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Abstract

Access control to sensitive information available in pervasive computing environments is challenging for
multiple reasons: First, access control must support flexible access rights that include context-based con-
straints. Second, a client requesting access to sensitive information might not know which of its access
rights are necessary in order to be granted access to the requested information. Third, pervasive computing
environments consist of a multitude of information services, which makes simple management of access
rights essential. Given this setting, we discuss the shortcomings of existing access control schemes that
rely either on information services encrypting sensitive information beforehanding it over to clients or on
clients presenting a proof of access to a service before being granted access. To address these shortcomings,
we develop a solution based on hierarchical identity-based encryption. Namely, we present an encryption-
based access control architecture that exploits hierarchical identity-based encryption in order to deal with
multiple, hierarchical constraints on access rights. Furthermore, we introduce a proof-based access con-
trol architecture that employs hierarchical identity-based encryption in order to enable services to inform
clients of the required proof of access in a covert way, without leaking information. We present an example
implementation of our proposed schemes and discuss its performance.
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1 Introduction

Whereas access control to sensitive information has been well investigated for traditional distributed systems
(e.g., file systems), there are additional challenges for pervasive computing environments. For example,
access rights need to be more flexible; it should be possible to issue accessrights that depend on a person’s
context, such as her location or the current time. In addition, there might becovert access requirements.
Namely, a client accessing some complex information might not know which of its access rights are required
for gaining access. For instance, a person’s calendar entry revealsthe location of the people that the person is
currently meeting with. In order to be granted access to this entry, a client should at least have access rights
to each of these people’s location information. However, since the client does not know who the person is
meeting with, it does not know which of its access rights are required.

There areencryption-basedandproof-basedaccess control schemes. In an encryption-based scheme, a
service provides sensitive information to any client, but only in an encrypted form. Only clients authorized
to access the information have the required decryption key. This approach is attractive for scenarios where
there are lots of queries to a service since it shields the service from having to run client-specific access
control. It is straightforward to add support for covert access requirements to existing encryption-based
schemes [1, 15, 20, 25, 30]. In particular, a service encrypts information as usual, but it does not tell a client
which decryption key to use. Instead, the client needs to search its set ofdecryption keys for a matching key.
However, it is less straightforward to add support for constraints on access rights to the proposed schemes,
especially when considering that key management should remain simple.

In a proof-based access control scheme, a client requesting accessto sensitive information needs to
assemble access rights in aproof of access, which demonstrates to the service that the client is authorized
to access the requested information. This approach is attractive for scenarios where flexible, client-specific
access rights are required. A proof of access prevents a service from having to locate the required access
rights itself, which can be an expensive task. Since access rights are flexible, it is easy to include support
for constraints in them. When validating a proof of access, a service must also validate all the constraints on
the access rights in the proof. However, it is difficult to add support forcovert access requirements to proof-
based access control. Existing schemes [2, 17] assume that a service can inform a client of the required
proof of access. However, in our example mentioned above, a service informing a client of the identity of
the people that the owner of the calendar entry is meeting with would result in aninformation leak. A näıve
solution is to have the client transmit a proof of access for all individuals whose location it can access. This
solution has privacy and bandwidth issues: a service can learn a lot about a client, and a client might have
to transmit a lot of data. Therefore, a service must be able to let a client know about the required proof of
access in a way such that only authorized clients can learn about the information being part of this proof
description, otherwise this information will leak.

We present two novel applications of hierarchical identity-based encryption that address the above men-
tioned shortcomings of encryption-based and proof-based schemes in the context of pervasive computing
environments (Section 3). In identity-based encryption, public keys are arbitrary strings, which simpli-
fies management of access rights and constraints. First, we develop a hierarchical identity-based encryp-
tion scheme for encryption-based access control that supports multiple, hierarchical constraints on access
rights. Second, we employ hierarchical identity-based encryption to implement covert access requirements
in proof-based access control. Our contributions include extensions to an existing hierarchical identity-
based encryption scheme to support constraints on access rights and novel ways of dealing with expiration
of access rights in identity-based encryption. We have implemented our solutions in a pervasive computing
environment (Section 4). Finally, we provide an overall evaluation and discuss the relative strengths and
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weaknesses of our example implementation (Section 5).

2 Access Control to Information in Pervasive Computing

In this section, we discuss the concepts of access control and access rights to information in the context of
pervasive computing. We present a list of requirements and our threat model.

2.1 Overview

In pervasive computing environments, such as CMU’s Aura [12], thereare a lot ofservicesthat provide
potentially sensitive information toclients. Clients need to haveaccess rightsin order to be granted access
to sensitive information. An access right has an issuer, a recipient, an information item, and a set of con-
straints. For example, Alice grants Bob access to her location information during office hours. Multiple
services may offer the same type of information (e.g., cell phone-based location information, WiFi-based
location information, badge-based location information,...). To simplify management of access rights, we
want service-independent access rights, that is, access rights should be about information, not about in-
formation offered by a specific service. For example, there should be access rights for Alice’s location
information, not for Alice’s location information as offered by her cell phone service.

It should be possible to constrain access rights. In this paper, we limit ourselves to constraints whose
current value is always available to a client (e.g., current time or location ofthe client). Having other types of
constraints (e.g., location of the queried individual) requires more complex access control in order to avoid
information leaks, which is out of the scope of this paper. In addition, access rights should be granularity
aware. Some information (e.g., location information) is available at different levels of granularities (e.g.,
“CMU”, “CMU Wean Hall”, “CMU Wean Hall 8220”). Having an access right for fine-grained informa-
tion should imply having an access right for coarse-grained information. Granularity-aware access rights
simplify management of access rights.

Access rights are managed bypolicymakers. Typically, an individual is the policymaker for her own
personal information. Depending on the access control scheme, access rights can be represented in different
forms. For encryption-based access control, an access right is a decryption key, whereas for proof-based
access control, it typically is a signed statement (i.e., a digital certificate) issued by the policymaker. Re-
gardless of the form, it should be simple to deal with access rights for all involved entities (clients, services,
and policymakers).

We now discuss how encryption-based and proof-based access control meet the requirements of gran-
ularity awareness and constraints. We also elaborate on some additional requirements, namely, indistin-
guishability, asymmetry, and personalization.

2.2 Encryption-based Access Control

If there are lots of requests for some information, encryption-based access control is attractive since it is
independent of the individual clients issuing these requests. For example, a service can encrypt an infor-
mation item once and use the ciphertext for answering multiple requests askingfor this item. However, the
uniform treatment of requests makes dealing with constraints on access rights and with granularity-aware
access rights difficult. Covert access requirements and service-independent access rights present further
challenges. Let us summarize the requirements:
Constraints. Each possible value of a constraint must require a separate decryption key for decrypting
some encrypted information that should be accessible only under the givenconstraint/value combination.
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For example, a decryption key that allows a client to access some encryptedinformation on “January 1”
must not allow decryption on “January 2”. This requirement leads to an increase in the number of keys. The
problem becomes worse when there are multiple constraints on some access right. Luckily, we observe that
many constraints are of a hierarchical nature. Therefore, we want a key scheme that supports hierarchical
constraints. For example, given the decryption key for “January”, wecan derive the key for “January 1”,
“January 2”,... Similarly, the key for (“January 1”, “Wean Hall 8220”) can be derived from the key for
(“January, “Wean Hall”). This feature can drastically simplify key management.
Granularity awareness. To enforce that access rights to coarse-grained information do not grant access to
fine-grained information, we require separate decryption keys for the two cases. Similar to constraints, a
näıve implementation of granularity-aware access rights can lead to an increasein the number of keys. With
a hierarchical key scheme, we can avoid this increase. In particular, thedecryption key for coarse-grained
information should be derivable from the decryption key for fine-grained information.
Indistinguishability. To implement covert access requirements, encrypted information returnedby a service
must not reveal any knowledge about the used encryption key or the required decryption key. Only a client
having this decryption key should be able to gain this knowledge.
Asymmetry. Service-independent access rights grant access to some information independent of the service
offering this information. This concept implies that if multiple services offer thesame information, this
information will be decryptable with the same decryption key. Therefore, in asymmetric cryptosystem, a
service encrypting information would be able to access the same information offered by some other service.
For example, a cell phone service offering Alice’s cell phone-based location information would be able to
access her WiFi-based location information as offered by some other service. We can avoid this problem by
using an asymmetric cryptosystem.

2.3 Proof-based Access Control

Proof-based access control is attractive since it offloads the assemblyof the proof of access to a client. If
the client does not know about the required proof of access, a service will give it a description of this proof.
However, when this proof description contains sensitive information, the service must obscure the proof
description. Let us summarize the requirements for this case:
Indistinguishability. The service must obscure the description such that only clients authorizedto access
the sensitive information can learn about the policymaker responsible for this information and the nature of
the information.
Granularity awareness. Understanding obscured proof description should be granularity aware: Being able
to interpret an obscured proof description for fine-grained informationshould imply being able to interpret
an obscured proof description for coarse-grained information.
Constraints. Since access rights can have constraints on them, these constraints shouldalso apply to a
client’s ability to interpret an obscured proof description. For example, when a client’s access right for some
information expires, the client should no longer be able to interpret obscured proof descriptions asking for a
proof of access for this information.
Personalization. We want obscured proof descriptions to be personalized for a client. Inthis way, if a client
leaked its secret knowledge required for understanding an obscuredproof description for some information,
other clients being able to understand a proof description for the same information would not be affected.
Clients do not have to be malicious to leak their secret knowledge; since it hasno value for them (as opposed
to their private key), they might neglect keeping it secret. (We do not require personalization for encryption-
based access control since it is is client independent by design.)
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Asymmetry. Based on the same argument as in the case of encryption-based access control, a service
generating an obscured description of the required proof of access for some information must not be able to
identify an obscured proof description for the same information generatedby some other service.

2.4 Threat Model

In our threat model, an attacker can corrupt clients or services, but not policymakers. Corrupted clients try to
gain non-authorized access to information provided by a service, that is,information to which a client does
not have any access rights. Corrupted clients can collude. A corruptedservice tries to gain non-authorized
access to information provided by some other service, the information can beof the same type as the one
that it offers. Corrupted services can collude. Attackers can also sniff, modify, or inject traffic between
clients, services, and policymakers. We do not explicitly address denial of service attacks, though we try to
limit load on services.

3 Access Control based on Hierarchical Identity-based Encryption

We want an access control architecture where access rights are simple tomanage, aware of granularity,
and constrainable. In addition, the architecture has to be asymmetric, provide indistinguishability, and be
personalizable in the case of proof-based access control. Identity-based encryption (IBE) is a good fit for
environments that have these requirements. It is asymmetric and provides indistinguishability. Since public
keys are arbitrary strings, key and access right management are simple.In addition, a hierarchical version
of identity-based encryption lends itself to the implementation of hierarchical constraints and granularity
awareness. Some modifications also allow for the support of personalization. Therefore, we propose an
access control architecture for pervasive computing environments thatis based on hierarchical identity-
based encryption (HIBE). In this section, we review HIBE and discuss how we extend it to build an access
control architecture satisfying our requirements.

3.1 Hierarchical Identity-based Encryption

In an IBE scheme, the public key of an individual is an arbitrary string, typically corresponding to her ID
(e.g., her email address) [21]. The individual gets her private key from a third party, called a Private Key
Generator (PKG). The third party also provides additional, public parameters required for the cryptographic
operations. Boneh and Franklin [4] present one of the first practicalIBE schemes. Based on this work,
Gentry and Silverberg [13] introduce a HIBE scheme. In this scheme, a root PKG gives out private keys
to sub PKGs, which in turn give out private keys to individuals in their domains (or further sub PKGs).
The public key of an individual corresponds to the IDs associated with theroot PKG, any sub PKGs on the
path from the root PKG to the individual, and the individual. For encryptingmessages, additional public
parameters are required only from the root PKG.

The limited success of PKI has lead to the development of simpler public key infrastructures (e.g,.
SPKI [9]), that do not require (hierarchical) certification authorities. In SPKI, a user’s public key is her
identity, and not her name as certified by an authority. In our work, we pursue a similar approach. Instead
of requiring the existence of a hierarchical PKG infrastructure, we let each policymaker have its own PKG.
The policymaker uses its PKG for managing access rights to its information. A policymaker can set up
a hierarchical PKG infrastructure, where it controls both the root PKG and any sub PKGs. In this way,
a policymaker will be able to establish granularity-aware access rights and hierarchical constraints (see
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Section 3.3). Boneh and Franklin [4] also suggest a deployment scenario where individuals become PKGs.
In the rest of this paper, we refrain from talking about PKGs and use theterm “policymaker” instead.

Our architecture builds on the HIBE scheme proposed by Gentry and Silverberg. Their proposed scheme
supports only a single hierarchy for a root PKG, which is too limiting for our application scenarios, where
we might have multiple, hierarchical constraints on some access rights. Therefore, we extend the scheme to
support multiple hierarchies.

A HIBE scheme has the advantage that it reduces the amount of required storage and the complexity of
the access right management. As we will see in Section 3.3, the public key of some information corresponds
directly to the identification string of the information. There is no need for storing a separate public key
(obtained from a conventional cryptosystem such as RSA) or some otherpublic value, as suggested in
earlier work [19], for each information item. Maintaining the mappings from some information to a key or a
public value would also make access right management more difficult. We discuss the advantages of using
a HIBE scheme in more detail in Section 3.6.

3.2 Basic Operations

Our architectures for encryption-based and proof-based access control each employ four basic, randomized
operations. We discuss these operations in this section and their application inencryption-based and proof-
based access control in the next two sections. Our operations are based on the operations introduced by
Gentry and Silverberg [13], we extend them to support multiple hierarchies. A detailed discussion, giving
the exact cryptographic steps for each operation, is in Appendix A. Forreadability reasons, we omit some
of the parameters of the operations here.

We assume that all the policymakers agree on a set of public parameters,params. We require this
agreement in order to achieve indistinguishability. The basic operations areRoot Setup(), Extract(),
Encrypt(), andDecrypt().

• Root Setup(params) → Q0:
A policymaker runs this operation in order to generate the policymaker’s master secret. In addition,
the operation returns the policymaker’s public key,Q0.

• Extract(〈IDi,1, ..., IDi,ti〉, Si,ti−1, params) → Si,ti with ti ≥ 1:
This operation returns the private key,Si,ti , of a node at levelti in hierarchyi. Unlessti = 1, this key
is derived from the private key of the ancestor node,Si,ti−1. If ti = 1, this operation needs to be run
by a policymaker, since it requires its master secret.〈IDi,1, ..., IDi,ti〉 is the sequence of node IDs
along the path from the root node of hierarchyi to the node in question.

• Encrypt(〈ID1,1, ..., ID1,t1〉, ..., 〈IDh,1, ..., IDh,th〉, M, Q0, params) → C:
After choosing a node in each hierarchy, a service uses this operation toencrypt a messageM using
the nodes’ public keys. For each of theh hierarchies, the operation accepts a sequence of node IDs,
〈IDi,1, ..., IDi,ti〉, from the root node to the chosen node. The operation returns ciphertext C.

• Decrypt(〈S1,t1 , ..., Sh,th〉, C, params) → M :
A client uses this operation to decrypt ciphertextC. The operation requires the private key of each
node chosen by the service in its call toEncrypt() and the ciphertext.
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Alice

ServiceBob

    Information

2. Define hierarchies.
4. Extract() 

1. Root_Setup()

10. Decrypt()
6. Extract()

7. Query

8. Encrypt()
9. Encrypted

5. Private keys of nodes, sequences

and hierarchies
3. Alice’s public key

    of node IDs, and sub hierarchies

Figure 1:Architecture for encryption-based access control. Alice sets up her IBEscheme and hierarchies,
informs the service, and grants access to Bob. Bob issues a query to the service.

2004

January February

...

1 ...

office_hours spare_time 

always

(b) (c)

location_fine

location_medium

location_coarse

(a)

Figure 2: Hierarchies. Alice establishes hierarchies for her location information (a) and for each of her
constraints (b, c).

3.3 Encryption-Based Access Control

Figure 1 gives an overview of the architecture for encryption-based access control, which consists of three
entities: the policymaker managing access rights to her personal information (“Alice”), the client trying
to access this information (“Bob”), and the service offering this information. In our architecture, we keep
key management simple by using the identification string of the information as its public key. To support
granularity-aware access rights and constraints on them, we let Alice define a set of hierarchies that reflect
the granularity properties of her information and her constraints. We now discuss the individual steps shown
in Figure 1 in detail.
Setup. Alice runsRoot Setup() to set up her IBE scheme (1) and to retrieve her public key. She also
establishes multiple hierarchies (2): She first defines a hierarchy resembling the granularity properties of
some information about her (information hierarchy). Figure 2 (a) gives an example hierarchy for location
information. The rule for a hierarchy is that anyone who has access to information covered by a node should
also have access to information covered by a child node. Alice then establishes another hierarchy for each
of the constraints that she wants to include in her access rights (constraint hierarchies). Figure 2 (b) shows
a hierarchy that restricts the lifetime of an access right, and Figure 2 (c) presents a hierarchy for limiting
access based on time of the day. (Non-hierarchical constraints are dealt with similarly; there, the hierarchy
has only one level and lists all possible values.) Alice then informs the serviceof her public key and
her hierarchies (3). Since none of this information is confidential, there is need only for an authenticated
channel. Instead of defining her own hierarchies and submitting them to the service, Alice can exploit
predefined hierarchies that the service is already aware of. For example, we expect that there will be a
widely accepted hierarchy for location information, which is commonly used bylocation services and to
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which Alice can refer.
Alice grants Bob access to some of her information. In her information hierarchy, she chooses the node

corresponding to the information to which she wants Bob to have access (e.g., “location medium”). She then
walks the path from the root node to this node. In particular, she keeps a sequence of node IDs and, for each
node on the path, she callsExtract() with the current sequence (e.g.,Extract(〈locationfine〉, null, params)
→ S1,1 andExtract(〈locationfine, locationmedium〉, S1,1, params) → S1,2) (4). Ultimately, this pro-
cess will return the private key of the chosen node. Similarly, for each type of constraint, she picks the
appropriate node in the corresponding constraint hierarchy and derives the private key by repeated calls to
Extract(). For each hierarchy, Alice will end up with a private key. She then givesthe tuple of private keys
to Bob, together with the corresponding sequences of node IDs and the sub hierarchies rooted in the chosen
nodes (5). Transfer of the private keys requires a secret channel.

Given the tuple of private keys and the sub hierarchies from Alice, Bob can derive additional tuples of
private keys for nodes in the sub hierarchies by (repeatedly) callingExtract() (6). For example, given the
private key for〈locationfine, locationmedium〉 and the sub hierarchy “locationcoarse”, Bob can extract
the private key for〈locationfine, locationmedium,locationcoarse〉. It is possible for Bob to delay this step
till he receives encrypted information from a service requiring a particular tuple of private keys derivable by
Bob.
Access Control. When queried by Bob for information about Alice (7), the service encrypts the informa-
tion (8) and returns the encrypted information to Bob (9). Namely, the service splits up the information based
on its granularity properties and encrypts each piece separately. For example, the information “CMU Wean
Hall 8220” is split up into “CMU”, “Wean Hall”, and “8220”. Then, for each piece, the service locates the
node in Alice’s information hierarchy that describes the piece and gathersthe IDs of all the nodes along the
path from the root node to this node. In our example, the ID sequences are 〈locationfine, locationmedium,
locationcoarse〉, 〈locationfine, locationmedium〉, and〈locationfine〉, respectively. Similarly, for each of
the constraint hierarchies, the service chooses the leaf node that contains the current value of the constraint
and gathers the IDs along the path from the root node. The service then calls Encrypt() with the gathered
sequences of node IDs (e.g.,Encrypt(〈locationfine, locationmedium, locationcoarse〉,
〈2004, February, 2〉, 〈always, officehours〉, “CMU” , Q0, params)). Note that the public keys used for en-
cryption correspond directly to the identification strings of nodes. Bob decrypts the received ciphertexts
by calling Decrypt() with the required tuple of private keys (10) for each ciphertext. He can decrypt a
ciphertext only if the encrypted information is of a granularity that he has access to.
Discussion. Bob typically has multiple tuples of private keys, either by deriving them or because he has
been given multiple tuples by a or multiple policymakers. As explained in Section 1,he might not know
which tuple to use for decryption, and the service cannot tell him in order toavoid information leaks. In this
case, Bob has to search his tuples till he finds a tuple that allows successful decryption. We discuss ways to
limit the search space in Section 3.5.

Our IBE-based scheme fulfills the requirements of being asymmetric and hierarchical and supporting
multiple, hierarchical constraints. Using the identification string of some information or of a constraint di-
rectly as its public key drastically simplifies key management. Compared to a previous approach for dealing
with expiration [4], which makes the current date part of the identification string of some information, our
approach does not require handing out separate private keys for each possible date.
Security Analysis. The security of the scheme is based on the hardness of the Bilinear Diffie-Hellman
problem. (Please refer to Appendix A for details.) Given this assumption, Gentry and Silverberg [13]
show that their HIBE scheme has adaptive chosen ciphertext security in the random oracle model. It is
straightforward to adapt their proof for multiple hierarchies. Therefore, corrupted clients and services and
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Alice

ServiceBob

2. Define hierarchies.
4. Extract() 

1. Root_Setup()

    11. Proof

13. Information
12. Proof validation

7. Query

9. Challenge

    of node IDs, and sub hierarchies
5. Private keys of nodes, sequences 3. Alice’s public key

and hierachies

8. Encrypt()6. Extract()
10. Decrypt()

Figure 3:Architecture for proof-based access control. The service sends a challenge to Bob. Upon resolving
this challenge, Bob sends a proof of access to the service.

traffic sniffers cannot decrypt encrypted information without having the required decryption key or modify
encrypted information. In the case where a client (or traffic sniffer) does not know which decryption key
to apply, we need to ensure that the client cannot learn from the ciphertext which public key of which
policymaker was used to produce this ciphertext (indistinguishability). Holt et al. [16] prove this property
for the scenario where all the policymakers share the same set of public parameters, as assumed in our
model.

Our scheme is not secure if a client is given access rights to different types of information by the same
policymaker. For example, for the hierarchies given in Figure 2, assume that Bob has the tuple of private
keys for (〈locationfine〉, 〈2004〉, 〈always〉). In addition, Bob has access to some information other than
location information, for example, he has the tuple of private keys for (〈medical〉, 〈2004, January〉, 〈always,
office hours〉). This setup allows Bob to derive the tuple for (〈medical〉, 〈2004〉, 〈always〉). We can fix
this problem by including the ID of the root node of an information hierarchyin the root nodes of the
corresponding constraint hierarchies. For example, for the constraint hierarchies in Figure 2, their root
nodes would become “2004locationfine” and “alwayslocationfine”. This fix has the drawback that it
makes key management for the policymaker more difficult. The policymaker canno longer reuse private
keys of a constraint hierarchy when it wants to grant access to different types of information under the same
constraint.

Our scheme is not secure against collusion. For example, for the hierarchies given in Figure 2, assume
that Bob has the tuple of private keys for (〈locationfine〉, 〈2004〉, 〈always, officehours〉) and that Carol has
the tuple for (〈locationfine〉, 〈2004, January〉, 〈always〉). If Bob and Carol colluded, they could determine
the tuple for (〈locationfine〉, 〈2004〉, 〈always〉). Yao et al. [28] propose a collision resistant HIBE scheme.
However, the complexity of theEncrypt() andDecrypt() operations in their scheme isO(nm), wheren
is the depth of a hierarchy andm is the number of hierarchies. As we will see in Section 5, the complexity
of the operations in our scheme isO(mn).

3.4 Proof-Based Access Control

If Alice hands over an access right for some information to Bob, she will also give him a personalized
secret. When Bob receives an obscured proof description for this information from a service, this secret
will allow him to interpret the description. In the rest of this paper, we use theterm challengefor such
an obscured proof description. We keep management of the challenges simple by using the identification
string of some information for generating a challenge for it. In our architecture, a challenge corresponds
to a ciphertext and a secret corresponds to a tuple of private keys enabling the decryption of ciphertexts.
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To support granularity-aware, constrainable challenges and secrets, Alice also defines a set of hierarchies.
The architecture for proof-based access control is given in Figure 3; it is similar to the architecture for
encryption-based access control given in Figure 1. We now review thechanges.
Setup. Alice defines an information hierarchy and constraint hierarchies (2) and submits them to the ser-
vice (3). To allow Alice to issue personalized secrets to clients, she could define another hierarchy listing
all the clients. However, as we will see in Section 5, the cost for some of the cryptographic operations is
proportional to the number of hierarchies. Therefore, we refrain from introducing another hierarchy. In-
stead, we have Alice personalize the information hierarchy by adding the identity of a client to its root node.
For example, for the hierarchy given in Figure 2 (a), the root node becomes “locationfine Bob.1 Since this
personalization is done in the same way for each client, there is no need for Alice to submit each person-
alized information hierarchy to the service. To avoid collusion attacks between clients, Alice should also
personalize each of her constraint hierarchies.

When issuing an access right to Bob for some information (e.g., in the form ofa digital certificate), Alice
also gives Bob a personalized secret, corresponding to the information inthe access right and limited to the
same constraints (5). She generates this secret by callingExtract() for the information hierarchy and for
each of the constraint hierarchies (4). The tuple of private keys returned by these calls serve as the secret.
Access Control. Bob issues a query to the service and fails to submit a proof of access (7). Assuming that
the requested information requires covert access requirements, the service computes a challenge for it (8). In
particular, the service callsEncrypt() to encrypt a random plaintext,M . The public keys required for this
operation come from the information hierarchy and the constraint hierarchies of the policymaker responsible
for the requested information (e.g.,Encrypt(〈locationfine Bob〉, 〈2004 locationfine Bob, February, 2〉,
〈alwayslocationfine Bob, officehours〉, M, Q0, params)). PlaintextM and the obtained ciphertext,C,
serve as challenge, and the service sends them to Bob (9). If the requested information covers multiple
individuals, there will be multiple challenges. Sending a challenge to Bob requires only an authenticated
channel, since a challenge is personalized to a client and useless to other clients (without knowing the
corresponding personalized secret).

To resolve challenge(M, C), Bob needs to find a tuple of private keys that makes ciphertextC decrypt
to plaintextM . In particular, Bob callsDecrypt() for each of his (potentially derived) tuples of private keys
given to him by Alice (and other policymakers) (10). He stops when the returned plaintext is identical to
M . We discuss ways to limit the search space in Section 3.5. If Bob successfully resolves the challenge(s),
he will resubmit the query, together with the required proof of access (11). The service will validate the
proof (12) and return the requested information (13). Steps (11) and (13) require a secret channel.
Discussion. The benefits of our scheme are secrets that are personalized, support constraints, and are gran-
ularity aware. Because the challenge for some information is based on the identification string of the infor-
mation, challenges are simple to manage. Since all the policymakers use the same set of public parameters,
the challenges generated by a service are indistinguishable.

A client uses its secrets to resolve a challenge before submitting the requiredproof of access to the
service. However, for some scenarios, this second step can be omitted since resolving the challenge(s)
already gives the client all the information it is asking for. For example, if theclient asks for the people in
a room, the client will require access to all these people’s location information. The service thus sends a
challenge for each person’s location information to the client. After resolving these challenges, the client
knows all the policymakers in the room and thus all the originally requested information and can skip
submission of a proof of access. An obvious question is why not skip this second step all the time and
stop using proofs of access? In this model, the service would encrypt therequested information instead of

1In the actual implementation, Bob is identified by his public key.
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a random plaintext (as suggested by Holt et al. [16]). We refrain fromadapting this model because, as we
will see in Section 5, especially decryption of information is an expensive operation. We view covert access
requirements as a special case. For most queries, we expect clients to know what they need to deliver a proof
of access for. Therefore, we do not place the burden of decryptinginformation on them for every request to
sensitive information.
Security Analysis. As mentioned in Section 3.3, the security of the scheme is based on the hardness of
the Bilinear Diffie-Hellman problem. (Please refer to Appendix A for details.) When choosing a random
plaintext, a service should choose it long enough to make the probability of theclient seeing a false positive
while resolving the challenge small. (For a plaintext of lengthl, the probability of a false positive when
using random tuples of private keys is1/2l.) A false positive will make the client send a wrong access right
to the service. If the access right contained private information, this information would leak to the service.

Internally, theEncrypt()/Decrypt() operations compute a random value, use it as an exponent in a
modular exponentiation, hash the resulting value into the domain of the plaintext, and XOR the hashed
value with the plaintext. In proof-based access control, instead of usingEncrypt()/Decrypt() on a known,
random plaintext, we could omit the XORing step and directly use the result of the exponentiation step as a
challenge. This approach relies on the hardness of the Decision Bilinear Diffie-Hellman problem. (Please
refer to Appendix A for details.) We choose an approach based onEncrypt()/Decrypt since it allows us to
use the same basic routines for both encryption-based and proof-based access control and since the Bilinear
Diffie-Hellman problem is at least as hard as the Decision Bilinear Diffie-Hellman problem.

3.5 Limiting the Search Space

For covert access requirements, Bob does not know which of his (potentially derived) tuples of private keys
to use for theDecrypt() operation, and he has to search through his tuples. We discuss some optimization
strategies in this section.

We first concentrate on the scenario where the challenge or the encrypted information returned by a
service cover a single individual only, that is, Bob needs to find only onetuple of private keys. As described
in Section 3.3, when a policymaker gives a tuple of private keys to Bob granting him access to some infor-
mation under some constraints, Bob can potentially derive additional tuples from this tuple. We argue that
among the original tuple and the derived tuples, at most one tuple is of relevance for the search. In particu-
lar, since we assume that Bob is aware of the current value of a constraint, Bob knows which private key is
relevant for each constraint hierarchy, and he can throw out all the tuples not having this private key within
them. In practice, we expect that Bob can also limit the search space for theinformation hierarchy. In many
cases, it is safe for the service to inform Bob of the nature and the granularity of the information for which
he needs to resolve a challenge, but not about the identity of the policymaker the information is about. This
observation exploits the fact that the composition of most types of information iswell known. For example,
calendar information is composed of fine-grained location information and activity information, but not of
medical information. Therefore, when Bob asks the service for calendar information, the service can safely
inform him that a challenge involves fine-grained location information. In summary, for all tuples of private
keys given to Bob by a single policymaker and all tuples derivable from these tuples, we expect at most one
tuple to be relevant for a search. In summary, the number of tuples that Bobneeds to search is at most one
per policymaker.

If the information returned by a service covers multiple individuals (e.g., a service encrypts informa-
tion multiple times or returns multiple challenges), Bob will have to locate multiple tuples ofprivate keys.
Therefore, Bob’s search cost is proportional to the number of tuples of private keys given to him by policy-
makers multiplied by the number of individuals covered by the information returned by the service. While
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this sounds expensive, Bradshaw et al. [5] present an optimization thatrequires the client to perform the
most expensive cryptographic operation in this search only once for each tuple of private keys and not for
each combination of a tuple of private keys and covered individuals.

3.6 Discussion

A motivation for the design of IBE was to simplify certificate management in email systems [21]. For
example, IBE allows Bob to encrypt email to Alice simply by using her email address as public key. There
is no need for Bob to contact Alice beforehand to acquire a separate public key. In our IBE scheme, we
seem to lose this advantage: Alice needs to inform a service of her hierarchies and her public key. However,
as mentioned in Section 3.3, we do not expect each policymaker to define its own set of hierarchies. Instead,
there can be a shared set of hierarchies, which a service is aware of.In addition, we argue that a setup step
is also necessary for IBE in an email system: First, IBE schemes typically require a set of public parameters
for encryption. Bob must acquire these parameters before he can encrypt email for Alice. Second, Bob
should ensure that the email address he is going to use to encrypt sensitive information destined for Alice
really belongs to Alice. He should use this address only if he was given it directly by Alice (or a trusted
third entity) in a setup step.

In our HIBE scheme, the public key of some information corresponds to its identification string in the
hierarchy. An alternative design approach is to have the policymaker assign a public key of a conventional
asymmetric cryptosystem (e.g., RSA) to each node in the hierarchy. When handing out the hierarchy to
services, the policymaker also gives them all the public keys in the hierarchy. Similarly, when handing
out a sub hierarchy to clients, the policymakers also gives them all the corresponding private keys. This
approach has the drawback that it increases the key material that needsto be stored and transferred. Instead
of assigning a key to each node in a hierarchy, Ray et al. [19] suggesta more sophisticated scheme in which
the public key of a node can be derived from the public key of the parentnode and in which the private key
of a node can be used to decrypt information encrypted with the public key of its child node. However, this
scheme (and similar algorithms [1, 15, 25, 20]) still requires more key materialto be stored and transferred,
since for each node, we would have to keep not only its ID, but also an additional, public value required by
the algorithm. Moreover, this scheme makes management of access rights moredifficult when a policymaker
uses a shared hierarchy instead of defining its own. Namely, the policymaker would still have to generate
its own set of public values for all the nodes in the shared hierarchy and submit these values to individual
information services. Our HIBE scheme does not require any such publicvalues for each node.

The access control mechanism proposed in this paper is also suitable to environments other than perva-
sive computing. In general, the mechanism targets scenarios where multiple information services, run by
different organizations, need to distribute the same kind of information to the same set of clients. For ex-
ample, another deployment scenario is in the context of medical information, where multiple hospitals, run
by different HMOs, need to grant the same set of researchers access to the same kind of sensitive statistical
information gathered in a hospital.

As we will see in Section 5, our proposed HIBE scheme can be expensivein terms of performance.
This could become a problem in a pervasive computing environment, where clients might employ com-
putationally weak devices for accessing information (e.g., a cell phone). Acommon architecture for such
environments is to have agents perform tasks on behalf of clients [7, 11].We could have this agent decrypt
information for its client. For performance and availability reasons, it makes sense to run this agent on a
more powerful processing platform and to run only a lightweight proxy ona client’s personal device.
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4 Prototype Implementation

The Aura ubiquitous computing environment [12] serves as a testbed for the implementation and deployment
of our proposed access control mechanisms. Because the environmentis mostly Java, we implemented
our discussed HIBE scheme in Java. In particular, we ported a C implementation of IBE [14] to Java
and added support for (multiple) hierarchies. The operations introduced in Sections 3.3 and 3.4 require
expensive cryptographic computations. This is especially troublesome fortheEncrypt() operation since it
is performed by a service. However, upon closer examination of this operation, we realize that a service can
precompute most of the expensive computations. We refer to Appendix B for details. We employ a hybrid
encryption scheme, that is, we symmetrically encrypt information with a sessionkey and encrypt only this
session key withEncrypt().

We also implemented a few sample information services that require access control. There are several
location services, each exploiting a different approach for locating people. They can run either proof-based
access control or encryption-based access control. There is also a service that provides calendar information
and has covert access requirements. In proof-based access control, we use SPKI/SDSI [9] certificates for
expressing access rights. Alice provides the public parameters of her identity-based cryptographic scheme
and her hierarchies in SPKI/SDSI “auto-certificates” [10], whose purpose is to make information about
their issuer available in an authentic way. Alice also uses auto-certificates for handing out private keys.
Obviously, recipients of such an auto-certificate should keep it secret. There is a command line tool for
issuing certificates, setting up IBE schemes, and extracting private keys.

We use the SSL protocol for communication between entities [24], which gives us authentication of peers
and confidentiality and integrity of the transmitted data. Strictly speaking, we do not require confidentiality
of the (already encrypted) information returned by a service in encryption-based access control and of a
challenge in proof-based access control. Server authentication and query confidentiality and integrity are
required to deal with attackers listening, modifying, or injecting traffic. For encryption-based access control,
we require data integrity since our IBE implementation is only semantically secure,but does not provide
chosen-ciphertext security. A similar argument holds for challenges in proof-based access control. We
decided against implementing the required features, together with IBE, in a protocol of our own, since,
as history has shown, correctly implementing protocols is hard. SSL has been well researched, and the
overhead caused by the redundant, symmetric encryption is low. We employ client authentication only for
proof-based access control.

While not being part of our threat model, a deployed system needs to be able to deal with attackers learn-
ing private keys or, worse, the compromise of a policymaker’s master secret. We can exploit mechanisms
proposed earlier [4, 23] for this purpose, that is, adding a salt to the naming scheme, including a time-to-live
value with configuration information, and storing secrets in a distributed way.

5 Evaluation

In our evaluation, we concentrate on encryption-based access control.We run our experiments on an un-
loaded Pentium IV/2.5 GHz with 1.5 GB of memory, Linux 2.4.20, and Java 1.4.2. An experiment consists
of ten runs, we report both the mean and the standard deviation (in parentheses).

We have an Aura client contact an Aura service. The service providesencrypted people location infor-
mation, which is split into three levels of granularity and encrypted using a three-level information hierarchy.
There are no constraints. We look only at the case where information about a single individual is provided.
In addition, we assume that the client knows which decryption key to use. Ittakes 1091ms (42ms) for the
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Figure 4: Performance of encryption/decryption. We encrypt/decrypt a single message using a variable
number of two-level hierarchies, whereas the first hierarchy has three levels. (Note that the two graphs are
differently scaled.)

client to retrieve and decrypt the information. Let us examine this cost in moredetail. (Detailed results are
in Appendix C.) For the service, there is a cost of 25ms (2ms) for anEncrypt() operation that exploits only
the root level of a hierarchy. (Remember that our service has to perform threeEncrypt() operations.) In
addition, there is a cost of 14ms (1ms) per additional level used in anEncrypt() operation (i.e.,3 ∗ 14ms in
our experiment). Therefore, the overall cost of encryption is about 117ms. The overall processing time of
the service is 253ms (31ms); 46% of the cost is due to encryption. The restof the cost is caused by fingering
a person’s desktop computer in order to locate her and by (de)marshallingof the request and the response.
For the client, there is a cost of 136ms (2ms) per level used in aDecrypt() operation. Our client runs three
such operations, operating at 1, 2, or 3 levels. Therefore, the overall decryption cost is about 816ms or 75%
of the overall processing time.

In our second experiment, we investigate the influence of the number of hierarchies on processing time.
We encrypt and decrypt a random message using a variable number of hierarchies, whereas we exploit all
the levels in each hierarchy. Similar to the first experiment, the first hierarchy has three levels. All the
additional hierarchies have two levels. Figure 4 presents the results. Thecost for encryption and decryption
increases linearly with the number of hierarchies. This observation is consistent with the characteristics
of theEncrypt() andDecrypt() operations (see Appendix C). Taking these characteristics into account,
if there arem hierarchies havingni levels(1 ≤ i ≤ m), the cost of anEncrypt() operation exploiting
all the levels in each hierarchy is25ms+

∑m
i=1

(ni − 1) ∗ 14ms. For aDecrypt() operation, the cost is∑m
i=1

ni ∗ 136ms.
The performance numbers heavily depend on the underlying implementation. Our implementation is

in Java and uses Java’s standard mathematical package for its cryptographic routines. While we currently
do not have a C-based implementation of HIBE, there is a more optimized, publiclyavailable C-based
implementation of standard IBE [18]. Since hierarchical IBE exploits the samebasic mathematical routines
as standard IBE, we can predict the performance of a C-based implementation of hierarchical IBE based
on this implementation. Figure 4 shows our predictions. (More detailed results are in Appendix C). In
summary, the performance of a C-based, more optimized implementation would be at least 3.5 (encryption)
or 4.5 (decryption) times better.

The presented results allow us to judge the relative benefit, performance-wise, of encryption-based and
proof-based access control. In our implementation of proof-based access control, it takes a service about
3ms to validate the 1024 bit RSA signature of a SPKI/SDSI certificate. Assuminga single-level informa-
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tion hierarchy and no constraint hierarchies, it takes the service 25ms to encrypt a piece of information.
However, this operation does not need to be executed for every client, the service can reuse an encrypted
piece of information to answer requests from multiple clients. Therefore, it pays off for the service to use
encryption-based access control if there are more than 8 requests forsome information during the lifetime
of the information. If there are constraints on access rights, this number willbecome correspondingly larger.

In the case of covert access requirements, the overall cost for proof-based access control will be larger
than for encryption-based access control. The performance of the operations for identity-based encryption
will be similar for both cases. However, proof-based access control requires two round trips, client authen-
tication, and validation of the proof of access.

6 Related Work

Identity-based cryptography has been used for different types of applications, such as searchable audit
logs [27] or secure email and IPsec [23]. All these applications, including our proposed one, exploit
the Boneh and Franklin IBE scheme [4]. While there are other schemes (e.g., by Cocks [8], Boneh and
Boyen [3], Yao et al. [28], and Waters [26]), we choose this scheme because of the existence of publicly
available implementations [14, 18].

There has been previous work about access control in a hierarchy,where information items are classi-
fied into partially ordered security classes depending on their sensitivity and users are assigned to classes
depending on their clearance. Each class has an encryption (decryption) key, which is used for encrypting
(decrypting) information in the class. Given the encryption (decryption) key for a class, it is possible to de-
rive the encryption (decryption) key for a class of a lower security level. None of the proposed hierarchical
schemes fulfills our requirements of asymmetry and easy access rights management: Akl and Taylor [1],
Harn and Yin [15], and Tzeng [25] present symmetric schemes, Sandhu[20] and Zheng et al. [30] propose
symmetric schemes exploiting strings for key generation, and Ray et al. [19]discuss an asymmetric scheme
that does not exploit strings for key generation. Our scheme supports only tree-based and not arbitrary
hierarchies. However, tree-based hierarchies are sufficient for expressing granularity-aware access rights
and hierarchical constraints on them. Similar to our scheme, Briscoe [6] uses a hierarchy for managing
time-based access.

Automated trust negotiation explores issues related to covert access requirements. In particular, Yu
and Winslett [29] study the scenario where (parts of) a service’s access policy is confidential. (An access
policy lists the required access rights.) The authors suggest two strategies, neither of them applicable to
our scenario. The first strategy transmits all the client’s access rights to a service, even if they are not
required. The second one transmits only access rights that the service asks for by revealing (parts of) its
access policy. However, this strategy fails if access rights whose corresponding access policy cannot be
revealed are required. In Holt et al.’s scheme [16], a service encrypts information in a client-specific way,
and the client needs to find the corresponding decryption key(s) in its setof keys. Similar to our scheme,
Holt et al.’s work is based on the Boneh and Franklin IBE scheme. However, due to reasons outlined in
Section 3.4, we do not have a service encrypt information for proof-based access control. Holt et al. do not
investigate constraints on access rights and expiration of access rights. Bradshaw et al. [5] extend Holt et
al.’s scheme to support complex access policies expressed as monotonic boolean functions. They apply a
secret splitting system in order to conceal the structure of such policies. Smart [22] also examines how to
support complex access policies in IBE, but he assumes that the policies are not concealed.
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7 Conclusions and Future Work

When running access control to sensitive information in a pervasive computing environment, we need to
be able to deal with constraints on access rights and avert information leaks. We showed how hierarchical
identity-based encryption can be employed to address these challenges.

We implemented our proposed architecture in the context of the Aura pervasive computing environment.
Our evaluation shows that identity-based encryption is expensive (though the overhead can be significantly
lowered using a more optimized implementation), but it gives us the convenienceof being able to use the
identification string of some information or of a constraint as public key.

A weakness of our proposed architecture is that it relies on all the policymakers agreeing on a set of
parameters, which could be difficult to achieve in practice. A topic for further investigation is whether
we can weaken this assumption without significantly compromising on security. Another area of future
research involves the delegation of personalized secrets used for covert access requirements in proof-based
access control: Whereas a recipient of an access right can delegate this right (e.g., by issuing another digital
certificate), the recipient currently cannot delegate the correspondingsecret, since this delegation requires
knowledge of the policymaker’s master secret.
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A Operations

In this section, we describe the operations introduced in Section 3 in detail. Our operations are based on
the operations proposed by Gentry and Silverberg [13], we extend these operations to support multiple
hierarchies. (We merge theLower Level Setup() andExtract() operations.) We also assume that there
is a global set of public parameters. Gentry and Silverberg present two encryption schemes, a semantically
secure one and a scheme secure against adaptive chosen ciphertextattacks in the random oracle model. For
presentation purposes, we base our discussion on the semantically secure scheme. It is straightforward to
generalize our scheme to a scheme secure against chosen ciphertext attacks.

There is a set of public parametersparams = (G1, G2, q, ê, P0, H1, H2), whereG1 andG2 are groups
of some prime orderq, ê is an admissible paring:G1 × G1 → G2, P0 is an arbitrary generator ofG1, and
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H1 andH2 are cryptographic hash functions{0, 1}∗ → G1 andG2 → {0, 1}n for somen, respectively.
One of the properties of an admissible pairing is bilinearity:ê(aQ, bR) = ê(Q, R)ab for all Q, R ∈ G1 and
all a, b ∈ Z.

• Root Setup(params) → Q0:
Choose a random master secret,s0 ∈ Z/qZ, and returnQ0 = s0P0.

• Extract(〈IDi,1, ..., IDi,ti〉, Si,ti−1, params) → Si,ti , 〈Qi,1, ..., Qi,ti−1〉 with ti ≥ 1:

1. If ti > 1, pick random, secretsi,ti−1 ∈ Z/qZ. Otherwisesi,0 = s0.

2. ComputePi,ti = H1(IDi,1, ..., IDi,ti) ∈ G1.

3. Compute secret pointSi,ti = Si,ti−1 + si,ti−1Pi,ti =
∑ti

j=1
si,j−1Pi,j . (Si,0 is the identity

element ofG1.)

4. Compute (non-secret)Qi,j = si,jP0 for 1 ≤ j ≤ ti − 1.

• Encrypt(〈ID1,1, ..., ID1,t1〉, ..., 〈IDh,1, ..., IDh,th〉, M, Q0, params) → C:

1. ComputePi,j = H1(IDi,1, ..., IDi,j) ∈ G1 for 1 ≤ j ≤ ti and1 ≤ i ≤ h.

2. Choose a randomr ∈ Z/qZ.

3. Set the ciphertext to be:

C = [rP0, 〈rP1,2, ..., rP1,t1〉, ...〈rPh,2, ..., rPh,th〉, M ⊕ H2(g
r)]

where

g =
h∏

i=1

ê(Q0, Pi,1) ∈ G2.

• Decrypt(〈S1,t1 , ..., Sh,th〉, 〈Q1,1, ..., Q1,t1−1〉, ..., 〈Qh,1, ..., Qh,th−1〉, C, params) → M :

Let C = [U0, 〈U1,2, ..., U1,t1〉, ..., 〈Uh,2, ..., Uh,th〉, V ] be the ciphertext encrypted using the sequences
of IDs 〈ID1,1, ..., ID1,t1〉, ..., 〈IDh,1, ..., IDh,th〉. To decryptC, compute

V ⊕ H2(

h∏
i=1

ê(U0, Si,ti)

h∏
i=1

ti∏
j=2

ê(Qi,j−1, Ui,j)

) = M.

The security of the scheme is based on the hardness of the Bilinear Diffie-Hellman problem: Given a
randomly chosenP ∈ G1, as well asaP , bP , andcP (for unknown randomly chosena, b, c ∈ Z/qZ),
computeê(P, P )abc. For proving security of our scheme in the random oracle model, we have tomodify
Gentry and Silverberg’s proof (Appendix A.3 of [13]). This modificationis straightforward, it exploits the
same ideas that we have exploited for extending Gentry and Silverberg’s scheme. We give only an outline
of the modifications here: There needs to be a separateH list

1
for each hierarchy, and the challenge operation

needs to take the additional hierarchies into account. For the latter modification, we rely on the symmetry
of ê.

The alternative solution for proof-based access control suggested inSection 3.4 relies on the hardness of
the Decision Bilinear Diffie-Hellman problem: Given a randomly chosenP ∈ G1, as well asaP , bP , cP ,
andr (for somea, b, c, r ∈ Z/qZ), returntrue if r = ê(P, P )abc.
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Operation Java C
µ (σ) µ (σ)

rPi,j 14 (1) 4 (0)
Exponentiation 11 (1) 2 (0)
Pairing 136 (2) 29 (0)

Table 1:Processing times. Mean and standard deviation of elapsed time for expensive cryptographic oper-
ations in our Java-based implementation and in MIRACL’s C-based implementation [18] [ms].

B Optimizations

In this section, we discuss a few optimizations that we apply in our implementation ofthe operations outlined
in Appendix A. We concentrate on encryption-based access control, theargument is similar for proof-based
access control.

Encrypt() is a time-critical operation since it is run by a service. To speed up this operation, a service
can precompute thePi,j in step 1 and the pairings in step 3. In addition, the service can precompute sliding
windows for multiplications onPi,j and use them for the computation ofrPi,j .

C Evaluation

Our Java-based implementation, which is based on a C implementation [14], exploits Tate pairings over
super-singular elliptic curves. We use a 160 bit prime forq and a 512 bit prime forp, whereG1 is an
order-q subgroup ofE(Fp) andG2 is an order-q subgroup ofFp2 . For the configuration given in Section 5,
the performance of the expensive cryptographic operations is given inTable 1. For the C-based implemen-
tation [18], we use the same set of parameters and configuration as for theJava-based version (gcc 3.2.3
instead of Java 1.4.2).
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