
Toward a theory of Steganography

Nicholas J. Hopper
CMU-CS-04-157

July 2004

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Manuel Blum, Chair

Avrim Blum
Michael Reiter
Steven Rudich

David Wagner, U.C. Berkeley

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2004 Nicholas J. Hopper

This material is based upon work partially supported by the National Science Foundation under
Grants CCR-0122581 and CCR-0058982 (The Aladdin Center) and an NSF Graduate Fellowship;
the Army Research Office (ARO) and the Cylab center at Carnegie Mellon University; and a Siebel
Scholarship.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the NSF, the U.S.
Government or any other entity.

Keywords: Steganography, Cryptography, Provable Security

Abstract

Informally, steganography refers to the practice of hiding secret mes-
sages in communications over a public channel so that an eavesdropper
(who listens to all communications) cannot even tell that a secret message
is being sent. In contrast to the active literature proposing new concrete
steganographic protocols and analysing flaws in existing protocols, there
has been very little work on formalizing steganographic notions of secu-
rity, and none giving complete, rigorous proofs of security in a satisfying
model.

My thesis initiates the study of steganography from a cryptographic
point of view. We give a precise model of a communication channel and
a rigorous definition of steganographic security, and prove that relative
to a channel oracle, secure steganography exists if and only if one-way
functions exist. We give tightly matching upper and lower bounds on the
maximum rate of any secure stegosystem. We introduce the concept of
steganographic key exchange and public-key steganography, and show that
provably secure protocols for these objectives exist under a variety of stan-
dard number-theoretic assumptions. We consider several notions of active
attacks against steganography, show how to achieve each under standard
assumptions, and consider the relationships between these notions. Fi-
nally, we extend the concept of steganograpy as covert communication to
include the more general concept of covert computation.

Acknowledgments

I profusely thank Manuel Blum for five years of constant support,
interesting discussions, and strange questions. I hope I am able to live up
to his standard of advising.

Much of this work was done in collaboration with Luis von Ahn and
John Langford. The work was “born” on our car trip back to Pittsburgh
from CCS 2001 in Philadelphia. I owe many thanks to both for their
challenging questions and simplifying explanations.

My other committee members - Avrim Blum, Steven Rudich, Michael
Reiter, and David Wagner - all made valuable comments about my thesis
proposal and earlier versions of this thesis; I’m sure that it is stronger
because of them.

And of course, I am extremely thankful to my wife Jennie for many
things, not the least of which was following me to Pittsburgh; and my
daughter Allie for being herself.

For Jennie and Allie.

Contents

1 Introduction 1

1.1 Cryptography and Provable Security 2

1.2 Previous work on theory of steganography 4

1.3 Contributions of the thesis . 5

1.4 Roadmap of the thesis . 8

2 Model and Definitions 9

2.1 Notation . 9

2.2 Cryptography and Provable Security 10

2.2.1 Computational Indistinguishability 10

2.2.2 Universal Hash Functions . 15

2.2.3 Pseudorandom Generators . 15

2.2.4 Pseudorandom Functions . 16

2.2.5 Encryption . 18

2.3 Modeling Communication - Channels 22

2.4 Bidirectional Channels: modeling interaction 25

3 Symmetric-key Steganography 27

3.1 Definitions . 27

3.1.1 Correctness . 28

3.1.2 Security . 29

3.2 Constructions . 30

3.2.1 A Stateful Construction . 31

3.2.2 An Alternative Construction 39

i

3.3 Necessary Conditions for Steganography 41

3.3.1 Steganography implies one-way functions 42

3.3.2 Sampleable Channels are necessary 44

4 Public-Key Steganography 47

4.1 Public key cryptography . 48

4.1.1 Pseudorandom Public-Key Encryption 49

4.1.2 Efficient Probabilistic Encryption 51

4.2 Public key steganography . 54

4.2.1 Public-key stegosystems . 55

4.2.2 Steganographic Secrecy against Chosen Hiddentext Attack . . 56

4.2.3 Construction . 57

4.2.4 Chosen Hiddentext security 58

4.3 Steganographic Key Exchange . 60

4.3.1 Construction . 62

5 Security against Active Adversaries 65

5.1 Robust Steganography . 66

5.1.1 Definitions for Substitution-Robust Steganography 66

5.1.2 Necessary conditions for robustness 67

5.1.3 Universally Substitution-Robust Stegosystem 68

5.2 Active Distinguishing Attacks . 74

5.2.1 Chosen-covertext attacks . 74

5.2.2 Authenticated Stegosystems 92

5.3 Relationship between robustness and integrity 105

6 Maximizing the Rate 109

6.1 Definitions . 110

6.2 Upper bound . 111

6.2.1 MAXt(S) . 111

6.2.2 MAXC(S) . 113

6.2.3 Bidirectional communication does not help 115

6.3 Lower bound . 117

ii

6.3.1 With errors . 117

6.3.2 Negligible error rate . 121

6.3.3 Converging to optimal . 123

6.3.4 Unknown length . 123

6.4 Robust Steganography . 124

6.4.1 Upper Bound . 124

6.4.2 Lower Bound . 125

7 Covert Computation 135

7.1 Introduction . 135

7.2 Covert Two-Party Computation Against Semi-Honest Adversaries . . 140

7.2.1 Definitions . 141

7.2.2 Yao’s Protocol For Two-Party Secure Function Evaluation . . 142

7.2.3 Steganographic Encoding . 144

7.2.4 Covert Oblivious Transfer . 147

7.2.5 Combining The Pieces . 150

7.3 Fair Covert Two-party Computation Against Malicious Adversaries . 151

7.3.1 Definitions . 152

7.3.2 Construction . 153

8 Future Research Directions 159

8.1 High-rate steganography . 159

8.2 Public Key Steganography . 160

8.3 Active attacks . 161

8.4 Covert Computation . 163

8.5 Other models . 164

Bibliography 165

iii

Chapter 1

Introduction

This dissertation focuses on the problem of steganography: how can two communicat-

ing entities send secret messages over a public channel so that a third party cannot

detect the presence of the secret messages? Notice how the goal of steganography

is different from classical encryption, which seeks to conceal the content of secret

messages: steganography is about hiding the very existence of the secret messages.

Steganographic “protocols” have a long and intriguing history that goes back to

antiquity. There are stories of secret messages written in invisible ink or hidden in love

letters (the first character of each sentence can be used to spell a secret, for instance).

More recently, steganography was used by prisoners, spies and soldiers during World

War II because mail was carefully inspected by both the Allied and Axis governments

at the time [38]. Postal censors crossed out anything that looked like sensitive in-

formation (e.g. long strings of digits), and they prosecuted individuals whose mail

seemed suspicious. In many cases, censors even randomly deleted innocent-looking

sentences or entire paragraphs in order to prevent secret messages from being deliv-

ered. More recently there has been a great deal of interest in digital steganography,

that is, in hiding secret messages in communications between computers.

The recent interest in digital steganography is fueled by the increased amount

of communication which is mediated by computers and by the numerous potential

commercial applications: hidden information could potentially be used to detect or

limit the unauthorized propagation of the innocent-looking “carrier” data. Because

1

of this, there have been numerous proposals for protocols to hide data in channels

containing pictures [37, 40], video [40, 43, 61], audio [32, 49], and even typeset text

[12]. Many of these protocols are extremely clever and rely heavily on domain-specific

properties of these channels. On the other hand, the literature on steganography also

contains many clever attacks which detect the use of such protocols. In addition, there

is no clear consensus in the literature about what it should mean for a stegosystem

to be secure; this ambiguity makes it unclear whether it is even possible to have a

secure protocol for steganography.

The main goal of this thesis is to rigorously investigate the open question: “under

what conditions do secure protocols for steganography exist?” We will give rigor-

ous cryptographic definitions of steganographic security in multiple settings against

several different types of adversary, and we will demonstrate necessary and sufficient

conditions for security in each setting, by exhibiting protocols which are secure under

these conditions.

1.1 Cryptography and Provable Security

The rigorous study of provably secure cryptography was initiated by Shannon [58], who

introduced an information-theoretic definition of security: a cryptosystem is secure if

an adversary who sees the ciphertext - the scrambled message sent by a cryptosystem

- receives no additional information about the plaintext - the unscrambled content.

Unfortunately, Shannon also proved that any cryptosystem which is perfectly secure

requires that if a sender wishes to transmit N bits of plaintext data, the sender and the

receiver must share at least N bits of random, secret data - the key. This limitation

means that only parties who already possess secure channels (for the exchange of

secret keys) can have secure communications.

To address these limitations, researchers introduced a theory of security against

computationally limited adversaries: a cryptosystem is computationally secure if an

adversary who sees the ciphertext cannot compute (in, e.g. polynomial time) any

additional information about the plaintext than he could without the ciphertext [31].

Potentially, a cryptosystem which could be proven secure in this way would allow two

2

parties who initially share a very small number of secret bits (in the case of public-

key cryptography, zero) to subsequently transmit an essentially unbounded number

of message bits securely.

Proving that a system is secure in the computational sense has unfortunately

proved to be an enormous challenge: doing so would resolve, in the negative, the

open question of whether P = NP . Thus the cryptographic theory community has

borrowed a tool from complexity theory: reductions. To prove a cryptosystem secure,

one starts with a computational problem which is presumed to be intractable, and

a model of how an adversary may attack a cryptosystem, and proves via reduction

that computing any additional information from a ciphertext is equivalent to solving

the computational problem. Since the computational problem is assumed to be in-

tractable, a computationally limited adversary capable of breaking the cryptosystem

would be a contradiction and thus should not exist. In general, computationally se-

cure cryptosystems have been shown to exist if and only if “one-way functions,” which

are easy to compute but computationally hard to invert, exist. Furthermore, it has

been shown that the difficulty of a wide number of well-investigated number-theoretic

problems would imply the existence of one-way functions, for example the problem

of computing the factors of a product of two large primes [13], or computing discrete

logarithms in a finite field [14].

Subsequent to these breakthrough ideas [13, 31], cryptographers have investigated

a wide variety of different ways in which an adversary may attack a cryptosystem.

For example, he may be allowed to make up a plaintext message and ask to see

its corresponding ciphertext, (called a chosen-plaintext attack), or even to make up

a ciphertext and ask to see what the corresponding plaintext is (called a chosen-

ciphertext attack [48, 52]). Or the adversary may have a different goal entirely [8,

23, 39] - for example, to modify a ciphertext so that if it previously said “Attack” it

now reads as “Retreat” and vice-versa. We will draw on this practice to consider the

security of a steganographic protocol under several different kinds of attack.

These notions will be explored in further detail in Chapter 2.

3

1.2 Previous work on theory of steganography

The scientific study of steganography in the open literature began in 1983 when

Simmons [59] stated the problem in terms of communication in a prison. In his

formulation, two inmates, Alice and Bob, are trying to hatch an escape plan. The

only way they can communicate with each other is through a public channel, which is

carefully monitored by the warden of the prison, Ward. If Ward detects any encrypted

messages or codes, he will throw both Alice and Bob into solitary confinement. The

problem of steganography is, then: how can Alice and Bob cook up an escape plan

by communicating over the public channel in such a way that Ward doesn’t suspect

anything “unusual” is going on.

Anderson and Petitcolas [6] posed many of the open problems resolved in this

thesis. In particular, they pointed out that it was unclear how to prove the security

of a steganographic protocol, and gave an example which is similar to the protocol

we present in Chapter 3. They also asked whether it would be possible to have

steganography without a secret key, which we address in Chapter 4. Finally, they

point out that while it is easy to give a loose upper bound on the rate at which

hidden bits can be embedded in innocent objects, there was no known lower bound.

Since the paper of Anderson and Petitcolas, several works [16, 44, 57, 66] have

addressed information-theoretic definitions of steganography. Cachin’s work [16, 17]

formulates the problem as that of designing an encoding function so that the rela-

tive entropy between stegotexts, which encode hidden information, and independent,

identically distributed samples from some innocent-looking covertext probability dis-

tribution, is small. He gives a construction similar to one we describe in Chapter 3 but

concludes that it is computationally intractable; and another construction which is

provably secure but relies critically on the assumption that all orderings of covertexts

are equally likely. Cachin also points out several flaws in other published information-

theoretic formulations of steganography.

All information-theoretic formulations of steganography are severely limited, how-

ever, because it is easy to show that information-theoretically secure steganography

implies information-theoretically secure encryption; thus any secure stegosystem with

4

N bits of secret key can encode at most N hidden bits. In addition, techniques such

as public-key steganography and robust steganography are information-theoretically

impossible.

1.3 Contributions of the thesis

The primary contribution of this thesis is a rigorous, cryptographic theory of steganog-

raphy. The results which establish this theory fall under several categories: symmetric-

key steganography, public-key steganography, steganography with active adversaries,

steganographic rate, and steganographic computation. Here we summarize the results

in each category.

Symmetric Key Steganography.

A symmetric key stegosystem allows two parties with a shared secret to send hidden

messages undetectably over a public channel. We give cryptographic definitions for

symmetric-key stegosystems and steganographic secrecy against a passive adversary

in terms of indistinguishability from a probabilistic channel process. By giving a

construction which provably satisfies these definitions, we show that the existence

of a one-way function is sufficient for the existence of secure steganography relative

to any channel. We also show that this condition is necessary by demonstrating a

construction of a one-way function from any secure stegosystem.

Public-Key Steganography

Informally, a public-key steganography protocol allows two parties, who have never

met or exchanged a secret, to send hidden messages over a public channel so that

an adversary cannot even detect that these hidden messages are being sent. Un-

like previous settings in which provable security has been applied to steganography,

public-key steganography is information-theoretically impossible. We introduce com-

putational security conditions for public-key steganography similar to those for the

symmetric-key setting, and give the first protocols for public-key steganography and

5

steganographic key exchange that are provably secure under standard cryptographic

assumptions.

Steganography with active adversaries

We consider the security of a stegosystem against an adversary who actively attempts

to subvert its operation by introducing new messages to the communication between

Alice and Bob. We consider two classes of such adversaries: disrupting adversaries

and distinguishing adversaries. Disrupting adversaries attempt to prevent Alice and

Bob from communicating steganographically, subject to some set of publicly-known

restrictions; we give a formal definition of robustness against such an attack and

give the first construction of a provably robust stegosystem. Distinguishing adver-

saries introduce additional traffic between Alice and Bob in hopes of tricking them

into revealing their use of steganography; we consider the security of symmetric- and

public-key stegosystems against active distinguishers and give constructions which

are secure against such adversaries. We also show that no stegosystem can be simul-

taneously secure against both disrupting and distinguishing active adversaries.

Bounds on steganographic rate

The rate of a stegosystem is defined by the (expected) ratio of hiddentext size to

stegotext size. Prior to this work there was no known lower bound on the achievable

rate (since there were no provably secure stegosystems), and only a trivial upper

bound. We give an upper-bound MAX in terms of the number of samples from a

probabilistic channel oracle and the minimum-entropy of the channel, and show that

this upper bound is tight by giving a provably secure symmetric-key stegosystem with

rate (1− o(1))MAX. We also give an upper bound RMAX on the rate achievable by

a robust stegosystem and exhibit a construction of a robust stegosystem with rate

(1− ε)RMAX for any ε > 0.

6

Covert Computation

We introduce the novel concept of covert two-party computation. Whereas ordinary

secure two-party computation only guarantees that no more knowledge is leaked about

the inputs of the individual parties than the result of the computation, covert two-

party computation employs steganography to yield the following additional guaran-

tees: (A) no outside eavesdropper can determine whether the two parties are per-

forming the computation or simply communicating as they normally do; (B) before

learning f(xA, xB), neither party can tell whether the other is running the proto-

col; (C) after the protocol concludes, each party can only determine if the other ran

the protocol insofar as they can distinguish f(xA, xB) from uniformly chosen random

bits. Covert two-party computation thus allows the construction of protocols that

return f(xA, xB) only when it equals a certain value of interest (such as “Yes, we

are romantically interested in each other”) but for which neither party can determine

whether the other even ran the protocol whenever f(xA, xB) does not equal the value

of interest. We introduce security definitions for covert two-party computation and

we construct protocols with provable security based on the Decisional Diffie-Hellman

assumption.

A steganographic design methodology

At a higher level, the technical contributions of this thesis suggest a powerful design

methodology for steganographic security goals. This methodology stems from the

observation that the uniform channel is universal for steganography: we give a trans-

formation from an arbitrary protocol which produces messages indistinguishable from

uniform random bits (given an adversary’s view) into a protocol which produces mes-

sages indistinguishable from an arbitrary channel distribution (given the adversary’s

view). Thus, in order to hide information from an adversary in a given channel, it is

sufficient to design a protocol which hides the information among pseudorandom bits

and apply our transformation. Examples of this methodology appear in Chapters 3,

4, 5, and 7; and the explicit transformation for a general task along with a proof of

its security is given in chapter 7, Theorem 7.5.

7

1.4 Roadmap of the thesis

Chapter 2 establishes the results and notation we will use from cryptography, and

describes our model of innocent communication. Chapter 3 discusses our results on

symmetric-key steganography and relies heavily on the material in Chapter 2. Chap-

ter 4 discusses our results on public-key steganography, and can be read independently

of chapter 3. Chapter 5 considers active attacks against stegosystems; section 5.1 de-

pends on material in Chapters 2 and 3, while the remaining sections also require some

familiarity with the material in Chapter 4. Chapter 6 discusses the rate of a stegosys-

tem, and depends on materials in Chapter 3, while the final section also requires

material from section 5.1. Finally, in Chapter 7 we extend steganography from the

concept of hidden communication to hidden computation. Chapter 7 depends only

on the material in chapter 2. Finally, in Chapter 8 we suggest directions for future

research.

8

Chapter 2

Model and Definitions

In this chapter we will introduce the notation and concepts from cryptography and

information theory that our results will use. The reader interested in a more general

treatment of the relationships between the various notions presented here is referred

to the works of Goldreich [25] and Goldwasser and Bellare [30].

2.1 Notation

We will model all parties by Probabilistic Turing Machines (PTMs). A PTM is a

standard Turing machine with an additional read-only “randomness” tape that is

initially set so that every cell is a uniformly, independently chosen bit. If A is a

PTM, we will denote by x ← A(y) the event that x is drawn from the probability

distribution defined by A’s output on input y for a uniformly chosen random tape.

We will write Ar(y) to denote the output of A with random tape fixed to r on input

y.

We will often make use of Oracle PTMs (OPTM). An OPTM is a PTM with two

additional tapes: a “query” tape and a “response” tape; and two corresponding states

Qquery, Qresponse. An OPTM runs with respect to some oracle O, and when it enters

state Qquery with value y on its query tape, it goes in one step to state Qresponse, with

x← O(y) written to its “response” tape. If O is a probabilistic oracle, then AO(y) is

a probability distribution on outputs taken over both the random tape of A and the

9

probability distribution on O’s responses.

We denote the length of a string or sequence s by |s|. We denote the empty string

or sequence by ε. The concatenation of string s1 and string s2 will be denoted by

s1‖s2, and when we write “Parse s as s1‖t1s2‖t2 · · · ‖tl−1
sl” we mean to separate s into

strings s1, . . . sl where each |si| = ti and s = s1‖s2‖ · · · ‖sl. We will assume the use of

efficient and unambiguous pairing and unpairing operators on strings, so that (s1, s2)

may be uniquely interpreted as the pairing of s1 with s2, and is not the same as s1‖s2.

One example of such an operation is to encode (s1, s2) by a prefix-free encoding of

|s1|, followed by s1, followed by a prefix-free encoding of |s2| and then s2. Unpairing

then reads |s1|, reads that many bits from the input into s1, and repeats the process

for s2.

We will let Uk denote the uniform distribution on {0, 1}k. If X is a finite set, we

will denote by x ← X the action of uniformly choosing x from X. We denote by

U(L, l) the uniform distribution on functions f : {0, 1}L → {0, 1}l. For a probability

distribution D, we denote the support of D by [D]. For an integer n, we let [n] denote

the set {1, 2, . . . , n}.

2.2 Cryptography and Provable Security

Modern cryptography makes use of reductions to prove the security of protocols; that

is, to show that a protocol P is secure, we show how an attacker violating the security

of P can be used to solve a problem Q which is believed to be intractable. Since

solving Q is believed to be intractable, it then follows that violating the security of P

is also intractable. In this section, we will give examples from the theory of symmetric

cryptography to illustrate this approach, and introduce the notation to be used in

the rest of the dissertation.

2.2.1 Computational Indistinguishability

Let X = {Xk}k∈N and Y = {Yk}k∈N denote two sequences of probability distributions

such that [Xk] = [Yk] for all k. Many cryptographic questions address the issue of

10

distinguishing between samples from X and samples from Y . For example, the dis-

tribution X could denote the possible encryptions of the message “Attack at Dawn”

while Y denotes the possible encryptions of “Retreat at Dawn;” a cryptanalyst would

like to distinguish between these distributions as accurately as possible, while a cryp-

tographer would like to show that they are hard to tell apart. To address this concept,

cryptographers have developed several notions of indistinguishability. The simplest

is the statistical distance:

Definition 2.1. (Statistical Distance) Define the statistical distance between X and

Y by

∆k(X ,Y) =
1

2

∑
x∈[Xk]

|Pr[Xk = x]− Pr[Yk = x]| .

If ∆(X,Y) is small, it will be difficult to distinguish between X and Y , because

most outcomes occur with similar probability under both distributions.

On the other hand, it could be the case that ∆(X, Y) is large but X and Y are

still difficult to distinguish by some methods. For example, if Xk is the distribution

on k-bit even-parity strings starting with 0 and Yk is the distribution on k-bit even-

parity strings starting with 1, then an algorithm which attempts to distinguish X and

Y based on the parity of its input will fail, even though ∆(X, Y) = 1. To address

this situation, we define the advantage of a program:

Definition 2.2. (Advantage) We will denote the advantage of a program A in dis-

tinguishing X and Y by

AdvX ,YA (k) = | Pr[A(Xk) = 1]− Pr[A(Yk) = 1] | .

Thus in the previous example, for any program A that considers only
∑

i si mod 2,

it will be the case that AdvX ,YA (k) = 0.

While the class of adversaries who consider only the parity of a string is not very

interesting, we may consider more interesting classes: for example, the class of all

adversaries with running time bounded by t(k).

Definition 2.3. (Insecurity) We denote the insecurity of X, Y by

InSecX ,Y(t, k) = max
A∈TIME(t(k))

{
AdvX ,YA (k)

}
11

and we say that Xk and Yk are (t, ε) indistinguishable if InSecX ,Y(t, k) ≤ ε.

If we are interested in the case that t(k) is bounded by some polynomial in k, then

we say that X and Y are computationally indistinguishable, written X ≈ Y , if for

every A ∈ TIME(poly(k)), there is a negligible function ν such that AdvX ,YA (k) ≤
ν(k). (A function ν : N → (0, 1) is said to be negligible if for every c > 0, for all

sufficiently large n, ν(n) < 1/nc.)

We will make use, several times, of the following (well-known) facts about statis-

tical and computational distance:

Proposition 2.4. Let ∆(X, Y) = ε. Then for any probabilistic program A,

∆(A(X), A(Y)) ≤ ε .

Proof.

∆(A(X), A(Y)) =
1

2

∑
x

|Pr[A(X) = x]− Pr[A(Y) = x]|

=
1

2

∑
x

∣∣∣∣∣2−|r|∑
r

(Pr[Ar(X) = x]− Pr[Ar(Y) = x])

∣∣∣∣∣
≤ 1

2
2−|r|

∑
r

∑
x

|Pr[Ar(X) = x]− Pr[Ar(Y) = x]|

≤ 1

2
max
r

∑
x

|Pr[Ar(X) = x]− Pr[Ar(Y) = x]|

≤ 1

2
max
r

∑
x

∑
y∈A−1

r (x)

|Pr[X = y]− Pr[Y = y]|

≤ ∆(X, Y) .

Proposition 2.5. For any t, InSecX,Y (t, k) ≤ ∆(X, Y)

12

Proof. Let A ∈ TIME(t) be any program with range {0, 1}. Then we have that

AdvX,YA (k) = |Pr[A(X) = 1]− Pr[A(Y) = 1]|

= |(1− Pr[A(X) = 0])− (1− Pr[A(Y) = 0])|

= |Pr[A(X) = 0]− Pr[A(Y) = 0]|

=
1

2
(|Pr[A(X) = 0]− Pr[A(Y) = 0]|+ |Pr[A(X) = 1]− Pr[A(Y) = 1]|)

= ∆(A(X), A(Y)) .

And thus, by the previous proposition, AdvX,YA (k) ≤ ∆(X, Y). Since this holds for

every A, we then have that

InSecX,Y (t, k) = max
A∈TIME(t)

{
AdvX,YA (k)

}
≤ ∆(X, Y) .

Proposition 2.6. For any m ∈ N, InSecXm,Ym(t, k) ≤ mInSecX,Y (t+ (m− 1)T, k),

where T = max{Time to sample from X,Time to sample from Y}.

Proof. The proof uses a “hybrid” argument. Consider any A ∈ TIME(t); we wish

to bound AdvX
m,Ym

A (k). To do so, we define a sequence of hybrid distributions

Z0, . . . , Zm, where Z0 = Xm, Zm = Y m, and Zi = (Y i, Xm−i). We will consider the

“experiment” of using A to distinguish Zi from Zi+1.

Notice that starting from the definition of advantage, we have:

AdvX
m,Ym

A (k) = |Pr[A(Xm) = 1]− Pr[A(Y m) = 1]|

= |Pr[A(Z0) = 1]− Pr[A(Zm) = 1]|

= |(Pr[A(Z0) = 1]− Pr[A(Z1) = 1]) + (Pr[A(Z1) = 1]− Pr[A(Z2) = 1])

+ · · ·+ (Pr[A(Zm) = 1]− Pr[A(Zm−1) = 1])|

≤
m∑
i=1

|Pr[A(Zi) = 1]− Pr[A(Zi−1) = 1]|

=
m∑
i=1

Adv
Zi−1,Zi
A (k)

Now notice that for each i, there is a program Bi which distinguishes X from Y with

the same advantage as A has in distinguishing Zi−1 from Zi: on input S, Bi draws

13

i− 1 samples from Y , m− i samples from X, and runs A with input (Y i−1, S,Xm−i).

If S ← X, then Pr[Bi(S) = 1] = Pr[A(Zi−1) = 1], because the first i − 1 samples in

A’s input will be from Y , and the remaining samples will be from X. On the other

hand, if S ← Y , then Pr[Bi(S) = 1] = Pr[A(Zi) = 1], because the first i samples in

A’s input will be from Y . So we have:

AdvX,YBi
(k) = |Pr[Bi(X) = 1]− Pr[Bi(Y) = 1]|

= |Pr[A(Zi−1) = 1]− Pr[A(Zi) = 1]|

= Adv
Zi−1,Zi
A (k) .

And therefore we can bound A’s advantage in distinguishing Xm,Y m by

AdvX
m,Ym

A (k) ≤
m∑
i=1

AdvX,YBi
(k) .

Now since Bi takes as long as A to run (plus time at most (m − 1)T to draw the

additional samples from X,Y), it follows that

AdvX,YBi
(k) ≤ InSecX,Y (t+ (m− 1)T, k) ,

so we can conclude that

AdvX
m,Ym

A (k) ≤ mInSecX,Y (t+ (m− 1)T, k) .

Since the theorem holds for any A ∈ TIME(t), we have that

InSecXm,Ym(t, k) ≤ max
A∈TIME(t)

{
AdvX

m,Ym

A (k)
}
≤ mInSecX,Y (t+ (m− 1)T, k) ,

as claimed.

The style of proof we have used for this proposition, in which we attempt to state

as tightly as possible the relationship between the “security” of two related problems

without reference to asymptotic analysis, is referred to in the literature as concrete

security analysis. In this dissertation, we will give concrete security results except in

Chapter 8, in which the concrete analysis would be too cumbersome.

14

2.2.2 Universal Hash Functions

A Universal Hash Family is a family of functions H : {0, 1}l × {0, 1}m → {0, 1}n

where m ≥ n, such that for any x1 6= x2 ∈ {0, 1}m and y1, y2 ∈ {0, 1}n,

Pr
Z←Ul

[H(Z, x1) = y1 ∧H(Z, x2) = y2] = 2−2n .

Universal hash functions are easy to construct for any m, n with l = 2m, by consid-

ering functions of the form ha,b(x) = ax + b, over the field GF (2m), with truncation

to the least significant n bits. It is easy to see that such a family is universal, because

truncation is regular, and the full-rank system ax1 + b = y1, ax2 + b = y2 has exactly

one solution over GF (2m), which is selected with probability 2−2m. We will make use

of universal hash functions to convert distributions with large minimum entropy into

distributions which are indistinguishable from uniform.

Definition 2.7. (Entropy) Let D be a distribution with finite support X. Define the

minimum entropy of D, H∞(D), as

H∞(D) = min
x∈X

{
log2

1

PrD[x]

}
.

Define the Shannon entropy of D, HS(D) by

HS(D) = E
x←D

[
− log2 Pr

D
[x]
]
.

Lemma 2.8. (Leftover Hash Lemma, [33]) Let H : {0, 1}l × {0, 1}m → {0, 1}n be a

universal hash family, and let X : {0, 1}m satisfy H∞(X) ≥ k. Then

∆((Z,H(Z,X)), (Z,Un)) ≤ 2−(k−n)/2+1

.

As a convention, we will sometimes refer to H as a family of functions and identify

elements of H by their index, e.g., when we say h ∈ H, then h(x) refers to H(h, x).

2.2.3 Pseudorandom Generators

Let G =
{
Gk : {0, 1}k → {0, 1}l(k)

}
k∈N denote a sequence of functions, with l(k) > k.

Then G is a pseudorandom generator (PRG) if G(Uk) ≈ Ul(k). More formally, define

15

the PRG-advantage of A against G by:

Advprg
A,G(k) =

∣∣Pr[A(G(Uk)) = 1]− Pr[A(Ul(k)) = 1]
∣∣

And the PRG-Insecurity of G by

InSecprg
G (t, k) = max

A∈TIME(t(k))

{
Advprg

A,G(k)
}
.

Then Gk is a (t, ε)-secure PRG if InSecprg
G (t, k) ≤ ε, and G is a PRG if for every

A ∈ TIME(poly(k)), there is a negligible µ such that Advprg
A,G(k) ≤ µ(k).

Pseudorandom generators can be seen as the basic primitive on which symmetric

cryptography is built. If G is a (t, ε)-PRG, then G(Uk) can be used in place of Ul(k) for

any application, and the loss in security against TIME(t) adversaries will be at most

ε. It was shown by H̊astad et al [33] that asymptotically, PRGs exist if and only if

one-way functions (OWFs) exist; thus when we say that the existence of a primitive is

equivalent to the existence of one-way functions, we may show it by giving reductions

to and from PRGs.

2.2.4 Pseudorandom Functions

Let F : {0, 1}k × {0, 1}L → {0, 1}l denote a family of functions. Informally, F is a

pseudorandom function family (PRF) if F and U(L, l) are indistinguishable by oracle

queries. Formally, let A be an oracle probabilistic adversary. Define the prf-advantage

of A over F as

Advprf
A,F (k) =

∣∣∣∣ Pr
K←U(k)

[AFK(·)(1k) = 1]− Pr
f←U(L,l)

[Af (1k) = 1]

∣∣∣∣ .
Define the insecurity of F as

InSecprf
F (t, q, k) = max

A∈A(t,q)

{
Advprf

A,F (k)
}

where A(t, q) denotes the set of adversaries taking at most t steps and making at most

q oracle queries. Then Fk is a (t, q, ε)-pseudorandom function if InSecprf
F (t, q, k) ≤ ε.

Suppose that l(k) and L(k) are polynomials. A sequence {Fk}k∈N of families Fk :

{0, 1}k×{0, 1}L(k) → {0, 1}l(k) is called pseudorandom if for all polynomially bounded

adversaries A, Advprf
A,F (k) is negligible in k. We will sometimes write Fk(K, ·) as FK(·).

We will make use of the following results relating PRFs and PRGs.

16

Proposition 2.9. Let Fk : {0, 1}k ×{0, 1}L(k) → {0, 1}l(k) be a PRF. Let q = dk+1
l(k)
e.

Define Gk : {0, 1}k → {0, 1}k+1 by G(X) = FX(0)‖FX(1)‖ · · · ‖FX(q − 1). Then

InSecprg
G (t, k) ≤ InSecprf

F (t+ q, q, k)

Proof. Consider an arbitrary PRG adversary A. We will construct a PRF adversary

B with the same advantage against F as A has against G. B has oracle access to a

function f . B makes q queries to f , constructing the string s = f(0)‖ · · · ‖f(q − 1),

and then returns the output of A on s. If f is a uniformly chosen function, the string

s is uniformly chosen; thus

Pr[Bf (1k) = 1] = Pr[A(Uk+1) = 1] .

If f is an element of F , then the string s is chosen exactly from G(Uk). In this case,

we have

Pr[BFK (1k) = 1] = Pr[A(G(Uk)) = 1] .

Combining the cases gives us

Advprf
B,F (k) =

∣∣Pr[BFK (1k) = 1]− Pr[Bf (1k) = 1]
∣∣

= |Pr[A(G(Uk)) = 1]− Pr[A(Uk+1) = 1]|

= Advprg
A,G(k)

Since B runs in the same time as A plus the time to make q oracle queries, we have

by definition of insecurity that

Advprf
B,F (k) ≤ InSecprf

F (t+ q, q, k) ,

and thus, for every A, we have

Advprg
A,G(k) ≤ InSecprf

F (t+ q, q, k) ,

which yields the stated theorem.

Intuitively, this proposition states that a pseudorandom function can be used to con-

struct a pseudorandom generator. This is because if we believe that F is pseudoran-

dom, we must believe that InSecprf
F (t, q, k) is small, and therefore that the insecurity

of the construction G, InSecprg
G (k) is also small.

17

Proposition 2.10. ([27], Theorem 3) There exists a function family FG : {0, 1}k ×
{0, 1}k → {0, 1}k such that

InSecprf
FG(t, q, k) ≤ qkInSecprg

G (t+ qkTIME(G), k) .

2.2.5 Encryption

A symmetric cryptosystem E consists of three (randomized) algorithms:

• E .Generate : 1k → {0, 1}k generates shared keys ∈ {0, 1}k. We will abbreviate

E .Generate(1k) by G(1k), when it is clear which encryption scheme is meant.

• E .Encrypt : {0, 1}k × {0, 1}∗ → {0, 1}∗ uses a key to transform a plaintext into

a ciphertext. We will abbreviate E .Encrypt(K, ·) by EK(·).

• E .Decrypt : {0, 1}k×{0, 1}∗ → {0, 1}∗ uses a key to transform a ciphertext into

the corresponding plaintext. We will abbreviate E .Decrypt(K, ·) by DK(·).

Such that for all keys K, E .Decrypt(K, E .Encrypt(K,m)) = m. Informally, we will

say that a cryptosystem is secure if, after viewing encryptions of plaintexts of its

choosing, an adversary cannot distinguish ciphertexts from uniform random strings.

This is slightly different from the more standard notion in which it is assumed that

encryptions of distinct plaintexts are indistinguishable.

To formally define the security condition for a cryptosystem, consider a game in

which an adversary A is given access to an oracle O which is either:

• EK for K ← G(1k); that is, an oracle which given a message m, returns a

sample from EK(m); or

• $(·); that is, an oracle which on querym ignores its input and returns a uniformly

selected string of length |EK(m)|.

Let A(t, q, l) be the set of adversaries A which make q(k) queries to the oracle of

at most l(k) bits and run for t(k) time steps. Define the CPA advantage of A against

E as

18

Advcpa
A,E(k) =

∣∣Pr[AEK (1k) = 1]− Pr[A$(1k) = 1]
∣∣

where the probabilities are taken over the oracle draws and the randomness of A.

Define the insecurity of E as

InSeccpa
E (t, q, l, k) = max

A∈A(t,q,l)

{
Advcpa

A,E(k)
}
.

Then E is (t, q, l, k, ε)-indistinguishable from random bits under chosen plaintext attack

if InSeccpa
E (t, q, l, k) ≤ ε. E is called (computationally) indistinguishable from random

bits under chosen plaintext attack (IND$-CPA) if for every PPTM A, Advcpa
A,E(k) is

negligible in k.

It was shown by [33] that the existence of secure symmetric cryptosystems is

equivalent to the existence of OWFs.

Proposition 2.11. ([36], Theorem 4.3) Let E be a symmetric cryptosystem. Then

there is a generator GE such that G is a PRG if E is IND$-CPA.

Proposition 2.12. Let F : {0, 1}k × {0, 1}k → {0, 1} be a function family. Define

the cryptosystem EF as follows:

• G(1k)← Uk.

• EK(m1 · · ·ml) = c← Uk‖FK(c+ 1)⊕m1‖ · · · ‖FK(c+ l)⊕ml.

• DK(c‖x1 · · ·xl) = FK(c+ 1)⊕ x1‖ · · · ‖FK(c+ l)⊕ xl.

Then

InSeccpa
EF (t, q, l, k) ≤ InSecprf

F (t+ 2l, l, k) +
ql

2k−1
.

Proof. Let A be a chosen-plaintext attacker for E . We will construct a PRF attacker

for F which has advantage at least

Advprf
B,F (k) ≥ Advcpa

A,E(k)− ql

2k−1
.

B will run in time t+ 2l and make l queries to its function oracle, so that

Advprf
B,F (k) ≤ InSecprf

F (t+ 2l, l, k) ,

19

which will yield the result.

B’s strategy is to play the part of the encryption oracle in A’s chosen-plaintext

attack game. Thus, B will run A, and whenever A makes an encryption query, B

will produce a response using its function oracle, which it will pass back to A. At the

conclusion of the chosen-plaintext game, A produces an output bit, which B will use

for its output. It remains to describe how B will respond to A’s encryption queries. B

will do so by executing the encryption program EK from above, but using its function

oracle in place of FK . Thus, on a query m1 · · ·ml, B
f will choose a c← Uk, and give

A the response c‖f(c+ 1)⊕m1‖ · · · ‖f(c+ l)⊕ml.

Let us bound the advantage of B. In case B’s oracle is chosen from FK , B will

perfectly simulate an encryption oracle to A. Thus

Pr[BFK (1k) = 1] = Pr[AEK (1k) = 1] .

Now suppose that B’s oracle is a uniformly chosen function, and let NC denote the

event that B does not query its oracle more than once on any input, and let C denote

the complement of NC - that is, the event that B queries its oracle at least twice on

at least one input. Conditioned on NC, every bit that B returns to A is uniformly

chosen, for a uniform choice of f , subject to the condition that none of the leading

values overlap, an event we will denote by N$, and which has identical probability to

NC. In this case B perfectly simulates a random-bit oracle to A, giving us

Pr[Bf (1k)|NC] = Pr[A$(1k) = 1|N$] .

By conditioning on NC and C, we find that

Advprf
B,F (k) = Pr[BFK (1k) = 1]− Pr[Bf (1k) = 1]

= Pr[AEK (1k) = 1]−
(
Pr[Bf (1k) = 1|NC] Pr[NC]

+ Pr[Bf (1k) = 1|C] Pr[C]
)

≥ Pr[AEk(1k) = 1]− Pr[A$(1k) = 1 ∧ N$]− Pr[C]

≥ Pr[AEk(1k) = 1]− Pr[A$(1k) = 1]− Pr[C]

= Advcpa
A,E(k)− Pr[C] ,

where we assume without loss of generality that Pr[AEK (1k) = 1] ≥ Pr[A$(1k) = 1].

To finish the proof, we need only to bound Pr[C].

20

To bound the probability of the event C, let us further subdivide this event. During

the attack game, A will make q queries that B must answer, so that B chooses q k-bit

values c1, . . . , cq to encrypt messages of length l1, . . . , lq; Let us denote by NCi the

event that after the ith encryption query made by A, B has not made any duplicate

queries to its function oracle f ; and let Ci denote the complement of NCi. We will

show that

Pr[Ci|NCi−1] ≤
ili +

∑
j<i lj

2k
,

and therefore we will have

Pr[C] = Pr[Cq]

≤ Pr[Cq|NCq−1] + Pr[Cq−1]

≤
q∑
i=1

Pr[Ci|NCi−1]

≤ 1

2k

q∑
i=1

(
ili +

∑
j<i

lj

)

≤ 1

2k

(
q∑
i=1

ili + ql

)

≤ 1

2k

(
q

q∑
i=1

li + ql

)

=
2ql

2k

Which establishes the desired bound, given the bound on Pr[Ci|NCi−1]. To establish

this conditional bound, fix any choice of the values c1, . . . , ci−1. The value ci will

cause a duplicate input to f if there is some cj such that cj − li ≤ ci ≤ cj + lj, which

happens with probability (li + lj)/2
k, since ci is chosen uniformly. Thus by the union

bound, we have that

Pr[Ci|NCi−1] ≤ 2−k
∑
j<i

(li + lj)

and rearranging gives the stated bound:

Pr[Ci|NCi−1] ≤ 2−k(ili +
∑
j<i

lj) .

21

2.3 Modeling Communication - Channels

We seek to define steganography in terms of indistinguishability from a “usual” or

innocent-looking pattern of communication. In order to do so, we must characterize

this pattern. We begin by supposing that Alice and Bob communicate via documents:

Definition 2.13. (Documents) Let D be an efficiently recognizable, prefix-free set

of strings, or documents.

As an example, if Alice and Bob are communicating over a computer network, they

might run the TCP protocol, in which case they communicate by sending “packets”

according to a format which specifies fields like a source and destination address,

packet length, and sequence number.

Once we have specified what kinds of strings Alice and Bob send to each other,

we also need to specify the probability that Ward will assign to each document. The

simplest notion might be to model the innocent communications between Alice and

Bob by a stationary distribution: each time Alice communicates with Bob, she makes

an independent draw from a probability distribution C and sends it to Bob. Notice

that in this model, all orderings of the messages output by Alice are equally likely.

This does not match well with our intuition about real-world communications; if we

continue the TCP analogy, we notice, for example, that in an ordered list of packets

sent from Alice to Bob, each packet should have a sequence number which is one

greater than the previous; Ward would become very suspicious if Alice sent all of the

odd-numbered packets first, and then all of the even.

Thus, we will use a notion of a channel which models a prior distribution on the

entire sequence of communication from one party to another:

Definition 2.14. A channel is a distribution on sequences s ∈ DΩ.

Any particular sequence in the support of a channel describes one possible outcome

of all communications from Alice to Bob - the list of all packets that Alice’s computer

sends to Bob’s. The process of drawing from the channel, which results in a sequence

of documents, is equivalent to a process that repeatedly draws a single “next” docu-

ment from a distribution consistent with the history of already drawn documents - for

22

example, drawing only packets which have a sequence number that is one greater than

the sequence number of the previous packet. Therefore, we can think of communica-

tion as a series of these partial draws from the channel distribution, conditioned on

what has been drawn so far. Notice that this notion of a channel is more general than

the typical setting in which every symbol is drawn independently according to some

fixed distribution: our channel explicitly models the dependence between symbols

common in typical real-world communications.

Let C be a channel. We let Ch denote the marginal channel distribution on a single

document from D conditioned on the history h of already drawn documents; we let

Clh denote the marginal distribution on sequences of l documents conditioned on h.

Concretely, for any d ∈ D, we will say that

Pr
Ch

[d] =

∑
s∈{(h,d)}×D∗ PrC[s]∑
s∈{h}×D∗ PrC[s]

,

and that for any ~d ∈ dl,

Pr
Clh

[~d] =

∑
s∈{(h,d)}×D∗ PrC[s]∑
s∈{h}×D∗ PrC[s]

.

When we write “sample x← Ch” we mean that a single document should be returned

according to the distribution conditioned on h. When it is not clear from context, we

will use CA→B,h to denote the channel distribution on the communication from party

A to party B.

Informativeness

We will require that a channel satisfy a minimum entropy constraint for all histories.

Specifically, we require that there exist constants L > 0, β > 0, α > 0 such that for all

h ∈ DL, either PrC[h] = 0 or H∞(Cβh) ≥ α. If a channel does not satisfy this property,

then it is possible for Alice to drive the information content of her communications

to 0, so this is a reasonable requirement. We say that a channel satisfying this

condition is (L, α, β)-informative, and if a channel is (L, α, β)-informative for all L >

0, we say it is (α, β)-always informative, or simply always informative. Note that

this definition implies an additive-like property of minimum entropy for marginal

23

distributions, specifically, H∞(Clβh) ≥ lα . For ease of exposition, we will assume

channels are always informative in the remainder of this dissertation; however, our

theorems easily extend to situations in which a channel is L-informative. The only

complication in this situation is that there will be a bound in terms of (L, α, β) on

the number of bits of secret message which can be hidden before the channel runs out

of information.

Intuitively, L-informativeness requires that Alice always sends at least L non-null

packets over her TCP connection to Bob, and at least one out of every β packets she

sends has some probable alternative. Thus, we are requiring that Alice always says

at least L/β “interesting things” to Bob.

Channel Access

In a multiparty setting, each ordered pair of parties (P,Q) will have their own channel

distribution CP→Q. To demonstrate that it is feasible to construct secure protocols

for steganography, we will assume that party A has oracle access to marginal channel

distributions CA→B,h for every other partyB and history h. This is reasonable, because

if Alice can communicate innocently with Bob at all, she must be able to draw from

this distribution; thus we are only requiring that when using steganography, Alice

can “pretend” she is communicating innocently.

On the other hand, we will assume that the adversary, Ward, knows as much as

possible about the distribution on innocent communications. Thus he will be allowed

oracle access to marginal channel distributions CP→Q,h for every pair P,Q and every

history h. In addition, the adversary may be allowed access to an oracle which on

input (d, h, l) ∈ D∗, returns an l-bit representation of PrCh [d].

These assumptions allow the adversary to learn as much as possible about any

channel distribution but do not require any legitimate participant to know the dis-

tribution on communications from any other participant. We will, however, assume

that each party knows (a summary of) the history of communications it has sent and

received from every other participant; thus Bob must remember some details about

the entire sequence of packets Alice sends to him.

24

Etc. . .

We will also assume that cryptographic primitives remain secure with respect to

oracles which draw from the marginal channel distributions CA→B,h. Thus channels

which can be used to solve the hard problems that standard primitives are based on

must be ruled out. In practice this is of little concern, since the existence of such

channels would have previously led to the conclusion that the primitive in question

was insecure.

Notice that the set of documents need not be literally interpreted as a set of

bitstrings to be sent over a network. In general, documents could encode any kind of

information, including things like actions – such as accessing a hard drive, or changing

the color of a pixel – and times – such as pausing an extra 1
2

second between words

of a speech. In the single-party case, our theory is general enough to deal with these

situations without any special treatment.

2.4 Bidirectional Channels: modeling interaction

Some of our protocols require an even more general definition of communications, to

account for the differences in communications caused by interaction. For example, if

Alice is a web browser and Bob is a web server, Alice’s packets will depend on the

packets she gets from Bob: if Bob sends Alice a web page with links to a picture, then

Alice will also send Bob a request for that picture; and Alice’s next request might

more likely be a page linked from the page she is currently viewing. To model this

interactive effect on communications, we will need a slightly augmented model. The

main difference is that this channel is shared among two participants and messages

sent by each participant might depend on previous messages sent by either one of

them. To emphasize this difference, we use the term bidirectional channel.

Messages are still drawn from a set D of documents. For simplicity we assume

that time proceeds in discrete timesteps. Each party P ∈ {P0, P1} maintains a history

hP , which represents a timestep-ordered list of all documents sent and received by P .

We call the set of well-formed histories H. We associate to each party P a family of

25

probability distributions CP =
{
CPh
}
h∈H on D.

The communication over a bidirectional channel B = (D,H, CP0 , CP1) proceeds

as follows. At each timestep, each party P receives messages sent to them in the

previous timestep, updates hP accordingly, and draws a document d ← CPhP (the

draw could result in the empty message ⊥, signifying that no action should be taken

that timestep). The document d is then sent to the other party and hP is updated.

We assume for simplicity that all messages sent at a given timestep are received at

the next one. Denote by CPhP 6=⊥ the distribution CPhP conditioned on not drawing ⊥.

We will consider families of bidirectional channels {Bk}k≥0 such that: (1) the length

of elements in Dk is polynomially-bounded in k; (2) for each h ∈ Hk and party P ,

either Pr[CPh =⊥] = 1 or Pr[CPh =⊥] ≤ 1 − δ, for constant δ; and (3) there exists a

function `(k) = ω(log k) so that for each h ∈ Hk, H∞((CPh)k 6=⊥) ≥ `(k) (that is,

there is some variability in the communications).

Alternatively, a bi-directional channel can be thought of as a distribution on in-

finite sequences of pairs from D′ × D′, where D′ = D ∪ {⊥}, and the marginal

distributions are distributions on the individual documents in a pair.

We assume that party P can draw from CPh for any history h, and that the adver-

sary can draw from CPh for every party P and history h. We assume that the ability to

draw from these distributions does not contradict the cryptographic assumptions that

our results are based on. In the rest of the dissertation, all interactive communica-

tions will be assumed to conform to the bidirectional channel structure: parties only

communicate by sending documents from D to each other and parties not running a

protocol communicate according to the distributions specified by B. Parties running

a protocol strive to communicate using sequences of documents that appear to come

from B. As a convention, when B is compared to another random variable, we mean

a random variable which draws from the process B the same number of documents

as the variable we are comparing it to.

Bidirectional channels provide a model of the distribution on communications

between two parties and are general enough to express almost any form of communi-

cation between the parties.

26

Chapter 3

Symmetric-key Steganography

Symmetric-key steganography is the most basic setting for steganography: Alice and

Bob possess a shared secret key and would like to use it to exchange hidden messages

over a public channel so that Ward cannot detect the presence of these messages.

Despite the apparent simplicity of this scenario, there has been little work on giving

a precise formulation of steganographic security. Our goal is to give such a formal

description.

In Section 3.1, we give definitions dealing with the correctness and security of

symmetric-key steganography. Then we show in Section 3.2 that these notions are

feasible by giving constructions which satisfy them, under the assumption that pseu-

dorandom function families exist. Finally, in section 3.3, we explore the necessary

conditions for the existence of secure symmetric-key steganography.

3.1 Definitions

We will first define a stegosystem in terms of syntax and correctness, and then proceed

to a security definition.

Definition 3.1. (Stegosystem) A steganographic protocol S, or stegosystem, is a

pair of probabilistic algorithms:

• S.Encode (abbreviated SE) takes as input a key K ∈ {0, 1}k, a string m ∈

27

{0, 1}∗ (the hiddentext), and a message history h.

SE(K,m, h) returns a sequence of documents s1||s2|| . . . ||sl (the stegotext) from

the support of Clh.

• S.Decode (abbreviated SD) takes as input a key K, a sequence of documents

s1||s2|| . . . ||sl, and a message history h.

SD(K, s, h) returns a hiddentext m ∈ {0, 1}∗.

3.1.1 Correctness

Of course, in order for a stegosystem to be useful, it must be correct: when using

the same key and history, decoding should recover any encoded message, most of the

time:

Definition 3.2. (Correctness) A stegosystem S is correct if for every polynomial

p(k), there exists a negligible function µ(k) such that SE and SD also satisfy the

relationship:

∀m ∈ {0, 1}p(k), h ∈ D∗ : Pr(SD(K,SE(K,m, h), h) = m) ≥ 1− µ(k) ,

where the randomization is over the key K and any coin tosses of SE, SD, and the

oracles accessed by SE,SD.

An equivalent approach is to require that for any single-bit message, decoding

correctly recovers an encoded bit with probability bounded away from 1
2
. In this case,

multiple encodings under independent keys can be combined with error-correcting

codes to make the probability of single-bit decoding failure negligible in k (we take

a similar approach in our feasibility result). If the probability of decoding failure for

a single-bit message is a negligible function µ(k), then for any polynomial p(k), a

union bound is sufficient to show that the probability of decoding failure for p(k)-bit

messages is at most p(k)µ(k), which is still negligible in k.

28

3.1.2 Security

Intuitively, what we would like to require is that no efficient warden can distinguish

between stegotexts output by SE and covertexts drawn from the channel distribution

Ch. As we stated in Section 2.3, we will assume that W knows the distribution Ch;
we will also allow W to know the algorithms involved in S as well as the history h of

Alice’s communications to Bob. In addition, we will allow W to pick the hiddentexts

that Alice will hide, if she is in fact producing stegotexts. Thus, W ’s only uncertainty

is about the key K and the single bit denoting whether Alice’s outputs are stegotexts

or covertexts.

As with encryption schemes, we will model an attack against a stegosystem as a

game played by a passive warden, W , who is allowed to know the details of S and

the channel C.

Definition 3.3. (Chosen Hiddentext Attack) In a chosen hiddentext attack, W is

given access to a “mystery oracle” M which is chosen from one of the following

distributions:

1. ST: The oracle ST has a uniformly chosen key K ← Uk and responds to queries

(m,h) with a StegoText drawn from SE(K,m, h).

2. CT: The oracle CT has a uniformly chosen K as well, and responds to queries

(m,h) with a CoverText of length ` = |SE(K,m, h)| drawn from C`h.

WM(1k) outputs a bit which represents its guess about the type of M .

We define W ’s advantage against a stegosystem S for channel C by

Advss
S,C,W (k) =

∣∣Pr[W ST(1k) = 1]− Pr[WCT(1k) = 1]
∣∣ ,

where the probability is taken over the randomness of ST,CT, and W .

Define the insecurity of S with respect to channel C by

InSecss
S,C(t, q, l, k) = max

W∈W(t,q,l)

{
Advss

S,C,W (k)
}
,

where W(t, q, l) denotes the set of all adversaries which make at most q(k) queries

totaling at most l(k) bits (of hiddentext) and running in time at most t(k).

29

Definition 3.4. (Steganographic secrecy) A Stegosystem Sk is called (t, q, l, ε) stegano-

graphically secret against chosen hiddentext attack for the channel C ((t, q, l, ε)-SS-

CHA-C) if InSecss
S,C(t, q, l, k) ≤ ε.

Definition 3.5. (Universal Steganographic Secrecy) A Stegosystem S is called (t, q, l,

ε)-universally steganographically secret against chosen hiddentext attack ((t, q, l, ε)-

USS-CHA) if it is (t, q, l, ε)-SS-CHA-C for every always-informative channel C.

A stegosystem is called universally steganographically secret USS-CHA if for every

channel C and for every PPT W , Advss
S,C,W (k) is negligible in k.

Note that steganographic secrecy can be thought of roughly as encryption which

is indistinguishable from arbitrary distributions D.

3.2 Constructions

For our feasibility results, we have taken the approach of assuming a channel which can

be drawn from freely by the stegosystem; most current proposals for stegosystems act

on a single sample from the channel (one exception is [16]). While it may be possible

to define a stegosystem which is steganographically secret or robust and works in this

style, this is equivalent to a system in our model which merely makes a single draw on

the channel distribution. Further, we believe that the lack of reference to the channel

distribution may be one of the reasons for the failure of many such proposals in the

literature.

It is also worth noting that we assume that a stegosystem has very little knowledge

of the channel distribution — SE may only sample from an oracle according to the

distribution. This is because in many cases the full distribution of the channel has

never been characterized; for example, the oracle may be a human being, or a video

camera focused on some complex scene. However, our definitions do not rule out

encoding procedures which have more detailed knowledge of the channel distribution.

Sampling from Ch might not be trivial. In some cases the oracle for Ch might be a

human, and in others a simple randomized program. We stress that it is important to

minimize the use of such an oracle, because oracle queries can be extremely expensive.

30

In practice, this oracle is also the weakest point of all our constructions. We assume

the existence of a perfect oracle: one that can perform independent draws, one that

can be rewound, etc. This assumption can be justified in some cases, but not in

others. If the oracle is a human, the human may not be able to perform independent

draws from the channel as is required by our constructions. A real world Warden

would use this to his advantage. We therefore stress the following cautionary remark:

our protocols will be shown to be secure under the assumption that the channel oracle

is perfect.

3.2.1 A Stateful Construction

Setup: We assume Alice and Bob share a channel and let C denote the channel

distribution. We write d← Ch to denote the action of sampling d from the marginal

distribution Ch (via oracle access). We let FK(·, ·) denote a pseudorandom function

family indexed by k = |K| key bits which maps documents to bits, i.e. F : {0, 1}k ×
{0, 1}∗ → {0, 1}. We let Alice and Bob share a secret key K ∈ {0, 1}k and also a

synchronized d bit counter N (which need not be secret). The following procedures

allow Alice and Bob to encode and decode a single bit and to send it via their shared

channel.

Construction 3.6. OneBit Stegosystem

Procedure OneBit.Encode:
Input: K ∈ {0, 1}k, m ∈ {0, 1}, h ∈ D∗, N
for i = 1 . . . ` do

draw di, d
′
i ← Ch

If FK(N, di) = m then
set si = di

else
set si = d′i

set h = (h, si), increment N
Output: s1, s2, . . . , s`

Procedure OneBit.Decode:
Input: K ∈ {0, 1}k, s1, . . . , s`, N
set C = 0
for i = 1 . . . l do

set C = C + FK(N, si)
increment N

if C > `/2 then
set m = 1

else
set m = 0

Output: m

The idea behind this construction is simple. The encoding algorithm makes ` copies

of the bit m. For the ith copy, the encoder attempts to find a document d such that

FK(i, d) = m, by drawing d← Ch. If the encoder fails, it draws a second d′ ← Ch and

31

sends d′ instead of d. The decoder recovers ` bits by applying FK to each bit, and

outputs 1 if the majority of the bits are 1, and 0 otherwise. Intuitively, this works

because we expect each si to map to the bit m with probability about 3
4
, and so the

probability of a decoding failure should be negligible in `.

Lemma 3.7. Let s1, . . . , s` ← SE(K,m, h) and suppose F is a uniformly chosen

function. Then for any d ∈ D,

Pr[si = d] = Pr
Chi

[d] .

Proof. The event si = d happens exactly when di = d and FK(N + i, di) = m or

when d′i = d and FK(N + i, di) = 1−m. Because di and d′i are drawn independently

from Chi and independently of FK , and the conditions on FK(N + i, ·) are mutually

exclusive, we get:

Pr[si = d] = Pr[(FK(N + i, di) = m ∧ di = d) ∨ (FK(N + i, di) = 1−m ∧ d′i = d)]

= Pr[FK(N + i, di) = m ∧ di = d] + Pr[FK(N + i, di) = 1−m ∧ d′i = d]

= Pr[FK(N + i, di) = m] Pr[di = d] + Pr[FK(N + i, di) = 1−m] Pr[d′i = d]

=
1

2
Pr
Chi

[d] +
1

2
Pr
Chi

[d]

= Pr
Chi

[d]

Lemma 3.8. Let s1, . . . , s` ← SE(K,m, h), and suppose F is a uniformly chosen

function. Then for any i,

Pr[FK(N + i, si) = m] =
1

2
+

1

4
Pr

d0,d1←Chi
[d0 6= d1]

Proof. Consider the two documents di, d
′
i that SE draws in iteration i. It will be

the case that FK(N + i, si) = m exactly when either FK(N + i, di) = m, which

happens with probability 1
2
, or when FK(N + i, di) = 1−m and FK(N + i, d′i) = m,

which happens with probability 1
4

when di 6= d′i, and with probability 0 otherwise.

The theorem applies for any i because the function FK(N + i, ·) is independent of

FK(N + j, ·) for i 6= j when FK is uniformly chosen.

32

Lemma 3.9. Suppose C is (α, β)-always informative and F is a uniformly chosen

function. Then we have

Pr
i

[FK(N + i, si) = m] ≥ 1

2
+

1

4β
(1− 2−α/β)

Proof. Because C is (α, β)-informative, for any h and any sequence d1, . . . , dβ ← Cβh ,

there must be a j between 0 and β − 1 such that H∞(C(h,ldots,dj)) ≥ α/β. If this were

not the case, then we would have h such that H∞(Cβh) < α. Thus for a string of

length ` drawn from C`h, there must be `/β positions i which have H∞(Chi) ≥ α/β. In

these positions, the collision probability is at most 2−α/β. In the other positions, the

collision probability is at most 1. Applying the previous lemma yields the result.

Theorem 3.10. If C is (α, β)-informative, then

Pr[SD(K,SE(K,m, h), h) 6= m] ≤ e−γ` + InSecprf
F (TSE`, 2`, k) ,

where γ = 2(1
4β

(1− 2−α/β))2 and TSE is the time required to execute the inner loop of

OneBit.Encode.

Proof. Lemma 3.9 implies that if FK is a random function, then

Pr[SD(K,SE(K,m, h), h) 6= m] ≤ e−γ` .

We describe a PRF-adversary A for F that has advantage∣∣Pr[SD(K,SE(K,m, h), h) 6= m]− e−γ`
∣∣ .

A uses its function oracle f to emulate the action of SE encoding a uniformly chosen

bit m under history h, counting the number of documents with f(N + i, si) = m. If

fewer than 1
2

of the si satisfy f(N + i, si) = m, A outputs 1, otherwise A outputs 0.

Lemma 3.9 shows that Pr[Af (1k) = 1] ≤ e−γ`, whereas

Pr[AFk(1k) = 1] = Pr[SD(K,SE(K,m, h), h) 6= m] .

So by definition of advantage,

Advprf
A,F (k) ≥

∣∣Pr[SD(K,SE(K,m, h), h) 6= m]− e−γ`
∣∣ ,

and it follows that this quantity is at most InSecprf
F (TIME(A), QUERIES(A), k).

But A runs in time `TSE and makes 2` function-oracle queries, which proves the

theorem.

33

Extending to multiple-bit messages

For completeness, we now state the obvious extension of the stegosystem OneBit to

multiple-bit hiddentexts. We assume the same setup as previously.

Construction 3.11. MultiBit Stegosystem

Procedure MultiBit.Encode:
Input: K ∈ {0, 1}k, m ∈ {0, 1}L, h ∈ D∗, N
for i = 1 . . . L do

draw si ← OneBit.Encode(K,mi, h,N)
set h = (h, si), N = N + `

Output: s1, s2, . . . , s|m|

Procedure MultiBit.Decode:
Input: K ∈ {0, 1}k, s1, . . . , sL`, N
for i = 1 . . . L do
set Si = s(i−1)`, . . . , si`−1

set mi = OneBit.Decode(K,Si, N)
set N = N + `
Output: m1‖ · · · ‖mL

The MultiBit stegosystem works by simply repeatedly invoking OneBit on the indi-

vidual bits of the message m.

Theorem 3.12. If C is (α, β)-informative, then

Pr[SD(K,SE(K,m, h,N), N) 6= m] ≤ |m|(e−γ`) + InSecprf
F (|m|TSE`, 2|m|`, k)),

where γ = 2(1
4β

(1− 2−α/β))2 and TSE is the time required to execute the inner loop of

OneBit.Encode.

Proof. Because each si is generated using a different value of the counter N , each

execution of the inner loop of OneBit.Encode is independent when called with a

uniformly chosen function. Thus when a uniformly chosen function is used, executing

OneBit.Encode |m| times with different bits is the same as using |m| independent

keys, each with failure probability at most e−γ`; a union bound shows that for a

random function f , Pr[SDf (SEf (m,h,N), N) 6= m] ≤ |m|(e−γ`). To complete the

proof, we apply the same technique as in the proof of Theorem 3.10

We would like to make a security claim about the stegosystem MultiBit, but

because the stegosystem does not fit our syntactic definition, we need a slightly mod-

ified version of the chosen-hiddentext attack game. We will modify the definition of

the oracle distribution ST so that the oracle’s private state will include the value N ,

initialized to 0 and properly incremented between queries. With this modified game

in mind, we can state our theorem about the security of MultiBit:

34

Theorem 3.13. Let k = |K|. For any l ≤ 2d:

InSecss
MultiBit,C(t, q, µ, k) ≤ InSecprf

F (t+ `µTSE, 2`µ, k)

Proof. For any warden, W , running in time t and making q queries totaling µ bits,

we construct a corresponding PRF adversary A, where

Advss
MultiBit,C,W (k) = Advprf

F,A(k)

The running time of A is the running time of warden W plus the time to make `µ

passes through the inner loop of OneBit.Encode, or `µTSE. The number of samples

taken from C is at most 2`µ.

Af simply runs W , playing the role of the oracle M in the chosen-hiddentext attack

game. To respond toW ’s queries, A emulates the encoding procedure MultiBit.Encode

using the function oracle f in place of FK(·); A outputs the same bit as W . We con-

sider the two cases for the oracle f :

• When f is a uniformly chosen function, then by lemma 3.7, the documents

output by OneBit.Encode are distributed exactly according to C. So

Pr[Af (1k) = 1] = Pr[WCT(1k) = 1] .

• When f is chosen from FK(·, ·), the documents submitted to W are distributed

identically to the output of MultiBit, by the definition of the construction.

Thus

Pr[AFK (1k) = 1] = Pr[W ST(1k) = 1] .

So the advantage of A is:

Advprf
F,A(k) =

∣∣Pr[AFK (1k) = 1]− Pr[Af (1k) = 1]
∣∣

=
∣∣Pr[W ST(1k) = 1]− Pr[WCT(1k) = 1]

∣∣
= Advss

MultiBit,C,W (k)

And the theorem follows by the definition of insecurity.

35

Corollary 3.14. If FK(·, ·) is pseudorandom then MultiBit is universally stegano-

graphically secret against chosen-hiddentext attacks.

Proof. If F is pseudorandom then for all PPT adversaries A, Advprf
F,A(k) is negligible

in k. The definition of insecurity and Theorem 3.13 imply that for any cover channel,

C, the advantage of a warden will be negligible in k. This, in turn, implies the

corollary.

Removing the need for state

Having extended our construction to use multiple-bit messages, we can now re-

move the requirement for Alice and Bob to share a synchronized counter N . This

construction will utilize the same setup as the previous constructions, except that

Alice and Bob now share a second key κ ∈ {0, 1}k to a pseudorandom function

G : {0, 1}k ×Dk → {0, 1}d/2.

Construction 3.15. NoState Stegosystem

Procedure NoState.Encode:
Input: K,κ ∈ {0, 1}k, m ∈ {0, 1}L, h ∈ D∗
S1 ← Ckh
N = 2d/2Gκ(S1)
S2 ← MultiBit.Encode(K,m, (h, S1), N)
Output: S1, S2

Procedure NoState.Decode:
Input: K,κ ∈ {0, 1}k, S1, S2

N = 2d/2Gκ(S1)
m = MultiBit.Decode(K, S2, N)
Output: m

The NoState stegosystem works by choosing a long sequence from Ch (long enough

that it is unlikely to repeat in the chosen-hiddentext attack game) and uses it to derive

a value N , which is then used as the state for the MultiBit stegosystem. This value

is always a multiple of 2d/2, so that if the value derived from the long sequence never

repeats, then any messages of length at most 2d/2 will never use a value of N used by

another message.

Theorem 3.16. If C is (α, β)-informative, then

Pr[SD(K,SE(K,m, h)) 6= m] ≤ |m|(e−γ`) + InSecprf
F (|m|TSE`, 2|m|`, k)),

where γ = 2(1
4β

(1− 2−α/β))2 and TSE is the time required to execute the inner loop of

OneBit.Encode.

36

Proof. The theorem follows directly from Theorem 3.12

Theorem 3.17. If C is (α, β)-informative, then for any q, µ ≤ 2d/2:

InSecss
NoState,C(t, q, µ, k) ≤ InSecprf

F (t+ qTG + `µTSE, 2`µ, k)

+ InSecprf
G (t+ `µ, q, k)

+
q(q − 1)

2
(2−d/2 + 2−αk/β)

Proof. We reformulate the CT oracle in the chosen-hiddentext attack game so that the

oracle has a key κ← Uk and evaluates Gκ on the first k documents of its reply (S, T)

to every query. Let NC denote the event that the values Gκ(S1), . . . , Gκ(Sq) are all

distinct during the chosen-hiddentext attack game and let C denote the complement

of NC.

Let W be any adversary in W(t, q, µ), and assume without loss of generality that

Pr[W ST(1k) = 1] > Pr[WCT(1k) = 1]. We wish to bound W ’s advantage against the

stegosystem NoState.

Advss
NoState,C,W (k) = Pr[W ST(1k) = 1]− Pr[WCT(1k) = 1]

=
(
Pr[W ST(1k) = 1|NC] Pr[NC] + Pr[W ST(1k) = 1|C] Pr[C]

)
−
(
Pr[WCT(1k) = 1|NC] Pr[NC] + Pr[WCT(1k) = 1|C] Pr[C]

)
≤
(
Pr[W ST(1k) = 1|NC] Pr[NC]− Pr[WCT(1k) = 1|NC] Pr[NC]

)
+ Pr[C]

≤
∣∣Pr[W ST(1k) = 1|NC]− Pr[WCT(1k) = 1|NC]

∣∣+ Pr[C]

We will show that for any W we can define an adversary X such that

Advss
MultiBit,C,X(k) ≥

∣∣Pr[W ST(1k) = 1|NC]− Pr[WCT(1k) = 1|NC]
∣∣ .

X plays the nonce-respecting chosen hiddentext attack game against MultiBit by

running W and emulating W ’s oracle. To do this, X picks a key κ← Uk, and when

W makes the query (m,h), X draws S1 ← Ckh, and computes N = 2d/2Gκ(S1). If N

is the same as some previous nonce used by X, X halts and outputs 0. Otherwise,

X queries its oracle on (m, (h, S1), N) to get a sequence S2, and then responds to W

with S1, S2. Notice that

Pr[XST(1k) = 1] = Pr[W ST(1k) = 1|NC] ,

37

and likewise that

Pr[XCT(1k) = 1] = Pr[WCT(1k) = 1|NC] .

Thus we have that

Advss
MultiBit,C,X(k) =

∣∣Pr[W ST(1k) = 1|NC]− Pr[WCT(1k) = 1|NC]
∣∣ ,

and since X makes as many queries (of the same length) as W and runs in time

t+ qTG, we have that∣∣Pr[W ST(1k) = 1|NC]− Pr[WCT(1k) = 1|NC]
∣∣ ≤ InSecss

MultiBit,C(t+ qTG, q, µ)

≤ InSecprf
F (t+ qTG + `µTSE, 2`µ, k)

by Theorem 3.13. Thus we need only to bound the term Pr[C].

Consider a game played with the warden W in which a random function f is used

in place of the function Gκ, and let Cf denote the same event as C in the previous

game. Let S1, . . . , Sq denote the k-document prefixes of the sequences returned by

the oracle in the chosen-hiddentext attack game and let Ni = f(Si). Then the event

Cf happens when there exist i 6= j such that Ni = Nj, or equivalently f(Si) = f(Sj);

and this event happens when Si = Sj or Si 6= Sj ∧ f(Si) = f(Sj). Thus for a random

f ,

Pr[Cf] = Pr[
∨
i<j<q

((Si = Sj) ∨ (Si 6= Sj ∧ f(Si) = f(Sj)))]

≤
∑
i<j<q

Pr[Si = Sj] + Pr[f(Si) = f(Sj) ∧ (Si 6= Sj)]

≤ q(q − 1)

2

(
Pr[Si = Sj] + 2−d/2

)
≤ q(q − 1)

2

(
2−αk/β + 2−d/2

)
Finally, observe that for every W ∈ W(t, q, µ) we can construct a PRF-Adversary

A for G in A(t+ `µ, q) such that

Advprf
G,A(k) ≥ |Pr[C]− Pr[Cf]| .

A runs W , using its oracle f in place of Gκ to respond to W ’s queries. A outputs

1 if the event Cf occurs, and 0 otherwise. Notice that Pr[AGκ(1k) = 1] = Pr[C] and

38

Pr[Af (1k) = 1] = Pr[Cf], which satisfies the claim. So to complete the proof, we

observe that

Pr[C] ≤ |Pr[C]− Pr[Cf]|+ Pr[Cf]

≤ InSecprf
G (t+ `µ, q, k) + Pr[Cf]

≤ InSecprf
G (t+ `µ, q, k) +

q(q − 1)

2

(
2−αk/β + 2−d/2

)

3.2.2 An Alternative Construction

The following protocol also satisfies our definition for universal steganographic se-

crecy. This protocol (up to small differences) is not new and can be found in [6]; an

information theoretic version of the protocol can also be found in [16].

Let EK(·, ·) and DK(·) denote the encryption and decryption functions for a cryp-

tosystem which is indistinguishable from random bits under chosen plaintext attack

(i.e., IND$-CPA) [54]. Suppose Alice and Bob share a key K ∈ {0, 1}k, and a function

f such that ∆(f(Ch), U1) ≤ ε for any h. One example of such a function would be

a uniformly chosen element of a universal hash family mapping Dk → {0, 1}; then

when C is (α, β)-informative, we would have ε ≤ 21−Ω(α/2β) except with negligible

probability. The following procedures allow encoding and decoding of messages in

a manner which is steganographically secret under chosen hiddentext attack for the

channel distribution C.

Construction 3.18. UHash Stegosystem

Procedure UHash.Encode:
Input: key K, hiddentext m, history h
Let c = EK(m)
Parse c as c1||1c2||1 · · · ||1c`
for i = 1 . . . ` do

set j = 0
repeat:

increment j
si ← Ch

until f(si) = ci or j = |K|
set h = (h, si)

Output: s1, s2, . . . , s`

Procedure UHash.Decode:
Input: key K, Stegotext s1, . . . , s`
for i = 1 . . . l do

set ci = f(si)
set c = c1‖c2‖ · · · ‖cl.
Output: DK(c)

39

The idea behind this construction is also simple. First, the encoding algorithm

encrypts the hiddentext m to get a ciphertext c = EK(m). Next, is splits the cipher-

text c into single bits. Then it draws documents from the channel until it finds s1

such that f(s1) = c1. After that it finds s2 such that f(s2) = c2, and s3, and so on.

This continues until all bits of c have been encoded. The decoding algorithm simply

applies f to all the si’s to get c and then decrypts with DK to recover the plaintext.

Note that the execution time for SD is essentially linear in l and the execution time

for SE is an expected O(l). Also note that our assumption of an “unbiased” func-

tion implies that an error correcting code as in construction 3.15 is unnecessary: the

probability of failure here is at most (1/2 + ε)|K|. In the following, we will let `(q, l)

denote the total number of bits of ciphertext returned by encrypting q plaintexts of

total length l.

Lemma 3.19. For any warden W ∈ W(t, q, l), we can construct a corresponding

adversary A where

Advss
UHash,C,W (k) ≤ Advcpa

E,A(k) + `(q, l)ε .

The running time of A is at most t+ O(kl), and A makes q encryption queries for a

total of l bits of plaintext.

Proof. We are given a program W for distinguishing between the output of construc-

tion 3.18 and the ordinary traffic of the channel, and an oracle for sampling blocks

from that channel. We construct a program A which plays the CPA game — distin-

guishing an EK oracle from a uniform $ oracle — with nearly the same advantage as

W . A simply runs W , responding to his queries by executing the encoding procedure

UHash.Encode using its oracle in place of EK . Consider the following two cases:

• O(m) = EK(m). Then the stegotexts output by the encoding procedure will be

identically distributed to stegotexts resulting from the normal use of construc-

tion 3.18.

• O(m) = $(m) is chosen uniformly from strings of appropriate length. Then the

stegotexts output by the encoding procedure will be `(l, q)ε-statistically close

to samples from Ch. To see that this is so, imagine instead that the ith bit of

40

the ciphertext, ci was chosen so that Pr[ci = 0] = Pr[f(Chi) = 0]. In this case

the the ith stegotext will come from a distribution identical to Chi . But since

∆(ci, U1) ≤ ε, it must be the case that ∆(si, Chi) ≤ ε as well, by proposition 2.4.

Thus A can simply use the decision of W to gain advantage close to that of W .

More formally,

Advcpa
E,A(k) =

∣∣Pr[AEK (1k) = 1]− Pr[A$(1k) = 1]
∣∣

=
∣∣Pr[W ST(1k) = 1]− Pr[A$(1k) = 1]

∣∣
≥
∣∣Pr[W ST(1k) = 1]− Pr[WCT(1k) = 1]

∣∣+ `(q, l)ε

= Advss
UHash,C,W (k) + `(q, l)ε

Theorem 3.20. InSecss
UHash,C(t, q, l, k) ≤ InSeccpa

E (t+O(kl), q, l, k) + `(q, l)ε.

Proof. The theorem follows from Lemma 3.19 and the definition of insecurity.

3.3 Necessary Conditions for Steganography

The previous section demonstrates that relative to an oracle for C, the existence of

one-way functions is sufficient for the existence of secure steganography. In this section

we will explore weaker definitions of steganographic secrecy, and establish two results.

First, one-way functions are necessary for steganography; thus, relative to a channel

oracle, the existence of one-way functions and secure steganography are equivalent.

Second, we will show that in the “standard model,” without access to a channel

oracle, the existence of a secure stegosystem implies the existence of a program which

samples from Ch; and thus in the standard model, secure steganography for C exists

if and only if Ch is efficiently sampleable.

41

3.3.1 Steganography implies one-way functions

To strengthen our result, we develop the weaker notion of security against known-

hiddentext attacks (KHA). In a (l, µ)-KHA attack against distribution D, the adver-

sary is given a history h of length l, a hiddentext drawn from Dµ, and a sequence

of documents s ∈ D|SE(K,m,h)|. The adversary’s task is to decide whether s ← Ch or

s← SE(K,m, h). We define the KHA-advantage of W by

Advkha-D
S,C,W (k, l, µ) =

∣∣∣Pr[W (h,m, SE(K,m, h)) = 1]− Pr[W (h,m, C|SE(K,m,h)|
h) = 1]

∣∣∣
and say that S is secure against known hiddentext attack with respect to D and C (SS-

KHA-D-C) if for every PPT W , for all polynomially-bounded l, µ, Advkha-D
S,C,W (k, l(k),

µ(k)) is negligible in k.

Thus a stegosystem is secure against known-hiddentext attack if given the history

h, and a plaintext m, an adversary cannot distinguish (asymptotically) between a

stegotext encoding m and a covertext of the appropriate length drawn from Ch. We

will show that one-way functions are necessary even for this much weaker notion of

security. In order to do so, we will use the following results from [33]:

Definition 3.21. ([33], Definition 3.9) A polynomial-time computable function f :

{0, 1}k → {0, 1}`(k) is called a false entropy generator if there exists a polynomial-time

computable g : {0, 1}k′ → {0, 1}`(k) such that:

1. HS(g(Uk′)) > HS(f(Uk)), and

2. f(Uk) ≈ g(U ′k)

Thus, a function is a false entropy generator (FEG) if it’s output is indistinguish-

able from a distribution with higher (Shannon) entropy. It is shown in [33] that if

FEGs exist, then PRGs exist:

Theorem 3.22. ([33], Lemma 4.16) If there exists a false entropy generator, then

there exists a pseudorandom generator

Theorem 3.23. If there is a stegosystem S which is SS-KHA-D-C secure for some

hiddentext distribution D and some channel C, then there exists a pseudorandom

generator, relative to an oracle for C.

42

Proof. We will show how to construct a false entropy generator from S.Encode, which

when combined with Proposition 3.22 will imply the result.

Consider the function f which draws a hiddentext m of length |k|2 from D, and

outputs (SE(K,m, ε),m). Likewise, consider the function g which draws a hiddentext

m of length |K|2 from D and has the output distribution (C|SE(K,m,ε)|
ε ,m). Because S

is SS-KHA-D-C secure, it must be the case that f(Uk) ≈ g(Uk′). Thus f and g satisfy

condition (1) from definition 3.21.

Now, consider HS(C|SE(K,m,ε)|
ε) versus HS(SE(K,m, h)) We must have one of three

cases:

1. HS(C|SE(K,m,ε)|
ε) > HS(SE(K,m, ε)); in this case the program that samples from

Cε is a false entropy generator and we are done.

2. HS(C|SE(K,m,ε)|
ε) < HS(SE(K,m, ε)); in this case SE is a false entropy generator,

and again we are done.

3. HS(C|SE(K,m,ε)|
ε) = HS(SE(K,m, ε)); In this case, we have that

HS(m|C|SE(K,m,ε)|
ε) = |K|2HS(D) ,

whereas

HS(m|SE(K,m, ε)) ≤ (1 + ν)|K|

for a negligible function ν. To see that this is the case, notice that m =

SD(K,SE(K,m, ε)) and so is determined (up to a negligible probability) by K,

and HS(K) = |K|. Thus asymptotically, we have that HS(f(Uk)) > HS(g(Uk′)),

and f is a false entropy generator relative to an oracle for C.

Corollary 3.24. Relative to an oracle for C, secure steganography for C exists if and

only if one-way functions exist.

Proof. The corollary follows from Theorem 3.23 and the results of Section 3.2 and [33].

43

3.3.2 Sampleable Channels are necessary

We say that a channel C is efficiently sampleable if there exists an algorithm C such

that for any polynomial time A, for any polynomial l,∣∣∣∣∣ Pr
h←Cl(k)

ε

[A(1k, C(h, 1k, Uk))]− Pr
h←Cl(k)

ε

[A(1k, Ch)]

∣∣∣∣∣
is negligible in k. Notice that for any efficiently sampleable channel C, the results of

the previous sections prove that secure steganography with respect to C exists if and

only if one-way functions exist in the standard model - e.g., without assuming oracle

access to the channel C. Here we will introduce a very weak notion of security with

respect to C and show that if secure steganography exists for C in the standard model,

then C is efficiently sampleable.

A weaker attack yet than the KHA attack is the Known Distribution Attack game:

In a l-KDA attack against distribution D, the adversary is given a history h of length

l, and a sequence of documents s ∈ D|SE(K,D,h)|. The adversary’s task is to decide

whether s← Ch or s← SE(K,D, h). We define the KDA-advantage of W by

Advkda-D
S,C,W (k, l) =

∣∣∣∣ Pr
h←Clε,m←D

[W (SE(K,m, h)) = 1]− Pr
h←Clε

[W (C`h) = 1]

∣∣∣∣
and say that S is secure against known distribution attack with respect to D and C
(SS-KDA-D-C) if for every PPT W , for all polynomially-bounded l, Advkda-D

S,C,W (k, l(k))

is negligible in k. This attack is weaker yet than a KHA attack in that the length of

the hiddentext is shorter and the hiddentext is unknown to W .

Theorem 3.25. If there exists an efficiently sampleable D such that there is a SS-

KDA-D-C secure stegosystem S in the standard model, then C is efficiently sampleable.

Proof. Consider the program CS with the following behavior: on input (1k, h), CS picks

K ← {0, 1}k, picks m ← D, and returns the first document of S.Encode(K,m, h).

Consider any PPT distinguisher A. We will that the KDA adversary W which passes

the first document of its input to A and outputs A’s decision has at least the advantage

of A. This is because in case W ’s input is drawn from SE, the input it passes to A

is exactly distributed according to CS(1k, h); and when W ’s input is drawn from Ch,

44

the input it passes to A is exactly distributed according to Ch:

Advkda-D
S,C,W(k, |h|) = |Pr[W (SE(K,m, h)) = 1]− Pr[W (Ch) = 1]|

=
∣∣Pr[A(1k, CS(1k, h)) = 1]− Pr[A(1k, Ch) = 1]

∣∣ .
But because S is SS-KDA-D-C secure, we know that W ’s advantage must be negligible,

and thus no efficient A can distinguish this from the first document drawn from

C|SE(K,D,h)|
h . So the output of CCS is computationally indistinguishable from C.

As a consequence of this theorem, if a designer is interested in developing a

stegosystem for some channel C in the standard model, he can focus exclusively on

designing an efficient sampling algorithm for C. If his stegosystem is secure, it will

include one anyway; and if he can design one, he can “plug it in” to the constructions

from section 3.2 and get a secure stegosystem based on “standard” assumptions.

45

46

Chapter 4

Public-Key Steganography

The results of the previous chapter assume that the sender and receiver share a secret,

randomly chosen key. In the case that some exchange of key material was possible

before the use of steganography was necessary, this may be a reasonable assumption.

In the more general case, two parties may wish to communicate steganographically,

without prior agreement on a secret key. We call such communication public key

steganography. Whereas previous work has shown that symmetric-key steganography

is possible – though inefficient – in an information-theoretic model, public steganog-

raphy is information-theoretically impossible. Thus our complexity-theoretic formu-

lation of steganographic secrecy is crucial to the security of the constructions in this

chapter.

In Section 4.1 we will introduce some required basic primitives from the theory

of public-key cryptography. In Section 4.2 we will give definitions for public-key

steganography and show how to use the primitives to construct a public-key stegosys-

tem. Finally, in Section 4.3 we introduce the notion of steganographic key exchange

and give a construction which is secure under the Integer Decisional Diffie-Hellman

assumption.

47

4.1 Public key cryptography

Our results build on several well-established cryptographic assumptions from the the-

ory of public-key cryptography. We will briefly review them here, for completeness.

Integer Decisional Diffie-Hellman.

Let P and Q be primes such that Q divides P − 1, let Z∗P be the multiplicative

group of integers modulo P , and let g ∈ Z∗P have order Q. Let A be an adversary

that takes as input three elements of Z∗P and outputs a single bit. Define the DDH

advantage of A over (g, P,Q) as: Advddh
A (g, P,Q) = |Pra,b[A(ga, gb, gab, g, P,Q) =

1] − Pra,b,c[A(ga, gb, gc, g, P,Q) = 1]|, where a, b, c are chosen uniformly at random

from ZQ and all the multiplications are over Z∗P . The Integer Decisional Diffie-Hellman

assumption (DDH) states that for every PPT A, for every sequence {(Pk, Qk, gk)}k
satisfying |Pk| = k and |Qk| = Θ(k), Advddh

A (gk, Pk, Qk) is negligible in k.

Trapdoor One-way Permutations.

A trapdoor one-way permutation family Π is a sequence of sets {Πk}k, where each Πk

is a set of bijective functions π : {0, 1}k → {0, 1}k, along with a triple of algorithms

(G,E, I). G(1k) samples an element π ∈ Πk along with a trapdoor τ ; E(π, x) evaluates

π(x) for x ∈ {0, 1}k; and I(τ, y) evaluates π−1(y). For a PPT A running in time t(k),

denote the advantage of A against Π by

Advow
Π,A(k) = Pr

(π,τ)←G(1k),x←Uk
[A(π(x)) = x] .

Define the insecurity of Π by InSecow
Π (t, k) = maxA∈A(t)

{
Advow

Π,A(k)
}

, where A(t)

denotes the set of all adversaries running in time t(k). We say that Π is a trap-

door one-way permutation family if for every probabilistic polynomial-time (PPT) A,

Advow
Π,A(k) is negligible in k.

48

Trapdoor one-way predicates

A trapdoor one-way predicate family P is a sequence {Pk}k, where each Pk is a set of

efficiently computable predicates p : Dp → {0, 1}, along with an algorithm G(1k) that

samples pairs (p, Sp) uniformly from Pk; Sp is an algorithm that, on input b ∈ {0, 1}
samples x uniformly from Dp subject to p(x) = b. For a PPT A running in time t(k),

denote the advantage of A against P by

Advtp
P,A(k) = Pr

(p,Sp)←G(1k),x←Dp
[A(x, Sp) = p(x)] .

Define the insecurity of P by

InSectp
P (t, k) = max

A∈A(t)

{
Advtp

P,A(k)
}
,

where A(t) denotes the set of all adversaries running in time t(k). We say that P is a

trapdoor one-way predicate family if for every probabilistic polynomial-time (PPT)

A, Advtp
P,A(k) is negligible in k.

Notice that one way to construct a trapdoor one-way predicate is to utilize the

Goldreich-Levin hard-core bit [28] of a trapdoor one-way permutation. That is, for a

permutation family Π, the associated trapdoor predicate family PΠ works as follows:

the predicate pπ has domain Dom(π)×{0, 1}k, and is defined by p(x, r) = π−1(x) · r,
where · denotes the vector inner product on GF (2)k. [28] prove that there exist

polynomials such that InSectp
Pπ

(t, k) ≤ poly(InSecow
Π (poly(t), k)).

4.1.1 Pseudorandom Public-Key Encryption

We will require public-key encryption schemes that are secure in a slightly non-

standard model, which we will denote by IND$-CPA in contrast to the more standard

IND-CPA. The main difference is that security against IND$-CPA requires the output

of the encryption algorithm to be indistinguishable from uniformly chosen random

bits, whereas IND-CPA only requires the output of the encryption algorithm to be

indistinguishable from encryptions of other messages.

Formally, a public-key (or asymmetric) cryptosystem E consists of three (random-

ized) algorithms:

49

• E .Generate : 1k → PKk × SKk generates (public, secret) key pairs (PK, SK).

We will abbreviate E .Generate(1k) by G(1k), when it is clear which encryption

scheme is meant.

• E .Encrypt : PK × {0, 1}∗ → {0, 1}∗ uses a public key to transform a plaintext

into a ciphertext. We will abbreviate E .Encrypt(PK, ·) by EPK(·).

• E .Decrypt : SK × {0, 1}∗ → {0, 1}∗ uses a secret key to transform a cipher-

text into the corresponding plaintext. We will abbreviate E .Decrypt(SK, ·) by

DSK(·).

Such that for all key pairs (PK, SK) ∈ G(1k), Decrypt(SK, Encrypt(PK,m)) = m.

To formally define the security condition for a public-key encryption scheme, con-

sider a game in which an adversary A is given a public key drawn from G(1k) and

chooses a message mA. Then A is given either EPK(mA) or a uniformly chosen string

of the same length. Let A(t, l) be the set of adversaries A which produce a message

of length at most l(k) bits and run for at most t(k) time steps. Define the IND$-CPA

advantage of A against E as

Advcpa
E,A(k) =

∣∣∣Pr
PK

[A(PK,EPK(mA)) = 1]− Pr
PK

[A(PK,U|EPK(mA)|) = 1]
∣∣∣

Define the insecurity of E as InSeccpa
E (t, l, k) = maxA∈A(t,l)

{
Advcpa

E,A(k)
}
. E is (t, l, k, ε)

- indistinguishable from random bits under chosen plaintext attack if InSeccpa
E (t, l, k) ≤

ε(k). E is called indistinguishable from random bits under chosen plaintext attack

(IND$-CPA) if for every probabilistic polynomial-time (PPT) A, Advcpa
E,A(k) is negli-

gible in k. We show how to construct IND$-CPA public-key encryption schemes from

a variety of well-established cryptographic assumptions.

IND$-CPA public-key encryption schemes can be constructed from any primitive

which implies trapdoor one-way predicates p with domains Dp satisfying one of the

following conditions:

• Dp is computationally or statistically indistinguishable from {0, 1}poly(k): in this

case it follows directly that encrypting the bit b by sampling from p−1(b) yields

an IND$-CPA scheme. The results of Goldreich and Levin imply that such

50

predicates exist if there exist trapdoor one-way permutations on {0, 1}k, for

example.

• Dp has an efficiently recognizable, polynomially dense encoding in {0, 1}poly(k);

in this case, we let q(·) denote the polynomial such that every Dp has den-

sity at least 1/q(k). Then to encrypt a bit b, we draw ` = kq(k) samples

d1, . . . , d` ← Upoly(k); let i be the least i such that di ∈ Dp; then transmit

d1, . . . , di−1, p
−1(b), di+1, . . . , d`. (This assumption is similar to the requirement

for common-domain trapdoor systems used by [19], and all (publicly-known)

public-key encryption systems seem to support construction of trapdoor predi-

cates satisfying this condition.)

Stronger assumptions allow construction of more efficient schemes. Here we will

construct schemes satisfying IND$-CPA under the following assumptions: trapdoor

one-way permutations on {0, 1}k, the RSA assumption, and the Decisional Diffie-

Hellman assumption. Notice that although both of the latter two assumptions imply

the former through standard constructions, the standard constructions exhibit con-

siderable security loss which can be avoided by our direct constructions.

4.1.2 Efficient Probabilistic Encryption

The following “EPE” encryption scheme is described in [30], and is a generalization

of the protocol given by [13]. When used in conjunction with a family of trapdoor

one-way permutations on domain {0, 1}k, it is easy to see that the scheme satisfies

IND$-CPA:

Construction 4.1. (EPE Encryption Scheme)

Procedure Encrypt:
Input: m ∈ {0, 1}∗, tOWP π
Sample x0, r ← Uk
let l = |m|
for i = 1 . . . l do

set bi = xi−1 � r
set xi = f(xi−1)

Output: xl, r, b⊕m

Procedure Decrypt:
Input: (x, r, c), trapdoor π−1

let l = |c|, xl = x
for i = l . . . 1 do

set xi−1 = π−1(xi)
set bi = xi−1 � r

Output: c⊕ b

51

IND$-CPA-ness follows by the pseudorandomness of the bit sequence b1, . . . , bl

generated by the scheme and the fact that xl is uniformly distributed in {0, 1}k.

RSA-based construction

The RSA function EN,e(x) = xe mod N is believed to be a trapdoor one-way permu-

tation family when N is selected as the product of two large, random primes. The

following construction uses Young and Yung’s Probabilistic Bias Removal Method

(PBRM) [65] to remove the bias incurred by selecting an element from Z
∗
N rather

than Uk.

Construction 4.2. (RSA-based Pseudorandom Encryption Scheme)

Procedure Encrypt:
Input: plaintext m; public key N, e
let k = |N |, l = |m|
repeat:

Sample x0 ← Z
∗
N

for i = 1 . . . l do
set bi = xi−1 mod 2
set xi = xei−1 mod N

sample c← U1

until (xl ≤ 2k −N) OR c = 1
if (x1 ≤ 2k −N) and c = 0 set x′ = x
if (x1 ≤ 2k −N) and c = 1 set x′ = 2k − x
Output: x′, b⊕m

Procedure Decrypt:
Input: x′, c; (N, d)
let l = |c|, k = |N |
if (x′ > N) set xl = x′

else set xl = 2k − x′
for i = l . . . 1 do

set xi−1 = xdi mod N
set bi = xi−1 mod 2

Output: c⊕ b

The IND$-CPA security of the scheme follows from the correctness of PBRM and the

fact that the least-significant bit is a hardcore bit for RSA. Notice that the expected

number of repeats in the encryption routine is at most 2.

DDH-based construction

Let E(·)(·), D(·)(·) denote the encryption and decryption functions of a private-key

encryption scheme satisfying IND$-CPA, keyed by κ-bit keys, and let κ ≤ k/3. (We

give an example of such a scheme in Chapter 2.) Let Hk be a family of pairwise-

independent hash functions H : {0, 1}k → {0, 1}κ. We let P be a k-bit prime (so

52

2k−1 < P < 2k), and let P = rQ + 1 where (r,Q) = 1 and Q is also a prime. Let g

generate Z∗P and ĝ = gr mod P generate the unique subgroup of order Q. The security

of the following scheme follows from the Decisional Diffie-Hellman assumption, the

leftover-hash lemma, and the security of (E,D):

Construction 4.3. DDHRand Public-key cryptosystem.

Procedure Encrypt:
Input: m ∈ {0, 1}∗; (g, ĝx, P)
Sample H ← Hk

repeat:
Sample y ← ZP−1

until (gy mod P) ≤ 2k−1

set K = H((ĝx)y mod P)
Output: H, gy, EK(m)

Procedure Decrypt:
Input: (H, s, c); private key (x, P,Q)
let r = (P − 1)/Q
set K = H(srx mod P)
Output: DK(c)

The security proof considers two hybrid encryption schemes: H1 replaces the value

(ĝa)b by a random element of the subgroup of order Q, ĝc, and H2 replaces K by

a random draw from {0, 1}κ. Clearly distinguishing H2 from random bits requires

distinguishing some EK(m) from random bits. The Leftover Hash Lemma gives that

the statistical distance between H2 and H1 is at most 2−κ. Thus

AdvH1,$
A (k) ≤ InSeccpa

E (t, |κ|) + 2−κ .

Finally, we show that any distinguisher A for H1 from the output of Encrypt with

advantage ε can be used to construct a distinguisher B that solves the DDH problem

with advantage at least ε/2. B takes as input a triple (ĝx, ĝy, ĝz) and attempts to

decide whether z = xy, as follows. First, B computes r̂ as the least integer such that

rr̂ = 1 mod Q, and then picks β ← Zr. Then B computes s = (ĝy)r̂gβQ. If s > 2k−1,

B outputs 0. Otherwise, B submits ĝx to A to get the message mA, draws H ← Hk,

and outputs the decision of A(ĝx, H‖s‖EH(ĝz)(mA)). We claim that:

• The element s is a uniformly chosen element of Z∗P , when y ← ZQ. To see

that this is true, observe that the exponent of s, ξ = rr̂y + βQ, is congruent to

y mod Q and βQ mod r; and that for uniform β, βQ is also a uniform residue

mod r. By the Chinese remainder theorem, there is exactly one element of ZrQ =

53

ZP−1 that satisfies these conditions, for every y and β. Thus s is uniformly

chosen.

• B halts and outputs 0 with probability at most 1
2

over input and random choices;

and conditioned on not halting, the value s is uniformly distributed in {0, 1}k.
This is true because 2k/P < 1

2
, by assumption.

• When z = xy, the input H‖s‖EH(ĝz)(mA)) is selected exactly according to the

output of Encrypt(ĝx,mA). This is because

(ĝx)ξ = (grr̂y+βQ)rx

= g(αQ+1)rxy+rQ(βx)

= grxy = ĝz

• When z 6= xy, the input H‖s‖EH(ĝz)(mA)) is selected exactly according to the

output of H1, by construction.

Thus,

Pr[B(ĝx, ĝy, ĝxy) = 1] =
2k

P
Pr[A(ĝx, Encrypt(ĝx,mA)) = 1] ,

and

Pr[B(ĝx, ĝy, ĝz) = 1] =
2k

P
Pr[A(ĝx, H1(mA)) = 1] .

And thus Advddh
B (ĝ, P,Q) ≥ 1

2
ε. Thus, we have that overall,

InSeccpa
DDHRand(t, l, k) ≤ InSecddh

g,P,Q(t, k) + InSeccpa
(E,D)t, l, 1, k + 2−κ .

4.2 Public key steganography

We will first give definitions of public-key stegosystems and security against chosen-

hiddentext attack, and then give a construction of a public-key stegosystem to demon-

strate the feasibility of these notions. The construction is secure assuming the exis-

tence of a public-key IND$-CPA-secure cryptosystem.

54

4.2.1 Public-key stegosystems

As with the symmetric case, we will first define a stegosystem in terms of syntax and

correctness, and then proceed to a security definition.

Definition 4.4. (Stegosystem) A public-key stegosystem S is a triple of probabilistic

algorithms:

• S.Generate takes as input a security parameter 1k and generates a key pair

(PK, SK) ∈ PK × SK. When it is clear from the context which stegosystem

we are referring to, we will abbreviate S.Generate by SG.

• S.Encode (abbreviated SE when S is clear from the context) takes as input

a public key PK ∈ PK, a string m ∈ {0, 1}∗ (the hiddentext), and a message

history h. As with the symmetric case, we will also assume for our feasibility

results that SE has access to a channel oracle for some channel C, which can

sample from Ch for any h.

SE(PK,m, h) returns a sequence of documents s1, s2, . . . , sl (the stegotext) from

the support of Clh.

• S.Decode (abbreviated SD) takes as input a secret key SK ∈ SK, a sequence

of documents s1, s2, . . . , sl, and a message history h.

SD(SK, s, h) returns a hiddentext m ∈ {0, 1}∗.

As in the private key case, we will also require that a public-key stegosystem is

correct:

Definition 4.5. (Correctness) A public-key stegosystem S is correct if for every poly-

nomial p(k) there exists a negligible ν(k) such that

∀m ∈ {0, 1}p(k), h ∈ D∗ : Pr
(PK,SK)←SG(1k)

[SD(SK, SE(PK,m, h), h) = m] ≥ 1− µ(k)

where the randomization is also over any coin tosses of SE, SD, SG and the oracle

to Ch.

55

Remark. While in general Alice will need to remember the history of documents

transmitted to Bob, it is most desirable if Bob is not required to store the history of

documents he has received from Alice. Some of our protocols require Bob to store

this history, but it is straightforward to rewrite them so that Bob need only remember

a collision-intractable digest of the history. In this paper we are not concerned with

attacks in which Ward attempts to disrupt the communication between Alice and

Bob, so the dependence of decoding on accurate history is chiefly a storage concern.

4.2.2 Steganographic Secrecy against Chosen Hiddentext At-

tack

In a chosen hiddentext attack, W is allowed to supply hiddentexts to Alice, in hopes

of detecting whether or not she is using steganography in her communications with

Bob. (Note that a chosen hiddentext attack is the steganographic equivalent of a

chosen plaintext attack against an encryption scheme.)

We will model a warden attacking a stegosystem as an efficient oracle machine

which plays the following game. First, a pair (PK, SK) is drawn from SG(1k) and W

is allowed to access PK and sample from Ch for any history h, to produce a message

mW and a history hW . Then W is given access to a sequence s ∈ D∗, which is drawn

either from SE(PK,mW , hW) or C|s|h , and continues to access Ch for any history h

(This oracle allows W to learn the covertext distribution on all communications).

Finally W outputs a bit which is a “guess” about whether s is a stegotext or a

covertext.

We define the CHA advantage of W against stegosystem S over channel C by

Advcha
S,C,W (k) =

∣∣∣Pr[W (PK, s) = 1]− Pr[W (PK, C|s|hW) = 1]
∣∣∣ ,

where the probabilities are taken over (PK, SK) ← SG(1k), (mW , hW) ← W (PK),

s ← SE(PK,mW , hW), the random bits of W and the responses of the oracle C.
Define the insecurity of S over channel C by

InSeccha
S,C(t, l, k) = max

W∈W(t,l)

{
Advcha

S,C,W (k)
}
,

56

where W(t, l) denotes the set of all adversaries which choose a message of length at

most l(k) bits, and run in time at most t(k).

Thus, S is secure against chosen-hiddentext attacks if the warden, even given

Bob’s public key, cannot tell whether Alice’s message to Bob encodes any hiddentext

at all, even one of his choice.

4.2.3 Construction

Our protocols build on the following construction, a generalization of construction 3.18.

Let f : D → {0, 1} be a public function (recall that C is a distribution on sequences

of elements of D). If f is is perfectly unbiased on Ch for all h, then the following en-

coding procedure, on uniformly distributed l-bit input c, produces output distributed

exactly according to Clh:

Construction 4.6. (Basic encoding/decoding routines)

Procedure Basic Encode:
Input: bits c1, . . . , cl, history h, bound k
for i = 1 . . . l do

Let j = 0
repeat:

sample si ← Ch, increment j
until f(si) = ci OR (j > k)
set h = (h, si)

Output: s1, s2, . . . , sl

Procedure Basic Decode:
Input: Stegotext s1, s2, . . . , sl
for i = 1 . . . l do

set ci = f(si)
set c = c1||c2|| · · · ||cl.
Output: c

Note that for infinitely many Ch there is no perfectly unbiased function f . As with

construction 3.18, this can be rectified by using a (global) universal hash function.

Lemma 4.7. Any channel C which is always informative can be compiled into a

channel C(k) which admits an efficiently computable function f such that for any

polynomial-length sequence h1, . . . , hn satisfying PrC[hi] 6= 0,
∣∣∣Pr[f(C

(k)
hi

) = 1]− 1
2

∣∣∣ is

negligible in k for all 1 ≤ i ≤ n.

Proof. Let l(k) = ω(log k). Then the channel C(k) is simply a distribution on sequences

of documents which are elements of Dl(k) and the marginal distributions C(k)
h are

57

simply Cl(k)
h . Because C is always informative, we have that for any h which has

non-zero probability, H∞(C(k)
h) = ω(log k).

Let h1, h2, ..., hm be any sequence of histories which all have non-zero probability

under C(k) and let f : {0, 1}m(k) × D × {0, 1} be a universal hash function. Let

Y, Z ← Um(k), B ← Um, and Di ← C(k)
hi

. Let L(k) = miniH∞(Di), and note that

L(k) = ω(log k). Then the Leftover Hash Lemma ([33]) implies that

∆(〈Y, fY (D1), ..., fY (Dm)〉, 〈Y,B〉) ≤ m2−L(k)/2+1 ,

from which it is immediate that if we choose Y ← Um(k) once and publicly, then for all

1 ≤ i ≤ m, fY will have negligible bias for Chi except with negligible probability.

Lemma 4.8. If f is ε-biased on Ch for all h, then for any k and s1, s2, . . . , sl:

∆(Basic Encode(Ul, h, k), Clh) ≤ εl .

Proof. To see that this is so, imagine that the ith bit of the input to Basic Encode,

ci, was chosen so that Pr[ci = 0] = Pr[f(Chi) = 0]. In this case the the ith document

output by Basic Encode will come from a distribution identical to Chi . But since

∆(ci, U1) ≤ ε, it must be the case that ∆(si, Chi) ≤ ε as well, by proposition 2.4.

The statistical distance between the entire sequences must then be at most εl, by the

triangle inequality.

Using these lemmata, we will show that public-key steganography is possible in any

channel that is always informative. We note that procedure Basic Encode has a small

probability of failure: Basic Decode(Basic Encode(c, h, k)) might not equal c. This

probability of failure, however, is negligible in k.

4.2.4 Chosen Hiddentext security

Let EPK(·) and DSK(·) denote the encryption and decryption algorithms for a public-

key cryptosystem E which is indistinguishable from random bits under chosen plain-

text attack (IND$-CPA). Let ` be the expansion function of E , i.e., |EPK(m)| = `(|m|).
The following procedures allow encoding and decoding of messages in a manner which

58

is steganographically secret under chosen hiddentext attack for the channel distribu-

tion C:

Construction 4.9. (Chosen Hiddentext Security)

Procedure CHA Encode:
Input: m ∈ {0, 1}∗, h ∈ D∗, key PK
Let c = EPK(m)
Output: Basic Encode(c, h, k)

Procedure CHA Decode:
Input: s1, . . . , sl ∈ Dl, secret key SK
Let c = Basic Decode(s1, . . . , sl)
Output: DSK(c)

Lemma 4.10. Assume f is ε-biased on Ch for all h. For any warden W ∈ W(t, l),

we can construct an IND$-CPA adversary A where

Advcha
CHA,C,W (k) ≤ Advcpa

E,A(k) + `(l)ε.

The running time of A is at most t+O(kl) (k is the security parameter of (PK, SK)

and is used as a bound for Basic Encode), and A makes q encryption queries for a

total of l bits of plaintext.

Proof. We are given a program W for distinguishing between the output of Con-

struction 4.9 and the ordinary traffic of the channel, and an oracle for sampling

blocks from that channel. We construct a program A which plays the IND$-CPA

game: distinguishing EPK(mW) oracle from U`(l). A(PK) simply runs W (PK), to

get (mW , hW) and returns mW for mA. Then A(PK, c) uses the oracle Ch to compute

s = Basic Encode(c, hW , k), and returns the output of W (PK, s). Consider the cases

for A’s input.

• If c← EPK(mW), then s← CHA Encode(PK,mW , hW); so we have

Pr[A(PK,EPK(mA)) = 1] = Pr[W (PK, SE(PK,mW , hW)) = 1] .

• If c← U`, then s is distributed identically to Basic Encode(U`, hW , k); thus∣∣Pr[A(PK,U`) = 1]− Pr[W (PK,C`
hW

) = 1]
∣∣ ≤ `ε

by lemma 4.8.

59

Combining the cases, we have

Advcha
CHA,C,W (k) = |Pr[W (PK, SE(PK,mW , hW)) = 1]− Pr[W (PK,C`

hW
) = 1]|

≤ |Pr[W (PK, SE(PK,mW , hW)) = 1]− Pr[A(PK,U`) = 1]|+ `(l)ε

= |Pr[A(PK,EPK(mA)) = 1]− Pr[A(PK,U`) = 1]|+ `(l)ε

= Advcpa
E (A, k) + `(l)ε ,

as claimed.

Theorem 4.11. If f is ε-biased on Ch for all h, then

InSeccha
CHA,C(t, l, k) ≤ InSeccpa

E (t+O(kl), l, k) + `(l)ε .

4.3 Steganographic Key Exchange

In many cases in which steganography might be desirable, it may not be possible for

either Alice or Bob to publish a public key without raising suspicion. In these cases, a

natural alternative to public-key steganography is steganographic key exchange: Alice

and Bob exchange a sequence of messages, indistinguishable from normal communi-

cation traffic, and at the end of this sequence they are able to compute a shared key.

So long as this key is indistinguishable from a random key to the warden, Alice and

Bob can proceed to use their shared key in a symmetric-key stegosystem. In this

section, we will formalize this notion.

Definition 4.12. (Steganographic Key Exchange Protocol) A steganographic key ex-

change protocol, or SKEP S, is a pair of efficient probabilistic algorithms:

• S.Encode Key (Abbreviated SE): takes as input a security parameter 1k and a

string of random bits. SE(1k, Uk) outputs a sequence of l(k) documents.

• S.Compute Key: (Abbreviated SD): takes as input a security parameter 1k,

a string of random bits, and a sequence s of l(k) documents. SD(1k, s, Uk)

outputs an element of the key space K.

60

We say that S is correct if these algorithms satisfy the property that there exists a

negligible function µ(k) satisfying:

Pr
ra,rb

[SD(1k, ra, SE(1k, rb)) = SD(1k, rb, SE(1k, ra))] ≥ 1− µ(k) .

We call the output of SD(1k, ra, SE(1k, rb)) the result of the protocol, and denote this

result by SKE(ra, rb). We denote by S(1k, ra, rb) the triple (SE(1k, ra), SE(1k, rb),

SKE(ra, rb)).

Alice and Bob perform a key exchange using S by sampling private randomness

ra, rb, asynchronously sending SE(1k, ra) and SE(1k, rb) to each other, and using the

result of the protocol as a key. Notice that in this definition a SKEP must be an

asynchronous single-round scheme, ruling out multi-round key exchange protocols.

This is for ease of exposition only.

We remark that many authenticated cryptographic key exchange protocols require

three flows without a public-key infrastructure. Our SKE scheme will be secure with

only two flows because we won’t consider the same class of attackers as these protocols;

in particular we will not worry about active attackers who alter the communications

between Alice and Bob, and so Diffie-Hellman style two-flow protocols are possible.

This may be a more plausible assumption in the SKE setting, since an attacker will

not even be able to detect that a key exchange is taking place, while cryptographic

key exchanges are typically easy to recognize.

Let W be a warden running in time t. We define W ’s SKE advantage against S
on bidirectional channel B with security parameter k by:

Advske
S,B,W (k) =

∣∣∣∣ Pr
ra,rb

[W (S(1k, ra, rb)) = 1]− Pr
K

[W (B, K) = 1]

∣∣∣∣ .
We remark that, as in our other definitions, W also has access to bidirectional channel

oracles Ca, Cb.

Let W(t) denote the set of all wardens running in time t. The SKE insecurity of

S on bidirectional channel B with security parameter k is given by InSecske
S,B(t, k) =

maxW∈W(t)

{
Advske

S,B,W (k)
}
.

Definition 4.13. (Secure Steganographic Key Exchange) A SKEP S is said to be

61

(t, ε)-secure for bidirectional channel B if InSecske
S,B(t, k) ≤ ε(k). S is said to be secure

for B if for all PPT adversaries W , Advske
S,B,W (k) is negligible in k.

4.3.1 Construction

The idea behind behind the construction for steganographic key exchange is simple:

let g generate Z∗P , let Q be a large prime with P = rQ + 1 and r coprime to Q, and

let ĝ = gr generate the subgroup of order Q. Alice picks random values a ∈ ZP−1

uniformly at random until she finds one such that ga mod P has its most significant

bit (MSB) set to 0 (so that ga mod P is uniformly distributed in the set of bit strings

of length |P |−1). She then uses Basic Encode to send all the bits of ga mod P except

for the MSB (which is zero anyway). Bob does the same and sends all the bits of gb

mod P except the most significant one (which is zero anyway) using Basic Encode.

Bob and Alice then perform Basic Decode and agree on the key value ĝab:

Construction 4.14. (Steganographic Key Exchange)

Procedure SKE Encode:
Input: primes P,Q, h, g ∈ Z∗P
repeat:

sample a← U(ZP−1)
until MSB of ga mod P equals 0
Let ca = all bits of ga except MSB
Output: Basic Encode(ca, h, k)

Procedure SKE Compute Key:
Input: Stegotext s1, . . . , sl; a ∈ ZP−1

Let cb = Basic Decode(s1, . . . , sl)
Output: crab mod P = ĝab

Lemma 4.15. Let f be ε-biased on B. Then for any warden W ∈ W(t), we can

construct a DDH adversary A where Advddh
A (ĝ, P,Q) ≥ 1

4
Advske

SKE,B,W (k) − 2kε. The

running time of A is at most t+O(k2).

Proof. A takes as input a triple (ĝa, ĝb, ĝc) and attempts to decide whether c = ab, as

follows. First, A computes r̂ as the least integer such that rr̂ = 1 mod Q, and then

picks α, β ← Zr. Then A computes ca = (ĝa)r̂gαQ and cb = (ĝb)r̂gβQ. If ca > 2k−1

or cb > 2k−1, A outputs 0. Otherwise, A computes sa = Basic Encode(ca), and

sb = Basic Encode(cb); A then outputs the result of computing W (sa, sb, ĝ
c). We

claim that:

62

• The element ca, cb are uniformly chosen element of Z∗P , when a, b← ZQ. To see

that this is true, observe that the exponent of sa, ξa = rr̂a+αQ, is congruent to

a mod Q and αQ mod r; and that for uniform α, αQ is also a uniform residue

mod r. By the Chinese remainder theorem, there is exactly one element of

ZrQ = ZP−1 that satisfies these conditions, for every a and α. Thus ca is

uniformly chosen. The same argument holds for cb.

• B halts and outputs 0 with probability at most 3
4

over input and random choices;

and conditioned on not halting, the values ca, cb are uniformly distributed in

{0, 1}k. This is true because 2k/P < 1
2
, by assumption.

• The sequence (sa, sb) is 2kε statistically close to B. This follows because of

Lemma 4.8.

• When c = ab, the element ĝc is exactly the output of SD(a, sb) = SD(b, sa).

This is because

crba = (grr̂a+αQ)rb

= g(γQ+1)rab+rQ(αb)

= grab = ĝc

• When c 6= ab, the input H‖s‖EH(ĝz)(mA)) is selected exactly according to the

output of H1, by construction.

Thus,

Pr[A(ĝa, ĝb, ĝab) = 1] =

(
2k

P

)2

Pr[W (S(a, b)) = 1] ,

and ∣∣∣Pr[A(ĝa, ĝb, ĝc) = 1]− Pr
K

[W (B, K) = 1]
∣∣∣ ≤ 2kε .

And therefore Advddh
A (ĝ, P,Q) ≥ 1

4
Advske

S,B,W (k)− 2kε.

Theorem 4.16. If f is ε-biased on B, then

InSecske
SKE,B(t, k) ≤ 4InSecddh

ĝ,P,Q(t+O(k2))) + 8kε .

63

64

Chapter 5

Security against Active Adversaries

The results of the previous two chapters show that a passive adversary (one who

simply eavesdrops on the communications between Alice and Bob) cannot hope to

subvert the operation of a stegosystem. In this chapter, we consider the notion of an

active adversary who is allowed to introduce new messages into the communications

channel between Alice and Bob. In such a situation, an adversary could have two

different goals: disruption or detection.

Disrupting adversaries attempt to prevent Alice and Bob from communicating

steganographically, subject to some set of publicly-known restrictions. We call a

stegosystem which is secure against this type of attack robust. In this chapter we will

give a formal definition of robustness against such an attack, consider what type of

restrictions on an adversary are necessary (under this definition) for the existence of a

robust stegosystem, and give the first construction of a provably robust stegosystem

against any set of restrictions satisfying this necessary condition. Our protocol is

secure assuming the existence of pseudorandom functions.

Distinguishing adversaries introduce additional traffic between Alice and Bob in

hopes of tricking them into revealing their use of steganography. We consider the

security of symmetric- and public-key stegosystems against active distinguishers, and

give constructions that are secure against various notions of active distinguishing

attacks. We also show that no stegosystem can be simultaneously secure against both

disrupting and distinguishing active adversaries.

65

5.1 Robust Steganography

Robust steganography can be thought of as a game between Alice and Ward in which

Ward is allowed to make some alterations to Alice’s messages. Ward wins if he can

sometimes prevent Alice’s hidden messages from being read; while Alice wins if she

can pass a hidden message with high probability, even when Ward alters her public

messages. For example, if Alice passes a single bit per document and Ward is unable

to change the bit with probability at least 1
2
, Alice may be able to use error correcting

codes to reliably transmit her message. It will be important to state the limitations we

impose on Ward, since otherwise he can replace all messages with a new (independent)

draw from the channel distribution, effectively destroying any hidden information. In

this section we give a formal definition of robust steganography with respect to a

limited adversary.

We will model the constraint on Ward’s power by a relation R which is constrained

to not corrupt the channel too much. That is, if Alice sends document d, Bob must

receive a document d′ such that (d, d′) ∈ R. This general notion of constraint is

sufficient to include many simpler notions such as (for example) “only alter at most

10% of the bits”. We will assume that it would be feasible for Alice and Bob to

check (after the fact) if in fact, Ward has obeyed this constraint; thus both Alice and

Bob know the “rules” Ward must play by. Note however, that Ward’s strategy is still

unknown to Alice and Bob.

We consider robustness in a symmetric-key setting only, since unless Alice and

Bob share some initial secret they cannot hope to accurately exchange keys. One

could alternatively consider a scenario in which the adversary is not allowed to alter

some initial amount of communications between Alice and Bob; but in this case,

using a steganographic key exchange followed by a symmetric-key robust stegosystem

is sufficient.

5.1.1 Definitions for Substitution-Robust Steganography

We model an R-bounded active warden W as an adversary which plays the following

game against a stegosystem S:

66

1. W is given oracle access to the channel distribution C and to SE(K, ·, ·). W

may access these oracles at any time throughout the game.

2. W presents an arbitrary message mW ∈ {0, 1}l2 and history hW .

3. W is then given a sequence of documents σ = (σ1, . . . σ`) ← SE(K,mW , hW),

and produces a sequence sW = (s1, . . . , s`) ∈ D`, where (σi, si) ∈ R for each

1 ≤ i ≤ `.

Define the success of W against S by

SuccRS,W (k) = Pr[SD(K, s′W , hW) 6= mW] ,

where the probability is taken over the choice of K and the random choices of S and

W . Define the failure rate of S by

FailRS (t, q, l, µ, k) = max
W∈W(R,t,q,l,µ)

{
SuccRS,W (k)

}
,

where W(R, t, q, l) denotes the set of all R-bounded active wardens that submit at

most q(k) encoding queries of total length at most l(k), produce a plaintext of length

at most µ(k) and run in time at most t(k).

Definition 5.1. A sequence of stegosystems {Sk}k∈N is called substitution robust for

C against R if it is steganographically secret for C and there is a negligible function

ν(k) such that for every PPT W , for all sufficiently large k, SuccRS,W (k) < ν(k).

5.1.2 Necessary conditions for robustness

Consider the question of what conditions on the relation R are necessary to allow

communication to take place between Alice and Bob. Surely it should not be the case

that R = D×D, since in this case Ward’s “substitutions” can be chosen independently

of Alice’s transmissions, and Bob will get no information about what Alice has said.

Furthermore, if there is some document d′ and history h for which∑
(d,d′)∈R

Pr
Ch

[d] = 1

67

then when h has transpired, Ward can effectively prevent the transfer of information

from Alice to Bob by sending the document d′ regardless of the document transmitted

by Alice, because the probability Alice picks a document related to d′ is 1. That is,

after history h, regardless of Alice’s transmission d, Ward can replace it by d′, so

seeing d′ will give Bob no information about what Alice said.

Since we model the attacker as controlling the history h, then, a necessary condi-

tion on R and C for robust communication is that

∀h.Pr
C

[h] = 0 or max
y

∑
(x,y)∈R

Pr
Ch

[x] < 1 .

We denote by I(R,D) the function maxy
∑

(x,y)∈R PrD[x]. We say that the pair

(R,D) is δ-admissible if I(R,D) ≤ δ and a pair (R, C) is δ-admissible if ∀h PrC[h] =

0 or I(R, Ch) ≤ δ. Our necessary condition states that (R, C) must be δ-admissible

for some δ < 1.

It turns out that this condition (on R) will be sufficient, for an efficiently sam-

pleable channel, for the existence of a stegosystem which is substitution-robust against

R.

5.1.3 Universally Substitution-Robust Stegosystem

In this section we give a stegosystem which is substitution robust against any admis-

sible bounding relation R, under a slightly modified assumption on the channel, and

assuming that Alice and Bob know some efficiently computable, δ-admissible relation

R′ such that R′ is a superset of R. As with most of our constructions, this stegosystem

is not really practical but it serves as a proof that robust steganography is possible

for any admissible relation.

Suppose that the channel distribution C is efficiently sampleable. (Recall that C is

efficiently sampleable if there is an efficient algorithm C such that, given a uniformly

chosen string s ∈ {0, 1}k, a security parameter 1k and history h, C(h, 1k, s) is indis-

tinguishable from Ch). We will assume that Alice, Bob, and Ward all have access

to this algorithm. Furthermore, we assume Alice and Bob share a key K to a pseu-

dorandom function family F : {0, 1}k × {0, 1}∗ → {0, 1}k; and have a synchronized

68

counter N . We will let n(k) = ω(log k) be a “robustness parameter.” We begin with

a stegosystem which robustly encodes a single bit.

Construction 5.2. ROneBit

Procedure Encode:
Input: K, m ∈ {0, 1}, h
for i = 1 . . . n do

set σi = C(h, 1k, FK(N,m))
increment N
set h = (h, si)

Output: σ1, . . . , σn

Procedure Decode:
Input: K, s1, . . . , sn ∈ Dn, h
set m = 0 Set h0 = h1 = ()
for i = 1 . . . n do

for b ∈ {0, 1} do
set σb = C((h, hb), 1

k, FK(N, b))
set hb = (hb, σb)

if (m = 0 ∧ (σ0, si) ∈ R′) then m = 0
else m = 1

set h = (h, hm)
Output: m

The idea behind this construction is this: suppose that instead of sharing a key

to a pseudorandom function F , Alice and Bob shared two secret documents d0, d1

drawn independently from Ch. Then Alice could send Bob the message bit m by

sending document dm, and Bob could recover m by checking to see if the document

he received was related (by R′) to d0 or d1. Since the adversary is R bounded and

(D, R′) is δ-admissible, the probability of a decoding error — caused either by the

adversary, or by accidental draw of d0, d1 — would be at most δ. Intuitively, ROneBit

reduces the probability of decoding error to δn by encoding each hiddentext bit n

times.

Lemma 5.3. ROneBit is steganographically secret against a nonce-respecting chosen

hiddentext attack:

InSecss
ROneBit,C(t, q, q) ≤ InSecprf

F (t+O(nq), nq).

Proof. Let W be a passive warden which runs in time t, and makes at most q queries

of total length at most q (each query can be only one bit, because of the type). We

construct a PRF adversary A which runs in time t + O(nq) and makes at most nq

queries to F , such that

Advprf
F,A(k) = Advss

S,C,W (k) .

69

The PRF adversary takes a function oracle f , and emulates W (1k), responding to the

queries W makes to the encoder SE by using f in place of FK(·, ·). More formally,

we define the subroutine SSEf : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ as follows:

Procedure SSEf :
Input: bit m, history h
for i = 1 . . . n do

set σi = C(1k, h, f(N,m))
increment N
set h = (h, σi)

Output: σ1, . . . , σn

Then we define Af (1k) = W SSEf (1k); A’s advantage over F is then:

Advprf
F,A(k) =

∣∣Pr[AFK (1k) = 1]− Pr[Af (1k) = 1]
∣∣

=
∣∣Pr[W ST(1k) = 1]− Pr[Af (1k) = 1]

∣∣
=
∣∣Pr[W ST(1k) = 1]− Pr[WCT(1k) = 1]

∣∣
= Advss

ROneBit,C,W (k) .

Where the following cases for f justify the substitutions:

• f is chosen from FK(·, ·). Then the output of SSEf is distributed identically

to the encoding function of ROneBit. That is,

Pr[AFK (1k) = 1] = Pr[W ST(1k) = 1] .

• f is chosen uniformly. Then by assumption on C, the output of SSEf is dis-

tributed identically to samples from Cnh . that is,

Pr[Af (1k) = 1] = Pr[WCT(1k) = 1] .

The claim follows by the definition of insecurity.

Lemma 5.4. FailRROneBit(t, q, q, 1, k) ≤ InSecprf
F (t+O(nq), nq, k) + δn.

Proof. Let W be an active R-bounded (t, q, q, 1) warden. We construct a PRF ad-

versary A which runs in time t+O(nq), makes at most nq PRF queries, and satisfies

Advprf
F,A(k) ≥ SuccRROneBit,W (k) − δn. Af works by emulating W , using its function

70

oracle f in place of FK(·, ·) to emulate ROneBit.Encode in responding to the queries

of W . Let mW , sW be the hiddentext and the stegotext sequence returned by W ,

respectively. Then Af returns 1 iff SDf (sW , hW) 6= mW . Consider the following two

cases for f :

• f is chosen uniformly from all appropriate functions. Then, for each i, the

stegotexts σi = C(1k, hi, f(N + i,mW)) are distributed independently according

to Chi . Consider the sequence of “alternative stegotexts” di = C(1k, h′i, f(N +

i, 1 − mW)); each of these is also distributed independently according to Ch′i ;
and since W is never given access to the di, the si are independent of the di.

Now SD will fail (causing Af (1k) to output 1) only if the event ∀i.(di, si) ∈ R′

occurs. Because the di are independent of the actions of W , and because (D, R′)
is δ-admissible, each event (di, si) ∈ R′ happens independently with probability

at most δ. So the probability of failure is at most δn:

Pr[Af (1k) = 1] ≤ δn .

• f is chosen uniformly from FK . ThenAF (1k) outputs 1 exactly whenW succeeds

against ROneBit, by the definition of ROneBit.

Pr[AFK (1k) = 1] = SuccRROneBit,W (k) .

Taking the difference of these probabilities, we get:

Advprf
F,A(k) = Pr[AFK (1k) = 1]− Pr[Af (1k) = 1]

= SuccRROneBit,W (k)− Pr[Af (1k) = 1]

≥ SuccRROneBit,W (l)− δn .

Theorem 5.5. If F is pseudorandom then ROneBit is substitution-robust against R

for C.

Proof. The theorem follows by the conjunction of the previous lemmata.

71

We now show how to extend ROneBit to handle multiple-bit messages. We assume

the same setup as previously, i.e., Alice and Bob share a synchronized counter N and

a key K to a PRF F : {0, 1}k×{0, 1}∗ → {0, 1}k; and know an efficiently computable,

admissible relation R′ ⊇ R. We assume that the “state updates” made by calls to

ROneBit are maintained across invocations.

Construction 5.6. Robust

Procedure Encode:
Input: K, m ∈ {0, 1}l, h
for i = 1 . . . l do
set σi,1...n = ROneBit.SE(K,m, h,N)
Output: σ1,1, . . . , σl,n

Procedure Decode:
Input: K, s1,1, . . . , sl,n ∈ Dl×n, h
for i = 1 . . . l do
set mi = ROneBit.SD(K, si,1...n, h,N)
Output: m1, . . . ,ml

Lemma 5.7. Robust is steganographically secret against a nonce-respecting chosen

hiddentext attack:

InSecss
Robust,C(t, q, l, k) ≤ InSecprf

F (t+O(nl), nl, k).

Proof. Suppose we are given a warden W ∈ W(t, q, l) against the stegosystem Robust.

Then we can construct a warden X ∈ W(t, l, l) against ROneBit. XM works by

simulating W , responding to each oracle query m,h by computing h0 = h, and

σi,1...n = M(mi, hi−1), hi = h, σi,1...n for 1 ≤ i ≤ |m|, and returning σ1, . . . , σ|m|.
Consider the cases for X’s oracle M :

• If M ← ROneBit.Encode, then X’s responses are distributed identically to those

of Robust.Encode. Thus

Pr[XST(1k) = 1] = Pr[W ST(1k) = 1] .

• if M ← Cnh , then the response of X to query m,h is distributed identically to

C|m|×nh . Thus

Pr[XCT(1k) = 1] = Pr[WCT(1k) = 1] .

Combining the cases, we have

Advss
ROneBit,C,X(k) =

∣∣Pr[XST(1k) = 1]− Pr[XCT(1k) = 1]
∣∣

=
∣∣Pr[W ST(1k) = 1]− Pr[WCT(1k) = 1]

∣∣
= Advss

Robust,C,W (k)

72

Combining the fact that X makes l queries to ROneBit.Encode and runs in time

t+O(l) with the result of lemma 5.3, we get

Advss
Robust,C,W (k) ≤ InSecprf

F (t+O(nl), nl, k) .

Lemma 5.8. FailRRobust(t, q, l, µ, k) ≤ InSecprf
F (t+O(nl), nl, k) + µδn.

Proof. Let W be an active R-bounded (t, q, q, 1) warden. We construct a PRF ad-

versary A which runs in time t+O(nl), makes at most nl PRF queries, and satisfies

Advprf
F,A(k) ≥ SuccRRobust,W (k) − µδn. Af works by emulating W , using its function

oracle f in place of FK(·, ·) to emulate Robust in responding to the queries of W . Let

mW , sW be the hiddentext and the stegotext sequence returned by W , respectively.

Then Af returns 1 iff SDf (sW , hW) 6= mW . Consider the following two cases for f :

• f is chosen uniformly from all appropriate functions. Then, for each i, the

stegotexts σi,j = C(1k, hi,j, f(N + (i − 1)n + j,mW,i)) are distributed inde-

pendently according to Cnhi . Consider the sequence of “alternative stegotexts”

di,j = C(1k, h′i,j, f(N + (i− 1)n+ j, 1−mW,i)); each of these is also distributed

independently according to Ch′i,j ; and since W is never given access to the di,j,

the si,j are independent of the di,j. Now SD will fail (causing Af (1k) to out-

put 1) only if the event ∀j.(di,j, si,j) ∈ R′ occurs for some i. Because the di,j

are independent of the actions of W , and because (D, R′) is δ-admissible, each

event (di,j, si,j) ∈ R′ happens independently with probability at most δ. So the

probability of failure for any i is at most δn. A union bound then gives us:

Pr[Af (1k) = 1] ≤ µδn .

• f is chosen uniformly from FK . ThenAF (1k) outputs 1 exactly whenW succeeds

against Robust, by the definition of Robust.

Pr[AFK (1k) = 1] = SuccRRobust,W (k) .

73

Taking the difference of these probabilities, we get:

Advprf
F,A(k) = Pr[AFK (1k) = 1]− Pr[Af (1k) = 1]

= SuccRRobust,W (k)− Pr[Af (1k) = 1]

≥ SuccRRobust,W (k)− µδn .

5.2 Active Distinguishing Attacks

In an active distinguishing attack, Ward is allowed to ask Bob to decode innocent-

looking messages, in order to discover whether the messages sent by Alice are stego-

texts or covertexts. In the real world, it might be that Ward knows that if Alice is

using steganography, she will encode a certain set of instructions in her message to

Bob. Ward could perhaps intercept that message and try to alter the instructions,

and then send the altered message to Bob and see how he reacts. If Bob follows

Ward’s instructions, Ward can conclude that Alice’s message must have contained

steganography, and if Bob doesn’t react, Alice’s message was probably innocent.

5.2.1 Chosen-covertext attacks

A Chosen-covertext attack is essentially the same as a chosen-hiddentext attack ex-

cept that the adversary is given access to a decoding oracle, with the restriction

that he can’t invoke the decoding oracle on the “challenge” sequence which is either

a stegotext or a covertext. We will give a formal definition of this concept, and a

construction for any efficiently sampleable channel, assuming the existence of a sym-

metric or public-key encryption scheme which is indistinguishable from random bits

under chosen-ciphertext attack.

Symmetric chosen-covertext attacks

In order to construct a stegosystem which is secure against chosen-covertext attacks,

we will first need to introduce the notion of a cryptosystem which is indistinguishable

74

from random bits under chosen-ciphertext attack.

IND$-CCA Security

Definition. Let E be a symmetric encryption scheme. We define a chosen-ciphertext

attack against E as a game played by an oracle adversary A. A is given oracle access

to DK and an encryption oracle e which is either:

• EK : an oracle that returns EK(m).

• $: an oracle that returns a sample from U|EK(m)|.

A is restricted so that he may not query DK on the result of any query to EK . We

define A’s CCA advantage against E by

Advcca
E,A(k) =

∣∣Pr[AEK ,DK (1k) = 1]− Pr[A$,DK (1k) = 1]
∣∣ ,

where K ← Uk, and define the CCA insecurity of E by

InSeccca
E (t, qe, qd, µe, µd, k) = max

A∈A(t,qe,qd,µe,µd)

{
Advcca

E,A(k)
}
,

where A(t, qe, qd, l
∗, µe, µd) denotes the set of adversaries running in time t, that make

qe queries of µe bits to e, and qd queries of µd bits to DK .

Then E is (t, qe, qd, µe, µd, k, ε)-indistinguishable from random bits under chosen

ciphertext attack if InSeccca
E (t, qe, qd, µe, µd, k) ≤ ε. E is called indistinguishable from

random bits under chosen ciphertext attack (IND$-CCA) if for every PPTA, Advcca
A,E(k)

is negligible in k.

Construction. We let E be any IND$-CPA-secure symmetric encryption scheme and

let F : {0, 1}k × {0, 1}∗ → {0, 1}k be a pseudorandom function. We let K,κ ← Uk.

We construct a cryptosystem E as follows:

• E.Encrypt(K,κ,m): Draw r ← Uk, c← E .E(K,m), compute t = Fκ(r‖c), and

return r‖c‖t.

• E.Decrypt(K,κ, r‖c‖t): If Fκ(r‖c) = t, then return E .DK(c), else return ⊥.

75

Theorem 5.9.

InSeccca
E (t, ~q, ~µ, l∗, k) ≤ InSeccpa

E (t′, qe, µe, k) + 2InSecprf
F (t′, qe + qd, k) + (q2

e + qd)2
−k

Proof. Choose an arbitrary adversary A ∈ A(t, qe, qd, µe, µd). We will consider the

advantage of A in distinguishing the following set of hybrid oracle pairs:

• E1,D1: E1(m) = E.Encrypt(m), D1(c) = E.Decrypt(c).

• E2,D2: uniformly choose f : {0, 1}∗ → {0, 1}k, and a K ← Uk.

To draw from E2(m), choose r ← Uk, draw c← E .EK(m), compute t = f(r‖c),
and output r‖c‖t

To compute D2(r‖c‖t), output ⊥ if t 6= f(r‖c) and return E .DK(c) otherwise.

• E3,D3: choose a random f : {0, 1}∗ → {0, 1}k, and a random K ← Uk.

To draw from E3(m), choose r ← Uk, draw c ← U`(|m|), compute t = f(r‖c),
and output r‖c‖t.

To compute D3(m), output ⊥ if t 6= f(r‖c) and return E .DK(c) otherwise.

• E4,D4: uniformly choose f : {0, 1}∗ → {0, 1}k and K ← Uk.

To draw from E4(m), choose c← U2k+`(|m|).

To compute D4(r‖c‖t), output ⊥ if t 6= f(r‖c) and return E .DK(c) otherwise.

• E5,D5: choose K,κ← Uk.

To draw from E5(m), choose c← U2k+`(|m|).

To compute D5(r‖c‖t), output ⊥ if t 6= Fκ(r‖c) and return E .DK(c) otherwise.

By construction it is clear that

Pr[AE.EK ,E.DK (1k) = 1] = Pr[AE1,D1(1k) = 1] ,

and it is also obvious that

Pr[A$,E.DK (1k) = 1] = Pr[AE5,D5(1k) = 1] .

76

If we define the function

AdviA(k) =
∣∣Pr[AEi,Di(1k) = 1]− Pr[AEi+1,Di+1(1k) = 1]

∣∣ ,
we then have that:

Advcca
A,E(k) =

∣∣Pr[AE.EK ,E.DK (1k) = 1]− Pr[A$,E.DK (1k) = 1]
∣∣

=
∣∣Pr[AE1,D1(1k) = 1]− Pr[AE5,D5(1k) = 1]

∣∣
≤

4∑
i=1

∣∣Pr[AEi,Di(1k) = 1]− Pr[AEi+1,Di+1(1k) = 1]
∣∣

=
4∑
i=1

AdviA(k)

We will proceed to bound AdviA(k), for i ∈ {1, 2, 3, 4}.

Lemma 5.10. Adv1
A(k) ≤ InSecprf

F (t′, qe + qd, k)

Proof. We design a PRF adversary B such that Advprf
B,F (k) ≥ Adv1

A(k) as follows.

B picks K ← Uk and runs A. B uses its function oracle f to respond to A’s queries

as follows:

• On encryption query m, B picks r ← Uk, computes c ← E .EK(m), computes

t = f(r‖c) and returns r‖c‖t.

• On decryption query r‖c‖t, B returns ⊥ if t 6= f(r‖c) and returns E .DK(c)

otherwise.

Clearly, when B’s oracle f ← F , B simulates E1,D1 to A:

Pr[BFK (1k) = 1] = Pr[AE1,D1(1k) = 1] ,

and when f ← U(∗, k), B simulates E2,D2 to A:

Pr[Bf (1k) = 1] = Pr[AE2,D2(1k) = 1] ,

which gives us

Adv1
A(k) =

∣∣Pr[AE1,D1(1k) = 1]− Pr[AE2,D2(1k) = 1]
∣∣

=
∣∣Pr[BFK (1k) = 1]− Pr[Bf (1k) = 1]

∣∣
= Advprf

B,F (k) ≤ InSecprf
F (t′, qe + qd, k)

77

as claimed.

Lemma 5.11. Adv2
A(k) ≤ InSeccpa

E (t′, qe, µe, k) + qd2
−k

Proof. We will construct a CPA adversary B for E such that

Advcpa
B,E(k) ≥ Adv2

A(k)− qd2−k .

BO works by emulating A, responding to queries as follows, where f is a randomly-

chosen function built up on a per-query basis by B:

• on encryption query m, B picks r ← Uk, computes c = O(m), and sets t =

f(r‖c), and returns r‖c‖t.

• on decryption query r‖c‖t, B checks whether t = f(c‖r); if not, B returns ⊥
and otherwise B halts and outputs 0.

Let V denote the event that A submits a decryption query that would cause B to

halt. Then, conditioned on ¬V, when B’s oracle is $, B perfectly simulates E3,D3 to

A:

Pr[B$(1k) = 1] = Pr[AE3,D3(1k) = 1|¬V] .

Also, conditioned on ¬V, when B’s oracle is E .EK , B perfectly simulates E2,D2 to A:

Pr[BEK (1k) = 1] = Pr[AE2,D2(1k) = 1|¬V] .

Combining the cases, we have:

Adv2
A(k) =

∣∣Pr[AE3,D3(1k) = 1]− Pr[AE2,E2(1k) = 1]
∣∣

=
∣∣Pr[AE3,D3(1k) = 1|V] Pr[V] + Pr[AE3,D3(1k) = 1|¬V] Pr[¬V]

−
(
Pr[AE2,D2(1k) = 1|V] Pr[V] + Pr[AE2,D2(1k) = 1|¬V] Pr[¬V]

)∣∣
≤ Pr[V]

∣∣Pr[AE3,D3(1k) = 1|V]− Pr[AE2,D2(1k) = 1|V]
∣∣

+ Pr[¬V]
∣∣Pr[AE3,D3(1k) = 1|¬V]− Pr[AE2,D2(1k) = 1|¬V]

∣∣
≤ Pr[V] +

∣∣Pr[AE3,D3(1k) = 1|¬V]− Pr[AE2,D2(1k) = 1|¬V]
∣∣

≤ Pr[V] +
∣∣Pr[B$(1k) = 1]− Pr[BEK (1k) = 1]

∣∣
≤ Pr[V] + Advcpa

B,E(k)

≤ qd2
−k + InSeccpa

E (t′, qe, µe, k)

78

Where the last line follows because each decryption query causes B to halt with

probability 2−k; the union bound gives the result.

Lemma 5.12. Adv3
A(k) ≤ q2

e

2k

Proof. Notice that unless E3 chooses the same values of (r, c) at least twice, E3 and

E4 are identical. Denote this event by C. Then we have:

Adv3
A(k) =

∣∣Pr[AE3,D3(1k) = 1]− Pr[AE4,D4(1k) = 1]
∣∣

=
∣∣(Pr[AE3,D3(1k) = 1|C] Pr[C] + Pr[AE3,D3(1k) = 1|¬C] Pr[¬C]

)
−
(
Pr[AE4,D4(1k) = 1|C] Pr[C] + Pr[AE4,D4(1k) = 1|¬C] Pr[¬C]

)∣∣
≤ Pr[C]

∣∣Pr[AE3,D3(1k) = 1|C]− Pr[AE4,D4(1k) = 1|C]
∣∣

+ Pr[¬C]
∣∣Pr[AE3,D3(1k) = 1|¬C]− Pr[AE2,D2(1k) = 1|¬C]

∣∣
= Pr[C]

∣∣Pr[AE3,D3(1k) = 1|C]− Pr[AE4,D4(1k) = 1|C]
∣∣

≤ Pr[C]

≤ 2−k
(
qe
2

)

Lemma 5.13. Adv4
A(k) ≤ InSecprf

F (t′, qd, k)

Proof. We construct a PRF adversary B against F with advantage

Advprf
B,F (k) = Adv4

A(k) .

Bf starts by choosing K ← Uk. B then runs A, responding to encryption queries

E(m) with r‖c‖t ← U2k+`(|m|), and responding to decryption queries D(r‖c‖t) with

⊥ if t 6= f(r‖c), and DK(c) otherwise. B outputs the bit chosen by A. Notice that

by construction,

Pr[BFK (1k) = 1] = Pr[AE5,D5(1k) = 1] , and

Pr[Bf (1k) = 1] = Pr[AE4,D4(1k) = 1] ,

79

so by definition of advantage, we get:

Adv4
A(k) =

∣∣Pr[AE5,D5(1k) = 1]− Pr[AE4,D4(1k) = 1]
∣∣

=
∣∣Pr[BFK (1k) = 1]− Pr[Bf (1k) = 1]

∣∣
= Advprf

B,F (k) ≤ InSecprf
F (t′, qd, k)

The theorem follows by the conjunction of the lemmata.

Chosen-covertext attack definition

In an adaptive chosen-covertext attack against a symmetric stegosystem S, an adver-

sary W is given access to a mystery oracle O, which is either SEK for a uniformly

chosen key K or OC, which on query m,h returns a sample from C|SEK(m,h)|
h . The

attacker is restricted to querying SD only on strings which were not generated by

queries to O. (As always, W is allowed to know the channel distribution C) At the

conclusion of the attack, W must guess the type of O. We define the Symmetric

Chosen-Covertext Advantage of W against S with respect to C by

Advscca
S,C,W(k) =

∣∣Pr[W SE,SD(1k) = 1]− Pr[WOC ,SD(1k) = 1]
∣∣ ,

And define the sCCA insecurity of S with respect to C by

InSecscca
S,C (t, qe, qd, µe, µd, k) = max

W∈W(t,~q,~µ)

{
Advscca

S,C,W(k)
}
,

where W(t, ~q, ~µ) denotes the class of all W running in time t which make at most qe

encoding queries of µe bits and at most qd decoding queries of µd bits.

We say that S is (t, ~q, ~µ, k, ε) secure against symmetric chosen-covertext attack

with respect to C if

InSecscca
S,C (t, ~q, ~µ, k) ≤ ε ,

and that S is secure against symmetric chosen-covertext attack with respect to C
(SS-sCCA) if Advscca

S,C,W(k) is negligible for all PPT W .

80

Construction

Both of our constructions of chosen-covertext secure stegosystems will require an

efficiently sampleable channel C,1 and will make use of the following “deterministic

encoding” routine:

Construction 5.14. (Deterministic Encoding)

Procedure DEncode:
Input: bits c1, . . . , cl, history h, bound k, randomness r1, . . . rlk ∈ {0, 1}k
Let ι = 0
for i = 1 . . . l do

Let j = 0
repeat:

compute si = C(1k, h, rι), increment j, ι
until f(si) = ci OR (j > k)
set h = h, si

Output: s1, s2, . . . , sl

For a given sequence of lk random inputs, this routine has exactly one possible

encoding for any message. Building on this routine, we will assume that Alice and Bob

share a key K for a symmetric IND$-CCA-secure encryption scheme E = (G,E,D)

such that for any key K, for any l ≥ k, Pr[U`(l) ∈ [EK({0, 1}l)]] ≤ 1/2k (An example is

the scheme of the previous section). We will also assume that G : {0, 1}k → {0, 1}k×lk

is a pseudorandom generator. The the following scheme is secure against symmetric

chosen-covertext attack:

Construction 5.15. (sCCA Stegosystem)

Procedure Encode:
Input: m ∈ {0, 1}`, h, K
Choose r ← Uk
Let c = EK(r‖m)
Let ~r = G(r)
Output: DEncode(c, h, k, ~r)

Procedure Decode:
Input: s1, . . . , sl, h, K
Let c = Basic Decode(s1, . . . , sl)
Parse DK(c) as r‖km.
Set ~r = G(r).
If s 6= DEncode(c, h, k, ~r) return ⊥.
Output: m

Theorem 5.16. if f is ε-biased for C, then

InSecscca
sCCA,C(t, ~q, ~µ, k) ≤ InSeccca

E (t′, ~q, ~µ, k) + qe2
−k + `(µe)ε+ qeInSecprg

G (t′, k) ,
1Recall that a channel is efficiently sampleable if there exists a PPT C such that C(1k, h, Uk) and

Ch are computationally indistinguishable

81

where t′ ≤ t+O((µe + µd)k).

Proof. Choose an arbitrary W ∈ W(t, ~q, ~µ). We will bound Advscca
S,C,W (k) by consid-

ering the following sequence of hybrid oracles:

• O1: the channel oracle C.

• O2: responds to queries by replacing c ← EK(r‖m) with c ← U and replacing

~r = G(r) with ~r ← Uk×lk.

• O3: responds to queries by replacing c← EK(r‖m) with c← U .

• O4: responds to queries with sCCA.Encode.

Clearly Pr[WO1,SDK (1k) = 1] = Pr[WOC ,SDK (1k) = 1] and Pr[WO4,SDK (1k) = 1] =

Pr[W SEK ,SDK (1k) = 1]. Thus

Advscca
S,C,W (k) =

∣∣Pr[WO4,SDK (1k) = 1]− Pr[WO1,SDK (1k) = 1]
∣∣

≤
∣∣Pr[WO2,SDK (1k) = 1]− Pr[WO1,SDK (1k) = 1]

∣∣
+
∣∣Pr[WO3,SDK (1k) = 1]− Pr[WO2,SDK (1k) = 1]

∣∣
+
∣∣Pr[WO4,SDK (1k) = 1]− Pr[WO3,SDK (1k) = 1]

∣∣
For convenience, we will define the quantity

AdviW (k) =
∣∣Pr[WOi+1,SDK (1k) = 1]− Pr[WOi,SDK (1k) = 1]

∣∣ ,
and we will proceed to bound AdviW (k) for i ∈ {1, 2, 3}.

Lemma 5.17. Adv1
W (k) ≤ `(µe)ε

Proof. This follows from lemma 4.8.

Lemma 5.18. Adv2
W (k) ≤ qeInSecprg

G (t′, k)

Proof. We will construct a PRG adversary A for G such that

Advprg
G,A(k) ≥ 1/qeAdv2

W (k) .

82

A works as follows: first, A picks a key K ← Uk to use in responding to the queries

W makes to SDK . Suppose A is given as input qe strings r1, . . . , rqe of length k × lk
and asked to decide whether they are all samples from Uk×lk or samples from G(Uk).

Then A can achieve advantage precisely Adv2
W (k) by emulating W , responding to

its decoding queries using K, and responding to the ith encoding query (m,h) by

drawing c← U`(|m|+k) and giving the response DEncode(c, h, k, ri). If all of the ri are

drawn from Uk×lk, then A perfectly simulates O1 to W , and if all are drawn from

G(Uk), A perfectly simulates O2. Thus A’s advantage in distinguishing G(Uk)
qe and

U qe
k×lk is exactly Adv2

W (k). The lemma follows from this fact and proposition 2.6 (a

straightforward hybrid argument).

Lemma 5.19. Adv3
W (k) ≤ InSeccca

E (t′, ~q, ~µ, k) + qe2
−k

Proof. We will construct an adversary A that plays the chosen-ciphertext attack game

against E with advantage

Advcca
A,E(k) ≥ Adv3

W (k) .

A works by emulating W and responding to queries as follows:

• on encoding query (m,h), AO chooses r ← Uk, computes c ← O(r‖m), and

returns DEncode(c, h, k,G(r)).

• on decoding query (s, h), A computes c = Basic Decode(s, h); if c was previ-

ously generated by an encoding query, A returns ⊥, otherwise A uses its decryp-

tion oracle to compute r‖km = DK(c). If c 6=⊥ and s = DEncode(c, h, k,G(r)),

A returns m, otherwise A returns ⊥.

In other words, A simulates running the routines sCCA.Encode and sCCA.Decode with

its oracles; with the exception that because A is playing the IND$-CCA game, he is

not allowed to query DK on the result of an encryption query: thus a decoding query

that has the same underlying ciphertext c must be dealt with specially.

Notice that when A is given an encryption oracle, he perfectly simulates O4 to W ,

that is:

Pr[AEK ,DK (1k) = 1] = Pr[WO4,SDK (1k) = 1] .

83

This is because when c = EK(r‖m) then the test s = DEncode(c, h, k,G(r)) would

fail anyways.

Likewise, when A is given a random-string oracle, he perfectly simulates O3 to W ,

given that the outputs of O are not valid ciphertexts. Let us denote the event that

some output of O is a valid ciphertext by V, and the event that some output of O3

encodes a valid ciphertext by U; notice that by construction Pr[U] = Pr[V]. We then

have that

Pr[A$,DK (1k) = 1] = Pr[A$,DK (1k) = 1|¬V] Pr[¬V] + Pr[A$,DK (1k) = 1|V] Pr[V]

≤ Pr[WO3,SDK (1k) = 1|¬U] Pr[¬U] + Pr[V]

≤ Pr[WO3,SDK (1k) = 1] + Pr[V]

≤ Pr[WO3,SDK (1k) = 1] + qe2
−k ,

since Pr[V] ≤ qe2
−k by assumption on E and the union bound.

Combining the cases, we find that

Advcca
A,E(k) = Pr[AEK ,DK (1k) = 1]− Pr[A$,DK (1k) = 1]

= Pr[WO4,SDK (1k) = 1]− Pr[A$,DK (1k) = 1]

≥ Pr[WO4,SDK (1k) = 1]− Pr[WO3,SDK (1k) = 1]− qe2−k

= Adv3
W (k)− qe2−k

Which proves the lemma.

Combining the three lemmata yields the proof of the theorem.

Public-Key Chosen-covertext attacks

In the public-key case, we will likewise need to construct a public-key encryption

scheme which is indistinguishable from random bits under chosen-ciphertext attack.

The definitions in this section are mostly analogous to those of the previous section,

although the construction of a public-key encryption scheme satisfying this definition

uses very different techniques.

84

IND$-CCA

Let E be a public-key encryption scheme. A chosen-ciphertext attack against E is de-

fined analogously to the symmetric case, except that instead of an oracle for EPK , the

adversary A is given the public key PK: Let E be a symmetric encryption scheme. We

define a chosen-ciphertext attack against E as a game played by an oracle adversary

A:

1. A is given PK and oracle access to DSK , and determines a challenge message

m∗ of length l∗.

2. A is given a challenge ciphertext c∗, which is either drawn from EPK(m∗) or

U`(l∗).

3. A continues to query DSK subject to the restriction that A may not query

DSK(c∗). A outputs a bit.

We define A’s CCA advantage against E by

Advcca
E,A(k) =

∣∣Pr[ADSK (PK,EPK(m∗)) = 1]− Pr[ADSK (PK,U`) = 1]
∣∣ ,

where m∗ ← ADSK (PK) and (PK, SK) ← G(1k), and define the CCA insecurity of

E by

InSeccca
E (t, q, µ, l∗, k) = max

A∈A(t,q,,µ,l∗)

{
Advcca

E,A(k)
}
,

where A(t, q, µ, l∗) denotes the set of adversaries running in time t, that make q

queries of total length µ, and issue a challenge message m∗ of length l∗. Then E
is (t, q, µ, l∗, k, ε)-indistinguishable from random bits under chosen ciphertext attack if

InSeccca
E (t, q, µ, l∗, k) ≤ ε. E is called indistinguishable from random bits under chosen

ciphertext attack (IND$-CCA) if for every PPTM A, Advcca
A,E(k) is negligible in k.

Construction. Let Πk be a family of trapdoor one-way permutations on domain

{0, 1}k. Let SEk′ = (E,D) be a symmetric encryption scheme which is IND$-CCA

secure. Let H : {0, 1}k ← {0, 1}k′ be a random oracle. We define our encryption

scheme E as follows:

• Generate(1k): draws (π, π−1)← Πk; the public key is π and the private key is

π−1.

85

• Encrypt(π,m): draws a random x ← Uk, computes K = H(x), c = EK(m),

y = π(x) and returns y‖c.

• Decrypt(π−1, y‖c): computes x = π−1(y), sets K = H(x) and returns DK(c).

Theorem 5.20.

InSeccca
E (t, q, µ, l, k) ≤ InSecow

Π (t, k) + InSeccca
SE (t′, 1, q, l, µ, k) ,

where t′ ≤ t+O(qH).

Proof. We will show how to use any adversary A ∈ A(t, q, µ, l) against E to create an

adversary B which plays both the IND$-CCA game against SE and the OWP game

against Π so that B succeeds in at least one game with success close to that of A.

B receives as input an element π ∈ Π and a y∗ ∈ {0, 1}k and also has access to

encryption and decryption oracles O, DK for SE . B keeps a list L of (y, z) pairs,

where y ∈ {0, 1}k and z ∈ {0, 1}k′ , initially, L is empty. B runs A with input π and

answers the decryption and random oracle queries of A as follows:

• When A queries H(x), B first computes y = pi(x), and checks to see whether

y∗ = y; if it does, B “decides” to play the OWP game and outputs x, the inverse

of y∗. Otherwise, B checks to see if there is an entry in L of the form (y, z); if

there is, B returns z to A. If there is no such entry, B picks a z ← Uk′ , adds

(y, z) to L and returns z to A.

• When A queries DSK(y‖c), first check whether y = y∗; if so, return DK(c).

Otherwise, check whether there is an entry in L of the form (y, z); if not, choose

z ← Uk′ and add one. Return SE .Dz(y).

When A returns the challenge plaintext m∗, B computes c∗ = O(m∗) and gives A

the challenge value y∗‖c∗. B then proceeds to run A, answering queries in the same

manner. If B never terminates to play the OWP game, B decides to play the IND$-

CCA game and outputs A’s decision. Now let P denote the event that A queries H(x)

on an x such that π(x) = y∗. Clearly,

Advow
B,Π(k) = Pr[P] .

86

Now, conditioned on ¬P, when B’s oracle O is a random string oracle, c∗ ← U` and

B perfectly simulates the random-string world to A. And (still conditioned on ¬P)

when B’s oracle O is EK , B perfectly simulates the ciphertext world to A. Thus, we

have that:

Advcca
B,SE(k) = Pr[B$,SE.DK (π, y) = 1]− Pr[BSE.EK ,SE.DK (π, y) = 1]

= Pr[AE.DSK (U`) = 1|¬P]− Pr[AE.DSK (E .E(π,m∗)) = 1|¬P]

But this gives us

Advcca
A,E(k) = Pr[AE.DSK (U`) = 1]− Pr[AE.DSK (E .E(π,m∗)) = 1]

=
(
Pr[AE.DSK (U`) = 1|¬P]− Pr[AE.DSK (E .E(π,m∗)) = 1|¬P]

)
Pr[¬P]

+
(
Pr[AE.DSK (U`) = 1|P]− Pr[AE.DSK (E .E(π,m∗)) = 1|P]

)
Pr[P]

≤ Pr[AE.DSK (U`) = 1|¬P]− Pr[AE.DSK (E .E(π,m∗)) = 1|¬P] + Pr[P]

= Advcca
B,SE(k) + Advow

B,Π(k)

≤ InSeccca
SE (t′, 1, q, l, µ, k) + InSecow

Π (t′, k)

SS-CCA Game

In an adaptive chosen-covertext attack against a public-key stegosystem S, a chal-

lenger draws a key pair (PK, SK)← SG(1k), and an adversary W is given PK and

allowed oracle access to SDSK . The attacker produces a challenge hiddentext m∗ and

history h∗ and is given as a response a sequence of documents s∗ ∈ D`(|m∗|). After

this, the attacker continues to query SD with the restriction that he may not query

SD(s∗). (As always, W is allowed to know the channel distribution C) At the con-

clusion of the attack, W must guess whether s∗ ← SE(PK,m∗, h∗) or s∗ ← C`∗h . We

define the Steganographic Chosen-Covertext Advantage of W against S with respect

to C by

Advscca
S,C,W(k) =

∣∣Pr[W SDSK (PK, SE(PK,m∗, h∗)) = 1]− Pr[W SDSK (PK, Cl∗h) = 1]
∣∣ ,

87

where (m∗, h∗) ← W SDSK (PK) and (PK, SK) ← SG(1k). We define the sCCA

insecurity of S with respect to C by

InSecscca
S,C (t, q, µ, l∗, k) = max

W∈W(t,q,µ,l∗)

{
Advscca

S,C,W(k)
}
,

where W(t, q, µ, l∗) denotes the class of all W running in time t which make at most

q oracle queries of µ bits and submit a challenge hiddentext of length at most l∗.

We say that S is (t, q, µ, l, k, ε) secure against chosen-covertext attack with respect

to C if

InSecscca
S,C (t, q, µ, l, k) ≤ ε ,

and that S is secure against chosen-covertext attack with respect to C (SS-sCCA) if

Advscca
S,C,W(k) is negligible for all PPT W .

Construction

Our construction of a public-key stegosystem secure against chosen-covertext attack

is similar to the construction for the symmetric-key case. We will assume that E is a

public-key IND$-CCA secure encryption scheme, and (PK, SK)← E .G(1k). Further-

more, we assume that for any l, Pr[SDSK(Ul) 6=⊥] ≤ 2−t for some t = poly(k). We

will also assume that G : {0, 1}k → {0, 1}k×lk is a pseudorandom generator.

The the following scheme is secure against chosen-covertext attack:

Construction 5.21. (pCCA Stegosystem)

Procedure Encode:
Input: m ∈ {0, 1}`, h, PK
Choose r ← Uk
Let c = EPK(r‖m)
Let ~r = G(r)
Output: DEncode(c, h, k, ~r)

Procedure Decode:
Input: s1, . . . , sl, h, SK
Let c = Basic Decode(s1, . . . , sl)
Parse DSK(c) as r‖km.
Set ~r = G(r).
If s 6= DEncode(c, h, k, ~r) return ⊥.
Output: m

Theorem 5.22. if f is ε-biased for C, then

InSecscca
pCCA,C(t, q, µ, l, k) ≤ InSeccca

E (t′, q, µ, l, k) + 2−t + `(l + k)ε+ InSecprg
G (t′, k) ,

where t′ ≤ t+O(lk).

88

Proof. Choose an arbitrary W ∈ W(t, q, µ, l); let (PK, SK)← G(1k) and let

(m∗, h∗)← W SDSK (PK) .

We will bound Advscca
W,pCCA,C(k) by considering the following sequence of hybrid distri-

bution:

• D1: C`(l+k)
h∗

• D2: DEncode(U`(l+k), h
∗, k, Uk×lk)

• D3: DEncode(U`(l+k), h
∗, k, G(Uk))

• D4: DEncode(EPK(r‖m∗), h∗, k, G(r)), where r ← Uk

Clearly Pr[W SD(D4) = 1] = Pr[W SD(SE(PK,m∗, h∗)) = 1] and Pr[W SD(D1) = 1] =

Pr[W SD(C`(l+k)
h∗) = 1]. Thus

Advscca
W,pCCA,C(k) =

∣∣Pr[W SD(D4) = 1]− Pr[W SD(D1) = 1]
∣∣

≤
∣∣Pr[W SD(D2) = 1]− Pr[W SD(D1) = 1]

∣∣
+
∣∣Pr[W SD(D3) = 1]− Pr[W SD(D2) = 1]

∣∣
+
∣∣Pr[W SD(D4) = 1]− Pr[W SD(D3) = 1]

∣∣
For convenience, we will define the quantity

AdviW (k) =
∣∣Pr[W SD(Di+1) = 1]− Pr[W SD(Di) = 1]

∣∣ ,
and we will proceed to bound AdviW (k) for i ∈ {1, 2, 3}.

Lemma 5.23. Adv1
W (k) ≤ `(l + k)ε

Proof. This follows from lemma 4.8.

Lemma 5.24. Adv2
W (k) ≤ InSecprg

G (t′, k)

Proof. We will construct a PRG adversary A for G such that

Advprg
G,A(k) = Adv2

W (k) .

89

A works as follows: first, A picks a key pair (PK, SK)← G(1k) to use in responding

to the queries W makes to SD. A is given as input a string r ∈ {0, 1}k×lk and

asked to decide whether r ← Uk×lk or r ← G(Uk). Then A can achieve advantage

precisely Adv2
W (k) by emulating W , responding to its decoding queries using SK,

and responding to the challenge hiddentext (m∗, h∗) by drawing c← U`(l+k) and giving

the response s = DEncode(c, h, k, r). If r ← Uk×lk, then s ← D1, and if r ← G(Uk),

then s← D2. Thus A’s advantage in distinguishing G(Uk) and Uk×lk is exactly:

Advprg
A,G(k) = |Pr[A(G(Uk)) = 1]− Pr[A(Uk×lk) = 1]|

=
∣∣Pr[W SD(D2) = 1]− Pr[W SD(D1) = 1]

∣∣
= Adv2

W (k)

Lemma 5.25. Adv3
W (k) ≤ InSeccca

E (t′, ~q, ~µ, k) + 2−t

Proof. We will construct an adversary A that plays the chosen-ciphertext attack game

against E with advantage

Advcca
A,E(k) ≥ Adv3

W (k) .

A starts by emulating W to get a challenge hiddentext, responding to decod-

ing queries as follows: on query (s, h), A computes c = Basic Decode(s, h); A

then uses its decryption oracle to compute r‖km = DSK(c). If c 6=⊥ and s =

DEncode(c, h, k,G(r)), A returns m, otherwise A returns ⊥.

When W generates challenge (m∗, h∗), A chooses r∗ ← Uk and outputs the chal-

lenge r∗‖m∗. A is given the challenge ciphertext c∗ and returns

s∗ = DEncode(c∗, h∗, k, G(r∗))

to W .

A continues to emulate W , responding to queries as follows: on decoding query

(s, h), A computes c = Basic Decode(s, h); if c = c∗ A returns ⊥, otherwise A uses its

decryption oracle to compute r‖km = DSK(c). If c 6=⊥ and s = DEncode(c, h, k,G(r)),

A returns m, otherwise A returns ⊥.

90

In other words, A simulates running sCCA.Decode with its DSK oracle, except

that because A is playing the IND$-CCA game, he is not allowed to query DSK on the

challenge value c∗: thus a decoding query that has the same underlying ciphertext c∗

must be dealt with specially.

Notice that when A is given an encryption of r∗‖m∗, he perfectly simulates D4 to

W , that is:

Pr[ADSK (PK,EPK(r∗‖m∗) = 1] = Pr[W SD(PK,D4) = 1] .

This is because when c∗ = EK(r∗‖m∗) then the test s = DEncode(c, h, k,G(r)) would

fail anyways.

Likewise, when A is given a random string, he perfectly simulates D3 to W , given

that c∗ is not a valid ciphertext. Let us denote the event that c∗ is a valid ciphertext

by V, and the event that a sample from D3 encodes a valid ciphertext by U; notice

that by construction Pr[U] = Pr[V]. We then have that

Pr[ADSK (PK,U`) = 1] = Pr[ADSK (PK,U`) = 1|¬V] Pr[¬V]

+ Pr[ADSK (PK,U`) = 1|V] Pr[V]

≤ Pr[W SD(PK,D3) = 1|¬U] Pr[¬U] + Pr[V]

≤ Pr[W SD(PK,D3) = 1] + Pr[V]

≤ Pr[W SD(PK,D3) = 1] + 2−t ,

since Pr[V] ≤ 2−t by assumption on E .

Combining the cases, we find that

Advcca
A,E(k) = Pr[ADSK (PK,EPK(r∗‖m∗) = 1]− Pr[ADSK (PK,U`) = 1]

= Pr[W SD(PK,D4) = 1]− Pr[ADSK (PK,U`) = 1]

≥ Pr[W SD(PK,D4) = 1]− Pr[W SD(PK,D3) = 1]− 2−t

= Adv3
W (k)− 2−t

Which proves the lemma.

Combining the three lemmata yields the proof of the theorem.

91

5.2.2 Authenticated Stegosystems

In the case of public-key steganography, Ward is capable of an even stronger attack

than the the CCA attack. For example, the warden can detect the use of steganog-

raphy by Bob simply by encoding a message, sending it to Bob and watching his

reaction: if he reacts consistently with receiving the warden’s message, then he is

probably decoding messages. Thus the warden’s goal should be to detect whether

a specific pair, Alice and Bob are communicating steganographically. To protect

against such an attack will require that Alice have some secret differentiating herself

from the warden: we will allow Alice to publish a “steganographic verification key”

which will allow anyone with private key SK to verify that a stegotext generated

with the corresponding public key PK was generated by Alice; Alice will keep the

“steganographic signature” key secret. In this model, we will define additional attack

games to the basic chosen-hiddentext attack: the Chosen Exactly One Attack, and

the Chosen Stegotext Attack.

Before we can do so, however, it is necessary to extend the syntax and correctness

definitions of a public-key stegosystem to include steganographic signatures.

Definition 5.26. An authenticated public-key stegosystem S is a quadruple of algo-

rithms:

• S.CodeGen takes as input a security parameter 1k and generates a key pair

(PK, SK) ∈ PK × SK. When it is clear from the context which stegosystem

we are referring to, we will abbreviate S.Generate by SG.

• S.SigGen (abbreviated SSG when S is clear from the context) takes as input

a security parameter 1k and generates a key pair (SV K, SSK) ∈ SVK×SSK.

• S.Encode (abbreviated SE when S is clear from the context) takes as input a

public key PK ∈ PK, a stegosigning key SSK ∈ SSK, a string m ∈ {0, 1}∗

(the hiddentext), and a message history h. As with the symmetric case, we will

also assume for our feasibility results that SE has access to a channel oracle for

some channel C, which can sample from Ch for any h.

92

SE(PK, SSK,m, h) returns a sequence of documents s1, s2, . . . , sl (the stego-

text) from the support of Clh.

• S.Decode (abbreviated SD) takes as input a secret key SK ∈ SK, a stegoverifi-

cation key SV K, a sequence of documents s1, s2, . . . , sl, and a message history

h.

SD(SK, SV K, s, h) returns a hiddentext m ∈ {0, 1}∗ or ⊥.

Of course, we will also require that an authenticated stegosystem is correct:

Definition 5.27. (Correctness) An authenticated stegosystem S is correct if for every

polynomial p(k) there exists a negligible ν(k) such that

∀m ∈ {0, 1}p(k), h ∈ D∗ : Pr[SD(SK, SV K, SE(PK, SSK,m, h), h) = m] ≥ 1− µ(k)

where the probability is over the choices (PK, SK) ← SG(1k), (SV K, SSK) ←
SSG(1k), and any coin tosses of SE, SD, SG, SSG and the oracle to Ch.

We will model an active warden attacking a stegosystem as an efficient oracle

machine which plays the following oracle-distinguishing game:

1. W is given access to an oracle which samples documents from the marginal

channel distributions CA→B,h for any history h. (This oracle allows W to learn

the covertext distribution on all communications.)

2. W is given access to a second oracle which is either STatk or CTatk. The oracle

ST (for StegoText) will model the case in which the pair Alice and Bob are com-

municating steganographically, while the oracle CT (for CoverText) will model

the case in which they are not. The exact distributions over STatk, CTatk vary

depending on the attack model, atk. Below we will specify these distributions

for atk ∈ {cxo, csa}. Both oracles respond to the null query with the public and

verification keys generated by SG and SSG.

3. In the end, W outputs a bit.

93

We define the advantage of W against stegosystem S over channel C in attack model

atk by

Advatk
S,C,W (k) =

∣∣Pr[W STatk(1k) = 1]− Pr[WCTatk(1k) = 1]
∣∣ ,

where the warden uses random bits r and the probabilities are also taken over the

oracles. Define the insecurity of S over channel C by

InSecatk
S,C(t, q, l, k) = max

W∈W(t,q,l)

{
Advatk

S,C,W (k)
}
,

whereW(t, q, l) denotes the set of all adversaries which make at most q oracle queries

totaling at most l bits, and running in time at most t.

Definition 5.28. (Steganographic secrecy) A Stegosystem S is called (t, q, l, k, ε)-

steganographically secret against atk (SS-ATK) for the channel C if InSecatk
S,C(t, q, l, k) ≤

ε.

For the next construction, we will require the notion of a digital signature scheme

that is existentially unforgeable under chosen message attack:

Existentially Unforgeable Digital Signature Schemes.

A digital signature scheme SG is a triple of probabilistic algorithms:

• SG.Generate: takes as input a security parameter 1k and returns a key pair

(V K, SK).

• SG.Sign: takes as input a signing key SK and a message m and outputs a

signature σ.

• SG.Verify: takes as input a verification key V K, a message m, and a signature

σ and outputs a bit.

A signature scheme is sound if V (V K,m, S(SK,m)) = 1 for all m and (SK, V K) ∈
[G(1k)].

Consider the following game that an adversary A plays against SG: the adversary

A is given V K and oracle access to SSK , where (SK, V K)← G(1k). A makes q oracle

94

queries of at most l bits to get back {SSK(M1), ..., SSK(Mq)}. A then outputs a pair

(M,σM). A wins if M /∈ {M1, ...,Mq} and V (V K,M, σM) = 1.

Denote the event of A winning the game by winA,SG(k), Let A(t, q, l) be the set

of adversaries A which make q queries to the oracle of at most l bits and run for t

time steps. Define the EUF-CMA advantage of A against SG as

Advcma
A,SG(k) = Pr[winA,SG(k)] .

Define the insecurity of SG as

InSeccma
SG (t, q, l, k) = max

A∈A(t,q,l)

{
Advcma

SG,A(k)
}
.

We say that SG is (t, q, l, k, ε)-existentially unforgeable under chosen message attack

if InSeccma
SG (t, q, l, k) ≤ ε. SG is called existentially unforgeable under chosen message

attack (EUF-CMA) if for every PPT A, Advcma
SG,A(k) is negligible in k. We note that

EUF-CMA signature schemes exist if and only if one-way functions exist[47, 55]..

Chosen Exactly-One Attack (CXO).

In a chosen exactly-one attack, Ward may both submit hiddentexts to Alice for en-

coding, and submit stegotexts to Bob for decoding, but he is prohibited from accessing

both at the same time (i.e., with the same history). This models a scenario in which

Ward can inject messages onto a network, but cannot replace them; for example, this

may be the situation if he is connected to the same shared access network as Bob,

but does not control the medium. As in all of our attack models, Ward’s goal is to

determine whether the specific pair of Alice and Bob are communicating stegano-

graphically rather than whether Alice or Bob are using steganography at all. In the

case that Ward asks Bob to decode stegotexts, his goal is to detect whether Bob is re-

ceiving steganography from Alice by watching Bob’s reaction to stegotexts (allegedly

from Alice) generated by Ward himself. If Bob is not receiving steganography from

Alice, he will always output the distinguished message ⊥, meaning “no reaction.” If

Bob is receiving steganography from Alice, he will decode the stegotexts.

We formally define the oracle distributions STcxo, CTcxo as follows: First, draw

(PK, SK)← SG(1k), and set φ = {}. Respond to queries using these programs:

95

STcxo(b ∈ {enc, dec},m, h)
if (b = enc) then:

Sample s← SE(PK,m, h)
Set φ = φ ∪ {h}
return s

else
If h ∈ φ return ε
else return SD(SK,m, h)

CTcxo(b ∈ {enc, dec},m, h)
if (b = enc) then:

Sample s← C|SE(PK,m,h)|
h

Set φ = φ ∪ {h}
return s

else
If h ∈ φ return ε
else return ⊥

Note that InSeccha
S,C(t, l, k) ≤ InSeccxo

S,C(t, 1, l, k), since any CHA warden can be emu-

lated by a CXO warden making only (enc,m, h)-queries.

SS-CXO is the strongest notion of security that we are able to achieve in the stan-

dard model. Since any stegotext encoded by Alice can be thought of as a “challenge

stegotext,” (Ward’s goal is only to detect that it is, in fact, a stegotext rather than

a covertext) this condition is somewhat analogous to non-adaptive chosen ciphertext

security (IND-CCA1) for public-key encryption.

Let SG = (GS, S, V) be a EUF-CMA secure signature scheme, with signature key

KS and verification key KV , and let E = (G,E,D) be a IND$-CPA encryption scheme

with public key PK and secret key SK. Let ` be the expansion function of E and

let `σ be the length of signatures generated by SG. Then the following construction

yields a SS-CXO secure stegosystem from Alice to Bob, when Alice knows PK,KS and

Bob knows SK,KV . Assume also that all keys are generated with security parameter

k.

Construction 5.29. (Chosen Exactly-One Security)

Procedure CXO Encode:
Input: m, h, PK, KS

Let c = EPK(m,SKS(h,m))
Output: Basic Encode(c, h, k)

Procedure CXO Decode:
Input: s1, . . . , sl, h, SK, KV

Let c = Basic Decode(s1, . . . , sl)
Let (m,σ) = DSK(c)
If V (KV , (h,m), σ) = 0 then set m =⊥
Output: m

Theorem 5.30. Assume f is ε-biased on Ch for all h. Then

InSeccxo
CXO,C(t, q, l, k) ≤ InSeccma

SG (t+O(kl), q, l, k)

+ InSeccpa
E (t+O(kl), q, l + q`σ, k) + `(l + q`σ)ε .

96

Proof. Informally, we will consider the hybrid oracle H which answers encoding

queries using CXO Encode and answers all decoding queries with ⊥. Distinguish-

ing this hybrid from STcxo equates to distinguishing CXO Decode from the constant

oracle ⊥ on some history h for which no query of the form (enc, ∗, h) has been made.

This can only happen if a decoding query contains a signature on a (m,h) pair which

was never signed by CXO Encode (because no encoding queries were ever made with

the history h). So, intuitively, distinguishing between H and STcxo requires forging

a signature. Similarly, since both H and CTcxo answer all dec queries by ⊥, distin-

guishing between them amounts to a chosen-hiddentext attack, which by Lemma 4.10

would give an IND$-CPA attacker for E . The result follows by the triangle inequality.

More formally, Let W ∈ W(t, q, l). We will show that W must either forge a

signature or distinguish the output of E from random bits. We will abuse notation

slightly and denote W STcxo by W SE,SD, and WCTcxo by W C,⊥. Then we have that

Advcxo
CXO,C,W (k) =

∣∣Pr[W SE,SD = 1]− Pr[W C,⊥ = 1]
∣∣ .

Consider the “hybrid” distribution which results by answering encoding queries using

CXO Encode but answering all decoding queries with ⊥. (We denote this oracle by

(SE,⊥))

We construct a EUF-CMA adversary Af which works as follows: given KV , and

a signing oracle for KS, choose (PK, SK) ← GE(1k); use the signing oracle and

EPK , DSK to emulate CXO Encode and CXO Decode to W . If W ever makes a query

to CXO Decode which does not return ⊥ then Af halts and returns the corresponding

((m,h), σ) pair, otherwise Af runs until W halts and returns (0, 0). If we let F denote

the event that W SE,SD submits a valid decoding query to CXO Decode, then we have

that Advcma
(GS ,S,V)(Af) = Pr[F].

We also construct a IND$-CPA adversary Ad which works as follows: given an en-

cryption oracle, choose (KS, KV)← GS(1k), use KS and the encryption oracle to em-

ulate CXO Encode to W , and respond to any decoding queries with ⊥. Ad returns the

output of W . Note that Advcpa
E (Ad)+`(l+q`σ)ε ≥

∣∣Pr[W SE,⊥ = 1]− Pr[W C,⊥ = 1]
∣∣,

which follows from Theorem 4.11.

97

Then we have the following inequalities:

Advcxo
CXO,C,W (k) =

∣∣Pr[W SE,SD = 1]− Pr[W C,⊥ = 1]
∣∣

≤
∣∣Pr[W SE,SD = 1]− Pr[W SE,⊥ = 1]

∣∣
+
∣∣Pr[W SE,⊥ = 1]− Pr[W C,⊥ = 1]

∣∣
≤
∣∣Pr[W SE,SD = 1]− Pr[W SE,⊥ = 1]

∣∣+ Advcpa
E (Ad) + `(l + q`σ)ε

≤ Advcma
(GS ,S,V)(Af) + Advcpa

E (Ad) + `(l + q`σ)ε

Where the last line follows because (let D denote the event W SE,SD = 1, and notice

that D|F ≡ W SE,⊥ = 1):∣∣Pr[D]− Pr[W SE,⊥ = 1]
∣∣ =

∣∣Pr[D|F] Pr[F] + Pr[D|F] Pr[F]− (Pr[W SE,⊥ = 1])
∣∣

=
∣∣Pr[D|F] Pr[F] + Pr[W SE,⊥ = 1](1− Pr[F])

− (Pr[W SE,⊥ = 1])
∣∣

=
∣∣Pr[F](Pr[D|F]− Pr[D|F])

∣∣
≤ Pr[F]

= Advcma
(GS ,S,V)(Af)

The theorem follows by the definition of insecurity, since both Ad and Af run in time

at most t+O(kl).

Chosen-Stegotext Attacks

We now introduce a security condition analogous to adaptive chosen ciphertext se-

curity for encryption schemes (IND-CCA2), SS-CSA. We will construct a stegosystem

which is SS-CSA-secure in the Random Oracle model, for any channel which is effi-

ciently sampleable: that is, for which there exists a PPT C such that for all h, C(h;Uk)

and Ch are indistinguishable.

We formally define the oracle distributions STcsa, CTcsa as follows: First, draw

(PK, SK)← SG(1k), and set φ = {}. Respond to queries using these programs:

98

STcsa (b ∈ {enc, dec},m, h)
if(b = enc) then:

Sample s← SE(PK,m, h)
Set φ = φ ∪ {(s, h)}
return s

else
If (m,h) ∈ φ return ε
else return SD(SK,m, h)

CTcsa (b ∈ {enc, dec},m, h)
if(b = enc) then:

Sample s← C|SE(PK,m,h)|
h

Set φ = φ ∪ {(s, h)}
return s

else
If (m,h) ∈ φ return ε
else return ⊥

Thus, in a chosen-stegotext attack, Ward may ask Alice to encode any (message,

history) pair of his choosing, as often as he likes, and may query Bob on any pair

(s, h) where s was not a result of an encoding query for history h. Notice that if

Ward can ask Bob to decode any message output by Alice for the same history it

was encoded with, he can detect the use of steganography between Alice and Bob;

this is why we do not allow Ward to query Bob on such stegotexts. This restriction

is roughly analogous to the standard restriction that an adaptive chosen-ciphertext

attacker may not query his decryption oracle on the challenge ciphertext. Advantage

and insecurity for SS-CSA are defined analogously to SS-CXO, except that we count

encoding and decoding queries separately (as qe and qd) as well as counting the number

of queries made to random oracles.

Construction.

We assume that πA, πB are elements of trapdoor one-way permutation family Πk,

where Alice knows π−1
A and Bob knows π−1

B . In addition, we assume all parties have

access to random oracles F : {0, 1}∗ → {0, 1}k, G : {0, 1}∗ → {0, 1}k, H1 : {0, 1}k →
{0, 1}∗, and H2 : {0, 1}∗ → {0, 1}k. The following construction slightly modifies

techniques from [9], using the random oracles H1 and H2 with πB to construct a

pseudorandom non-malleable encryption scheme and the oracle F in conjunction with

πA to construct a strongly unforgeable signature scheme.

Construction 5.31. (Chosen Stegotext Security)

99

Procedure CSA EncodeF,G,H :
Input: m1 · · ·m`, h, π−1

A , πB
Choose r ← Uk
Let σ = π−1

A (F (r,m, h))
Let e = H1(r)⊕ (m,σ)
Let τ = H2(r,m, h)
Let y = πB(r)
Let c = y||e||τ
Output: UEncodeG(c, r, h)

Procedure CSA DecodeF,G,H :
Input: s1, . . . , sl, h, πA, π−1

B
Let c = Basic Decode(s1, . . . , sl)
Parse c as y||e||τ .
Set r = π−1

B (y).
If s 6= UEncodeG(c, r, h) return ⊥.
Let (m,σ) = e⊕H1(r)
If τ 6= H2(r,m, h) return ⊥.
If πA(σ) 6= F (r,m, h) return ⊥.
Output: m

Procedure UEncodeG:
Input: c ∈ {0, 1}l, r ∈ {0, 1}k, h
for i = 1 . . . l do

Let j = 0
repeat:

set si = C(h;G(h, r, c, j))
increment j

until f(si) = ci OR (j > k)
set h = (h, si)

Output: s1, s2, . . . , sl

Theorem 5.32. If f is ε-biased for C, then

InSeccsa
CSA,C(t, ~q, l, k) ≤ (2qe + qF)InSecow

π (t′, k) + (l + 3qek)ε+ (q2
e + 2qd)/2

k ,

where t′ ≤ t + (qG + qF + qH1 + qH2)(qe + qd)Tπ + k(l + 3qek)TC, Tπ is the time to

evaluate members of π, and TC is the running time of C.

Proof. Intuitively, this stegosystem is secure because the encryption scheme employed

is non-malleable, the signature scheme is strongly unforgeable, and each triple of

hiddentext, history, and random-bits has a unique valid stegotext, which contains a

signature on (m,h, r). Thus any adversary making a valid decoding query which was

not the result of an encoding query can be used to forge a signature for Alice — that

is, invert the one-way permutation πA.

We define the following sequence of hybrid oracle distributions:

1. P0(b,m, h) = CTcsa, the covertext oracle.

2. P1(b,m, h) responds to dec queries as in P0, and responds to enc queries using

CSA EncodeF,G,H but with calls to UEncodeG replaced by calls to Basic Encode.

100

3. P2(b,m, h) responds to dec queries as in P1, and responds to enc queries using

CSA EncodeF,G,H .

4. P3(b,m, h) = STcsa, the stegotext oracle.

We are given a CSA attacker W ∈ W(t, qe, qd, qF , qH , qH1 , qH2 , l) and wish to bound

his advantage. Notice that

Advcsa
CSA,C,W (k) ≤ |Pr[W P0(1k) = 1]− Pr[W P1(1k)]|+

|Pr[W P1(1k) = 1]− Pr[W P2(1k) = 1]|+

|Pr[W P2(1k) = 1]− Pr[W P3(1k) = 1]| .

Hence, we can bound the advantage of W by the sum of its advantages in distin-

guishing the successive hybrids. For hybrids P,Q we will denote this advantage by

AdvP,Q
W (k) = |Pr[W P(1k) = 1]− Pr[WQ(1k) = 1]|.

Lemma 5.33. AdvP0,P1
W (k) ≤ qeInSecow

Π (t′, k) + 2−k(q2
e/2− qe/2) + (l + 3qek)ε

Proof. Assume WLOG that Pr[W P1(1k) = 1] > Pr[W P0(1k) = 1]. Let Er denote the

event that, when W queries P1, the random value r never repeats, and let Eq denote

the event that W never makes random oracle queries of the form H1(r) or H2(r, ∗, ∗)
for an r used by CSA EncodeF,G,H , and let E ≡ Er ∧ Eq. Then:

AdvP0,P1
W (k) = Pr[W P1(1k) = 1]− Pr[W P0(1k) = 1]

= Pr[W P1(1k) = 1|E](1− Pr[E]) + Pr[W P1(1k) = 1|E] Pr[E]

− Pr[W P0(1k) = 1]

= Pr[E]
(
Pr[W P1(1k) = 1|E]− Pr[W P1(1k) = 1|E]

)
+
(
Pr[W P1(1k) = 1|E]− Pr[W P0(1k) = 1]

)
≤ Pr[E] + (l + 3qek)ε

≤ Pr[Er] + Pr[Eq] + (l + 3qek)ε

≤ 2−k
qe(qe − 1)

2
+ Pr[Eq] + (l + 3qek)ε ,

101

because if r never repeats and W never queries H1(r) or H2(r, ∗, ∗) for some r used

by CSA EncodeF,G,H , then W cannot distinguish between the ciphertexts passed to

Basic Encode and random bit strings.

It remains to bound Pr[Eq]. Given W ∈ W(t, qe, qd, qF , qG, qH1 , qH2 , l) we con-

struct a one-way permutation adversary A against πB which is given a value πB(x)

and uses W in an attempt to find x, so that A succeeds with probability at least

(1/qe) Pr[Eq]. A picks (πA, π
−1
A) from Πk and i uniformly from {1, . . . , qe}, and then

runs W answering all its oracle queries as follows:

• enc queries are answered as follows: on query j 6= i, respond using the program

for CSA EncodeF,G,H with calls to UEncodeG replaced by calls to Basic Encode.

On the i-th query respond with s = Basic Encode(πB(x)||e1||τ1, h) where e1 =

h1 ⊕ (m,σ1) and h1, σ1, τ1 are chosen uniformly at random from the set of all

strings of the appropriate length (|e1| = |m| + k and |τ1| = k), and set φ =

φ ∪ {(s, h)}.

• dec queries are answered using CTcsa.

• Queries to G,F,H1 and H2 are answered in the standard manner: if the query

has been made before, answer with the same answer, and if the query has not

been made before, answer with a uniformly chosen string of the appropriate

length. If a query contains a value r for which πB(r) = πB(x), halt the simula-

tion and output r.

It should be clear that Pr[A(πB(x)) = x] ≥ 1
qe

(Pr[Eq]).

Lemma 5.34. AdvP1,P2
W (k) ≤ qeInSecow

Π (t′, k) + 2−k(q2
e/2− qe/2)

Proof. Assume WLOG that Pr[W P2(1k) = 1] > Pr[W P1(1k) = 1]. Denote by Er the

event that, when answering queries for W , the random value r of CSA EncodeF,G,H

never repeats, and by Eq the event that W never queries G(∗, r, πB(r)||∗, ∗) for some

102

r used by CSA EncodeF,G,H , and let E ≡ Er ∧ Eq. Then:

AdvP1,P2
W (k) = Pr[W P2(1k) = 1]− Pr[W P1(1k) = 1]

=
(
Pr[W P2(1k) = 1|E] Pr[E] + Pr[W P2(1k) = 1|E] Pr[E]

)
−
(
Pr[W P1(1k) = 1|E] Pr[E] + Pr[W P1(1k) = 1|E] Pr[E]

)
= Pr[E]

(
Pr[W P2(1k) = 1|E]− Pr[W P1(1k) = 1|E]

)
≤ Pr[E]

≤2−k
qe(qe − 1)

2
+ Pr[Eq]

Given W ∈ W(t, qe, qd, qF , qG, qH1 , qH2 , l) we construct a one-way permutation adver-

sary A against πB which is given a value πB(x) and uses W in an attempt to find

x. A picks (πA, π
−1
A) from Πk and i uniformly from {1, . . . , qE}, and then runs W

answering all its oracle queries as follows:

• enc queries are answered as follows: on query j 6= i, respond according to

CSA EncodeF,G,H . On the ith query respond by computing

s = UEncodeG(πB(x)||e1||τ1, r1, h) ,

where e1 = h1 ⊕ (m,σ1) and h1, σ1, τ1, r1 are chosen uniformly at random from

the set of all strings of the appropriate length (|e1| = |m|+ k and |τ1| = k), and

set φ = φ ∪ {(s, h)}.

• dec queries are answered using CTcsa.

• Queries to G,F,H1 and H2 are answered in the standard manner: if the query

has been made before, answer with the same answer, and if the query has not

been made before, answer with a uniformly chosen string of the appropriate

length. If a query contains a value r for which πB(r) = πB(x), halt the simula-

tion and output r.

It should be clear that Pr[A(πB(x)) = x] ≥ 1
qe

(Pr[Eq]).

Lemma 5.35. AdvP2,P3
W (k) ≤ qF InSecow

Π (t′, k) + qd/2
k−1 + qe/2

k

103

Proof. Given W ∈ W(t, qe, qd, qF , qG, qH1 , qH2 , l) we construct a one-way permutation

adversary A against πA which is given a value πA(x) and uses W in an attempt to

find x. A chooses (πB, π
−1
B) from Πk and i uniformly from {1, . . . , qF}, and then runs

W answering all its oracle queries as follows:

• enc queries are answered using CSA EncodeF,G,H except that σ is chosen at

random and F (r,m, h) is set to be πA(σ). If F (r,m, h) was already set, fail the

simulation.

• dec queries are answered using CSA DecodeF,G,H , with the additional constraint

that we reject any stegotext for which there hasn’t been an oracle query of the

form H2(r,m, h) or F (r,m, h).

• Queries to G,F,H1 and H2 are answered in the standard manner (if the query

has been made before, answer with the same answer, and if the query has not

been made before, answer with a uniformly chosen string of the appropriate

length) except that the i-th query to F is answered using πA(x).

A then searches all the queries that W made to the decryption oracle for a value σ

such that πA(σ) = πA(x). This completes the description of A.

Notice that the simulation has a small chance of failure: at most qe/2
k. For the

rest of the proof, we assume that the simulation doesn’t fail. Let E be the event that

W makes a decryption query that is rejected in the simulation, but would not have

been rejected by the standard CSA DecodeF,G,H . It is easy to see that Pr[E] ≤ qd/2
k−1.

Since the only way to differentiate P3 from P2 is by making a decryption query that

P3 accepts but P2 rejects, and, conditioned on E, this can only happen by inverting

πA on a some F (r,m, h), we have that:

AdvP2,P3
W (k) ≤ qF InSecow

Π (t′, k) + qd/2
k−1 + qe/2

k

104

The theorem follows, because:

InSeccsa
CSA,C(t, ~q, l, k) ≤ Advcsa

CSA,C,Wmax
(k)

≤ AdvP0,P1
W (k) + AdvP1,P2

W (k) + AdvP2,P3
W (k)

≤ qeInSecow
Π (t′, k) +

q2
e − qe
2k+1

+ (l + 3qek)ε+ AdvP1,P3
W (k)

≤ 2qeInSecow
Π (t′, k) + 2−k(q2

e − qe) + (l + 3qek)ε+ AdvP2,P3
W (k)

≤ (2qe + qF)InSecow
Π (t′, k) + 2−k(q2

e + 2qd) + (l + 3qek)ε

We conjecture that the cryptographic assumptions used here can be weakened; in

particular, a random oracle is not necessary given a public-key encryption scheme

which satisfies IND$-CPA and is non-malleable, and a signature scheme which is

strongly unforgeable. However, we are unaware of an encryption scheme in the stan-

dard model satisfying this requirement: nonmalleable encryption schemes following

the Naor-Yung paradigm [23, 42, 48, 56] are easily distinguishable from random bits,

and the schemes of Cramer and Shoup [20, 21] all seem to generate ciphertexts which

are elements of recognizable subgroups. Furthermore, it seems challenging to prevent

our motivating attack without assuming the ability to efficiently sample the channel.

5.3 Relationship between robustness and integrity

In this section, we define the notion of a nontrivial relation R and show that if a

stegosystem is substitution robust with respect to any nontrivial R then it is inse-

cure against both chosen-covertext and chosen-stegotext attacks. This result implies

that no stegosystem can be simultaneously (nontrivially) secure against disrupting and

distinguishing active adversaries.

We first must define what makes an admissible bounding relation R nontrivial.

Suppose R is efficiently computable but has the property that for every efficient A,

Pr
d←ChA

[d′ = A(1k, d) ∧ d′ 6= d ∧ (d, d′) ∈ R]

105

is negligible. Then any steganographically secret stegosystem is trivially robust

against R, because no efficient adversary can produce a related stegotext sW 6= σ

(except with negligible probability) in the substitution attack game; and thus the de-

coding of sW will be s, except with negligible probability. Thus in order for robustness

of a stegosystem to be “interesting” we will require that this is not the case.

Definition 5.36. If R is admissible for C then R is ρ-nontrivial for C if there is a

PPT A and a history hA such that

Pr
d←ChA

[d′ = A(1k, d) ∧ d′ 6= d ∧ (d, d′) ∈ R] ≥ ρ(k) .

We say that R is non-trivial for C if it is ρ(k)-nontrivial for some ρ(k) > 1/poly(k).

Suppose the stegosystem S is substitution robust against the nontrivial relation R.

Consider the following attacker WA. WA first selects a challenge hiddentext mW ← Ul

and requests the encoding of mW under history hA. (In the CSA game, W queries its

oracle with (enc,mW , hA); in the sCCA game, WA returns (mW , hA) as the challenge

ciphertext). WA receives the sequence σ1, . . . , σ` as a response. WA then computes

s1 = A(1k, σ1), attempting to find a s1 6= σ1 such that (σ1, s1) ∈ R. If A is successful,

WA queries its decoding oracle on the sequence s = s1, σ2, . . . , σ`. If the response to

this query is mW , WA returns 1, otherwise WA returns 0.

Intuitively, whether this attack is against a CSA or sCCA oracle, it has a significant

advantage because when the sequence σ1, . . . , σ` is a stegotext, then the response to

the decoding query will be m (because S is robust); but when it is a covertext, the

probability of decoding to m should be low (again because S is robust). We will now

formalize this intuition.

Theorem 5.37.

Advscca
S,C,WA

(k) ≥ ρ(k)− InSecss
S,C(tA, 1, l, k)− FailRS (tA, 0, 0, l, k)− 2−l

Proof. Recall that

Advscca
S,C,WA

(k) = Pr[W SD(SE(mW)) = 1]− Pr[W SD(C`h) = 1] .

106

Let us first bound Pr[W SD(C`h) = 1]. Recall that W SD(σ) = 1 when

SD(s1, σ2, . . . , σ`) = mW .

Let ms = SD(s); then since s is chosen independently of mW , and mW is chosen

uniformly from {0, 1}l, we have that Pr[ms = mW] ≤ 2−l. Thus

Pr[W SD(C`h) = 1] ≤ 2−l .

Let SR denote the event that in the sCCA game played against stegotext, s1 6=
σ1 ∧ (σ1, s1) ∈ R. Now notice that

Pr[W SD(SE(mW)) = 1] ≥ Pr[W SD(SE(mW)) = 1|SR] Pr[SR] .

Because W returns 1 when SD(s) = mW and s obeys R, we must have that

Pr[W SD(SE(mW)) 6= 1|SR] ≤ FailRS (tA, 0, 0, l, k) ,

by the definition of FailRS (tA, 0, 0, l, k).

Also, notice that we can exhibit an efficient SS-CHA adversary Wρ against S such

that

Advss
S,C,Wρ

(k) ≥ ρ(k)− Pr[SR] .

Wρ works by requesting the encoding of a uniformly chosen message m∗ ← Uk under

history hA to get a sequence starting with σ∗ ∈ D; Wρ then computes s∗ ← A(1k, σ∗)

and returns 1 if (s∗ 6= σ∗) ∧ (σ∗, s∗) ∈ R. When σ∗ ← ChA
we have by assumption

that

Pr[Wρ(ChA
) = 1] ≥ ρ(k) ,

whereas

Pr[Wρ(SE(m∗)) = 1] = Pr[SR] ,

by construction. Since Wρ runs in the time it takes to run A and makes 1 encoding

query of k bits, we have that

InSecss
S,C(tA, 1, l, k) ≥ Advss

S,C,Wρ
(k)

= Pr[Wρ(ChA
) = 1]− Pr[Wρ(SE(m∗)) = 1]

≥ ρ(k)− Pr[SR]

107

Which by rearranging of terms gives us:

Pr[SR] ≥ ρ(k)− InSecss
S,C(tA, 1, l, k) .

Combining these results, we get that

Pr[W SD(SE(mW)) = 1] ≥ Pr[W SD(SE(mW)) = 1|SR] Pr[SR]

≥ (1− FailRS (tA, 0, 0, l, k)) Pr[SR]

≥ (1− FailRS (tA, 0, 0, l, k))(ρ(k)− InSecss
S,C(tA, 1, l, k))

≥ ρ(k)− InSecss
S,C(tA, 1, l, k)− FailRS (tA, 0, 0, l, k))

And thus by definition of advantage and insecurity, the theorem follows.

Theorem 5.38.

Advcsa
S,C,WA

(k) ≥ (1− FailRS (tA, 0, 0, l, k))(ρ(k)− InSecss
S,C(tA, 1, l, k))

Proof. Recall that

Advcsa
S,C,WA

(k) = Pr[W STcsa
A (1k) = 1]− Pr[WCTcsa

A (1k) = 1] .

It is easy to see that Pr[WCTcsa
A (1k) = 1] = 0, since querying CTcsa(enc, s, hA) will

always result in ⊥ or ε, and never mW . The lower bound for Pr[W STcsa
A (1k) = 1] is

proven identically to the stegotext case in the previous proof.

108

Chapter 6

Maximizing the Rate

Intuitively, the rate of a stegosystem is the number of bits of hiddentext that a

stegosystem encodes per document of covertext. Clearly, for practical use a stegosys-

tem should have a relatively high rate, since it may be impractical to send many

documents to encode just a few bits. Thus an important question for steganography,

first posed by Anderson and Petitcolas [6] is “how much information can be safely

encoded by a stegosystem in the channel C?”

A trivial upper bound on the rate of a stegosystem is log |D|. Prior to our work,

there were no provably secure stegosystems, and so there was no known lower bound.

The rate of the stegosystems defined in the previous chapters is o(1), that is, as

the security parameter k goes to infinity, the rate goes to 0. In this chapter, we will

address the question of what the optimal rate is for a (universal) stegosystem. We first

formalize the definition of the rate of a universal stegosystem. We will then tighten

the trivial upper bound by giving a rate MAX such that any universal stegosystem

with rate exceeding MAX is insecure. We will then give a matching lower bound by

exhibiting a provably secure stegosystem with rate (1 − o(1))MAX. Finally we will

address the question of what rate a robust stegosystem may achieve.

109

6.1 Definitions

We concern ourselves with the rate of a universal blockwise, bounded-sample, stegosys-

tem with single-block lookahead.

A universal stegosystem S accepts an oracle for the channel C and is secure against

chosen-hiddentext attack with respect to C as long as C does not violate the hardness

assumptions S is based on. Universality is important because typically there is no

good description of the marginal distributions on a channel.

A stegosystem is an (h, l, λ)-blockwise stegosystem if it is composed of four func-

tions:

• A preprocessing function PE that transforms a hiddentext m ∈ {0, 1}∗ into a

sequence of identically-sized blocks of λ bits.

• A block encoding function BE that encodes a block of input bits into a block of

l documents.

• A block decoding function BD that inverts BE, that is, that transforms a ste-

gotext block into a block of bits.

• A postprocessing function PD that inverts PE: that is, transforms a sequence

of λ-bit blocks into a hiddentext m ∈ {0, 1}∗

A blockwise stegosystem computes SE(K,m, h) by first computing c = PE(K,m),

then computing h0 = h, and si = BE(K, ci, hi−1), hi = (si, hi−1). SD(K, s1...n, h)

is computed by setting ci = BD(K, si, hi−1) for i ∈ {1, . . . , n} and computing m =

PD(K, c). Because stegotexts are compared to covertexts of the same length as a

stegotext, any secure stegosystem can be written as a blockwise stegosystem with a

single block.

A (h, l, t)-sample bounded stegosystem uses l-document blocks, draws at most t

samples from Clh when encoding a block, and has no other knowledge of Clh. Since we

require a stegosystem to have bounded running time and to be universal, the running

time of SE(K,m, h) is always an upper bound on t. Conversely, if a stegosystem is

t-sample bounded, t is a lower bound on the running time of SE.

110

A (h, l, λ)-blockwise stegosystem has single-block lookahead if BE(K, c, h) draws

samples only from Clh and Clh,d, where d ∈ Dl. Any stegosystem with multi-block

lookahead can be transformed into one with single-block lookahead with a larger

blocksize.

The rate of a stegosystem S on channel C, RC(S), is given by

RC(S) = lim
m→∞

Eh

[
m

|SE(K, 1m, ε)|

]
,

that is, the number of bits encoded per document by S on channel C.

6.2 Upper bound

We consider the class S(h, l, t) of stegosystems which draw at most t samples from

Clh; we will show two upper bounds on the rate RC(S) for any S ∈ S(h, l, t). The

first, MAXt(S) is in terms of the number of samples, t. The second, MAXC(S) is

in terms of the min entropy H∞(Clh) of the channel C. We call the combined upper

bound MAXC(h, l, t) and define it by

MAXC(h, l, t) = min {MAXt(S),MAXC(S)} .

6.2.1 MAXt(S)

For any stegosystem S ∈ S(h, l, t), we will show that there exists a channel C such

that S is insecure relative to C if RC(S) − log t is any positive constant. Thus it

follows that MAXt(S) ≤ log t.

Theorem 6.1.

InSecss
S,C(O(t+ k), 1, k) ≥ 1− 2−c(t,k) − 2−k − ρ(k) ,

where ρ(k) = Prm←U,K,h[SD(K,SE(K,m, h), h) 6= m] and RC(S) ≥ log t+ c(t, k).

Proof. The channel C is defined as follows: to every history h of length k, we associate

a polynomial of degree t + 1 over GF (2k) with uniformly chosen coefficients, ph(x).

111

To draw from Ch, we draw x← Uk, compute y = ph(x) and output x‖y. Notice that

if S.SE(K,m, h) draws at most t samples (x1, y1), . . . , (xt, yt) ← Ch, and outputs a

pair (x′, y′) such that x′ 6∈ {x1, . . . , xt}, then Pr[y′ = ph(x
′)] ≤ 2−k. On the other

hand, an adversary can draw t+1 samples from Ch, and compute ph by interpolation.

Thus when SE(K,m, h) outputs a pair (x′, y′) 6∈ {(x1, y1), . . . , (xt, yt)}, an adversary

can distinguish between SE(m,h) and Ch by checking whether y′ = ph(x
′).

Formally, we define the adversary AO as follows: on input 1k, sample a history h

of length k by drawing h1 ← Cε, and hi ← Ch1,... ,hi−1
for 1 < i ≤ k. Draw t+1 samples

(x1, y1), . . . , (xt+1, yt+1)← Ch. Compute the polynomial ph by interpolation. Choose

m∗ ← URC(S), and draw (x∗, y∗) ← O(m∗, h). If y∗ 6= ph(x
∗) output 1, otherwise

output 0.

Clearly, A runs in time O(t+k). We will now compute the advantage of A. First,

notice that given a covertext oracle, A will always output 0:

Pr[ACT(1k) = 1] = 0 .

Now, let NS denote the event that SE(K,m, h) draws samples (x′1, y
′
1), . . . , (x′t, y

′
t)←

Ch and outputs a stegotext (x∗, y∗) 6∈ {(x′1, y′1), . . . , (x′t, y
′
t)}. Since in this case,

Pr[y∗ = ph(x
∗)] ≤ 2−k, we have that

Pr[AST(1k) = 1] ≥ Pr[NS]− 2−k .

Thus we only need to give a lower bound on Pr[NS] to complete the proof.

Fix a tuple (K,m, h) and consider the set SD−1
K,h(m) = {s ∈ D : SD(K, s, h) =

m}. Since RC(S, h, k) ≥ log t+c(t, k), SD partitions D into t×2c(t,k) such sets. Then

for any fixed set of samples (x′i, y
′
i), the probability over m that SE(K,m, h) has a

sample (x′i, y
′
i) ∈ SD−1

K,h(m) is at most t
2c(t,k)t

= 2−c(t,k). Let E denote the event that

SE(K,m, h) outputs an s∗ such that SD(K, s∗, h) 6= m. Then

Pr[NS] ≥ Pr[∀j, (x′j, y′j) 6∈ SE−1
K,h(m)]− Pr[E]

≥ 1− 2−c(t,k) − ρ(k) ,

which yields the stated bound.

112

6.2.2 MAXC(S)

We exhibit a chosen-history, chosen-hiddentext distinguisher for any black box stegosys-

tem (SE, SD) which encodes RC(S) > H∞(Clh) bits of hiddentext in l documents of

stegotext non-negligibly often.

Suppose we have a specific history h such that SE encodes `+ 1 bits by samples

from Clh, and H∞(Clh) = `. (If such histories occur non-negligibly often then we can

find one by sampling from an oracle for SE; if they do not then the rate of the

stegosystem doesn’t exceed H∞(Clh)) Since H∞(Clh) = `, we know there is at least one

l-document string, s∗, which has probability 2−` under Clh, and no other string has

more probability mass than s∗. Now, if SE were deterministic, then we would have

that

Pr[SE(m) = s∗ : m← U`+1] ≤ 2−(`+1) ,

by the unique decoding property. Even if SE is randomized, then for any fixed

random bits r, we have

Pr[SE(m; r) = s∗ : m← U`+1] ≤ 2−(`+1) .

But then by an averaging argument, there must be some m∗ ∈ {0, 1}`+1 such that

Pr[SE(m∗) = s∗] < 2−(`+1). In contrast, a covertext oracle CT will have Pr[CT (m) =

s∗] = 2−`, for any m ∈ {0, 1}∗. This gap is wide enough to detect with high confidence,

given poly(2`) chosen hiddentext samples. And since we are restricted to ` = O(log t)

by MAXt(S) this yields a polynomial-time distinguisher between a covertext oracle

and a stegotext oracle.

Theorem 6.2. Let n = 2`. Then,

InSecss
S,C(O(n3), 2n3, k) ≥ 1− e−n/32 − e−n/96 − e−n/108 − 2ne−n/128 ,

when H∞(Clh) = ` and RC(S) ≥ `+ 1.

Proof. We define an adversary W with the stated advantage. WO executes the fol-

lowing steps:

• W takes n2 samples from Clh. Let ŝ be the most commonly occurring l-document

in the sample set and let p̂ be the number of times ŝ occurs in the sample.

113

• For each document m ∈ {0, 1}`+1, W draws n2 samples from O(m). Let p̂m be

the number of occurrences of ŝ in the samples from O(m).

• If for any m, p̂m ≤ 3
4
p̂, W outputs 1. Otherwise W outputs 0.

We will bound the probability that W outputs 1 given a stegotext oracle, and a

covertext oracle, respectively.

From the preceding paragraph, we know that when W has a stegotext oracle,

there exists an m∗ such that E[p̂m∗] ≤ 2−`+1, and we know that E[p̂] = 2−`. So W

will only output 0 if p̂ is much smaller then expected, or if p̂m∗ is much larger than

expected. Specifically, we have:

Pr[W ST(1k) = 0] = Pr[p̂ <
3

4
2−` ∧ ˆpm∗ ≥

3

4
p̂] + Pr[p̂ ≥ 3

4
2−` ∧ ˆpm∗ ≥

3

4
p̂]

≤ Pr[p̂ <
3

4
2−`] + Pr[ˆpm∗ ≥

3

4
p̂|p̂ ≥ 3

4
2−`] Pr[p̂ ≥ 3

4
2−`]

≤ Pr[p̂ <
3

4
2−`] + Pr[ˆpm∗ ≥

3

4
p̂|p̂ ≥ 3

4
2−`]

= Pr[p̂ <
3

4
2−`] + Pr[ˆpm∗ ≥

9

8
2−`+1]

≤ e−n/32 + e−n/96

Where the last line follows by multiplicative Chernoff bounds. Thus we have

Pr[W ST(1k) = 1] ≥ 1− e−n/32 + e−n/96 .

We know that when W has a covertext oracle, it should be the case that for every

m ∈ {0, 1}∗, E[p̂m] = 2−`. Thus W should only output 1 when p̂ is much larger than

expected, or some p̂m is much smaller than its expectation. Specifically, we have that

Pr[WCT(1k) = 1] = Pr[p̂ >
7

6
2−` ∧ ∃m.p̂m <

3

4
p̂] + Pr[p̂ ≤ 7

6
2−` ∧ ∃m.p̂m <

3

4
p̂]

≤ Pr[p̂ >
7

6
2−`] + Pr[∃m.p̂m <

3

4
p̂|p̂ ≤ 7

6
2−`]

≤ Pr[p̂ >
7

6
2−`] + 2nPr[p̂m <

7

8
2−`]

≤ e−n/108 + 2ne−n/128

Where the last two lines follow by the union bound and multiplicative Chernoff

bounds.

114

Combining these bounds, we have

Advss
W,S,C(k) = Pr[W ST (1k) = 1]− Pr[WCT (1k) = 1]

≥ 1− e−n/32 + e−n/96 − e−n/108 + 2ne−n/128

The theorem follows by the definition of insecurity.

We note that for any distribution D which covers {0, 1}`+1, W can easily be

adapted to be a KHA-D attack against S; and that W can even be extended to

a KDA-U(`+1)n2 attack against S by counting the occurrences of s∗ for the various

blocks.

6.2.3 Bidirectional communication does not help

Suppose Alice and Bob wish to communicate steganographically at a high rate, using

a bidirectional channel – that is, Bob is allowed to respond to Alice’s messages with

messages drawn from his own channel distribution. A natural question is, “can Alice

and Bob conspire to increase the rate at which Alice may securely transmit informa-

tion to Bob?” We will show that an interactive stegosystem can increase the rate at

which information is transmitted by at most one bit. The proof is straightforward

we show that any stegosystem S for a bidirectional channel B can be converted into

a stegosystem S ′ with the same rate for a unidirectional channel C on pairs from

B.D × B.D. S ′ runs in the same time as S and draws as many samples from C as

Alice and Bob (combined) draw from B in each time step. Thus the upper bound

MAXt(S ′) implies that at most one bit more can be sent due to sampling, and the

MAXC(S ′) bound implies that minimum entropy constraints still apply.

In order to address this issue, we will first need to formalize the concept of a

bidirectional stegosystem.

Definition 6.3. (Bidirectional Stegosystem) A Bidirectional Stegosystem S for the

bidirectional channel B = (D,H, CA, CB) is a triple of algorithms:

• S.Encode (abbreviated SE) takes as input a key K ∈ {0, 1}k, a string m ∈
{0, 1}∗ (the hiddentext), a message history h ∈ (D×D)∗, and a session history

T ∈ (D ×D)∗.

115

SE(K, I,m, h, T) returns a document from D, or the special symbol done

• S.Facilitate (abbreviated SF) takes as input a key K, a message history h

and a session history T .

SF (K,h, T) returns a document from D.

• S.Decode (abbreviated SD) takes as input a key K, a sequence of documents

s1||s2|| . . . ||sl, and a message history h.

SD(K, s, h) returns a hiddentext m ∈ {0, 1}∗.

We denote the transcript of (K,m, h) by the result of setting s0(A) = SE(K,m, hA, ε),

s0(B) = SF (K,hB, ε), and

si(A) = SE(K,m, hA, (s0, . . . , si−1)), si(B) = SF (K,hB, (s0, . . . , si−1))

until si(A) = done.

We say that S is correct if for all m ∈ {0, 1}poly(k) Pr[SD(K, (s0, . . . , si), h) 6= m]

is negligible.

In addition, we formalize the notion of a bidirectional chosen hiddentext attack

(BCHA) by an oracle adversary W given access to an oracle O drawn from one of two

distributions:

• STbcha(m,h): has uniformly chosen key K ← Uk and responds to queries (m,h)

by computing a transcript of (K,m, h).

• CTbcha(m,h): responds to queries by drawing a sequence from B of the same

length as a (K,m, h) transcript.

We define BCHA advantage (Advbcha
W,S,B(k)) and insecurity (InSecbcha

S,B (t, q, µ, k)) ac-

cording to the previous conventions.

Theorem 6.4. Any (h, l, t)-sampling bidirectional stegosystem S for the bidirectional

channel B can be converted to a (h, l, 2t)-sampling stegosystem S ′ for a channel C such

that RC(S ′) = RB(S), and InSecss
S′,C(t

′, q, µ, k) = InSecbcha
S,B (t′, q, µ, k).

116

Proof. We define the channel C as a distribution on sequences of pairs from B.D×B.D.

The marginal distribution Ch is defined by (B.CAh ,B.CBh).

The stegosystem S ′ has the same keyspace as S. The new encoding algorithm

S ′.SE(K,m, h) works by computing a transcript s0, . . . , sl form (K,m, h) as follows:

For each i, S ′.SE simulates S.SE by making draws from Ch,s0,... ,si−1
and extracting

the first element of the pair; likewise S ′.SE simulates S.SF my making draws from

Ch,s0,...,si−1
and extracting the second element of each pair. S ′.SE(K.m, h) then out-

puts this transcript as the stegotext. Notice that since S.SE and S.SF each draw at

most t samples from B.CAh , and B.CBh , respectively, S ′.SE draws at most 2t samples

from Ch. The decoding algorithm S ′.SD(K, s, h) exactly runs the decoding algorithm

S.SD(K, s, h).

Notice that the chosen-hiddentext oracles ST,CT for S ′ are identically distributed

to the bidirectional chosen-hiddentext oracles STbcha, CTbcha for S. Thus any warden

for S ′ is a warden for S and vice versa, with the advantage preserved. Thus S ′ is as

secure for C as S is for B, as claimed. It is also clear that the rate of S ′ is the same

as that of S, which completes the proof.

6.3 Lower bound

We will prove a lower bound on the achievable rate which matches the stated upper

bound, up to a multiplicative factor which converges to 1. The lower bound is proven

by giving a stegosystem which achieves this rate. We will first give one that achieves

rate (1 − ε)MAX for any ε > 0, but which has polynomial rather than negligible

error rate. We will then use error-correcting codes to improve the error rate, and

finally give a construction which does not require Alice or Bob to know the minimum

entropy of C.

6.3.1 With errors

We will assume for the moment that both Alice and Bob know a value l so that λ <

(1−ε)MAX(Clh, t). We let F : {0, 1}k×{0, 1}∗ → {0, 1}λ be a pseudorandom function,

117

and assume Alice and Bob share a key K ∈ {0, 1}k. The following construction allows

Alice to send Bob a λ-bit message, with error probability at most λ2−ελ.

Construction 6.5. OneBlock Stegosystem

Procedure OneBlock.Encode:
Input: K ∈ {0, 1}k, m ∈ {0, 1}λ, h ∈ D∗, N,l
Let i = 0, c[D] = 0
repeat:

Draw si ← Clh
increment i, c[si]

until FK(N, h, c[si], si) = m or count = λ2λ

Output: si

Procedure OneBlock.Decode:
Input: K ∈ {0, 1}k, s ∈ Dl, h, N
Output: FK(N, h, 1, s)

Theorem 6.6.

Pr[SD(K,SE(K,m, h,N, l), h,N) 6= m] ≤ e−λ+λ2λ−H∞(Clh)+InSecprf
F (O(λ2λ), λ2λ, k)

Proof. We will show that when FK is replaced by a random function f ,

Pr[f(SEf (m,h,N, l)) 6= m] ≤ e−λ + λ2λ−H∞(Clh) .

We can then construct a PRF adversary A with advantage at least

Advprf
A,F (k) ≥ Pr[SD(K,SE(K,m)) 6= m]− e−λ + λ2λ−H∞(Clh) ,

which will give the desired bound.

Let C denote the event that OneBlock.Encodef (m) outputs an si with c[si] > 1.

This happens when there is at least one j < i such that sj = si. Thus by the union

bound, we have

Pr[C] ≤
∑
j<i

Pr[sj = si] .

Since for each j, Pr[sj = si] ≤ 2−H∞(Clh) and since i < λ2λ, we get the bound

Pr[C] ≤ λ2λ−H∞(Clh) .

Let D denote the event that OneBlock.Encodef (m) outputs sλ2λ . This happens

when each of the previous λ2λ tests f(N, h, c[si], si) = m fails. Since each test involves

118

a distinct point of f , each of these happens independently with probability 1− 1/2λ.

Since the events are independent, we can bound Pr[D] by

Pr[D] =

(
1− 1

2λ

)λ2λ

≤ e−λ .

Since the only other condition under which OneBlock.Encodef (m) outputs si is if

f(N, h, 1, si) = m, we have that

Pr[SDf (SEf (m)) 6= m] = Pr[C ∧ D] ≤ e−λ + λ2λ−H∞(Clh) .

We now describe a PRF adversary A for F . Af picks m ∈ {0, 1}λ and runs

OneBlock.Encodef (m, ε, 0, l) to get a sequence s ∈ Dl. Af then outputs 1 if f(s) 6= m.

Clearly, when A’s oracle f ← FK , we have

Pr[AFK (1k) = 1] = Pr[SD(K,SE(K,m, h,N, l), h,N) 6= m] ,

and when f is a randomly chosen function from {0, 1}∗ → {0, 1}l, we have shown

that

Pr[Af (1k) = 1] ≤ e−λ + λ2λ−H∞(Clh)

It follows that

Advprf
A,F (k) = Pr[AFK (1k) = 1]− Pr[Af (1k) = 1]

≥ Pr[SD(K,SE(K,m, h), h) 6= m]−
(
e−λ + λ2λ−H∞(Clh)

)
And rearranging terms gives us the stated theorem:

Pr[SD(K,SE(K,m, h), h) 6= m] ≤ Advprf
A,F (k) + e−λ + λ2λ−H∞(Clh)

≤ InSecprf
F (O(λ2λ), λ2λ, k) + e−λ + λ2λ−H∞(Clh)

Theorem 6.7.

InSecss
OneBlock,C(t, q, qλ, k) ≤ InSecprf

F (t′, qλ2λ, k) ,

Where t′ ≤ t+O(qλ2λ).

119

Proof. Fix any nonce-respecting W ∈ W(t, q, qλ). We will show how to construct a

PRF adversary A for F such that

Advprf
A,F (k) = Advss

W,OneBlock,C(k) .

Af works by emulating W , responding to its queries by running OneBlock.Encodef ;

when W halts with output b, A outputs b as well. Clearly, when f ← FK , we have

that

Pr[AFK (1k) = 1] = Pr[W ST(1k) = 1] .

When f is a randomly chosen function, and since W is nonce-respecting, A never

evaluates f on any point twice. Thus Af is equivalent to a process which draws a

new, independent function at each stage. In this model, for any d ∈ Dl, we have

that Pr[SE(m,h) = d] = Prf,s←Clh [s = d|f(s) = m], and since s and f are drawn

independently, we have that Pr[SE(m,h) = d] = PrClh [d]. Thus A’s responses to W ’s

queries are distributed according to C, so

Pr[Af (1k) = 1] = Pr[WCT(1k) = 1] .

Combining the cases yields:

Advprf
A,F (k) =

∣∣Pr[AFK (1k) = 1]− Pr[Af (1k) = 1]
∣∣

=
∣∣Pr[W ST(1k) = 1]− Pr[WCT(1k) = 1]

∣∣
= Advss

W,OneBlock,C(k)

which proves the theorem.

Theorem 6.8. The rate of OneBlock is (1− ε)MAXC(h, l, λ2λ).

Proof. Suppose that MAXC(h, l, t) = H∞(Clh). In this case, by choice of l and λ,

OneBlock sends λ = (1− ε)H∞(Clh) = (1− ε)MAX bits in l documents. On the other

hand, if MAXC(h, l, λ2λ) = log(λ2λ) = λ + log λ, then since OneBlock sends λ bits

in l documents, we have that

RC(OneBlock)

MAX
=

λ

λ+ log λ
≥ (1− ε) ,

where the last inequality holds for sufficiently large λ.

120

6.3.2 Negligible error rate

Let K = GF (2λ). This next construction utilizes the following well-known fact:

Proposition 6.9. ([11]) There is a polynomial-time algorithm Correct to solve the

following problem: given n = 2λ pairs (x1, y1), . . . , (xn, yn) ∈ K2, if there is a poly-

nomial p(x) of degree |K| − 2t such that at most t pairs do not satisfy yi = p(xi),

recover p.

We will use the Berlekamp-Welch[60] algorithm, Correct, to reduce the probabil-

ity of encoding error in the OneBlock construction. In the following construction, we

let n = 2λ, ρ = λ2−ελ+2, and η = (1−2ρ)n. The following construction securely hides

messages in {0, 1}λ×η:

Construction 6.10. MultiBlock Stegosystem

Procedure MultiBlock.Encode:
Input: K, m0, . . . ,mη−1, h, N
for i = 1 to n do:

set xi = 〈i〉
set yi =

∑η−1
j=0 mjx

j
i

set si = OneBlock.SE(K, yi, h,N, l)
Output: s1, . . . , sn

Procedure MultiBlock.Decode:
Input: K, s1, . . . , sn ∈ Dl, h, N
for i = 1 to n do:

set xi = 〈i〉
set yi = OneBlock.SD(K, si, h,N)

set m0, . . . ,mη = Correct(xi, yi)
Output: m

Theorem 6.11.

InSecss
MultiBlock,C(t, q, qηλ, k) ≤ InSecprf

F (t+O(qηλ2λ), qηλ2λ, k)

Proof. We will show how to use an arbitrary W ∈ W(t, q, qηλ) against MultiBlock

to create an adversary X ∈ W(t, qη, qηλ) for OneBlock such that

Advss
W,MultiBlock,C(k) = Advss

X,OneBlock,C(k) .

The stated bound follows from the definition of insecurity and theorem 6.7.

XO works by running W , and responding to W ’s queries using its own oracle

O. When W queries (m0 · · ·mη−1, h,N), X produces the values y1, . . . , yn, where

yi =
∑η−1

j=0 mj〈i〉j, and then queries the sequences si = O(yi, (h, s1, . . . , si−1), N), to

121

produce the result s1, . . . , sn, which is returned to W . Now when O ← STOneBlock, it

is clear that X is perfectly simulating MultiBlock to W , so

Pr[XSTOneBlock(1k) = 1] = Pr[W STMultiBlock(1k) = 1] .

When O ← CTOneBlock, it is also clear that X is perfectly simulating samples from

the channel to W , so

Pr[XCTOneBlock(1k) = 1] = Pr[WCTMultiBlock(1k) = 1] .

Combining these cases, we have that

Advss
X,OneBlock,C(k) =

∣∣Pr[XSTOneBlock(1k) = 1]− Pr[XCTOneBlock(1k) = 1]
∣∣

=
∣∣Pr[W STMultiBlock(1k) = 1]− Pr[WCTMultiBlock(1k) = 1]

∣∣
= Advss

W,MultiBlock,C(k)

Which completes the proof.

Theorem 6.12. If F is pseudorandom, then

Pr[MultiBlock.SD(K, MultiBlock.SE(K,m, h), h) 6= m] ≤ e−nρ/3 ,

which is negligible in n = 2λ.

Proof. As long as there are at most ρn errors, Proposition 6.9 ensures us that Correct

can recover the message m0, . . . ,mη−1. Thus the probability of a decoding error is at

most the probability of ρn blocks having decoding error in OneBlock.Decode. But

Theorem 6.6 states that the probability of decoding error in OneBlock.Decode is

at most ρ when F is pseudorandom; applying a Chernoff bound yields the stated

result.

Theorem 6.13. The rate of MultiBlock is (1− ε− o(1))MAXC(h, l, λ2λ).

Proof. The rate of MultiBlock is the rate of OneBlock multiplied by the rate of the

error-correcting code used in encoding. Since this rate is (1 − 2ρ) = 1 − λ2−ελ+3,

we have that the rate converges to 1 as λ −→ ∞, that is, the rate of the code is

(1− o(1)).

122

6.3.3 Converging to optimal

We notice that if ε(k) = 1/λ the MultiBlock construction has error rate at most

e−λ2λ/3, and has rate (1 − o(1))MAXC(h, t, l). Thus under appropriate parameter

settings, the rate of the construction converges to the optimal rate in the limit.

6.3.4 Unknown length

Suppose Alice and Bob agree at the time of key exchange to use the MultiBlock

stegosystem with hiddentext block size λ. Since neither Alice nor Bob necessarily

know the values (α, β) such that C is (α, β)-informative, there is no way to calculate

or exchange beforehand the stegotext block size l so that λ ≤ (1− ε)H∞(Clh).

Construction 6.14. FindBlock

Procedure Encode:
Input: K, m ∈ {0, 1}λn, h, N
let l = 1
repeat:

let t = F ′K(m)
let s = LEnc(K,m‖t, l, h,N)
increment l

until s 6=⊥.
Output: s

Procedure Decode:
Input: K, s1, . . . , st ∈ Dt, h, N
let l = 1
repeat:

let m‖λnt = LDec(K, s1...(n+k)l, h,N)
increment l

until F ′K(m) = t
Output: m

Procedure LEnc:
Input: K, m,h, l,N
for i = 1 to n do:

set xi = 〈i〉
set yi =

∑η−1
j=0 mjx

j
i

set si = OneBlock.SE(K, yi, h,N, l)
if (LDec(K, s, l, h,N) 6= m) set s =⊥
Output: s

Procedure LDec:
Input: K, s1, . . . , sn+k ∈ Dl,l,h, N
for i = 1 to n do:

set xi = 〈i〉
set yi = OneBlock.SD(K, si, h,N)

set m0, . . . ,mη = Correct(xi, yi)
Output: m

The idea behind this construction is simple: Alice tries using MultiBlock with

block lengths l = 1, 2, . . . until she finds one such that the decoding of the encoding of

her message is correct. With high probability, if H∞(Clnh) ≤ λn decoding will fail (the

block error rate will be at least 1− 1
λ
), and as we have seen, when H∞(Clnh) ≥ (λ+ 1

λ
)n

decoding fails with only negligible probability. Since C is (α, β)-informative, Alice will

123

need to try at most dαλ
β
e values of L. Alice also encodes kl bits of “check” information

with her message, so that when Bob decodes with the wrong block size, he will be

fooled with probability only 2−lk. The rate penalty for this check data is k
n+k

= o(1)

when n = ω(k). Thus for sufficiently large λ the rate of this construction will still

converge to the optimal rate for Ch.

6.4 Robust Steganography

Recall that a stegosystem is said to be substitution robust with respect to the relation

R if an adversary, by making substitutions permitted by R is unable to change the

decoding of a stegotext, except with negligible probability. Since an adversary is

allowed to make changes to stegotexts, increasing the rate of a robust stegosystem is

a more challenging task. Here we will show that if a stegosystem is robust against

any δ-admissible relation R (given access to R), then it can encode at most log 1/δ

bits per document. We will also demonstrate an efficient, robust stegosystem which

encodes (1− ε− o(1)) log 1/δ bits per document, for any constant ε > 0, showing that

this upper bound is tight,

6.4.1 Upper Bound

Recall the definition of I(R,D) = maxy
∑

(x,y)∈R PrD[x]. We will show that any

universal stegosystem for δ-admissible relations R (given access to R) which attempts

to transmit more than −` log δ bits in ` documents is either not universally secret or

not universally robust.

Theorem 6.15. Let S be a universal stegosystem. For every 0 < δ < 1, there exist

a channel C and relation R such that

FailRS,C(t, 0, 0, (1 + ε)`, k) ≥ 1− 2−cε
√
` ,

where RC(S) = (1 + ε) log(1/δ), and c is a constant depending on δ.

Proof. We let C be the uniform distribution on n bit strings, and R(x, y) = 1 iff the

hamming distance of x and y is at most d, where d and n are constants chosen to

124

make I(R, C) ≤ δ. We will give an attacker W which achieves the stated success

probability. For notational convenience, we define l = −` log δ.

W picks the challenge hiddentext m∗ ← Ul, and gets in response the challenge

stegotext s∗ ∈ S.SE(K,m∗). W then uniformly picks a sequence s′ subject to |s′i −
s∗i | ≤ d for 1 ≤ i ≤ `. W ’s output is the sequence s′.

We now compute the success probability of W . Recall that

SuccRW,S,C(k) = Pr[SD(K, s′) 6= m∗] ,

where this probability is taken over K,m∗, s∗, and s′. Notice that the adversary W is

identical to a noisy discrete memoryless channel, with p(s′|s∗) defined as the uniform

distribution on {s ∈ {0, 1}n : |s − s∗| ≤ d}. This channel has Shannon capacity

exactly − log I(R, C) = − log δ. Furthermore, any robust stegosystem is a candidate

code for the channel. The strong converse to Shannon’s coding theorem [62] tells us

that any code with rate (1 + ε) log 1/δ will have average error probability at least

1− 2−cε
√
`, where c = 2−4n+2 log(1/δ) (which is a constant depending on δ).

Since the event that the adversary W is successful is identical to the event that a

decoding error occurs in the code induced by SE(K, ·), SD(K, ·), we have that

SuccRW,S,C(k) ≥ 1− 2−cε
√
` ,

which satisfies the theorem.

6.4.2 Lower Bound

In this section we will give a secure, universally δ-substitution robust stegosystem

which achieves rate (1 − ε − o(1)) log(1/δ) for any ε > 0. We will first give an

exponentially time-inefficient construction with rate exactly (1− ε) log(1/δ) and then

show how to improve the computational efficiency at the expense of a o(1) factor in

the rate. These constructions use substantially the same ideas as were developed in

chapter 5, so the analysis will also be similar.

125

An inefficient construction

We give a stegosystem with stegotext block size ` and hiddentext block size l =

(1−ε)` log 1
δ
. Suppose that the channel distribution C is efficiently sampleable. (Recall

that C is efficiently sampleable if there is an efficient algorithm C such that, given a

uniformly chosen string s ∈ {0, 1}k, a security parameter 1k and history h, C(h, 1k, s)

is indistinguishable from Ch). We will assume that Alice, Bob, and Ward all have

access to this algorithm. Furthermore, we assume Alice and Bob share a key K to a

pseudorandom function family F : {0, 1}k×{0, 1}∗ → {0, 1}k; and have a synchronized

counter N .

Construction 6.16. RLBit

Procedure Encode:
Input: K, m ∈ {0, 1}l, h
for i = 1 . . . n do

set σi = C(h, 1k, FK(N,m))
increment N
set h = (h, si)

Output: σ1, . . . , σn

Procedure Decode:
Input: K, s1, . . . , s` ∈ D`, h
set m∗ = 0 Set h0 = h1 = ()
for m ∈ {0, 1}l do

for i = 1 . . . n do
set σi[m] = C((h, hm), 1k, FK(N,m))
set hm = (hm, σi[m])

if (∀1 ≤ i ≤ `.(σi[m], si) ∈ R′) then m∗ = m
set h = (h, hm∗)
Output: m∗

The idea behind this construction is this: suppose that instead of sharing a key to

a pseudorandom function F , Alice and Bob shared (1/δ)l secret documents dm drawn

independently from Ch. Then Alice could send Bob the message bit m by sending

document dm, and Bob could recover m by checking, for each m in turn, to see if the

document he received was related (by R′) to dm. Since the adversary is R bounded

and (D, R′) is δ-admissible, the probability of a decoding error — caused either by

the adversary, or by accidental draw of the dm — would be at most 2lδ` = δε`.

Lemma 6.17. RLBit is steganographically secret against a nonce-respecting chosen

hiddentext attack:

InSecss
RLBit,C(t, q, ql, k) ≤ InSecprf

F (t+ `q, `q).

Proof. Let W be a passive warden which runs in time t, and makes at most q queries

of total length at most ql (each query can be only l bits, because of the input type).

126

We construct a PRF adversary A which runs in time t+O(q`) and makes at most q`

queries to F , such that

Advprf
A,F (k) = Advss

W,RLBit,C(k) .

The PRF adversary takes a function oracle f , and emulates W (1k), responding to the

queries W makes to the encoder SE by using f in place of FK(·, ·). More formally,

we define the subroutine SSEf : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ as follows:

Procedure SSEf :
Input: m ∈ {0, 1}l, history h
for i = 1 . . . ` do

set σi = C(1k, h, f(N,m))
increment N
set h = (h, σi)

Output: σ1, . . . , σ`

Then we define Af (1k) = W SSEf (1k); A’s advantage over F is then:

Advprf
F,A(k) =

∣∣Pr[AFK (1k) = 1]− Pr[Af (1k) = 1]
∣∣

=
∣∣Pr[W ST(1k) = 1]− Pr[Af (1k) = 1]

∣∣
=
∣∣Pr[W ST(1k) = 1]− Pr[WCT(1k) = 1]

∣∣
= Advss

RLBit,C,W (k) .

Where the following cases for f justify the substitutions:

• f is chosen from FK(·, ·). Then the output of SSEf is distributed identically

to the encoding function of RLBit. That is,

Pr[AFK (1k) = 1] = Pr[W ST(1k) = 1] .

• f is chosen uniformly. Then by assumption on C, the output of SSEf is dis-

tributed identically to samples from C`h. that is,

Pr[Af (1k) = 1] = Pr[WCT(1k) = 1] .

The claim follows by the definition of insecurity.

127

Lemma 6.18. FailRRLBit(t, q, ql, l, k) ≤ InSecprf
F (t+O(q`) + 2l`, q`+ 2l`, k) + δε`.

Proof. Let W be an active R-bounded (t, q, ql, l) warden. We construct a PRF ad-

versary A which runs in time t+O(q`), makes at most q` PRF queries, and satisfies

Advprf
F,A(k) ≥ SuccRW,RLBit,C(k) − δε`. Af works by emulating W , using its function

oracle f in place of FK(·, ·) to emulate RLBit.Encode in responding to the queries

of W . Let mW , sW be the hiddentext and the stegotext sequence returned by W ,

respectively. Then Af returns 1 iff SDf (sW , hW) 6= mW . Consider the following two

cases for f :

• f is chosen uniformly from all appropriate functions. Then, for each i, the stego-

texts σi = C(1k, hi, f(N+i,mW)) are distributed independently according to Chi .
Consider the sequence of “alternative stegotexts” di[m

′] = C(1k, h′i, f(N+i,m′))

for each m′ 6= mW ∈ {0, 1}l; each of these is also distributed independently ac-

cording to Chi[m′]; and since W is never given access to the di[m
′], the si are

independent of the di[m
′]. Now SD will fail (causing Af (1k) to output 1) only if

the event ∃m′.∀i.(di[m′], si) ∈ R′ occurs. Because the di[m
′] are independent of

the actions of W , and because (C, R′) is δ-admissible, each event (di[m
′], si) ∈ R′

happens independently with probability at most δ. So for each m′, the proba-

bility of failure is at most δ`, and thus by a union bound, we have that

Pr[Af (1k) = 1] ≤
∑

m′∈{0,1}l
δ` = δε` .

• f is chosen uniformly from FK . ThenAF (1k) outputs 1 exactly whenW succeeds

against RLBit, by the definition of RLBit.

Pr[AFK (1k) = 1] = SuccRRLBit,W (k) .

Taking the difference of these probabilities, we get:

Advprf
F,A(k) = Pr[AFK (1k) = 1]− Pr[Af (1k) = 1]

= SuccRRLBit,W (k)− Pr[Af (1k) = 1]

≥ SuccRRLBit,W (l)− δε` .

128

Improving the run-time

Notice that because the running time of the decoding procedure for RLBit is expo-

nential in `, the proof of robustness is not very strong: the information-theoretic

bound on the success of W is essentially polynomial in the running time of the PRF

adversary we construct from W . Still, if we set ` = poly(log k), and assume subexpo-

nential hardness for F , we obtain a negligible bound on the success probability, but

a quasi-polynomial time decoding routine. We will now give a construction with a

polynomial-time decoding algorithm, at the expense of a o(1) factor in the rate.

As before we will assume that C is efficiently sampleable, that F : {0, 1}k ×
{0, 1}∗ → {0, 1}k is pseudorandom and both parties share a secret K ∈ {0, 1}k, and

a synchronized counter N . As before, we will let l = (1− ε)` log(1/δ), but we now set

` so that l = log k. We set an additional parameter L = k/ log(1/δ).

Construction 6.19. RMBit

Procedure Encode:
Input: K, m1, . . . ,mn ∈ {0, 1}l, h, N
for i = 1 . . . n+ d do

set σi = LEnc(K,m1...i, h,N, `)
set h = (h, σi)

set τ = LEnc(K,m, h,N, L)
Output: σ1, . . . , σn, τ

Procedure Decode:
Input: K, s1, . . . , sn ∈ D`,t ∈ DL, h, N
let m∗ = 0
let L = LDec(K, s1 . . . sn, ε, h,N)
for each m ∈ L do

Set σ1, . . . , σn, τ = Encode(K,m, h,N)
if (
∧

1≤i≤L(τi, ti) ∈ R′) then
set m∗ = m

Output: m∗

Procedure LEnc:
Input: K, m,h, N ,len
for i = 1 . . . len do

set σi = C(h, 1k, FK(N, i,m))
set h = (h, σi)

Output: σ1, . . . , σlen

Procedure LDec:
Input: K, s1, . . . , sa, m

∗,h, N
let L = {}
for m ∈ {0, 1}l do

Let m′ = m∗‖m
Set σ[m] = LEnc(K,m′, h,N, `)
if (
∧

1≤i≤`(σi[m], si) ∈ R′) then
let h[m] = (h, σ[m])
let T = LDec(K, s2...a,m

′, h[m], N)
set L = L ∪ {m‖t : t ∈ T}

Output: L

The idea behind this procedure is to break a message up into l-bit blocks, and

encode each one using the RLBit.Encode procedure; and then append the encoding

129

of L documents of message-dependent redundancy. To decode, we iteratively attempt

to match each stegotext block against each of the 2l = k possible hiddentext blocks;

there will always be one matching block, and with some small probability k−ε there

will be an additional match. We perform a depth-first search on these matches to

find a list of candidate messages, and then test each message to see whether the

redundant encoding matches. Any candidate match from the depth-first search will

also have matching redundancy with probability 2−k, and a union bound will thus

bound the probability of a decoding failure by (1 + 1
ε
)2−k. Furthermore, the total

expected number of nodes explored by Decode is at most (1+ 1
ε
)n; thus our reduction

will be efficient.

Theorem 6.20. RMBit is steganographically secret against a nonce-respecting chosen

hiddentext attack:

InSecss
RMBit,C(t, q, lµ, k) ≤ InSecprf

F (t+O(µ`), µ`).

Proof. Let W be a passive warden which runs in time t, and makes at most q queries

of total length at most lµ (each query must be a multiple of l bits, because of the

input type). We construct a PRF adversary A which runs in time t + O(µ`) and

makes at most µ` queries to F , such that

Advprf
A,F (k) = Advss

W,RMBit,C(k) .

The PRF adversary takes a function oracle f , and emulates W (1k), responding to

the queries W makes to its oracle O by running RMBit.Encode, using f in place of

FK(·, ·). Consider the following cases for f :

• f is chosen from FK(·, ·). Then the responses to W ’s queries are distributed

identically to the encoding function of RMBit. That is,

Pr[AFK (1k) = 1] = Pr[W ST(1k) = 1] .

• f is chosen uniformly. Then by assumption on C, the response to each query by

W is distributed identically to samples from C`h. that is,

Pr[Af (1k) = 1] = Pr[WCT(1k) = 1] .

130

A’s advantage over F is then:

Advprf
F,A(k) =

∣∣Pr[AFK (1k) = 1]− Pr[Af (1k) = 1]
∣∣

=
∣∣Pr[W ST(1k) = 1]− Pr[Af (1k) = 1]

∣∣
=
∣∣Pr[W ST(1k) = 1]− Pr[WCT(1k) = 1]

∣∣
= Advss

W,RMBit,C(k) .

The claim follows by the definition of insecurity.

Theorem 6.21. RMBit is robust:

FailRRMBit(t, q, lµ, ln, k) ≤ InSecprf
F (t′, 2n(1+1/ε)+ l(µ+n), k)+(1+1/ε)2−k+(e/4)n ,

where t′ ≤ t+O((l + µ)n) +O((1 + 1/ε)kn).

Proof. Let W be an active R-bounded (t, q, lµ, ln) warden. We construct a PRF

adversary A which runs in time t′, makes at most 2n(1 + 1/ε) + l(µ+n) PRF queries,

and satisfies Advprf
A,F (k) ≥ SuccRW,RMBit,C(k) − (1 + 1/ε)2−k − (e/4)n. Af works by

emulating W , using its function oracle f in place of FK(·, ·) to emulate RMBit.Encode

in responding to the queries of W . Let m∗, s∗ be the hiddentext and the stegotext

sequence returned by W , respectively. Then Af returns 1 iff SDf (s∗, h∗) 6= m∗. To

ensure that the number of queries and running time are at most t′, and 2n(1 + 1/ε) +

l(µ+ n), we halt whenever SDf queries makes more than 2n(1 + 1/ε) to f , an event

we will denote by TB. We will show that Pr[TB] ≤ (e/4)n when f is a randomly

chosen function. Thus we can neglect this case in our analyses of the cases for f .

Consider the following two cases for f :

• f is chosen uniformly from all appropriate functions. Then, a decoding error

happens when there exists another m ∈ {0, 1}ln such that for all (i, j), 1 ≤ i ≤ `,

1 ≤ j ≤ n, we have (s(j−1)n+i, LEnc
f (m1...j)i) ∈ R; and also (s`n+i, LEnc

f (m)i) ∈
R for all i, 1 ≤ i ≤ L. Let j be the least j such that mj 6= m∗j . Then for blocks

mj+1, . . . ,mn, the `-document blocks LEncf (m1...j+i) are independent of σ∗j+i.

Thus for such m, the probability of a match is at most δ`(n−j)+L = 2−kδ(n−j)`.

131

Since there are 2l(n−j) messages matching m∗ in the first j blocks, we have that

Pr[Af (1k) = 1] = Pr[SDf (s∗) 6= m∗]

≤ Pr[∃m 6= m∗.
∧

1≤i≤`n+L

(si(m1...i/l), s
∗
i) ∈ R]

≤
n∑
j=0

2l(n−j)2−kδ(n−j)`

≤ 2−k
∞∑
j=0

δε`j

= 2−k
1

1− δε`

≤ 2−k(1 + 1/ε)

• f is chosen uniformly from FK . ThenAF (1k) outputs 1 exactly whenW succeeds

against RMBit, by the definition of RMBit.

Pr[AFK (1k) = 1] = SuccRW,RMBit,C(k) .

Taking the difference of these probabilities, we get:

Advprf
F,A(k) = Pr[AFK (1k) = 1]− Pr[Af (1k) = 1]

= SuccRRMBit,W (k)− Pr[Af (1k) = 1]

≥ SuccRRMBit,W (l)− (1 + 1/ε)2−k − Pr[TB] .

It remains to show that Pr[TB] ≤ (e/4)n. Notice that the expected number of

queries to f by A is just the number of messages that match a j`-document prefix of

s∗, for 1 ≤ j ≤ n, times k. Let Xm = 1 if m ∈ {0, 1}j` matches a j-block prefix of s∗.

Let X =
∑n

j=1

∑
m∈{0,1}j`Xm denote the number of matching prefix messages. Then

n ≤ E[X] ≤ n(1 + 1/ε), and a Chernoff bound gives us

Pr[X > 2n(1 + 1/ε)] ≤ Pr[X > 2E[X]]

≤ (e/4)E[X]

≤ (e/4)n

which completes the proof.

132

Theorem 6.22. RC(RMBit) = (1− ε) log(1/δ)− o(1)

Proof. For a message of length ln = (1 − ε) log(1/δ)`n, RMBit transmits `n + L =

`n+ k/ log(1/δ) documents. Thus the rate is

(1− ε) log(1/δ)`n

`n+ k/ log(1/δ)
= (1− ε) log(1/δ)− O(k)

`n+O(k)

≥ (1− ε) log(1/δ)− k

n

For any choice of n = ω(k), the second term is o(1), as claimed.

133

134

Chapter 7

Covert Computation

7.1 Introduction

Secure two-party computation allows Alice and Bob to evaluate a function of their

secret inputs so that neither learns anything other than the output of the function.

A real-world example that is often used to illustrate the applications of this primitive

is when Alice and Bob wish to determine if they are romantically interested in each

other. Secure two-party computation allows them to do so without revealing their

true feelings unless they are both attracted. By securely evaluating the AND of the

bits representing whether each is attracted to the other, both parties can learn if

there is a match without risking embarrassment: if Bob is not interested in Alice, for

instance, the protocol does not reveal whether Alice is interested in him. So goes the

example.

However, though often used to illustrate the concept, this example is not entirely

logical. The very use of two-party computation already reveals possible interest from

one party: “would you like to determine if we are both attracted to each other?”

A similar limitation occurs in a variety of other applications where the very use

of the primitive raises enough suspicion to defeat its purpose. To overcome this lim-

itation we introduce covert two-party computation, which guarantees the following

(in addition to leaking no additional knowledge about the individual inputs): (A) no

135

outside eavesdropper can determine whether the two parties are performing the com-

putation or simply communicating as they normally do; (B) before learning f(xA, xB),

neither party can tell whether the other is running the protocol; (C) at any point prior

to or after the conclusion of the protocol, each party can only determine if the other

ran the protocol insofar as they can distinguish f(xA, xB) from uniformly chosen

random bits. By defining a functionality g(xA, xB) such that g(xA, xB) = f(xA, xB)

whenever f(xA, xB) ∈ Y and g(xA, xB) is pseudorandom otherwise, covert two-party

computation allows the construction of protocols that return f(xA, xB) only when it

is in a certain set of interesting values Y but for which neither party can determine

whether the other even ran the protocol whenever f(xA, xB) /∈ Y . Among the many

important potential applications of covert two-party computation we mention the

following:

• Dating. As hinted above, covert two-party computation can be used to prop-

erly determine if two people are romantically interested in each other. It al-

lows a person to approach another and perform a computation hidden in their

normal-looking messages such that: (1) if both are romantically interested in

each other, they both find out; (2) if none or only one of them is interested in

the other, neither will be able to determine that a computation even took place.

In case both parties are romantically interested in each other, it is important

to guarantee that both obtain the result. If one of the parties can get the result

while ensuring that the other one doesn’t, this party would be able to learn

the other’s input by pretending he is romantically interested; there would be no

harm for him in doing so since the other would never see the result. However,

if the protocol is fair (either both obtain the result or neither of them does),

parties have a deterrence from lying.

• Cheating in card games. Suppose two parties playing a card game want

to determine whether they should cheat. Each of them is self-interested, so

cheating should not occur unless both players can benefit from it. Using covert

two-party computation with both players’ hands as input allows them to com-

pute if they have an opportunity to benefit from cheating while guaranteeing

that: (1) neither player finds out whether the other attempted to cheat unless

136

they can both benefit from it; (2) none of the other players can determine if the

two are secretly planning to collude.

• Bribes. Deciding whether to bribe an official can be a difficult problem. If

the official is corrupt, bribery can be extremely helpful and sometimes neces-

sary. However, if the official abides by the law, attempting to bribe him can

have extremely negative consequences. Covert two-party computation allows

individuals to approach officials and negotiate a bribe with the following guar-

antees: (1) if the official is willing to accept bribes and the individual is willing

to give them, the bribe is agreed to; (2) if at least one of them is not willing to

participate in the bribe, neither of them will be able to determine if the other

attempted or understood the attempt of bribery; (3) the official’s supervisor,

even after seeing the entire sequence of messages exchanged, will not be able to

determine if the parties performed or attempted bribery.

• Covert Authentication. Imagine that Alex works for the CIA and Bob works

for Mossad. Both have infiltrated a single terrorist cell. If they can discover

their “mutual interest” they could pool their efforts; thus both should be look-

ing for potential collaborators. On the other hand, suggesting something out

of the ordinary is happening to a normal member of the cell would likely be

fatal. Running a covert computation in which both parties’ inputs are their

(unforgeable) credentials and the result is 1k if they are allies and uniform bits

otherwise will allow Alex and Bob to authenticate each other such that if Bob

is NOT an ally, he will not know that Alex was even asking for authentica-

tion, and vice-versa. (Similar situations occur in, e.g., planning a coup d’etat or

constructing a zombie network)

• Cooperation between competitors. Imagine that Alice and Bob are com-

peting online retailers and both are being compromised by a sophisticated

cracker. Because of the volume of their logs, neither Alice nor Bob can draw a

reliable inference about the location of the hacker; statistical analysis indicates

about twice as many attack events are required to isolate the cracker. Thus if

Alice and Bob were to compare their logs, they could solve their problem. But

if Alice admits she is being hacked and Bob is not, he will certainly use this

137

information to take her customers; and vice-versa. Using covert computation to

perform the log analysis online can break this impasse. If Alice is concerned that

Bob might fabricate data to try and learn something from her logs, the com-

putation could be modified so that when an attacker is identified, the output is

both an attacker and a signed contract stating that Alice is due a prohibitively

large fine (for instance, $1 Billion US) if she can determine that Bob falsified

his log, and vice-versa. Similar situations occur whenever cooperation might

benefit mutually distrustful competitors.

Our protocols make use of provably secure steganography [4, 7, 34, 53] to hide the

computation in innocent-looking communications. Steganography alone, however, is

not enough. Combining steganography with two-party computation in the obvious

black-box manner (i.e., forcing all the parties participating in an ordinary two-party

protocol to communicate steganographically) yields protocols that are undetectable to

an outside observer but does not guarantee that the participants will fail to determine

if the computation took place. Depending on the output of the function, we wish to

hide that the computation took place even from the participants themselves.

Synchronization, and who knows what?

Given the guarantees that covert-two party computation offers, it is important to

clarify what the parties know and what they don’t. We assume that both parties know

a common circuit for the function that they wish to evaluate, that they know which

role they will play in the evaluation, and that they know when to start evaluating the

circuit if the computation is going to occur. An example of such “synchronization”

information could be: “if we will determine whether we both like each other, the

computation will start with the first message exchanged after 5pm.” (Notice that

since such details can be published as part of the protocol specification, there is no

need for either party to indicate that they wish to compute anything at all) We assume

adversarial parties know all such details of the protocols we construct.

138

Hiding Computation vs. Hiding inputs

Notice that covert computation is not about hiding which function Alice and Bob are

interested in computing, which could be accomplished via standard SFE techniques:

Covert Computation hides the fact that Alice and Bob are interested in computing a

function at all. This point is vital in the case of, e.g., covert authentication, where

expressing a desire to do anything out of the ordinary could result in the death of

one of the parties. In fact, we assume that the specific function to be computed (if

any) is known to all parties. This is analogous to the difference in security goals

between steganography – where the adversary is assumed to know which message, if

any, is hidden – and encryption, where the adversary is trying to decide which of two

messages are hidden.

Roadmap.

The high-level view of our presentation is as follows. First, we will define the secu-

rity properties of covert two-party computation. Then we will present two protocols.

The first protocol we present will be a modification of Yao’s “garbled circuit” two-

party protocol in which, except for the oblivious transfer, all messages generated are

indistinguishable from uniform random bits. We construct a protocol for oblivious

transfer that generates messages that are indistinguishable from uniform random bits

(under the Decisional Diffie-Hellman assumption) to yield a complete protocol for

two-party secure function evaluation that generates messages indistinguishable from

random bits. We then use steganography to transform this into a protocol that gener-

ates messages indistinguishable from “ordinary” communications. The protocol thus

constructed, however, is not secure against malicious adversaries nor is it fair (since

neither is Yao’s protocol by itself). We therefore construct another protocol, which

uses our modification of Yao’s protocol as a subroutine, that satisfies fairness and is

secure against malicious adversaries, in the Random Oracle Model. The major diffi-

culty in doing so is that the standard zero-knowledge-based techniques for converting

a protocol in the honest-but-curious model into a protocol secure against malicious

adversaries cannot be applied in our case, since they reveal that that the other party

is running the protocol.

139

Related Work.

Secure two-party computation was introduced by Yao [63]. Since then, there have

been several papers on the topic and we refer the reader to a survey by Goldreich [26]

for further references. Constructions that yield fairness for two-party computation

were introduced by Yao [64], Galil et al. [24], Brickell et al. [15], and many others

(see [51] for a more complete list of such references). The notion of covert two-party

computation, however, appears to be completely new.

Notation.

We say a function µ : N → [0, 1] is negligible if for every c > 0, for all sufficiently

large k, µ(k) < 1/kc. We denote the length (in bits) of a string or integer s by |s|
and the concatenation of string s1 and string s2 by s1||s2. We let Uk denote the

uniform distribution on k bit strings. If D is a distribution with finite support X,

we define the minimum entropy of D as H∞(D) = minx∈X{log2(1/PrD[x])}. The

statistical distance between two distributions C and D with joint support X is defined

by ∆(C,D) = (1/2)
∑

x∈X |PrD[x] − PrC[x]|. Two sequences of distributions, {Ck}k
and {Dk}k, are called computationally indistinguishable, written C ≈ D, if for any

probabilistic polynomial-time A, AdvC,DA (k) = |Pr[A(Ck) = 1]− Pr[A(Dk) = 1]| is

negligible in k.

7.2 Covert Two-Party Computation Against Semi-

Honest Adversaries

We now present a protocol for covert two-party computation that is secure against

semi-honest adversaries in the standard model (without Random Oracles) and as-

sumes that the decisional Diffie-Hellman problem is hard. The protocol is based on

Yao’s well-known function evaluation protocol [63].

We first define covert two-party computation formally, following standard defini-

tions for secure two-party computation, and we then describe Yao’s protocol and the

140

necessary modifications to turn it into a covert computation protocol. The definition

presented in this section is only against honest-but-curious adversaries and is unfair in

that only one of the parties obtains the result. In Section 4 we will define covert two-

party computation against malicious adversaries and present a protocol that is fair:

either both parties obtain the result or neither of them does. The protocol in Section

4 uses the honest-but-curious protocol presented in this section as a subroutine.

7.2.1 Definitions

Formally, a two-party, n-round protocol is a pair Π = (P0, P1) of programs. The

computation of Π proceeds as follows: at each round, P0 is run on its input x0,

the security parameter 1k, a state s0, and the (initially empty) history of messages

exchanged so far, to produce a new message m and an internal state s0. The message

m is sent to P1, which is run on its input x1, the security parameter 1k, a state s1, and

the history of messages exchanged so far to produce a message that is sent back to P0,

and a state s1 to be used in the next round. Denote by 〈P0(x0), P1(x1)〉 the transcript

of the interaction of P0 with input x0 and P1 with input x1. This transcript includes

all messages exchanged between P0 and P1 along with the timestep in which they

were sent. After n rounds, each party P ∈ {P0, P1} halts with an output, denoted

by ΠP (x0, x1) = ΠP (x̄). We say that Π correctly realizes the functionality f if for at

least one P ∈ {P0, P1}, Pr[ΠP (x̄) = f(x̄)] ≥ 1− ν(k), where ν is negligible.

For σ ∈ {0, 1}, we denote by V Pσ
Π (x0, x1) the view of party Pσ on input xσ when

interacting with P1−σ on input x1−σ. The view includes Pσ’s input xσ, private random

bits, and all messages sent by P0 and P1. We say Π securely realizes the functionality

f if Π correctly realizes f and, for any P ′σ and x1−σ, there is a simulator P ′′σ and an

xσ such that P ′′σ (f(x0, x1)) ≈ V
P ′σ

Π (x0, x1). Notice that given f(x0, x1), P ′σ could just

use P ′′σ to simulate his interaction with P1−σ without actually running Π. Thus if Π

securely implements f , neither party learns more from the interaction than could be

learned from just f(x0, x1).

Define the view of party P interacting in protocol Π up through round j by

V P
Π,j(x̄). When party Pσ is not executing Π but is drawing from B instead, we denote

141

this “protocol” by Π : Bσ.

Definition 7.1. (Covert two-party protocol against honest-but-curious adversaries)

We say an n-round, two-party protocol (P0, P1) covertly realizes the functionality f

for bidirectional channel B if it securely realizes f and if it has the following additional

properties:

1. (External covertness): For any input x̄, 〈P0(x0), P1(x1)〉 ≈ B.

2. (Internal covertness): For any input x̄, V P0
Π,n(x̄) ≈ V P0

Π:B1,n
(x̄) and V P1

Π,n−1(x̄) ≈
V P1

Π:B0,n−1(x̄).

3. (Final Covertness): For every PPT D there exists a PPT D′ and a negligible

ν such that for any x1 and any distribution X0, Adv
V
P1
Π (X0,x1),V

P1
Π:B0

(X0,x1)

D (k) ≤
Adv

f(X0,x1),Ul
D′ (k) + ν(k).

In other words, until the final round, neither party can distinguish between the

case that the other is running the protocol or just drawing from B; and after the final

message, P0 still cannot tell, while P1 can only distinguish the cases if f(x0, x1) and

Um are distinguishable. Note that property 2 implies property 1, since P0 could apply

the distinguisher to his view (less the random bits).

We will slightly abuse notation and say that a protocol which has messages indis-

tinguishable from random bits (even given one party’s view) is covert for the uniform

channel U .

7.2.2 Yao’s Protocol For Two-Party Secure Function Evalu-

ation

Yao’s protocol [63] securely (not covertly) realizes any functionality f that is expressed

as a combinatorial circuit. Our description is based on [46]. The protocol is run

between two parties, the Input Owner A and the Program Owner B. The input of

A is a value x, and the input of B is a description of a function f . At the end of

the protocol, B learns f(x) (and nothing else about x), and A learns nothing about

142

f . The protocol requires two cryptographic primitives, pseudorandom functions and

oblivious transfer, which we describe here for completeness.

Pseudorandom Functions.

Let {F : {0, 1}k × {0, 1}L(k) → {0, 1}l(k)}k denote a sequence of function families.

Let A be an oracle probabilistic adversary. We define the prf-advantage of A over

F as Advprf
A,F (k) = |PrK [AFK(·)(1k) = 1] − Prg[A

g(1k) = 1]|, where K ← Uk and g

is a uniformly chosen function from L(k) bits to l(k) bits. Then F is pseudorandom

if Advprf
A,F (k) is negligible in k for all polynomial-time A. We will write FK(·) as

shorthand for F|K|(K, ·) when |K| is known.

Oblivious Transfer.

1-out-of-2 oblivious transfer (OT2
1) allows two parties, the sender who knows the

values m0 and m1, and the chooser whose input is σ ∈ {0, 1}, to communicate in such

a way that at the end of the protocol the chooser learns mσ, while learning nothing

about m1−σ, and the sender learns nothing about σ. Formally, letO = (S, C) be a pair

of interactive PPT programs. We say that O is correct if Pr[OC((m0,m1), σ) = mσ] ≥
1 − ε(k) for negligible ε. We say that O has chooser privacy if for any PPT S ′ and

any m0,m1,
∣∣Pr[S ′(〈S ′(m0,m1), C(σ)〉) = σ]− 1

2

∣∣ ≤ ε(k) and O has sender privacy if

for any PPT C ′ there exists a σ and a PPT C ′′ such that C ′′(mσ) ≈ V C′
Π ((m0,m1), σ).

We say that O securely realizes the functionality OT2
1 if O is correct and has chooser

and sender privacy.

Yao’s Protocol.

Yao’s protocol is based on expressing f as a combinatorial circuit. Starting with

the circuit, the program owner B assigns to each wire i two random k-bit values

(W 0
i ,W

1
i) corresponding to the 0 and 1 values of the wire. It also assigns a random

permutation πi over {0, 1} to the wire. If a wire has value bi we say it has “garbled”

value (W bi
i , πi(bi)). To each gate g, B assigns a unique identifier Ig and a table Tg

which enables computation of the garbled output of the gate given the garbled inputs.

143

Given the garbled inputs to g, Tg does not disclose any information about the garbled

output of g for any other inputs, nor does it reveal the actual values of the input bits

or the output bit.

Assume g has two input wires (i, j) and one output wire out (gates with higher

fan in or fan out can be accommodated with straightforward modifications). The

construction of Tg uses a pseudorandom function F whose output length is k + 1.

The table Tg is as follows:

πi(bi) πj(bj) value

0 0 (W g(bi,bj)
out , πo(bout))⊕ F

W
bj
j

(Ig, 0)⊕ F
W
bi
i

(Ig, 0)

0 1 (W g(bi,bj)
out , πo(bout))⊕ F

W
bj
j

(Ig, 0)⊕ F
W
bi
i

(Ig, 1)

1 0 (W g(bi,bj)
out , πo(bout))⊕ F

W
bj
j

(Ig, 1)⊕ F
W
bi
i

(Ig, 0)

1 1 (W g(bi,bj)
out , πo(bout))⊕ F

W
bj
j

(Ig, 1)⊕ F
W
bi
i

(Ig, 1)

To compute f(x), B computes garbled tables Tg for each gate g, and sends the tables

to A. Then, for each circuit input wire i, A and B perform an oblivious transfer,

where A plays the role of the chooser (with σ = bi) and B plays the role of the

sender, with m0 = W 0
i ‖πi(0) and m1 = W 1

i ‖πi(1). A computes πj(bj) for each output

wire j of the circuit (by trickling down the garbled inputs using the garbled tables)

and sends these values to B, who applies π−1
j to learn bj. Alternatively, B can send

the values πj (for each circuit output wire j) to A, who then learns the result. Notice

that the first two columns of Tg can be implicitly represented, leaving a “table” which

is indistinguishable from uniformly chosen bits.

7.2.3 Steganographic Encoding

We use provably secure steganography to transform Yao’s protocol into a covert

two-party protocol; we also use it as a building block for all other covert proto-

cols presented in this paper. For completeness we state a construction that has

appeared in various forms in [4, 16, 34]. Let HASH denote a family of hash functions

H : D → {0, 1}c which is pairwise independent, that is, for any x1 6= x2 ∈ D, for any

y1, y2 ∈ {0, 1}m, PrH [H(x1) = y1 ∧H(x2) = y2] = 1/22m. Let D denote an arbitrary

144

probability distribution on D satisfying H∞(D) = `(k) where k is the security pa-

rameter. The following constructions hide and recover m uniformly-chosen bits in a

distribution indistinguishable from D when `(k)−m = ω(log k) and m = O(log k).

Construction 7.2. (Basic steganographic encoding/decoding routines)

Procedure Basic EncodeD:

Input: H ∈ HASH, c ∈ {0, 1}m

Let j = 0

repeat:

sample s← D, increment j

until H(s) = c OR (j > k)

Output: s

Procedure Basic Decode:

Input: H ∈ HASH, s ∈ D
set c = H(s)

Output: c

Proposition 7.3. Let H ← HASH. Then

∆
(
(H, Basic EncodeD(H,Um)), (H,D)

)
≤ 2−(`(k)−m)/2+1 .

The result follows from the Leftover Hash Lemma ([33], Lemma 4.8). Intuitively,

it guarantees that Basic Encode(c) will be (statistically) indistinguishable from the

messages exchanged in a bidirectional channel whenever c is a uniformly chosen bit

string. (When we refer to Basic Encode with only a single argument, we implicitly

assume that an appropriate h has been chosen and is publicly accessible to all parties.)

Thus, to guarantee covertness for channel B, we will ensure that all our protocols

generate messages that are indistinguishable from uniformly chosen random bits and

then encode these messages with Basic Encode. Formally, suppose Π = (P0, P1)

is an arbitrary two-party protocol which securely realizes the functionality f . We

will construct a protocol ΣΠ = (SP0
0 , SP1

1) which has the property that if V Pb
Π (x̄) is

indistinguishable from uniformly chosen bits (that is, Π covertly realizes f for the

uniform channel), then ΣΠ covertly realizes the functionality f for channel B. We

assume that P0, P1 have the property that, given a partial input, they return the

string ε, indicating that more bits of input are needed. Then SPbb has the following

round function (which simply uses Basic Encode and Basic Decode to encode and

decode all messages exchanged by P0 and P1):

145

Construction 7.4. (Transformation to a covert protocol)

Procedure SPbb :

Input: history h ∈ H, state, document s ∈ D
draw d← BPbh
if (state.status = “receiving”) then

set state.msg = state.msg‖Basic Decode(s)

set c = Pb(state.msg)

if (c 6= ε) set state.status = “sending”; set state.msg = c

if (state.status = “sending”) then

if (d 6=⊥) then

set c = first m bits of state.msg

set state.msg = state.msg without the first m bits

set d = Basic Encode(CPbh 6=⊥)(c)

if state.msg = “” set state.status = “receiving”

Output: message d, state

Theorem 7.5. If Π covertly realizes the functionality f for the uniform channel, then

ΣΠ covertly realizes f for the bidirectional channel B.

Proof. Let kc be an upper bound on the number of bits in 〈P0(x0), P1(x1)〉. Then ΣΠ

transmits at most 2kc/m (non-empty) documents. Suppose there is a distinguisher

D for V Sb
Σ (x̄) from V Sb

Σ:B1−b
(x̄) with significant advantage ε. Then D can be used to

distinguish V Pb
Π (x̄) from V Pb

Π:U1−b
(x̄), by simulating each round as in Σ to produce a

transcript T ; If the input is uniform, then ∆(T,B) ≤ (kc/m)22−(`(k)−m)/2 = ν(k),

and if the input is from Π, then T is identical to V Sb
Σ (x̄). Thus D’s advantage in

distinguishing Π from Π : U1−b is at least ε− ν(k).

IMPORTANT: For the remainder of the paper we will present protocols Π that

covertly realize f for U . It is to be understood that the final protocol is meant to

be ΣΠ, and that when we state that “Π covertly realizes the functionality f” we are

referring to ΣΠ.

146

7.2.4 Covert Oblivious Transfer

As mentioned above, we guarantee the security of our protocols by ensuring that all

the messages exchanged are indistinguishable from uniformly chosen random bits. To

this effect, we present a modification of the Naor-Pinkas [45] protocol for oblivious

transfer that ensures that all messages exchanged are indistinguishable from uniform

when the input messages m0 and m1 are uniformly chosen. Our protocol relies on the

well-known integer decisional Diffie-Hellman assumption:

Integer Decisional Diffie-Hellman.

Let P and Q be primes such that Q divides P − 1, let Z∗P be the multiplicative

group of integers modulo P , and let g ∈ Z∗P have order Q. Let A be an adversary

that takes as input three elements of Z∗P and outputs a single bit. Define the DDH

advantage of A over (g, P,Q) as: Advddh
A (g, P,Q) = |Pra,b,r[Ar(g

a, gb, gab, g, P,Q) =

1] − Pra,b,c,r[Ar(g
a, gb, gc, g, P,Q) = 1]|, where Ar denotes the adversary A running

with random tape r, a, b, c are chosen uniformly at random from ZQ and all the

multiplications are over Z∗P . The Integer Decisional Diffie-Hellman assumption (DDH)

states that for every PPT A, for every sequence {(Pk, Qk, gk)}k satisfying |Pk| = k

and |Qk| = Θ(k), Advddh
A (gk, Pk, Qk) is negligible in k.

Setup.

Let p = rq + 1 where 2k < p < 2k+1, q is a large prime, and gcd(r, q) = 1; let g

generate Z∗p and thus γ = gr generates the unique multiplicative subgroup of order

q; let r̂ be the least integer r such that rr̂ = 1 mod q. Assume |m0| = |m1| < k/2.

Let H : {0, 1}2k×Zp → {0, 1}k/2 be a pairwise-independent family of hash functions.

Define the randomized mapping φ : 〈γ〉 → Z
∗
p by φ(h) = hr̂gβq, for a uniformly chosen

β ∈ Zr; notice that φ(h)r = h and that for a uniformly chosen h ∈ 〈γ〉, φ(h) is a

uniformly chosen element of Z∗p. The following protocol is a simple modification of

the Naor-Pinkas 2-round oblivious transfer protocol [45]:

Construction 7.6. COT:

147

1. On input σ ∈ {0, 1}, C chooses uniform a, b ∈ Zq, sets cσ = ab mod q and

uniformly chooses c1−σ ∈ Zq. C sets x = γa, y = γb, z0 = γc0 , z1 = γc1 and sets

x′ = φ(x), y′ = φ(y), z′0 = φ(z0), z′1 = φ(z1). If the most significant bits of all of

x′, y′, z′0, z
′
1 are 0, C sends the least significant k bits of each to S; otherwise C

picks new a, b, c1−σ and starts over.

2. The sender recovers x, y, z0, z1 by raising to the power r, picks f0, f1 ∈ H and

then:

• S repeatedly chooses uniform r0, s0 ∈ Zq and sets w0 = xs0γr0 , w′0 = φ(w0)

until he finds a pair with w′0 ≤ 2k. He then sets K0 = zs00 y
r0 .

• S repeatedly chooses uniform r1, s1 ∈ Zq and sets w1 = xs1γr1 , w′1 = φ(w1)

until he finds a pair with w′1 ≤ 2k. He then sets K1 = zs11 y
r1 .

S sends w′0‖f0‖f0(K0)⊕m0‖w′1‖f1‖f1(K1)⊕m1

3. C recovers Kσ = (w′σ)rb and computes mσ.

Lemma 7.7. S cannot distinguish between the case that C is following the COT

protocol and the case that C is drawing from Uk; that is,

V S
COT(m0,m1, σ) ≈ V S

COT:UC (m0,m1, σ).

Proof. Suppose that there exists a distinguisher D with advantage ε. Then there

exists a DDH adversary A with advantage at least ε/8 − ν(k) for a negligible ν. A

takes as input a triple (γa, γb, γc), picks a random bit σ, sets zσ = γc and picks a

uniform z′1−σ ∈ {0, 1}k, and computes x′ = φ(γa), y′ = φ(γb), z′σ = φ(zσ); if all three

are at most 2k, then A outputs D(x′, y′, z′0, z
′
1), otherwise A outputs 0.

Clearly, when c 6= ab,

Pr[A(γa, γb, γc) = 1] ≥ 1

8
Pr[D(V S

COT:UC) = 1] ,

since the elements passed by A to D are uniformly chosen and D calls A with proba-

bility at least 1/8 (since each of x′, y′, z′σ are greater than 2k with probability at most

1/2). But when c = ab, then

Pr[A(γa, γb, γc) = 1] ≥ (1/8− ν(k)) Pr[D(V S
COT) = 1] ,

148

since the elements passed by A to D are chosen exactly according to the distribution

on C’s output specified by COT ; and since the probability that D is invoked by A

is at least 1/8 when c 6= ab it can be at most ν(k) less when c = ab, by the Integer

DDH assumption. Thus the DDH advantage of A is at least ε/8 − ν(k). Since ε/8

must be negligible by the DDH assumption, we have that D’s advantage must also

be negligible.

Lemma 7.8. When m0,m1 ← Uk/2, C cannot distinguish between the case that S is

following the COT protocol and the case that S is sending uniformly chosen strings.

That is, V C
COT(Uk/2, Uk/2, σ) ≈ V C

COT:US(Uk/2, Uk/2, σ).

Proof. The group elements w0, w1 are uniformly chosen by S; thus when m0,m1 are

uniformly chosen, the message sent by S must also be uniformly distributed.

Lemma 7.9. The COT protocol securely realizes the OT2
1 functionality.

Proof. The protocol described by Pinkas and Naor is identical to the COT protocol,

with the exception that φ is not applied to the group elements x, y, z0, z1, w0, w1 and

these elements are not rejected if they are greater than 2k. Suppose an adversarial

sender can predict σ with advantage ε in COT; then he can be used to predict σ

with advantage ε/16 − ν(k) in the Naor-Pinkas protocol, by applying the map φ

to the elements x, y, z0, z1 and predicting a coin flip if not all are less than 2k, and

otherwise using the sender’s prediction against the message that COT would send.

Likewise, any bit a chooser can predict about (m0,m1) with advantage ε in COT,

can be predicted with advantage ε/4 in the Naor-Pinkas protocol: the Chooser’s

message can be transformed into elements of 〈γ〉 by taking the components to the

power r, and the resulting message of the Naor-Pinkas sender can be transformed by

sampling from w′0 = φ(w0), w′1 = φ(w1) and predicting a coin flip if either is greater

than 2k, but otherwise giving the prediction of the COT chooser on w′0‖f0‖f0(K0)⊕
m0‖w′1‖f1‖f1(K1)⊕m1.

Conjoining these three lemmas gives the following theorem:

Theorem 7.10. Protocol COT covertly realizes the uniform-OT2
1 functionality

149

7.2.5 Combining The Pieces

We can combine the components developed up to this point to make a protocol

which covertly realizes any two-party functionality. The final protocol, which we call

covert-yao, is simple: assume that both parties know a circuit Cf computing the

functionality f . Bob first uses Yao’s protocol to create a garbled circuit for f(·, xB).

Alice and Bob perform |xA| covert oblivious transfers for the garbled wire values

corresponding to Alice’s inputs. Bob sends the garbled gates to Alice. Finally, Alice

collects the garbled output values and sends them to Bob, who de-garbles these values

to obtain the output.

Theorem 7.11. The covert-yao protocol covertly realizes the functionality f .

Proof. That (Alice, Bob) securely realize the functionality f follows from the security

of Yao’s protocol. Now consider the distribution of each message sent from Alice to

Bob:

• In each execution of COT: each message sent by Alice is uniformly distributed

• Final values: these are masked by the uniformly chosen bits that Bob chose in

garbling the output gates. To an observer, they are uniformly distributed.

Thus Bob’s view, until the last round, is in fact identically distributed when Alice

is running the protocol and when she is drawing from U . Likewise, consider the

messages sent by Bob:

• In each execution of COT: because the W b
i from Yao’s protocol are uniformly

distributed, Theorem 7.10 implies that Bob’s messages are indistinguishable

from uniform strings.

• When sending the garbled circuit, the pseudorandomness of F and the uniform

choice of the W b
i imply that each garbled gate, even given one garbled input

pair, is indistinguishable from a random string.

Thus Alice’s view after all rounds of the protocol is indistinguishable from her view

when Bob draws from U .

150

If Bob can distinguish between Alice running the protocol and drawing from B
after the final round, then he can also be used to distinguish between f(XA, xB) and

Ul. The approach is straightforward: given a candidate y, use the simulator from

Yao’s protocol to generate a view of the “data layer.” If y ← f(XA, xB), then, by

the security of Yao’s protocol, this view is indistinguishable from Bob’s view when

Alice is running the covert protocol. If y ← Ul, then the simulated view of the final

step is distributed identically to Alice drawing from U . Thus Bob’s advantage will be

preserved, up to a negligible additive term.

Notice that as the protocol covert-yao is described, it is not secure against a

malicious Bob who gives Alice a garbled circuit with different operations in the gates,

which could actually output some constant message giving away Alice’s participation

even when the value f(x0, x1) would not. If instead Bob sends Alice the masking

values for the garbled output bits, Bob could still prevent Alice from learning f(x0, x1)

but could not detect her participation in the protocol in this way. We use this version

of the protocol in the next section.

7.3 Fair Covert Two-party Computation Against

Malicious Adversaries

The protocol presented in the previous section has two serious weaknesses. First,

because Yao’s construction conceals the function of the circuit, a malicious Bob can

garble a circuit that computes some function other than the result Alice agreed to

compute. In particular, the new circuit could give away Alice’s input or output some

distinguished string that allows Bob to determine that Alice is running the protocol.

Additionally, the protocol is unfair: either Alice or Bob does not get the result.

In this section we present a protocol that avoids these problems. In particular,

our solution has the following properties: (1) If both parties follow the protocol, both

get the result; (2) If Bob cheats by garbling an incorrect circuit, neither party can tell

whether the other is running the protocol, except with negligible advantage; and (3)

Except with negligible probability, if one party terminates early and computes the

151

result in time T , the other party can compute the result in time at most O(T). Our

protocol is secure in the random oracle model, under the Decisional Diffie Hellman

assumption. We show at the end of this section, however, that our protocol can be

made to satisfy a slightly weaker security condition without the use of a random

oracle. (We note that the technique used in this section has some similarities to one

that appears in [1].)

7.3.1 Definitions

We assume the existence of a non-interactive bitwise commitment scheme with com-

mitments which are indistinguishable from random bits. One example is the (well-

known) scheme which commits to b by CMT (b; (r, x)) = r‖π(x)‖(x · r)⊕ b, where π

is a one-way permutation on domain {0, 1}k, x · y denotes the inner-product of x and

y over GF (2), and x, r ← Uk. The integer DDH assumption implies the existence of

such permutations.

Let f denote the functionality we wish to compute. We say that f is fair if for

every distinguisher Dσ distinguishing f(X0, X1) from U given Xσ with advantage at

least ε, there is a distinguisher D1−σ with advantage at least ε− ν(k), for a negligible

function ν. (That is, if P0 can distinguish f(X0, X1) from uniform, so can P1.) We

say f is strongly fair if (f(X0, X1), X0) ≈ (f(X0, X1), X1).

A n-round, two-party protocol Π = (P0, P1) to compute functionality f is said

to be a strongly fair covert protocol for the bidirectional channel B if the following

conditions hold:

• (External covertness): For any input x̄, 〈P0(x0), P1(x1)〉 ≈ B.

• (Strong Internal Covertness): There exists a PPT E (an extractor) such that

if PPT D(V) distinguishes between V Pσ
Π,i (x̄) and V Pσ

Π:B1−σ ,i
(x̄) with advantage ε,

ED(V Pσ
Π (x̄)) computes f(x̄) with probability at least ε/poly(k)

• (Strong Fairness): If the functionality f is fair, then for any Cσ running in time

T such that Pr[Cσ(V σ
Π,i(x̄)) = f(x̄)] ≥ ε, there exists a C1−σ running in time

O(T) such that Pr[C1−σ(V 1−σ
Π,i (x̄)) = f(x̄)] = Ω(ε).

152

• (Final Covertness): For every PPT D there exists a PPT D′ and a negligible ν

such that for any xσ and distributionX1−σ, Adv
V PσΠ (X1−σ ,xσ),V PσΠ:B1−σ

(X1−σ ,xσ)

D (k) ≤
Adv

f(X1−σ ,xσ),Ul
D′ (k) + ν(k).

Intuitively, the Internal Covertness requirement states that “Alice can’t tell if Bob is

running the protocol until she gets the answer,” while Strong Fairness requires that

“Alice can’t get the answer unless Bob can.” Combined, these requirements imply

that neither party has an advantage over the other in predicting whether the other is

running the protocol.

7.3.2 Construction

As before, we have two parties, P0 (Alice) and P1 (Bob), with inputs x0 and x1,

respectively, and the function Alice and Bob wish to compute is f : {0, 1}l0×{0, 1}l1 →
{0, 1}l, presented by the circuit Cf . The protocol proceeds in three stages: COMMIT,

COMPUTE, and REVEAL. In the COMMIT stage, Alice picks k+ 2 strings, r0, and

s0[0], . . . , s0[k], each k bits in length. Alice computes commitments to these values,

using a bitwise commitment scheme which is indistinguishable from random bits, and

sends the commitments to Bob. Bob does likewise (picking strings r1, s1[0], . . . , s1[k]).

The next two stages involve the use of a pseudorandom generator G : {0, 1}k →
{0, 1}l which we will model as a random oracle for the security argument only: G

itself must have an efficiently computable circuit. In the COMPUTE stage, Alice and

Bob compute two serial runs (“rounds”) of the covert Yao protocol described in the

previous section. If neither party cheats, then at the conclusion of the COMPUTE

stage, Alice knows f(x0, x1)⊕G(r1) and Bob’s value s1[0]; while Bob knows f(x0, x1)⊕
G(r0) and Alice’s value s0[0]. The REVEAL stage consists of k rounds of two runs

each of the covert Yao protocol. At the end of each round i, if nobody cheats, Alice

learns the ith bit of Bob’s string r1, labeled r1[i], and also Bob’s value s1[i], and Bob

learns r0[i], s0[i]. After k rounds in which neither party cheats, Alice thus knows r1

and can compute f(x0, x1) by computing the exclusive-or of G(r1) with the value she

learned in the COMPUTE stage, and Bob can likewise compute the result.

Each circuit sent by Alice must check that Bob has obeyed the protocol; thus at

153

every round of every stage, the circuit that Alice sends to Bob takes as input the

opening of all of Bob’s commitments, and checks to see that all of the bits Alice has

learned so far are consistent with Bob’s input. The difficulty to overcome with this

approach is that the result of the check cannot be returned to Alice without giving

away that Bob is running the protocol. To solve this problem, Alice’s circuits also take

as input the last value s0[i− 1] that Bob learned. If Alice’s circuit ever finds that the

bits she has learned are inconsistent with Bob’s input, or that Bob’s input for s0[i−1]

is not consistent with the actual value of s0[i − 1], the output is a uniformly chosen

string of the appropriate length. Once this happens, all future outputs to Bob will

also be independently and uniformly chosen, because he will have the wrong value for

s0[i], which will give him the wrong value for s0[i+1], etc. Thus the values s0[1, . . . , k]

serve as “state” bits that Bob maintains for Alice. The analogous statements hold

for Bob’s circuits and Alice’s inputs.

Construction 7.12. (Fair covert two-party computation)

Inputs and setup. To begin, each party Pσ chooses k + 2 random strings rσ,

sσ[0],. . . ,sσ[k]← Uk. Pσ’s inputs to the protocol are then Xσ = (xσ, rσ, sσ[0 . . . k]).

COMMIT stage. Each party Pσ computes the commitment κσ = CMT (Xσ; ρσ)

and sends this commitment to the other party. Denote by Kσ the value that Pσ

interprets as a commitment to X1−σ, that is, K0 denotes the value Alice interprets as

a commitment to Bob’s input X1.

COMPUTE stage. The COMPUTE stage consists of two serial runs of the covert-

yao protocol.

1. Bob garbles the circuit compute1 shown in figure 7.1, which takes x0, r0,

s0[0], . . . ,s0[k], and ρ0 as input and outputs G(r1) ⊕ f(x0, x1)‖s1[0] if K1 is

a commitment to X0. If this check fails, COMPUTE1 outputs a uniformly

chosen string, which has no information about f(x0, x1) or s1[0]. Bob and Alice

perform the covert-yao protocol; Alice labels her result F0‖S0[0].

2. Alice garbles the circuit compute0 shown in figure 7.1, which takes x1, r1,

154

computeσ(x1−σ, r, s[0 . . . k], ρ) =

if (Kσ = CMT (x1−σ, r, s; ρ))

then set F = G(rσ)⊕ f(x0, x1)

set S = sσ[0] else draw F ← Ul,

draw S ← Uk.

output F‖S

reveal
i
σ(x1−σ, S1−σ[i−1], r, s1−σ[0 . . . k], ρ) =

Let F = G(r)⊕ f(x0, x1)

if (Kσ = CMT (x1−σ, r, s1−σ; ρ) and

F = Fσ and

Rσ[i− 1] = r[i− 1] and

S1−σ[i− 1] = sσ[i− 1] and

Sσ[i− 1] = s1−σ[i− 1]) then

set R = rσ[i], S = sσ[i]

else draw R← {0, 1}, S ← Uk

output R‖S

Figure 7.1: The circuits compute and reveal.

s1[0],. . . ,s1[k], and ρ1 as input and outputs G(r0) ⊕ f(x0, x1)‖s0[0] if K0 is a

commitment to X1. If this check fails, compute0 outputs a uniformly chosen

string, which has no information about f(x0, x1) or s0[0]. Bob and Alice perform

the covert-yao protocol; Bob labels his result F1‖S1[0].

REVEAL stage. The REVEAL stage consists of k rounds, each of which consists

of 2 runs of the covert-yao protocol:

1. in round i, Bob garbles the circuit reveal
i
1 shown in figure 7.1, which takes

input x0, S0[i− 1], r0, s0[0 . . . k], ρ0 and checks that:

• Bob’s result from the COMPUTE stage, F1, is consistent with x0, r0.

• The bit R1[i − 1] which Bob learned in round i − 1 is equal to bit i − 1

of Alice’s secret r0. (By convention, and for notational uniformity, we will

define R0[0] = R1[0] = r0[0] = r1[0] = 0)

• The state S0[i− 1] that Bob’s circuit gave Alice in the previous round was

correct. (Meaning Alice obeyed the protocol up to round i− 1)

• Finally, that the state S1[i− 1] revealed to Bob in the previous round was

the state s0[i− 1] which Alice committed to in the COMMIT stage.

155

If all of these checks succeed, Bob’s circuit outputs bit i of r1 and state s1[i];

otherwise the circuit outputs a uniformly chosen k+1-bit string. Alice and Bob

perform covert-yao and Alice labels the result R0[i], S0[i].

2. Alice garbles the circuit reveal
i
0 depicted in figure 7.1 which performs the

analogous computations to reveal
i
1, and performs the covert-yao protocol

with Bob. Bob labels the result R1[i], S1[i].

After k such rounds, if Alice and Bob have been following the protocol, we have

R1 = r0 and R0 = r1 and both parties can compute the result. The “states” s are

what allow Alice and Bob to check that all previous outputs and key bits (bits of r0

and r1) sent by the other party have been correct, without ever receiving the results

of the checks or revealing that the checks fail or succeed.

Theorem 7.13. Construction 7.12 is a strongly fair covert protocol realizing the

functionality f

Proof. The correctness of the protocol follows by inspection. The two-party security

follows by the security of Yao’s protocol. Now suppose that some party, wlog Alice,

cheats (by sending a circuit which computes an incorrect result) in round j. Then, the

key bit R0[j+1] and state S0[j+1] Alice computes in round j+1 will be randomized;

and with overwhelming probability every subsequent result that Alice computes will

be useless. Assuming Alice can distinguish f(x0, X1) from uniform, she can still

compute the result in at most 2k−j time by exhaustive search over the remaining key

bits. By successively guessing the round at which Alice began to cheat, Bob can

compute the result in time at most 2k−j+2. If Alice aborts at round j, Bob again

can compute the result in time at most 2k−j+1. If Bob cheats in round j by giving

inconsistent inputs, with high probability all of his remaining outputs are randomized;

thus cheating in this way gives him no advantage over aborting in round j− 1. Thus,

the fairness property is satisfied.

If G is a random oracle, neither Alice nor Bob can distinguish anything in their

view from uniformly chosen bits without querying G at the random string chosen by

the other. So given a distinguisher D running in time p(k) for V P0
Π,i(x̄) with advantage

ε, it is simple to write an extractor which runs D, recording its queries to G, picks

156

one such query (say, q) uniformly, and outputs G(q)⊕ F0. Since D can only have an

advantage when it queries r1, E will pick q = r1 with probability at least 1/p(k) and

in this case correctly outputs f(x0, x1). Thus the Strong Internal Covertness property

is satisfied.

Weakly fair covertness.

We can achieve a slightly weaker version of covertness without using random oracles.

Π is said to be a weakly fair covert protocol for the channel B if Π is externally covert,

and has the property that if f is strongly fair, then for every distinguisher Dσ for

V Pσ
Π,i (x̄) with significant advantage ε, there is a distinguisher D1−σ for V

P1−σ
Π,i (x̄) with

advantage Ω(ε). Thus in a weakly fair covert protocol, we do not guarantee that both

parties get the result, only that if at some point in the protocol, one party can tell

that the other is running the protocol with significant advantage, the same is true for

the other party.

We note that in the above protocols, if the function G is assumed to be a pseudo-

random generator (rather than a random oracle), then the resulting protocol exhibits

weakly fair covertness. Suppose Dσ has significant advantage ε after round j, as in the

hypothesis of weak covertness. Notice that given r1−σ[1 . . . j−1], G(r1−σ)⊕ f(x̄), the

remainder of Pσ’s view can be simulated efficiently. Then Dσ must be a distinguisher

for G(r) given the first j − 1 bits of r. But since f is strongly fair, P1−σ can apply

Dσ to G(rσ)⊕ f(x̄) by guessing at most 1 bit of rσ and simulating Pσ’s view with his

own inputs. Thus P1−σ has advantage at least ε/2− ν(k) = Ω(ε).

157

158

Chapter 8

Future Research Directions

While this thesis has resolved several of the open questions pertaining to univer-

sal steganography, there are still many interesting open questions about theoretical

steganography. In this section we highlight those that seem most important.

8.1 High-rate steganography

We have shown that for a universal blockwise stegosystem with bounded sample access

to a channel, the optimal rate is bounded above by both the minimum entropy of the

channel and the logarithm of the sample bound. Three general research directions

arise from this result. First, a natural question is what happens to this bound if

we remove the universality and blockwise constraints. A second natural direction to

pursue is the question of efficiently detecting the use of a stegosystem that exceeds

the maximum secure rate. A third interesting question to explore is the relationship

between extractors and stegosystems.

If we do not restrict ourselves to consider universal blockwise stegosystems, there

is some evidence to suggest that it is possible to achieve a much higher rate. For

instance, for the uniform channel U , the IND$-CPA encryption scheme in section 2

has rate which converges to 1. Likewise, a recent proposal by Van Le [41] describes

a stegosystem based on the “folklore” observation that perfect compression for a

channel yields secure steganography; the system described there is not universal, nor

159

is it secure in a blockwise model, but the rate approaches the Shannon entropy for

any efficiently sampleable channel with entropy bounded by the logarithm of the

security parameter k. Thus it is natural to wonder whether there is a reasonable

security model and a reasonable class of nonuniversally accessible stegosystems which

are provably secure under this model, yet have rate which substantially exceeds that

of the construction in Chapter 6.

We show that any blockwise stegosystem which exceeds the minimum entropy

can be detected by giving a detection algorithm which draws many samples from the

channel. It is an interesting question whether the number of samples required can be

reduced significantly for some channels. It is not hard to see that artificial channels

can be designed for which this is the case using, for instance, a trapdoor permutation

for which the warden knows the trapdoor. However, a more natural example would

be of interest.

The design methodology of (blockwise) transforming the uniform channel to an

arbitrary channel, as well as the minimum entropy upper bound on the rate of a

stegosystem suggest that there is a connection to extractors. An extractor is a func-

tion that transforms a sample from an arbitrary blockwise source of minimum entropy

m and a short random string into a string of roughly m bits that has distribution sta-

tistically close to uniform. (In fact a universal hash function is an extractor.) It would

be interesting to learn whether there is any deeper connection between stegosystems

and extractors, for instance, the decoding algorithm for a stegosystem (SE, SD) acts

as an extractor-like function for some distributions; in particular SDK(·) optimally

extracts entropy from the distribution SEK(U). However, it is not immediately ob-

vious how to extend this to a general extractor.

8.2 Public Key Steganography

The necessary and sufficient conditions for the existence of a public-key stegosystem

constitute an open question. Certainly for a universal stegosystem the necessary and

sufficient condition is the existence of a trapdoor predicate family with domains that

are computationally indistinguishable from a polynomially dense set: as we showed in

160

Chapter 4, such primitives are sufficient for IND$-CPA public-key encryption; while

on the other hand, the existence of a universal public-key stegosystem implies the

existence of a public-key stegosystem for the uniform channel, which is by itself a

trapdoor predicate family with domains that are computationally indistinguishable

from a set of density 1. Unlike the case with symmetric steganography, however,

we are not aware of a reduction from a stegosystem for an arbitrary channel to a

dense-domain trapdoor predicate family.

In a similar manner, it is an open question whether steganographic key exchange

protocols can be constructed based on intractability assumptions other than the Deci-

sional Diffie-Hellman assumption. This is in contrast to cryptographic key exchange,

which is implied by the existence of any public-key encryption scheme or oblivious

transfer protocol. It is not clear whether the existence of IND$-CPA public-key en-

cryption implies the existence of SKE protocols.

8.3 Active attacks

Concerning steganography in the presence of active attacks, several questions remain

open. Some standard cryptographic questions remain about chosen-covertext secu-

rity, and substitution-robust steganography. A more important issue is a model of a

disrupting adversary which more closely models the type of attacks applied to existing

proposals in the literature for robust stegosystems.

There are several open cryptographic questions relating to chosen-covertext se-

curity. For example, it is not clear whether IND$-CCA-secure public-key encryption

schemes exist in the standard model (without random oracles). As we alluded to

in chapter 5, all of the known general constructions of chosen-ciphertext secure en-

cryption schemes are easily distinguished from random bits, and the known schemes

depending on specific intractability assumptions seem to depend on using testable

subgroups. Another interesting question is whether chosen covertext security can be

achieved with oracle-only access to the channel. The key problem here is in ensur-

ing that it is hard to find more than one valid encoding of a valid ciphertext; this

seems difficult to accomplish without repeatable access to the channel. To avoid this

161

problem, Backes and Cachin [7] have introduced the notion of Replayable Chosen

Covertext (RCCA) security, which is identical to sCCA security, with the exception

that the adversary is forbidden to submit covertexts which decode to the challenge

hiddentext. The problem with this approach is that the replay attack seems to be a

viable attack in the real world. Thus it is an interesting question to investigate the

possibility of notions “in-between” sCCA and RCCA.

Similar questions about substitution-robustness remain open. It is an interesting

problem to design a universal provably-secure substitution robust stegosystem that

requires only sender access to the channel. Also of interest is whether the require-

ment that Bob can evaluate an admissible superset of the relation R can be removed.

Intuitively, it seems that the ability to evaluate R is necessary for substitution ro-

bustness, because the decoding algorithm evaluates R to an extent: if R(x, y), then

it should be the case that SD(x) = SD(y) except with negligible probability. The

trouble with this intuition is first, that there is no requirement that decoding a single

document should return anything meaningful, and second, that while such an algo-

rithm evaluates a superset of R, it may not be admissible. In light of our proof that

no stegosystem can be secure against both distinguishing and disrupting adversaries,

it is also interesting to investigate the possibility of substitution robustness against

adversaries with access to a decoding oracle.

The most important open question concerning robust steganography is the mis-

match between substitution robustness and the types of attacks perpetrated against

typical proposals for robust steganography. Such attacks include strategies such as

splitting a single document into a series of smaller documents with the same mean-

ing, merging two or more documents into a single document with the same meaning,

and reordering documents in a list. Especially if there is no bound on the length of

sequences to which these operations can be applied, it seems difficult to even write a

general description of the rules such a warden must follow; and although it is reason-

ably straightforward to counteract any single attack in the previous list, composing

several of them with relation-bounded substitutions as well seems to lead to attacks

which are difficult to defend against.

162

8.4 Covert Computation

In the area of covert computation, this thesis leaves room for improvement and open

problems. For example, can (strongly) fair covert two-party computation secure

against malicious adversaries be satisfied without random oracles? It seems at least

plausible that constructions based on concrete assumptions such as the “knowledge-

of-exponent” assumption or the “generalized BBS” assumption may allow construc-

tion of such protocols, yet the obvious applications always destroy the final covertness

property. A related question is whether covert two-party computation can be based on

general cryptographic assumptions rather than the specific Decisional Diffie-Hellman

assumption used here.

Another open question is that of improving the efficiency of the protocols presented

here, either by designing protocols for specific goals or through adapting efficient

two-party protocols to provide covertness. A possible direction to pursue would be

“optimistic” fairness involving a trusted third party. In this case, though, there is the

question of how the third party could “complete” the computation without revealing

participation.

Another interesting question is whether the notion of covert two-party computa-

tion can be extended in some natural and implementable way to multiple parties.

Such a generalization could have important applications in the area of anonymous

communications, allowing, for instance, the deployment of undetectable anonymous

remailer networks. The difficulty here is in finding a sensible model - how can a

multiparty computation take place without knowing who the other parties are? If

the other parties are to be known, how can their participation be secret? What if

the normal communication patterns between parties is not the complete graph? In

addition to these difficulties, the issues associated with cheating players become more

complex, and there seems to be no good candidate protocol for the uniform channel.

163

8.5 Other models

The results of Chapter 3 show that the ability to sample from a channel in our model is

necessary for steganographic communication using that channel. Since in many cases

we do not understand the channel well enough to sample from it, a natural question

is whether there exist models where less knowledge of the distribution is necessary;

such a model will necessarily restrict the adversary’s knowledge of the channel as well.

One intuition is that typical steganographic adversaries are not monitoring the traffic

between a specific pair of individuals in an effort to confirm suspicious behavior, but

are monitoring a high-volume stream of traffic between many points looking for the

“most suspicious” behavior; so stegosystems which could be detected by analyzing

a long sequence of communications might go undetected if only single messages are

analyzed. This type of model is tantalizing because there are unconditionally secure

cryptosystems under various assumptions about adversaries with bounded storage

[18, 50], but it remains an interesting challenge to give a satisfying formal model and

provably secure construction for this scenario.

164

Bibliography

[1] G. Aggarwal, N. Mishra and B. Pinkas. Secure computation of the k’th-ranked
element To appear in Advances in Cryptology – Proceedings of Eurocrypt ’04,
2004.

[2] Luis von Ahn, Manuel Blum and John Langford. Telling Humans and Computers
Apart (Automatically) or How Lazy Cryptographers do AI.

[3] Luis von Ahn and Nicholas J. Hopper. Public-Key Steganography. Submitted to
crypto 2003.

[4] L. von Ahn and N. Hopper. Public-Key Steganography. To appear in Advances
in Cryptology – Proceedings of Eurocrypt ’04, 2004.

[5] Ross J. Anderson and Fabien A. P. Petitcolas. On The Limits of Steganography.
IEEE Journal of Selected Areas in Communications, 16(4). May 1998.

[6] Ross J. Anderson and Fabien A. P. Petitcolas. Stretching the Limits of Steganog-
raphy. In: Proceedings of the first International Information Hiding Workshop.
1996.

[7] M. Backes and C. Cachin. Public-Key Steganography with Active Attacks. IACR
e-print archive report 2003/231, 2003.

[8] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions
of Security for Public-Key Encryption Schemes. In: Advances in Cryptology –
Proceedings of CRYPTO 98, pages 26–45, 1998.

[9] M. Bellare and P. Rogaway. Random Oracles are Practical. Computer and Com-
munications Security: Proceedings of ACM CCS 93, pages 62–73, 1993.

[10] M. Bellare and S. Micali. Non-interactive oblivious transfer and applications.
Advances in Cryptology – Proceedings of CRYPTO ’89, pages 547-557, 1990.

[11] E.R Berlekamp. Bounded Distance +1 Soft-Decision Reed-Solomon Decoding.
IEEE Transactions on Information Theory, 42(3), pages 704–720, 1996.

165

[12] J. Brassil, S. Low, N. F. Maxemchuk, and L. O’Gorman. Hiding Information in
Documents Images. In: Conference on Information Sciences and Systems, 1995.

[13] M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryption
Scheme Which Hides All Partial Information. Advances in Cryptology: CRYPTO
84, Springer LNCS 196, pages 289-302. 1985.

[14] M. Blum and S. Micali. How to generate cryptographically strong sequences of
random bits. In: Proceedings of the 21st FOCS, pages 112–117, 1982.

[15] E. Brickell, D. Chaum, I. Damgärd, J. van de Graaf: Gradual and Verifiable
Release of a Secret. Advances in Cryptology – Proceedings of CRYPTO ’87, pages
156-166, 1987.

[16] C. Cachin. An Information-Theoretic Model for Steganography. In: Information
Hiding – Second International Workshop, Preproceedings. April 1998.

[17] C. Cachin. An Information-Theoretic Model for Steganography. In: Information
and Computation 192 (1): pages 41–56, July 2004.

[18] C. Cachin and U. Maurer. Unconditional Security Against Memory-Bounded
Adversaries. In: Advances in Cryptology – CRYPTO ’97, Springer LNCS 1294,
pp. 292–306, 1997.

[19] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Multi-party
Computation. 28th Symposium on Theory of Computing (STOC 96), pages 639-
648. 1996.

[20] R. Cramer and V. Shoup. A practical public-key cryptosystem provably secure
against adaptive chosen ciphertext attack. Advances in Cryptology: CRYPTO 98,
Springer LNCS 1462, pages 13-27, 1998.

[21] R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adap-
tive Chosen Ciphertext Secure Public-Key Encryption. Advances in Cryptology:
EUROCRYPT 2002, Springer LNCS 2332, pages 45-64. 2002.

[22] S. Craver. On Public-Key Steganography in the Presence of an Active Warden.
In: Information Hiding – Second International Workshop, Preproceedings. April
1998.

[23] D. Dolev, C. Dwork, and M. Naor. Non-malleable Cryptography. 23rd Sympo-
sium on Theory of Computing (STOC ’91), pages 542-552. 1991.

[24] Z. Galil, S. Haber, M. Yung. Cryptographic Computation: Secure Fault-Tolerant
Protocols and the Public-Key Model. Advances in Cryptology – Proceedings of
CRYPTO ’87, pages 135-155, 1987.

166

[25] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

[26] O. Goldreich. Secure Multi-Party Computation. Unpublished Manuscript.
http://philby.ucsd.edu/books.html, 1998.

[27] O. Goldreich, S. Goldwasser and S. Micali. How to construct pseudorandom
functions. Journal of the ACM, vol 33, 1998.

[28] O. Goldreich and L.A. Levin. A Hardcore predicate for all one-way functions.
In: Proceedings of 21st STOC, pages 25–32, 1989.

[29] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game.
Nineteenth Annual ACM Symposium on Theory of Computing, pages 218-229.

[30] S. Goldwasser and M. Bellare. Lecture Notes on Cryptography.
Unpublished manuscript, August 2001. available electronically at
http://www-cse.ucsd.edu/~mihir/pa pers/gb.html.

[31] S. Goldwasser and S. Micali. Probabilistic Encryption & how to play mental
poker keeping secret all partial information. In: Proceedings of the 14th STOC,
pages 365–377, 1982.

[32] D. Gruhl, W. Bender, and A. Lu. Echo Hiding. In: Information Hiding: First
International Workshop, pages 295–315, 1996.

[33] J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4), pages 1364-1396,
1999.

[34] N. Hopper, J. Langford and L. Von Ahn. Provably Secure Steganography. Ad-
vances in Cryptology – Proceedings of CRYPTO ’02, pages 77-92, 2002.

[35] Nicholas J. Hopper, John Langford, and Luis von Ahn. Provably Secure Steganog-
raphy. CMU Tech Report CMU-CS-TR-02-149, 2002.

[36] Russell Impagliazzo and Michael Luby. One-way Functions are Essential for
Complexity Based Cryptography. In: 30th FOCS, November 1989.

[37] G. Jagpal. Steganography in Digital Images Thesis, Cambridge University Com-
puter Laboratory, May 1995.

[38] D. Kahn. The Code Breakers. Macmillan 1967.

[39] J. Katz and M. Yung. Complete characterization of security notions for prob-
abilistic private-key encryption. In: Proceedings of 32nd STOC, pages 245–254,
1999.

167

[40] Stefan Katzenbeisser and Fabien A. P. Petitcolas. Information hiding techniques
for steganography and digital watermarking. Artech House Books, 1999.

[41] T. Van Le. Efficient Provably Secure Public Key Steganography IACR e-print
archive report 2003/156, 2003.

[42] Y. Lindell. A Simpler Construction of CCA2-Secure Public Key Encryption.
Advances in Cryptology: EUROCRYPT 2003, Springer LNCS 2656, pages 241-
254. 2003.

[43] K. Matsui and K. Tanaka. Video-steganography. In: IMA Intellectual Property
Project Proceedings, volume 1, pages 187–206, 1994.

[44] T. Mittelholzer. An Information-Theoretic Approach to Steganography and Wa-
termarking In: Information Hiding – Third International Workshop. 2000.

[45] M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols. In: Proceedings of
the 12th Annual ACM/SIAM Symposium on Discrete Algorithms (SODA 2001),
pages 448–457. 2001.

[46] M. Naor, B. Pinkas and R. Sumner. Privacy Preserving Auctions and Mechanism
Design. In: Proceedings, 1999 ACM Conference on Electronic Commerce.

[47] M. Naor and M. Yung. Universal One-Way Hash Functions and their Crypto-
graphic Applications. 21st Symposium on Theory of Computing (STOC 89), pages
33-43. 1989.

[48] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. 22nd Symposium on Theory of Computing (STOC 90), pages
427-437. 1990.

[49] C. Neubauer, J. Herre, and K. Brandenburg. Continuous Steganographic Data
Transmission Using Uncompressed Audio. In: Information Hiding: Second Inter-
national Workshop, pages 208–217, 1998.

[50] N. Nissan. Pseudorandom generators for space-bounded computation. Combi-
natorica 12(1992):449–461.

[51] B. Pinkas. Fair Secure Two-Party Computation. In: Advances in Cryptology –
Eurocrypt ’03, pp 87–105, 2003.

[52] C. Rackoff and D. Simon. Non-interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. Advances in Cryptology: CRYPTO 91, Springer
LNCS 576, pages 433-444, 1992.

[53] L. Reyzin and S. Russell. Simple Stateless Steganography. IACR e-print archive
report 2003/093, 2003.

168

[54] Phillip Rogaway, Mihir Bellare, John Black and Ted Krovetz. OCB: A Block-
Cipher Mode of Operation for Efficient Authenticated Encryption. In: Proceedings
of the Eight ACM Conference on Computer and Communications Security (CCS-
8). November 2001.

[55] J. Rompel. One-way functions are necessary and sufficient for secure signatures.
22nd Symposium on Theory of Computing (STOC 90), pages 387-394. 1990.

[56] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. 40th IEEE Symposium on Foundations of Computer Science
(FOCS 99), pages 543-553. 1999.

[57] J. A. O’Sullivan, P. Moulin, and J. M. Ettinger Information theoretic analysis
of Steganography. In: Proceedings ISIT ‘98. 1998.

[58] C.E. Shannon. Communication theory of secrecy systems. In: Bell System Tech-
nical Journal, 28 (1949), pages 656-715.

[59] G.J. Simmons. The Prisoner’s Problem and the Subliminal Channel. In: Pro-
ceedings of CRYPTO ’83. 1984.

[60] L. Welch and E.R. Berlekamp. Error correction of algebraic block codes. US
Patent Number 4,663,470, December 1986.

[61] A. Westfeld, G. Wolf. Steganography in a Video Conferencing System. In:
Information Hiding – Second International Workshop, Preproceedings. April 1998.

[62] J. Wolfowitz. Coding Theorems of Information Theory. Springer-Verlag, Berlin
and Prentice-Hall, NJ, 1978.

[63] A. C. Yao. Protocols for Secure Computation. Proceedings of the 23rd IEEE
Symposium on Foundations of Computer Science, 1982, pages 160–164.

[64] A. C. Yao. How to Generate and Exchange Secrets. Proceedings of the 27th IEEE
Symposium on Foundations of Computer Science, 1986, pages 162–167.

[65] A. Young and M. Yung. Kleptography: Using Cryptography against Cryptog-
raphy. Advances in Cryptology: Eurocrypt 87, Springer LNCS 1233, pages 62-74,
1987.

[66] J Zollner, H.Federrath, H.Klimant, A.Pftizmann, R. Piotraschke, A.Westfield,
G.Wicke, G.Wolf. Modeling the security of steganographic systems. In: Informa-
tion Hiding – Second International Workshop, Preproceedings. April 1998.

169

