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Abstract

Model checking techniques applied to large industrial circuits suffer from the state
explosion problem. A major technique to address this problem is abstraction. Predicate
abstraction has been applied successfully to large software programs. Applying this
technique to hardware designs poses additional challenges. This paper evaluates three
techniques to improve the performance of SAT-based predicate abstraction of circuits:
1) We partition the abstraction problem by forming subsets of the predicates. The
resulting abstractions are more coarse, but the computation of the abstract transition
relation becomes easier. 2) We evaluate the performance effect of lazy abstraction, i.e.,
the abstraction is only performed if required by a spurious counterexample. 3) We use
weakest preconditions of circuit transitions in order to obtain new predicates during
refinement. We provide experimental results on publicly available benchmarks from
the Texas97 benchmark suite.
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1 Introduction

Formal verification techniques are widely applied in the hardware design industry. In-
troduced in 1981,Model Checking[9, 10] is one of the most commonly used formal
verification techniques in a commercial setting. However, Model Checking suffers
from the state explosion problem. In case of BDD-based symbolic model checking
this problem manifests itself in the form of unmanageably large BDDs [6]. One prin-
cipal method in state space reduction isabstraction. Abstraction techniques reduce the
state space by mapping the set of states of the actual, concrete system to an abstract,
and smaller, set of states in a way that preserves the relevant behaviors of the system.

In the hardware domain, the most commonly used abstraction technique islocal-
ization reduction. The abstract model is created from the given circuit by removing
a subset of the latches together with the logic required to compute their next state.
The latches that are removed are called theinvisible latches. The latches remaining in
the abstract model are calledvisible latches. Intuitively, the visible latches are most
relevant to the property in consideration.

Localization reduction is aconservativeover-approximation of the original circuit.
This implies that if the abstraction satisfies the property,the property also holds on
the original, concrete circuit. The drawback of the conservative abstraction is that
when model checking of the abstraction fails, it may producea counterexample that
does not correspond to any concrete counterexample. This isusually called aspurious
counterexample.

In order to check if an abstract counterexample is spurious,the abstract counterex-
ample is simulated on the concrete machine. This is called thesimulationstep. Like in
Bounded Model Checking (BMC), the concrete transition relation for the design and
the given property are jointly unwound to obtain a Boolean formula. The number of
unwinding steps is given by the length of the abstract counterexample. As in BMC,
the Boolean formula is then checked for satisfiability usinga SAT procedure such as
Chaff [23]. If the instance is satisfiable, the counterexample is real and the algorithm
terminates. If the instance is unsatisfiable, the abstract counterexample is spurious, and
abstraction refinementhas to be performed.

The basic idea of the abstraction refinement techniques is tocreate a new abstract
model which contains more detail in order to prevent the spurious counterexample.
This process is iterated until the property is either provedor disproved. It is known
as theCounterexample Guided Abstraction Refinementframework, or CEGAR for
short [22, 2, 7, 14]. In case of localization reduction, the refinement is done by moving
more latches from the set of invisible latches to the set of visible latches.

In the software domain, the most successful abstraction technique for large systems
is Predicate abstraction[16, 13]. It abstracts data by only keeping track of certain
predicates on the data. Each predicate is represented by a Boolean variable in the
abstract program, while the original data variables are eliminated.

While localization reduction is a special case of predicateabstraction, predicate
abstraction can result in a much smaller abstract model. As an example, assume a
circuit contains two sets of latches, each encoding a number. Predicate abstraction can
keep track of a numerical relation between the two numbers using a single predicate,
and thus, using a single state bit in the abstract model. In contrast to that, localization
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reduction typically turns all the bits in the two words into visible latches, and thus, the
abstraction is identical to the original model.

Predicate abstraction of ANSI-C programs in combination with counterexample
guided abstraction refinement was introduced by Ball and Rajamani [2] and promoted
by the success of the SLAM project [1]. The goal of this project is to verify that Win-
dows device drivers obey API conventions. The abstraction of the program is computed
by using a theorem prover such as Simplify [15] or Zapato [4].

When applying predicate abstraction to circuits, two problems arise: Most model-
checkers used in the hardware industry use a very low level design, usually a net-list, for
verification purposes. However, predicate abstraction is only effective if the predicates
can cover the relationship between multiple latches. This typically requires a word
level model given in register transfer language (RTL), e.g., in Verilog. The RTL level
languages are similar to languages used in the software domain, such as ANSI-C.

The second problem concerns with the use of theorem provers for computing the
predicate abstraction. Theorem provers model the variables using unbounded integer
numbers. Overflow or bit-wise operators are not modeled. However, hardware descrip-
tion languages like Verilog provide an extensive set of bit-wise operators. For hardware
design, the use of these bit-level constructs is ubiquitous.

In [12], a SAT-based technique for predicate abstraction ofcircuits given in Ver-
ilog is introduced. The first step is to obtain predicates from the control flow guards
in the Verilog file. The circuit is then synthesized and transformed into net-list-level.
The use of a SAT solver like ZChaff [23] in order to perform theabstraction allows to
support all bit-level constructs. However, there approachsuffers from two drawbacks.
1) Each transition in the abstract model is computed by a new SAT solver run. Thus,
the learning done by a SAT solver in the form of conflict clauses is lost when com-
puting other transitions. 2) If refinement becomes necessary, only bit-level predicates
are introduced. This way of refinement closely resembles refinement techniques for
localization reduction. In contrast to that, predicate abstraction tools for software, such
as SLAM, use weakest preconditions to derive new word-levelpredicates.

Predicate abstraction tools for software predicate abstraction use multiple heuristics
in order to reduce the cost of calling the theorem prover while computing the abstrac-
tion. The SLAM tool limits the number of predicates in a particular query, i.e., it
partitions the set of predicate into smaller subsets. This speeds up the abstraction pro-
cess, but the resulting abstraction contains additional spurious behavior. If the SLAM
toolkit encounters a spurious counterexample, it first assumes that it is caused by a lack
of predicates, and attempts to find new predicates. If no new predicates are found, the
counterexample is caused by the partitioning of the predicates during the abstraction.
In this case, a separate refinement algorithm (called Constrain [3]) is invoked. Note that
this step only addresses spurious behavior due to an inexactabstraction, as opposed to
spurious behavior caused by insufficient predicates.

Software predicate abstraction tools abstract the individual statements or basic
blocks separately. Thus, only a small number of predicates is typically affected, and a
syntactic predicate partitioning works well. In contrast to that, even RTL-level circuits
are monolithic. Each transition consists of simultaneous assignments to all latches.
Thus, the syntactic partitioning of the predicates might result in no reduction of the
number of predicates.
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In the BLAST toolkit [17], the abstraction is completely demand-driven. It is only
performed when a spurious counterexample is encountered. The abstraction is only
performed to the extent necessary to remove the spurious behavior. This is calledlazy
abstraction.

Contribution This paper applies three techniques from the software predicate ab-
straction domain to the abstraction of circuits given in Verilog RTL. We partition the
given set of predicates into clusters of related predicates. The abstraction is computed
separately with respect to the predicates in each cluster. Since each cluster contains
only a small number of predicates, the computation of the abstraction becomes easier.

As described above, the highly concurrent nature of hardware limits the benefits of
this technique. We therefore also evaluate lazy abstraction in the context of predicate
abstraction for circuits.

When a spurious counterexample is encountered, we first check whether it is caused
by insufficient predicates or caused by the lazy abstraction. If the counterexample is
caused by lazy abstraction, we compute the unsatisfiable core of the SAT instance cor-
responding to one abstract transition. We use the unsatisfiable core in order to extract
a small set of predicates that eliminates the counterexample. The fewer predicates are
found, the more spurious counterexamples can be eliminated.

If the spurious counterexample is caused by insufficient predicates, we use a refine-
ment technique used by software predicate abstraction tools: we compute the weakest
precondition of the property with respect to the transitionfunction given by the circuit.
In order to ensure that the predicates generated do not become too large, we simplify
the weakest pre-conditions using values from the spurious counterexample. To the best
of our knowledge, this is the first time weakest preconditions of circuits are used for
refinement of predicate abstractions.

We formally describe the semantics of the Verilog subset we are handling. We
report experimental results using benchmarks from the Texas97 benchmark suite.

Related work In [12], SAT-based predicate abstraction is applied to hardware veri-
fication. The authors present two SAT-based algorithms to refine the abstract models.
They distinguish spurious transitions (caused by incomplete abstraction) and spurious
counterexamples (caused by insufficient predicates). Spurious transitions are elimi-
nated by constraining the abstract model, while spurious counterexamples are elimi-
nated by adding newseparatingpredicates. In contrast to our work, they carry out the
predicate abstraction of the net-lists using bit-level predicates.

Henzinger et al. [18] present a technique for constructing parsimonious abstractions
of C programs using proofs of unfeasibility of abstract counterexamples. A predicate
abstraction is parsimonious if at each control location, ittracks only those predicates
which are required for proving correctness. They report that on the average the number
of predicates tracked at each control location are quite small. However, they make
use of a theorem prover for computing the abstractions and donot deal with bit-wise
constructs.

In [11], a SAT solver is used to compute an abstraction of an ANSI-C program.
The main idea is to form a SAT equation containing all the predicates, a basic block,
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and two symbolic variables for each predicate, one variablefor the state before the
execution of the basic block, and one variable for the state after its execution. The SAT
solver is then used to obtain all satisfying assignments in terms of the the symbolic
variables. However, the runtime of this process typically grows exponentially in the
number of predicates. The technique has also been applied toSpecC [20], which is a
concurrent version of ANSI-C.

In [12], spurious transitions are eliminated by generatinga constraint from SAT
basedconflict-analysis. Since conflict analysis is used by a SAT solver for generating
an unsatisfiable core, our use of unsatisfiable cores is similar to the approach in [12].
In [21], the unsatisfiable cores are used for extracting small abstracted formulas within
an abstraction refinement loop for deciding the satisfiability of Presburger formulas.

Outline In section 2, we formalize the semantics of the subset of Verilog that we han-
dle. Section 3 describes SAT-based predicate abstraction with the help of an example.
Techniques for partitioning the given set of predicates is given in Section 4. We present
techniques for abstraction refinement in section 5. Finally, we report experimental re-
sults in section 6.

2 Formal Semantics of Verilog RTL

The Verilog hardware description language is used to model digital circuits at various
levels, ranging from high-level behavioral Verilog to low-level net-lists. The Verilog
standard [19] describes the semantics of the Verilog language informally by means of
a discrete event execution model.

We formalize the Verilog semantics for a particular specialcase: synthesizable
Verilog with one single clockclk. We assume the clock is only used within either
posedge or negedge event guards, but not both. The edge descriptor is denoted by
E clk.

We use the following formalism to model the concrete circuit: A transition system
T = (S, I ,R) consists of a set of statesS, a set of initial statesI ⊆ S, and a transition
relationR, which relates a current states∈ S to a next-states′ ∈ S.

We assume that the module structure of the design is already flattened. Lets be a
Verilog module item. A Verilog module item can either be a continuous assignment, or
aninitial or analways block.

Continuous assignment Only one continuous assignment per network is allowed.
Let wi be the network that is assigned by continuous assignmenti, andei the value that
is assigned. For each such continuous assignment, we add theconstraintwi = ei to A:

A :=
∧

i

wi = ei

Initial and Always The statements in theinitial andalways blocks define the
initial values of latches and the transition function (nextstate function) of the latches.

4



Note thatalways blocks can also be used to define combinational logic. Consider the
following example:

reg r;
input i;

always @(i) r=!i;

This defines combinational logic:r is the negation of the inputi. There will be no
latch corresponding tor in the circuit. On the other hand, the following example
illustrates the case of a latch:

reg [31:0] r;
input clk;

always @(posedge clk) r=r+1;

Let V denote the set of variables, as given in the Verilog file. We distinguish the two
cases by examining the events given as event guards. If the clock eventE clk is used
to guard an assignment to a register, it is considered to be a latch, and combinational
logic otherwise. LetL ⊆ R denote the set of true latches. The set of statesS of the
state machine is then defined to be

S := {0,1}|L|

For a states∈ S, we denote the value of an expressione in that particular state bys(e).
The set of variables that are not latches is denoted byC :

C := V \L

In order to define the semantics of the statements in theinitial andalways
blocks, we define the notion of aprocess state. A process stateφ is a mapping from the
variablesr ∈ V into a pair of expressions. We denote the first member of the pair by
φc(r) and the second member of the pair byφ f (r). The expressionφc(r) is called the
current value, while φ f (r) is called thefinal valueof r.

The two differ in order to distinguish non-blocking assignments from blocking as-
signments. Non-blocking assignments only update the final value, but not the current
value, while blocking assignments update both.

For an expressione, φc(e) denotes the evaluation ofe in the current stateφc, i.e., all
variablesv that are found ineare replaced byφc(v).

We aim at obtaining the state after the execution of the statements. For this, we
define the functionσ(φ, p). The function takes a process stateφ and statementp as
argument and returns the new process state after the execution of p. Formally, the
function is defined by means of a case-split onp.

• If p is anif statement with then-branchp′ and else branchp′′, the functionσ is
applied recursively top′ and p′′. The value of the branching guardg evaluated
in the stateφc is used to select the correct branch.

σ(φ,if(g) p′ else p′′) :=

{

σ(φ, p′) : φc(g)
σ(φ, p′′) : otherwise
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• If p is a sequential composition ofp′ andp′′ (by means of abegin end block),
then the function is first applied top′ using the process stateφ. The process state
resulting from this is passed to the application of the function σ to p′′.

σ(φ, p′;p′′) := σ(σ(φ, p′), p′′)

• If p is a blocking assignment of some expressione to registerr, then the new
state is the old state where both the current and the final value of r is the value of
the expression evaluated in the current state.

σ(φ, r=e) := λx∈ R :

{

(φc(e),φc(e)) : r = x
φ(x) : otherwise

• If p is a non-blocking assignment of some expressione to registerr, then the new
state is the old state where the final value ofr (the second member of the pair) is
the value of the expression evaluated in the current state. The current value ofr
(the first member of the pair) remains unchanged.

σ(φ, r<=e) := λx∈ R :

{

(φc(r),φc(e)) : r = x
φ(x) : otherwise

• If p is an event guard statement@(G) p′ or a delay statement#d p′, we simply
recursively applyσ to p′.

σ(φ,@(G) p′) := σ(φ, p′)

σ(φ,#d p′) := σ(φ, p′)

Initial State Let pI denote all the statements ininitial blocks. The process state
before the execution of any statement is denoted byιI . It is undefined, i.e., no as-
sumption about the value of any register is made unless it is explicitly initialized. The
process state after the execution ofpI is denoted byΦI :

ΦI := σ(ιI , pI )

The set of initial statesI is defined as follows: for each latchr ∈ L, we require that
the initial value ofr is the final value ofr after the execution ofpI .

I := {s∈ S|
∧

r∈L

s(r) = ΦI
f (r)}

Next State Let pR denote all the statements inalways blocks. The process state
before the execution of any statement is denoted byιR, which assigns the previous
value to all latchesr ∈ L. It is undefined for the variablesv ∈ C that are used for
combinational logic only.

∀v∈ L : ιR(v) := (v,v)
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The process state after the execution ofpR is denoted byΦR:

ΦR := σ(ιR, pR)

The transition relationR(s,s′) is defined as follows: for each latchv∈L, we require
that the next state value ofv is the final value ofv after the execution ofpR. For each
variablev ∈ C , we require that the current state value ofv is the final value ofv after
the execution ofpR. Also, we add the constraintsA defined above for the continuous
assignments as requirement for the current state.

R(s,s′) :=
∧

v∈L s′(v) = s(ΦR
f (v))

∧
∧

v∈C s(v) = s(ΦR
f (v))

∧ s(A)

Example To illustrate the difference between a blocking assignmentand a non-blocking
assignment, consider the following example:

reg r, q;
input clk;

always @(posedge clk) begin
r<=q;
q<=r;

end

When applyingσ to the two non-blocking assignments above, we obtain

ΦR(r) = q

ΦR(q) = r

and thus,r andq are swapped. If the non-blocking assignments are replaced by block-
ing assignments, we obtain a different result:

ΦR(r) = q

ΦR(q) = q

Notation In order to compute word-level predicates, we group the latches inL de-
fined above into word-level registers. The latches that are grouped are the latches given
by a single declaration in Verilog. LetR = {r1, . . . , rn} denote the set of registers.
For example, the state of the Verilog program in Fig. 1 is defined by the value of the
registersx andy, and each of them has a storage capacity of 8 bits.

Note that we consider the external inputs to be registers without a next-state func-
tion. Let Q ⊆ R denote the set of registers that are not external inputs, i.e., have a
next-state function. We denote the next-state function of aword-level registerr i ∈ Q
by fi(r1, . . . , rn), or fi(r̄) using vector notation. Any occurrences of network identifiers
(continuous assignments) or combinatorial registers are replaced by their respective
value.
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module main (clk);
input clk;
reg [7:0] x,y;

initial x = 1;
initial y = 0;

always @ (posedge clock) begin
y <=x;
if (x<100) x<=y+x;

end
endmodule

Figure 1:A Verilog program.

Using the word-level next-state functionsfi , the transition relation defined above
can be re-written.R(r̄ , r̄ ′) relates the current state ¯r ∈Sto the next state ¯r ′ and is defined
as follows:

R(r̄, r̄ ′) :=
∧

r i∈Q

(r ′i ⇔ fi(r̄))

For example, the next state function for the registerx in Fig. 1 is given as follows:
if the value ofx in the current state is less than 100, then the value ofx in the next state
is equal to the sum of current values ofx andy, that isx+y. If the value ofx is greater
than or equal to 100, then the value ofx in the next state remains unchanged. The value
of y in the next state is equal to the value ofx in the current state. We use the trinary
choice operatorc?g : h to denote a function which evaluates tog when the conditionc
is true, otherwise it evaluates toh. Thus, the next state functions forx andy and the
transition relation are given as follows:

fx(x,y) := ((x < 100) ? (x+y) : x)

fy(x,y) := x

R(x,y,x′,y′) := (x′ = ((x < 100) ? (x+y) : x))∧ (y′ = x)

Note that we do not flatten the registersx,y to individual bits. Thus, we have a
next state function for the whole registersx,y and not for the individual bits inx,y.

3 Predicate Abstraction

In predicate abstraction [16], the variables of the concrete program are replaced by
Boolean variables that correspond to a predicate on the variables in the concrete pro-
gram. These predicates are functions that map a concrete state r̄ ∈ S into a Boolean
value. LetB = {π1, . . . ,πk} be the set of predicates over the given program. When
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x=1
y=0

x=1
y=1

x=144
y=144

x=144
y=89y=55

x=89x=2
y=1

Figure 2:The value ofx andy in different states

applying all predicates to a specific concrete state, one obtains a vector of Boolean val-
ues, which represents an abstract stateb̄. We denote this function byα(r̄). It maps a
concrete state into an abstract state and is therefore called anabstraction function.

We perform an existential abstraction [8], i.e., the abstract model can make a tran-
sition from an abstract statēb to b̄′ iff there is a transition from ¯r to r̄ ′ in the concrete
model and ¯r is abstracted tōb and ¯r ′ is abstracted tōb′. We call the abstract machine
T̂, and we denote the transition relation ofT̂ by R̂.

R̂ := {(b̄, b̄′) |∃r̄, r̄ ′ ∈ S: R(r̄, r̄ ′)∧
α(r̄) = b̄∧α(r̄ ′) = b̄′}

(1)

The abstraction of a safety propertyP(r̄) is defined as follows: for the property to
hold on an abstract statēb, the property must hold on all states ¯r that are abstracted to
b̄.

P̂(b̄) : ⇐⇒ ∀r̄ ∈ S: (α(r̄) = b̄) =⇒ P(r̄)

The same abstraction is also used for the initial stateI(r̄). Thus, if P̂ holds on
all reachable states of the abstract model,P also holds on all reachable states of the
concrete model.

Example Consider the Verilog program in Fig. 1. We wish to show that the value of
the registerx is always less than 200. That is, we want to prove that the given program
satisfies the safety propertyAG(x < 200), whereAG is a CTL operator which stands
for always globally. Intuitively, the property holds because the value ofx follows a
sequence starting from 1 to 144. Upon reaching the value 144,the guard in the next
state function forx becomes false, and its value remains unchanged. The values of x
andy in each state are shown in Fig. 2.

We follow the counterexample guided abstraction refinement(CEGAR) framework
in order to prove this property. The first step of the CEGAR loop is to obtain an
abstraction of the given program. We use predicate abstraction for this purpose.

SAT based predicate abstraction Most tools using predicate abstraction for veri-
fication use general-purpose theorem provers such as Simplify [15] to compute the
abstraction. This approach suffers from the fact that errors caused by bit-vector over-
flow may remain undetected. Furthermore, bit-vector operators are usually treated by
means of uninterpreted functions. Thus, properties that rely on these bit-vector op-
erators cannot be verified. However, we expect that Verilog designs typically use an
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abundance of bit-vector operators, and that the property ofinterest will depend on these
operations.

In [11], the authors propose to use a SAT solver to compute theabstraction of a
sequential ANSI-C program. This approach supports all ANSI-C integer operators,
including the bit-vector operators. We use a similar technique for computing the ab-
straction of the Verilog programs.

A symbolic variablebi is associated with each predicateπi . Each concrete state
r̄ = {r1, . . . , rn} maps to an abstract statēb = {b1, . . . ,bk}, wherebi = πi(r̄). If the
concrete machine makes a transition from state ¯r to state ¯r ′ = {r ′1, . . . , r

′
n}, then the

abstract machine makes a transition from stateb̄ to b̄′ = {b′1, . . . ,b
′
k}, whereb′i = πi(r̄ ′).

The formula that is passed to the SAT solver directly followsfrom the definition of
the abstract transition relation̂Ras given in equation 1:

R̂ = {(b̄, b̄′) | ∃r̄, r̄ ′ : Γ(r̄ , r̄ ′, b̄, b̄′)} (2)

Γ(r̄, r̄ ′, b̄, b̄′) :=
k

∧

i=1

bi = πi(r̄) ∧ R(r̄, r̄ ′) ∧
k

∧

i=1

b′i = πi(r̄
′) (3)

The set of abstract transitionsR̂ is computed by transformingΓ(r̄ , r̄ ′, b̄, b̄′) into con-
junctive normal form (CNF) and passing the resulting formula to a SAT solver. Sup-
pose the SAT solver returns ¯r , r̄ ′, b̄, b̄′ as the satisfying assignment. We project out all
variables but̄b andb̄′ from this satisfying assignment to obtain one abstract transition
(b̄, b̄′). Since we want all the abstract transitions, we add a blocking clause to the SAT
equation that eliminates all satisfying assignments with the same values for̄b andb̄′.
This process is continued until the SAT formula becomes unsatisfiable. The satisfying
assignments obtained form the abstract transition relation R̂. As described in [11], there
are numerous ways to optimize this by computation. These techniques are beyond the
scope of this article.

An abstract statēb is an initial state in the abstract model, if there exists a concrete
state ¯r which is an initial state in the concrete model and maps tob̄.

Î = {b̄ | ∃r̄ :
k

∧

i=1

bi = πi(r̄) ∧ I(r̄)} (4)

Using this definition, the abstract set of initial states canbe enumerated by using a
SAT solver.

Example: Continuing our example, the concrete transition relation of the Verilog
program in Fig. 1 is given as follows:

R(x,y,x′,y′) := (x′ ⇔ ((x < 100) ? (x+y) : x))∧ (y′ ⇔ x)

We want to prove that the concrete system (Verilog program) satisfiesAG(x <
100). In order to perform predicate abstraction we need a set of predicates. For our
example, we take{x< 200,x< 100,x+y< 200} as the set of predicates. We associate
symbolic variablesb1, b2, b3 with each predicate, respectively. The following equation
is converted to CNF and passed to a SAT solver:

(b1 ⇔ (x < 200)) ∧ (b2 ⇔ (x < 100)) ∧ (b3 ⇔ (x+y< 200))∧
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MODULE main

VAR b1: boolean; //stands for x<200
VAR b2: boolean; //stands for x<100
VAR b3: boolean; //stands for x+y<200

INIT (b1 & b2 & b3)

TRANS (b1 & !b2 & !b3 & next(b1) & !next(b2) & !next(b3)) |
(b1 & b2 & !b3 & !next(b1) & !next(b2)) |
(b1 & b2 & b3 & next(b1) & next(b3)) |
(b1 & !b2 & next(b1) & !next(b2) & next(b3)) |
(!b1 & !b2 & !next(b1) & !next(b2)) |
(b1 & b3 & next(b1) & !next(b2) & !next(b3))

SPEC AG (b1)

Figure 3: Abstraction of Verilog program in Fig. 1 using predicatesx < 200, y < 100, and
x+ y < 200. The output is in the format accepted by NuSMV model checker. It is generated
automatically by our tool.

111 101

100 110

000 001

Figure 4:Finite state machine for abstract model in Fig. 3. Abstract states 010 and 011 are not
possible, as this would requirex < 200 to be false andx < 100 to be true in the same state.

R(x,y,x′,y′) ∧

(b′1 ⇔ (x′ < 200)) ∧ (b′2 ⇔ (x′ < 100)) ∧ (b′3 ⇔ (x′ +y′ < 200)

The abstract transition relation obtained is given by theTRANS statement in Fig. 3.
It is a disjunction of cubes. The cube (b1& !b2& !b3& next(b1)& !next(b2)
& !next(b3)) gives the transition from the abstract state in whichb1 is true andb2,
b3 are false to the same abstract state (100→ 100 for short). Intuitively, this abstract
transition is possible becauseb2 = 0 in the current abstract state, which means that
x ≥ 100 in the concrete system. So the value of the registerx in the next state (x′)
is x and the value of the predicatesx < 200 andx < 100 in the next state remains un-
changed. The value of registery becomes equal tox, soy′ = x. Even though bothx′ and
y′ range between 100 and 200,x′ +y′ can be less than 200, due to arithmetic overflow.
Thus, the transition 100→ 100 is possible. The other possible transitions are shown in
Fig. 4.
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The equation passed to the SAT solver for computing the initial set of abstract states
is as follows:

(b1 ⇔ (x < 200)) ∧ (b2 ⇔ (x < 100)) ∧ (b3 ⇔ (x+y< 200))∧

(x = 1) ∧ (y = 0)

The abstract set of initial states produced is given by theINIT statement in Fig. 3.
There is only one abstract initial state in which all the boolean variablesb1,b2,b3 are
true.

The propertyAG(x < 100) is abstracted by using the boolean variableb1 for the
predicate(x < 100). The abstracted property is given by theSPEC statement in the
Fig. 3. The abstract model satisfies the propertyAG (b1), as the only states reachable
from the initial abstract state (111) are{111,101,100} (Fig. 4). Since the property
holds on the abstract model, we can conclude that the property AG(x < 100) holds on
the Verilog program in Fig. 1.

This examples demonstrates the advantage of working with word-level predicates,
such asx+ y < 200. Even if the sizes of the registersx,y are increased, only 3 word-
level predicates are needed for proving the property. This is not the case with the ap-
proach presented in [12], where the design is flattened to thenet-list level and predicate
abstraction is carried out using bit-level predicates.

4 Predicate Partitioning

4.1 Computing Multiple Abstract Transition Relations

We call the computation of the exact existential abstraction as described in the pre-
vious section theMonolithic approach. In the worst case, the number of satisfying
assignments generated from equation (3) is exponential in the number of predicates. In
practice, computing abstractions using the monolithic approach can be very slow even
for a small number of predicates.

The speed of the computation of the abstraction can be improved if we do not aim at
the the most precise abstract transition relation. That is,we allow our abstraction to be
an over-approximation of the abstract transition relationgenerated by the monolithic
approach. The SLAM toolkit, for example, limits the number of predicates in each
theorem prover query. Thus, the set of the predicates and their next-state state versions
is partitioned into smaller sets of related predicates. We call these sets clusters, and
denote them byC1, . . . ,Cl , with Cj ⊆ {π1, . . . ,πk,π′

1, . . . ,π′
k}.

The equation for abstracting the transition system with respect toCj is given as
follows:

∧

πi∈Cj

bi = πi(r̄) ∧ R(r̄, r̄ ′) ∧
∧

π′i∈Cj

b′i = πi(r̄
′)

We abstract the transition system with respect to each cluster. This results in a total
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of l abstract transition relationŝR1, . . . ,R̂l , which are conjuncted to form̂R:

R̂ :=
l

∧

i=1

R̂i (5)

Intuitively, we obtain an over-approximation because now each SAT equation will
have fewer predicates and hence less information about the variables of concrete sys-
tem. We refer to this technique aspredicate partitioning. We evaluate two different
syntactic predicate partitioning techniques,cone partitioningand partitioning forlazy
abstraction.

Let var(e) denote the set of variables appearing in an expressione. For example,
var(x′ +y′ < 200) is {x′,y′}.

In [7], two formulasg1 andg2 are said to interfere iffvar(g1)∩var(g2) 6= /0. The au-
thors use this notion of interference to partition the set offormulas into various formula
clusters. This technique can be used for partitioning the set of predicates. However,
our experiments indicate that this results in clusters thatare too large. Thus, we make
the syntactic conditions for keeping the two predicates together stronger, which leads
to a smaller number of predicates per cluster.

Syntactic cone partitioning Given a formulag′ in terms of next state variables ¯r ′, the
current state variables ¯r that affect the value of the variables invar(g′) are denoted by
cone(g′). The set of variablescone(g′) is similar to one step of cone of influence. It is
defined as follows: The variables in the next-state functions for the registers mentioned
in g′ form the cone ofg′. Recall that the next-state function of a particular register r i is
given by fi(r̄).

cone(g′) :=
⋃

r ′i∈var(g′)

var( fi(r̄))

For example, letg′ bea′+b′ < c′. Let the next state functions fora′,b′,c′ bea+b,
c, i +x, respectively. Here,var(g′) = {a′,b′,c′} andcone(g′) = {a,b,c, i,x}.

The clusters of the predicates and their next-state versions {π1, . . . ,πk,π′
1, . . . ,π′

k}
are created by the following steps:

1. The next-state predicates that have identical cone sets are kept in a single cluster.
That is, ifcone(πi

′) = cone(π j
′) thenπi

′ andπ j
′ are kept in the same cluster. Let

C′
1, . . . ,C

′
l be the clusters of{π′

1, . . . ,π′
k} obtained after this step. Since all the

predicates in a given clusterC′
i have the same cone, we definecone(C′

i ) as the
cone of any element inC′

i .

2. The final set of clusters is given by{C1, . . . ,Cl}. EachCi contains all the next-
state predicates fromC′

i and the current-state predicates that mention variables
in the cone ofC′

i . Formally,Ci is defined as follows:

Ci := C′
i ∪ {π j | var(π j) ⊆ cone(C′

i )}
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Example: Let the set of current-state and next-state predicates be{x < 200,y =
100,z > 100,x′ < 200,y′ = 100,z′ > 100}. Let the next state functions be as fol-
lows: x′ = y+ z, y′ = x, andz′ = x. After the first step of the algorithm the clusters
will be C′

1 = {x′ < 200} andC′
2 = {y′ = 100,z′ > 100}. The predicatesy′ = 100 and

z′ > 100 are kept in the same cluster, as they have the identical cone set{x}. Since
cone(C′

1) = {y,z} andcone(C′
2) = {x}, the clusters obtained after the second step of the

algorithm areC1 = {y= 100,z> 100,x′ < 200} andC2 = {x< 200,y′ = 100,z′ > 100}.
Observe how the predicates in a given cluster affect each other. For example, inC2,

if x < 200 is false, then we know thaty′ = 100 will be false and andz′ > 100 will be
true in the next state.

Let R(x,y,z,x′,y′,z′) denote the transition relation. If we associate the symbolic
variablesb1, b2, b3, b′1, b′2, b′3 with the predicatesx < 200,y = 100,z > 100,x′ <
200,y′ = 100, andz′ > 100, respectively, then the equation for abstracting the tran-
sition relation with respect toC2 is as follows:

(b1 ⇔ (x < 200)) ∧ R(x,y,z,x′,y′,z′) ∧

(b′2 ⇔ (y′ = 100)) ∧ (b′3 ⇔ (z′ > 100))

The above equation has 4 satisfying assignments forb1,b′2,b
′
3. The abstraction

usingC1 produces 8 satisfying assignments forb2,b3,b′1. Thus, the total number of
satisfying assignments generated is 12. On the other hand, the monolithic approach
will keep all the predicates together, resulting in 32 assignments. This example shows
the advantage of predicate partitioning. In this example, it turns out that even with par-
titioning the abstraction obtained is same as that computedby the monolithic approach.
Since cone partitioning attempts to keep all related predicates together, the abstractions
produced are not much coarser than those produced by the monolithic approach. How-
ever, in general there is no bound on the number of predicatesin a given cluster. In the
worst case there might be a cluster containing most of the current-state and next-state
predicates.

4.2 Syntactic Partitioning for Lazy Abstraction

The idea of lazy abstraction [17] is to defer the abstractionuntil required by a spurious
counterexample. We therefore use a very inexpensive syntactic partitioning to compute
a very coarse initial abstraction. This is done to compute initial abstractions of large
circuits quickly.

There are many ways to perform a partitioning for lazy abstraction. One simple
technique is to createk clusters, each containing exactly one current-state predicate
πi. We follow a variant of this technique: all current-state predicates that contain the
same set of variables are kept in the same partition. That is,if var(πi) = var(π j), then
πi andπ j are kept in the same partition. This is useful if the given setof predicates
contains many mutually exclusive (or related) predicates such asx = 1,x = 2,x = 3.
Keeping these predicates in separate clusters will result in an exponential number of
contradicting abstract states, such as an abstract state inwhich bothx= 1 andx= 2 are
true. The next-state predicates are not used for computing the abstraction.
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As an example, let the set of current-state predicates be{x < 200,x = 100,y =
100,z> 100}. The clusters produced for lazy abstraction areC1 = {x< 200,x= 100},
C2 = {y = 100}, C3 = {z> 100}.

Once the abstraction of the concrete system is obtained, we model-check it using
the NuSMV model-checker. Fig. 3 shows an abstract model. If the abstract model
satisfies the property, the property also holds on the original, concrete circuit. If the
model checking of the abstraction fails we obtain a counterexample from the model-
checker. In order to check if an abstract counterexample corresponds to a concrete
counterexample, asimulationstep is performed. This is done using the standard tech-
nique of bounded model checking [5]. If the counterexample cannot be simulated on
the concrete model, it is called aspurious counterexample. The elimination of spurious
counterexamples from the abstract model is described in thenext section.

5 Abstraction Refinement

5.1 Spurious Transitions and Spurious Prefixes

When refining the abstract model, we distinguish between twocases of spurious be-
havior, as done in [12]:

1. Spurious transitionsare abstract transitions which do not have any correspond-
ing concrete transitions. By definition, spurious transitions cannot appear in the
most precise abstraction as computed by the monolithic approach. However, as
we noted earlier, computing the most precise abstract modelis expensive and
thus, we make use of the various partitioning techniques. These techniques can
typically result in many spurious transitions.

2. Spurious prefixesare prefixes of the abstract counterexample that do not have
a corresponding concrete path. This happens when the set of predicates is not
rich enough to capture the relevant behaviors of the concrete system, even for the
most precise abstraction.

In contrast to SLAM, we first check whether any transition in the abstract trace
is spurious or not. If a spurious transition is found, it is eliminated from the abstract
model by adding a constraint. If all the transitions in the abstract trace are not spurious,
then new predicates are generated by computing the weakest precondition of the given
property with respect to the transition function of the circuit. Fig. 5 shows how our
abstraction and refinement loop differs from that of SLAM.

An abstract counterexample is a sequence of abstract statess̄(1), . . . , s̄(l), where
each abstract state ¯s( j) corresponds to a valuation of thek predicatesπ1, . . . ,πk. The
value ofπi in a state ¯s is denoted by ¯si . We useπ′

i to denote the next state version ofπi .
In order to check if an abstract transition ¯s to t̄ can be simulated on the concrete

model, we create a SAT instance given by the following equation:

k
∧

i=1

πi = s̄i ∧ R(r̄, r̄ ′) ∧
k

∧

i=1

π′
i = t̄i
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Figure 5:Abstraction refinement loop in (A) SLAM, (B) in [12] and this paper.

The equation above is transformed into CNF and passed to a SATsolver. If the SAT
solver detects the equation to be satisfiable, the abstract transition can be simulated on
the concrete model. Otherwise, the abstract transition is spurious. In this case, the
spurious transition can be removed from the abstract model by adding a constraint to
the abstract model.

5.2 Refining spurious transitions

When generating the CNF instance for the simulation of the abstract transition ¯s to t̄, we
store the mapping of each predicateπi , π′

i to the corresponding literall i , l ′i in the CNF
instance. If the abstract transition is spurious, the CNF instance is unsatisfiable. In this
case, we make use of the ZChaff SAT solver [25] for extractingan unsatisfiable core
from the given CNF instance. Anunsatisfiable coreof a CNF instance is a subset of
the original set of clauses that is also unsatisfiable. Current state-of-the-art SAT-solvers
like ZChaff [23] are quite effective at producing very smallunsatisfiable cores.

Let us denote the set of current-state predicates whose corresponding CNF literal
l i appears in the unsatisfiable core asX. We have a similar set for the next-state predi-
cates, which we callY. Intuitively, the predicates inX andY taken together are suffi-
cient to prove that the abstract transition ¯s to t̄ is spurious. All the abstract transitions
where the predicates inX andY have the same truth value as given by the states ¯s and
t̄, respectively are spurious. These spurious transitions are eliminated by adding a con-
straint to the abstract model. Letbi andb′i be the variables used for the predicatesπi

andπ′
i in the abstract model. The constraint added to the abstract model is as follows:

¬(
∧

πi∈X

bi = s̄i ∧
∧

π′i∈Y

b′i = t̄i)
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Example: Consider the abstract transition from ¯s= {b1 = 0,b2 = 0,b3 = 1,b4 = 1}
to t̄ = {b′1 = 0,b′2 = 0,b′3 = 0,b′4 = 0}, whereb1, b2, b3, andb4 correspond to the
predicatesx= 1,x= 2, y= 1, y= z, respectively. Let the next state functions bex′ = z,
y′ = x, z′ = y. Observe that in the state ¯s, the predicatesy = 1 andy = z are true and
thus,z= 1. This implies thatx′ = 1 andb′1 must hold int̄. However,b′1 is false int̄
and thus, the abstract transition from ¯s to t̄ is spurious. This counterexample can be
eliminated by adding the following constraint to the abstract model:

¬(¬b1∧¬b2∧b3∧b4∧¬b′1∧¬b′2∧¬b′3∧¬b′4)

However, the above constraint removes just one spurious transition. By making use
of an unsatisfiable core, we can make the constraint more general, thereby eliminating
many spurious transitions at the same time. In this example,the cause of the spurious
behavior is due tob3 = 1,b4 = 1, andb′1 = 0. The unsatisfiable core technique described
above will discover this fact. Now we can eliminate this abstract counterexample and
31 more spurious transitions by adding the following constraint to the abstract model:

¬(b3∧b4∧¬b′1)

In practice, we observe that the constraints generated using the unsatisfiable cores
are very small (of size 5 to 6), as compared to the total numberof current-state and next-
state predicates. Thus, this technique is very effective inremoving multiple spurious
transitions.

5.3 Refining spurious prefixes

In [12], the elimination of spurious prefixes is done by adding a monolithic bit-level
predicate. This predicate is called aseparatingpredicate and is computed by using a
SAT based conflict dependency analysis. In contrast, we makeuse of weakest precon-
ditions as done in software verification. We generate new word-level predicates from
the weakest pre-condition of the given property with respect to the transition function
given by the RTL level circuit.

Weakest pre-conditions In software verification, the weakest pre-conditionwp(st,γ)
of γ is usually defined with respect to a statementst (e.g., an assignment). It is the
weakest formula whose truth before the execution ofst entails the truth ofγ after st
terminates. In case of hardware, each state transition can be viewed as a statement
where the registers are assigned values according to their next-state functions.

Recall that the set of registers that have a next-state function is denoted byQ . For
example, external inputs do not appear in this set. The next-state function for register
r i ∈Q is given byfi(r̄). We usef̄ to denote the vector of the next state functions for the
registers inQ . For any expressione, the expressione[x̄/ȳ] denotes the simultaneous
substitution of eachxi in e by yi from ȳ. Note thatxi and yi might themselves be
expressions.

The weakest precondition of the propertyγ(r̄) with respect to one concrete transi-
tion is defined as follows:

wp1( f̄ ,γ(r̄)) := γ(r̄) [r̄/ f̄ ]
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The weakest precondition with respect toi consecutive concrete transitions is de-
fined inductively as follows:

wpi( f̄ , γ)) := wp1( f̄ , wpi−1( f̄ , γ)) (i > 1)

In order to refine a spurious prefix of lengthl > 0, we computewpl ( f̄ ,γ). Intu-
itively, γ holds iff wpl ( f̄ ,γ) holds before afterl transitions. Refinement corresponds to
adding the boolean expressions occurring inwpl ( f̄ ,γ) to the existing set of predicates.
The abstraction created with respect to the new set of predicates results in a model that
does not contain this spurious prefix.

In case of circuits the weakest pre-condition is always computed with respect to the
same transition function̄f and thus, we may omit it as an argument inwpi( f̄ ,γ).

Example: Let the property bex < 200. Let the next state functions for the registers
x andy be((x < 100)?(x+ y) : x) andx, respectively. Suppose we obtain an spurious
prefix of length equal to 1. The weakest pre-condition computed is given as follows:

wp1(x < 200) := (((x < 100) ? (x+y) : x ) < 200)

We add the boolean conditions occurring inwp1 to our set of predicates. Thus, we
addx < 100 and(((x < 100) ? (x+y) : x ) < 200) as the new predicates.

Simplifying the weakest pre-conditions The problem with the approach above is
that the predicates generated can become very complex when the spurious prefix is
large. This will adversely affect the future iterations of the abstraction refinement loop.
In software verification, this problem is solved by computing the weakest pre-condition
with respect to the statements appearing in the spurious counterexample trace. In our
case, this amounts to simplifying the weakest pre-conditions at each step.

We exploit the fact that many of the control flow guards in the Verilog are also
present in the current set of predicates. The abstract traceassigns truth values to these
predicates in each abstract state. In order to simplify the weakest pre-conditions, we
substitute the guards in the weakest pre-conditions with their truth values. Furthermore,
we do not add all the boolean expressions occurring in the weakest pre-condition as the
new predicates.

Let g(r̄) be a boolean expression. We denote the set of conditions (guards) occur-
ring in g by G . For example, the set of conditions in(((x < 100) ?(x+y) : x ) < 200)
is {x< 100}. The conditions ing that also occur in the current set of predicates is given
by G ′ = G ∩{π1, . . . ,πk}.

Let simplifybe a function that takes as input a boolean formulag(r̄) and an abstract
statet̄. This function returns another boolean formulag′(r̄), where all the guards inG ′

are substituted by their truth values in the statet̄. Intuitively, this amounts to following
the control flow insideg(r̄) using the truth value of guards from the statet̄. Formally,
we have the following definition:

simplify(g(r̄), t̄) := g(r̄)[πi/t̄i ] (∀πi ∈ G ′)
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Example: Suppose our current set of predicates is{x < 200,x < 100}. Let t̄ be an
abstract state in whichx < 200 is false andx < 100 is true. Letg(x,y) be the formula
(((x < 100) ? (x+y) : x ) < 200). In this example,G = G ′ = {x < 100}. The call
to simplify with g(x,y) andt̄ as the arguments will return:

((1?(x+y) : x ) < 200) = x+y< 200

Let the spurious prefix bēt(0), . . . , t̄(l) with l ≥ 1 and let the property beγ. The
weakest preconditionwpi is the formula that should hold beforei concrete transitions.
The abstract statēt(l − i) provides the truth values for the predicates just before the
thesei transitions. Thus,wpi(γ) is simplified using the predicate values from the ab-
stract statēt(l − i). Formally, thesimplifiedversion of the weakest pre-conditions is
defined as follows:

wp1(γ) := simplify(γ [r̄/r̄ ′] [r̄ ′/ f̄ ], t̄(l −1))

wpi(γ) := simplify(wp1(wpi−1(γ)), t̄(l − i)) (1 < i ≤ l)

The new set of predicates for refinement is obtained fromwpl . This is done by
taking only the guards of the trinary conditional operator,and other predicates not
containing the conditional operator.

Example: We continue our example in Fig. 1. We want to prove the property that
always globallyx< 200. In Fig. 3, an abstraction of this program using three predicates
x < 200,x< 100,x+y< 200 is presented. The propertyAG(x < 200) is proved using
this abstraction. We now describe how these predicates are discovered automatically.

We take the predicates occurring in the property itself as the initial set of pred-
icates. Thus, our initial abstraction is created with respect to the predicatex < 200
only. Model-checking the abstract model produces a counterexample of length one. It
turns out that this counterexample is a spurious prefix with length one. The weakest
pre-conditionwp1 of x < 200 is given as follows:

wp1(x < 200) = (((x < 100) ? (x+y) : x ) < 200)

The only new predicate obtained fromwp1(x < 200) is x < 100. Note that we do
not take the entire weakest precondition as a new predicate.The new set of predicates
is {x < 200,x < 100}. Once again, the abstraction and model-checking step is carried
out. This time we obtain another spurious prefix of length one. We also obtain the
truth value of the predicatex < 100 in the abstract states̄t(0) and t̄(1). Suppose the
predicatex < 100 is true int̄(0). The simplified weakest pre-condition obtained is
given as follows:

wp1(x < 200) := ((1?(x+y) : x ) < 200) = x+y< 200

Simplifying wp1(x < 200) yields a new predicatex+y< 200. Note that this pred-
icate is not present as a guard in the program, nor in the property. Using the new set of
predicates{x < 200,x < 100,x+y< 200}, we obtain the abstraction shown in Fig. 3.
The abstract property holds on this abstraction and thus,AG(x < 200) holds on the
concrete program in Fig. 1.
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Benchmark Lines of code Latches Variable Bits
cache coherence (cc2) 549 43 170
mpeg 1215 567 800
SDLX 898 41 81
Miim 841 83 237
PI-Bus (pi) 1020 312 863

Table 1: Benchmark characteristics

6 Experimental Results

We report experimental results for the Texas97 and VIS [24] benchmark suite to evalu-
ate the performance of various techniques for predicate partitioning and the abstraction
refinement. The experiments are performed on a 1.5 GHZ AMD machine with 3 GB
of memory running Linux. A time limit of two hours was set for each run. The user
only needs to provide the Verilog file and the property to be checked as the input. All
the phases of the CEGAR loop, namely abstraction, model checking, simulation, and
refinement are completely automatic.

The benchmark characteristics are given in table 1. We report the number of lines
of code, the total number of latches, and the total number of Verilog variable bits (com-
binational elements and inputs) for each benchmark. The experimental results are sum-
marized in table 2. For each algorithm, it contains the totalrun-time, the final number
of predicates, and the total number of refinement iterations. Table 6 gives the breakup
of total run-time for the experiments in table 2 in terms of the time spent on the ab-
straction computation, model checking time and the time spent on the simulation and
refinement.

We report these results for four different algorithms. The columns marked with
”Monolithic” contain the results for a precise existentialabstraction without any parti-
tioning. All experiments use refinement with weakest preconditions.

The columns labeled with ”CONE” contain results using cone partitioning for the
set of predicates. The predicates are partitioned into clusters of related current-state
and next-state predicates.

The performance of abstraction refinement with lazy abstraction is summarized in
the columns labeled with ”Lazy”. Initially, the abstraction is performed by keeping
only a few next state predicates, which share exactly the same set of latches and other
variables, together.

The columns labeled with ”Constrain” contain the results for abstraction refinement
where a check for spurious transitions is added. If a spurious transition is detected in the
abstract counterexample, it is eliminated by directly constraining the abstract model.
As discussed earlier, we make use of unsatisfiable cores for this step. The check is
performed before refinement using weakest preconditions isdone.

Summary of Results Thecache coherence (cc2) benchmark is the design
of a two processor write-back-cache system. In this benchmark, the best performance
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is obtained by partitioning the predicates using the CONE technique. Both CONE and
CONE+Constrain have similar performance on this benchmark. Using lazy abstraction,
a high number of refinement iterations is observed, as the lazy abstraction is creating
overly coarse abstractions.

The mpeg benchmark is a design of an MPEG decoder and contains a decoder
which accepts a bitstream as an input and produces a video/audio data stream as output.
We verify two different safety properties (mpeg1 andmpeg2) for the mpeg bench-
mark. The monolithic approach of keeping all the predicatestogether results in the
best performance onmpeg1. This is due to the fact that only nine predicates are re-
quired to prove the property. However, inmpeg2, generating the most precise abstract
transition relation becomes the bottleneck. Formpeg2, CONE+Constrain results in
the best performance. Note the consistent performance of CONE+Constrain on both
mpeg1 andmpeg2.

The Miim benchmark contains the design of an Ethernet core that implements
the network protocols CSMA/CD for transmission and reception of frames. Only
Lazy+Constrain is able complete this example within the timeout. All other techniques
fail because they are unable to compute an abstract transition relation. In this case, the
cone partitioning results in almost no reduction; most of the predicates are put in one
partition.

TheSDLX benchmark is the design of a sequential DLX processor that uses a load-
store architecture. The cone partitioning and refinement using weakest preconditions
has the best runtime. The performance of the Lazy+Constrainis the worst of all. Since
the abstraction produced are very coarse most of the time is spent on refinement.

The Peripheral Interconnect bus (PI-Bus) is a high speed industry standard on-chip
bus for use on micro-controllers and systems on a chip. Sincea very coarse abstraction
with no refinement is sufficient for proving the property, lazy abstraction has the best
runtime. All other techniques create a more precise abstraction, which is not needed in
this case.

Benchmark Monolithic CONE CONE+Constrain Lazy+Constrain
T P I T P I T P I T P I

cc 1741s 23 3 390s 47 4 397s 47 4 885s 47 119
mpeg1 35s 9 2 855s 41 3 130s 9 4 406s 9 15
mpeg2 2945s 24 3 325s 35 4 208s 24 4 1951s 24 37
SDLX 1141s 25 1 61s 39 2 223s 39 2 5876s 39 133
Miim >2h 25 3 >2h 25 3 >2h 25 3 70s 25 27
pi 58s 10 1 21s 10 1 21s 10 1 12s 10 1

Table 2: Experimental results: The ”T” columns contain the total runtime in seconds,
the ”P” columns show the final number of predicates, and the ”I” columns contain the
total number of refinement iterations. ”CONE” denotes cone predicate partitioning,
”Constrain” is refinement of spurious transitions using UNSAT cores. For the entries
where the timeout occurred we report the number of predicates and the number of
iterations completed before the timeout.
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Bench- Monolithic CONE CONE+Constrain Lazy+Constrain
mark Abs MC SR Abs MC SR Abs MC SR Abs MC SR
cc 1701 12 28 269 35 87 269 34 95 23 37 825
mpeg1 18 1 16 810 1.7 43 29 0.3 101 24 1 381
mpeg2 2520 380 46 251 0.7 74 113 0.4 95 67 4.6 1881
SDLX 1134 7 0 51 1.6 9 53 34 136 48 2788 3039
Miim - - - - - - - - - 12 1.5 56
Pi 58 0 0 21 0 0 21 0 0 12 0 0

Table 3: Experimental results: All times are reported in seconds. The ”Abs” columns
contain the time spent in computing the abstraction, the ”MC” columns show the time
spent on model checking the abstract model, and the ”SR” is the time spent during
simulation and refinement. ”CONE” denotes cone predicate partitioning, ”Constrain”
is refinement of spurious transitions using UNSAT cores. A dash ”- ” indicates a time-
out of 2 hours.

7 Conclusions and Future Work

While there are a lot of results on predicate abstraction in the software domain, there
is only little research on predicate abstraction in the hardware domain. This paper
evaluates three methods to improve the performance of SAT-based predicate abstraction
on circuits. The methods have been presented before in the context of abstraction of
ANSI-C programs.

When abstracting a basic block, tools like SLAM do not consider all possible ab-
stract transitions. Instead, subsets of the predicates areformed. This reduces the com-
putational effort during abstraction, but may result in additional spurious behavior.
Experimental results on Verilog circuits show that this technique is also useful in the
hardware context.

In [17], the authors propose to defer the expensive task of program abstraction until
a spurious counterexample is found. This is called lazy abstraction. We evaluate the
benefit of lazy abstraction in the context of circuits. It turns out that refining the coarse
abstractions produced during lazy abstraction can become abottleneck. We make use
of unsatisfiable cores in order to eliminate multiple spurious transitions.

However, the spurious trace may also be caused by insufficient predicates. In the
software domain, tools typically use weakest preconditions to compute new predicates
that eliminate the spurious behavior. This technique has previously not been applied
to hardware, despite of the fact that high-level RTL closelyresembles languages like
ANSI-C. Our experimental results show that this technique is very effective in discov-
ering new word-level predicates for refinement.

Future research will focus on use of unsatisfiable cores for discovering new predi-
cates. We would like to experiment with the use of interpolants [18] for deriving new
predicates. This paper used syntactic techniques for predicate partitioning, the use of
semantic techniques for this purpose is yet to be investigated.
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