A Distributed and Scalable Peer-to-Peer
Content Discovery System
Supporting Complex Queries

Jun Gao

October 2004
CMU-CS-04-170

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:
Peter Steenkiste, Chair
Christos Faloutsos
Srinivasan Seshan
Ellen W. Zegura, Georgia Institute of Technology

Copyright © 2004 Jun Gao

This research was sponsored in part by the Defense Advanced Research Project Agency and monitored
by AFRL/IFGA, Rome NY 13441-4505, under contract F30602-99-1-0518, and in part by the NSF under
award number CCR-0205266. Additional support was provided by Intel and a Siebel Scholar Award. The
views and conclusions contained in this document are those of the author and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of any sponsoring
party, Carnegie Mellon University, or the U.S. Government.

Keywords: Content Discovery, Peer-to-Peer, Distributed Hash Table, Rendezvous
Point, Load Balancing, Range Query, Similarity Query

Abstract

A Content Discovery System (CDS) is a system that allows nodes in the system to discover
content published by other nodes. CDSes are an essential component of many distributed
applications including wide-area service discovery systems, peer-to-peer (P2P) systems,
and sensor networks. However, existing applications have difficulties in achieving both rich
searchability and good scalability. For example, applications built directly on top of Dis-
tributed Hash Tables (DHTs) are scalable but only allow exact name lookup. Peer-to-peer
file sharing systems such as Gnutella and KaZaA, on the other hand, offer searching ca-
pability, but their flooding-based searching mechanism does not scale with the number of
queries.

In this thesis, we present the design, implementation and evaluation of a distributed CDS
that meets the scalability and searchability requirements simultaneously. Nodes in the
CDS organize themselves into a structured P2P overlay network in a distributed fashion
using a DHT. The CDS supports the search of highly dynamic contents represented using
a descriptive attribute-value based naming scheme. We ensure scalability by deploying effi-
cient registration and query algorithms using Rendezvous Points (RPs). To maintain high
system throughput under realistic skewed load, such as flash crowds, we designed a novel
mechanism that uses Load Balancing Matrices (LBMs) to eliminate hot-spots by balanc-
ing both registration and query load in a fully distributed fashion. To support complex
queries, we developed two new distributed data structures, namely the Range Search Tree
and Distributed KD-Tree. These data structures coupled with a set of lightweight tree-
based protocols, allow the CDS to support range and similarity queries efficiently without
creating bottlenecks.

To evaluate the CDS, we implemented a comprehensive simulator. Our extensive simu-
lation results confirmed the effectiveness of the CDS design. In addition, we implemented a
prototype of the CDS that includes the RP-based registration and query mechanisms with
distributed load balancing. Our deployment of the prototype on the Internet (Planet Lab
testbed) and its integration with a content-based music information retrieval system verified
the system’s feasibility and its applicability to a large category of real world applications.

To my parents

Acknowledgments

First of all, I would like to thank my advisor, Professor Peter Steenkiste, without whom
this thesis would not be possible. Peter is patient and extremely responsible, and he always
expects the best from me. I can’t remember the number of times that I thought my design
was good enough, and he challenged me to do it better. It’s Peter who introduced me to
the networking and distributed systems area; it’s Peter who taught me what is research,
and how to do good research; and it’s Peter who helped me to become a researcher, and
most importantly, an independent thinker.

I would also like to thank other members of my thesis committee, Professors Christos
Faloutsos, Srini Seshan and Ellen Zegura. Christos is a source of inspiration, and I want
to thank him for his encouragement, enthusiasm and warmth. Every time I had a database
related question, he always had a comprehensive list of references ready for me. I want to
thank Srini for some valuable discussions we had when I was defining my thesis, and for
his continued support in helping me set up accounts on the Planet Lab testbed. I want to
thank Ellen for agreeing to serve on my committee under a very short notice. I am also
grateful to Ellen and Christos for writing various reference letters for me.

I had the privilege to interact with many faculty members at CMU. In particular, I want
to thank Professor Hui Zhang, who has been an informal advisor to me. I was fortunate to
have a chance to collaborate with him in the Darwin project. I also want to thank Profes-
sor Garth Gibson, even though I did not have a chance to work with him. I took Garth’s
software systems course the first semester, and the most important thing I learned from
him is that when you design a system, you must know how to evaluate it. I also want to
thank Professors Bruce Maggs and Greg Ganger, who have being supportive to me and my
wife over the years. Special thanks go to Sharon Burks, who takes care of all the graduate
students in the department, like a “den mother”. I am also thankful to Barbara Grandillo,
Kathy McNiff, Jennifer Lucas, and Catherine Copetas, who have all helped me in various
occasions.

Many colleagues helped me in many aspects of my thesis. I enjoyed the collaboration
and they all became my good friends. Particularly, I would like to thank Umair Shah, with
whom [had numerous thought-provoking discussions when I started working on my thesis.
Those meetings helped me through a very difficult time. I would like to thank Dr. George
Tzanetakis for our successful collaboration on applying my content discovery system to his
content-based music search work. I would also like to thank Adam Kushner, who worked

vii

viii ACKNOWLEDGMENTS

with me on the system prototyping in the last year. His part of the work, which became
his undergraduate honor thesis, strengthened my thesis, and together, we demonstrated the
feasibility of my system. I would also like to thank other fellow students in Peter’s group,
An-Cheng Huang, Ningning Hu, Urs Hengartner and Glenn Judd, who provided many feed-
back to my papers and presentations in the last few years.

I would like extend my appreciation to other members of the CMCL lab over the years. In
particular, I want to thank Eduardo Takahasi, Keng Lim, Prashant Chandra and Eugene
Ng for our earlier collaboration in the Darwin Project. Eduardo helped me to get started
with the Darwin delegate work. Keng and I worked side by side for a couple of semesters
on the fruitful virtual private network project. I would also like to thank our lab manager,
Nancy Miller, who did a great job in managing the machines in the lab, so that we could
focus one hundred percent on research.

I have made a lot of friends over the years at CMU who made my life as a graduate student
enjoyable. I want to thank them all for being my friend: Yanghua Chu, Qifa Ke, Yinglian
Xie, Sanjay Rao, Umut Acar, Ted Wong, Antonia Zhai, Julio Lopez, and Peter Venable. I
was fortunate to have two great officemates, Hal Burch and Leejay Wu. Hal is a wizard who
knows just about everything. I turned to him whenever I had a subtle bug in my program,
and he usually can figure it out in a few seconds! His help to me ranged from the meaning
of a field in the IP header to the difference between two types of stock options. Leejay is
a year behind me and Hal. Since Hal left our office after three years, Leejay and I kept
each other accompanied for a good part of the last four years. The occasional zevil games
kept us entertained. Leejay has become a good photographer, and I especially enjoyed his
amusing squirrel shots. Leejay, being an excellent English speaker and writer, proofread
almost every paper I had published, and listened to every talk I gave. For that I thank him.

I am blessed to have many truly loving friends ever since I landed in this US. I want
to thank Dr. Jack Brenizer, my former advisor from the University of Virginia, and his wife
Diana. The Brenizers have become me and my wife’s “American parents”. They helped
us to organize our wedding and hosted the wedding reception at their house. Diana has
always been praying for us and sending us gifts like a mom, and Dr. Brenizer offered me
wise career advice whenever I called him up. I also want to thank Carl Stebbings, my
long-time friend from the days I was at UVA. He even made a 7-hour trip to my defense. 1
would like to express my special thanks to the wonderful Mrs. Gerda Pirsch, who was my
international host when I first came to the States. Mrs. Pirsch’s kindness, love, and care
not only made my life transition much easier, but also had a tremendous impact on my
view of the world and the people everywhere. I am also very grateful to Professor Gabriel
Robins at the University of Virginia. I took a couple of algorithms courses from him, and
he re-ignited my interests in computer science, and encouraged me to pursue a career in
this wonderful field. I am also thankful to Drs. Dimitrios Pendarakis, Debanjan Saha, Raj
Yavatkar, and Professor Andrew Campbell for their support.

I want to thank my family in China. My parents are both great educators, and they
started my education at a very early age and helped me to set up a life-long goal in pur-

ACKNOWLEDGMENTS ix

suing knowledge. It’s their love, encouragement and belief in me that made it possible for
me to overcome every seemingly insurmountable difficulty, and to continue my next dream.
I dedicate this thesis to them. My two older brothers always believed in me, and they
supported me to come to the US to realize a dream that they and my parents didn’t have
a chance to pursue. Being so far away from home, the only reason that I can focus on my
study is because that my brothers are taking good care of my parents at home. Without
them, I would not have the luxury of pursuing my dream. I want to give my special thanks
to my parents-in-law for taking me as their new child, and their love and support. I also
want to thank my two uncles and their families for their love and support for me over the
years.

Finally, I want to thank my wonderful wife, Shuheng Zhou. It is still magical to me that
we found each other. Life in general, and a graduate student’s life in particular, has many
ups and downs. With Shuheng by my side, the amount of frustration is halved and joy dou-
bled, and everything becomes so much more meaningful. Shuheng also has great intuition
in networking research, and her critical thinking and many invaluable discussions with me
directly helped me in improving many parts of this thesis. I want to thank her for her love,
encouragement and being my best friend.

ACKNOWLEDGMENTS

Contents

List of Figures

List of Tables

1 Introduction

3

1.1
1.2

1.3
1.4
1.5

The Content Discovery Problem
Related Work
1.2.1 Centralized Solutions.
1.2.2 Distributed Solutions
Thesis Statement
Contributions
Thesis Overview

CDS System Architecture

2.1
2.2

2.3
24

2.5

2.6
2.7

Content Naming Scheme
System Architecture
2.2.1 DHT-based Overlay Substrate
2.2.2 Applications
2.2.3 CDS Functionality

CDS Application Example: A P2P Music Information Retrieval System

Rendezvous Points-based Design
2.4.1 Registration
2.4.2 Query
2.4.3 System Properties
Challenges Faced by the Basic CDS
2.5.1 Handling Skewed Load
2.5.2 Complex Queries
Related Work
Chapter Summary

Distributed Load Balancing

3.1

3.2

Load Balancing Matrix (LBM)
3.1.1 Registration with LBM
3.1.2 Query
Matrix Management

xi

xiii

xix

© © O Ot Ot N =

10

13
13
15
16
17
17
18
20
20
22
22
23
23
25
25
27

xii

CONTENTS

3.2.1 Partition Expansion L0 o oo, 33
3.2.2 Partition Shrinking oL oL o oL 34
3.2.3 Replication Expansion 0 0oL, 35
3.2.4 Replication Shrinking oL 36
3.2.5 Head Node Mechanism and LBM Maintenance 36

3.3 System Properties with LBM o000 37
3.3.1 Registration and Query Efficiency 37
3.3.2 LBM Maintenance Cost 37
333 CDSand Churn i e 38

3.4 Evaluation Methodology 38
3.4.1 Simulator Implementation 38

3.4.2 Experimental Setupo o oL 40
3.4.3 Performance Metrics 0., 42

3.5 Simulation Results oL o o 43
3.5.1 Registration Success Rate 43
3.5.2 Query Success Rate L 46
3.5.3 System Load Distribution, 49
3.5.4 Registration and Query Cost 50
3.5.5 System under Flash Crowd 54

3.6 Related Work e 55
3.6.1 Load Balancing in Distributed Systems 55
3.6.2 Load balancing in DHT-based Systems 56

3.7 Chapter Summary oL e e e 57
Supporting Range Queries 59
4.1 The Range Query Problem, 60
4.1.1 Two Basic Approaches 60

4.2 Static Range Query Mechanisms 61
4.2.1 Range Search Tree (RST) it i 61
4.2.2 Registrationo 62
423 Query e e e e e 63

4.3 Analysis of the Static Mechanisms 67
4.3.1 Number of Registration Messages 68
4.3.2 Number of Query Messages oo o 70
4.3.3 Discussion e e e e e e e e 71

4.4 Dynamic Range Query Mechanisms 71
4.4.1 Path Maintenance Protocol (PMP) 72
442 Registrationo 73
443 Query e e 74
4.4.4 Distributed Band Adaptation 75

4.5 Analysis of the Dynamic Mechanisms 83
4.5.1 Overhead of PMP 83
4.5.2 Overhead of Band Adaptation 84
4.5.3 Band Stability Analysis o o 84

4.6 Evaluation. L e e e e e e 85

CONTENTS

4.6.1 Methodology
4.6.2 Performance of Static RST
4.6.3 Performance of Dynamic RST
4.6.4 System Optimization with Band Adaptation
4.7 Related Worko e
4.8 Chapter Summary o e e e e e
5 Supporting Similarity Queries
5.1 System Design for Similarity Search
5.1.1 Background on Centralized kd-tree
5.1.2 Design Rationale L.
5.2 Distributed Kd-tree oL o o
52.1 Kd-tree Mapping
5.2.2 Tree Construction with Compact Splitting
5.2.3 Distributed Tree Maintenance
5.2.4 Overhead of the TMP
5.3 Endpoint Algorithms oL
5.3.1 Registration
5.3.2 Query e
533 DKDTandLBM
5.4 Virtual Node Shrinking
5.5 Evaluation. e e
5.5.1 Query Performance Lo oL
5.5.2 DKDT Maintenance Cost
5.5.3 Effectiveness of Virtual Shrinking
5.6 Related Work e
5.7 Chapter Summary e e
6 Prototype Implementation
6.1 Implementation
6.1.1 Modify DHash’s Chord Layer
6.1.2 Camel Software Structure
6.1.3 Camel Applications oL
6.1.4 Implementation Discussion
6.2 Internet Deployment and Evaluation
6.2.1 Evaluation Results o L.
6.3 Chapter Summary e

7 Conclusions and Future Work

7.1 Contributions
7.2 Future Work

Bibliography

xiii

85
86
88
90
93
94

97

98

99
100
101
101
102
104
107
108
108
110
113
114
115
117
117
119
121
123

125
125
125
126
127
131
131
132
132

135
135
137

139

Xiv CONTENTS

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5

3.6

3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14
3.15
3.16
3.17

A distributed Content Discovery System. Nodes may publish contents, or

issue queries to search for matched contents. 2
An example content name. L.l L e 14
The content name for a highway camera. 14
CDS node architecture. 16
CDS design space.t e e e e e e e e 18
Software architecture on a peer node in the music information retrieval system. 19
The steps involved in registering a content name. 20
The algorithm for registering a content name. 21
Example registration and query processing with RPset. 21
Popularity distribution of feature attributes. 24
Load balancing matrix for {a;v;}. o oo oL 30
Registration with load balancing matrices. 31
The algorithm for content providers to register with LBM. 32
The search algorithm with LBM. 33

Partition expansion example. The LBM initially has 2 partitions and 1
replica. Partition 2 is the ER. After expansion, the matrix has 4 partitions,
and the last two partitions becomes the new ER, annotated using a dotted
boX. . . e e e e e e e e 34
Replication expansion example. The LBM initially has 4 partitions and 1
replica, which is also the ER. The LBM establishes 2 replicas after the ex-

PAnSION.ol e e e e e e e e e 35
AV-pair distribution in two sets of content names. 40
AV-pair distribution in queries.o oL 41
Registration success rate comparison. 43
Effect of number of partitions. Skewed dataset with 7gyter, = 5000reg/ sec. 45
Query success rate cComparisom.t e e e e e 46
Query success rate comparison.o e e e 48
Comparison of the Cumulative Distribution Function of the number of reg-

istered names on nodes. L. oo 49
Load within a matrix. Skewed dataset with rgystem = 2000reg/sec. 51
Matrix size distribution. All the axes are in logarithmic scale. 52
CDF of registration and query messages.+« o cvu ot .. 53
CDF of registration and query response time. 54

XV

xvi

3.18

4.1

4.2
4.3
4.4
4.5
4.6

4.7

4.8

4.9

4.10

4.11
4.12

4.13

4.14

4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

5.1

LIST OF FIGURES

Matrix replication expansion and shrinking under changing query load. . . .

(a) A logical RST. The dotted curve illustrates Path(3). (b) Overlay net-
work nodes this RST is mapped onto. A circle represents a physical node
and a dotted rectangle represents an LBM. Filled nodes are selected by the
registration algorithm to receive {a =3}.
Endpoint registration algorithm using a static RST.
TMustration for proof of the Range Decomposition Theorem.
Endpoint query algorithm using a static RST.
The local range decomposition algorithm.
Range [1, 7] is decomposed into 3 sub-ranges indicated by the nodes with a
box. Filled nodes will receive the query.

Number of registration messages needed for a value v as a function of query
load. o

Number of query messages needed for a query with covering set of size K as
a function of registration load. 0 0oL

RST with (a) a flat band, and (b) a ragged band. The shaded area indicates
aband.

PMP message exchange among head nodes. Filled nodes are in the band.
Matrix sizes are from Figure 4.1(b).

The optimized range decomposition algorithm.

Query range [1,7] is decomposed into 2 sub-ranges indicated by the solid
boxes. Filled nodes are in the band.

Band top expansion. Nodes N; and Ny are at the top edge of the current
band. Nj is recruited to theband.

Band bottom expansion action. Node Ny in at the bottom edge of the current
band. Expand to include Ny or No.

Query cost comparison. e e e e e e e e
Registration cost comparison. Lo oL
Query cost vs. Range length. o o000
Query cost vs. Registrationload.
Registration cost comparison. Query range =20
Band bottom expansion reduces query cost. oL
Band adaptation under flash crowd.,
The query cost change as band adaptation occurs.
Zoom in on the top expansioneffect.,
Band adaptation for mixed range lengths.
The average cost for queries with different range lengths.

(Left child corresponds to the space that has smaller value than the division
line; The ordering of dimension is x, y) (a) The locations of 5 data points in
a 2-d space. (b) The logical kd-tree with bucket size = 1. Squares denote
empty cells. L

55

62
63
65
67
68

69

70

71

72

73
75

76

76

80
86
87
88
89
90
91
92
95
95
96
96

101

LIST OF FIGURES xvii

5.2 (a) 5 data points in a 2-d space. (b) Tree created without compact splitting.

(c) The final DKDT. Each circle represents a physical node in the DHT. The

black rectangles near a node are these nodes’ corresponding cells. 103
5.3 Example illustrating the tree maintenance protocol (TMP). (a) Normal mes-

sage exchange. (b) Node 3 and 5 leave. (c) Branch coalescing. (d) DKDT

after coalescing. L 105
5.4 Example showing the three configurations when the covering node is a non-

leaf. In all cases, the new data point is 5, and P is the current covering node

and C; and C, are the children. The center figures show the DKDTs before

5’s arrival, and the right figures show the tree after the registration. 110
5.5 The algorithm to calculate the distance between a query point and a cell vector.111
5.6 A 2d example of computing the distance between a query point and a cell. . 112
5.7 Example illustrating the query process. (a) 5 is the first candidate neighbor.

4 is the NN. (b) DKDT, and filled nodes’ cells are enqueued. 113
5.8 Virtual node shrinking example. (a) Without shrinking. (b) Shrinking by
creating sub-trees. Dotted boxes denote sub-tree cells. 114

5.9 Virtual shrinking using VA-file representation. (a) Use 2 bits to divide a 2-d
space with 5 data points. (b) The information transferred before and after

shrinking. 116
5.10 Distance computation with virtual shrinking. 116
5.11 Cumulative distribution of query cost for uniform data sets. 117
5.12 Query cost comparison for uniform and clustered data sets. 118
5.13 CDF of TMP message hops for clustered data sets. 119
5.14 Effect of virtual shrinking on query performance. 120
5.15 Comparison of the effect of virtual shrinking using 2 different clustered data

SeES. . . e e e e e 121
5.16 Virtual shrinking improves performance for the mp3 data set. 122
5.17 Number of candidate queries distribution for the music dataset. 123
6.1 Example code of a simple CDS application. 130
6.2 Planet Lab Testbed. L o 131
6.3 Registration load balancing on the PlanetLab. 133

6.4 Query load balancing on the PlanetLab. 133

xviii LIST OF FIGURES

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1

Classification of @ : [s,e] for Top Expansion 7
Variables for Top Expansion L. 78
The cost of different queries with and without Top Expansion 78
The cost of different registrations with and without Top Expansion 78
Query classification for Bottom Expansion 81
Variables for Bottom Expansion.0 0L, 81
Query cost with and without Bottom Expansion 82
Registration cost with and without Bottom Expansion 82

Summary of DKDT height and size for 6-d and 12-d clustered data sets with
and without compact splitting. 0oL, 119

xXix

XX

LIST OF TABLES

Chapter 1

Introduction

The Internet has become an integral part of our society. People are becoming increasingly
dependent on Internet applications such as the World Wide Web and Email to conduct their
life and business. Continued advances in networking technology and computer hardware
have enabled more and more inexpensive PCs, various devices such as PDAs, sensors, and
cameras to link to the Internet with better and better connectivity. In recent years, we
have witnessed the emergence of several important classes of distributed applications that
are transcending how the Internet may be used beyond today’s applications.

As a first example, the abundance of devices and sensors connecting on the Internet is
making ubiquitous computing all but reality. Being able to efficiently discover and make
use of the large amount of information gathered by these devices has become increasingly
important. Consider a nationwide highway traffic monitoring service, where devices such as
cameras and sensors are installed along the roadside of highways or mounted on patrol cars,
to monitor traffic status, e.g., the speed they observe, road and weather conditions. These
devices frequently send updates to the service to accurately reflect the current status of the
highways. A driver on the road may use his PDA with a wireless connection to the Internet
to query the service to get traffic information. For example, he may issue a query such as
“What is the speed at the Fort Pitt Tunnel?’ to get the speed information at a particular
location, or to plan his route by issuing a query such as “Identify the highway sections to
the airport that are icy”, so that he can avoid those sections.

As another example, in the last few years, Peer-to-Peer (P2P) applications, have become
one of the fastest growing applications in the history of computing. Despite the copyright
issues raised by some popular P2P file swapping applications, such as Napster [47], the
peer-to-peer computation model pioneered by these applications opened a new chapter of
the continuing revolution of distributed computing on the Internet. Unlike the traditional
client-server model, the P2P paradigm makes it possible to harness the vast computing and
storage resources available on the Internet in a decentralized fashion, with little deployment
cost. For example, SETI@home [62] is using Internet volunteers’ home PCs’ idle time to
find extraterrestrial life by analyzing data collected from outer space. The collected power
of these PCs is larger than any supercomputers that a group of scientists can find and
afford.

A fundamental functionality that a P2P application must provide is the ability for a
peer to locate resources, be it computation power or a set of files, that are available on

2 CHAPTER 1. INTRODUCTION

Publish Publish

Matches Query

Figure 1.1: A distributed Content Discovery System. Nodes may publish contents, or issue
queries to search for matched contents.

other peers. Directory services such as Napster [47], and primitive searching methods based
on limited flooding such as Gnutella [30] and KaZaA [41], have become popular among
Internet users. Query expressions used for the search are also rather primitive, in that
they are often represented using simple metadata and keywords. Content-based searching
in P2P applications is starting to draw a lot of attention, since it has the potential to make
Internet-scale information retrieval possible [65].

1.1 The Content Discovery Problem

The above applications share one common functionality, content discovery. We use a generic
term, the Content Discovery System, or CDS, to represent a system that supports the
discovery of contents. Depending on where the contents are stored, a CDS may have a
centralized or a distributed architecture. A web search engine can be considered as a
centralized CDS for web contents, since it creates a centralized index and resolves all users’
queries. In a distributed CDS, nodes form an overlay network, and a node can publish and
provide contents, issue queries looking for contents, store contents or contents’ metadata
published by other nodes, and resolve other nodes’ queries. Throughout this thesis, we
sometimes refer to a node that publishes content or issue queries as a client or an endpoint.

Figure 1.1 shows an example of a distributed content discovery system. We use the
term “content” in a broad sense and its meaning may differ from application to application.
Content is often represented using a short description, or metadata. We also refer to
this description as the name of the content, or content name. For example, in the traffic
monitoring service, a piece of “content” refers to the description of a sensor or a camera,
which may include attributes such as location, speed, view, etc. We also note that
a node in this system refers to a computer and it may connect to multiple devices. In a
P2P music sharing application, “content” refers to the metadata of a music file and it may
include attributes such as artist, year, album name etc.

Besides the service discovery services and peer-to-peer object sharing systems, there exist
a wide variety of distributed applications that either themselves are CDS systems or use

1.1. THE CONTENT DISCOVERY PROBLEM 3

a CDS as one of their major components. For example, publication subscription systems
(pub/sub) also employ CDS. Publishers advertise the descriptions of their publications.
Subscribers are clients that submit their subscriptions or queries. The CDS in a pub/sub
system must match subscriptions with advertisements. Some other conventional Internet
applications, e.g., Internet search engines and the DNS service, can also be viewed as CDS
systems.

The primary task of a CDS is to efficiently locate the set of contents that match a client’s
query. As with the wide range of applications that use CDS systems, there are a variety of
solutions to the content discovery problem. However, these existing solutions often display
one of the following deficiencies: (1) The CDS may provide powerful searching capabilities,
but the mechanism does not scale, in that when the amount of content and queries increases,
the computation, storage and network bandwidth requirements grow quickly to exceed the
capacity of the system; (2) Some systems may scale well, but they typically are designed
with a specific application in mind, and therefore their functionality is limited and their
techniques do not apply to other applications. For example, search engines deal with static
and inter-linked web pages. DNS deals with hierarchical and well-administered domain
names; (3) Some systems may be both scalable and general, but they only provide primitive
searching capability. Systems using a basic Distributed Hash Table (DHT) to support exact
name lookup belong to this category.

In this thesis, we address the wide-area content discovery problem. Our goal is to design
a system that is highly scalable while also providing rich searching capability. We describe
the two aspects of our proposed system in more detail as follows.

e Rich Searchability.

Contents in the CDS must be searchable, in that a node can locate contents using
partial information rather than having to specify a complete and exact name. More
formally, searching is defined as a subset matching, i.e., a query matches a content
name as long as the information specified in the query is a subset of the information
specified in the matched name. For example, a user may submit a query such as “find
all songs by U2 released in 1985” to retrieve the collection of songs without having to
know each song’s name.

For discovery and exploratory purposes, a user may issue queries that are more com-
plex than an exact query. Our proposed CDS supports complex queries such as range
queries and similarity queries, which are typical operations in traditional databases
and information retrieval systems. For example, a driver may issue a range query
such as “find the speed information between Ezit 1 and 20”. A user using a P2P
content-based music information retrieval system may issue a similarity query “find
the 10 songs most similar to z.mp3’.

The type of content that can be searched by the CDS is general and can be dynamic:

Flat content representation. In the applications we are targeting, the descriptions
of content do not have to be hierarchical in nature like domain names or directories.
Content names in these applications often display a flat structure. Examples include
the description of a service, the metadata of a file, and the feature vector of an mp3

4 CHAPTER 1. INTRODUCTION

file. Furthermore, contents are independent of each other, and they do not link to
each other like web pages.

Dynamic content. The description of a piece of content may change over time. For
example, when a camera observes a different speed, it must change its description
and announces it to the CDS system. As such, it is possible for the CDS to answer
queries such as “find all the road sections that are congested’. This is in contrast to a
typical search engine, which builds its database based on static content information.
For example, a search engine may be able to return a list of links of classical music
stations, but it typically can not give the user an answer to “find the station that is
currently playing Beethoven’s Concerto No. 9, and the user may have to click each
of the potentially many links to find the desired station.

e Good Scalability.

We are interested in applications that have many nodes running on the wide area
Internet. The number of nodes in the system may be on the order of tens of thou-
sands. As such, both the amount of content and the number of queries are large.
By scalability we mean that as the load (e.g., the registration and query rate) to the
system increases, the performance of the CDS, such as throughput and response time,
must not degrade significantly before the system as a whole reaches its capacity. More
specifically, the CDS must meet the following scalability challenges.

Scale with queries. The issue is that how many messages will be involved in resolv-
ing a query. For example, a system that must broadcast a query to a large portion of
the network is inefficient, and the system as a whole does not scale with the number
of queries.

Scale with registrations. The CDS may observe high registration load resulting
from possibly frequent dynamic content updates. Existing systems such as search
engines typically do not concern themselves with registration load, since they are
targeting contents that are mostly static such as web pages.

Scale with the load regardless the load distribution. Realistic load is often
skewed. For example, the distribution of query interests are often skewed and their
popularity may be due to a certain event, the so-called “flash crowd” effect. As an
example, the word “Olympics” becomes a heavily queried term while the Olympic
Games is going on. This is true for both registration and query load. The proposed
CDS must perform well under this type of skewed load.

Scale for complex queries. Queries such as range queries and similarity queries
are complex, and the CDS must be able to handle them efficiently. For example, a
user may specify a query that covers a large range, the cost of naively sending the
query to a number of nodes proportional to the range length may be prohibitive.

While we are designing a searchable and scalable CDS system that meet the above
challenges, the system we present in this thesis does not address the following.

e Our system does not replace an Internet search engine or a full-fledged information
retrieval system. In particular, our system does not analyze the semantic meaning of

1.2. RELATED WORK 5

a piece of content, or the relationship between pieces of content (e.g., web pages), and
their relevances to a query. However, it is possible to add such analysis to nodes in
our system as a complementary functionality.

e Our system does not enforce strict content consistency. Our system is designed for
large-scale loosely controlled peer-to-peer applications. We use soft-state protocols
and do not require content providers to actively invalidate their registered contents
when they leave the system. This is a realistic assumption in that in peer-to-peer
systems, content providers may simply leave without notifying the system. In our
system, when a provider registers a piece of content, it must associate an expiration
timer with the content, and the node that receives the content will purge the content
when the timer is up. Before the timer expires, it is possible that the content metadata
a client retrieves is invalid, if the content provider had left. By using a timer for each
registered content, we make sure that this type of inconsistency is not persistent and
it is bound by the timer. For applications that require strict consistency such as a
bank transaction system, it is conceivable that more sophisticated protocols can be
added to our system to achieve the consistency goal.

e Our system does not address content delivery, which, in addition to content discovery,
is a functionality often needed in the applications we are targeting. In our system,
we implement the content discovery functionality, in that the system returns a set of
matching names for each query. This may be sufficient for some applications, e.g.,
when a user tries to retrieve the speed information in the traffic monitoring service.
However, in some other applications, post-content discovery actions, such as retrieving
the discovered content, may take place. For example, a user may want to connect to
the radio station he found to listen to the live music. Similarly, after discovering the
TP address of the peer that owns a particular file, a peer may then connect to that
peer and request the file.

1.2 Related Work

Existing CDS systems have difficulties in achieving both rich searchability and scalability.
We survey the CDS solutions in existing applications. Based on how the CDS network is
organized, we classify the systems into two categories: centralized and distributed. For each
solution, we first describe the general mechanisms and then present specific systems that
use this solution. We also discuss why these systems do not meet our goals set for a CDS.

1.2.1 Centralized Solutions

In centralized solutions, the resolver or the cluster of resolvers form a central data repository.
The resolvers are typically administered by one organization and are co-located in the same
geographical location. The data repository may be built using several mechanisms: (1)
content providers actively register with the central resolver, e.g., Elvin [22] in pub/sub
system, and Napster [47] in peer-to-peer file sharing; (2) Central resolvers actively search
for contents, e.g., search engines [31] typically find web contents by periodically crawling

6 CHAPTER 1. INTRODUCTION

the web. Users of a centralized system submit their queries to the central resolver(s), which
subsequently resolves queries by examining its database.

The centralized system allows flexible searches. With access to the complete informa-
tion of the contents in the system, a centralized system can conduct complex analysis in
answering a query. For example, search engines use sophisticated “ranking” algorithms
(e.g., PageRank [13] in Google [31]) to return a user the set of matches corresponding to a
query in the order of their relevancy to the query.

There are several problems associated with the centralized solution. It typically does
not scale well as the amount of content and the number of queries increase, since the central
server must maintain all the content information in the system, and process every content
registration and query request. The need to support frequent dynamic updates makes this
problem even more prominent. Techniques, such as deploying a cluster of well-connected
machines as the resolvers and performing dynamic load balancing across these resolvers,
can improve the scalability.

Another issue is the robustness of the system. The centralized infrastructure forms a
single point of failure, and makes the system vulnerable to attacks. If the resolver(s) is
down or is attacked (e.g. by a DDoS attack), the system will not be available to the users.
Many such attacks in recent years have temporarily but successfully taken down some of
the major Internet search engines. The most recent instance occurred while writing this
thesis on 7/26/2004, when the MyDoom worm partially knocked out the service of Google
and some other search engines [1].

Finally, the deployment cost of a centralized service that can scale up is very high, and
corporate support is typically required to create and maintain such a service. This is in
sharp contrast with the P2P paradigm, where Internet hosts can create a powerful online
service quickly at almost no extra cost.

1.2.2 Distributed Solutions

In a distributed solution, nodes in the CDS form an application level overlay network for
content registration and query resolution. We further classify systems using a distributed
solution into three categories based on their overlay network topology: (1) Hierarchical tree
based system, (2) Unstructured overlay, and (3) Structured overlay.

Hierarchical Tree-based systems

In this type of systems, resolvers are organized into a hierarchical infrastructure. The main
advantage of the tree topology is that system-wide content broadcasting and query flooding
can be avoided. Specifically, it is possible for each node to maintain a relatively small
content database to avoid the full replication of all the content, thus limiting the scope of
registration and searching. Instead of broadcasting a content registration to all nodes in
the system, it is only populated in a certain subtree based on some aggregation mechanism.
A user first sends its query to the node it connects to. If the query can not be resolved
there, it will be sent up the tree. As a result, query flooding can be avoided. Many existing
systems use a tree-based infrastructure for content discovery, e.g., the DNS [45] service, the
pub/sub system designed by Yu et al. [74], service discovery systems such as SDS [17] and
the Service Location Protocol(SLP) [34].

1.2. RELATED WORK 7

The hierarchical organization scales well for applications in which content names follow
a hierarchical format, e.g., domain names and hierarchically named service descriptions.
However, the hierarchical topology has some fundamental shortcomings.

First, the amount of information that must be propagated up the tree may be high. In
DNS [45], the hierarchical names can be aggregated well due to their hierarchical nature,
thus it limits the amount of information that must be propagated among servers. The DNS
also scales well with query load by using caching, since the hostname-IP address binding is
fairly static for most of the hosts on the Internet. For content names that are not naturally
hierarchical, such as the services we are targeting, nodes high in the tree are likely to be
overloaded. SDS [17] addresses this problem by using Bloom filters to compress the amount
of data to be transferred.

Second, nodes high in the tree, the root node in particular, may experience high query
load since all queries that can not be resolved will have to go up the hierarchy.

Third, the tree topology may not be robust, in that each node could become a potential
single point-of-failure, and the crash of any node will cause the partition of the tree.

Systems based on unstructured overlays

In this type of systems, nodes are organized into a general graph. Based on the way content
is distributed/replicated in the CDS network, we examine two types of mechanisms.

¢ Content broadcasting solution

In this type of system, a node registers its content (names) to the nodes that it is
connecting to in the overlay network. A node that receives a registration store the
name in its local database, and then broadcasts it to all of its neighbors. Multicast
protocols such as DVMRP [71] are typically used to avoid message looping. In this
solution, a content name is replicated at all nodes in the system. With this full
replication, query resolution can be done efficiently: a client sends its query to the
node that it connects to, and the node compares the query with entries in its database
and resolves the query. This type of mechanism is used in many systems, e.g, INS [6]
for service discovery, and Siena [14] for pub/sub systems.

This approach does not scale with the amount of content, because (1) each resolver
must store all the contents in the system; and (2) each new content name will cause
waves of broadcast messages throughout the network.

Siena [14] tries to improve scalability by exploring the relationship between different
registrations (subscriptions), e.g., a resolver that receives a new content name, broad-
casts it only if the new name is not “covered” by some previous content name that has
been broadcast before. However, the degree of aggregation that can be done is often
limited, since the names (i) do not necessarily relate to one another, and (ii) may
not display a hierarchical nature. Gryphon [7] improves the resolver’s local matching
algorithm by constructing a matching tree off-line.

e Query flooding solution

In this solution, nodes do not actively register their content names with other nodes
in the network. Instead, they only maintain their own contents. When a node receives

8 CHAPTER 1. INTRODUCTION

a query, it checks its local set of content names, and if it can not find a match for
the query, it will forward the query to its neighbors in the system. As such, a query
may have to traverse a large portion of the network before a match can be found.
The propagation of the query may follow mechanisms such as Breadth First Search
(BFS) and Depth First Search (DFS). Systems using this type solution include P2P
applications Gnutella [30] and Freenet [25].

The sheer number of messages incurred by each query clearly results in poor scalability
with the number of queries. Consequently, a querying node may experience long delay
in resolving one query, and may not get results even if there exists a match in the
system.

There have been some recent work that tries to improve Gnutella’s scalability. KaZaa [41]
improves upon Gnutella by deploying supernodes, but the system wide flooding may
still be used in the worst case. To improve scalability, caching is often used [63]. How-
ever, caching works well only if queries in the system display temporal and spatial
correlation, and it does not work well for dynamic content. In [16], several techniques
have been proposed to make Gnutella more scalable, and it is shown that aggressive
content replication mechanisms can make the system perform well for popular queries.

Systems based on structured overlays

One reason causing the scalability problems in above systems is that content names generally
do not have any relationship with the nodes that host them, and therefore broadcasting or
query flooding is often inevitable.

In recent years, Distributed Hash Tables (DHTSs), e.g., Chord [64], CAN [55], Pastry [58],
and Tapestry [75], have been proposed as a scalable and robust layer for building large scale
distributed applications. In a DHT, a data item can be associated with the node that will
host it. This is typically done by applying a uniform hash function to the data item, and
then storing it on the node whose ID in the DHT’s key space is closest to the hash. This
primitive makes searches based on exact name lookups efficient, and system-wide flooding
or broadcasting is avoided.

There have been many recent activities in building a variety of applications on top of
DHTs. However, these systems have various limitations, and do not meet the design goals
of the CDS. Here, we discuss a few example work in this domain, and we will present more
detailed comparison in individual chapters, since our system is also built on top of a DHT.
CFS [18] and PAST [59] are two distributed file systems built on top of Chord [64] and
Pastry [58] respectively. Scribe [15] is a pub/sub system built on top of Pastry [58]. One
significant problem with these systems is that they work only for fixed content names, and
do not allow searching. For example, to use the DHT, a client must know the exact name
of a file it is looking for before hand. Twine [10] is a service discovery service built on
top of Chord, and it allows search, but it does not address load imbalance issues, which
are common in realistic applications. PIER [38] is a distributed database built on top of
Chord, and handles traditional database operations such as “distributed join”. However, it
does not support rich queries such as range and similarity.

1.3. THESIS STATEMENT 9

1.3 Thesis Statement

In this thesis, we present the design, implementation and evaluation of a distributed Content
Discovery System that meets both the searchability and scalability goals.
Here we briefly highlight some of the key techniques we used in supporting this thesis.

e Distributed DHT-based P2P system. Nodes in our CDS organize themselves
into a structured P2P overlay network using DHT. The P2P infrastructure provides a
decentralized and robust system, and avoids problems such as single-point-of-failure
and concentration of load encountered by the centralized and tree-based systems.
The DHT layer ensures a scalable overlay network management and routing. Nodes
in the CDS share equal responsibilities: a node can publish contents, store contents
published by other nodes, issue queries, and resolve others’ queries.

¢ Rendezvous Points based scalable search algorithms. We support search in
our system by representing contents and queries with descriptive attribute-value pairs.
While enabling search, we ensure scalability through the use of Rendezvous Points
(RPs) to avoid system-wide message flooding at both content registration and query
time. Each content name is registered with a small set of nodes in the system, known
as the name’s RP set, and queries are directed to proper RP nodes depending the
query itself. Queries are resolved locally on RP nodes to minimize the amount of
network traffic.

e Distributed load balancing to ensure system’s scalability under skewed
load. The system’s performance will degrade quickly when RPs are overloaded. We
design a novel mechanism that uses Load Balancing Matrices (LBMs) to dynamically
balance both registration and query load in a truly distributed fashion to ensure the
system’s throughput, even under extremely skewed load, such as flash crowds. As a
result, the load balancing mechanism allows the system to scale further.

e Supporting complex queries efficiently using distributed tree-based proto-
cols. The basic searching mechanism is based on exact matching between the query
and a subset of the content description. Clients use a CDS for exploration often prefer
open-ended queries, as they do not know what contents are available. Straightforward
extension of the basic search mechanisms to handle complex queries such as range and
similarity queries is inefficient.

We developed a set of dynamic and adaptive distributed tree-based protocols to sup-
port complex queries. In particular, we design a distributed search tree structure that
automatically aggregates registrations to handle range queries efficiently, and we de-
sign a distributed kd-tree structure to cut down the search space for similarity queries.
While supporting complex queries efficiently, these protocols are executed in a fully
distributed fashion, and do not create any bottlenecks in the system.

1.4 Contributions

The design, implementation and evaluation of a distributed Content Discovery System that
is scalable while supporting complex searching paradigms is the subject of this thesis. The

10 CHAPTER 1. INTRODUCTION

primary contributions of this thesis are as follows:

e System architectural contribution.

We contribute to the architectural design of large scale, scalable distributed Internet
applications by identifying content discovery as a fundamental building block for these
applications.

The CDS layer is completely separated from another building block, the DHT, and
runs on top of it. The CDS layer exports a simple API, registration and query to allow
a wide range of applications such as wide area service discovery and P2P information
retrieval systems to be built upon.

e Distributed protocol design contribution.

We make contributions in advancing distributed protocols design. We demonstrated
that some traditionally difficult tasks in distributed systems that are done in central-
ized systems, can indeed be done in a fully distributed fashion.

In particular, we contribute a distributed load balancing protocol that uses a structure
called Load Balancing Matrix (LBM) to dynamically balance both registration and
query load in a fully distributed fashion.

We contribute two tree based protocols, namely the Path Maintenance Protocol
(PMP) and the Tree Maintenance Protocol (TMP), that convert efficient centralized
spatial indexing data structures, the Range search Tree (RST) and the distributed
kd-tree (DKDT), into a distributed system that is efficient to support distributed
range queries and similarity queries.

e Software system contribution.

We contributed a comprehensive simulation implementation of the designed CDS. Our
evaluation results validated the effectiveness of the system.

We contributed a prototype implementation of the CDS that is built on top of a real
DHT, and runs on the Internet. The prototype implements the core registration and
query protocols and the distributed load balancing mechanisms. The prototype and
its deployment demonstrate the feasibility of the proposed CDS system.

We contributed a proof-of-concept implementation of a P2P content-based music in-
formation retrieval application that utilizes the CDS.

1.5 Thesis Overview

The remainder of this thesis is organized as follows.

In Chapter 2, we present the CDS system architecture. We discuss how the CDS is
layered on top of a DHT. We detail the basic RP-based registration and query mechanism,
and show that these operations are supported in an efficient and scalable way.

In Chapter 3, we present our distributed load balancing mechanism that dynamically
balances registration and query load when RP nodes are overloaded. We analyze the pro-
tocol’s performance and present comprehensive evaluation results that demonstrate the
effectiveness of the mechanism.

1.5. THESIS OVERVIEW 11

In Chapter 4, we show how we provide efficient support for range queries in the CDS. We
start by introducing a search structure, the Range Search Tree, and then go on to present a
set of protocols and adaptive mechanisms that support range queries efficiently. We present
both quantitative analysis and extensive simulation results to verify our design.

In Chapter 5, we describe how the CDS supports similarity queries. Our design is
based on Distributed KD-Tree (DKDT), a distributed version of a kd-tree. We extend the
protocols for range queries to work for the DKDT. We also present several optimizations
that try to overcome the dimension curse problem. Our simulation results again showed
the effectiveness of the system.

In Chapter 6, we describe a prototype implementation of the system, called Camel.
Camel is built on top of Chord, and as a separate library for distributed applications
to link to. Camel implements the basic system design and the distributed load balancing
mechanisms. We also show some experimental results obtained from a deployment of Camel
on Planet Lab [51], a planetary scale overlay network testbed on the Internet.

We conclude the thesis and present some future research directions in Chapter 7.

12

CHAPTER 1. INTRODUCTION

Chapter 2

CDS System Architecture

In this chapter, we present the CDS system architecture. In Section 2.1, we start by giving
a formal description of how contents are represented in our system, and what we mean by
search. In Section 2.2, we discuss in detail a three-layered software architecture on each
CDS node. In particular, we explain how CDS utilizes the underlying DHT substrate to
form a peer-to-peer overlay network, and how it enables applications to register content
names and to conduct searches. In Section 2.3, we describe an example application that
uses the CDS to conduct content-based music information retrieval.

Section 2.4 presents the Rendezvous Point (RP) based registration and query mechanism
in the CDS. This basic RP based mechanisms allow the CDS to achieve the searchability
and scalability design goals. We discuss two limitations of this basic design in Section 2.5,
namely, it does not handle skewed load and it does not support complex queries efficiently.
We will present solutions to these problems in the next three chapters. We present work
related to the basic system in Section 2.6 and summarize the chapter in Section 2.7.

2.1 Content Naming Scheme

To provide content searchability, applications built on top of the CDS layer use a flexible
attribute-value based naming scheme, similar to what is used in [6], [14]. Contents are
represented using attribute-value pairs (AV-pairs). For example, in a service discovery
system, a device may be described with attributes such as Type, Location, Model, etc.
In multimedia applications, such as the P2P music information retrieval system described
in [28], attributes that are used to describe an mp3 file include not only manually configured
ones such as Artist and Song Name, but also features extracted from the audio signals, such
as Tempo and Strength. Attributes may also include information such as the IP address of
the node that owns the content for content delivery purpose after the content is discovered.

We refer to the collection of the AV-pairs as the “content name (CN)”, or “content
description”. In our terminology, “content discovery” means the discovery of the “content
name”, not the actual content. We consider mechanisms such as contacting the device or
retrieving the actual file after the “content discovery” step as a separate function, known
as the “content delivery”.

In a content name, an AV-pair is specified using an equality predicate in the form of

14 CHAPTER 2. CDS SYSTEM ARCHITECTURE

ap = v
ai] = v11
a2 = V12

as = vo

an, = Vp

Figure 2.1: An example content name.

{a; = v;}, where a; is an attribute, and v; is its value. In contrast, as we will describe
shortly, AV-pairs in a query may contain inequality predicates. Figure 2.1 is an example
CN. It is represented using the following format:

CN : {{Gl = 71,011 = V11,012 = 'U12},G/2 = V2, ..., Gy = 'Un}a
or
CN: {{alﬂla011?}11,012’012},@112,...,anvn},

where a;v; is the short form for a; = v;. Languages such as XML may be used to describe
content names. Figure 2.2 is an example name for a highway monitoring camera.

Camera ID = 5562
Camera Type = Q-cam
Highway Number = I-279
Exit Number = 4
City = Pittsburgh
Speed Measured = 45MPH
Road Condition = dry
Connection availability = yes

Figure 2.2: The content name for a highway camera.

There are two types of attributes: independent and dependent. As its name implies,
an independent attribute does not depend on other attributes. In Figure 2.1, a; and a9
are independent attributes. In comparison, dependent attributes must co-exist with some
other attributes. For instance, the Exit Number attribute in Figure 2.2 is a dependent
attribute of Highway Number, since it is not meaningful to search for cameras based on
the exit number only. On the other hand, if the application allows searches based on exit
number alone, then Exit Number can be promoted to an independent attribute.

An attribute can be static or dynamic. The value of a static attribute does not change
over the lifetime of a content name, whereas a dynamic attribute may take on a different
value at different times for the same content. In Figure 2.2, for instance, Camera ID and
Camera Type are static attributes, and Speed Measured and Road Condition are dynamic

2.2. SYSTEM ARCHITECTURE 15

attributes, since the speed observed at a section of the road is constantly changing, and the
road condition may be dry or wet. The attributes related to location information such as
Highway Number may also be dynamic if we consider cameras that are mounted on vehicles.
When the value of a dynamic attribute changes, the content name changes, and this may
require content names to be frequently updated.

Searching based on Subset Matching

To search for contents, a user may submit a query to the system. A query is also comprised
of a set of AV-pairs, e.g., @ : {ai1v1,a9v2, ..., avp } contains m AV-pairs. Note that we
allow inequality signs such as “<,>,<” and “>” in queries. In this and the next chapter,
we consider queries that only contain equality predicates, and in Chapter 4, we extend the
system’s functionality and allow queries to contain inequality predicates. If a query contains
dependent attributes, it must also contain the attributes that they are dependent on. For
example, @ : {{a1v1,a11v11}, ag2va} is a valid query, but @ : {a11v11,a2v2} is not a valid
query.

Content names registered in the CDS are searched via subset matching. More specifically,
a content name matches a query as long as the set of AV-pairs in the query is a subset of
the set of AV-pairs in the content name. The content name may contain extra AV-pairs
that are not in the query. For example, for query @ : {ajvi,a2v2}, the matched content
names must contain both a1 = v1 and as = vs.

Many queries can match a given content name. In particular, for a content name con-
sisting of n independent AV-pairs, the number of matched queries, Mg, is exponential in
n. More specifically, it is equal to the number of subsets (excluding the empty set) of the

content name:
n n n n
Mp = =2" —1. 2.1

For names that contain dependent AV-pairs, the actual number of matched subsets will be
smaller, since we consider a dependent AV-pair and its parent AV-pair(s) together as one
“combined” AV-pair. For example, we would not have {a1v1,{a1v1,a11v11}} as a possible
subset, instead we would only have {aiv1,a11v11}. The exponential relationship between
Mg and n demands a careful design of the content registration and query scheme that is
scalable.

2.2 System Architecture

Nodes participating in the CDS connect to each other in a peer-to-peer fashion to form a
CDS overlay network. Figure 2.3 shows the software architecture on a node. It consists of
three layers above the network (TCP/IP) layer. The CDS layer is designed as a common
communication layer on which higher level applications, such as service discovery and file
sharing, can be built. The CDS layer is in turn built on top of a scalable distributed hash
table (DHT), such as Chord[64], CAN [55], Pastry [58], or Tapestry [75]. We now describe
the functionalities of each layer in detail.

16 CHAPTER 2. CDS SYSTEM ARCHITECTURE

Application
CDS

DHT-based overlay

TCP/IP

Figure 2.3: CDS node architecture.

2.2.1 DHT-based Overlay Substrate

The CDS system uses the DHT layer [3] for two purposes: (1) constructing and managing
the overlay network, and (2) delivering messages within the overlay network.

In a DHT, when a node first joins the system, it obtains a numerical identifier, known
as its node ID, from an m-bit key space (e.g., in Chord [64], m = 128). The node ID may be
computed locally, e.g., by applying a system-wide hash function to some local information
such as the node’s IP address. During the joining process, the node must first contact some
nodes that are already in the system, and then according to its node ID, “insert” itself
into the proper place in the overlay network. The node ID serves as this node’s overlay
network address, and the node is responsible for a contiguous region around its node ID
in the key space. Overlay networks built using a DHT are structured in such a way that
node IDs encode overlay network topology information: The node ID determines the set of
nodes that this node will be neighboring with, and which neighbor to use when forwarding
a message in the overlay network.

The CDS network formed using a DHT has the following important properties:

o Self-organizing. The network is formed in a fully decentralized fashion, and no
centralized entity is needed.

e Scalable. DHT-based systems are scalable with the number of nodes in the system,
by keeping both the number of routing table entries on a node and the number of
overlay hops between any two nodes small, e.g., both are O(log N;) in Chord[64],
where N, is the number of nodes in the network.

e Robust. The system is robust in that nodes can freely join or leave the network, and
a node join or departure/crash has a localized effect: only a small number of nodes
need to change their routing tables. For example, when a node leaves the system, the
segment that it was responsible for will be taken over by other live nodes that are
close to this node in the key space.

All DHTSs export a common simple API to the upper layer, lookup(key) [3], which
performs a well-defined task: given a key, find the node in the system responsible for the
key. In the CDS, similar to other DHT-based system such as CFS [18], we use the extended
DHT API, put (key, message) [3]: when given a key and a message, the DHT not only
finds the node responsible for the key, but also delivers the message to it. The DHT layer

2.2. SYSTEM ARCHITECTURE 17

does not dictate how the CDS chooses the key for message. The DHT layer on the receiving
node does not examine the message, but it simply passes the message to the CDS layer. The
CDS layer processes the message and takes different actions, such as accepting registrations
and resolving queries, based on the type of the message. As such, the CDS layer uses the
DHT purely as a transport vehicle.

2.2.2 Applications

Applications built on top of the CDS can perform two operations, register a content name
or issue a query to search for contents. The application carries out these operations by
invoking one of the two methods provided by the CDS API:

e register(content name). When this function is invoked, the CDS layer will send
the content name to a set of selected nodes in the network, using the DHT primitive
put Q).

e search(query). When this function is invoked, the CDS layer will send the query
to proper nodes in the network to retrieve the set of content names that match the
query. The message passing again is done by invoking the underlying DHT’s put ()
function.

The parameters content name and query are the AV-pair representations of a content
name or a query as we defined earlier.

2.2.3 CDS Functionality

The main task of the CDS layer is to determine where to register a content name and
where to send a query for resolution, once it receives a content name or query. The primary
design goal is to meet the scalability and content searchability requirements. We first briefly
examine the design space for the CDS. In particular, we have two concerns:

1. Registration cost.

How many DHT nodes does a client node have to register a content name with?

2. Query cost.

How many DHT nodes does a client node have to contact to resolve a query?

We illustrate these two metrics in Figure 2.4 along with several CDS design options. In
a centralized design, all names and queries are sent to one central location. While this may
look attractive since the individual cost of a registration and query is minimized, the central
location constitutes the system’s single point-of-failure and bottleneck. In the registration
broadcasting design, a content name is sent to every node in the system, and the cost of
registration is thus high. However, the query cost is low, as any query can be resolved
locally. Similarly, in the query flooding design, the registration cost is 0, in that all nodes
keep their content names to themselves. However, it is expensive to resolve queries, since
a query may have to be sent to all nodes in the system to get resolved. Neither of these
approaches is scalable due to the prohibitive number of registration or query messages.

18 CHAPTER 2. CDS SYSTEM ARCHITECTURE

Ni Query
*._flooding
Query
Cost
o DS Registration
1 | @ Centralized broadcasting
@
1 Registration Cost N

Figure 2.4: CDS design space.

In our system, we introduce a scalable approach based on Rendezvous Points (RPs). In
this design, a content name is only registered with a small number of nodes in the system,
the RPs; thus the full duplication of content names at all nodes is avoided. Queries are
directly sent to the proper RPs for resolution according to the AV-pairs in the queries, and
no network-wide searching is needed. The term “rendezvous” is used because the RPs are
where queries and the matched names meet.

2.3 CDS Application Example: A P2P Music Information
Retrieval System

In this section, we describe an example CDS application that we built for content-based
music information retrieval [28, 69].

A substantial percentage of the Internet traffic today consists of music files exchanged
by Internet users over P2P networks. In such a system, each peer may contribute to the
music collection by making a set of files on the local machine available to others. The
P2P protocol allows a peer to discover files stored on other peers. Unlike traditional client-
server based system, the decentralized and self-organizing nature of P2P networks makes
them a more suitable and powerful platform for resource sharing. However, the usefulness
of existing P2P systems is often limited by their searching capability. For example, they
only provide primitive searching methods, such as keyword searching, or searching based
on a combination of simple metadata. Users of a P2P system may desire more powerful
searching capabilities such as searching based on the music content itself. As an example,
they may want to search for the album that contains an unknown song recorded from radio,
or they may want to find more songs that are “similar” to the unknown song in terms of
tempo.

We designed a scalable P2P system that supports content-based retrieval of music files

2.3. CDS APPLICATION EXAMPLE: A P2P MUSIC INFORMATION RETRIEVAL SYSTEM19

MFD Specification

MFEE

Registration @

MFD
Content Discovery System Database

DHT-based Overlay

Figure 2.5: Software architecture on a peer node in the music information retrieval system.

as well as the traditional attribute-value based search using simple metadata. The system
is built on top of the CDS. Figure 2.5 shows the software architecture on each peer node. A
user may perform two types of operations: registering shared files and initiating searches.
For registration, a shared audio file is represented using a content name, which consists of
a set of AV-pairs. A content name here is also known as a Music File Description (MFD).
The MFDs are either specified by the user or automatically generated by the Music Feature
Extraction Engine (MFEE). The criteria of a search is formulated as a query, which is also
in the form of an MFD.

The MFEE component takes as input an audio file in compressed format, such as MP3,
the MPEG audio compression standard, and outputs a feature vector of AV-pairs that
characterizes the particular musical content of the file. In our system, we use the feature
set proposed in [68] for the purpose of musical genre classification. This feature vector
captures aspects of instrumentation and sound texture (what instruments are playing and
their density distribution over time), rhythm (fast-slow, strong-weak), and pitch content
(harmony) and has been shown to be an effective representation for the purposes of classi-
fication and retrieval of music. Examples of such features include tempo, beat strength and
degree of harmonic change. The different types of information represented by the feature
vector combined with the query flexibility of the system supports a rich variety of queries.
For example, a user can search only on the basis of rhythmic content while ignoring other
similarity aspects.

Registrations and queries are carried out using the CDS. Based on the AV-pairs in the
MFD, the CDS chooses a set of peers in the system that should receive the registration or
query, computes their node IDs, and then uses the DHT layer to deliver the registration or
query messages to them. We use Figure 2.6 to illustrate the steps involved in registering
an MFD. The steps for issuing a query are similar. In Step 1, the application passes the
MFD to the CDS, and the CDS then determines a destination node ID based on the name,
and passes it to the DHT layer in Step 2. The DHT layer sends the message through the
overlay network to the destination node in Step 3. At the remote node, the DHT Ilayer
passes the message to the CDS layer (Step 4), and then the CDS layer stores it in the local

20 CHAPTER 2. CDS SYSTEM ARCHITECTURE

Application Application

Q ®

CDs CDS @
g@ H © @

DHT DHT

Node A N1

Figure 2.6: The steps involved in registering a content name.

MFD database (Step 5). Step 6-9 are confirmation messages to let the registering node
know whether the registration is completed successfully or not.

Upon the arrival of a query, the peer examines its database and returns the set of MFDs
that match the query to the query initiator. The matched MFDs may contain sufficient
information that the query initiator is looking for, e.g., the song name of an unknown piece
of music. The query initiator may further download the actual music file from the peer that
owns it.

2.4 Rendezvous Points-based Design

We now describe the algorithms the CDS layer uses to select nodes in the system to handle
registrations and queries, and explain how a node matches queries to registered contents.

2.4.1 Registration

To register a content name, CN; : {ajv1,a2v9, ..., anvy }, that has n independent AV-pairs,
the CDS layer on the provider node must determine the set of nodes that should receive
this name. It chooses the set of nodes by applying a system-wide hash function, #, to
each AV-pair in the content name. H can be any uniform hash function such as SHA-1 [4].
The complete content name is then sent to each of the nodes in the DHT whose IDs are
numerically closest to each of the hash value using the underlying DHT’s put () primitive.
We call each selected node a Rendezvous Point (RP) for this content name, and together
these nodes (n of them assuming no hash collision) form the RP set for this content name.
Figure 2.8 is an illustrative example showing the registration of two content names.

The pseudo code for the registration algorithm is listed in Figure 2.7. It first applies H
to each AV-pair (Line 3), and the result of the hash is used as the key argument to call the
DHT function PUT. Line 4 builds a REGISTRATION message that contains the complete
content name. The message is then supplied to PUT as the second argument (Line 5).
Subsequently, the DHT layer will deliver the message to the node whose ID is closest to N;.
For clarity, we refer to this node as node N;.

2.4. RENDEZVOUS POINTS-BASED DESIGN 21

1: REGISTER(CN) {
/* CN is the content name to be registered */
2 foreach AVpair a;v; in CN {
3 N; + 'H(aivi);
4: message < MAKE-MESSAGE(REGISTRATION, CN);
5: PUT(N;, message); /* call the DHT API function */
6: }
7}

Figure 2.7: The algorithm for registering a content name.

CN1:{alvl, a2v2, a3v3, adv4} CN2:{alvl, a2v2, a5v5, abve}

Figure 2.8: Example registration and query processing with RP set.

For a dependent attribute, the hash function is applied to both the dependent AV-pair
and all of its parent AV-pairs together. In the example in Figure 2.2, attribute a1 has two
dependent attributes a1; and a12, which take on values v11; and w9 respectively. Two nodes
are determined with the following computation:

Ni1 +— H{{a1 = vi;a11 = v11}),

Nig + H({a1 = vo;a12 = v12}).

Upon receiving a registration, the node stores the content name in a local name database.
The node then sends a confirmation message back to the registering node. From an RP
node’s point of view, it becomes a specialized node for the AV-pairs that are mapped onto
it. For example, N; contains all the names in the system that contain {a;v}.

Nodes maintain content names in a soft state fashion. An expiration timer is set for
each registered content name depending on the type of application. For example, for mostly
static contents such as file descriptions, the period may be on the order of hours or days,
but for dynamic service descriptions, a content name may expire in minutes. When a
content name expires, the node will remove it from the name database. As such, content

22 CHAPTER 2. CDS SYSTEM ARCHITECTURE

providers must periodically refresh the names they have registered before. The refreshing
mechanism provides protection against certain types of failures. For example, when an RP
node leaves or crashes, the refresh messages will be delivered to a live node whose ID is
now closest to the hashed value. For example, in Figure 2.8, suppose Nj leaves/crashes,
now in the DHT, node N; who is closest to N will receive the refresh of CN; and CNy. Tt
is worth pointing out that when a name contains dynamic attributes, the refresh messages
will typically register the name at a different set of RPs when attribute values change.

2.4.2 Query

Applications may search for contents by issuing queries. The CDS layer on a querying
node must determine the set of RPs that may contain matching content names. Since all
content names that contain the pair {a;v;} are stored in the node N;(= H(a;v;)), a query
Q : {a1v1, asve, ..., 4y, } can be sent to any one of the m nodes, Ny, ..., Ny, (Figure 2.8). If
the query contains dependent attributes, similar to the registration mechanism, the querying
node determines the node corresponding to the dependent attribute by applying # to the
dependent AV-pair and all of its parent AV-pairs.

Given these m candidate nodes, the querying node may pick one randomly and send one
query message to that node. It may also choose a node that has better performance based
on previous experience. In the example shown in Figure 2.8, to resolve Q : {aiv1,a¢vs},
either N1 or Ng may be used. If the querying node had previous experience that Ng gave a
shorter response time, e.g., due to a smaller name database or closer network proximity, it
will send the query to Ng rather than N;. In the next chapter, when we introduce a load
balancing mechanism to handle skewed loads, the importance of carefully selecting which
AV-pair to use to resolve a query will become clearer.

Once an RP node receives a query, it simply examines its name database, and determines
the set of names that match the query by comparing each name’s AV-pair list with that of
the query’s. In Figure 2.8, suppose Ng is chosen to receive the query. Ng will return C'No
to the querying node as it matches both a;v; and agvs.

Since a node can resolve queries locally, no communication between RP nodes is needed.
An alternative to having queries fully resolved at one RP node is to have a client send its
query to multiple nodes, each of which resolves the query partially and returns any matches.
The client then performs a “join” operation to determine the final set of matched names.
While this approach reduces the computational load on resolver nodes, it adds potentially
significant communication overhead due to the exchange of large sets of partial matches
across the network. Given that exact matching for AV-pairs is a relatively lightweight
operation, it is more efficient to do the complete matching on the selected RP node.

2.4.3 System Properties

We summarize the basic RP-based system’s properties here.

¢ Registration and query efficiency. The RP-based CDS design is efficient for both
registrations and queries. Hashing each AV-pair individually for registration yields an
RP set of size n for a name that has n AV-pairs, thus requiring O(n) messages per
registration. In real-world applications, n is typically a small number (e.g., < 50),

2.5. CHALLENGES FACED BY THE BASIC CDS 23

and registrations can be done efficiently. The system is also efficient for queries, since
typically only one node is needed to resolve any query.

Being efficient for endpoints also implies that the system is scalable with the number
of registrations and queries, since only a small number of messages is needed to handle
each registration and query.

e Searchability. The design ensures content searchability. Any query can find all the
content names that fully contain the query. For example, the query @ : {a;v;}, which
has only one AV-pair, can discover all content names that contain {ajv;} by visiting
node Nj.

An alternative approach that would also ensure that a content name can be found by
any query that is the subset of the content name is to register the name with nodes
corresponding to each of its 2™ — 1 subsets. This approach is clearly inefficient, since
the number of registration messages needed is exponential to n.

e CDS network scalability and robustness. Since the CDS uses a DHT to build
and manage the CDS overlay network, and route messages within this network, the
system inherits the good scalability and robustness offered by the DHT. Most notably,
the amount of routing state maintained on each node is small, and the number of hops
between any two nodes is also small.

The use of a DHT as the substrate also simplifies the RP discovery step, which is
typically required for endpoints to locate the RP points in similar systems. For exam-
ple, the IP multicast protocol PIM-SM [20] uses bootstrap configuration mechanism.
Since both registrations and queries select proper RP nodes based on their own AV-
pairs, there is no need to establish a separate discovery mechanism for them to find
the appropriate RPs.

2.5 Challenges Faced by the Basic CDS

While the CDS’s RP-based registration and query design is scalable and enables search,
we observe that the system will perform poorly under skewed load, and that it does not
support complex queries efficiently.

2.5.1 Handling Skewed Load

In the basic RP-based design, each AV-pair is used as the argument by the hash function
and is mapped onto a node. Hashing attribute and value together to determine the set of
RP nodes provides a natural way of spreading registrations and queries to more nodes in the
system. Since each node in the DHT is responsible for an equal-sized segment, the number
of AV-pairs each node receives is fairly uniform. However, the registration and query loads
observed by the nodes are determined by the AV-pair distributions in content names and
queries, i.e., how many content names or queries contain this AV-pair and how frequently
they arrive at this node. The basic design performs well when the distributions are even,
in which case nodes in the system observe similar load.

24 CHAPTER 2. CDS SYSTEM ARCHITECTURE

10000
+
+
1000 ¢ + E
+ 4
Tt
3 T
©
5 100 E
Ko}
IS
S
2
10 | E
¥
T
+
+
1 Il Il Il
1 10 100 1000

Rank of AV-pairs

Figure 2.9: Popularity distribution of feature attributes.

In real-world applications, the distribution of AV-pairs in registrations and queries are
likely to be skewed as some AV-pairs are common or significantly more popular than others.
As a specific example, while evaluating the music information retrieval system presented
in Section 2.3, we analyzed a set of 5,000 mp3 audio files representing a variety of genres
and styles. For each file, we extracted 30 feature attributes that characterizes the musical
content of the file. Figure 2.9 is a log-log plot of the feature AV-pair distribution in these
files. There are 2,178 distinct AV-pairs, and the distribution is highly skewed: the most
common AV-pair (ranked 1) appears in 53% of the files and 41 AV-pairs only appear in 1
file.

The skewed distribution also occurs in many other applications. For instance, it has been
observed that the popularity of keyword search strings in both traditional web searches [56]
and Gnutella peer-to-peer networks [63] follows a Zipf-like distribution, which is highly
skewed. Note that keyword-based search is a special case of AV-pair based search where
attribute names are omitted. The skewed distribution implies that some nodes in the CDS
system may be overloaded while others are underutilized. More specifically, consider the
case where the number of names that contain {a;v;}, Ng,s,, follows a Zipf distribution:

1
Nai’Ui — NS . k . i_a’ (22)

for 1 = 1...N4, where Ny is the number of different AV-pairs in the system. k and « are two
parameters, where « is close to 1. Nj is the total number of names in the system and 7 is the
rank of AV-pair {a;v;} in terms of its frequency of occurring in names; ¢ = 1 corresponds
to the AV-pair that is contained in the most number of names. As an example, suppose
an application has Ny = 10° names, and ¥ = 0.5, = 1. Half of the 10° names would
contain the most popular AV-pair, which would be sent to one node. In the meantime, for
nodes that correspond to AV-pairs ranked from 103 to 10%, each would receive fewer than
50 names. Clearly, a few nodes would be inundated by registrations, while the majority of

2.6. RELATED WORK 25

the nodes in the system would be rarely used.

For the CDS to work well for real applications, it must handle the load concentration
problem. In the next chapter, we will explain in detail a set of load balancing mechanisms
that enable the system to perform well under skewed load.

2.5.2 Complex Queries

The basic design works well for searching when the comparison is based on exact match-
ing of the AV-pairs, e.g., “return the list of cameras that observes a speed of 25mph”, or
{speed=25}. However, this simple hashing mechanism makes it difficult to support queries
where the search criteria is less specific, e.g., a query such as “return the list of cameras for
which the observed speed is less than 25mph” may be used to find all the highway sections
where the traffic flow is heavy. This query may be represented as {speed <= 25}. We call
this type of queries, range queries.

A naive of way of handling range queries is to break up a range query into many point
queries and resolve them one by one. For example, if we know a prior: that the smallest
granularity for the attribute speed is 1 mph, we can decompose {speed <= 25} into 25 point
queries, {speed=1}, {speed=2}, ..., {speed=25}. This algorithm becomes very expensive
for queries with large ranges, which are common for exploration and discovery purposes.

Another type of complex query is the similarity query, where the user specifies a search
criteria and asks the system to return 1 or more content names that are “closest” to the
search criteria. As an example, suppose that each camera in the traffic monitoring service
has a longitude and latitude attribute. A similarity query may be “find the camera that is
closest to the accident location at Longitude = 30, Latitude = 30”. This type of query
is even more expensive to resolve, since the user does not know where the cameras are, and
thus does not know how many sub-queries he may have to issue to find the nearest camera.

In Chapter 4, we present a set of distributed protocols and algorithms that allow the
CDS to handle range queries efficiently. Furthermore, in Chapter 5, we extend the range
search mechanisms to support similarity queries.

2.6 Related Work

One of the fundamental problems in designing the CDS is where to store the content names
so that they can be discovered efficiently. As we discussed in Section 1.2, many systems can
be viewed as CDS systems, ranging from web search engines and directory services to peer-
to-peer file sharing systems. We classify these systems based on how the content resolvers
are organized and compare them with our system. Centralized systems, such as Napster[47]
and Google[31], use a set of central servers to index contents and resolve queries. These
servers may become the bottleneck as load increases, and form the single point-of-failure
of the system, thus making it vulnerable to censors and attacks such as Denial-of-Service.
Our CDS is distributed and uses a more robust overlay resolver network.

Content resolvers may be organized hierarchically into a tree structure, e.g., in DNS [45]
and SDS [17]. In general, these systems are designed for hierarchical content names, such
as domain names and directories [70]. To prevent overloading resolvers high in the tree,
DNS relies on caching to scale to the Internet level and SDS uses bloom filters to reduce

26 CHAPTER 2. CDS SYSTEM ARCHITECTURE

load propagated up the tree. In contrast, our system is designed to handle more general
content names that do not necessarily have a hierarchical nature.

Systems based on an unstructured general resolver network such as INS [6], Siena [14],
Gnutella[30], and Freenet [25] require flooding the network at either content registration
time or query resolution time. Hence these systems do not scale with the number of content
names and queries. More recent systems such as KaZaA [41] scale better by leveraging a
two-tier infrastructure and relying on “supernodes” to suppress the flooding. In our system,
we eliminate network-wide flooding at both registration and query time by establishing
Rendezvous Points.

Using RPs to improve a distributed system’s scalability is not a new concept. For
example, in the original design of the IP multicast protocol [19], the group information
is pushed to every router so that any host connecting to that router can join the group.
This leads to the explosion of group state that must be maintained on every router. The
PIM-SM [20] wide area extension to the original protocol distributes the group information
only to a small set of routers, called Rendezvous Points, and the assumption is that most
clients are not interested in the groups, and a client that wants to join a group must do so
by explicitly contacting the RP points. As a result, the amount of state must be maintained
on routers is dramatically reduced.

A hash-based peer-to-peer system such as Chord [64], CAN [55], Pastry [58], and
Tapestry [75], uses a scalable protocol to form a self-organizing structured overlay net-
work. While not directly supporting general content searchability, these systems provide
an efficient solution to content name lookup by binding a complete content name, such as
a file name, to a specific node in the system using a hash function. These systems relate
to our work in two ways. First, the DHT abstraction [3] in these mechanisms provides the
CDS system a scalable and robust substrate for building the CDS overlay network and for
routing CDS messages. Second, our CDS system extends the basic lookup functionality and
supports content searchability by using AV-pairs.

More recently, many systems have been built on top of DHTSs to leverage DHTS’ decen-
tralized, scalable and robust properties. We briefly discuss some of these works, where the
notion of Rendezvous Point appears.

Scribe [15] is a large-scale event notification infrastructure for topic-based pub/sub ap-
plications. Scribe shares some of the design choices made in our CDS. It is also layered on
top of a DHT, namely Pastry [58]. A Rendezvous Point in Scribe refers to the node that
corresponds to the hash of a topic in the pub/sub system. The RP acts as the root of the
multicast tree for the subscribers to this topic. The main difference between our work and
Scribe is that we use RPs to enable efficient content search, while Scribe focuses on how to
build efficient multicast trees for event dissemination.

Several projects built systems on top of DHTs to enable content search. In [56], the
focus is on efficient keyword-based searching. Unlike our system, a query is sent to each
node that is responsible for one of the keywords in the query, and partially matched results
are first collected over the network and then “join” operations are performed to get the
final matches. Techniques such as bloom filters and caching are used to reduce the network
bandwidth consumption. We avoid the transmission of potentially large number of partially
matched results by storing complete content names (all keywords of a document in [56]’s
context) on RP nodes to allow full resolution locally.

2.7. CHAPTER SUMMARY 27

Twine [10] is a resource discovery system built on top of Chord. Resource descriptions
are separated into “strands”, which are essenstially the combination of AV-pairs in our
system, and then mapped onto nodes in the resolver overlay network, similar to our basic
system. A resolver that corresponds to a random strand in the query is used to resolve the
query. However, Twine does not address the critical load balancing problem, which we will
discuss in the next chapter.

2.7 Chapter Summary

In this chapter, we presented the design of a distributed and scalable Content Discovery
System. The CDS is fully distributed in that no central entity is needed for both registra-
tions and queries. Registrations and queries are carried out efficiently by using RPs, and we
avoid network wide message flooding for both registrations and queries. The efficiency for
individual registrations and queries means that the CDS scales well as the registration or
query load increases. While maintaining efficiency, the CDS’s AV-pair based content rep-
resentation coupled with subset matching allows flexible searching. Finally, we must note
that the CDS system uses a DHT to form the CDS overlay network and deliver messages,
and as such, the network inherits the scalability, robustness, and self-organizing properties
from the DHT.

28

CHAPTER 2. CDS SYSTEM ARCHITECTURE

Chapter 3

Distributed Load Balancing

As we mentioned in the last chapter, the CDS’s performance will degrade quickly when
the RPs are overloaded due to the skewed AV-pair distribution in realistic registrations or
queries. In distributed systems, dynamic load balancing is a technique that is often used to
increase a system’s throughput under skewed load. However, most systems use some type of
centralized entity to coordinate the balancing of load. For example, a popular ecommerce
site may use a front-end web server to direct requests to a cluster of back-end database
servers in a load balanced way. In our decentralized self-organizing peer-to-peer based CDS
system, load balancing based on a centralized “load balancer” is no longer applicable, since
the load balancer will become a single point-of-failure and bottleneck of the system, and
thus defeat the decentralized property of the CDS.

In this chapter, we present a distributed load balancing solution that allows the CDS to
dynamically discover and utilize lightly loaded nodes to share the registration and query load
of heavily loaded nodes. We first introduce a distributed data structure, the load balancing
matrix (Section 3.1), and then show how it is used and managed (Section 3.2) in a distributed
fashion to eliminate hot spots in the system and thus improve the system’s throughput. We
describe a simulation implementation of the CDS in Section 3.4. Extensive simulation
results are presented in Section 3.5 that validate the effectiveness of the load balancing
mechanism. We then present work related to distributed load balancing in Section 3.6 and
summarize the chapter in Section 3.7.

3.1 Load Balancing Matrix (LBM)

For a popular AV-pair, the CDS system uses a set of nodes instead of one node to share
the registration and query load. To ensure that this set of nodes can be addressed directly
by endpoints in a distributed fashion, we organize this set of nodes into a logical matrix,
the Load Balancing Matrix (LBM). Figure 3.1 shows the layout of the matrix for AV-pair
{a;v;}. Each node in the matrix has a column and row index, (p,7), and node IDs are
determined by applying the hash function, H, to the AV-pair, and the column and row
indices together:

Ni(p’r) — H(a;v;,p,r). (3.1)

30 CHAPTER 3. DISTRIBUTED LOAD BALANCING

Head node

/ ;artitions\

o o0

e oo L

/
oo

Figure 3.1: Load balancing matrix for {a;v;}.

ORORS
() &)

Each column in the matrix stores one subset, or partition, of the content names that contain
{a;v;}. Nodes in the same column are replicas of each other: they host the same set of names.

The matrix dynamically expands or shrinks along its two dimensions depending on the
load it receives. It starts with one node when the registration and query load are low;
this corresponds to the basic system. New partitions are added to the matrix when the
registration load of the pair {a;v;} increases, and new replicas are added when the query
load increases. Matrices may end up in different shapes. For example, a matrix may have
only one row, when only the registration load is high, or one column, when only the query
load is high. Each matrix uses a node, called the head node, with ID N*% « %(a;v;,0,0),
to store its current size and to coordinate the expansion and shrinking of the matrix.

To expand matrices, each node in the system maintains three thresholds: 7o, the
maximum number of content names a node can hold, T}.4, the maximum rate of registration
it can sustain, and Ty, the maximum query rate the node can sustain. Three corresponding
low thresholds are also set for shrinking purpose. Note that a node may belong to multiple
matrices when multiple AV-pairs are mapped onto it, and the thresholds are used to regulate
the aggregated load from all of these pairs. In the following discussions, for simplicity, we
assume all nodes are homogeneous in that they have the same computation power and
network connectivity.

Next we describe the registration and query operations when LBMs are present in the
system.

3.1.1 Registration with LBM

In the basic system, a content provider registers its content name with RP nodes that
corresponds to each of the AV-pairs in the name. In contrast, with LBMs, the provider
must register its content name with one column of nodes in each matrix that corresponds
to an AV-pair (Figure 3.2).

The pseudo code for registration is listed in Figure 3.3. To register with matrix LBM;,
the content provider must first discover its size: the number of partitions, P, and the

3.1. LOAD BALANCING MATRIX (LBM) 31

CN:{alvl, a2v2, a3v3}

LBM for {a2v2}

o LBM for {a3v3}
LBM for {alv1}

Figure 3.2: Registration with load balancing matrices.

number of replicas, R. It can do so in several ways. For example, it may be able to retrieve
the size from the pair’s corresponding head node (Line 4 in Figure 3.3). We will discuss
below how the size may be discovered efficiently if the head node is busy. Once the size of
the matrix is found, the content provider selects a random partition between 1 and P (Line
5). It then computes the node IDs in this partition and registers with each of the replicas
within the partition (Lines 6-9). Since the partition within the matrix is randomly selected,
the registration load within the matrix is distributed evenly.

Matrix size discovery via probing

We now elaborate on how the size discovery is carried out in the event that the head node
is down or becomes a bottleneck. Under such scenarios, the provider may find out the
matrix size by directly sending probe messages to nodes that are potentially in the matrix.
For example, to discover P, the provider may first estimate a maximum number FP,, and
probe a node in the Pyth partition, e.g., Ni(PO’l). Node NZ-(PO’I) can determine whether it
belongs to LBM; by checking its database to see if it has seen {a;v; } before. Since partitions
are indexed contiguously, the current number of partitions can be efficiently discovered in
O(log Py) steps via binary probing between partition 1 and Py. As a further optimization,
content providers may cache an AV-pair’s matrix size and use it without re-discovering it.
This is for example useful when refreshing a previously registered name.

3.1.2 Query

Similar to the basic system, to resolve a query, a client can send it to the the matrix that
corresponds to any AV-pair in the query. The pseudo code of the query resolution algorithm
is listed in Figure 3.4. There are two types of queries depending on how many AV-pairs a
query may contain.

When multiple AV-pairs are present in a query, we use a two-pass query optimization
algorithm to determine which pair a client should use for its query, since the cost of resolving

32 CHAPTER 3. DISTRIBUTED LOAD BALANCING

1: REGISTER(name) {

2 foreach AVpair a;v; in name {

3 N (a;0:,0,0);

4 (P, R) RETRIEVE-MATRIX-SIZE(Ni(O’O),aivi);
5: p ¢ GENERATE-RANDOM-NUMBER(1, P);

6 foreach r in [1, R] {

7 Ni(p’r) — H(a;vi,p,7);

8 PUT(Ni(p’T), name);

9

1;): }
11:}

Figure 3.3: The algorithm for content providers to register with LBM.

a query is determined by the number of partitions in the selected matrix. First, the client
probes the sizes of all the matrices corresponding to each AV-pair in the query using one
of the mechanisms presented above (Lines 2-5), and it then selects the one with the fewest
partitions (Line 6). In practice, since the matrix sizes can be cached, the cost of the probing
phase can be amortized when the client issues multiple queries.

In the second step after a matrix is selected, the client must send the query to all the
partitions in the matrix (Line 7), if it needs to collect all possible matches. In reality, sending
to a subset of the partitions may return the client sufficient number of results. Since nodes
in the same column are replicas of each other, the query needs only to be sent to one node
in each column, and the client chooses a random node (Lines 8-10). This random selection
mechanism ensures the query load is distributed evenly within a matrix.

If the query contains only one AV-pair, the query optimization mechanism will not be
applicable, and the query will be sent to the matrix corresponding to that pair. When this
matrix has a lot of partitions, the query cost will be high if we must get all matches and
thus send the query to all partitions. To reduce cost in this case, the client can contact a
small subset of the partitions to receive enough matches, e.g., 100. The client may then
refine its query based on the returned names by adding more AV-pairs. In fact, this is the
behavior of Internet users when using a search engine. A study conducted in [56] shows
that 71.5% of the searches found in one large web cache contains more than two keywords.
With more than one AV-pairs in the query, the CDS can again use the query optimization
algorithm described above.

3.2 Matrix Management

Given the registration and query algorithms, we know that the cost of registering an AV-pair
with an LBM and querying an LBM are determined by the number of rows and columns in
the matrix respectively. Since both the registration and query load are dynamic, the matrix
must change its size accordingly to ensure the efficiency of the system. More specifically,

3.2. MATRIX MANAGEMENT 33

SEARCH(query) {

foreach AVpair a;v; in query {

Ni(o,o) + H(a;v;,0,0);

(P, R;) «+ RETRIEVE-MATRIX-SIZE(NZ-(O’O), a;v;);

k < index of minimum P; for all ¢

foreach p in [1, Py {

r + GENERATE-RANDOM-NUMBER(1, Ry);
: N,Ep’r) — H(agvg,p,7);

10: send_to(ngp’r), query);

11: }

12:}

1:

2

3

4
5.}
6

7

8

9

Figure 3.4: The search algorithm with LBM.

when a matrix receives a high load, it must expand itself quickly to accommodate the ex-
cessive load. When the load decreases, the matrix should shrink itself to reduce registration
and query cost.

In this section, we present the matrix expansion and shrinking mechanisms. The key
feature in our design is that both operations are done in a fully distributed fashion. This is
made possible by the even load distribution in a matrix. We describe the detailed expansion
and shrinking mechanisms using matrix LBM; as an example. LBM; corresponds to {a;v;},
and its head node is Ni(o,o). We assume that there are currently P; partitions and R; replicas
in LBM,;.

3.2.1 Partition Expansion

New partitions are added to LBM; when the existing partitions in the matrix receive high
registration load. We define an LBM’s ezpansion region (ER) as the set of partitions that
were last added to the matrix. We first describe the expansion algorithm and then explain
our design decisions.

e When the registration load on a node in the matrix reaches the threshold Tcy or Treg,
(0,0)

it will send an INC_P_REQ request to the head node, N;™" (Step Din Figure 3.5).
e The head node doubles the number of partitions to 2P;, upon receiving the first such
request from a node in the current ER (Step).

e The head node then sends an INC_P_CMD command to the nodes with partition index
from P; + 1 to 2F;, informing them that they are now in the matrix and will be
responsible for {a;v;} (Step @)). Partitions P; + 1 to 2P; become the new ER.

After the partition expansion, when a node needs to register a new content name that
contains {a;v;}, the registering node will discover LB M; has 2P; partitions, and then select
one to register this name. Hence, the registration load is shared by the expanded matrix.

34 CHAPTER 3. DISTRIBUTED LOAD BALANCING

(1) INC_P_REQ

o @ r—or
@ @ @ ***** e INC_P_CMD

Figure 3.5: Partition expansion example. The LBM initially has 2 partitions and 1 replica.
Partition 2 is the ER. After expansion, the matrix has 4 partitions, and the last two parti-
tions becomes the new ER, annotated using a dotted box.

It is important to explain two design choices in the above algorithm. First, the reason
that the head node ignores requests from non-ER partitions and other ER partitions that
may arrive later is to avoid unnecessary expansion. Ideally, a matrix should expand only
if all partitions in the matrix reach their threshold, i.e., are saturated. We use the first
INC_ P REQ from an ER partition as the signal that a matrix is near saturation. Requests
from non-ER partitions are not representative since, although the load on them may have
reached the threshold, the load on ER partitions may still be below the threshold. This
is especially true when new partitions are first added. The head node acts upon only one
request from the ER partitions and suppresses others, because it needs to wait until the
new partitions are being used.

Second, we increase the number of partitions in an overloaded matrix aggressively by
doubling P; every time. The reason is that the cost of having a matrix that is too small
is significant, since registrations will be rejected. On the other hand, the cost of having a
matrix that is temporarily larger than necessary is modest, in that it does not add extra
registration cost (no data replication over the network involved), and only causes a linear
increase of the query overhead (each partition must be visited). However, as we will explain
next, the matrix will reduce its size through shrinking if it is too large for the corresponding
registration load, thus minimizing the query overhead.

3.2.2 Partition Shrinking

A matrix should decreases the number of partitions if its registration load becomes low,
since more partitions means more query messages are needed for a query that is sent to this
matrix. Unlike in the expansion mechanism, where a node may issue an expansion request
when it experiences high load, shrinking is done periodically.

Suppose LBM,; now has P/ partitions, and before the last expansion, it had P; partitions
(P} = 2P;). P; is also equal to the number of partitions in the ER immediately after the

3.2. MATRIX MANAGEMENT 35

INC_R_REQ

INC_R_CMD

DUPLICATE

DUP_CONFIRM

DUP_FIN

Figure 3.6: Replication expansion example. The LBM initially has 4 partitions and 1
replica, which is also the ER. The LBM establishes 2 replicas after the expansion.

last expansion. The following steps are involved in partition shrinking.

e Each node in the last partition of the matrix checks its average registration rate and
the number of content names it has every T seconds, if the registration rate or the
number of names drops below a low threshold, it will issue a DEC_P_REQ request to the
head node. The low threshold is typically a small fraction of T;.4 or Ton.

e The head node again acts on only one such request: it sends a SHRINK_P command to
all the nodes in the last partition and asks them to transfer their names containing

{a;v;} to the nodes in partition P/ — P;. For example, NZ-(Pi’l) sends its names to

7
NE=Pal)

2

e After all the transfers are confirmed, the head node will inform nodes in partition P,
that they have been removed from the matrix. Now partition P/ — 1 becomes the last
partition, and the head node decreases the size by 1, P/ < P! — 1. Correspondingly,
the size of the current ER is also reduced by 1.

When all the partitions in the current ER are removed, and the number of partitions
drop back to P;, the head node informs the partitions from [%] through P; that they now
belong to the new ER. By collapsing the matrix one partition at a time, we try to keep
the matrix load balanced, and the linear decrease coupled with the multiplicative increase
prevents the matrix size from oscillating.

3.2.3 Replication Expansion

New replicas are added to the matrix when the query load of the matrix increases, similar
to how partitions are added. The expansion region here refers to the replicas that were last
added. The replication expansion is done as follows; Figure 3.6 is an example showing the
steps involved.

e When a node in the ER observes its query rate reaches Ty, it sends an INC_R_REQ
request to the head node (Step Din Figure 3.6).

36 CHAPTER 3. DISTRIBUTED LOAD BALANCING

e Upon receiving such a message, the head node issues an INC_R_CMD command to each
node in the last row of the ER, asking them to replicate themselves (Step 2). We
call these nodes the replica initiating nodes.

e The replication is also done multiplicatively to allow the matrix expand to a large size
to accommodate query load. A node that receives the INC_ R CMD message sends a
copy of the names corresponding to {a;v;} in its name database to the newly added

nodes in its column. For example, node Ni(l’Ri) will send its names to nodes N;LR"H)
through Ni(1’2R") (Step @). The new nodes then send a confirmation message back to

the initiating nodes after they receive the names (Step @).

e Once confirmed, the replica initiating nodes send DUP_FIN messages back to the head
node to indicate all the replicas are in place (Step (§)). The head node then doubles
R;. Correspondingly, the nodes in row R; 4+ 1 to row 2R; become the new ER.

Once new replicas are added to the matrix, future queries that contain {a;v;} will be
served by the expanded matrix.

3.2.4 Replication Shrinking

More replicas in the matrix means providers must register with more nodes. Thus matrices
should shrink along the R dimension when the query load to this matrix drops. The
replication shrinking mechanism is similar to the partition shrinking mechanism, but no
data transfer is needed. It is done periodically as well. When any node in the last row
observes a low query rate, it will issue a DEC_R_REQ request to the head node. When it
receives such a request, the head node will send a SHRINK_R command to all the nodes in
the last row so that they can remove themselves from the matrix. The head node then
informs nodes in the new last row that they now become the last row, and finally decreases
the number of replicas by 1.

The shrinking mechanism is important specially under a “flash-crowd” type of load:
when an AV-pair becomes popular due to, for example, a current event, its corresponding
matrix will replicate quickly to accommodate the sudden surge in load. When clients lose
interest in this pair, the matrix will shrink and eventually may become just one row.

3.2.5 Head Node Mechanism and LBM Maintenance

The primary job of the head node is to coordinate the matrix expansion and shrinking. The
expansion and shrinking requests may come to the head node in an arbitrary order. While
a matrix is in a dynamic state, i.e., expanding or shrinking, if the corresponding head node
receives additional requests, it will buffer these requests and process them when the current
operation completes. By serializing the operations, we ensure data consistency within the
matrix.

A head node is only responsible for its own matrix, and different matrices will likely
have different head nodes. Therefore, head nodes should not become the bottleneck of the
system. However, when a head node leaves or crashes, vital information about its matrix,
such as the size, will be lost. To prevent this from happening, live nodes in the matrix send

3.3. SYSTEM PROPERTIES WITH LBM 37

infrequent periodical messages with their indices (p,) to the head node. Due to the routing
properties of DHT, a new node whose ID is close to the old head node’s ID will receive
these messages and become the new head node. It can then recover the matrix’s size based
on the information it receives. In addition, the matrix expansion or shrinking requests will
also reach the new head node, and they can be used to recover the matrix’s dimensions as
well.

3.3 System Properties with LBM

3.3.1 Registration and Query Efficiency

When LBMs are deployed in the system, both the registration and query cost will increase
compared to the basic system. To register a name that has n pairs, the number of registra-
tion messages needed is:

n
M, =) R, (32)
=1

where R; is the number of replicas in matrix LBM;. The basic RP-based system presented
in Chapter 2 is a special case: Vi, R; = 1, since LBM; has no extra replicas, and M, = n.
M, is determined by the number of replicas each matrix has, and does not depend on the
number of partitions.

To resolve a query that has m pairs, when using the query optimization mechanism, the
number of query messages needed excluding the probing messages, is

M, = min(F;), (3.3)

where 1 = 1..m, and F; is the number of partitions in matrix LBM;. The query cost is not
affected by the number of replicas in these matrices, but depends solely on the number of
partitions.

3.3.2 LBM Maintenance Cost

As we mentioned above, to ensure that an LBM can work properly, even if its current head
node leaves/crashes, nodes in the matrix must periodically send beacon messages to the
head node. Therefore the maintenance cost of an LBM is proportional to the total number
of nodes in the matrix, which equals the product of its number of columns (P) and rows
(R). What this implies is that to minimize the matrix maintenance cost, it is important to
ensure the matrix does not have a large P and R at the same time.

In addition to minimizing the cost of resolving a query, the query optimization algorithm
described in Section 3.1.2 helps to achieve this goal in our system. For matrices that have
many partitions, i.e., with a large P, the query optimization algorithm will ensure that
queries avoid them whenever possible. By doing so, the query load on these matrices is
reduced; thus it naturally limits the R-dimension expansion of these matrices. In other
words, a matrix with a large P typically has a small R. On the other hand, matrices that

38 CHAPTER 3. DISTRIBUTED LOAD BALANCING

have fewer partitions, i.e., with a small P, may be visited often by queries, also due to
the query optimization algorithm. This in turn may cause these matrices to replicate often
and have a large R. From the system’s point of view, it will not greatly affect the average
number of registration messages needed: small P implies only a small number of content
names will be affected by having to register with more replicas.

3.3.3 CDS and Churn

It has been suggested [16] that a DHT’s performance may degrade significantly in the face
of high node join and departure rate, also known as node churn rate. The CDS is layered
on top of a DHT, and therefore the node churn rate inevitably affects the performance of
our system. Here we discuss the relationship between DHT churn and CDS performance.

First, the applications that the CDS is targeting are primarily infrastructure services
such as distributed monitoring. These applications typically have a fairly stable core overlay
network, and the churn rate is low. As such, the concern of churn on CDS is not a significant
issue.

Second, in the CDS, content provider must periodically refresh their registrations, and
as such, in the event of a node departure, contents will still be searchable, albeit the node
hosting the same content is different. However, we must note that if the churn rate is higher
than the content refresh rate, contents maintained by a node will be lost after the node leaves
the system and before the next refresh time. In other words, the performance of the CDS is
upper-bounded by the churn rate. It is important to point out that throughout our design
in this thesis, we use soft state protocols (e.g., the tree-based protocols in Chapter 4 and 5).
By maintaining soft states, we make sure that the system is resilient under dynamic node
join and leave scenarios.

Third, recent work [57] shows that by adding network and system level optimizations,
DHTs can perform well even under high churn rate. Our conscious decision of separating
the CDS functions from the DHT layer makes it possible for the CDS to take advantage of
any DHT design improvements.

3.4 Evaluation Methodology

We implemented the CDS system in an event-driven simulator. The software package
consists of about 15,000 lines of C code. The simulator allows us to conduct comprehensive
evaluation of the system. In this section, we describe the simulator and our evaluation
methodology.

3.4.1 Simulator Implementation

The event-driven simulation technique [23] has been used in many large scale network
simulation tools, such as ns-2 [2] and the Chord simulator [52]. Since our focus is on the
effectiveness of the CDS mechanisms, we find it more convenient to write our own simulator
than using existing simulators that were designed for other purposes, such as evaluating
lower level network protocols.

3.4. EVALUATION METHODOLOGY 39

The CDS simulator program’s structure is similar to the Chord simulator [52]. It main-
tains a global event queue and a global variable current_time. Each event in the simulator
is associated with a node and a time stamp that indicates when this event must be handled.
The types of events include all the messages we discussed earlier, e.g., registration, query,
and matrix management messages. Each node processes registrations and queries with ex-
ponentially distributed service rates. Events are inserted into the queue according to the
time stamp. The simulator sits in a loop, removes events from the queue in the current
time slot according to the time they occur, and then processes them accordingly. The pro-
cessing of an event may further generate new events, and the new events will subsequently
be inserted into the queue. The program then advances the current_time variable, and goes
back to the beginning of the loop. It stops if a specified termination time is reached, or
there are no events left on the queue to be processed.

The key data structure in the simulator is the node data structure, which represents a
node in the CDS system. The simulator allows one to create a CDS system with configurable
number of nodes, N., to form a DHT-based overlay network. What the program does is to
create N, instances of the node structure.

The simulator assigns node IDs uniformly in that each node occupies an equal segment
in the key identifier space. In practice, this may be achieved by using techniques such as
assigning multiple “virtual” node IDs to one node [64]. The simulator uses an exponential
distribution with a mean value of 50 ms [64] to model the one-way network delay between
any two nodes. In DHT systems such as Pastry [58], by employing proximity metric into
the routing rules, the overlay delay between two nodes can be limited to within 1.4 times
of the physical network delay. In our simulation, we conservatively set the average overlay
delay between two overlay nodes to be twice the physical network delay between them,
which results in a mean of 100 ms. It is worth pointing out that the simulator does not
implement DHT level functionalities. As such, messages are not “routed” through the
network. Instead, once the source and destination node IDs are determined, the simulator
simply computes a delay that it will take for the message to get to the destination.

The hash function used by the CDS system must generate values uniformly distributed
in the name space and be insensitive to the input. In our implementation, we use the
cryptographic function SHA-1 [4] as the system-wide hash function, and a 24-bit name
space.

To simulate the application that is running on top of the CDS, a node may be assigned a
set of content names and queries. This is typically done by reading data from a load file. We
will discuss the application load shortly. To implement the CDS layer functionality, each
node maintains a local content name database and resolves queries. For load balancing
purpose, each node also maintains statistics such as the registration and query rate that it
observes. The rates are measured using a sliding window of a certain number of registrations
or queries over the last measuring time interval. It conducts load balancing related actions
when thresholds are crossed.

We use a simple registration example to explain how the simulator works. For example,
suppose the input load file specifies that Node 1 registers content name {a; = v1;a2 = vo}
at time 100ms. This is translated into a registration event associated with Node 1; its time
stamp is 100 and it will then be inserted to the event queue. This event will be processed
when current_time becomes 100. Suppose the hash of {a; = v1} corresponds to Node 235,

40 CHAPTER 3. DISTRIBUTED LOAD BALANCING

100000 ‘ ‘
Skewed Name Dataset +
Uniform Name Dataset X
T+ +++
10000 ¢ Wﬂ% E
[%2]
(0]
IS
©
c
S 1000 | 1
[
Qo
S
=}
zZ
100 |
10 Il Il Il
1 10 100 1000 10000

Rank of AV-pairs

Figure 3.7: AV-pair distribution in two sets of content names.

and suppose it takes 100ms for a message to reach Node 235 from Node 1, then a new
registration event will be associated with Node 235 with a time stamp of 200. This event
will then be added to the global event queue. Subsequently, it will be processed when
current_time reaches 200ms. Other CDS events are created and processed similarly.

3.4.2 Experimental Setup

To run a simulation experiment, we must provide two input files to the simulator: the
configuration file and the workload file.

Configuration

The configuration file contains parameters that we need to set up an experiment. In the
experiments conducted in this chapter, we use the following configuration.

The CDS network consists of 10,000 (N.) nodes. We specify that each node has ap-
proximately 500K bps available link bandwidth (DSL level) dedicated to content name
registrations and queries. Corresponding to this bandwidth, assuming a 1000-byte reg-
istration packets size and a 250-byte query packet size, each node sets up a threshold of
Treg = 50reg/sec as the maximum sustainable registration rate and T, = 200q/sec as the
maximum sustainable query rate. The maximum number of content names a node is willing
to receive, Ton, is set to be 4000.

The processing of registrations and queries on a node is exponentially distributed with
a mean rate of 1000reg(query)/sec, which can easily be achieved by modern PCs on a
database with a size on the order of 10° entries. With these assumptions, a node’s perfor-
mance is limited by its available link bandwidth.

3.4. EVALUATION METHODOLOGY 41

100000
ty
10000 F +

12}
o
g 1000
(on
5
g
c 100
=]
2

10 f

1 1 1 1

1 10 100 1000 10000

Rank of AV-pairs

Figure 3.8: AV-pair distribution in queries.

Workload

We use both synthetic workload generated based on realistic distributions and a realistic
load obtained from a large collection of mp3 music files to drive the simulations. We now
describe the workloads in more detail.

e Synthetic Workload

We generate two sets of content names for registration and one set of queries as
workloads. There exist 50 attributes in the workloads, each of which can take on 200
values; this results in 10,000 (N4) distinct AV-pairs. As such, each node on average
is responsible for 1 (= Ny/N,) AV-pair.

Each content name dataset contains 100,000 names and each name is comprised of
n = 20 AV-pairs. The AV-pair distributions in names are shown in Figure 3.7. In the
uniform dataset, each AV-pair is equally likely to appear in a name, and on average
each AV-pair occurs in about 200 names. The uniform dataset is primarily used for
comparison. In the skewed case, some AV-pairs are assigned higher weights, and the
overall distribution of AV-pairs is Zipf-like, as it is close to a straight line in the log-log
plot(a ~ 0.9). The top 5 most popular AV-pairs are contained in about 24,000 names.
The query dataset (Figure 3.8) contains 99,473 queries and is generated based on a
Zipf distribution with £ = 0.5 and a = 1 in Equation 2.2. The number of AV-pairs in
a query ranges from 1 to 10, and on average each query consists of 4 AV-pairs. The
most popular AV-pair occurs in about 50,000 queries.

The sender of a name or a query is selected randomly from the nodes in the system and
both the arrival times for names and queries are modeled with a Poisson distribution.

e Music Workload

42 CHAPTER 3. DISTRIBUTED LOAD BALANCING

Our realistic workload is based on a collection of 5,000 mp3 files representing a variety
of genres and styles, as we descried in Section 2.5.1. For each file, we use 30 feature
attributes to represent its musical content. We use a standard linear quantization
and normalization to transform the dynamic ranges of the continuous features into
discrete values necessary for searching based on AV-pairs. Linear quantization was
chosen so that the statistics of the distribution of the features do not change. In
our system, each feature is quantized to 100 discrete values. Experiments comparing
automatic classification of the original features and the quantized features showed no
significant differences. The AV-pair distribution in these files is plotted in Figure 2.9,
and it is fairly skewed. To test the system’s scalability with respect to registrations,
we generated 100,000 content names by replicating each of the 5,000 files 20 times,
and assigned them to random nodes.

For query load, 100,000 queries were generated following a Zipf distribution indepen-
dent from the above distribution. Each query corresponds to the features of one music
file. We do so to emulate the behavior of a user who submits a music clip and looks for
similar music. The most popular content name occurs in over 10% of the queries, and
the majority of the MFDs only occur in a few queries. A query’s initiator is randomly
picked from all nodes, and for simplicity, only exact matches are returned.

3.4.3 Performance Metrics

Once the configuration and load files are read in, and the simulation starts, a node registers
a name by sending registration messages to the RP nodes corresponding to the name’s
AV-pairs concurrently. The registration succeeds when all the pairs registered successfully.
Upon receiving a registration message, the RP node either inserts the name into its local
database and replies the registering node with a success, or rejects the name and replies
with a failure. A registration may fail at a node for two reasons: (1) the registration rate
this node observes, 7,4, €xceeds the set threshold, i.e., r0q¢ > Treg, or the number of
names it is hosting exceeds Ton; (2) the corresponding matrix is in a dynamic state such
as expanding. For instance, a node has sent a replica to a new node, but the success of the
replication has not been confirmed, and during this time period, any registration arriving
at the replicating node will be rejected.

Similarly, a query is sent to one RP node in each partition of the chosen LBM concur-
rently. The RP node rejects the query if the query rate this node observes, ¢, o4¢, €xceeds
the set query rate threshold, i.e., gnode > Tj, by replying to the query node with a failure
message. Otherwise, it accepts the query, examines its database and sends the querying
node the set of content names that match the query. Note that the set may be empty. From
the querying node’s point of view, a query succeeds when all the corresponding RP nodes
accept the query.

We evaluate the CDS system using the following metrics: the registration and query
success rates and the registration and query response time. The success rate is defined as
the percentage of successful registrations or queries in one simulation run. Since the system
throughput equals the product of the system load (registration or query rate) and the success
rate, the success rate is used as an indicator of the system’s throughput: the throughput
increases as load increases, if the success rate remains high. For a successful registration

3.5. SIMULATION RESULTS 43

100 o |
o 80Ff N
g o 5
: .
% S
8 60| . 7
>
(%]
5 o
i)
§ 40 | -
B _‘
(o))
[0
© 20} SkewedP=32 —+ — -
Skewed P=200 -—->%---)
Uniform P=1 % 1
0 Uniform P=32 -0 | il
' 2 5 10

Registration rate (1000 reg/sec)

Figure 3.9: Registration success rate comparison.

or query, we define the response time as the time between when the registration or query
messages (probe messages, when we must probe the matrix size) are first sent and when
the last reply message is received.

3.5 Simulation Results

We conducted extensive simulations to validate the design of the CDS system. In particular,
we present the following results to verify the system’s properties.

e We show the load balancing mechanism can ensure high system throughput under
skewed load in Section 3.5.1 and Section 3.5.2.

o We study the load distribution from the system’s point of view by examining load
received on each node in Section 3.5.3.

e We examine how the endpoint registration and query performance is affected due to
load balancing in Section 3.5.4. We show that the endpoints’s performance under
skewed load is comparable to a system where load is uniformly distributed.

e Finally, we demonstrate the system’s dynamic behavior under a flash crowd type of
load, and show the load balancing mechanism in action in Section 3.5.5.

3.5.1 Registration Success Rate

We first examine how the system behaves as the registration rate increases. For each
experiment, we inject either the skewed dataset or the uniform dataset into the system with

a certain arrival rate rgysern,. Each experiment is carried out with a different P value, the
maximum number of partitions a matrix may use.

44 CHAPTER 3. DISTRIBUTED LOAD BALANCING

Figure 3.9 compares the success rate in these experiments after all the matrices stop
expanding. We observe that for a given P value, when the registration rate is low, the
registrations succeed on the existing set of partitions, and the success rate is 100%. As the
load increases, the success rate starts to drop, because without further expanding, nodes
in the matrices become saturated and start to reject registrations. By increasing P, for
the same registration load, the success rate is improved significantly. As the load is further
increased, all curves eventually drop.

For the uniform dataset, since AV-pairs are distributed evenly in content names, the
registration load is distributed fairly evenly among nodes in the system. Compared with
the skewed load, fewer partitions are needed for the same registration load to maintain the
same success rate. The basic system as we described in Chapter 2 (P = 1) performs well
until 7gystem reaches 2000reg/sec, but after that the success rate drops quickly to nearly
0%. The reason is that the hash function may map multiple AV-pairs onto the same node,
and when 7y4em, increases, the registration rate on such nodes will reach 7)., earlier than
others, and cause registration failures.

We study the data points corresponding to the highest registration load, where rsygtem =
10*reg/sec. In these experiments, since there are no queries, and thus no replications in
the system, each name is registered at n = 20 nodes, the average registration rate observed

on a node is:
T'system * TV

N,
The success rate under this registration load is 76% for the uniform load when P = 32, and
68% for the skewed load when P = 200. What it means is that on average each node in
the system operates at 40% of its link capacity while maintaining a fairly high success rate.
These experiments show that the system can be scaled to near its capacity even for skewed
load: the load balancing mechanism effectively spreads the excessive load to underutilized
nodes in the system.

= 20reg/sec.

Tnode =

Effectiveness of Partitions

From the above experiments, we know that for a given load, once enough partitions are
added to each matrix, the system can achieve high success rate. In this section, we study
more carefully how the success rate is improved as more partitions are added, and what
factors contribute to the failure of a registration. We classify registration failures into four
categories:

1. Capacity failure. Failures due to not having enough partitions allocated to a matrix
to accommodate a pair’s registration load.

2. Compulsory failure. In the simulation, it takes one RTT to add new partitions to a
matrix, and registrations arriving during that time period are rejected.

3. Conflict failure. Since multiple AV-pairs may be mapped onto one node, a registration
may fail at a node because some other pair introduces high registration load there.

4. Statistical failure. Failures due to statistical variations, e.g., failures caused by bursty
arrival of registrations of the same pair on one node.

3.5. SIMULATION RESULTS 45

100 ‘

90 | 7
80
70 |
60 |
50 |-
40
30

Registration success rate (%)

20

0r Initial run —+—
Stable state -

80

100

120

140

160

180 200

Number of partitions (P)

Figure 3.10: Effect of number of partitions. Skewed dataset with rgyser = 5000reg/ sec.

In the experiments conducted here, we inject the skewed content name dataset into the
system with an arrival rate of rgystem = 5000reg/sec. We vary the configured P value in
each experiment, and for each P we run the experiment twice: (1) during the initial run,
as names arrive, partitions are created when needed, and (2) the same dataset is sent to
the system again in the stable state, when all the partitions have been created, and no new
partitions are needed. The number of partitions needed, P;, for a pair {a;v;} under a certain
registration rate can be analytically computed as follows:

p = Tav; _ Tsystem ° Di
. = =
Treg Treg

(3.4)

where 74,4, is the arrival rate of {a;v;}, and p; is the pair’s probability of occurring in
names. In the skewed name dataset, for the top 5 most popular pairs, p; = 0.24. With
Tsystem = 0000reg/sec and Treq = 50reg/sec, from Equation 3.4, we know to accommodate
names that contain these pairs, each of the corresponding matrices needs at least P = 24
partitions.

Figure 3.10 shows the registration success rate under different P values. When P < 20,
the success rate is very low primarily due to the large number of capacity and conflict
failures caused by the popular pairs. In particular, P = 1 corresponds to our basic system
and the poor performance shows that using one RP node for each AV-pair can not handle
highly skewed load. When P = 32, the success rate is still below 50% though seemingly
there should be enough partitions. The failures come mainly from conflicts: since we have
10,000 distinct AV-pairs and 10,000 nodes, it is possible that two AV-pairs are mapped onto
the same node. As the system allows more partitions to be used by a matrix, the conflict
failures are overcome and the success rate increases significantly. The reason is that when
a node observes high registration load caused by two different pairs, it will prompt the
expansion of both of their corresponding matrices (at different times), thus reducing the
load observed by partitions within each of the two matrices.

46 CHAPTER 3. DISTRIBUTED LOAD BALANCING

100 e B

Query success rate (%)

50 E
Without replication ——
With replication -------
40 Il Il Il Il Il
5 6 7 8 910 20 30 40 50
Query rate (1000 g/sec)

Figure 3.11: Query success rate comparison.

The gap between the initial curve and the stable curve represents the percentage of
compulsory failures. Note here that for evaluation purpose, a node issues an expansion
request only after its threshold is crossed, and at that time it can not accommodate any
more registrations. In practice, a node should react before its absolute threshold is reached,
e.g., when the observed rate is 0.57}¢4, and thus it can continue to accept registrations while
the matrix is expanding. In fact, this is what we do in our prototype implementation to be
presented in Chapter 6. When enough partitions are allowed, the success rates in the stable
run are substantially higher than those in the initial run since there are no compulsory
failures. We observe that the success rates stay above 95% for P > 100 under this load.

In summary, by expanding the matrix along the P dimension, the system can success-
fully recruit lightly loaded nodes to share concentrated registration load, thus increasing
registrations’ success rate. In practice, if a registration fails at a node due to the concentra-
tion of load, the sender of the registration will try to register it again at a later time, and
by then, the matrix should have expanded and be able to accommodate the registration.

3.5.2 Query Success Rate

We evaluate the system’s performance for queries using both the music workload and the
synthetic workload. We evaluate the effect of both the dynamic replication (matrix R
dimension expansion), and the query optimization mechanisms in improving the system’s
query success rate.

Evaluation Using Music Workload

In the experiments carried out here, we use the Music workload as described in Section 3.4.2.
We first inject the registration load into the network, and then inject the query load. Due
to the skewed feature distribution, registrations of common AV-pairs result in multiple

3.5. SIMULATION RESULTS 47

partitions.

Figure 3.11 compares the query success rate as a function of query arrival rate under
two scenarios. In the first scenario, “Without replication”, when reaching its query rate
threshold, a node simply rejects new queries arriving at it without replicating its content
at other nodes. This is how it is done in the basic system. Since for each query the
CDS has 30 candidate AV-pairs, the query load is spread well among nodes even without
replication. Therefore, the system can achieve a high success rate under fairly high load.
For example, the success rate is 94% for a query rate of 10,000¢q/sec. However, as the load
increases further, nodes corresponding to popular queries will be saturated, and the success
rate drops quickly. In the second scenario, “With replication”, we enable the dynamic
replication mechanism, so nodes that observe high query load will replicate their databases
at other nodes to dissipate the concentrated query load. As a result, we observe that with
replication, the system can sustain a much higher query rate while keeping the success rate
above 95%.

Evaluation Using Synthetic Workload

When using the Music Workload, the system works fairly well even without replication,
since the query has many (30) AV-pairs for the system to choose from and to spread the
load. However, in many applications, queries may only contain a few AV-pairs. In this
section, we study how the system scales using the synthetic load, in which the queries
contain 4 AV-pairs on average.

In the following experiments, we first inject into the system the skewed name dataset
with 7gystem = 2000reg/sec, and then issue the Zipf queries with different arrival rate
Gsystem- With this registration load, the matrices corresponding to the most popular AV-
pairs have 32 partitions. We compare the following three scenarios:

1. No replication. This is the basic design. A query is sent to a matrix corresponding
to a random pair in the query. The matrices do not replicate when the query load
they observe exceeds the query threshed.

2. With replication but no query optimization, or Random. A query is sent to a
matrix that corresponds to a random pair in the query. Matrices will replicate when
the query load they observe exceeds threshold Tg.

3. With replication and optimization. Use the query optimization technique and
send a query to the matrix that has the fewest partitions. A matrix may also replicate
if it observes high query load.

Figure 3.12 shows the query success rates. Without replication, by selecting a random
pair for each query, the system tries to spread load to different matrices, and the success rate
is high (97%) when the query rate is fairly low (1000g/sec). The success rate drops quickly as
query load increases. This is due to the skewness in the queries: the matrices corresponding
to the popular pairs in queries are quickly overloaded, and without replication, many queries
will fail. When compared with the results with the Music workload, the success rate is lower
for the same query rate due to fewer choices within a query.

48 CHAPTER 3. DISTRIBUTED LOAD BALANCING

Query success rate (%)

40 No replication —+— R
With Replication No Optimization -~
With Replication With Optimization - Koo

30
1 10 100

Query rate (1000 g/s)

Figure 3.12: Query success rate comparison.

In the second scenario, we allow matrices to replicate under high query load. For the
same query load, the success rate is increased significantly: it stays around 90% for rates as
high as 10,000g/sec. However, when ggystem is further increased, the success rate starts to
drop sharply. The reason is that since popular AV-pairs appear in many queries, and each
query contains only a few pairs, it is possible that many queries select the same AV-pair
and are sent to the same matrix, which will cause compulsory failures and the replication
of these matrices.

In addition, in our workload, the pairs that are popular in queries are also common
in registrations, which means their corresponding matrices have many partitions. The
time it takes to replicate a large matrix is high, since the new replicas can be used only
after all the partitions replicate successfully. Queries arriving during the replication time
period are likely to be rejected, since they must be sent to the existing replicas, which have
already being saturated. This phenomenon is displayed most clearly when the arrival rate
is extremely high (gsystern > 50,000q/sec), where all the queries arrive before a matrix can
complete two rounds of replications. As a result, the performance becomes the same as the
scheme without replication. Similar to the observation we made in the previous section,
in a real system, a node should also start the replication expansion action before its query
threshold is reached, so it can minimize this type of query failures.

In the third scenario, the query optimization mechanism successfully spreads query load
to matrices with few partitions. This is especially important for high query loads, where
using the load balancing mechanism alone is not effective. Figure 3.12 shows that even under
the highest load, gsystem = 10°q/sec, avoiding large matrices and thus long replication time
allows the system to maintain a query success rate of above 95%. Most matrices do not
need to replicate at all, and the maximum number of replicas in a matrix is 4.

In summary, the basic system without load balancing works well if the query load is low
and queries contain many AV-pairs. The system’s performance is significantly improved for
skewed load via dynamic replication. The query optimization mechanism further increases

3.5. SIMULATION RESULTS 49

100

Percentage of nodes

Skewed (P = 200 Rate = 2000 reg/s)
Skewed (P = 200 Rate = 5000 reg/s) ---------
Skewed (P = 200 Rate = 10000 reg/s) - 1
0 ‘ Uniform (P = 32 Rate = 10000 reg/s) -

0 200 400 600 800 1000 1200 1400 1600
Number of names

Figure 3.13: Comparison of the Cumulative Distribution Function of the number of regis-
tered names on nodes.

the system’s scalability for very high query rate by avoiding matrices with many partitions.

3.5.3 System Load Distribution

In this section, we evaluate the system’s load balancing property by examining the name
distribution and observed load on RP nodes. In particular, we report registration load
distribution and the query load distribution is similar.

Content Name Distribution

After each experiment conducted in Figure 3.9, we tally the total number of names each
node received. Figure 3.13 shows the Cumulative Distribution Function (CDF) of the
number of registered names on nodes. The first three curves correspond to the experiments
where the skewed dataset is used with P = 200. The fourth curve is from the uniform
dataset with P = 32. The registration rate in each experiment is fixed. Since the success
rates are different in these experiments, for comparison purpose, we normalize the number
of successfully registered names in each experiment to 10°. Hence on average each node
should receive 200 names.

Since Tp¢4 is always reached before Ty (= 4000) in our experiments, matrix expansions
are therefore caused by the high registration rates observed on nodes, and not the high
number of names. At the end of each experiment, the average registration rate on each node
can be simply computed by dividing the final number of names it has by the simulation
time. Thus we use the number of names to represent the registration load on a node.

With low registration rate, the system can accommodate the registrations successfully
using a small number of partitions for each matrix, which means many nodes in the system
may receive none or a small number of names. For example, when 74y erm = 2000reg/sec,

50 CHAPTER 3. DISTRIBUTED LOAD BALANCING

21% of nodes receive no registrations. In the mean time, some nodes in the system accu-
mulate large number of names, as exhibited by the long tail in the distribution. Note the
maximum number of names on a node is still less than Toy. As registration rate increases,
names are spread to more nodes due to the expansion of matrices. In Figure 3.13, when
Tsystem = 104reg/ sec, we observe that the CDF grows very quickly and no nodes receive
more than twice of the average number of names. A distribution that is “more vertical”
represents a more load balanced system.

More quantitatively, we use the metric Coefficient of Variance (CV) [67] to evaluate the
load balancing property. In our context, C'V is defined as:

o [ni]
E [ni]

CVn;] = (3.5)
where 7 = 1..N., n; is the number of names node N; holds, and ¢ and E are the standard
deviation and mean of n;. A smaller CV indicates a more load balanced system. As load
increases, the load balancing mechanism successfully balances load across all nodes across
the system. The CV decreases from 1.242 to 0.369 as 7sygtem increases from 2000reg/sec
to 10*reg/sec. As a reference, when Tsystem = 10*reg/sec, the CV in the skewed load case
matches the CV (= 0.366) in the uniform load case.

This set of results demonstrate that the load balancing mechanisms ensure that the load
is distributed evenly under high and skewed load by shifting load from overloaded nodes to
lightly loaded nodes in the system.

Observed Load on RP Nodes

We now take a closer look at the load distribution within different partitions of a matrix.
Figure 3.14 shows the observed registration rate as time progresses in three different parti-
tions of a matrix that corresponds to one of the most popular AV-pairs. In this experiment,
the skewed name set with ryg4em = 2000reg /sec is used. Initially there is only one partition
in the system, and it receives the entire registration load corresponding to this pair. The
maximum observed registration rate on Partition 1 approaches 450reg/sec. As partitions
are added to the matrix to share the registration load, the rate observed by the first partition
begins to drop quickly, as shown in the figure. The 16th and 32nd partitions are introduced
around time 2000 ms and 3700 ms respectively. Once all the partitions are in place, as
expected, the load on each partition stays under the set threshold of 7., = 50reg/sec. In
fact, since the load is shared by 32 partitions, each node observes about 15reg/sec.

The results here verify that the load within a matrix is indeed distributed evenly. This
property makes sure that the load observed on an individual node is representative of the
load observed by the matrix. This is the fundamental reason that we can conduct load
balancing in a distributed fashion, based solely on local information.

3.5.4 Registration and Query Cost

In this section, we evaluate the system from the viewpoint of a content provider or query
issuer. In particular, we examine the response times, and the number of messages needed
for registrations and queries. In this set of experiments, registrations and queries arrive
simultaneously with the arrival rates of ryysem = 1000reg/sec and ggystemn = 5000g/sec.

3.5. SIMULATION RESULTS 51

500

Partition 1 ——
Partition 16 ---------
Partition 32 -
200 |
)
Q
£
i‘,’ 100 |
]
€ 50
c
2
<
X%
o 20
(0]
12
10
5 ‘ i ‘ | |

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (ms)

Figure 3.14: Load within a matrix. Skewed dataset with rgystem = 2000reg/ sec.

The workload consists of about 17,000 skewed names and 83,000 Zipf queries. Instead of
devoting its full bandwidth to serve either registrations or queries, each node allocates 50%
of the bandwidth to queries and 50% to registrations. Correspondingly, the thresholds are
set as follows: Ty., = 25reg/sec and T, = 100q/sec. All simulations use load balancing
mechanisms, and we consider two scenarios: Random and With Query Optimization.

Matrix Size Distribution

As discussed in Section 3.3, the sizes of the load balancing matrices determine the cost of
registrations and queries. We first examine the matrix size distribution after each experi-
ment. Figure 3.15 is a 3-D plot of the distribution of the matrix sizes after each simulation
run. Each bar represents the number of matrices that have that particular size (P, R). Since
there are 10,000 distinct AV-pairs in the system, there are 10,000 LBMs in total. All the
results fall on the vertical planes that correspond to powers of two, because the dimensions
are increased multiplicatively and there is no matrix shrinking in the experiments.

In the random scenario, 89.2% of the matrices have 1 partition and 1 replica, (P =
1,R =1). As we discussed earlier, matrices that have large P may still get many queries,
which means they must replicate themselves frequently. Figure 3.15 confirms our analysis
in that some matrices with large P, e.g., P = 32, also have a large R. The largest matrix
has a size of (P = 32, R = 32).

With query optimization, more matrices (94.3%) have the minimal size, (P = 1,R = 1).
The maximum number of replicas in a matrix 4 as opposed to 32 in the random scenario. It
is worth noting that the matrix that has 4 replicas also has 32 partitions. The explanation
is that the AV-pair corresponding to this matrix is also popular in queries. In particular, it
appears frequently by itself in queries, which makes query optimization not applicable and
replication necessary.

The results shown here confirmed our analysis about the importance of the query opti-

52 CHAPTER 3. DISTRIBUTED LOAD BALANCING

Optimization e—
Random EnEEEEEEE

Number of Matrices

f

10000 g~

1000
100 | | .
160 5 1
Number of Partitions (P) Number of Replicas (R)

Figure 3.15: Matrix size distribution. All the axes are in logarithmic scale.

mization mechanism in Section 3.3. A matrix may have many partitions (large P) due to
the amount of contents containing the corresponding AV-pair. But the query optimization
algorithm tries to avoid these matrices when issue queries to the system, and therefore
avoids the high replication cost of them. The matrix size distribution in Figure 3.15 are
close to the R = 1 plane under query optimization.

Registration Cost and Response Time

Figure 3.16 shows the CDFs of the number of registration and query messages needed for
registrations or queries under the two scenarios.

With query optimization, 77% of the content names need to register with only 20 nodes
because the corresponding matrices have only 1 replica. This is the absolute minimal cost
to register a content name, since it has 20 AV-pairs. The maximum number of registration
messages is 23, and the average is 20.3, i.e., an increase of less than 1 message over the
minimal registration requirement of the system. However, in the random case, 93% of the
registrations need more than 20 messages, which means they involve at least one matrix
that has multiple replicas. The average number of registration messages goes up to 32.3,
and the maximum is 88.

The two curves on the right side in Figure 3.17 compare the registration response time
of the two scenarios. Sending more registration messages in the random scenario results
in a longer response time: the average is 901 ms, whereas the average is 859 ms in the
optimization scenario.

Note that the average response time is greater than two RTTs (400 ms), which is how

3.5. SIMULATION RESULTS 53

100 ‘

90 fy
80 F

70

60 E‘D %X .

X
X

50

i
3
40 X
K X
x
X

Percentage (%)

30

20 - Registration (Optimization) —+—

Registration (Random) ---->---
Query (Optimization) -
_ Query (Random) —{J

10

0 10 20 30 40 50 60 70 80 90
Number of messages

Figure 3.16: CDF of registration and query messages.

long it would take to register one AV-pair (matrix size probing and the actual registration).
The main reason is that the response time is computed only when all the 20 AV-pairs’
registrations are confirmed. More formally, this is equivalent to sampling an exponential
distribution 20 times and take the maximum value instead of the average value.

Query Cost and Response Time

From query issuers’ point of view, using query optimization, the average number of query
messages (excluding the probing messages) is 2.7. This means on average a query is sent to
matrices that have less than 3 partitions. In particular, from Figure 3.16, we observe that
82% of the queries are sent to matrices that have 1 partition, and only 3.7% of queries use
the maximum number (32) of partitions. In comparison, in the random scheme, the average
number of query messages is 13.8, only 36% of the queries are sent to matrices that have 1
partition, and 36.8% of queries are sent to matrices that have 32 partitions.

The cost of query optimization is the larger number of probing messages: instead of
probing one maftrix to get the size, the querying node has to probe all the matrices corre-
sponding to the pairs in the query. This results in a slightly longer average response time
for the query optimization scheme (597 ms vs. 594 ms). The two curves on the left in Fig-
ure 3.17 compare the CDF of the response times with and without query optimization. The
CDF of the optimization scheme initially lies on the right side of the random scheme, but
it has a steeper slope owing to a more uniform distribution. In practice, a query initiator
can often cache the size of different matrices to reduce the number of probing messages for
its future queries.

In summary, by using query optimization, while the system is accommodating high
skewed load, both registration and query costs are kept near the minimum cost as defined
by the basic RP-based system with no partitions and replications.

54 CHAPTER 3. DISTRIBUTED LOAD BALANCING

100 ‘
80 |
S 60| |
()
[=)]
g
c
8
5 40 - |
a
al Registration (Optimization) 1
Registration (Random) ---------
S ‘ Query (Optimization) -
0 s Vay ‘ . Query (Random)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Time (ms)

Figure 3.17: CDF of registration and query response time.

3.5.5 System under Flash Crowd

In this section, we examine the system’s dynamic behavior under “flash crowd” type of
workload. In particular, we show how an LBM expands under high query load and shrinks
under low load.

As a reminder, the replication expansion is triggered whenever the observed query load
by a matrix exceeds the query threshold T; = 200¢/sec. The replication shrinking is done
periodically: a node checks the query rate it observes every T seconds (we set 7" = 100),
and if it is lower than a low threshed Té, then the node will issue a DEC_R_REQ to the
head node and try to remove itself from the matrix. The head node removes the last row
of the matrix by decreasing R, if it receives requests from the last row. We set Té = %Tq.

In the experiment, we first inject a registration load into the system and we examine
one particular AV-pair, whose matrix has 8 partitions due to the registrations containing
this pair. We then issue a query load to the system with varying query rate. All the queries
in the query load contain this AV-pair and are sent to this matrix. The query load changes
as the simulation time proceeds as follows:

e T1: (No Query Load) 0 <t < 60. From 0 sec to 60th sec, there are no queries.

e T2: (High Query Load) 60 < ¢t < 95. At 60th sec, we start to issue a query load
that consists of 20,000 queries, and the query rate is set to be 800 q/sec.

e T3: (No Query Load) 95 < ¢ < 600. During this time period, again there are no
queries to this matrix.

e T4: (Low Query Load) 600 < ¢t < 750. At 600th sec, we issue another query load
that consists of 20,000 queries with rate 200 q/sec.

e T5: (No Query Load) ¢ > 750. There is again no query load.

3.6. RELATED WORK 55

10
Query rate = 800 g/s
o |
S o |
5 § H Query rate = 200 g/s
e s T
2 0 oo
2t [[y [[y -
- 3 [f]]
0 s s s s s
0 200 400 600 800 1000

Time (seconds)

Figure 3.18: Matrix replication expansion and shrinking under changing query load.

The experiment is run for 1200 seconds of simulated time. Figure 3.18 plots how the
number of rows changes in the matrix as time progresses. Initially during T1, since the
matrix does not receive any query load, the matrix has only 1 row (1 replica). During T2,
since the load is much higher than the query threshold T;(200g/sec), the matrix replicates
itself multiplicatively and expands to 8 replicas. With these many replicas, the query success
rate becomes 100%. During T3, since the load drops to 0, the matrix shrinks one row at each
checking period, and eventually becomes one row only. With low query load, sometimes
two rows may be removed within a short time interval (e.g., around the 400th second).
Note that in this experiment, the last row in the matrix is kept because the content names
did not expire during the simulation, which is why the minimum number of replicas is 1.
During T4, again, the matrix ramps up to contain 4 replicas to accommodate the low query
load. Finally in T5, as the query load drops again, the matrix shrinks back to one row.

3.6 Related Work

3.6.1 Load Balancing in Distributed Systems

Load balancing using partitions and replicas can trace its roots to early work in parallel
databases, e.g., Gamma [21]. DDS [32] explores these ideas further in the domain of design-
ing backend for Internet services in a server cluster setting. Upon receiving a request, the
front end server selects a replica within a partition to best serve the request. Our system
works in a peer-to-peer setting, and the selection of which node serves a request (query or
registration) is done by the end points locally.

In the context of Content Distribution Networks (CDN), [72] proposes schemes where
a request redirector can select a server replica from a dynamic list of servers to serve a URL
request. The selection is based on the load of the servers, and the redirector may decide
to grow the list of servers if the number of requests increases. This scheme is similar to

56 CHAPTER 3. DISTRIBUTED LOAD BALANCING

one dimension of our load balancing mechanism, the replication expansion. However, in
our system, the expansion is done in a distributed fashion by using high local query load to
indicate the need of expansion, and no centralized entity like the redirector is needed. In
addition, we also consider load balancing for registration.

3.6.2 Load balancing in DHT-based Systems

As we mentioned in Section 2.6, recently many systems have been built on top of DHTs.
These applications, like the CDS, also face the load concentration problem. We now discuss
how some representative work handle this problem, and compare with the CDS.

The resource discovery system Twine [10] observes that in the two applications that it
studied, one set of bibliography files and one set of mp3 files, some resource descriptions are
extremely popular. Since Twine uses a similar mapping scheme as our basic system, these
popular descriptions will easily overload their corresponding nodes. Instead of conducting
load balancing like our system, Twine simply sets a threshold on each node, and once
the threshold is reached, the node will reject any new registrations. Another difference
between our system and Twine lies in the query mechanism. To resolve a query in Twine, a
random AV-pair is used to query the system. In CDS, we show that the query optimization
mechanism, where it chooses the least popular AV-pair for query resolution, is important
to ensure the system’s performance under skewed load.

In the Chord based file system CFS [18], each file block is actively replicated at a fixed
number of nodes in the system. These nodes occupy a consecutive section in the Chord key
identifier space. Any one of these nodes can be used to serve this block. Doing so increases
the system’s availability and may also reduce the latency in retrieving a block by choosing
a node that is close by. This mechanism is similar to the CDS in that it uses replicas to
share query load. However, since the query load is dynamic, a fixed number of replicas do
not work well: if the number is chosen too high, then resources may be wasted, and if it is
set too low, then these replicas may not be enough to support a high query load. In our
system, this is solved by adjusting the number of replicas depending on the current query
load. Unlike in our system where we also partition registrations if the registration load is
high, CFS does not address registration load balancing.

There also exist some work that address the load balancing problem by modifying the
underlying DHT protocol. For example, in the information discovery system [61] proposed
by Schmidt et al, to alleviate load on nodes caused by popular keywords, when a node
joins the system, it will try to join a section in the DHT identifier space that has high load
concentration and thus share the load. This mechanism will not work if the application load
changes with time, since a previously heavily loaded section may become lightly loaded if
the data distribution changes. This is why the authors also suggested nodes at runtime
must exchange periodic messages to constantly re-adjust the load. Techniques similar to
these are also used in [66].

Compared to the CDS, these systems have some fundamental shortcomings. First of all,
these systems do not work well if application load changes often, since to maintain a balanced
system, the nodes must frequently exchange load information and shift data around. In
our system, nodes do not need to exchange load information, and the load balancing occurs
automatically depending on the load, and is conducted in a fully distributed fashion. Second

3.7. CHAPTER SUMMARY 57

of all, the CDS does not require any modification to the underlying DHT protocol for load
balancing. For example, how a node joins the DHT network is completely independent
of the distribution of application load. This clean separation between the CDS and the
underlying DHT allows the CDS to run on any existing DHTs as is. In contrast, the above
systems must modify and add complexity to the already sophisticated DHT protocol, and
this makes their deployment difficult.

3.7 Chapter Summary

One of the fundamental problem the basic CDS system faces is the rapid performance
degradation due to uneven registration or query load. In this chapter, we presented a fully
distributed load balancing mechanism that improves the system’s throughput by eliminating
hot-spots. The load balancing is based on a novel data structure, the load balancing matrix
(LBM). Columns in an LBM are used to share high registration load, and rows are used
to share high query load. Each LBM dynamically adjusts its own size in a distributed
fashion based on the local load it observes. No centralized entity such as a load balancer is
needed. The LBM coupled with the query optimization mechanism enables the system to
perform well even under extremely skewed load, such as Zipf-like workload. In the mean
time, the extra cost introduced to registrations and queries by load balancing remains low.
Our extensive simulation results based on realistic load distribution validated the system’s
scalability and load balancing properties.

58

CHAPTER 3. DISTRIBUTED LOAD BALANCING

Chapter 4
Supporting Range Queries

The CDS we described so far supports searches based on subset matching by representing
contents and queries with descriptive names. By deploying the distributed load balancing
mechanism described in the previous chapter, the system works well even under skewed
distribution of registration and query load. However, the matching of a query and content
name is based on exact matching. For example, to find out the highway sections where
speed equals 25mph, the query {speed = 25} will only match all cameras whose current
description also has the AV-pair {speed = 25}. We call a query that is based on exact
matching a point query. Besides point queries, users of a CDS may also pose range queries
by specifying a range for one or more attributes. This type of query is especially useful for
exploration purposes, when the user does not know what values are available within a range.
For example, a user may want to find out the highway sections with heavy traffic by issuing
the following query: “return sections with observed speed less than 25mph”, or {speed <=
25}. Directly using the CDS “as is” to support range queries means we must break up
a range query into a set of point queries, but this approach is inefficient for large ranges.
Supporting range queries in other DHT-based systems such as distributed databases [38]
has been posed as a challenging problem in the research community [35, 38].

In this chapter, we extend our CDS to support range queries efficiently. The support
for range queries is centered around a distributed tree data structure, the Range Search
Tree (RST), which partitions registrations based on their values with different levels of
granularity. We first describe in Section 4.2 a set of algorithms that use a static RST
to facilitate range queries by decomposing a range query into O(log R,) sub-queries with
R, being the range length. This serves as a basis for the adaptive algorithms described
in Section 4.4 that further enhance the system’s efficiency. Our system is self-tuning: it
optimizes itself based on the type of queries and load it observes to achieve efficiency for
both queries and registrations. The system operates in a fully distributed fashion since all
decisions are made locally. We present comprehensive simulation results to demonstrate
the effectiveness of the system in Section 4.6. We discuss work related to range search in
Section 4.7, and summarize in Section 4.8.

60 CHAPTER 4. SUPPORTING RANGE QUERIES

4.1 The Range Query Problem

Range queries are common and important for discovery and exploration purposes, as users
may not know exactly what they are looking for. For example, a driver may issue the query
“return the speed observed by cameras that are between Ezit 10 and Ezit 50 (10 < exit <
50)”, so that he may choose to get off the highway early to avoid congestion down the road.
A police patrolling a highway section with speed limit of 55 mph may ask the system to
“return the list of cameras that observe speed higher than 75 mph (speed > 75)”.

Formally, we define a range query as a query that contains at least 1 AV-pair that is
specified using inequality signs such as “<,>,<” and “>”, e.g., {speed > 75 } and {10
< exit < 50}”. We call these AV-pairs range pairs, and attributes in these pairs range
attributes. A range query may also contain AV-pairs with equality predicates, and we
call these pairs exact pairs. Similar to the definition of subset matching, a content name
matches a range query, if it contains all the exact pairs in the query, and the values the
range attributes take on fall into the corresponding range pairs in the query. For example a
camera located at {exit = 50} observing {speed = 80} matches both of the above queries.

To resolve a range query, if it contains exact AV-pairs, we may choose one of them for
resolving the query, and the inequality comparison is done at the corresponding RP node.
This way we essentially treat the range query as a point query. However, this may not
always be applicable. For example, if all AV-pairs in the query contain ranges, we have to
deal with range pairs. It may also be the case that the exact AV-pairs are common and
correspond to many partitions, and we do not want to query those matrices for efficiency
reason. In the rest of the chapter, we focus on the scenario where a range AV-pair is used
for query resolution. We often represent a range query as @ : {s < a < e}, or Q : [s,¢]
while omitting the attribute ¢ when no confusion will be caused. The length of the query
is Ry = e — s + 1 assuming integer values.

4.1.1 Two Basic Approaches

Depending on how a content name is registered, there are two straightforward ways of
resolving range queries.

Approach 1: To register a content name, we apply the hash function to each of its
AV-pairs’ attribute and value together as we did before. This is efficient for point queries,
but to resolve a range query (), we must break it up into R, sub-queries, and send them to
each node that corresponds to a value in the range. This approach works well if registrations
are dense and queries cover relatively small ranges. However, it is an O(R,) approach and
the number of query messages will become prohibitive when the query range increases.
Moreover, if the registrations within this range are sparse, most of the query messages will
be wasted.

Approach 2: Alternatively, we can apply the hash function to the attribute only for
registration. This way all the content names that share the same attribute will end up
registering at the same node, irrespective of the value; at query time, all point queries and
range queries will also be sent to the same node for resolution. This approach performs well
under light load, in that no matter what the range size is, all queries will have the same
overhead. However, this node will become overloaded as the load increases. Fortunately,

4.2. STATIC RANGE QUERY MECHANISMS 61

the load balancing mechanism will help by using more nodes to distribute the load. Still
this solution is not efficient: each partition contains registrations with random values, so
every query, including point queries, will have to visit all the partitions.

We observe that both approaches work well in some cases, but perform poorly in others.
The problem is that neither solution takes the range of queries and the registration and
query load into consideration. An ideal solution would behave similarly to the first approach
for attributes that experience mostly point queries or queries over small ranges, but it would
behave similarly to the second approach for attributes that experience light registration load
and large query ranges. In the next two sections, we will present a system that uses the
Range Search Tree data structure, and exhibits this adaptive behavior.

4.2 Static Range Query Mechanisms

Our design to support range search is based on a distributed data structure, called the
range search tree (RST). In this section we introduce the RST’s organization, and describe
the registration and query algorithms that use a static RST to support range searches. The
static mechanisms are efficient when the query load is high, and they serve as a basis for
the optimized dynamic algorithms to be presented in Section 4.4.

4.2.1 Range Search Tree (RST)

We consider an attribute a that takes on numerical values and may be searched using range
queries. Suppose the domain of a is D,, and D, is bounded; values can be continuous
or discrete. We break up D, into n sub-ranges and represent each sub-range by its lower
bound. D, is thus the union of the sub-ranges {vo,v1,...,vp—1}, where v; < v;, if i < j.
For example, if the attribute is speed in mph, we could break up the speed range into
sub-ranges of 5 mph, and the value 35 would represent the range 35 <speed< 40. Note
that the sub-ranges may not be equal sized if we have prior knowledge of the distribution
of the values of a.

The RST is a complete and balanced binary tree with n leaf nodes and [logn]+1 levels.
(We assume 7 is a power of 2; otherwise, we round it up to the next power of 2 by filling in
extra values.) Levels are labeled consecutively with the leaf level being level 0. Each node
in the tree represents a different range. Leaf nodes correspond to the smallest sub-ranges,
and each non-leaf node corresponds to the union of its two children. At level I, the range
of the ith node from the left represents the range [v;,v;, ot ;]. The union of all ranges at
each level covers the full domain. The RST structure is similar to the segment tree data
structure [60] used in computational geometry and spatial databases. A special case of an
RST is a “unit RST” in which the domain is integer numbers and each leaf node represents
one integer value. Figure 4.1(a) is an example unit RST with domain [0,7]. In the rest of
this chapter, we will present algorithms for a unit RST, but they can be generalized easily
to a general RST.

We assume that each attribute’s domain is known to all nodes in the system. As such,
the logical structure of an attribute’s RST is also known in the system. We map each node
in the RST onto the underlying DHT-based overlay network by extending the techniques
used in Chapter 3. Recall that an AV-pair may be mapped onto an LBM by applying

62 CHAPTER 4. SUPPORTING RANGE QUERIES

Level (Length) .
3(8)

2(4 03]

12 [0y

0(1)

01 2 3 45 6 7
(@) Logical RST (b) Physical overlay nodes

Figure 4.1: (a) A logical RST. The dotted curve illustrates Path(3). (b) Overlay network
nodes this RST is mapped onto. A circle represents a physical node and a dotted rectangle
represents an LBM. Filled nodes are selected by the registration algorithm to receive {a =

3).

the hash function to the AV-pair, and the LBM may have multiple partitions and replicas
depending on the load corresponding to this AV-pair. Similarly, we map an RST node onto
an LBM in the overlay network by treating the RST node’s range as a parameter to the hash
function. More specifically, given a range [s, €], the node IDs in the overlay network that
this range is mapped onto correspond to the hash of the following 4-tuple: the attribute,
the range, the column and row indices in its LBM:

N < H(a,[s,€],p,T). (4.1)

Figure 4.1 is an example that shows the mapping of an RST with domain of [0, 7] onto
the overlay network. The root RST node is mapped onto an LBM that has 3 partitions, and
the node ID of the filled node (in the 3rd partition) corresponds to #(a,[0,7],p = 3,7 = 1).
The LBMs may have different number of partitions and replicas depending on the load
they receive. In Figure 4.1(b), for each LBM, we only show 1 replica for clarity. It is
important to note that the parent-child relationships between nodes do not need to be
actively maintained, and a node can infer its parent or children’s range based on its own
range.

4.2.2 Registration

We now describe the registration algorithm used by an endpoint to conduct registrations.
Figure 4.2 lists the pseudo code of the registration algorithm.

To register a name, CN, that contains AV-pair {a = v}, the algorithm first computes
the height of a’s RST based on the domain size (Line 2, where m is the length of D,). For
value v, since each node in the RST covers a unique range, v is thus within exactly one
node’s range at each level. This set of nodes forms a path from leaf node N|v,v] to the
root. We name it Path(v). Lines 4-6 determine the node at level [in the RST whose range
covers v, in particular, the starting point, s, is determined by dividing v with the length
of the level [nodes. Once the path is determined, we register {a = v} with each LBM

4.2. STATIC RANGE QUERY MECHANISMS 63

1: REGISTER-RST({a = v},CN) {

2 maz levels < [log(m)];

3 foreach 0 <[< maz_levels {

4: s |arls // 2': node length at level I
5: e+ s+2—1;

6: range < [s, e;

7 (P, R) < find_-matriz_size(a,range);
8 p < random(P);

9 foreach 1 <r <R {

10: Nr(z’;fg)e « H(a,range,p,r);

11: Tegister(ngg;:ge, {a =v},CN);
12: }

13: }

14:}

Figure 4.2: Endpoint registration algorithm using a static RST.

corresponding to each node in Path(v). The actual registration algorithm with an LBM is
identical to the one described in Figure 3.2: the algorithm determines the corresponding
LBM'’s size (Line 7), picks a random partition (Line 8), and sends the name to each node in
the selected partition (Lines 9-12). As an example, Figure 4.1 illustrates the registration of
{a = 3}: it is registered with each physical node within a selected partition of each level’s
LBM.

This registration algorithm automatically aggregates AV-pairs at different levels of gran-
ularity. As the level increases, since there are fewer nodes in the RST, the LBM correspond-
ing to one RST node may have more partitions. For example, in Figure 4.1(b), each LBM
at the leaf level has one partition, and the root level LBM consists of 3 partitions. Since
the structure of an RST is determined by the domain of the corresponding attribute, reg-
istrations are carried out in a fully distributed fashion: based on the value in an AV-pair,
an endpoint can locally determine the set of nodes in the network that it should register
with and it does not need to consult any other node or traverse the tree. As a result, no
bottlenecks are created in the system.

4.2.3 Query

Given the registration mechanism, there are many ways to decompose and resolve a range
query using the RST. The efficiency of a query algorithm is determined by how the range
is decomposed. To find an efficient algorithm, we introduce the relevance metric to guide
our design. Formally, suppose a query algorithm decomposes a query Q@ : [s, €] into &k sub-
queries, corresponding to k nodes in the RST, Ny, ..., Ni. The relevance r of this algorithm

64 CHAPTER 4. SUPPORTING RANGE QUERIES

is defined as:
P
Zi:l RZ

where R; is node N;’s range length, and R, is the query’s length. Clearly, 0 < r < 1.

Intuitively, the relevance indicates how well the query range matches the RST nodes
that are being queried. Low relevance algorithms, such as sending a point query to the root
level, may be inefficient for both queries (visit nodes with a low concentration of relevant
registrations) and registrations (the query load concentration may cause the root level to
replicate often). In contrast, decomposing a query to leaf level nodes has a relevance of 1.
From the registration’s point of view, there will be no unnecessary replications, but from
the query’s point of view, this may require too many sub-queries, so it is not a desirable
algorithm either.

We now present our efficient query algorithm. Our algorithm minimizes the registration
cost by maximizing the relevance (r = 1), and in the meantime, it is also efficient for
queries by decomposing query ranges into small number of sub-queries. We first establish the
Range Decomposition Theorem, which serves as the foundation of the query algorithm,
and then describe the query algorithm itself. To facilitate our discussion, we define the
following terms.

(4.2)

Definition 1 (Relevant Node). Given a query Q : [s,e] with range length R, =
e —s+1, a Relevant Node (RN) is a node in the RST whose range is a subset of Q’s
range.

Definition 2 (Cover). A Cover is a set of relevant nodes,
Cover(Q : [s,e]) = {RN1, RNy, ..., RN, },

that satisfies the following two conditions:
(1) RN; URNy U ...URN,, = [s,€]
(2) Vi,j, RN; N RN; = ¢.

Definition 3 (Height of a Cover). The Height of a Cover is defined as the level
of the node in the Cover that has the largest level number.

Definition 4 (Minimum Cover). The Minimum Cover(MC) is the Cover that has
the smallest size among all possible covers.

We introduce the following three Lemmas to facilitate the proof of the decomposition
theorem.

Lemma 1. The MC has the largest Height, H, among all possible covers, and H <
llogy Ry|. In other words, the MC does not contain nodes with level higher than |logy Rq].

4.2. STATIC RANGE QUERY MECHANISMS 65

Leve | N1
Length 2 |

Casel —_ <
Case?2 1 S
Case3 1

s1 3

Figure 4.3: Illustration for proof of the Range Decomposition Theorem.

Proof. Prove by contradiction. Suppose MC’s height H is not the largest, then there must
exist a different Cover C' with height, H' > H. Tt follows that there must exist at least
one RN, N’, in C' at level H', and N’ is not in MC. Now consider the sub-tree rooted at
N'. Suppose the range that corresponds to this sub-tree is [s’,e']. The MC must contain
at least two nodes from this sub-tree to cover this range. It is clear that we can substitute
these two nodes in the MC with N’ to reduce the size of the MC by 1. This contradicts the
MC’s definition.

Now we show H < |log, R,|. Let h = |log, R,|. 2" < R, < 2"*!. We show any node at
level h+1 or higher can not be a RN for R,;. Consider a node N, at level h+ 1. Suppose its
range is Ry with length 2*1. There are only the following possible relationships between
Ry and Ry (1) R; C Ry, (2) RyN Ry # ¢ and (3) R;N Ry = ¢. In any case, node N
can not be a RN, since it is never the case that Ry C R,. O

Lemma 2. For range [s,e], if s is the starting point, or e is the ending point of a node at
level I, then [MC| <1+ 1, where | = [log Rg].

Proof. Prove by induction. We show the statement holds when s is the starting point.
When e is the ending point, it can be shown by symmetry.

As the base case, for point query with range length 1, [= 0, and |[MC| = 1. As
the induction hypothesis, suppose |[MC| < (I — 1) + 1 for range with length R;/2, where
[= |log Ry].

For the induction step, we have range [s, e] with length R, and s is the starting point
of a node at level I, where | = |log R,]. We also have 2! < R, < 2!*1,

We break the range into two sub-ranges: [s,s + 2! — 1] and [s + 2!,¢]. The first sub-
range corresponds to exactly one node at level . For the second sub-range, its length R; =
R,—2! < 2!, and s+ 2 is the starting point of a node at level I’ = |log R;| <1—1. Now use
the induction hypothesis, we know for this sub-range, its MC, |MC'| <I'+1 < (I-1)+1 = 1.

Thus, the MC for [s, e] is the union of the two MCs for the two sub-ranges. It’s size is
thus: [MC| <14 |MC'|=1+1. O

Lemma 3. A range [s, €| intersects with at most 8 consecutive nodes at level | = |log R,]
in the RST.

66 CHAPTER 4. SUPPORTING RANGE QUERIES

Proof. Figure 4.3 illustrates the three possible relationships between the range [s,e] and
the nodes at level . Based on the definition of the RST, the starting value of the node at
level [that contains the starting value s is p = [3;. Suppose node N; starts with p, and
node Ny and Nj are the nodes after Nj. These three nodes’ ranges are: Ni[p2!, (p +1)2! —
1], No[(p + 1)2%, (p + 2)2" — 1], N3[(p + 2)2, (p + 3)2' — 1]

If e = (p+1)2' — 1, then [s, €] intersects with one node Ny (Case 1). If e < (p+2)2! — 1,
then [s,e] intersects with two nodes N; and N, (Case 2). If e > (p + 2)2', then [s,¢]
intersects with three nodes Ni, Ny and N3 (Case 3). O

Theorem 1 (Range Decomposition Theorem). For a given Q : [s,e], the size of its
MC satisfies:
IMC| <2+ [log, Ry).

Proof. From Lemma 3, we know that range [s, e] intersects with at most 3 consecutive level
[= |log R;] nodes in the RST. We name their subtrees of these three nodes T4, 75, T5.
There are only three possibilities how the range [s, e] may intersect with the three subtrees.
(1) intersect with T} only; (2) intersect with 77 and Tb; (3) intersect with 77, Ty and T5.
Now we examine each case.

Case 1: This occurs only when s = p2' and R, = 2!. We use node N1. Thus [MC| = 1.

Case 2: We know from Lemma 1 that M C includes nodes only from level [and below. We
divide the range into two segments: S; = [s, (p+1)2! —1], and Sy = [(p+1)2!,¢]. Use
Lemma 2, |MCg,| < (I —1) +1=1. Similarly |MCs,| <.

MCg, and MCsg, are disjoint, hence |MC| = |MCg, |+ |[MCs,| < 21.

Case 3: We divide the range into three segments:
S1:[s,(p+1)2—1), So: [(p+1)2,, (p+2)2 — 1], and S5 : [(p + 2)2!, €]

We know the length of Sy = 2!, and at most one of S; and S3 may have length longer
than 2/-1. Suppose S3 > 2!"! and S§; < 21

IMCs,| < (1—2)+1=1—1; [MCs,| =1, and [MCs,| < (I —1) + 1 =1.
Hence [MC| = [MCs,| + |[MCg,| + |MCs,| <1—1+1+1=2L.

Query algorithm

There are two main steps in the query algorithm. Figure 4.4 lists the pseudo code used by
an endpoint.

First, to resolve a query @ : [s, e] with length R, the endpoint must decompose the query
range into a set of sub-ranges. For this purpose, the querying node locally calls a function
RANGE-DECOMP to decompose @ to a list of sub-queries (Line 3, Figure 4.4). Figure 4.5
lists the pseudo code for the RANGE-DECOMP function, which recursively computes the MC
for a given range [s,e]. It determines the MC by finding one sub-range at a time. It first
makes sure the range is valid (Line 2, Figure 4.5), and then computes its length (Line 3,

4.3. ANALYSIS OF THE STATIC MECHANISMS 67

1: QUERY-RST(Q : [s,¢€]) {

2 inat_list(query list x gl);

3 RANGE-DECOMP(Q : [s, €], ql);

4 foreach Q : [s/,€'] € xql {

5: range < [s',€'];

6 (P, R) + find_matriz_size(a,range);
7 foreach 1 <p < P {

8 r < random(R);

9

Nﬁg;fg)e +— H(a,range,p,);
10: send_query(Nﬁg;:ge, 2 [¢,€']);
11: }
12: }
13:}

Figure 4.4: Endpoint query algorithm using a static RST.

Figure 4.5) and the maximum level that this range’s MC corresponds to (Line 4, Figure 4.5).
In the MC, the first node must be the highest node with a starting value s. Lines 5-13 in
Figure 4.5 find this node by examining the tree in a top-down fashion. Once that node is
found, its range is inserted to the output list of sub-queries (Line 7, Figure 4.5), and the
function recursively decomposes the rest of the range (Line 8, Figure 4.5).

Second, once the list of sub-ranges, or the MC is computed, the querying node then
sends each sub-query to the LBMs in the overlay network that correspond to each MC
node. The querying algorithm again is the same as before: For each sub-query, based on
its range, the query issuer retrieves the corresponding LBM’s size (Line 6, Figure 4.4), and
then sends it to a random node in each partition (Lines 7-11, Figure 4.4).

Figure 4.6 is a decomposition example for query @ : [1,7]. Like the registration algo-
rithm, the query algorithm is also fully distributed and deterministic, in that the decom-
position is done by the querying node itself based on its query range, and no traversal of
the tree is needed. Since the sub-ranges are computed based on the Range Decomposition
Theorem, the number of sub-ranges is O(log R,), which ensures the efficiency of the query
algorithm. In addition, the query algorithm separates queries with different ranges, thus
avoids creating bottlenecks. For example, a point query will be sent to the leaf level, and a
large query will use nodes higher up in the tree.

4.3 Analysis of the Static Mechanisms

In this section, we analyze the cost of the registration and query algorithms using a static
RST described above. The cost of a registration is determined by the number of messages
need to be sent by an endpoint. Similarly, the cost of resolving a query is equal to the
number of query messages that must be sent to the system. In the following analysis, we
assume that the domain for attribute a is D, = [0,m — 1]; this results in T' = [logm] + 1

68 CHAPTER 4. SUPPORTING RANGE QUERIES

1: RANGE-DECOMP(Q : [s, €], query_list * ql) {

2: if (s > e) return;

3 R, + e —s+1; // range length

4: 1+ [log(R,)]; // maximum level

5. while (I >0) {

6: if (remainder(3;) == 0){

7 insert_to_query list(Q : [s,s + 2! — 1], ql);
8 RANGE-DECOMP(Q : [s + 2!, €], ql);

9

: break;
10: } else {
11: l—1-1;
12: }
13: }
14: return;
15:}

Figure 4.5: The local range decomposition algorithm.
levels in the RST.

4.3.1 Number of Registration Messages

From Section 4.2.2, we know that the number of registration messages needed to register pair
{a = v}, Npg,, is determined by the query load that comes to this RST. More specifically,
it equals the sum of the number of replicas (rows) in the LBMs that are on Path(v) (See
Figure 4.1 for an example). Assume L is the total query load for attribute a. If the query
load on the RST node at level ¢ in Path(v) is L? , then the number of replicas in its LBM is

Q
[é—tQ'|, with Cg being the maximum query capacity of a node, e.g., the query rate that this
node can sustain. The total number of registration messages needed to register {a = v} is
then:

Lf
Ng, = ch—QW- (4.3)

t=1

Proposition 1 gives an upper and lower bounds for the number of messages needed to
register a value a = v under a query load L9.
Proposition 1

LR
T < Ng, <T+[=] (4.4)
Cq

4.3. ANALYSIS OF THE STATIC MECHANISMS 69

cejesce e 0@l GG @

(a) Logical RST (b) Physical overlay nodes

Figure 4.6: Range [1, 7] is decomposed into 3 sub-ranges indicated by the nodes with a box.
Filled nodes will receive the query.

Proof. The property of the ceiling function gives,

L. 2
1<) < b +1 4.5
<IGl<go+ (4.5)
Apply sum to all terms,
T ;Q T 7@
L >y L
T < Ng, = [ZL]<T+ &=L (4.6)
; Co Co

We divide L into two sets, L%*, which consists of all the queries that include v, and
L® — L9 which is the rest of the queries. Queries in LY — L@ do not contribute load to
the nodes in Path(v). Each query in L?v, after decomposition, contributes exactly one sub-
query to one node in Path(v), since nodes in the MC have disjoint ranges (by definition).
Therefore,

T
Y LY =L% <LC (4.7)
t=1

Substitute Eq. 4.7 into Eq. 4.6, we get Proposition 1. O

Ng, reaches its maximum value, when v is contained in every query in L?. It reaches
the minimum value T, when v is not contained in any query. In Figure 4.7, the number of
registration messages, Ng,, lies between the two solid lines.

We compare the cost of using a static RST with the approach where we only use the
root (Approach 2 in Section 4.1). In this approach, the number of messages needed for any
registration, N, is determined by the number of replicas in the root level LBM: Ny, = %].
The cost grows linearly with the query load, as is shown by the dotted line in Figure 4.7.
The Root Only case is more efficient when the query load is low, specially, when the number
of replicas at the root level is smaller than the height of the RST, i.e., LQ/C’Q <T. As the
load increases beyond that point, the registration cost using RST is generally lower than

using only the root.

70 CHAPTER 4. SUPPORTING RANGE QUERIES

%
=
5 -<
b e Root Only
x s g
c T[7 -
S | Phg |
Z | - !
| - |
v |
10 1
1 T % cq
Query load

Figure 4.7: Number of registration messages needed for a value v as a function of query
load.

4.3.2 Number of Query Messages

Similarly we can compute the number of query messages needed to resolve a given query,
Q : [s,e], with R; < m. Assume the size of @’s MC is K, from the decomposition theorem,
we know 1 < K < 2[log R,;| < 2[logm].

Consider an arbitrary registration load that consists of L registrations. The number
of query messages needed to resolve) equals the sum of the number of partitions in the
LBM that corresponds to each node in the MC:

No =3 5] (4.8)

where Cp, is the registration capacity of each node, and L,? is the registration load observed
on the kth node. Since nodes in the MC are disjoint from each other, each registration in
L% occurs in LkR at most once, thus,

K
No=> L¥<ILF (4.9)
k=1
Similar to the previous derivation, we can derive the following bounds for Ng:

LR
1<K <No<K+[g] (4.10)
R

Ng’s lower bound is K, or O(log R,), if each LBM of an MC node has only 1 partition.
Ng becomes larger if some of the LBMs have more than 1 partition. For example, in
Figure 4.6, Ng = 4, as query @ : [1,7] will be sent to the 4 filled nodes. N, takes on the

4.4. DYNAMIC RANGE QUERY MECHANISMS 71

Number of Query Messages
X

-
R
1 : K . L/Cg
Registration Load

Figure 4.8: Number of query messages needed for a query with covering set of size K as a
function of registration load.

maximum value when all the registrations in the registration load are within the query’s
range. Figure 4.8 shows the two bounds.

We again compare our algorithm with the root only approach. If we use the root level
nodes to resolve a query, then the number of query messages needed equals the number of

partitions of the root level matrix: Nb = [%], as shown by the dotted line in Figure 4.8.

For low registration load, L¥/Cr < K, the Root only case performs better than RST. Our
algorithm becomes more efficient when the registration load increases beyond that point.

4.3.3 Discussion

The above cost analysis points out the following deficiencies in the static algorithms: (1)
Proactively registering with all levels of the RST without considering query ranges can be
wasteful. For example, if all query ranges are smaller than R, then registering with levels
higher than [log R,| is unnecessary, since no query will be sent there. (2) Decomposing a
range solely based on its length while ignoring the registration and query load information
is suboptimal. In particular, if both the registration and query load in a subtree of the
RST are low, we do not need to decompose the query in the subtree and should just use
the subtree root. Subsequently, we do not need to register with levels other than the root
in the subtree.

4.4 Dynamic Range Query Mechanisms
To overcome the above shortcomings of the static range search algorithms, we now present

our dynamic range query design that further optimizes the system’s performance.
While in the static mechanisms, registrations go to every level of the RST regardless of

72 CHAPTER 4. SUPPORTING RANGE QUERIES

Root Root

@ (b)

Figure 4.9: RST with (a) a flat band, and (b) a ragged band. The shaded area indicates a
band.

the queries, the idea here is to only register with the nodes that are needed based on the
query ranges and the load information observed by the system. We call this set of nodes the
band (Figure 4.9): only nodes in the band will accept registrations and will be able to resolve
queries. As such, only the LBMs corresponding to the band nodes will have a non-zero size.
The shape of the band is not necessarily flat (Figure 4.9(b)), and it changes depending on
the registrations and queries for this attribute. For example, if the registration load is low
and the query ranges are large, the band will migrate upwards toward the root.

In this section, we first present the Path Maintenance Protocol, which allows endpoints
to discover the band. We then describe how endpoints use the band information to con-
duct registrations and issue queries in a distributed fashion. Finally, we present the local
algorithms executed on nodes that are located on the top and bottom edges of the band
to adapt the band to the load, since a fixed band is not efficient for load that changes over
time.

4.4.1 Path Maintenance Protocol (PMP)

When the static RST is used, endpoints know of the band (the full tree) by default, and
as we described earlier, they can use purely local algorithms to determine which nodes a
registration or a query should be sent to. In the dynamic case, only a band of nodes is used,
and therefore endpoints must discover what nodes are in the band before they can issue a
registration or query. Clearly an endpoint may traverse the RST starting from the root to
find out the band information. The obvious problem with this approach is that the root
node will become a bottleneck when the registration or query load increases. In addition,
endpoints may suffer a long delay if the band is located away from the root near the bottom
of the tree.

To ensure that endpoints can efficiently retrieve the band information in a distributed
fashion without traversing the tree, we designed a lightweight protocol, the Path Mainte-
nance Protocol (PMP). The goal of the PMP is to propagate RST’s band information to
nodes in the tree, so that endpoints can find the band efficiently.

Recall from Chapter 3 that for load balancing purposes, the size of an LBM is stored
in its head node. To facilitate range search, a head node must also maintain matrix sizes
of some other nodes in the tree. We call the collection of the matrix size information the
Path Information Base, or PIB. The PIB on a node consists of two components: the path
component contains the matrix size of nodes in the path from this node to the root of the

4.4. DYNAMIC RANGE QUERY MECHANISMS 73

PR <-—

PRR ---*

PIB on N[4,7]
P R

N[O7]| 0 | O Path
N[471] 2 | 1 Component

N[45] 2 | 1

NB7I| 112 Subtree
N[44 | 1|1 Component
© O @ UURER

Figure 4.10: PMP message exchange among head nodes. Filled nodes are in the band.
Matrix sizes are from Figure 4.1(b).

RST, and the subtree component contains the matrix size of nodes in this node’s subtree.

The PIB is established through the exchange of two types of periodic messages: Path
Refreshing (PR) and Path Refreshing Reply (PRR) messages (Figure 4.10). Each head node
in the band periodically sends a PR message to its parent; the message contains the node’s
current subtree component of its PIB. When a node receives a PR message, it updates the
corresponding entries in its PIB. When it is time for this node to send its own PR message,
it will propagate the updated PIB to its parent. Through the PR messages, each node
collects up-to-date subtree status. The periodical PRR messages are issued down the tree
along the reverse paths of the PR messages. In particular, a node sends a PRR message to
each of its children from which it receives PR messages before. The PRR message includes
this node’s PIB’s path component. Upon receiving a PRR message, a node updates its
PIB’s path component accordingly. Subsequently, in its own PRR message, the node will
send the updated path component to its children. Through the PRR messages, each node’s
path component is updated.

In addition to allowing nodes to establish their PIBs, the PMP messages also act as
a fault tolerance mechanism to re-establish the PIB if nodes fail or leave the system. For
example, if a parent node fails, the PR messages from its children will be forwarded to a
current live node that is close to the original parent node in the DHT key identifier space.
This node will then become the new parent. Using PIB, endpoints can issue registrations
and queries in a fully distributed fashion, as we describe next.

4.4.2 Registration

To register an AV-pair {a = v}, an endpoint first discovers the band by probing any head
node in Path(v). Nodes in lower levels are preferred for probing, since collisions with probes
for other values are less likely to occur at those levels. If the node being probed has an
established PIB, it can provide the matrix size information for all nodes in Path(v) to the
probing endpoint. The endpoint then registers only with the nodes that are in the band.
Endpoints may cache the retrieved path information for future use, thus avoiding repeated

74 CHAPTER 4. SUPPORTING RANGE QUERIES

probing.

If the node being probed does not have a PIB because it is too low in the tree and the
PMP messages did not reach it, the node replies with a NULL. The endpoint can then probe
a node higher in the path, e.g., the node located halfway between the first probed node and
the root in Path(v). This “binary probing” method ensures the maximum number of probe
messages needed to find a node with an established PIB is O(logT'), where T is the height
of the RST.

The first registration is a special case, because all the probes will return NULL. To
handle this, we define a default band, whose level is known to the endpoints. The first
registration will go to the default level, and the head node of the default band will then
start the PMP message exchanges. One option is to use the root level as the default band.

4.4.3 Query

To resolve a query @ : [s,e] with range length R, the querying node also needs to retrieve
the band information first. Ideally, probing the root node suffices since its PIB contains the
whole tree. However, the root node may become a bottleneck if all probes go there. It is
also possible to probe the lowest node in the RST whose range contains the range [s, e]. The
problem with this approach is that even for a small range, the node that contains it may
be a node high in the tree, which must handle probes from large ranges. As an example, in
Figure 4.10, the node that covers range [3,4] is the root node.

A good probing algorithm should minimize the possible collisions among probes. As we
showed in Lemma 3, that for range [s, e] there exist at most 3 consecutive RST nodes at
level |log R,] that cover the range. In our algorithm, we choose to probe these nodes to
minimize collisions with probes from queries with different lengths and ranges. Each probed
node returns its complete PIB to the querying node.

Based on the returned PIB information, the querying node reconstructs the logical RST
and annotates each RST node with its LBM’s size, which reflects the load status. It then
executes a local algorithm FIND-MIN-DECOMP to decompose the query range (Figure 4.11).
The FIND-MIN-DECOMP function takes as input the query range and the root of the RST
data structure, and returns a list of nodes corresponding to the decomposition. FIND-MIN-
DECOMP differs from the static RANGE-DECOMP decomposition function in two aspects.
First, it only considers nodes within the band. Second, rather than ignoring load infor-
mation, FIND-MIN-DECOMP compares the cost of using a subtree root or nodes within the
subtree, and chooses the more efficient option, e.g., the one that will result in fewer query
messages.

FIND-MIN-DECOMP is a recursive function. Lines 2-5 are terminating conditions. The
function first stores the LBM size of the current node (Lines 6-7). Lines 9-15 recursively
retrieve the list of decomposition results using each of the child nodes if they are in the
band. Lines 16-18 computes the total cost of using the children lists. If the cost of using the
children is less than using the parent, then the function will return the children lists (Lines
19,20). If the parent LBM has fewer partitions and the number of its replicas is smaller
than a threshold T¢pjicq, then the function will return the parent (Lines 22-23). Otherwise,
the function will return the children (Line 25). The reason that we use the children when
the parent has many replicas (received many queries already) is to avoid overloading the

4.4. DYNAMIC RANGE QUERY MECHANISMS 75

parent.

Once the list of nodes is determined by FIND-MIN-DECOMP, the querying node will then
send the query to the LBMs that correspond to each node in the list. This step is the
same as the algorithm presented in Figure 4.4. Figure 4.12 shows the same example as in
Figure 4.6, but at the subtree rooted at N[0, 3], we use it rather than N[0,1] and N[2,3] to
reduce the query cost from 4 to 3 for query range [1,7].

1: node_ list *FIND-MIN-DECOMP(node, range) {
2 if (range == NULL)

3: return NULL;

4 if (node == range) |/ exact query

5 return node;

6: Pparent < number of partitions in LB M, 04e;
7 Rparent < number of replicas in LBMp,qe;

8: left_range < range N node.le ftchild.range;
9: right_range < range N node.rightchild.range;
10: if (node.leftchild in the band) {

11: left_child_list + FIND-MIN-DECOMP (node.leftchild, le ft_range);

12: }

13: if (node.rightchild in the band) {

14: right_child_list < FIND-MIN-DECOMP (node.rightchild, right_range);
15: }

16: Py < Y. Pin left_childlist;
17 Prigne < Y P in right_child list;
18: Pehitdren = Pleft + Pright;

19: if (Pparent > Pchildren)
20: return CONCATENATE(left_child list,right_child list));

21: if (Pparent S Pchz'ldren) {

22: if (Rparent < T’r'eplica)

23: return node;

24: else

25: return CONCATENATE(left_child list,right_child list));
26:

27}

Figure 4.11: The optimized range decomposition algorithm.

4.4.4 Distributed Band Adaptation

The band allows us to minimize the cost of registrations and queries for a given load.
However, the load may change, and if the band does not adapt, the system may perform
poorly under the new load. Consider the example in Figure 4.12. At a given time, due to
a high frequency of point queries, suppose the band only contains nodes from the lowest
level. Now many queries come in with range [0, 3]. Using the current band, each such query

76 CHAPTER 4. SUPPORTING RANGE QUERIES

fffffffffffffffffffffffffffffffff

,,
\\\\\\

0 1 2 3 45 6 7 Tl e N N
(a) Logical RST (b) Physical overlay nodes

Figure 4.12: Query range [1, 7] is decomposed into 2 sub-ranges indicated by the solid boxes.
Filled nodes are in the band.

Figure 4.13: Band top expansion. Nodes Ni and Ny are at the top edge of the current
band. Ny is recruited to the band.

would be decomposed into into 4 sub-queries. However, if node N[0, 3] were in the band,
we could resolve such a query with only one query message by sending the query to node
N0, 3], since N|0,3]’s LBM has just one partition in the overlay network.

Band adaptation is controlled by the nodes at the top or bottom edge of the band.
Note that a node knows its position in the band from its PIB. Each such node periodically
performs a cost/benefit analysis of whether it should include its parent or children in the
band, or whether it should remove itself from the band. The node will take such an action
if by doing so, it can reduce the total number of query and registration messages received
by the system. A key property of the adaptation algorithms is that adaptation decisions
can be made based on local information. There are four possible adaptation actions: Top
Expansion, Bottom Expansion, Top Reduction, and Bottom Reduction.

4.4. DYNAMIC RANGE QUERY MECHANISMS 7

Table 4.1: Classification of @ : [s, e] for Top Expansion
‘ Type of query ‘ Range property

Large query [s, €] D [so,eo]
Left query [s, €] C [s1,e1]
Right query | [s, €] C [so, eo]
Middle query | [s,e] N [s1,e1] # ¢ AND [s,e] N [sg, e2] # ¢

Top Expansion (TE)

A node at the top of the band periodically evaluates whether including its parent node
in the band will reduce the overall cost. With the parent in the band, the cost of future
queries with a large range will be reduced, since they will be sent to the parent by the query
algorithm. However, including the parent also means an increase in the registration cost,
since future registrations must be sent to both the child and the parent level. When the
percentage of large queries received by this node exceeds a threshold Tj,.4c, the decrease
of query cost will outweigh the increase of registration cost, and the node will expand the
band to include the parent by duplicating its contents at the parent. To ensure consistency,
the node will request its sibling to duplicate as well.

There are two steps involved in choosing a proper Tj,,4.. We consider two sibling nodes
Ni[s1,e1] and Na[sg,ez] on the top edge of a band as shown in Figure 4.13. First, N; and
Ny must gather query and registration load information. Second, they calculate locally
whether including the parent Ny will reduce the overall query and registration cost. We
now describe these two steps in more detail.

1. Gather load information

To help make adaptation decisions, each node maintains statistics on the type of queries
it receives. Each query arriving at N; or N, is classified into one of the following categories:
Large Query, Left Query, Right Query and Middle query (Table 4.1). Suppose a query’s
range is [s,e]. If it is fully contained within [s1,e;], then it is a left query; if it is fully
contained within [s2, eg], then it is a right query; if it intersects with both, then it is a
middle querys; if it covers both, then it is a large query. N7 and N, also maintain statistics
on the number of registrations they receive.

In addition to the local information, N; and N» periodically exchange their load infor-
mation. In particular, N1 must inform N> of the number of left queries it receives, and No
must inform N7 of the number of right queries it receives. Similarly, they also exchange the
number of registrations they received over the last time interval. With this information, Ny
or N» can independently compute the percentage of each type of queries and registrations
they receive over the last time interval A. The variables are summarized in Table 4.2.

2. Determine Tj4ge

Suppose during a time interval A, queries and registrations arrive at node N; and No
with rates r4 and 7.4 respectively. Assume the rates remain the same in the next time
period, then nodes N; and Ny can compare the cost difference with and without the TE.
With top expansion, the parent node Ny’s LBM would have a size of (P, Ry), and N; and
Ny’s LBM would have a size of (Py, R}) and (P, R}) respectively. N; (or Ns) can infer the
sizes of these three nodes based on the query algorithm as follows.

78 CHAPTER 4. SUPPORTING RANGE QUERIES

Table 4.2: Variables for Top Expansion
Variable ‘ Meaning ‘

Nye ft percentage of registrations on N1
Nyight percentage of registrations on N2
Dlarge percentage of large queries

Pleft percentage of left queries

Pright percentage of right queries

Pmiddle percentage of middle queries

P The number of partitions of N1

P, The number of partitions of N2

Py The number of partitions of NO after TE
Ry The number of replicas of N1

Ry The number of replicas of N2

Ry The number of replicas of NO after TE
R} The number of replicas of N1 after TE
R, The number of replicas of N2 after TE

With and without the expansion, the cost of left, right and middle queries do not change.
For example, a query belongs to Ny will always be sent to V1 and that takes P; messages.
However, for large queries, with expansion, they will be sent to the parent node Ny, since
Py < P, + P,. We summarize the cost with and without TE for each type of query in
Table 4.3. For the registration cost, each registration, besides being sent to either N; and
Ny’s matrix, will also be sent to Ny. We summarize registration costs in Table 4.4.

Table 4.3: The cost of different queries with and without Top Expansion
| | Without TE | With TE |

Left query Py P
Right query | P» P
Middle query | P, + P P+ P
Large query | P+ P Py

Table 4.4: The cost of different registrations with and without Top Expansion
| | Without TE | With TE |

Left registrations | R; R] + Ry

Right registrations | Ry 5+ Ro

Due to the redistribution of load after TE, the corresponding matrix sizes of Ny, N1 and
N3 would also change. The relationships between the sizes are determined as follows. We
know

NieftTreg NrightTreg T'reg
|_ Creg -| ? |_ Creg -| ? |_C7'eg -|

4.4. DYNAMIC RANGE QUERY MECHANISMS 79

and thus,

P+P—-FP=1 (4.11)
Similarly,

R, = I—(pleft +pmz'dcdvle +plarge)'rq-|’R/1 _ I—(pleft +gmz'ddle)7'q-|’R0 _ I—plagerq-|
q q q

and thus,

Ri+Ry—R =1 (4.12)

For the same reason, we have:
RIZ +Ry—Ry=1 (4.13)

N; can now compute the total cost for all registrations and queries that arrive at these
three nodes. The total number of messages needed equals the sum of query messages and
registration messages:

M = M(query) + M (reg) (4.14)
e Without TE, the number of query messages:
M (query) = M(left — query) + M(right — query) + M (middle — query) + M (large — query)
= 1¢ApiestP1 4 1qAprightPo + ¢ Apmiddie(P1 + P2) + 1¢Apiarge(PL + P2)
The number of registration messages:
M(reg) = M(left—reg) + M(right — reg)
= TregAnieftly + TregAnrigni IRy
e With TE, the total number of messages M’ = M'(query) + M'(reg), where,
M (query) = rqApiestPy + 1qApright P2 + 7¢Apmiddie(P1 + P2) 4 1¢Apiarge(Po)
M'(reg) = rregAnget(R) + Ro) + TregAnright (R + Ro)
TE is beneficial, when M’ < M holds, or:
T¢APlarge(P0) + TregAniesi(Ry 4 Ro) + TregAnyight(Ry + Ry) <
Tq¢ADlarge(P1 + P2) 4 TregAnie pi Ry + TregAnpignt Ro
Simplify and we have
TPlarge(PL + P2 — Py) > Tregnuesi(R) + Ro — R1) + Tregnright(R5 + Ro — R2) (4.15)
Substitute Eq. 4.11 4.12 4.13 into above, we have,

TqPlarge > TregMieft + TregNright = Treg- (4'16)

OT Piarge > T:ZQ . This means that TE will reduce the overall number of messages coming

to this subtree, when the rate of Large Queries exceeds the registration rate. Therefore, Ny
can set Tjgrge = Treg/Tq- As an example, if the query rate is 5 times the registration rate,
then Tj4pge = 20%, and when N; observes the percentage of large queries exceeds 20%, Ny
will expand the band upwards to include Njy.

80 CHAPTER 4. SUPPORTING RANGE QUERIES

, .
; ;
, .
Band .)
y

Figure 4.14: Band bottom expansion action. Node Ny in at the bottom edge of the current
band. Expand to include Ny or Ns.

Top Reduction (TR)

This is the reverse action of TE. A node at the top of the band may remove itself from
the band to reduce future registration cost. Future queries destined to it will have to go
to its children, and from a child node’s point of view, these queries are Large Queries. If
the percentage of these queries becomes smaller than the threshold Tj44, the parent node
would leave the band by informing its corresponding matrix’s head node to set the matrix
size to zero. This information will be propagated to other nodes during the next round of
PMP messages.

The way that a parent node sets the threshold Tj4;¢. for top reduction is similar to how
Tiarge is set for top expansion. We again use the example in Figure 4.13, but now Ny is
in the top edge of the band, and N; and N> are also in the band. Ny considers the load
received by these three nodes. To compute the variables in Table 4.2, Ny must periodically
get load information on N; and Na. Once the load information is collected, the derivation
is the same as Step 2 in Top Expansion, and Tjsrge = Treg/Tq- No removes itself from the
band if the percentage of the large queries becomes smaller than Tj4;ge.

Bottom Expansion (BE)

Similarly, a node at the bottom of the band evaluates the benefit of including its children
into the band. By doing so, the cost of future partial queries (queries that belong to one
child’s range) will be reduced. For example, a query whose range belongs to the left child’s
range would be sent to the left child, which typically has fewer partitions than the parent.
Of course, the cost of expansion is an increase in registration cost. When the percentage
of partial queries exceeds certain thresholds, the decrease of query cost will outweigh the
increase of registration cost, and the node will expand the band to include its left child,
right child or both. The node will then send the corresponding children part of its own
registrations, so that they can answer future queries. It is important to note that the BE
occurs only if the node receives high load. In other words, it corresponds to a large matrix
(e.g., more than 2 partitions or replicas), since only then, expanding to include children can

4.4. DYNAMIC RANGE QUERY MECHANISMS 81

Table 4.5: Query classification for Bottom Expansion
‘ Type of query ‘ Range property ‘

Left partial query [si,€i] C [s1,€1]

Right partial query | [s;,e;] C [s2,e2]

Middle partial query | [s,e] N [s1,e1] # ¢ AND [s,e] N [s2,e2] # ¢
Exact query [s, €] = [s0, €]

Table 4.6: Variables for Bottom Expansion
| Variable | Meaning ‘

Nie ft percentage of registrations belong to N1
Npight percentage of registrations belong to N2
Dieft percentage of left partial queries

Pright percentage of right partial queries
Pmiddle percentage of middle queries

Pezact percentage of exact queries

P The number of partitions of N0

Ry The number of replicas of NO

P The number of partitions of N1 after BE
Ry The number of replicas of N1 after BE
R}, The number of replicas of NO after BE

reduce the cost.

The way a node chooses the proper thresholds to conduct bottom expansion is similar to
how the threshold is chosen in top expansion. There are also two steps. We consider node
Ny[so0, 0] on the bottom edge of a band as shown in Figure 4.14. Ny evaluates whether it
needs to add its two children Ni[s1,e;] and Ny[sg,e2] to the band.

1. Gather load information

Ny classifies the queries it receives into the categories listed in Table 4.5. Note that this
classification is different from the one we discussed in the Top Expansion. Ny also maintains
statistics on the types of registrations it receives, e.g., how many registrations belong to its
left child’s range. Unlike in top expansion, Ny does not need to exchange load information
with other nodes. For any time interval A, it can compute all the variables in Table 4.6.
2. Determine thresholds.

Suppose during a time interval A, the query rate Ny observes is 4 and the registration
rate is r,¢¢, and assume the rates remain the same in the next time interval. With BE,
Ny, N7 and Ny’s LBMs would have a size of (P, Ry), P1, R}) and (P, R)) respectively. Ny
can infer these matrix sizes based on the query algorithm, and can then compare the cost
difference before and after the BE.

In particular, we look at how Tj.y; is set. Choosing T7;gn¢ and Tipiqddie is similar. Suppose
N is added to the band, and based on the query algorithm, left partial queries will be sent
to N1, and all other queries will remain on Ny. Registrations that belong to the N; will be
sent to both Ny and Nj, and after the expansion, the size of Ny becomes Py, Rj), and Ny’s

82 CHAPTER 4. SUPPORTING RANGE QUERIES

Table 4.7: Query cost with and without Bottom Expansion
‘ ‘ Without BE ‘ With BE ‘

Left partial query 1) P
Right partial query | Py Py
Middle partial query | Py Py
Exact query Py Py

Table 4.8: Registration cost with and without Bottom Expansion
\ | Without BE | With BE |

Left registrations | Rp R + Rj,
Right registrations | Ry R},

size becomes P;, Ri. The cost change is listed in Table 4.7 and Table 4.8.
The relationship between the matrix sizes are as follows. We know

NieftTreg Treg
P =|——, P = | —=
=1 Creg 1. P |_Creg-|

and thus, Py — Py > 1 (assuming njep # 1). Similarly,

T Ple T 1 — prere)r
Ro =[], Ry = [2edi70), gy — (L= Pertlray
q q q

and thus, Ry + Ry — Ry = 1.
Ny computes the cost change as follows. Without Ny, the total number of messages is:

M = M(query) + M(reg) (4.17)
= ’I“qAP() + ’r‘regAR() (418)

After N1 is added, the total number of messages is M’ = M'(query) + M'(reg), where
the number of query messages:

M'(query) = r¢ApiesiPr + 1¢A(1 = prese) Po
and the number of registration messages is:
MI(Teg) = TregAnleft(Rl + R()) + TregAnrz'ghtR6
To make sure BE is beneficial, the condition M’ < M must be met, or
TquleftPI + TregAnleft(Rl + R{)) + TregAnrightR£) <
TquleftPO + TregAnleftRO + TregAnrightRO
Simplify, we have,

quleft(PO - Pl) > Tregnleft(Rl + R6 - RO) + Treg'n'righ,t(R6 - RO)
'rregnleft(Rl + R6 - RO) + Tregnright(Rl + R6 - RO)
Treg (R1 + R6 — R())

\%

4.5. ANALYSIS OF THE DYNAMIC MECHANISMS 83

Finally, substitute, we have,

Treg
Dleft > ——te8 4.19
Ny then set the threshold Tjcr; = ﬁ. As an example, if Py — P; = 1, the above

becomes pjerr > %. Intuitively, if only a small portion of the registrations belong to the
left child, with a small percentage of left queries, it is beneficial to add N;. Using the same
deriving method, thresholds can be set for adding Ns.

Bottom Reduction (BR)

Bottom reduction is the reverse action of bottom expansion. A node at the bottom edge of
the band may remove itself to reduce registration cost. Partial queries’ cost may increase
due to bottom reduction, since they now have to be sent to the corresponding parent node.
To ensure the BR is beneficial, the percentage of partial queries must become smaller than
thresholds Tlefta Tright and Tmiddle-

We again use the example shown in Figure 4.14, but now along with Ny, N7 and Nj are
also in the band. In order for Ny to choose a proper Ty, it must exchange load information
with Ny and Ny to compute the variables in Table 4.6. Once these variables are computed,
the following derivation is the same as above, and Tjcf; = ”(12:)7‘19131). N7 removes itself from
the band, if the percentage of left partial queries becomes smaller than Tj.t;. Trign: and
Tiniddie can be similarly set.

4.5 Analysis of the Dynamic Mechanisms

4.5.1 Overhead of PMP

The PMP protocol plays a crucial role in supporting range queries efficiently. We now
examine the overhead more carefully. From a node’s point of view, in each round of PMP
message exchange, it sends at most 1 PR and 2 PRR messages, and receives at most 2 PR
and 1 PRR messages. Hence, no node will be overwhelmed and no system bottleneck is
created. From the system’s point of view, the overhead of the protocol is determined by
two factors: (1) PMP message size and (2) PMP message exchange frequency. We next
examine these two factors.

The PMP messages are reasonably small. In the first round of message exchange, a PR
message carries the LBM’s size (2 integers) for each node in its subtree, so the message size
is O(n), for a subtree that has n leaves. As an example, suppose an attribute can take on
200 distinct values, and its RST will have at most 200 leaves, the largest PR message is the
one sent to the root, and it has a size of ~ 1600 bytes (= 200 nodes * 8 bytes/node). For
the same tree, the PRR messages are even smaller with a size of O(logn) corresponding to
the height of the tree, since it contains only the path component. In the above example, the
largest PRR messages are the ones to the leaves; they have a size of ~ 70 bytes (= log 200
nodes * 8 bytes/node). As an optimization, the PR and PRR message sizes can be further
reduced in future PMP rounds by only including matrices whose sizes have changed.

84 CHAPTER 4. SUPPORTING RANGE QUERIES

The frequency of the periodic PMP message exchange can be set fairly low. When the
load in the system is stable, the band does not change. The band may change when the
matrices’ size change due to significant load change, or when adaptation actions are needed
due to changes in query ranges. Both of these will typically occur on a much larger time
scale in comparison to the registration or query rate.

In conclusion, since the PMP message size is small and the PMP message frequency is
set low, the overhead incurred by the PMP protocol is reasonably small.

4.5.2 Overhead of Band Adaptation

Band adaptation actions are carried out in a distributed fashion, since each decision is
made by a node based on local information. To set the proper thresholds for the various
actions, a node may need additional load information such as query and registration rate
from its sibling or parent, but this remains a localized operation. By combining expansion
and reduction actions, the band can move up and down the RST depending on the load. An
additional advantage that band adaptation brings is that we no longer need a well-defined
leaf level to support range queries. This is important because in many applications it may
not be possible to predefine a fixed smallest granularity. For example, when the domain is
real numbers, query ranges may be arbitrarily small. With band adaptation, the tree can
grow downwards as deep as is needed to handle small range queries.

The overhead of band adaptation is minimal since the decisions are made locally and no
network wide message exchange is required. During band adaptation, an endpoint may get
stale information about the tree. The impact of this transient state is small and temporary.
For example, stale information may result in some additional, unnecessary registrations, or
cause an endpoint to repeat its query if the node it originally contacted left the band. The
system will go back to normal state after next round of PMP message exchange.

4.5.3 Band Stability Analysis

The band adaptation mechanism coupled with the PMP protocol ensures that the band
may shift up and down in the RST depending on the load and query ranges. However, it is
important to carefully examine the band stability property, since a band that is constantly
changing its shape will introduce significant overhead due to frequent data replication in
the overlay network.

The main requirement for stability is that given a stable load, the edges of the band
should remain fixed. To show that our algorithms meet this requirement, we assume that
after a band adaptation action, the load becomes stable. We examine the following four
cases: (i) a node is added via Top Expansion will not be removed via Top Reduction; (ii)
a node is removed via Top Reduction will not be added via Top Expansion; (iii) a node is
added via Bottom Expansion will not be removed via Bottom Reduction; and (iv) a node
is removed via Bottom Reduction will not be added via Bottom Expansion.

We first look at cases (i) and (ii). From the previous section, we know that the conditions
for top expansion (piarge > Tiarge) and top reduction (piarge < Tlarge) are exactly the
opposite of each other. For any given load, pj4r¢e is either larger than or smaller than
Tiarge, and it cannot be both. Therefore once a node is added to the top, it will not be
removed if the load does not change. Similarly, if it is removed due to top reduction, the

4.6. EVALUATION 85

criteria of adding it back will not be met if the load does not change. The same argument
can be applied to cases (iii) and (iv).

In practice, we do not want the band to change due to small changes in the load. This
can be easily achieved by slightly modifying the conditions for expansion and reduction to
introduce some hysteresis. For example, in the case of top expansion and top reduction, we
can change the thresholds as follows. A node is added to the top if the rate of large queries
exceeds the threshold Tj4.¢c + d; and a node is removed if the rate of large queries drops
below Tj4rge — 0, where § is a configurable value.

In addition to the above scenario, we note that if the load itself oscillates around a
threshold, it is possible that a node may be added or removed frequently. To prevent this
from happening, we can add addition rules to the band adaptation actions. For example,
after a top expansion, a top reduction can occur only if the percentage of large queries drop
below Tj,rge for a certain period of time.

In summary, our band adaptation algorithms, on the one hand, can adapt the band to
load changes, and on the other hand, also ensures a stable band if the load changes are not
significant or become stable.

4.6 Evaluation

We now evaluate the effectiveness of the RST-based range search mechanism. We imple-
mented both the static and dynamic mechanisms in the CDS simulator we described in
Section 3.4.1.

4.6.1 Methodology

The CDS configuration for the simulations conducted in this section is the same as what
was used in Section 3.4.2. To test the range search mechanisms, the workloads we used here
are different from before. Each registration load is comprised of a set of content names,
each consisting of one AV-pair. The AV-pairs share the same attribute, a, which can take
on 200 different values. We chose 200 since it is a typical range for attributes such as
speed, temperature, etc. This attribute’s RST has 9 levels ([log200] + 1); recall that the
leaf level is Level 0, and the root level here is Level 8. The sender of a name is selected
randomly from the nodes in the system and the names’ arrival times are modeled with a
Poisson distribution. Query loads are similar, except that instead of one value, a range
may be specified. In addition to the Static RST and Dynamic RST designs described
in Sections 4.2 and 4.4, the evaluation also considers the following algorithms:

e Root Only: All registrations and queries are sent to the root level nodes, i.e., there
is no RST.

e Leaf Only: Registrations are sent to leaf nodes only, and queries are decomposed
into point queries.

e RST(3): Similar to Static RST, but we use Lemma 3 and decompose a range with
length R, into three adjacent ranges at level |log R, | in the RST.

86 CHAPTER 4. SUPPORTING RANGE QUERIES

70 ;
Static RST —+—
RST (3) - @
60 | RST (1) ¥ L
Root only -

1] §
)
& 50 - 1
@
o E
£
= 40 R
(]
z
« 30 | R
Nt X
E 20 b
g
z o

10 + R

o L

Registration rate (reg/sec)

Figure 4.15: Query cost comparison.

e RST(1): A query is always sent to the node in the RST that corresponds to the
common prefix of the query range’s two end values. In this case, even a small range
can translate to a high level node, e.g., range [3,4]’s prefix node is the root [0, 7] in
Figure 4.1.

We use the number of messages needed for registrations and queries as the primary
performance metric.

4.6.2 Performance of Static RST

We start by examining the query and registration performance of the static RST design.

Query Performance

We first evaluate the query performance. In each experiment, we inject a registration load
into the system with a certain rate, and then inject a query load with rate 200qg/sec. The
registration rate varies from 20reg/sec to 2000reg/sec. In the query load, there are 10,000
random queries but all have a range of R, = 20. We compute the average number of query
messages needed for a query after each run. We plot the results in Figure 4.15 as a function
of the registration rate.

When the registration load is low, Static RST uses the most query messages due to its
logarithmic decomposition. As the registration load increases, nodes higher in the tree will
start to create partitions. As expected, the cost in Root Only grows linearly as partitions
are created proportionally to the registration load. Since RST(1) also may use levels higher
in the tree, its cost grows fast as well and it becomes more expensive than Static RST.
Static RST also performs better than RST(3) under high load, since its decomposition is
finer and uses more lower level nodes.

4.6. EVALUATION 87

45

Static RST ——
| RST(3) - |

40 RST (1) ¥ 2
Root Only - /

35t /o

o
30 + 4

Number of registration messages

100 1000
Query arrival rate (queries/sec)

Figure 4.16: Registration cost comparison.

Registration Performance

Next we examine the registration performance. In this set of experiments, we fix the
registration rate and vary the query rate from 100g/sec to 5000¢/sec, and the query range
R, = 20. Figure 4.16 shows the average number of registration messages needed for each
registration as the query rate increases.

For low query load, all the RST cases use more registration messages than Root Only,
because they have to register with all 9 levels. As the query load increases, the cost of
Root Only grows linearly and it becomes the worst performer. Static RST performs the
best. The reason is that for high query load, the registration cost of {a = v} is dominated
by the number of replicas along Path(v). Recall from Section 4.2.3 that the relevance of
an algorithm indicates how well a query matches the nodes that are being queried. The
relevance of these algorithms are in the following order:

T RootOnly < TRST(1) < TRST(3) < TLeafOnly = TStaticRST = 1.

For low relevance algorithms such as Root Only and RST(1), queries are concentrated at
a small number of nodes with large ranges and this causes them to replicate often. As a
result, the registration cost increases rapidly, since a registration must go to all replicas. In
comparison, in Static RST (r = 1), the query load is spread out to nodes in many lower
levels, and the number of replications in the system is minimized, which translates into a
low registration cost. Between RST(3) and Static RST, RST(3) has a smaller relevance and
results in more replications under high load, and as show in Figure 4.16, its performance is
also worse than Static RST.

In summary, the Static RST mechanism provides the best performance for both queries
and registrations under high load. However, when the load is low, it is suboptimal in that
it is worse than the Root Only algorithm. These results are consistent with our analysis in
Section 4.3.

88 CHAPTER 4. SUPPORTING RANGE QUERIES

100 + Root only 2000 feg/sec — ‘
Static RST 2000 reg/sec ---¢---
Dynamic RST 2000 reg/sec -
Root only 25 reg/sec -t)
8 80t Static RST 25 reg/sec o |
2 Dynamic RST 25 reg/sec -
@ Leaf only (both rates) --@---
Q } } ' ! e !
= T T T LS T
= 60 .]
o T >
& gé_,---"‘_‘f: *
5 YOFf o §§--"“in.’,‘.’,‘.?.‘.... :]
o ST v
S et
B B - '.l‘l
40 60 80 100

Range length

Figure 4.17: Query cost vs. Range length.

4.6.3 Performance of Dynamic RST

Next, we evaluate the performance of the Dynamic RST design. For the results in this
section, we use the root level as the default band, and we take measurements after the
necessary band adaptations have completed. We first evaluate the query performance,
which depends on two factors: the query range length and the registration load. We then
evaluate the registration performance, which depends on the query load.

Query Performance

1. Query Performance for queries with different ranges

Figure 4.17 shows the average number of query messages as a function of the query
range. In this set of experiments, we first inject a registration load into the system and
then issue a query load with rate 200g/sec. In each experiment, the range lengths are the
same, and across experiments, the range varies from from 1 (point query) to 100 (50% of
the domain). We use two registration loads with low (25reg/sec) and high arrival rates
(2000reg/sec).

With low registration load, the root level (and all other levels, if they are used, e.g., in
the Static RST) has only 1 partition. The Root Only and Dynamic RST designs perform
the best, since they will just use the root for all queries. The Static RST design ignores the
load status and always decomposes the query into logarithmic number of sub-queries, so
the number of query messages grow logarithmically with the range length. The Leaf Only
is the worst algorithm, and the cost grows linearly with the range.

Under high registration load, Root Only performs poorly, since irrespective of the range
length, 64 query messages are needed for all queries (the root level has 64 partitions under
this load). In the Leaf Only case, the number of query messages again grows linearly
with the range length, since no partitions were created at the leaf level. The Static RST
approach grows faster than logarithmic due to the partitions created at higher levels, but it

4.6. EVALUATION 89

100

Root only —+—

Static RST-20 ------
Static RST-100 ---

Dynamic RST-100 -

Dynamic RST-20 -

Number of query messages

Registration rate (reg/sec)

Figure 4.18: Query cost vs. Registration load.

still requires far fewer query messages than Root Only. The Dynamic RST design improves
performance further since it does not need to decompose the query all the way to the leaf
level. Of course, if the query range is the full domain, both Static RST and Dynamic RST
will degenerate into the Root Only, since using the root level nodes to resolve a full domain
query is the most efficient way.

2. Query performance vs. registration load

Using the same setup, Figure 4.18 compares the query performance as the registration
load increases. We use two query loads, with a range length of 20 and 100 respectively.
This plot is in log-log scale to amplify the differences for low loads. Dynamic RST does the
best in all cases. In particular, it tracks the Root Only case when the load is low by using
high level nodes and by avoiding unnecessary decomposition. It migrates towards and stays
under the Static RST curve as the load increases.

Registration Performance

Figure 4.19 compares the average number registration messages needed as query load in-
creases. The experimental setup is the same as what was used for Figure 4.16 in the previous
section, and the query range is 20. The two curves corresponding to Static RST and Root
Only are taken directly from Figure 4.16. Dynamic RST performs the best for both low
and high query load. When the query load is low (100g/s), the root node can resolve all
queries without having to replicate, and the band stays at the root level. As a result the
cost for a registration is 1 and it is sent to the root level. Dynamic RST behaves the same
as the Root Only case. In contrast, in the Static RST, a registration has to go to all 9
levels regardless of the query load. As the query load increases, the root level node starts
to replicate, and the cost of Root Only increases linearly. However, for the Dynamic RST,
the band grows downwards when top level node observes high load, and as a result, queries

90 CHAPTER 4. SUPPORTING RANGE QUERIES

45

Root Only —+—
Static RST --->---
Dynamic RST -

40

Number of registration messages

Query arrival rate (queries/sec)

Figure 4.19: Registration cost comparison. Query range = 20

will choose lower level nodes in the band. Top level nodes will leave the band when they
do not receive enough queries (Top Reduction). For example, when query rate is 2000g/ s,
only Levels 2, 3 and 4 are in the band, and the registrations are sent only to these levels.
For this reason, Dynamic RST performs better than Static RST for high query load as well.
If the query load is further increased and query ranges are distributed over the full domain,
all the levels will be required for the Dynamic RST, and at that time, it will perform the
same as Static RST.

4.6.4 System Optimization with Band Adaptation

We examine in more detail how band adaptation improves the system’s performance. We
first show how bottom expansion helps to reduce query cost, where we also examine how
different PMP update periods affect the performance. We then use “flash crowd” type
of query load to show different band adaptation actions work in concert to optimize the
band shape depending on the load. We further show that the band of an RST can become
stabilized under load that consists of various ranges.

Effect of Bottom Expansion

In this set of experiments, the root level is chosen as the default band. The registration
load is high with an arrival rate of 500 reg/sec. All the registrations are initially sent to the
root level (Level 8), and it creates 16 partitions to accommodate this registration rate. We
use two query loads with rates r, = 200¢/s and r4 = 20q/s. Within each load, all queries
have the same range length (R, = 20).

We run experiments with different PMP update period T'. “I' = Oms” means that
when a node is included in the band, it sends a triggered PR/PRR message to its parent or
children right away without waiting for the next update period. When T is non-zero, the

4.6. EVALUATION 91

16 f_q:ZOOq/s T=0ms —— |
$ o r q=200q/s T =2000ms -
% 14 m r g=200qg/s T=5000ms =& |
[%] ‘ [}
S d
> 12 (X R
S
O 4 N o
5 100 -]
o %
£ kL Ty Egmgﬂt&djﬂﬁ
S 8 i £ Ll B
z bl p
S I L Oty Fa g
g OO[LL M WEE |
> e *x o]
< W ; N 0P o n e

o | e e wi@%?ﬁﬁmﬁ;iﬂfwﬁﬁg-%wﬁ&%1

0 50 100 150 200
Query Number (x50)

Figure 4.20: Band bottom expansion reduces query cost.

node waits until the next update cycle to propagate this information. We plot the average
number of query messages needed to resolve a query versus the query index in Figure 4.20.
Each data point corresponds to the average cost of 50 queries.

We first compare the four scenarios corresponding to 74 = 200g/s. At the beginning,
since only the root level is in the band, all queries are sent to all partitions at the root level,
and the query cost is 16. Since the root level has many partitions and it receives many
small queries (R, << 200), the root level expands the band downwards.

As the band grows downwards, the local query algorithm on query initiating nodes decide
it is beneficial to send queries to lower level nodes in the band. As shown in Figure 4.20,
for all scenarios, the query cost decreases significantly. For this load and query range,
eventually Level 4 is included in the band and the query cost stabilizes at around 4, i.e., 4
query messages to Level 4 nodes are needed to resolve each query. The difference between
these scenarios is the time when queries start to benefit from band adaptation. The triggered
update scenario (T' = 0) propagates the dynamic band information the fastest, and queries
start to benefit early on. When T increases, band changes at a slower pace, and the cost of
queries arriving before the update cycle does not decrease.

We examine the scenario of r, = 200g/s, T = 5000ms more closely: it has 5 distinct
steps. During the first 5000ms, about 1000 queries arrive at the system. Since Level 7
will not be included into the band until after 5000ms, the first 1000 queries do not benefit
from the band expansion and their cost remains at 16. After Level 7 is included in the
band, queries are sent to Level 7 and their cost drops. Similarly, only queries arrive after
another 5000ms can benefit from the inclusion of Level 6. Eventually after Level 4 is
included, the band adaptation stops and the query cost is optimized to the lowest value. As
a comparison, for ry = 20¢/s, with a low arrival rate, the long update cycle has less impact
on reducing query’s cost. The 5 adaptation steps are close to each other in Figure 4.20,
since the band adaptation completes after about 1000 queries. From each query’s point of
view, the performance is comparable to the r, = 20g/s, T = 200ms case.

92 CHAPTER 4. SUPPORTING RANGE QUERIES

500

-~ Level 0 Level 4 ——
450 |]
Level 2 -oeees
400 F Level 1 Level 1 - |
350 | 1
300 Level 2 Level 2 T
250 f L :

200

150 Level 3

Number of Sub-queries Received

100

Level 4
50

0 500 1000 1500 2000 2500
Query Number (x100)

Figure 4.21: Band adaptation under flash crowd.

In summary, bottom expansion can help the system to improve its performance signif-
icantly. One factor that must be considered is how to select a proper PMP update cycle.
With a small update cycle, the system reacts to the load change quickly, and thus can bene-
fit queries quickly if the load is high. However, the cost of a small update cycle is that more
PMP messages are required. If queries arrive at the system with a low rate, a larger update
cycle may be sufficient for reducing the query cost, while incurring a low PMP overhead.

System Performance under Flash Crowd

In this experiment, the band initially only contains the lowest level (Level 0) due to previous
point queries. The registration load is low in that even if all registrations are sent to the
root level, it will only have one partition. We inject a query load with range R, = 20 into
the system. The arrival rate of queries changes from high (2000¢/sec) to low (200g/sec)
and finally to high (2000¢/sec) again. This query load is used to emulate the “flash crowd”
type of workload, where users may shift their query interest rapidly. The thresholds we
used to trigger expansions are 20%.

Figure 4.21 shows the number of sub-queries received at each level for every 100 queries
that are issued by endpoints. Correspondingly, Figure 4.22 shows the average number of
query messages needed for every 100 queries. Both figures have three primary sections.

In the first section, Level 0 receives all the queries, since it is the only level in the
band, and each query is resolved using 20 sub-queries. As more queries arrive, since these
queries are Large Queries with respect to Level 0, the band expands to higher levels, and
eventually Level 4 nodes (with a length of 16) are added to the band. Figure 4.23 zooms
in on this section of Figure 4.21 to show when different levels are added to the band. As
a result of top expansion, the query cost first drops to around 2 and then stabilizes at 3.8.
This is because when Level 4 is first added, all queries are decomposed into 2 Level 4 level
sub-queries, since this is the most efficient decomposition scheme. However, with the high

4.7. RELATED WORK 93

load (2000g/sec), Level 4 nodes’ LBMs have to replicate to handle all queries. Our query
algorithm then directs the queries to use level 2 and 3 nodes in addition to level 4 nodes to
avoid further overloading level 4 nodes. As a result the query cost increases logarithmically,
but it prevents the registration cost from growing linearly.

In the second section, the query rate drops to 20g/sec, and all LBMs shrink to only 1
replica. The query decomposition algorithm directs queries to Level 4, rather than further
using Level 2 and 3. As shown in the figure, nodes in Levels 0-3 do not see enough queries,
and they eventually drop out of the band. The band reduces to Level 4 only. At this time,
the query cost drops to ~ 2 (using 2 Level 4 nodes for each query).

In the third section, the query rate increases to 200g/sec again, and the band expands
downwards through bottom expansion to recruit Levels 3 and 2 back.

Band Stability

In this experiment, the registration load is the same as above and stays low, and the initial
band consists of only the leaf level. The query load contains 10,000 queries, and the query
ranges vary from 1 to 100. More specifically 80% of the queries have a range of 20 and the
rest 20% of the query ranges are distributed uniformly between 1 and 100.

Figure 4.24 shows the band adapatation process. Similar to before, the large ranges
cause the band to expand upwards. However, we observe that the band becomes stable and
consists of only levels 2,3 and 4 in the end. Even though there are ranges that are much
larger than the range of Level 4 nodes (length equals 16), the band does not further expand
upwards due to the small number of these ranges, since doing so would increase the overall
cost registrations and queries.

Figure 4.25 shows the average cost of queries of different ranges. It can be seen that for
queries with small ranges (< 20), the cost is low. For larger queries, since the band is not
optimized for them, their cost is higher than the ideal case where the levels corresponding
to their lengths are in the band. For example, for queries with range larger than 90, they
need 8 messages rather than 3 messages, which would be the case were Level 6 in the band.

The experiments in this section show that the band adaptation algorithms can success-
fully adapt the band based on load changes to reduce query and registration cost.

4.7 Related Work

Efficiently supporting range queries in DHT-based systems was posed as an open question in
[35, 38]. There have been some recent efforts in addressing this problem. In [54], the Prefix
Hash Tree (PHT) is proposed to support range queries. While the PHT is conceptually
similar to the RST, there are important differences between the two systems. Unlike our
system, where we store contents and resolve queries using multiple levels depending on the
load and query ranges, the PHT is a trie, and only leaf nodes store contents. Queries are
first sent to the node corresponding to the common prefix of the range and traverse down
to the leaves. In our system no tree traversal is needed, and our evaluation shows that the
logarithmic query decomposition is more efficient than using the common prefix node.

In [8], the authors use space filling curves as hash functions in CAN-based DHT sys-
tems [55] to support range queries. In this work, a query is first sent to a node within the

94 CHAPTER 4. SUPPORTING RANGE QUERIES

range; that node then locally broadcasts the query. Our system makes no assumption on
the type of DHT used. Queries are sent to nodes that contain potential matches, and no
broadcasting is involved. In [33], a mechanism based on locality sensitive hashing function
is used for range queries in the context of relational databases. However, unlike our system,
only approximate answers that are similar to users’ range queries are returned.

SkipNet [36] proposed a lexicographic order preserving DHT, and thus allows data items
with similar values to be placed on contiguous nodes. This facilitates range search, but the
number of nodes must be visited is still linear to the query range due to lack of aggregation.
P-Grid [5] is a DHT in which nodes are organized based on a virtual distributed search tree
similar to our RST structure. The critical difference is that in P-Grid, the tree structure
is used for DHT routing purpose to locate a node that holds a given key in the identifier
space, and as such, like other DHTSs, it does not directly support range queries.

In a different but similar context, Li et al. [44] proposed a distributed mechanism to
partition a multi-dimensional space using a data structure similar to kd-trees to support
range queries in sensor networks. Our system can be readily extended to high dimensions
to support multi-dimensional range queries.

In traditional parallel databases, a large relation is often partitioned among multiple
disks [21]. A partitioning technique that works well for both point and range queries is to
partition the relation based on data values. A centralized partition vector must be consulted
before a query may be issued. In our system, if we consider the collection of all content
names as a large relation, the RST based mechanism mimics the value-based mechanism
by partitioning the relation multiple times with different granularity. The advantage of
our design is that queries can be resolved in a fully distributed fashion without using a
centralized partition vector.

4.8 Chapter Summary

In this chapter, we presented an adaptive protocol to support range queries efficiently in
the CDS. Our algorithm is based on a distributed data structure, the Range Search Tree
(RST), for content registration and query resolution. Nodes at different levels of the RST
represent different level of aggregation, and may be used to resolve queries with different
range lengths efficiently. To ensure efficiency, we do not instantiate every node in the tree by
default, instead, we only use a part of the tree, known as the band to accept registrations and
resolve queries. The band changes its shape depending on the load it observes: A node may
be recruited to join the band if its inclusion to the band can lower the overall registration and
query cost. The band adaptation is conducted in a fully distributed fashion, since only local
information is needed. To ensure endpoints can discover the band efficiently, we designed
a lightweight protocol, the Path Maintenance Protocol, to update the band information in
the tree. As a result, registrations and queries can still be carried out efficiently without
having to traverse the tree, and thus no bottlenecks are created. Our extensive simulation
demonstrates that the system can support range queries efficiently using an adaptive RST
under both high and low load, while incurring low overhead.

4.8. CHAPTER SUMMARY

20(d b

=
Y
T T
1 1

— ——
T Tt

Number of Query Messages
Z‘.‘:ii“ LI L |

0 500 1000 1500 2000 2500
Query Number (x100)

Figure 4.22: The query cost change as band adaptation occurs.

1000
S 800 |
z ,
o
(0]
m H
& 600 -
(] H
>
(on
=
» 400 -
S i
o}
= H
E 200
Pz :
oL ,
0 20 40 60 80 100 120

Query Number (x100)

Figure 4.23: Zoom in on the top expansion effect.

CHAPTER 4. SUPPORTING RANGE QUERIES

Level 4 ——
1400 Level 3 -]
- Level 2
9 1200 | Level 1
D
[5)
(0]
@ 1000 | -
(2]
2
$ 800+t i
o
=
@ 600 | i
S
S 400t .
2 :
200 | sl //M\M\A 1
0 1) L L ’\rT/\/\‘l‘ L L ~ L _ 4'\

0 10 20 30 40 50 60 70 8 90 100
Query Number (x100)

Figure 4.24: Band adaptation for mixed range lengths.

Number of query messages
[8)]

el

0

/\/\/M

!
0 40 50 60 70 80 90 100
Range length

Figure 4.25: The average cost for queries with different range lengths.

Chapter 5
Supporting Similarity Queries

The CDS system we described so far supports range searches on individual attributes effi-
ciently. For example, in the traffic monitoring service, it is possible to allow users to find
all cameras that observe a low speed to identify jammed sections on highways. However, in
many CDS applications, data are distributed in a multi-dimensional space, and queries in
these applications are often more complex than one-dimensional range queries. For example,

e In pervasive computing, the geographical location of devices, such as cameras and
sensors, may be represented using 3-d GPS coordinates.

e In a network service discovery systems such as NSSS [37], a network node on the In-
ternet may represent its location in the network using a multi-dimensional coordinate
(e.g., 5-d or 7-d) computed based on services such as GNP [48].

e In content-based information retrieval systems, multimedia contents such as images [42]
or audio files (mp3) [28] are often represented using feature vectors that captures the
key properties of the contents. A feature vector typically consist of multiple dimen-
sions. In [28], a 30 dimensional vector is used to represent an mp3 file.

In these applications, similarity queries are widely used. For example, in the P2P music
sharing system described in Section 2.3, each peer contributes a set of mp3 files. A user
may issue a query to find songs that are “similar to a song that he recorded from the radio”
[28]. The user would specify the feature vector of the recorded song and formulate that
as a query to the CDS system. The CDS system will then try to find songs registered in
the system whose feature vectors are close to the specified vector in the multidimensional
vector space. Similarly, in a service discovery system, a user may want to find the closest
proxy server for video transcoding [37] using GNP coordinates. The user will supply its
own GNP coordinates to the CDS, and the system will then carry out the query and find
servers that are close to the user’s node in the coordinate space.

Conducting similarity searches on a large multidimensional dataset in a decentralized
system, such as the CDS, is a difficult problem. In this chapter, we present efficient mecha-
nisms employed by the CDS to support similarity searching in multidimensional data sets.
The rest of the chapter is organized as follows. Next, we formally define the similarity search
problem in the CDS environment and motivate our distributed kd-tree based design. In

98 CHAPTER 5. SUPPORTING SIMILARITY QUERIES

Section 5.2, we describe a set of distributed protocols to build and maintain the distributed
kd-tree data structure. In Section 5.3, we describe how endpoints carry out registrations
and queries in our system. In Section 5.4, we present optimizations based on virtual node
shrinking to improve the system’s performance for high dimensional datasets. We present
a simulation-based performance evaluation in Section 5.5. We discuss related work and
summarize in Sections 5.6 and 5.7 respectively.

5.1 System Design for Similarity Search

Formally, suppose in an application, data are distributed in a k& dimensional space and
di,ds, ...,dy are the k dimensions. The data points are in the set S = {p; € RF|i = 1,n}.
Queries also have k dimensions, and can be considered as data points in the k-dimensional
space. The similarity search problem is to find a data point p € S that is closest to a given

query ¢, i.e.,
dist(p, q) = minj—y ndist(p;, q)- (5.1)

The dist function can be defined using any Minkowski metric such as L; (Manhattan) or
L,y (Euclidean). A similarity search is also known as a nearest neighbor search (NN) in the
literature, and we use both terms interchangeably. A generalization of the NN search is the
KNN search, where K nearest neighbors instead of 1 are sought.

Nearest neighbor search in multidimensional databases has been a heavily studied area
in the database community for more than thirty years [27]. For small data sets, the most
efficient way to support similarity search is to use a central database that incorporates a
tree-based indexing data structure to limit the amount of data that must be examined to
resolve a query. Many indexing structures have been proposed, including the kd-tree [12],
R*-tree [11], the SR-tree [40] and many others. For larger datasets, the data may be
partitioned across multiple databases running on different nodes. While this distributes the
storage and registration overhead, queries have to be forwarded to each database. As such,
the main drawback of this approach is that it does not scale with respect to query load,
since each database has to handle all queries. In a distributed system such as the CDS,
both the amount of available data and the number of queries can be very large. Supporting
similarity searches in a fully distributed fashion in such a system is very challenging.

In Chapter 4, we presented how the CDS supports range searches efficiently. In par-
ticular, it facilitates range queries by deploying a distributed Range Search Tree, which
partitions the 1-d data set at different levels of granularity. However, simply extending the
RST to a multi-dimensional tree indexing structure will not work well because the size of
the indexing data structure may become prohibitive without a careful design.

Additionally, the various tree structures generally perform well only for for data sets
with a relatively small number of dimensions (< 10). For higher dimensions, however, due
to the well-known “curse of dimensionality” problem, the performance of any tree-based
indexing structures degrades significantly and the query overhead effectively becomes linear
in the size of the database [73].

In this chapter, we present a distributed search architecture that is based on a kd-
tree data structure: nodes in a kd-tree are mapped to physical overlay network nodes in the

5.1. SYSTEM DESIGN FOR SIMILARITY SEARCH 99

CDS to form a distributed kd-tree (DKDT). The distributed tree indexing structure makes it
possible for a similarity query to visit only a small subset of nodes to get resolved. To address
the challenges associated with high dimensionality, we incorporate several mechanisms to
compress the DKDT’s size when possible, and we also design a virtual node shrinking
algorithm to battle the dimensionality curse.

Next, we briefly review the centralized kd-tree data structure, which is used to index
multi-dimensional data, and we then present the DKDT design.

5.1.1 Background on Centralized kd-tree

Over the last several decades, many data structures have been proposed to index multi-
dimensional point data, such as geographical data and image vectors. Refer to [27] for
a comprehensive survey on these structures. The kd-tree [12] is one of the earliest data
structure proposed and it is still widely used because of its simplicity and effectiveness.

A kd-tree is in essence a binary search tree extended to support multidimensional search.
At each node, a dimension and a value (known as the discriminating dimension and value
respectively) are chosen to divide the space, and data points whose values along the discrim-
inating dimension are smaller than the discriminating value are assigned to the left child,
while points with higher value are assigned to the right child. The children are typically
created when a specified bucket size, e.g., the number of data points on a node is exceeded.

Many kd-tree variants have been designed and they differ in how the discriminating
dimension and value are chosen at each level. The most common variants are based on data
or space partitioning. With data partitioning, e.g., the “optimized” kd-tree [12], at each
level, the dimension which has the largest spread is chosen as the discriminating dimension,
and the value that can divide the data set in half is chosen as the discriminating value.
With space partitioning, e.g., the PR kd-tree [50], a different dimension is chosen at each
level according to an a priori ordering and at each level, the space is divided in half,

Resolving an NN query involves two steps. First, we traverse the tree from the root,
following a path to the leaf node that contains the At the leaf node, the data point nearest
to the query, called the candidate NN, is identified and its distance to the query, r, is
recorded. Second, we must visit any nodes in the kd-tree that may contain data points that
are closer than r to the query. As we visit these nodes, we replace the candidate NN when
we find a data point that is closer to the query than the current candidate NN and we also
recalculate r; this may reduce the number kd-tree nodes that have to be checked.

This approach has been shown to be effective for data sets with relatively low dimen-
sionality (up to 6-10 dimensions), e.g., the expected cost for queries in the optimized kd-tree
is O(log N) [26], where N is the database size. As the dimensionality grows, the number
of kd-tree nodes that has to be checked also grows, up to a point where a growing number
of queries have to check all leaf nodes. This in effect corresponds to an exhaustive search
of the data. To battle this “dimensionality curse”, some researchers have proposed to use
data structures that efficiently summarize the data, thus making it possible to quickly elim-
inate some nodes from consideration [73]. Alternatively, it is possible to reduce overhead
by performing an approximate nearest neighbor search [9], where the returned neighbor’s
distance to the query point is within a given bound of the nearest neighbor’s distance to
the query.

100 CHAPTER 5. SUPPORTING SIMILARITY QUERIES

5.1.2 Design Rationale

In our design, we extend the centralized kd-tree data structure into a distributed system.
In particular, we map the nodes in the tree onto the physical overlay network nodes: the
mapping is done by applying a hash function to the hyper-rectangle represented by each
node in the kd-tree to get a corresponding node ID in the DHT network (Section 5.2.1). This
set of nodes form a distributed kd-tree (DKDT). The efficiency of the DKDT infrastructure
will depend on a number of important design decisions. The primary performance metric to
evaluate a design is the average number of messages needed to resolve queries and perform
registrations.

The first design question is what variant of the kd-tree we should use. We decided
to use a space partitioned kd-tree for several reasons. First, in the applications that the
CDS is targeting, data can arrive in an on-line fashion, so we do not have the full set of
data a priori. This makes good data partitioning schemes such as the optimal kd-tree not
applicable. Second, our goal is to have a fully distributed system, where endpoints can
make independent decisions about where to register and query in the tree without having
to go through a central location. This is only possible in a space partitioned kd-tree, since
the hyper-rectangle a node corresponds to does not change and is independent of the data
distribution. Finally, space partitioning also makes it efficient to maintain the parent-child
relationship, which is important for recovering the tree topology if the relationship is lost
due to a machine crash or leave.

One problem associated with space partitioning is that the DKDT can become very
large, especially for clustered data with high dimensionality, where only a small number
of dimensions are useful in separating the data. The maintenance cost of a large DKDT
is high and may become prohibitive in extreme cases. To ensure manageability, the CDS
compresses a DKDT using compact splitting and branch coalescing mechanisms that ensure
each internal node has two children by eliminating nodes with only one child. We present
the DKDT construction algorithms next in Section 5.2.2.

The second design question is how to enable end points to find the relevant DKDT nodes
that may contain the nearest neighbor efficiently. In a centralized system, registrations and
queries can traverse the tree starting at the root to find the leaf nodes of interest, but such
a design is not desirable in a distributed system. There are several reasons: (i) the root
node of the tree would become a bottleneck if every registration and query must go through
it; and (ii) the end points would suffer a long delay, since the traversal of every level in the
tree involves at least one network round trip time. To avoid these problems, we extend the
ideas presented in the previous chapter, where a lightweight protocol is used to propagate
information within the RST. This results in two sets of protocols and algorithms:

e A distributed tree protocol, the tree maintenance protocol (TMP), that propagates
information about the tree structure along the path between each leaf node and the
root of the DKDT. As a result, endpoints can learn about the structure of the tree
without traversing the tree. The distributed tree protocol is described in Section 5.2.3.

e A set of endpoint algorithms that allow nodes to issue registrations and queries in a
fully distributed fashion. We present the endpoint algorithms in Section 5.3.

5.2. DISTRIBUTED KD-TREE 101

S,
" y O 0
X A g/\.af
€Y ()

Figure 5.1: (Left child corresponds to the space that has smaller value than the division
line; The ordering of dimension is x, y) (a) The locations of 5 data points in a 2-d space.
(b) The logical kd-tree with bucket size = 1. Squares denote empty cells.

A final design question is how to handle data sets with high dimensionality, where the
number of nodes that queries have to visit increases rapidly with the dimensionality. Given
the nature of high dimensional similarity searches, this problem is unavoidable [73]. To
reduce the number of DKDT nodes that has to be visited for a given query, we introduce
a technique called wvirtual node shrinking. The technique allows endpoints to eliminate as
many nodes as possible from the search space, by inspecting a compact representation of
the data points each node stores. We discuss the virtual node shrinking mechanism in
Section 5.4.

5.2 Distributed Kd-tree

We form a distributed kd-tree (DKDT) by embedding a logical kd-tree structure onto the
overlay network. To avoid terminology confusion, from here on, we refer to a node in the
logical kd-tree as a cell, and each cell is mapped onto one physical node in the network.

5.2.1 Kd-tree Mapping

We first describe the logical kd-tree data structure, which uses basic space partitioning.
Suppose the data points in the given application are distributed in a k£ dimensional space,
and the range of each dimension is known to all nodes in the system. Figure 5.1 shows an
example in a 2-d space. A cell, C, in the kd-tree corresponds to a k-dimensional hyper-
rectangle, which is defined by a vector that specifies its range along each dimension:

1 1 2 2 k k
Ve = {dl : [vminavmax)’dQ : [’Umz’n”umam)a ey A [Uminavmaac)}'

Each cell has at most 2 children, and it uses its discriminating dimension to create
the children. Since we use space partitioning, the division value used to create children
is the middle point along the discriminating dimension: (vi . + vi ..)/2. The left child
occupies the half space whose value along the discriminating dimension is less than the
division value. Similarly, the right child is responsible for values that are greater than the

102 CHAPTER 5. SUPPORTING SIMILARITY QUERIES

discriminating value. We assume a default ordering of the discriminating dimensions. The
root’s discriminating dimension may be selected arbitrarily, and a child’s discriminating
dimension is the dimension next to its parent’s in the ordering. The partitioning stops
when certain criteria are met, e.g., the number of data points within a cell becomes less
than or equal to a given bucket size, or the physical size of the leaf cell is smaller than a
given size.

The mapping of a logical kd-tree onto the CDS’s DHT-based overlay network is straight-
forward. To map a cell C' in the logical tree onto the overlay network, we apply the system-
wide hash function H to the cell’s vector, V-

H(Vc) — NVC' (52)

The physical node in the CDS network corresponding to this cell has an ID that is numer-
ically closest to Ny,. For simplicity, we refer to this node as Ny,. From an endpoint’s
point of view, once the vector of a cell is determined, the DKDT node that is responsible
for the cell can also be determined. We must point out that we can certainly map a cell
onto an LBM, i.e., a matrix of nodes, as we did in the previous chapter, when the number
of registrations is high within a cell. However, due to the different characteristics between
similarity queries and a range queries, using a matrix does not necessarily reduce the cost
of similarity queries. We will discuss this point in Section 5.3.3 after we explain the DKDT
mechanisms.

It is important to note that in this simple mapping mechanism, the number of dimensions
an application may have does not relate to the number of dimensions the underlying DHT
may have. This separation makes it possible for applications with different number of
dimensionality run on top of the same DHT. In particular, in the CDS, we use a DHT
whose identifiers lie in a 1-d numerical space, such as Chord [64] and Pastry [58]. Our
flexible design is in sharp contrast with the design of pSearch [65], which is built on top of a
multidimensional DHT, CAN [55]. In pSearch, the dimensionality of the application needs
to match the underlying CAN’s dimensionality. If the application dimensionality changes,
the DHT must be reconfigured and restarted. Different applications cannot coexist on the
same network, if their dimensionalities are different.

5.2.2 Tree Construction with Compact Splitting

We now explain how the DKDT is constructed in the system, i.e., which cells are instantiated
to form the distributed tree. The DKDT is built in a top-down fashion, starting with the
root node which corresponds to the root cell in the logical tree and covers the whole space
that all the data points lie in. We will present the data registration algorithm shortly, and
for now we only need to know that each data point is registered with the leaf node that
covers it in the DKDT.

Each node maintains a threshold of the total number of data points it can host, Tj.cq. If
Treg is crossed, it must split itself to create two children. With space partitioning, empty
cells (and thus cells with only one useful child) are often created in the logical tree, since
not every partitioning can separate the data. For example, in Figure 5.1, to separate data
points 1 and 2, it requires three divisions of the left half of the space (once along the z
dimension and twice along the y dimension). In DKDT, this means we may create a tree

5.2. DISTRIBUTED KD-TREE 103

s ' \. F] \;[.

A AN D% -

4
Figure 5.2: (a) 5 data points in a 2-d space. (b) Tree created without compact splitting. (c)

The final DKDT. Each circle represents a physical node in the DHT. The black rectangles
near a node are these nodes’ corresponding cells.

that has a large height, which is not desirable because that will incur higher overhead to
maintain the tree.

To avoid this problem, we design a compact splitting mechanism to ensure that after
each split, two child nodes are created and both can inherit part of the data points from the
parent node. We now describe the three steps in compact splitting by considering a node
that has reached its threshold. Figure 5.2 shows a 2-d DKDT example.

1. Locally determine the two child nodes’ dimensions. The node locally uses the
basic space partitioning algorithm as described before to create two child cells using
its discriminating dimension and value. The node then examines its data points, and
if all the points belong to only one child cell, the node would continue to divide that
cell recursively. When it obtains two cells that both contain some data points, it stops
the splitting.

2. Split data among two child nodes. Once the two child cells are determined, the
node determines two node IDs in the overlay network that correspond to these two
cells by applying the hash function to the cell as defined in Eq. 5.2. It then sends each
of its data point to one of the two nodes depending on which node covers the data
point. As a result two child nodes are recruited to the DKDT, and the tree grows
downwards.

3. Compress parent node’s dimension if necessary. It is important to note that
the union of the two children cells may be much smaller than the size of the parent
node’s cell due to compact splitting. After spawning the children, the parent node
replaces its own cell with the union of the two children’s cells. The benefit of using
the union is that it reflects more accurately the data distribution within this node’s
space. For example, in Figure 5.2, the node that owns the left half of the space creates
two small cells that divide data point 1 and 2. Its size is much larger than the cell at
the top left corner that covers both 1 and 2 directly. Therefore it replaces its original
cell with the top left cell, indicated by the black rectangle.

In addition to the splitting action, two child nodes may merge when both have small
number of data points. They merge by shipping their data points to the parent, and the

104 CHAPTER 5. SUPPORTING SIMILARITY QUERIES

tree then shrinks upwards. This is important in a dynamic environment when the data set
becomes smaller: the DKDT tree should become smaller correspondingly for management.

The compact splitting mechanism avoids creating one-child branches in the DKDT, and
it is done in a distributed fashion in that decisions regarding the creation of children are
made locally and no global re-adjustment is needed when splitting occurs. The DKDT
created this way is similar to a BD-tree [49], which was proposed to compress a centralized
kd-tree’s size.

5.2.3 Distributed Tree Maintenance

In a centralized kd-tree, data insertion/registration and query involve traversing the tree
from the root. However, when using the DKDT, sending all registrations and queries to the
root first and then let the root node forward messages down the tree creates two problems:
(1) the root node will become a bottleneck of the system when load is high; (2) the end
points will potentially suffer a long delay, since each forwarding step involves an end-to-end
message transfer over the network.

To efficiently use the DKDT, we extend the idea proposed in the previous chapter, where
a lightweight protocol (PMP) is used to propagate and maintain the status of a distributed
1-d range search tree to support range queries. The idea here is to design a similar protocol
that allows each node in the DKDT to collect and build a snapshot of the current tree
shape, so that endpoints can register and query without having to traverse the tree. This
is similar in spirit to building routing tables on the Internet via a routing protocol, such as
OSPF [46], for packet delivering.

We first describe the DKDT’s Tree Maintenance Protocol (TMP), which is similar to the
PMP. Due to the multi-dimensional nature of the data, coupled with the compact splitting
algorithm, the TMP is more complex than the PMP.

The tree maintenance protocol (TMP)

The purpose of the TMP is to allow endpoints to find out the status of the DKDT in a dis-
tributed fashion without having to traverse the tree from the root node. Each DKDT node
builds and maintains a local database, called the Tree Information Base (TIB), which con-
tains the current shape of the tree, in particular, it maintains the cell vector corresponding
to each node. Similar to the PMP, there are two types of periodic messages to establish the
TIB: the Tree Refreshing (TR) messages and the Tree Refreshing Reply (TRR) messages.
Figure 5.3(a) shows an example.

First, each node in the DKDT periodically sends a tree refreshing (TR) message to its
parent. A node knows its parent’s dimensions, and thus the parent’s ID, when the node
was created by its parent via splitting. The TR message carries the part of its TIB that
corresponds to the subtree rooted at this node. As a special case, the TR message from a
leaf node would just contain its own dimension.

A parent node waits for the TR message from both children. If one or both of them do
not arrive within a preset time, it will assume the child(ren) has left (or crashed). We will
discuss how that is handled next. For now, assume it receives both TR messages, and the
node will then update its TIB using the new information in the TR messages. It will in turn
send another TR message up to its parent, which includes its updated subtree information.

5.2. DISTRIBUTED KD-TREE 105

N

© ©)

Figure 5.3: Example illustrating the tree maintenance protocol (TMP). (a) Normal message
exchange. (b) Node 3 and 5 leave. (c) Branch coalescing. (d) DKDT after coalescing.

The TR messages will eventually propagate to the root. After one pass of the TR message,
each node updates its subtree part of the TIB, and the root collects the full tree information.

Conversely, once the root node receives TR messages from its children, it will start
sending one round of Tree Refreshing Reply (TRR) messages to its children. The goal of
the TRR messages is to allow a node to update its information about parts of the DKDT
other than its own subtree. Therefore, the TRR message from a parent to a child contains
the full TIB on this node excluding the subtree part received from this child. For example,
the root will send to its left child the part of the TIB corresponding to the right half of the
tree. Upon receiving a TRR message, a node will first update its corresponding part of the
TIB, and then sends its own TRR to its children.

After completing one round of TR/TRR message exchange, each DKDT node is able
to establish/update its view of the current tree shape. As a simple optimization, in future
rounds of TR/TRR message exchanges, instead of sending the complete information, a TR
or TRR message only includes the parts of the tree whose shape has changed. For example,
in a TR message, if the corresponding subtree did not change over the last time period,
then the body of the message will be empty.

106 CHAPTER 5. SUPPORTING SIMILARITY QUERIES
Handle node departure

Nodes in the DKDT may depart from the tree for several reasons. For example, a leaf node
may leave the tree if its data points expire. Nodes may leave the system due to a crash. The
consequence of a leaf node departure is different from an internal node departure. When a,
leaf node leaves, a branch containing only 1 child will be created, and the tree will become
unnecessarily high, but the tree is still connected. On the other hand, if an internal node
leaves, the DKDT will become disconnected. Depending on whether the departing node is
a leaf or an internal node, we handle them differently as follows.

Handle leaf departure. When a leaf node leaves, the DKDT may end up having
branches that have only one node. For example, Figure 5.3(b) shows the messages when
nodes that host data point 3 and 5 leave, and the right half of the DKDT becomes a single
branch. To reduce the height of the tree and thus minimize cost, we extend the basic TMP
protocol to eliminate nodes that have only 1 child with the following rule:

After the TIB is established, a node will send TR message only to its lowest ancestor
that has 2 children.

A node knows which of its ancestor meets this requirement by examining its TIB. With
this rule, if a node (except the root) has only 1 child, e.g., the two middle nodes in the right
branch in Figure 5.3(c), will not receive TR message in the next round and thus it will not
send new TR message of its own. Subsequently, since a node only sends TRR messages
to nodes from which it received a TR message before, these nodes will also stop receiving
TRR messages. As a result, they are excluded from the DKDT, and the tree retains its
compressed form.

We call this process of skipping nodes branch coalescing. By coalescing, paths are
compressed and the resulting tree is consistent with the tree when it was first created using
the compact splitting algorithm. Figure 5.3(d) shows the final tree shape after coalescing.

Handle internal node departure. When an internal node departs, or the parent
child relationship is lost, a child node may continue to send TR messages, but it will not
receive TRR messages. This node is effectively detached from the tree. When this occurs,
the node must try to reconnect to the DKDT. It does so by sending a TR message to its
default parent, which corresponds to the parent cell in the logical kd-tree without compact
splitting. The child node can determine its default parent’s cell size by local inference.
In particular, suppose the child’s discriminating dimension is d;, since we assume a default
ordering of the dimensions, its default parent’s discriminating dimension is d; 1 (dj if 7 = 0),
and the parent’s cell size is double the child’s size along d;_; dimension, and for all other
dimensions, the size is the same as the child’s.

The default parent node itself may not be in the DKDT, but when it receives TR
messages, it will forward them up to its default parent as if it were in the tree. As such,
TR messages will eventually reach a node that is in the DKDT, and the node that lost its
original parent now rejoins the tree. As a side effect, the default parent nodes will become
part of the DKDT due to the the reconnection process, and these nodes may have only
one child. However, if this is the case, they will be eliminated by the the branch coalescing
mechanism in future rounds of message exchanges.

5.2. DISTRIBUTED KD-TREE 107

5.2.4 Overhead of the TMP

We examine the cost of maintaining the DKDT. There are three factors that determine the
overhead, namely the size of the DKDT (the number of nodes in the DKDT), the TMP
message size and the TMP message frequency.

First, the size of the DKDT, or the number of nodes in the DKDT, determines the
number of TMP messages needed in each refreshing round. The compact splitting and
branch coalescing techniques ensure that no single branches will be created in the DKDT.
The total number of nodes in the DKDT is bounded by its number of leaves. This is due
to the following theorem.

Theorem 2. Given a tree, if nodes in the tree either have 2 or 0 child, we call this type of
tree o compact tree. The size (total number of nodes) of a compact tree is 2L — 1, where
L is the number of leaves.

Proof. We prove by induction. As the base case, the smallest compact tree is a tree with
a single node (one leaf, L = 1), and its size is 1 (= 2L — 1). Thus the theorem holds. The
theorem also holds for the second smallest compact tree, which has 3 nodes and L = 2.

Now consider the size of an arbitrary compact tree that has L leaves, where L > 1. Since
it is a compact tree, the root node must have 2 children. Both the left and right subtree
must also be compact trees (otherwise, the full tree will not be a compact tree). Suppose
the left and right subtree has [and r leaves respectively, and use the induction hypothesis,
their sizes are 2] — 1 and 2r — 1. The full tree’s size is:

T=1+Tiep+Trighy =1+ @ — 1)+ @2r—1)=2(+7) -1

We know [+ r = L, since a tree’s leaves is composed of the leaves in its left subtree and
right subtree. Thus we show that the tree’s size is 2L — 1. O

In a DKDT, the compact splitting algorithm ensures that L = O(%@g), where N is the

total number of data points in the system. As such, the size of the DKDT is O(%eg). The
total number of TR (or TRR) messages needed in each message exchange round is equal
to the number of nodes in the DKDT, since each node sends at most 1 TR message. As
an example, suppose there are N = 100,000 data points in an application (e.g., 100,000
sensors), and each node in the CDS can take T;., = 1000 registrations. In this case, the
number of nodes needed in the DKDT is on the order of 200, and the total number of TR
and TRR messages in each round is about 400. This is a very reasonable number for an
application of this size. As a comparison, the size of a non-compact tree is unbounded.

We must note that the height of the DKDT is also important, since it determines
the number of hops that a TR/TRR message must traverse. Because the tree is created
using space partitioning, the tree may not be balanced, and the height may be larger than
O(log L). Previous work [9] has shown that the height of a kd-tree created using empirical
data based on space partitioning does not deviate much from this bound. As we will explain
in the next section, since end points do not traverse the tree, the effect of the height on
registrations and queries is not significant.

Second, we examine the size of the TR/TRR messages. The message size is no larger
than the TIB on a node, which contains an entry for each node in the DKDT. However,

108 CHAPTER 5. SUPPORTING SIMILARITY QUERIES

the full TIB will be sent to a child node only when it is first recruited by its parent. Even
in this case, since we only need to send each node’s vector dimensions, not the data points
that a node contains, the size of the initial message would still be reasonable.

More specifically, to represent each node, a k dimensional vector must be used. As such,
the size of the initial message is O(%), where k is the number of dimensions. In the above
example, there are about 200 nodes in the tree, and suppose the application has k = 6
dimensions, and we use 8 bytes to represent each dimension (2 integers). The maximum
message size is thus 200 - 6 - 8§ = 10KB.

After the TIB is established, in a future round of TR/TRR messages, since we only
send the differences of the tree shape between now and the previous round, the message
size could be very small. For example, if the tree shape did not change, then the size of
TMP messages are negligible.

Third, the frequency of the TMP message exchange can be set relatively low, since the
shape of the DKDT does not change often. There are primarily two reasons for this. (1)
The change of the tree shape is a relatively rare event, since it happens only when a node
needs to split itself. Since each network node can host a large number of data points (e.g.,
on the order of 10°), this does not happen often in comparison to the data registration or
query rate. (2) In the type of applications that the CDS is targeting, information such as
geographical locations, content vectors, do not change very often, and once all the data
points have been registered, the tree shape may change only if there is major shift of the
data distribution, which again occurs on a slower time scale.

In summary, the TMP protocol is relatively lightweight, and the overhead it introduces
while maintaining the TIB on DKDT nodes is low.

5.3 Endpoint Algorithms

With the TIB established on nodes in the DKDT, endpoints can carry out registrations and
queries efficiently in a distributed fashion.

5.3.1 Registration

To register a data point, p : {d1 = v1,ds = ve,...,dx, = v}, the registering endpoint must
first determine the lowest node in the DKDT that covers this data point. We say a node
with vector

Vo ={d1 : [v},,, 0} .0),do : [V2, 0200s), s die = 055 0E)}

min’ “mazx min’ Ymax min’ Ymax

covers data point p, if the following holds:
vt <0y < Vb, for i =1 to k.

With TIB built on each DKDT node, this is done by probing rather than traversing the
tree. For any data point, there exists exactly one cell at each level in the logical kd-tree
that covers it. The registering node first locally computes the path and then issues a probe
message to a random node within this path.

The node being probed may or may not be in the DKDT. If the node being probed is
not in the DKDT, e.g., it may be skipped due to the compact splitting, or has not been

5.3. ENDPOINT ALGORITHMS 109

recruited by the DKDT yet, it will return NULL. When the probing endpoint gets such a
response back, since the ordering of the cells in the path is known, the endpoint conducts
a simple binary search along the path between the probed node and the root until it finds
a node in the DKDT.

When a node in the DKDT receives a probe message, it will determine the lowest
covering node for this data point by examining its local TIB. It then returns to the probing
node the covering node P’s dimension. If P is an internal node, it will also return P’s two
children, C; and C,.

Once the registering node receives the probing results, it runs a local algorithm to
complete the registration. The covering node P may be a leaf node or an internal node.
We describe the registration algorithm for theses two cases separately.

(1) If P is a leaf node, then the registering node sends the data point, p, to it. On
node P, if after receiving the new data point, the threshold T}, is crossed, it will conduct
compact splitting as we discussed earlier in Section 5.2.2.

(2) If P is a non-leaf node, then this means that the new data point falls in a space
that is not covered by any leaf node. The registration becomes more complex because we
must maintain the DKD'T’s property. The registering node enumerates all three possible
configurations between the new data point p, and the three nodes, P, C;, and C, based on
P’s discriminating dimension and value. (See Figure 5.4 for an example in 2-d):

1. C; and C, belong to two different half planes, and p belongs to one of the half plane.
2. C; and C, belong to the same half plane, and p belongs to the other half plane;

3. C; and C, belong to the same half plane as p.

Since P is an internal node and neither of its two children covers p, the registering node
must send its data point to a new leaf node in the system. In addition, a new internal node
will be introduced to maintain the DKDT relationship. More specifically, there are three
steps involved in registering a data point in this case.

e Step 1: Locally determine the new leaf node and internal node’s dimen-
sions.

The registering node must first determine the dimension of the new leaf node. The rule
to add a new non-leaf node is to make sure that the new node is the lowest common
ancestor that covers either p and a child (case (1) and (3)) or the two children (case
(2)). For example, for case (1) shown in Figure 5.4(1), where p and C, are in the
same half plane, the new cell, C7, is the right half plane, which is the lowest common
ancestor that covers p and C,.

o Step 2: Register with the new leaf node

The registering node then sends the data point p to the new leaf node for registration.

e Step 3: Tree grafting

Finally, the registering node issues several “grafting” messages to link the new leaf
node and internal node to the DKDT. For example, in Figure 5.4(1), it informs C,

110 CHAPTER 5. SUPPORTING SIMILARITY QUERIES

‘ e

e

w
o‘»

=0
: X : 4&25@

®

Figure 5.4: Example showing the three configurations when the covering node is a non-leaf.
In all cases, the new data point is 5, and P is the current covering node and C; and C, are
the children. The center figures show the DKDTs before 5’s arrival, and the right figures
show the tree after the registration.

that its new parent is C] and informs C] the new parent is P. Once the new nodes
are added, they will start to send and subsequently receive TMP messages.

Registration Cost

From an endpoint’s viewpoint, its registration cost comes from two types of operations.
When using binary probing, the number of probing messages needed is O(log H), where H
is the path length. This cost is small given a reasonable tree size. In addition, as we have
done before, the probing result can be cached by the registering node for future registrations,
so that the probing step may be omitted all together. Once the covering node is found, the
actual registration costs one network message and several grafting messages if necessary.
Hence, the cost of registering a data point is low, and our system is efficient for registration
while not creating any bottlenecks.

5.3.2 Query

A node in the system may issue a nearest neighbor query, which also takes the form of a
k-dimensional vector ¢ : {d; = vi,da = va,...,dx = vk}. The resolution of an NN query
using a DKDT requires three steps: (1) The querying node must first determine which node

5.3. ENDPOINT ALGORITHMS 111

1: CoMPUTE-DIST-TO-CELL(Cell Vi, Point ¢) {
2 dist_sq = 0;

3 foreach dimension i {

£ g < Vo) {

5: dist_sq+ = (q.v; — Vvl)%
6 } else if (q.v; > Vol) {

7 dist_sq+ = (q.v; — Vovl,..)%
8 }

9: }

10: return SQRT(dist_sq);

11:}

Figure 5.5: The algorithm to calculate the distance between a query point and a cell vector.

in the DKDT covers the query vector; (2) It then sends to query to the covering node (or
its subtree) to find the first candidate neighbor; and (3) To determine the final nearest
neighbor, the querying node then sends the query to a list of nodes whose distance to the
query is closer than the candidatate neighbor’s distance. We now describe these steps in
more detail.

e Step 1: Determine the covering node

First, the querying node must determine the lowest node that covers the query point.
Similar to the registration step, this is done by probing the tree, and we treat the query
point as a data point. When a node receives a query probe, it examines its TIB and
finds out the covering node’s vector. The covering node’s vector as well as the vectors
of any leaf nodes in the covering node’s subtree are returned the querying node. In
the example shown in Figure 5.7, the node that contains data point 5 is returned,
since its cell covers the query ¢g. Once the querying node receives the probe return
message, it will enqueue the list of nodes into a priority queue sorted in ascending
order based on the distance from the query to each of the nodes. We call this queue
the Candidate Node List, or CNL.

We use Euclidean distance as the distance metric, and the distance between a query
and a node is computed using the simple algorithm shown in Figure 5.5. The basic idea
is to determine for each dimension the nearest distance between the data point and
the hyper-rectangle. Along a given dimension, if the data point’s value is outside the
hyper-rectangle’s range, the distance is the difference between the data point’s value
and the minimum or maximum value of the hyper-rectangle along that dimension. If
the data point is within the range along one dimension, then the distance along this
dimension is 0. Figure 5.6 is an example of the distance computation in 2-d.

e Step 2: Determine the first candidate neighbor

The querying node dequeues the first node from the CNL, and sends the query to
the corresponding node (node 5 in Figure 5.7). The node receiving the query does
the following: (1) from its local database, it finds the closest data point p’, whose
distance to ¢ is r; and (2) it checks its TIB, and determines a list of leaf nodes in the

112 CHAPTER 5. SUPPORTING SIMILARITY QUERIES

y
Ymax | 01®
J p2 @
min [T T
x ,y) ! |
qa q | 1
X X X
min max

Figure 5.6: A 2d example of computing the distance between a query point and a cell.

tree whose distance to ¢ is less than r (node 4 and 1 in Figure 5.7). These nodes may
contain a closer data point. Finally, it returns p’ along with the list to the querying
node.

e Step 3: Determine the final nearest neighbor

Once the querying node gets p' and the new list of nodes, it will enqueue nodes in
this list into the CNL. Data point p’ is known as the first candidate neighbor. The
reason that this list is called the candidate list is that nodes on the list may contain
data points that are closer than p’. The querying node then dequeues the first node
from the queue, and sends the query to it. To a candidate node, the query ¢ is known
as a candidate query. Each node that receives the query returns the closest point on
that node. The querying node updates its candidate neighbor if a closer data point
is found. It stops issuing query when the current candidate nearest neighbor is closer
than the distance of the next node to be dequeued. For example, in Figure 5.7, after
data point 4 is found, the processes stops and node 1 will not be queried, since its
distance is farther than the distance between ¢ and 4. In this case, data point 4 is
the nearest neighbor. What we described here is an iterative mechanism, where one
query message is sent each time. As a simple optimization to reduce latency, the
end point may choose to dequeue multiple nodes at once and send query to them
simultaneously. This algorithm can be easily extended to find K nearest neighbors
(KNN) by maintaining K candidate neighbors rather than 1.

Query Cost

The cost of resolving a query is determined by the number of nodes the querying node
must visit. Through the use of centralized kd-trees, Friedman, Bentley and Finkel [26]
showed that O(log N) query time is achievable in the expected case, where N is the number
of data points. Since the distributed algorithm follows the centralized kd-tree algorithm,

5.3. ENDPOINT ALGORITHMS 113

5 a5
poe /
! ° |
\ Y
R
o)
4
, o

@ (b)

NO

w
w

Figure 5.7: Example illustrating the query process. (a) 5 is the first candidate neighbor. 4
is the NN. (b) DKDT, and filled nodes’ cells are enqueued.

the expected number of query messages needed to resolve an NN query is also O(log N).
Further more, based on our analysis in Section 5.2.4, the number of leaf nodes in the DKDT
L= O(%@g), and hence the query cost is O(log N) = O(log L). However, we must note

that the constant factors hidden in the asymptotic bound contain 2¥, which will make the
cost become much larger than log L when the dimensionality k increases. We will discuss
how we handle this in the next section.

5.3.3 DKDT and LBM

As we alluded to earlier, when we map a kd-tree cell onto the overlay network, unlike what
we did in the last chapter, here we only map it onto 1 physical node instead of an LBM.
For range queries, since we know the size of a query, the most efficient way of resolving the
query is to use the level in the RST that corresponds to the length of the range if possible.
This is why handling queries with different ranges efficiently requires the aggregation of
registrations at different levels of the RST using LBMs.

However, to resolve a similarity query, multiple partitions at a high level will not be
helpful. We use our earlier example to illustrate why. With N = 100,000 and T4, if
we use an LBM at the root level to host all the data points, the root level will have 100
partitions. To resolve any similarity query, all the 100 partitions must be visited. On the
other hand, when we use a DKDT for this application, since the DKDT is formed in a
top-down fashion, and leaves will be created only if a parent node reaches its threshold, the
DKDT will have approximately 100 leaves. This equals the number of partitions above.
For any nearest neighbor query, it is likely that that query will not be sent to all the leaves,
since the tree structure will cut down the search space dramatically. What this means is
that for similarity queries, the performance of using a tree will never be worse than using a
matrix which provides no indexing information. Therefore, we do not keep data at internal
levels of the DKDT. Of course, if we will also use the DKDT for multidimensional range
queries, LBMs at high levels will certainly be useful for these queries.

114 CHAPTER 5. SUPPORTING SIMILARITY QUERIES

y y —
5 2 -5
° e/ °
\\ : 1: " q \\
| - | [] |
./4 :ﬁ,,“ :ﬁ\\,\,“ ./4
:. : 3 .i -
| 6\
3. L ‘,,,7\ 3.
X X
@ (b)

Figure 5.8: Virtual node shrinking example. (a) Without shrinking. (b) Shrinking by
creating sub-trees. Dotted boxes denote sub-tree cells.

5.4 Virtual Node Shrinking

Mechanisms based on kd-trees work well for low dimensionality data, since the internal nodes
can guide queries to cut down the search space quickly. However, all tree based indexing
schemes suffer as dimensionality increases. This is known as the curse-of-dimensionality
problem in the literature [73].

In DKDT, when a query determines whether to visit a node, it uses its distance to the
node (the boundaries of the cell) to approximate its distance to data points within the node.
This may be a bad approximation specially when the node’s cell contains large empty space
and the data points are clustered. As an example, in Figure 5.6, the distance between ¢
and the cell is a poor estimation of the distance to data point p; or ps. This problem is
especially prominent for high dimensionality datasets: when 2% >> N, within each leaf
node’s cell, data points are distributed sparsely [73]. Consequentially, for any query, it is
likely that every leaf node will appear in the query’s candidate list and has to be visited.
For example, in Figure 5.8, the four inner squares denote four leaf nodes in a DKDT, each
of which hosts at most 2 data points. For query g, it is covered by the node who contains
data point 5. The candidate list for ¢ includes the other 3 leaf nodes, since the circle around
it intersects with all of them. However, for the two leaf nodes on the left, their data points
are far away from ¢ and ideally should not be visited.

To improve query performance, i.e., reduce the number of nodes to be visited, we design
an adaptive virtual shrinking mechanism that depending on the type of queries it receives
and the data distribution within its cell, a node may “reduce” its cell size to reflect more
accurately the type of data points it has. This way, future queries may be able to avoid
visiting this node.

The virtual shrinking on a node occurs when both of the following criteria are met: (1)
the node receives frequent candidate queries (exceeds a threshold); and (2) the candidate
query’s hyper-sphere does not intersect with any of the data points on this node. The first
criteria means that the node is in the vicinity of many queries, and the second criteria means
it the data points in this node are not close to the boundary and the distance estimation is
poor.

If both criteria are met, the node makes a decision to give a more accurate representation

5.5. EVALUATION 115

of the data within it, and then propagate this information in the TMP messages. This
way, in the second step of query resolution, the first node being queried will determine its
candidate list by computing the distance from the query point to the finer representation
of each leaf node. In Figure 5.8(a), the criteria are met on the two left nodes, but not on
the lower right node, since data point 4 is within the circle.

There are many ways of shrinking a cell. For example, we can create a minimum
bounding rectangle (MBR [11]) or further split the data within the cell to create an internal
tree. In Figure 5.8(b), the two left nodes create virtual trees within themselves. In this
example, ¢’s candidate list will not include the top left node, since the distance from ¢ to
either of its two smaller sub-tree cells is larger than the first neighbor 5’s distance.

The main issue with this scheme is that after virtual shrinking, this new representation
must be propagated throughout the tree, so that it can be used by endpoints. Inevitably,
adding information to the TMP messages increases the cost of the TMP. To ensure a low
overhead, we leverage the VA-file mechanisms [73]. In particular, when a node decides
virtual shrinking is necessary, it uses a small number of bits, b;, (e.g., b; = 2 — 4) along
each dimension to divide its cell and create a grid. The VA-file representation of the data
points in the cell is the list of sub-cells within the cell that contain any data point, so each
sub-cell is represented using b; bits along each dimension depending on its location within
that dimension. This representation is small in comparison to the complete representation
of the data points as shown in [73]. As an example, in Figure 5.9(a), a node contains 5
data points, and its cell is defined by vector (Zmin, Tmaz)s (Ymins Ymaz)- The node decides
to use 2 bits to divide each of the dimensions, and this results in 5 sub-cells that contain
the 5 points, as shown in Figure 5.9(b). For example, to represent the top left sub-cell that
contains data point 2, four bits are needed (00, 10), where 00 indicates that this sub-cell is
located left-most along the z dimension, and 11 indicates that it is located top-most along
the y dimension.

Once a VA-file representation is chosen, each node will send out its cell’s VA-file repre-
sentation in addition to its cell vector in future rounds of TMP message exchange. Subse-
quently, the TIB on each node will replace each node’s entry with the VA-file representation.
The registration algorithm is carried out as before. The query algorithm is changed in that
the distance computation function is different from before. Instead of determining the dis-
tance based on the boundaries of the cell, the distance between the query point and the cell
is determined by the distance between the query point and the closest sub-cell in the VA-file
representation. This can be achieved since once a node’s dimensions and the number of bits
it uses to divide each dimension are known, each sub-cell’s actual dimensions are is easily
determined for the distance computation use. Figure 5.10 uses the same example shown in
Figure 5.6, and shows the improvement of the distance estimation between the query point
q and the data points p; and po by using VA-file.

5.5 Evaluation

We incorporated the DKDT mechanisms in the CDS simulator presented in Section 3.4.1. In
this section, we present evaluation results obtained from simulation. We use both synthetic
data sets and the music dataset to drive the simulation. Each synthetic data set has
100,000 data points with a certain number of dimensions. The domain of each dimension

116 CHAPTER 5. SUPPORTING SIMILARITY QUERIES

Y max Before Shrinking:

11 S

(Xmin, Xmax) (Ymin, Y max)
10 oD
After Shrinking:

o1 ®4 (Xmin, Xmax) (Ymin, Y max)

00 ° (00,10) (00,11) (11,00) (11,01) (10,10)
Ymin 3

060 01 10 11
Xmin Xmax
(@ (b)

Figure 5.9: Virtual shrinking using VA-file representation. (a) Use 2 bits to divide a 2-d
space with 5 data points. (b) The information transferred before and after shrinking.

y
ymax pl @
,,,,,,,,,,,,, p2
Ymin [old > ;
distance .~ New !
distance !
x .y) | |
a 9 | 1
X . X X
min max

Figure 5.10: Distance computation with virtual shrinking.

is [0,20000). For the synthetic data sets, we use two distributions: (1) In the uniform
distribution, a random position is generated in the k-d space for each data point. (2) In
the clustered distribution, we first generate 100 cluster centers uniformly, then for each data
center, we generate 1000 data points following a Normal distribution with ¢ = 100 around
the center and along each dimension. The music data set consists of 5000 30-d feature
vectors extracted from a set of assorted mp3 files as we described in Section 3.4.2.

For the query load, the synthetic data sets consist of 5000 uniformly distributed queries
for both the uniform and clustered distribution. For the mp3 data set, we use the feature
vectors also as queries, and here we find 2 nearest neighbors instead of 1, since the first
nearest neighbor is the data point itself.

In our experiments, we set up an overlay network that has 20,000 nodes, and we set
the T4 on each node to be 100. The sender of a data point or query is chosen randomly
among all nodes. To demonstrate the effectiveness of our system, we show the performance
for queries, evaluate the DKDT maintenance cost, and study the importance of the virtual
shrinking mechanism for high dimensionality datasets.

5.5. EVALUATION 117

100 —
80 |
. 60} |
S
L
[a)
© 4t |
2T 2-d Uniform —— |
| : 6-d Uniform -
ot e 12-d Uniform -
! 10 100 1000

Number of query messages

Figure 5.11: Cumulative distribution of query cost for uniform data sets.

5.5.1 Query Performance

We first examine the query performance in terms of the number of messages needed to
resolve a nearest neighbor query. Here, the system only uses the basic DKDT mechanisms
without virtual node shrinking. For each experiment, we first inject a registration load
into the network and after all the data points are registered, we then inject a query load.
We record the number of query messages needed to resolve each query. Figure 5.11 shows
the distribution of the number of query messages for the uniform data sets with different
dimensionalities. The DKDTs in different scenarios all have about 1500 leaf nodes. A naive
linear algorithm to resolve a similarity query would have to visit all the leaf nodes.

As can be seen in the figure, for low dimensionality, e.g., k = 2,3, the system is very
efficient in that all the queries need to visit less than 10 nodes to find its nearest neighbor.
As dimensionality increases, for k < 6, the performance is still very good: for example, over
90% of the queries need less than 20 messages. The performance starts to degrade for larger
k. When k = 12, over 40% queries need to visit 100 or more leaves in the system. This shows
the limitation of kd-trees. For k = 6,12, we further compare the query performance using
the clustered data set. Figure 5.12 shows that the performance is similar to the uniform
data set.

The performance we observe here is consistent with centralized kd-tree based searching
algorithm. We conclude that the DKDT mechanisms can effectively cut down the search
space for nearest neighbor queries and thus are efficient to resolve endpoints’ queries in a
distributed fashion. The system works well when the dimensionality is reasonably small.

5.5.2 DKDT Maintenance Cost

In this section, we evaluate the overhead of the tree maintenance protocol. First, we note
that an important advantage of the kd-tree based mechanism is that from a node’s point

118 CHAPTER 5. SUPPORTING SIMILARITY QUERIES

100

80

CDF (%)
(2]
o

D
o

20 6-d Uniform ——— 7

12-d Uniform ===
12‘-d Clustered

100 1000
Number of query messages

Figure 5.12: Query cost comparison for uniform and clustered data sets.

of view, in each round of message exchange, the number of maintenance messages sent and
received is constant and independent of the data/query distribution or the dimensionality.
In particular, a node receives at most 2 TR messages, 1 PRR message, and it sends 1 TR
message and 2 TRR messages in each round. This is especially important as it avoids the
typical problem encountered by tree based system where nodes higher up in the tree are
often overloaded. As an example, in a design that is based on PR Quadtree [60], each node
may have up to 2* children, and a node will easily be inundated by the number of messages
from its children for a larger k.

From the system’s point of view, the total overhead of the DKDT maintenance protocol
is determined by the size and height of the tree. First, we examine the number of hops a
TR/TRR message initiated by the leaves or root must go through in each round of message
exchange. The number of hops correspond to the number of levels between each leaf node
and the root. Figure 5.13 compares two scenarios, with and without compact splitting when
constructing the DKDT for the clustered data sets. For both & = 6 and 12, using com-
pact splitting, the average number of hops is about 15 (the two curves essentially overlap),
and it is primarily dependent on the number of data points and not the number of dimen-
sions. In contrast, without compact splitting, the number of hops increases dramatically as
dimensionality increases.

We then examine the size of the DKDT in these two scenarios. With compact splitting,
for k = 6, there are 2786 internal nodes and 2787 leaf nodes in the DKDT, and the numbers
are 3039 and 3040 for £ = 12. Without compact splitting, the number of leaves are the
same, but the tree sizes explode due to many internal nodes involved in the DKDT (5599
and 10525 internal nodes for £ = 6 and 12 respectively). Table 5.1 provides a summary of
the DKDT height and size comparison for these two scenarios.

We also experimented with the uniform data sets. As expected, the size and height of
the tree with and without compact splitting are similar, since when the data are uniformly
distributed, the DKDT is naturally balanced when it is created.

5.5. EVALUATION 119

100
80 i
_. 60 |
S
LL
)
© a0t |
20 6-d Clustered (Compact splitting) —— |
12-d Clustered (Compact splitting) =+
0 ~..12-d"Clustered (w/o compact splitting)

0 10 20 30 40 50 60 70 80
Number of hops

Figure 5.13: CDF of TMP message hops for clustered data sets.

Table 5.1: Summary of DKDT height and size for 6-d and 12-d clustered data sets with
and without compact splitting.

| 6-d | 6-d w/o | 12-d | 12-d w/o |

DKDT height

Average 15.3 | 31.7 15.7 | 51.9
Min 6 6 6 6
Max 24 41 31 72

DKDT size \

Num. of internal nodes | 2786 | 5599 3039 | 10525
Num. of leaf nodes: 2787 | 2787 3040 | 3040

In summary, the DKDT maintenance overhead is reasonably small and the compact
splitting construction algorithm is vitally important to ensure a manageable DKDT, espe-
cially for realistic clustered data sets.

5.5.3 Effectiveness of Virtual Shrinking

We now examine the importance of the virtual shrinking technique in improving system
performance for high dimensionality data sets. For the experiments shown here, we use
both the synthetic datasets and the music data set.

Evaluation using Synthetic Dataset

First, we run experiments using the synthetic data sets with £ = 12. Figure 5.14 shows the
query performance improvement for random and clustered data sets. In this figure, “2 bits”
means a node can use 2 bits to divide along each dimension for virtual shrinking. For both

120 CHAPTER 5. SUPPORTING SIMILARITY QUERIES

cases, the improvement is significant: the average number of query messages drops from
105 to 54 for the clustered data and from 125 to 64 for the uniform data set.

We further test the effectiveness of the mechanism using another synthetic clustered
dataset, which has 500 uniformly chosen cluster centers and each cluster has 200 uniformly
chosen points within a radius of 100. We call this clustered data set the Clustered (Uni-
form), and our previous clustered dataset, Clustered (Normal). Figure 5.15 compares the
performance improvement of these two datasets. The improvement for the Clustered (Uni-
form) is very significant: the average number of query messages drops from 124 to 14. This
is because, unlike in a Normal distribution where data can be fairly spread out, in this
data set, the data points are contained within fixed ranges. As such, there are more “white
spaces” near the boundaries of a cell, and it offers more opportunity for virtual shrinking.

These results validate our design: virtual shrinking makes a node’s effective size smaller,
and thus reduces the cost of queries. This technique is specially useful for highly clustered
data, since it provides more opportunities for nodes to shrink itself and thus allows endpoints
to significantly cut down a query’s search space.

100
80
~ 60 r
&S
L
[a)
© 4}
20 ; 12-d Uniform —— |
/ . 4 12-d Clustered -
o L L ‘ ‘ ‘ _12-d Clustered 2 bits -

0 50 100 150 200 250 300 350 400 450 500
Number of query messages

Figure 5.14: Effect of virtual shrinking on query performance.

Evaluation using Music Dataset

We then test the effectiveness of the virtual shrinking using the mp3 data set. This dataset
has fewer data points (5000), but it has a large dimensionality, & = 30 (5000 << 23%). Using
the same threshold (7}, = 100), the DKDT created has 119 leaf nodes.

Figure 5.16 shows that without virtual shrinking, as we expected, the system degrades
to linear search for most of the queries: about 80% of the queries need to visit more than
80% of the leaf nodes to find the nearest neighbor. However, with virtual shrinking, the
performance improves significantly as a node uses more bits to divide its space. In particular,
when 4 bits are used, the average number of query messages needed per query reduces to
less than 10. The effectiveness of virtual shrinking verifies that for high dimensionality data

5.6. RELATED WORK 121

loo e
80 |
—~ 60 |
S
[T
a
© 40} |
00 4 12-d Clustered (Uniform) ——
‘ 12-d Clustered (Normal) -
‘ ‘ 12-d Clustered (Normal) 2 bits

0

0 50 100 150 200 250 300 350 400 450 500
Number of query messages

Figure 5.15: Comparison of the effect of virtual shrinking using 2 different clustered data
sets.

sets, it is often the case that cells are sparsely populated, and there are many empty spaces
in a cell.

The extra amount of data carried in the TMP due to the virtual shrinking is tolerable.
In this experiment, for a 30-d space, for a node that has 100 data points and using 4 bits
per dimension, the extra amount of data in a PR message that must be transferred is at
most 100 - 30 - 4/8 = 1500 bytes, if each data point occupies a different sub-cell.

For the above experiments, we also examine the query load observed on each node in the
DKDT under different division granularities. After each experiment, we tally the number of
candidate queries received on each node. Figure 5.17 shows the CDF of number of candidate
queries received on nodes. Without virtual shrinking, about 50% of the nodes receive more
than 80% of the total queries. Virtual shrinking significantly cuts down the number of
candidate queries a node receives. As a result, with 4 bits, a node on average receives 7%
of the total queries.

To summarize, virtual shrinking is useful in improving query performance for clustered
data, and data with high dimensionality. As a side effect, virtual shrinking may also reduce
query load on nodes. However, we note that the virtual shrinking mechanism is only an
optimization useful for many realistic data distribution, and not a solution to the curse of
dimensionality problem.

5.6 Related Work

Similarity queries have been studied heavily for the last several decades in the database
community. Various multidimensional access methods have been proposed. Gaede et al. [27]
provides a comprehensive survey of these work. In our work, we leverage these results and
build our system, the DKDT, on top of a distributed kd-tree [12], and the DKDT shape
resembles a BD-tree [49].

122 CHAPTER 5. SUPPORTING SIMILARITY QUERIES

loo T T
80 |
—~ 60 F |
S
LL
[a)
© a0} |
2or WieVirtual shrinking
Virtual shrinking 3 bits -
0 L ‘ Virtual shrinking 4 bits -

0 20 40 60 80 100 120
Number of query messages

Figure 5.16: Virtual shrinking improves performance for the mp3 data set.

Supporting complex queries in a DHT-based system was proposed as an open question in
[35]. Since then, many efforts have been made in this domain. In Chapter 4, a DHT-based
system that supports range queries efficiently was proposed. The system is built on top of a
distributed 1-d binary tree, known as Range Search Tree. [54] proposed a similar structure
for range queries. In this work, we extend these ideas, and build our system around kd-tree
to support similarity searches in multi-dimensional data sets.

Several systems are built on top of multi-dimensional DHTs such as CAN [55] to support
complex queries. Most closely related to our work is the pSearch system [65], where CAN
is used to implement an information retrieval system. One limitation of CAN-based system
is the dimensionality of the application data points is tightly related to the dimensionality
of the underlying CAN, which makes the system not usable for a different application with
different dimensionality. pSearch works well for applications with very high dimensionality
while relying on some application specific techniques. For example, nodes must commu-
nicate about their data and hopefully form clusters, and thus to guide similarity queries.
In our system, the application dimensionality is independent of the underlying DHT, and
one DHT-based network can support arbitrary number of applications with different di-
mensions. We use a tree structure to support similarity queries, and make no assumptions
on the data distribution. Our system is not designed to handle very high dimensions (e.g.,
on the order of hundreds), and we propose optimization techniques to improve performance
when dimensionality is high.

In a different context, Li et al [44] proposed a distributed mechanism to partition a
multi-dimensional space using a data structure similar to kd-trees to support range queries
in sensor networks. Our scheme is similar in that we also build distributed kd-tree, but we
our goal here is to support similarity queries efficiently.

To address the inevitable dimensionality curse in similarity queries, locality sensitive
hashing (LSH) has been proposed and it is efficient in supporting approximate nearest
neighbor (ANN) queries [24]. In [33], locality sensitive hashing functions are used for range

5.7. CHAPTER SUMMARY 123

100
80 | i
—~ 60 |
S
LL
a
© a0} |
20 1/ ,.""'.: No virtual shrinking]
Virtual shfinking 3 bits -
0 P | Virtyatshirinking 4 bits -

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of queries

Figure 5.17: Number of candidate queries distribution for the music dataset.

queries in relational databases built on top of DHT. It seems LSH can also be used in a DHT-
based system to address similarity queries. To make use of LSH, a set of parameters must
be chosen properly depending on the type of data. This may be difficult in a distributed
environment. The authors are exploring this technique as future work.

5.7 Chapter Summary

In this chapter, we presented a distributed kd-tree (DKDT) based mechanism to support
similarity searches in the CDS efficiently. In particular, we map a space partitioned kd-
tree onto the underlying DHT-based overlay network. In constructing and maintaining the
DKDT, we use techniques such as compact splitting and branch coalescing to ensure the
tree’s size remain manageable as dimensionality increases. We use a lightweight protocol,
the tree maintenance protocol (TMP) to propagate the current tree shape to all nodes in
the DKDT, so that endpoints can discover the shape of the tree in a distributed fashion.
As such, registrations and queries can be carried out efficiently without traversing the
tree and creating bottlenecks at the root of the tree. In addition, we propose a novel
virtual node shrinking mechanism to mitigate the dimensionality curse problem for datasets
with high dimensionality. Extensive simulations show that our system works well for low
dimensionality datasets and the virtual node shrinking mechanism can improve the system’s
performance for high dimensionality data, especially when the data are clustered, which is
often the case in real applications.

124 CHAPTER 5. SUPPORTING SIMILARITY QUERIES

Chapter 6

Prototype Implementation

To validate the feasibility of the CDS design presented in this thesis, we implemented a
prototype of the CDS system, called Camel, which includes the basic Rendezvous Point
based registration and query mechanisms with distributed load balancing. In this chapter,
we describe the Camel implementation and our experience in deploying Camel on Planet
Lab, an overlay network testbed on the Internet.

6.1 Implementation

In our implementation, we built Camel on top of a Chord implementation developed for the
CFS project [18]. The version we worked with was downloaded from the Chord research
group [52] in May 2003. As we described in Chapter 2, the CDS only requires a minimal
programming interface from the underlying DHT layer, namely the put(key, message)
function. Since this function is provided by all DHTs [3] including Chord, the CDS can
be built on top of any DHT available. For example, we could also build Camel on top of
other DHTs such as Pastry [58] the same way. It is worth mentioning that since we do not
make any assumptions about the DHT other than the simple interface to support the CDS
functionalities, we do not need to use more complex DHTs. For example, we do not need
to use a multidimensional DHT such as CAN [55] to support complex queries. We now
describe how we build Camel using the CFS software.

6.1.1 Modify DHash’s Chord Layer

CFS is a distributed file system built on top of Chord, and from the software layering point
of view, CFS is at the same level as the CDS. The CFS software is called DHash. DHash
implements Chord’s functionality such as forming and maintaining an overlay network,
routing and forwarding messages within the network. A block-based file system is then
layered on top of DHash. To make use of this implementation of Chord, we have to slightly
modify the following two aspects of the DHash code.

First, since the goal of DHash is to build a distributed file system, its Chord API
provides basic file system operations for blocks of file, e.g., put_h(block), put_s(block,
pubkey), and get(key). These functions can not be directly used by Camel. Based on
these existing functions, we added the generic DHT method, put (key, message) method

126 CHAPTER 6. PROTOTYPE IMPLEMENTATION

to the dhashclient class in dhashclient.C. This method basically allows upper layer
applications such as Camel to send any message to any node in the DHT.

Second, once the Chord layer receives a message, instead of letting the DHash file system
layer handle the message, Camel must intercept and process it. This is accomplished by
modifying the void dhash_impl::dispatch (user_args *sbp) function in server.C. In
particular, we added the following lines in this function to pass the received message to
Camel:

cds_msg *message = new cds_msg;
s_dhash_fetch_arg *rcv_msg = sbp->template getarg<s_dhash_fetch_arg> () ;
message->process_cds_msg(rcv_msg, ...)

As such, when the Chord layer receives a message that is destined for the upper layer, it
will pass the message to Camel by calling the process_cds message (), which we explain
next.

6.1.2 Camel Software Structure

Camel lies in between the DHT layer and the application layer. It interacts with both: It
may receive application requests such as registrations and queries through the Camel API
(discussed next), and it sends and receives CDS messages to and from the DHT layer. As
such, the core component of Camel consists of two functions: (1) send CDS message, and
(2) process a received CDS message.

Send CDS message

To send a message, Camel simply calls the Chord API function put (key, message) that
we added. It first creates an instantiation of the dhashclient class and then invokes its
put method as follows:

void send_cds_msg(key, message)

str control_socket = "/tmp/chord-sock";
dhashclient *dhash = New dhashclient (control_socket);
dhash->put(key, message, message_len, call_back_function));

Process CDS message

A CDS message is defined using the following structure:
typedef struct {
int msg_type; // The type of message
int data_len; // The length of the payload data to follow

bigint src_node_ID; // The sender’s node ID

6.1. IMPLEMENTATION 127

bigint dst_node_ID; // The receiver’s node ID

char *datal0]; // The payload of this message
} cds_hdr;

The message types include registration and query messages, and messages pertaining to
matrix management, e.g., matrix size probe, matrix expansion and shrinking etc. Unlike the
simulator implementation, the prototype does not implement the various mechanisms for
range and similarity queries, but these mechanisms can be added staightforwardly. When
Camel receives a message, it processes it based on the mechanisms we described in the pre-
vious chapters. In our code, the processing function mainly consists of a switch statement:

void process_cds_message (msg){
switch(msg->msg_type) {
case CDS_MSG_INSERT:
// insert the content name to a local database
break;
case CDS_MSG_RETRIEVE:
// find a match from the local database

break;

Local Data Structures

The Camel layer on a node maintains two important local data structures. First, the node
may be the head node of one or more matrices, therefore it must maintain the matrix
size information for each of the matrices. Second, it must maintain a local content name
database to store the registrations that it receives. This database is used to resolve queries
that this node receives.

The Camel code is compiled into a library, libcds.a, and it is then linked to the rest of
the modified DHash code to form a stand alone binary, called cameld. To use Camel, each
node participating in the system must start cameld, which runs as a daemon. To join the
CDS network, a new node must know at least one other node in the existing network. By
contacting that node, the new node will be able to join the system using the underlying
Chord protocol and become part of the CDS overlay network.

6.1.3 Camel Applications

Camel API

To facilitate the building of higher level applications, such as peer-to-peer object sharing
systems, or distributed service discovery systems, Camel exports the following API functions
(defined in a header file cds_api.h):

128

CHAPTER 6. PROTOTYPE IMPLEMENTATION

. int connect_to_cds(char *reg filename, char *query_filename);

This function allows an application to connect to the CDS daemon for registration
and query purposes. The two arguments specify output file names that will be used
to record registration and query results. For example, they will record information
such as whether a registration or query is successful and if a query succeeds, record
the matched content names.

Inside this function, the connection between the application and cameld is established
by connecting to a Unix socket that the daemon is waiting on. If the connection
is established successfully, ”70” will be returned, otherwise, a non-zero value will be
returned.

. void disconnect_from_cds(void);

This function allows the application to release the socket and other resources such
as memory that has been allocated. It is called when the application is done using
Camel.

. void register(char *content_name) ;

This function allows the application to register a content name with the system. The
argument *content name is a string that consists of a set of AV-pairs.

Inside this function, it uses algorithms presented in previous chapters, and calls the
send_cds_message () function to send messages to the proper nodes in the system.

. void search(char *query_str);

This function allows the application to issue a query, which is also a set of AV-pairs.
Similarly, this function eventually calls the send_cds message() function and send
the query to proper nodes.

Note that this API is consistent with the API we proposed in Chapter 2.

Implementing CDS Applications

Given the Camel API, implementing an application becomes straightforward. The appli-
cation must include the APT’s header file cds_api.h for compilation, and then link with
libcds.a to create the final executable. As an example, Figure 6.1 is a complete list of a CDS
application that first registers a song description and then issues a query. More complicated
applications can be built similarly. For example, in the peer-to-peer music information re-
trieval system we described in Chapter 2.3, the application employs a sophisticated signal
processing module to extract a feature vector for each song before it connects to Camel.

We now use the example application in Figure 6.1 to illustrate in more detail the sequence

of function calls when the application issues a registration. The following steps are involved:

Step 1 Application — Camel

The application calls Camel API register().

6.1. IMPLEMENTATION 129

Step 2 Within Camel, register() — send_cds_msg(key, message)

The register_content () function first separates each AV-pairs. Suppose Camel does
not know the AV-pair artist=U2’s corresponding matrix size, based on the algorithm
presented in Chapter 3 it will try to find out its size by probing this pair’s head node.
It calls send cds msg(key, message), where key equals the hash of {artist=U2,
0, 0}, which corresponds to the head node’s ID, and the type of this message is
CDS_.MSG_MATRIX_PROBE. The register_content () function will then wait for
the reply to come back.

Step 3 Camel — Chord
send_cds_msg(key, message) then calls Chord API put(key, message).

Step 4 Chord — Destination node Chord

The Chord layer then forwards this message cross the network and eventually the
message reaches the destination node whose ID is the successor of key. This node is
the head node for {artist=U2}.

Step 5 Chord — Camel

On the destination node, the Chord layer receives the message and passes it to the
Camel layer by calling the process_cds message () method.

Step 6 Within Camel.

The Camel layer then processes this message. In this case, since this node is a head
node and the message is a probe message, it retrieves {artist=U2}’s matrix size,
and then sends a CDS_MSG_MATRIX_PROBE_REPLY message back to the original
node by calling send_cds_msg(key, message). Here key corresponds to the original
node’s ID.

Step 7,8 Similar to Step 4,5, the Chord layer on the original node receives the message
and passes it onto the Camel layer.

Step 9 Within Camel.

The Camel layer processes the probe reply message by extracting the matrix size
of {artist=U2} from the message. Using the matrix size, the execution of the
register_content () function is resumed. It will then choose a partition from the
matrix and call send_cds_msg(key, message) method again. This time, the mes-
sage is an actual registration message with a type CDS_MSG_REGISTER. The key
corresponds to the hash of AV-pair, and the selected row and column index.

Step 10 Eventually when the corresponding node receives this message, its process_cds_message ()
function will be invoked, which stores the registration in its local database.

130

CHAPTER 6. PROTOTYPE IMPLEMENTATION

[0 1177777777777777777777777777777711777177777777771771777177
// example.c
// register a song’s description, and then issue a search

#include <cds_api.h>
void main(){
int connected;

char song_desc[] = "artist=U2, year=1993, song=Zooropa";
char query[] = "artist=U2";

// output file names
char register_fn[] = "registration.dat";
char query_fn[] = "query.dat";

// connect to the CDS daemon
connected = connect_to_cds(register_fn, query_fn);

// connected successfully
if (connected) {
// issue a registration
register(song_desc);

// issue a query
search(query) ;

// done using CDS
disconnect_from_cds();

}

return;

X
// End example.c //////////1111171/17//7777177117177717711111/

Figure 6.1: Example code of a simple CDS application.

6.2. INTERNET DEPLOYMENT AND EVALUATION 131

Figure 6.2: Planet Lab Testbed.

6.1.4 Implementation Discussion

Recently, the OpenHash [39] project proposes two different models for building distributed
applications using DHTs. The first model is the so-called library model, where applications
of a DHT are “bundled” together with the underlying DHT code. The advantage of this
model is that applications can obtain local DHT states and thus can implement rich func-
tionality. The disadvantage is that this model makes the deployment of DHT applications
expensive, e.g., two different applications running on the same node must run two copies,
possibly the same DHT. The second model is called the service model, where a DHT is run
on a set of infrastructure hosts as a service, and can be shared by different applications.

The implementation we presented above uses the library model, since the CDS code
is compiled together with the DHT code. However, we chose this model not because of
technical necessity, since we do not need to obtain any information from the DHT. The
CDS’s minimal requirement from the DHT makes it also possible to build the CDS using
the service model. In fact, our architecture fits the description of how OpenHash is used to
support advanced applications perfectly. In our case, CDS is an “advanced application” of
OpenHash. The CDS program needs to be co-located with the OpenHash program on each
node that participates in the CDS network. The OpenHash program must pass the CDS
messages the node receives to the CDS program, and OpenHash does not need to maintain
local data stores for the CDS.

6.2 Internet Deployment and Evaluation

We deployed the Camel software on the Planet Lab testbed [51]. Planet Lab is a planetary
scale overlay network testbed. As of August 2004, it consists of over 400 nodes on the Inter-
net from about 180 sites around the world. These sites include universities, industrial and
governmental organizations. Figure 6.2 is a snapshot of where the nodes are geographically
located.

Nodes on Planet Lab are heterogeneous in that they may have different levels of network
connectivity and CPU power, but they all run the same version of Linux. To test our

132 CHAPTER 6. PROTOTYPE IMPLEMENTATION

software, we chose 100 nodes randomly from the US, Europe and Asia. We distributed two
binaries to each of these nodes: the Camel daemon (cameld) and a simple application. We
also installed on each node two data files that contain a set of content names and queries
that the application on this node must issue. To run the system, we first start the cameld on
all nodes and let them form a Chord-based overlay network. We then start the application
program to issue registrations an queries according to their data files.

6.2.1 Evaluation Results

We conducted several experiments on Planet Lab to verify that the Camel software can work
effectively on the Internet across heterogeneous hosts. Here we present some representative
results that demonstrate the effectiveness of the distributed load balancing mechanism.

In the first experiment, we assign one node (a node located at CMU) a data file in which
all the content names share one common AV-pair. This node registers these names one by
one as fast as it can. As one can expect, the system needs to deploy LBMs with multiple
partitions to host this registration load.

Figure 6.3 shows the registration rate observed on each partition of the matrix corre-
sponding to this common pair as time proceeds. Each node sets up a registration threshold
of Tyeg = 1reg/sec. The matrix starts with 1 partition. As shown in the figure, the rate
observed on this partition is about 3.7reg/sec, much higher than the threshold. As a result,
the matrix expands to include other partitions as time progresses. The expansion is done
multiplicatively. For example, at time around 80sec, the rate Partition 4 observes becomes
higher than the threshold, and this causes another 4 partitions to be added to the matrix.
After the matrix expands to 8 partitions, each partition observes similar registration rate,
and their individual load remains under the threshold. This figure is consistent with our
simulation results in Figure 3.14, where nodes are homogeneous.

In the second experiment, we have the CMU node issue a set of queries that share one
AV-pair, and as a result, these queries must be sent to the matrix corresponding to this
AV-pair. The query threshold on each Camel node is also set to be T, = 1¢/s. Figure 6.4
shows the query load distribution over time. As we can see from the figure, initially the
queries go to the first replica, and the query rate this replica observes is about 1.2¢/s, which
exceeds the threshold. The matrix then replicates once to include the second replica. After
the second replica is in place, the query rates observed on these two replica are about the
same, and both are below the threshold.

6.3 Chapter Summary

In this Chapter, we described Camel, our prototype implementation of the CDS system,
and some evaluation results we obtained by deploying it on the the Planet Lab testbed. The
deployment of the Camel system on the heterogeneous Internet, along with the experimental
results confirmed our CDS design and demonstrated the feasibility of the system. The
prototype implementation is joint work with Adam Kushner [43].

6.3. CHAPTER SUMMARY

Observed registration rate (reg/sec)

Observed query rate (g/s)

| I I I ' Partit'ion 1 I
1 Partition 2 ---><---
35 I Partition 3 >k 7
\“ Partition 4
> - Partition 6 -]
\“ Partition 7 -
251 Partition 8 .
“ Threshold 1 reg/sec -
2 b |
15} | |
1 i -~
05 .
e
0
0 50 100 150 200 250 300 350 400 450

Time (sec)

Figure 6.3: Registration load balancing on the PlanetLab.

1.3 T

' ' ' ' ' ‘Replical —+—
12F Replica 2 --->¢--- .
| Threshold 1 gfs -
1.1 1
1 _ ... _

0.9 | .

\ I
08 | N\ A .

| % A A
07t [\ j/ A /*\ + 4

I / \ | ! \ L\ /
o6 | | E L R A [

:!‘/’7’ \ f \ \ /" / 7_«1
05 r] Vo / /,/ -

/ \ +
\ f
04 r “\ / : 1
03 f V -
0.2 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Time (sec)

Figure 6.4: Query load balancing on the PlanetLab.

133

134 CHAPTER 6. PROTOTYPE IMPLEMENTATION

Chapter 7

Conclusions and Future Work

Due to the continued advances in both wired and wireless networking technology coupled
with the decreasing cost of computer hardware, several new classes of applications running
on the Internet have been emerging rapidly over the last few years. Among them are
large scale monitoring services, where inexpensive sensors and cameras are used to monitor
conditions such as weather and traffic, and peer-to-peer applications, where a large on-line
community can be formed nearly instantaneously to contribute and share an enormous
amount of resources.

In this thesis, we studied a central problem faced by these new classes of applications,
namely the content discovery problem. The specific question we asked was how to build
distributed systems that are both scalable with the number of nodes and the amount of
available content, and searchable, in that, users can efficiently find the content that they
are looking for. In this chapter, we conclude the thesis by summarizing our contributions
and proposing several future research directions.

7.1 Contributions

In this thesis, we demonstrated that it is possible to meet both the scalability and search-
ability challenges faced by the wide-area content discovery problem. Towards this end, we
designed, implemented and evaluated a distributed and scalable content discovery system
that supports complex queries efficiently. In particular, we make the following original
contributions.

e Efficient registration and query mechanism that enables search.

We designed an efficient registration and query mechanism. A content name is regis-
tered with a small number of nodes in the system (the RPs) that equals the number
of AV-pairs within the name. To resolve a query, regardless the number of AV-pairs
the query may have, we only need to choose 1 AV-pair to find a RP node, and the
query cost is 1. As such, resolving a query does not cause any network traffic between
RP nodes. This simple yet powerful mechanism enables subset based search, in that a
name can always be found using any combination of its AV-pairs as a search criteria.
The efficiency for individual registrations and queries means that the CDS scales well
as the number of registrations or queries increases.

136 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

e Distributed load balancing

One of the fundamental problem faced by a CDS system is that due to the uneven
distribution of registration and query load, some nodes may be overloaded while other
nodes in the system may still be underutilized. The load imbalance will cause the
system to degrade before its full capacity is reached. We developed a fully distributed
load balancing mechanism that improves the system’s throughput under skewed load
by eliminating hot-spots. The load balancing is based on a novel data structure,
the load balancing matrix (LBM), where columns and rows are used to share high
registration and query load respectively. Each LBM dynamically adjusts its own size
in a distributed fashion based on the local load it observes. An important property
of the matrix organization of nodes is that it ensures that registrations and queries
can still be carried out in a distributed fashion similar to the basic RP system. Our
simulations based on realistic loads showed that the extra cost added to registrations
and queries due to load balancing remains low.

e Efficient support for range search

We developed an adaptive protocol to support range queries efficiently in the CDS.
Our algorithm is based on a distributed data structure, the Range Search Tree (RST),
for content registration and query resolution. Nodes at different levels of the RST rep-
resent different level of aggregation, and may be used to resolve queries with different
range lengths efficiently. To ensure efficiency, we do not instantiate every node in the
tree by default, instead, we only use a part of the tree, known as the band to accept
registrations and resolve queries. The band changes its shape based on the load it
observes: A node may be recruited to join the band if its inclusion to the band can
lower the overall registration and query cost. The band adaptation is conducted in a
fully distributed fashion, since only local information is needed. To ensure endpoints
can discover the band efficiently, we designed a lightweight protocol, the Path Main-
tenance Protocol (PMP), to update the band information in the tree. As a result,
registrations and queries are carried out efficiently without having to traverse the tree,
and thus no bottlenecks are created.

e Efficient support for similarity search

We developed a distributed kd-tree (DKDT) based mechanism to support similarity
searches in the CDS efficiently. In particular, we map a space partitioned kd-tree
onto the underlying DHT-based overlay network. In constructing and maintaining the
DKDT, we use techniques such as compact splitting and branch coalescing to ensure
the tree’s size remains manageable as dimensionality increases. We use a lightweight
protocol, the tree maintenance protocol (TMP), to propagate the current tree shape
to all nodes in the DKDT, so that endpoints can discover the shape of the tree in a
distributed fashion, and issue registrations and queries without traversing the tree.
In addition, we proposed a novel virtual node shrinking mechanism to mitigate the
dimensionality curse problem for datasets with high dimensionality.

In addition to the above system design contributions, we also made contributions to the
architectural design of large scale distributed Internet applications by identifying content

7.2. FUTURE WORK 137

discovery as a fundamental building block. We presented a three-layered architecture for
distributed applications such as wide area service discovery systems or peer-to-peer object
sharing systems. The CDS operates between the underlying DHT layer and the high level
application layer. It uses a DHT to form the CDS overlay network and deliver messages,
and as such, the network inherits the scalability, robustness, and self-organizing properties
from the DHT. The CDS only requires the DHT’s minimal put () interface to implement
all its mechanisms. This clean separation and minimal reliance ensure that the CDS can
be deployed on top of any DHT without modifications to the DHT. In turn, the CDS
provides a simple register() and query() interface to higher level applications. Thus,
any application that requires the content discovery functionality can use the CDS as a
component.

In summary, the CDS we presented in this thesis meets both the scalable and searchable
challenges simultaneously. It is scalable with both the amount of registrations and queries,
even under highly skewed load distribution. It is searchable by supporting subset-based
matching, and providing efficient support for complex queries such as range and similarity
queries. Our prototype implementation and the integration of CDS with a content based
music information retrieval system demonstrate the effectiveness of the CDS design and its
applicability to real world applications.

7.2 Future Work

In this section, we identify several research directions for future work.

CDS functionality inside the DHT layer

In our CDS system, the ultimate responsibility of the CDS is to locate contents that match
a client’s query efficiently. To meet this goal, we designed load balancing mechanisms
and support for complex queries, that run on top of the DHT. This separation from the
underlying DHT layer gives us great flexibility, in that the CDS may use any DHT available
without any modification to the DHT. The downside is that we can not gain the potential
benefits had these functionalities been implemented inside the DHT layer.

For example, with replication using the LBM, the system can host high query load while
maintaining high throughput. However, from a query issuer’s point of view, to reach any of
the replicas, it still takes O(log N) hops, with N being the number of nodes in the system.
This is determined by underlying DHT, and our CDS level replication does not reduce this
latency. In comparison, recent work [53] shows that by aggressively replicating contents at
the DHT level and assuming a certain analytical model of the load, the latency may be
reduced to O(1) for a popular query. As future research, it is important to understand the
differences between these two approaches, and how they may complement each other.

Locality-aware DHTSs

Node IDs in a DHT are typically assigned randomly. While this ensures that each node is
in charge of roughly an equal segment in the key identifier space, it sacrifices locality. In
particular, two nodes next to each other in the identifier space may be located on different

138 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

continents physically. The implication for the CDS is that partitions and replicas of the
same matrix are distributed randomly in the network. This will become a problem especially
when the increase of load comes from local interests. For example, if nodes within a domain
all issue the same query due to a local news event, it would make sense to replicate this
content on nodes that are within the domain rather than elsewhere.

Recent work [76, 29] has proposed that DHT's can be built using IDs that encode locality
information. It is worthwhile to investigate how a CDS can utilize the locality aware DHT
to improve its performance.

Rich set of CDS applications

The CDS we presented is suitable for applications such as distributed monitoring, service
discovery and peer-to-peer object sharing systems. There are many distributed applica-
tions that could benefit from the CDS. Examples of such applications include distributed
databases and information retrieval systems. Due to the sophisticated operations required
by these applications, new mechanisms may have to be designed and incorporated into the
CDS.

We look at a large scale information retrieval system as an example. It appears that
the CDS is a perfect fit to handle the enormous amount of information offered by all the
peers, since it would be difficult if not impossible for any centralized system to digest all the
contents. However, implementing full-fledged content-based information retrieval using the
CDS poses a difficult problem. For example, a document may be represented using a vector
with hundreds of dimensions. Our kd-tree based similarity search mechanism will not work
well for this many dimensions. Some recent work [65] tried to address this problem, but
this system is rather unsatisfactory in that it relies heavily on heuristics. As we mentioned
earlier, locality sensitive hashing works well even for high dimensionality datasets. We
believe that incorporating LSH [24] mechanism into the CDS is a promising approach to
address information retrieval in high dimensionality.

Bibliography

1]

[10]

[11]

[12]

Google, other engines hit by worm variant. http://news.zdnet.con/2100-3513_22-
5283750.html.

The network simulator - ns-2. http://www.isi.edu/nsnam/ns.
Project IRIS. http://iris.lcs.mit.edu.

FIPS 180-1. Secure Hash Standard. Technical Report Technical Report Publication
180-1, Federal Information Processing Standard(FIPS), National Institute of Standards
and Technology, Washington DC, April 1995.

Karl Aberer. P-Grid: a Self-Organizing Access Structure for P2P Information Sys-
tems. In Proceedings of the Sizth Intenational Conference on Cooperative Information
Systems, Trento, Italy, 2001.

William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The
Design and Implementation of an Intentional Naming System. In Proceedings of SOSP
1999, Kiawah Island, SC, December 1999.

Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and Tushar D.
Chandra. Matching events in a content-based subscription system. In Principles of
Distributed Computing, 1999.

A. Andrzejak and Z. Xu. Scalable, Efficient Range Queries for Grid Information Ser-
vices. In Proceedings of P2P 2002.

S. Arya, D. Mount, and N. Netanyahu. An optimal algorithm for approximate nearest
neighbor searching in fixed dimensions. In Proceedings of SODA, 1994.

M. Balazinska, H. Balakrishnan, and D. Karger. INS/Twine: A Scalable Peer-to-Peer
Architecture for Intentional Resource Discovery. In Proceedings of Pervasive 2002,
Zurich, Switzerland, August 2002.

N. Beckmann, H. Schneider, and B. Seeger. The r*-tree: an eficient and robust access
method for points and rectangles. In Proceedings of SIGMOD, 1990.

J.L. Bentley. Multidimensional binary search used for associative searching. ACM
Comm., 1975.

139

140

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]
[26]

[27]

BIBLIOGRAPHY

Sergey Brin, Larry Page, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical Report Stanford Digital Libraries,
Stanford University, 1998.

A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of a Wide-Area
Event Notification Service. ACM Transactions on Computer Systems, 19(3):332-383,
August 2001.

M. Castro, P. Druschel, A-M. Kermarrec, and A. Rowstron. Scribe: A large-scale and
decentralised publish-subscribe infrastructure. Submitted, September 2001.

Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker.
Making Gnutella-like P2P Systems Scalable. In Proceedings of SIGCOMM 20083.

Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph, and Randy H.
Katz. An Architecture for a Secure Service Discovery Service. In Proceedings of Mo-
bicom 99, Seattle, WA, August 1999.

Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-
area, Cooperative Storage with CFS. In Proceedings of SOSP 2001, Banff, Canada,
October 2001.

S. Deering. Multicast routing in internetworks and extended lans. In Proceedings of
SIGCOMM 1988, 1988.

S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei. The PIM
Architecture for Wide-area Multicast Routing. ACM Transactions on Networks, April
1996.

D. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I. Hsiao, and R. Ras-
mussen. The Gamma Database Machine Project. IEEE Transactions on Knowledge
and Data Engineering, 2(1), March 1990.

Elvin. http://elvin.dstc.edu.au/.

K. B. Erickson, R. E. Ladner, and A. LaMarca. Optimizing static calendar queues.
ACM Transactions on Modeling and Computer Simulation (TOMACS), 10(3):179-214,
2000.

P. Indyk et al. Similarity search in high dimensions via hashing. In Proceedings of the
VLDB, 1999.

Freenet. http://freenet.sourceforge.net/.

J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches
in logarithmic expected time. ACM Transactions on Mathematical Software, 3(3):209—
226, 1977.

V. Gaede and O. Gunther. Multidimensional access methods. ACM Computing Sur-
veys, 30(2), June 1998.

BIBLIOGRAPHY 141

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

J. Gao, G. Tzanetakis, and P. Steenkiste. Content-Based Retrieval of Music in Scalable
Peer-to-Peer Networks. In Proceedings of ICME 2003, Baltimore, MD, July 2003.

Luis Garces-Erice, Keith W. Ross, Ernst W. Biersack, Pascal A. Felber, and Guillaume
Urvoy-Keller. Topology-centric look-up service. In Proceedings of COST264/ACM
Fifth International Workshop on Networked Group Communications (NGC), 2003.

Gnutella. http://gnutella.wego.com/.
Google. http://www.google.com/.

S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable, Distributed Data Struc-
tures for Internet Service Construction. In Proceedings of OSDI 2000.

A. Gupta, D. Agrawal, and A. El Abbadi. Approximate Range Selection Queries in
Peer-to-Peer Systems. In Proceedings of CIDR 2003.

E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Protocol. IETF,
RFC 2165, November 1998.

M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and I. Stoica. Complex
Queries in DHT-based Peer-to-Peer Networks. In Proceedings of IPTPS’02.

N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A Scalable
Overlay Network with Practical Locality Properties. In Proceedings of USITS’03.

An-Cheng Huang and Peter Steenkiste. Network-sensitive service discovery. In Pro-
ceedings of USITS ’03.

R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica.
Querying the internet with pier. In Proceedings of the 29th VLDB, 2003.

Brad Karp, Sylvia Ratnasamy, Sean Rhea, and Scott Shenker. Spurring Adoption of
DHTSs with OpenHash, a Public DHT service. In Proceedings of IPTPS 2004.

Norio Katayama and Shinichi Satoh. The SR-tree: An index structure for high-
dimensional nearest neighbor queries. In Proceedings of the ACM SIGMOD 1997,
May 1997.

Kazza. http://www.kazaa.com/.

Y. Ke and R. Sukthankar. Pca-sift: A more distinctive representation for local image
descriptors. In Proceedings of Computer Vision and Pattern Recognition (CVPR),
2004.

Adam Kushner. Project camel: Implementation and evaluation of a distributed content
discovery system. Technical Report Undergraduate Honor Thesis, Department of ECE,
Carnegie Mellon University, May 2004.

X. Li, Y. Kim, R. Govindan, and W. Hong. Multi-dimensional Range Queries in Sensor
Networks. In Proceedings of SenSys’03.

142

[45]

[46]
[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

BIBLIOGRAPHY

P. Mockapetris. Domain Names - Concepts and Facilities. IETF, RFC 1034, November
1987.

P. Mockapetris. OSPF version 2. IETF, RFC 2328, April 1998.
Napster. http://www.napster.com/.

T. S. Eugene Ng and Hui Zhang. Predicting internet network distance with coordinates-
based approaches. In Proceedings of INFOCOM’02.

Y. Ohsawa and M. Sakauchi. Bd-tree: a new n-dimensional data structure with efficient
dynamic characteristics. In Proceedings of the 9th world computer congress, 1983.

J. A. Orenstein. Multidimensional tries used for associative searching. Information
Processing Letters, 14(4):150-157, June 1982.

PlanetLab. http://www.planet-lab.org/.
The Chord Project. http://www.pdos.lcs.mit.edu/chord/.

V. Ramasubramanian and E. G. Sirer. Beehive: O(1) lookup performance for power-
law query distributions in peer-to-peer overlays. In Proceedings of NSDI 2004.

S. Ratnasamy, J. Hellerstein, and S. Shenker. Range Queries over DHTs. Technical
Report IRB-TR-03-009, Intel Corp., June 2003.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
A Scalable Content-Addressable Network. In Proceedings of SIGCOMM 2001, pages
161-172, San Diego, CA, August 2001.

P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword Searching. In Proceedings
of Middleware 2003, Rio de Janeiro, Brazil, June 2003.

Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling Churn
in a DHT. In Proceedings of USENIX 200.

A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location and
Routing for Large-scale Peer-to-Peer Systems. In Proceedings of Middleware 2001,
Heidelberg, Germany, November 2001.

Antony Rowstron and Peter Druschel. Storage Management and Caching in PAST, a
Large-scale, Persistent Peer-to-Peer Storage Utility. In Proceedings of SOSP 2001.

Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
1989.

Cristina Schmidt and Manish Parashar. Flexible information discovery in decentralized
distributed systems. In Proceedings of HPDC-12, Seattle, WA, June 2003.

SETI@home. http://setiathome.ssl.berkeley.edu/.

BIBLIOGRAPHY 143

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Kunwadee Sripanidkulchai. The Popularity of Gnutella Queries and Its Implications
on Scalability. http://www.cs.cmu.edu/~kunwadee/research/p2p/gnutella.html.

Ton Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan.
Chord: A Scalable Peer-To-Peer Lookup Service for Internet Applications. In Proceed-
ings of SIGCOMM 2001, pages 149-160, San Diego, CA, August 2001.

C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-Peer Information Retrieval Using Self-
organizing Semantic Overlay Networks. In Proceedings of SIGCOMM 2008.

Chungiang Tang and Sandhya Dwarkadas. Hybrid global-local indexing for efficient
peer-to-Peer Information Retrieval. In Proceedings of NSDI 200.

David Thaler and Chinya V. Ravishankar. Using Name-Based Mappings to Increase
Hit Rates. IEEE/ACM Transactions on Networking, 6(1):1-14, 1998.

George Tzanetakis and Perry Cook. Musical genre classification of audio signals. IEEE
Transactions on Speech and Audio Processing, 10(5):293-302, 2002.

George Tzanetakis, Jun Gao, and Peter Steenkiste. A scalable peer-to-peer system for
music information retrieval. Computer Music Journal, 28(2):24-33, June 2004.

M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3). IETF,
RFC 2251, December 1997.

D. Waitzman, C. Partridge, and S. E. Deering. Distance vector multicast routing
protocol. IETF, RFC 1075, November 1988.

L. Wang, V. Pai, and L. Peterson. The Effectiveness of Request Redirection on CDN
Robustness. In Proceedings of OSDI 2002, Boston, MA, Dec. 2002.

R. Weber, H.J. Schek, and S. Blott. A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In Proceedings of VLDB’98,
pages 194-205, August 1998.

H. Yu, D. Estrin, and R. Govindan. A Hierarchical Proxy Architecture for Internet-
scale Event Services. In Proceedings of WETICE 99, Stanford, CA, June 1999.

Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An Infrastruc-
ture for Fault-tolerant Wide-area Location and Routing. Technical Report UCB/CSD-
01-1141, U. C. Berkeley, April 2001.

Shuheng Zhou, Greg Ganger, and Peter Steenkiste. Balancing locality and randomness
in dhts. Technical Report CMU-CS-03-203, Carnegie Mellon University, Nov. 2003.

144 BIBLIOGRAPHY

