salt to tiéngescheme, including a time-to-live
value with configuration information, and storing secrets in a distributed way.

5 Evaluation

In our evaluation, we concentrate on encryption-based access Iddf@nun our experiments on an un-
loaded Pentium 1V/2.5 GHz with 1.5 GB of memory, Linux 2.4.20, and Java 1.h2Zxfseriment consists
of ten runs, we report both the mean and the standard deviation (in pesesjh

We have an Aura client contact an Aura service. The service proeitaypted people location infor-
mation, which is splitinto three levels of granularity and encrypted using e-Brel information hierarchy.
There are no constraints. We look only at the case where information alsingle individual is provided.
In addition, we assume that the client knows which decryption key to usakds 1091ms (42ms) for the
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Figure 4: Performance of encryption/decryption. We encrypt/decrypt a singksage using a variable
number of two-level hierarchies, whereas the first hierarchy hasethevels. (Note that the two graphs are
differently scaled.)

client to retrieve and decrypt the information. Let us examine this cost in dedegl. (Detailed results are
in Appendix C.) For the service, there is a cost of 25ms (2ms) fdtaarypt () operation that exploits only
the root level of a hierarchy. (Remember that our service has to petfoee Encrypt() operations.) In
addition, there is a cost of 14ms (1ms) per additional level used fvamypt() operation (i.e.3 * 14ms in
our experiment). Therefore, the overall cost of encryption is abbdbs. The overall processing time of
the service is 253ms (31ms); 46% of the cost is due to encryption. Theftbstcost is caused by fingering
a person’s desktop computer in order to locate her and by (de)marstd@lling request and the response.
For the client, there is a cost of 136ms (2ms) per level usedia@ypt() operation. Our client runs three
such operations, operating at 1, 2, or 3 levels. Therefore, thelbdecayption cost is about 816ms or 75%
of the overall processing time.

In our second experiment, we investigate the influence of the number aftiidgs on processing time.
We encrypt and decrypt a random message using a variable numberarchies, whereas we exploit all
the levels in each hierarchy. Similar to the first experiment, the first higrdrak three levels. All the
additional hierarchies have two levels. Figure 4 presents the resulteoshfor encryption and decryption
increases linearly with the number of hierarchies. This observation isstentswith the characteristics
of the Encrypt() and Decrypt() operations (see Appendix C). Taking these characteristics into account,
if there arem hierarchies having; levels(1 < i < m), the cost of anEncrypt() operation exploiting
all the levels in each hierarchy #ms+ " | (n; — 1) * 14ms. For aDecrypt() operation, the cost is
S ng x 136ms.

The performance numbers heavily depend on the underlying implementationimplementation is
in Java and uses Java’s standard mathematical package for its crpptiog@utines. While we currently
do not have a C-based implementation of HIBE, there is a more optimized, puslialiable C-based
implementation of standard IBE [18]. Since hierarchical IBE exploits the $msie mathematical routines
as standard IBE, we can predict the performance of a C-based impld¢imertahierarchical IBE based
on this implementation. Figure 4 shows our predictions. (More detailed resalis &ppendix C). In
summary, the performance of a C-based, more optimized implementation woultebsts.5 (encryption)
or 4.5 (decryption) times better.

The presented results allow us to judge the relative benefit, performdaegef encryption-based and
proof-based access control. In our implementation of proof-basessa@ontrol, it takes a service about
3ms to validate the 1024 bit RSA signature of a SPKI/SDSI certificate. Assum#iggle-level informa-
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tion hierarchy and no constraint hierarchies, it takes the service 25mectgpe a piece of information.
However, this operation does not need to be executed for every cliergetiice can reuse an encrypted
piece of information to answer requests from multiple clients. Thereforeys pff for the service to use
encryption-based access control if there are more than 8 requestinfierinformation during the lifetime
of the information. If there are constraints on access rights, this numbdregitime correspondingly larger.

In the case of covert access requirements, the overall cost fof-paged access control will be larger
than for encryption-based access control. The performance of gratamns for identity-based encryption
will be similar for both cases. However, proof-based access cormoines two round trips, client authen-
tication, and validation of the proof of access.

6 Related Work

Identity-based cryptography has been used for different typepmfcations, such as searchable audit
logs [27] or secure email and IPsec [23]. All these applications, incjudur proposed one, exploit
the Boneh and Franklin IBE scheme [4]. While there are other schemegsl{g.Gocks [8], Boneh and
Boyen [3], Yao et al. [28], and Waters [26]), we choose this scheetaulse of the existence of publicly
available implementations [14, 18].

There has been previous work about access control in a hieravbleye information items are classi-
fied into partially ordered security classes depending on their sensitivityisers are assigned to classes
depending on their clearance. Each class has an encryption (denjy#io which is used for encrypting
(decrypting) information in the class. Given the encryption (decryptieg)flr a class, it is possible to de-
rive the encryption (decryption) key for a class of a lower securitylléNene of the proposed hierarchical
schemes fulfills our requirements of asymmetry and easy access rightsemaardg Akl and Taylor [1],
Harn and Yin [15], and Tzeng [25] present symmetric schemes, Sg@@hand Zheng et al. [30] propose
symmetric schemes exploiting strings for key generation, and Ray et alligk®]ss an asymmetric scheme
that does not exploit strings for key generation. Our scheme suppustdree-based and not arbitrary
hierarchies. However, tree-based hierarchies are sufficienkfessing granularity-aware access rights
and hierarchical constraints on them. Similar to our scheme, Briscoe [6]aub&rarchy for managing
time-based access.

Automated trust negotiation explores issues related to covert accessenegputs. In particular, Yu
and Winslett [29] study the scenario where (parts of) a service'ssaquaicy is confidential. (An access
policy lists the required access rights.) The authors suggest two strategiteer of them applicable to
our scenario. The first strategy transmits all the client’s access rights @éovimes even if they are not
required. The second one transmits only access rights that the serksctoaby revealing (parts of) its
access policy. However, this strategy fails if access rights whosespameding access policy cannot be
revealed are required. In Holt et al.'s scheme [16], a service pteigformation in a client-specific way,
and the client needs to find the corresponding decryption key(s) in itsf &elys. Similar to our scheme,
Holt et al.'s work is based on the Boneh and Franklin IBE scheme. Hesvelue to reasons outlined in
Section 3.4, we do not have a service encrypt information for prosédbaccess control. Holt et al. do not
investigate constraints on access rights and expiration of access rigatsshBw et al. [5] extend Holt et
al's scheme to support complex access policies expressed as monatol@arbfunctions. They apply a
secret splitting system in order to conceal the structure of such policieart £2] also examines how to
support complex access policies in IBE, but he assumes that the polieiestarzoncealed.
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7 Conclusions and Future Work

When running access control to sensitive information in a pervasive wimgpenvironment, we need to
be able to deal with constraints on access rights and avert information M&kshowed how hierarchical
identity-based encryption can be employed to address these challenges.

We implemented our proposed architecture in the context of the Aura pereasnputing environment.
Our evaluation shows that identity-based encryption is expensive fthbegverhead can be significantly
lowered using a more optimized implementation), but it gives us the conveniéteing able to use the
identification string of some information or of a constraint as public key.

A weakness of our proposed architecture is that it relies on all the pollimagreeing on a set of
parameters, which could be difficult to achieve in practice. A topic for &rrihvestigation is whether
we can weaken this assumption without significantly compromising on securitgthér area of future
research involves the delegation of personalized secrets used ot aoeess requirements in proof-based
access control: Whereas a recipient of an access right can delagatgtih(e.g., by issuing another digital
certificate), the recipient currently cannot delegate the corresposdurgt, since this delegation requires
knowledge of the policymaker’s master secret.
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A Operations

In this section, we describe the operations introduced in Section 3 in detailog@uations are based on
the operations proposed by Gentry and Silverberg [13], we extend thgsrations to support multiple
hierarchies. (We merge theower_Level_Setup() and Extract() operations.) We also assume that there
is a global set of public parameters. Gentry and Silverberg presentievgion schemes, a semantically
secure one and a scheme secure against adaptive chosen cipdtéatdedt in the random oracle model. For
presentation purposes, we base our discussion on the semantically selseme. It is straightforward to
generalize our scheme to a scheme secure against chosen ciphertést atta

There is a set of public parametexs-ams = (G1, Go, ¢, é, Py, H1, H2), whereG; andG, are groups
of some prime orded, é is an admissible parinds, x G; — Go, Py is an arbitrary generator @#,, and
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H, and H, are cryptographic hash functiogs, 1}* — G; andGy — {0,1}™ for somen, respectively.
One of the properties of an admissible pairing is bilineawdty:Q, bR) = ¢(Q, R)* for all Q, R € G, and
ala,b € Z.

e Root_Setup(params) — Qo:
Choose a random master secegte Z/qZ, and returng = soFPp.

o ECL’t?"CLCt«IDi’l, ceny IDi,ti>, SLti,l,params) — Oitss <QZ'71, ceny Qi,t171> with t; > 1.

1. If t; > 1, pick random, secret; ;, 1 € Z/qZ. Otherwises; o = so.

2. Computer. = Hl(IDi,la u-)IDi,ti) € Gs.

3. Compute secret poirl; ;, = Si,—1 + sit;—1Fit, = 2?:1 sij—1F; ;. (Sio is the identity
element ofG,.)

4. Compute (non-secref); ; = s; ;Fpforl1 <j <t; —1.

o Encrypt((ID11,....I1D14,),...; (IDp1, ..., IDpy, ), M, Qo, params) — C-

1. ComputeP; ; = Hi(ID;1,...,I1D; ;) € Gy for1 < j <t;andl <i < h.
2. Choose arandome Z/qZ.
3. Set the ciphertext to be:

C = [TP(], <7“P1’2, ...,TP1¢1>,...<7“P}Z,2, '--77'Ph,th>7M @HQ(QT”

where
h
=[] éQo, Piy) € Ga.
=1

o Decrypt((Sityy s Shity)s (@115 Quitr=1)s oo (@Qh15 -y Qnty—1), C, params) — M:
LetC = [Uo, (U2, .., U1 4,), s (Un2, ..., Uny, ), V] be the ciphertext encrypted using the sequences
of IDs(ID11,...,ID14,),....,(IDp1, ..., I Dpy,). To decryptC, compute

é(UOa S’L',tl‘)
! ) = M.
é(QZ,] 1, ,])

"=

V @ Hy(

K’:]:“
S

)

1y

The security of the scheme is based on the hardness of the Bilinear Déffliedh problem: Given a
randomly choserP? € Gy, as well asaP, bP, andcP (for unknown randomly chosem b, ¢ € Z/qZ),
computeé(P, P)?. For proving security of our scheme in the random oracle model, we havedify
Gentry and Silverberg’s proof (Appendix A.3 of [13]). This modificatierstraightforward, it exploits the
same ideas that we have exploited for extending Gentry and Silverbelggee. We give only an outline
of the modifications here: There needs to be a sepéfitéfor each hierarchy, and the challenge operation
needs to take the additional hierarchies into account. For the latter modificagarly on the symmetry
of é.

The alternative solution for proof-based access control suggesgsttion 3.4 relies on the hardness of
the Decision Bilinear Diffie-Hellman problem: Given a randomly chogea G1, as well asuP, bP, cP,

andr (for somea, b, ¢, € Z/q7Z), returntrue if r = é(P, P),
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Operation Java C
p ()| p (o)

rP; 14 Q)| 4 (0)
Exponentiation| 11 (1)| 2 (0)
Pairing 136 (2)| 29 (0)

Table 1:Processing times. Mean and standard deviation of elapsed time for expengptographic oper-
ations in our Java-based implementation and in MIRACL'’s C-based implatien [18] [ms].

B Optimizations

In this section, we discuss a few optimizations that we apply in our implementatiba operations outlined
in Appendix A. We concentrate on encryption-based access contra@rdhenent is similar for proof-based
access control.

Encrypt() is a time-critical operation since it is run by a service. To speed up thistipera service
can precompute thg; ; in step 1 and the pairings in step 3. In addition, the service can precompute slid
windows for multiplications orP; ; and use them for the computationia?; ;.

C Evaluation

Our Java-based implementation, which is based on a C implementation [14]itexXfate pairings over
super-singular elliptic curves. We use a 160 bit primedand a 512 bit prime fop, whereG; is an
orderq subgroup off/(IFF,,) andGs is an orderg subgroup off,.. For the configuration given in Section 5,
the performance of the expensive cryptographic operations is giveabie 1. For the C-based implemen-
tation [18], we use the same set of parameters and configuration as féavhdrased version (gcc 3.2.3
instead of Java 1.4.2).
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