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Abstract

One of the recurring themes in information theory and quantum information theory is correlation
corruption and correlation recover. Correlation corruption refers to the situation where Alice and
Bob share information that is not perfectly correlated (or perfectly entangled, if they share quantum
information). Correlation corruption arises in many natural situations, including transmitting
information through a noisy channel, measuring a noisy signal source, quantum decoherence, and
adversarial distortion. Correlation recovery refers to the action Alice and Bob takes to “restore”
the correlation/entanglement by agreeing on some perfectly correlated/entangled information.

Traditionally correlation repair is done via a preventive strategy, namely error correction. Using
this strategy, Alice encodes her information using an error correcting code or a quantum error
correcting code before sending it through a noisy channel to Bob, who then decodes and recovers
the original information. Error correcting codes and quantum error correcting codes are extremely
useful objects in information theory with numerous applications in many other areas of science and
technology. They are well studied and well understood. However they have limitations. We shall
show that some assumptions used by error correction are not sound in many scenarios and make
the preventive strategy unsuitable.

We study the alternative strategy of correlation repair, known as the reparative strategy. Using
this strategy, Alice and Bob start by sharing imperfectly correlated (raw) information, and then
engage in a protocol to “distill” the correlation/entanglement via communication. We call these
protocols (classical) correlation distillation protocols and (quantum) entanglement distillation pro-
tocols. We show that such a reparative strategy can be as efficient as the preventive strategy.
Furthermore, the reparative strategy is more flexible, in that it doesn’t have the limitations suf-

fered by error correction. We also point out that in particular, quantum entanglement distillation



protocols play a very important role in quantum information theory. Despite the significance of
these protocols, they have received much less attention than error correcting codes and are much
less well understood.

We focus on the communication complexity of the correlation and entanglement distillation
protocols. In designing error correcting codes, efficiency is one of the main concerns. One wants to
construct an error correcting code with the least possible redundancy while being able to withhold
the highest rate of noise. In correlation and entanglement distillation protocols, the efficiency is
measured by the amount the communication between Alice and Bob, and thus it is important to
design protocols with minimal amount of communication. Our study is concerned with the minimal
amount the communication needed for distillation.

We present a number of results concerning communication complexity for protocols over various
noise models, which are mathematically models for different types of correlation corruption. These
results span both classical and quantum information theory, and have connections to other areas

of computer science, including cryptography and computational complexity.



Acknowledgment

I owe a lot to my advisor, Steven Rudich, who first introduced me to the fascinating area of
theoretical computer science, which I enjoy greatly ever since. Steven taught me how to do research:
how to understand a problem from a fundamental level, how to refine the answers relentlessly, how
to spell out the core idea of a solution, and how to strike a balance between being intuitive and
being rigorous. An excellent speaker himself, Steven also taught me how to give good talks, which
I found extremely useful. Steven is more than just an academic advisor to me, I found his advices
on many other topics very enlightening as well: philosophy, life, cooking, magic, to name a few.

Manuel Blum is “personally responsible” for bringing me to Carnegie Mellon and I am very
grateful for it. I am fortunate to be in the group of people who work with him and are deeply
inspired by his unique way of thinking and conducting research. I can only describe his style as
“magic.”

Avrim Blum is unique in his own way. Avrim seems to possess the super-human ability to look
through a seemingly messy and complicated problem and see its mathematical essence, and then
explain it in a very intuitive way, as if the problem were indeed that simple. He is also a master in
finding the connection between apparently unrelated problems. I will forever remember the things
I learned from him.

I started to be interested in the field of quantum information theory and quantum computation
because of Andris Ambainis, whose talents in mathematics serves as a strong inspiration. Two of
the three papers this thesis is based on are collaboration with him, and I cherish the wonderful
experience. It is an honor to have him in my thesis committee. My formal learning of the quantum
world would be impossible without Bob Griffiths, who taught a course at CMU. Bob is one of the

very few physicists I know that can explain quantum in such a clear way such that even a computer



scientist can understand. The central idea of this thesis grows from a course project I did in his
class. It is only appropriate to have Bob in my thesis committee, and I am very happy that he
agrees.

I thank my collaborators, both inside CMU and out, for the advices and ideas they contributed
selflessly: Luis von Ahn, Leemon Baird, Nina Balcan, Alex Gray, Nick Hopper, Ning Hu, Russell
Impagliazzo, Jeff Jackson, Adam Kalai, Lea Kissner, John Langford, Andrew Moore, Alina Oprea,
Bartosz Przydatek, Mike Reiter, Rachel Rue, Adam Smith, Dawn Song, Wei Xu, Li Zhang (at HP
labs), Li Zhang (at University of Washington), and Jerry Xiaojin Zhu.

I remember that in year 1998, I spent a lot of time deciding which graduate school to attend,
and I finally chose CMU. Now, six years after, I feel only how lucky I was in making the right
choice. Indeed, CMU has the ideal atmosphere for me nice and friendly people, open and
relaxing environment, tons of free food and numerous foosball games in the lounge... People say
CMU students are so happy that they don’t want to graduate  well, they are right to some extent.
People do graduate, but yes, most of us are very, very happy here. I will surely miss this place,
as well as its people: Sharon Burks, Jeanette Wing, Catherine Copetas, Nikhil Bansal, Ashwin
Bharambe, Mihai Budiu, Shuchi Chawla, Kedar Damdhere, Mihim Mishra, Amit Manjhi, Yue
Pan, Francisco Pereira, Minglong Shao, Mengzhi Wang, Weng-Keen Wong, Hua Yu, Joy Zhang,
Antonia Zhai, and Hua Zhong, to name a few. They are the ones responsible for my personal
happiness at CMU.

I spent one summer at Akamai and two summers at Bell Labs, Lucent Technologies as an intern.
These experiences are eye-openers to me, offering to me a unique opportunity to see how people
outside universities do “real” work and do research. I enjoy all my intern experiences and I thank
my co-workers there that make it possible: Gabe Loh, Harald Prokop, Ramesh Sitaraman, Bin
Song, Juan Garay, Eric Grosse, Phil MacKenzie, Seny Kamara, and Gabe Plunk.

Finally, my infinite thanks to Ting Liu, who is obviously my most significant discovery in life.



Contents

1 Introduction 10
1.1 Correlation Corruption and Correlation Repair . . . . . ... ... .. ... .. ... 10
1.1.1 Information Transmission . . . . . . . .. . ... oo 11

1.1.2  Random Beacons . . . . . . . . .. ... 11

1.1.3 Distilling EPR Pairs . . . . . . . . .. .. 12

1.1.4 Quantum Key Distribution . . . . .. ... .. oo 0oL 13

1.2 Error Correction: the Preventive Strategy . . . . . . . . . .. ... .. ... ... .. 13
1.3 Correlation Distillation: the Reparative Strategy . . . . . .. ... .. ... .. ... 15
1.4 Our Contributions . . . . . . . . . . . . o 17
1.5 Related Work . . . . . . . . . 20
1.5.1  Error Correction . . . . . . . . . e 20

1.5.2 Two-party Coin-flipping . . . . . . . . . . . ... 21

1.5.3 Information Reconciliation . . . . . . . . . ... ... ... 22

1.5.4 Quantum Entanglement Distillation . . . . ... ... ... .. ... ..... 22

1.5.5 Communication Complexity . . . . . . . . . .. .. oo 24

2 Quantum Mechanics and Quantum Information Theory 27
2.1 Quantum Mechanics . . . . . . . ... oL 27
2.1.1  The Quantum States and the Dirac Notation . . . .. ... .. ... ... .. 27
2.1.2  The Density Matrix and Mixed States . . . . . . . .. ... ... ... ..., 28
2.1.3 Quantum Operations . . . . . . . . . . .. 29

2.2 Quantum Information Theory . . . . . . . . . . ... L 31



221 Entropy . . . . . ..
2.2.2 Entanglement . . . . . . ... e
2.2.3 Fidelity . . . . . . e
2.3 Some Useful Results . . . . . . . .. .. .
2.3.1 The Deviation of Pure States over Unitary Operations . . . . . . . . ... ..

2.3.2  Positive Operators . . . . . . . . . ..

Preliminaries and Notations

3.1 General Notations . . . . . . . . . . . L

3.2 Protocols . . . .. e

3.3 Noise Models . . . . . . . . e

3.4 Quality of the Protocols . . . . . . . . . . . .
3.4.1 Classical Correlation Distillation Protocols . . . . .. ... .. ... ... ..

3.4.2 Quantum Entanglement Distillation Protocols. . . . . ... .. ... ... ..

Error Correcting Codes and Correlation Distillation Protocols

4.1 Classical Error Correcting Codes and Correlation Distillation Protocols . . . . . ..
4.1.1 Error Correcting Codes . . . . . . . . . . . .o
4.1.2 Linear Codes . . . . . . . . . e
4.1.3 The Classical Bounded Corruption Model . . . . . .. . .. ... ... ....

4.2 Quantum Error Correcting Codes and Entanglement Distillation Protocols . . . . .
4.2.1 Quantum Error Correcting Codes . . . . . . ... . .. ... .. ... ...
4.2.2 The Quantum Bounded Corruption Model . . . . . . . . .. ... ... ....
4.2.3 An Equivalence between QECCs and One-way EDPs . . . . . . ... ... ..
4.2.4  Stabilizer Codes and EDPs . . . . . . . ... o 0o

4.3 Separating Error Correction from Correlation Distillation . . . . . . ... ... ..
4.3.1  Separation Result for Classical Channels . . . . .. ... ... .. .. ....

4.3.2  Separation Results for Quantum Channels . . . . .. ... .. ... ... ..

Non-Interactive Correlation Distillation

5.1 Tensor Product Noise Models . . . . . . . . . . . . . . . . . ...

38
38
39
42
43
43
44

46
47
47
48
49
50
50
o1
02
53
95
56
58

59



5.2 The Binary Symmetric Model . . . . . . . . . ... oo 62

5.3 General Noise Models . . . . . . .. . e 68
5.4 The Binary Erasure Noise Model . . . . . . . . .. . ... .. 0. 72
A Positive Result on One-bit Correlation Distillation 76
Non-Interactive Entanglement Distillation 79
7.1 The Bounded Measurement Model . . . . . . . . . . ... ... ... ... ... .. 80
7.2 The Bounded Corruption Model . . . . . . . .. . ... ... ... ... 84
7.3 The Depolarization Model . . . . . . . . . .. ..o 89
The Fidelity Noise Model 91
8.1 Motivation: General Entanglement Extraction. . . . . ... ... ... ... ..... 92

8.1.1 Classical Randomness Extraction . . . . . . .. . ... ... ... 92

8.1.2  Similarity Between Extractors and EDPs . . . . . .. ... o000, 93

8.1.3 The Entanglement Noise Model and the Impossibility Result . . . . ... .. 94
8.2 The Fidelity Noise Model . . . . . . . . . . . .. . 96
8.3 OurResults . . . . . . . e 97

8.3.1 Part I: Absolute Protocols . . . . . . . ... .. o o 97

8.3.2 Part II: Purity Testing Protocols and Conditional Protocols . . . . . . . . .. 111

8.3.3 Part III: The Communication Complexity . . . . . . . ... .. .. ... ... 115
Private Communication with Ambainis and Gottesman 130
A.1 Quoted communication from Daniel Gottesman . . . . . . .. ... ... 130
A.2 Quoted communication from Andris Ambainis. . . . . . . .. ... oL L. 132
List of Symbols 133
B.1 Mathematical Notations . . . . . . . . . . .. .. Lo 133
B.2 Protocols . . . . . . e 133
B.3 Noise Models . . . . . . . . e 133



List of Figures

1.1
1.2

1.3

2.1

4.1

5.1

6.1
6.2

7.1

8.1
8.2

The preventive strategy for correlation repair. . . . . . ... ... oo 14
Reparative strategy for correlation repair. . . . . . .. . .. ... ... ... 16
Summary of known results . . . . . . ..o Lo 20
The Bell States under Pauli Operators . . . . . . . . .. . .. ... .. ... ..... 36
Results in Chapter 4. . . . . . . . . . . . . . e 47
Results in Chapter 5. . . . . . . . . . . . . . . e 59
The Result in Chapter 6. . . . . . . . . .. . 7
The AND protocol . . . . . . . . e 78
Results in Chapter 7. . . . . . . . . . . . . . . e 80
Results in Chapter 8. . . . . . . . . . . . . . . .o 91
Classical randomness extractor . . . . . . . . . . . ... Lo 92



List of Theorems

4.1
4.2
4.3
4.4
4.5
4.6
4.7
5.1
5.2
5.3
5.4
6.1
7.1
7.2
7.3
8.1
8.2
8.3
8.4
8.5

From ECCto CDP . . . . . . . e 49
From QECC to EDP [25] . . . . . . . . . 52
From EDP to QECC [25] . . . . . . . . . 53
From Stabilizer QECC to EDP . . . . . . . .. .. 54
Limits on ECCs . . . . . . . e 56
Communication Compleiry Result [65] . . . . . . ... ... .. ... .. ... ..... 57
Separating ECC from CDP . . . . . . . . . . ... . 57
NICD for the Binary Symmetric Model . . . . . .. . ... ... . o000, 63
NICD for the Binary Symmetric Model, extended . . . . . . . .. .. ... ... ..... 68
NICD for the General Noise Model . . . . . . . . ... .. . 69
NICD for the Binary Erasure Model . . . . . . . ... .. ... o 0oL 72
One-bit Protocol for the Binary Symmetric Model . . . . . ... .. ... ... ... .. 7
NIED for the Bounded Measurement Model . . . . . . .. ... ... ... ... ..... 81
NIED for the Bounded Corruption Model . . . . . . . .. . ... ... .. ... ..... 84
NIED for the Depolarization Model . . . . . . . ... .. . . 89
Entanglement Model . . . . . . . . ..o 95
Absolute Protocols for the Fidelity Model . . . . . . . . .. ... ... .. ... ..... 97
Non-interactive Absolute Protocols for the Fidelity Model . . . . . . ... ... .. ... 107
Conditional Protocols for the Fidelity Model . . . . . . .. ... ... .. .. ...... 111
Communication Complexity of Protocols for the Fidelity Model . . . . . . . .. ... .. 115



Chapter 1

Introduction

We introduce the notion of correlation distillation and entanglement distillation. We also discuss

their motivations and related work.

1.1 Correlation Corruption and Correlation Repair

Information theory, since its inception in 1948 by Claude Shannon in his groundbreaking paper [82],
has developed into a rich field of research, with applications in a broad spectrum of areas, including
electrical engineering, computer science, statistics, and physics. From the 1970s, as researchers
started to understand quantum mechanics, the field of quantum information theory emerged as a
natural extension to the classical information theory. Exciting (and sometimes confusing) results
were discovered, such as the EPR paradox (that two quantum states can be space-separated yet
entangled, such that their measurements will be correlated), the non-cloning theorem (that quantum
information cannot be duplicated), and teleportation (that Alice and transmit an unknown quantum
state to Bob by sending two classical bits). Not only did quantum information theory contribute
to the development of quantum mechanics, it also found applications in “traditional” areas, such
as cryptography.

One of the most recurring themes in information theory is correlation corruption and correlation
recovery. Correlation corruption refers to the situation where Alice and Bob share some information
which is not perfectly “correlated”. Classically this means that with positive probability, Alice’s

bits doesn’t agree with Bob’s. Quantum mechanically, this means that Alice’s quantum state isn’t
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perfectly entangled with Bob’s quantum state. Researchers have striven to understand the nature
of correlation corruption and constructed various mathematical models for it; we call them noise
models. On the other hand, correlation recovery refers to the action Alice and Bob take to “restore”
the correlation (or entanglement) to the maximum. Naturally, the goal is to perform correlation
repair, using as little resource as possible.

We discuss some situations where the theme of correlation corruption and correlation recovery

occurs naturally.

1.1.1 Information Transmission

Perhaps the most well-known problem in information theory is to transmit information through
a noisy channel. In fact, it was considered in Shannon’s original paper [82] and remains one of
the most important topics in information theory. When Alice sends information to Bob through
a noisy channel, the channel can “distort” the information. More concretely, suppose Alice sends
classical bits to Bob, a classical noisy channel may flip some of the bits (a bit “0” becomes “1”, and
a bit “1” becomes “0”), or erase some of the bits (a bit becomes “L1”, a special symbol indicating
the loss of the bit); suppose Alice sends qubits to Bob, a quantum noisy channel may apply a “bit-
flip” (normally denoted by X) which switches |0) and |1), a “phase-shift” (normally denoted by
Z), which keeps |0) unchanged but changes | 1) to —| 1), or a bit-flip composed with a phase-shift
(normally denoted by Y'). If Alice keeps a copy of the information she sends to Bob, then the noisy
channel certainly can corrupt the correlation between Alice and Bob. A large part of information
theory is to understand the nature of these noisy channels and devise mechanisms to fight the noise,

namely, to perform correlation recovery.

1.1.2 Random Beacons

A random beacon is an entity that broadcasts uncorrelated unbiased random bits. The concept of
random beacons were first introduced in 1983 by Rabin [74], who showed how they can be used
to solve problems in cryptography. Bennett, DiVincenzo, and Linsker [26] proposed to use a ran-
dom beacon to authenticate video recording. Maurer [60], Aumann and Rabin [6], and Ding [33]

proposed to use a random beacon of extremely high rate to build information-theoretically se-
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cure cryptographic primitives, e.g., key exchange, encryption, and oblivious transfer. von Ahn et.
al. [2] discusses various applications of random beacons, including verifiable lotteries and proof of
ignorance.

There are many proposals to construct a public, verifiable random beacon, among them are the
ones that use the signals from a cosmic source [2, 63]. In these proposals, Alice (as the beacon
owner) and Bob (as a verifier) both point a radio telescope to some extraterrestrial objects, e.g.
pulsars, and then measure the signal from them, which presumably contains enough randomness.
However, it is inevitable that Alice and Bob have discrepancy in their results, due to measurement
errors. Nevertheless, Alice and Bob still wish to agree on some common random bits, or, in other
words, to recover the correlation between them. Notice that the random bits they wish to agree
on are not necessarily the “raw data” from the measurement. Alice and Bob are free to apply any

transformation to their measurement results.

1.1.3 Distilling EPR Pairs

An EPR pair, or an Einstein-Podolsky-Rosen pair [35], is a qubit pair in the state \%(| 00) +|11))
shared by two parties, with one party (Alice) holding one quantum bit and the other party (Bob)
holding the second bit. EPR pairs are maximally entangled states and play a very important
role in quantum information theory. Using an EPR pair, Alice and Bob can perform quantum
teleportation. By performing only local operations and classical communication (often abbreviated
as “LOCC”), Alice can “transport” a qubit to Bob, who could be miles away from Alice [18]. So
EPR pairs, along with a classical communication channel, effectively constitute a quantum channel.
Conversely, “superdense coding” is possible with EPR pairs: if Alice and Bob share an EPR pair,
then Alice can transport two classical bits to Bob by just sending one qubit [29]. Therefore, it is
very desirable for Alice and Bob to pre-manufacture a large number of EPR pairs and store them.
In this way, they only need to maintain a classical channel between them, which is much more
economical than a quantum channel, to transmit quantum information.

However, it is very hard to store qubits, since they can easily become entangled with the envi-
ronment and decohere. Moreover, the decoherence happen continuously with time, and it is hard to

prevent with current technology. This poses a serious problem to teleportation, since teleportation
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needs perfect EPR pairs, and if EPR pairs cannot be stored almost perfectly, teleportation would
not be useful. Therefore, Alice and Bob need to “distill” almost perfect EPR pairs from the noisy

ones, or, in other words, to “recover” the entanglement.

1.1.4 Quantum Key Distribution

Consider the quantum key distribution protocols by Bennett and Brassard [16], and by Bennett [13].
In these protocols, Alice randomly produces a sequence of qubits and send them to Bob, who then
measures these qubits. If Alice keeps a copy of the qubits she sends to Bob, then Alice and Bob
will share a number of perfectly entangled states. Next, Alice and Bob can exchange information
to agree on some random bits, which then will be used as their shared key. However, Eve, the
eavesdropper, might intercept some of the qubits Alice sent and distort them. This distortion
caused by Eve will result in imperfectly entangled states between Alice and Bob. Therefore, they
need to recover from the imperfect entanglement and agree on almost perfectly entangled states,

or EPR pairs.

1.2 Error Correction: the Preventive Strategy

The most popular strategy to correlation repair is though the means of Error Correcting Codes
(ECCs) and Quantum Error Correcting Codes (QECCs).  Consider the situation of transmitting
information through a noisy channel. Alice can encode her information using an error correcting
code, or a quantum error correcting code into a code-word, before sending it to Bob. Then Bob
can decode the noisy code-word and recover the information. See Figure 1.1. We call this the
“preventive” strategy, since preventive measures are taken before the corruption takes place.
Error correcting codes and quantum error correcting codes have long been central objects of
study in the field of information theory, and they have received tremendous amount of attention.
Moreover, not only are they extremely useful in information theory, they also found numerous
applications in other fields, including combinatorics, cryptography, and computational complexity.

However, they have their limitations, and we discuss some of these limitations below.
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Figure 1.1: The preventive strategy for correlation repair.

Timing Constraint

First of all, there is the timing constraint. Error correction codes only work if Alice can encode
the information before the noise takes place, which is not always possible. Consider the random
beacon where Alice and Bob measure the noisy signals from a pulsar. In this case, it is impossible

to encode the signal from the pulsar and thus error correction becomes totally useless.

Assumptions on Noise Model

Moreover, almost all research work on error correcting codes focuses on a relatively limited noise
model, which we call the identical independent distortion (IID). In this model, the information is
transmitted in units (e.g. bits or qubits) through a noisy channel, which applies a “distortion”
process to each of the units independently. Examples of the deformation process include “flip a bit
with probability €” (which corresponds to the Binary Symmetric Channel), “change a bit to L with
probability €” (which corresponds to the Erasure Channel), and “replace a qubit by a a completely
mixed state with probability €” (which corresponds to the Depolarization Channel). Two important
assumptions in the IID model is that: 1) the deformation processes are identical to each unit; 2) the
processes are independent. These two assumptions greatly simplify the problem of error correction,
since the Law of the Large Numbers can be used. One can thus separate the so-called “typical
error syndromes” from the “atypical” ones, and only focus on the typical syndromes. However, it
is not always realistic to assume the IID model. This is best illustrated by the case of quantum
key distribution protocols. Recall in this situation, Eve may intercept some qubits sent by Alice

and cause distortion. Notice Eve is adversarial in nature and there is no reason to assume the the
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noise she causes is IID. Therefore, quantum error correction is not suitable in this case.

As a comment, we point out that Shor and Preskill [84] in fact used a particular class of quantum
error correcting codes (known as CSS codes) in the analysis of security of the BB84 protocol. In
particular, they showed that this class of QECCs, which were originally designed to work in a
so-called “bounded corrupt” noise model, work in the so-called “fidelity” noise model as well. Here,
the fidelity model is adversarial and is suitable for the quantum key distribution protocol. However,
this appears to be a coincidence, and there is no evidence that an arbitrary QECC designed for a

non-adversarial model will automatically work for an adversarial one.

Assumptions on Noise Rate

Finally, error correcting assumes that the noise rate is known at the time of encoding, so that an
appropriate encoding scheme with appropriate redundancy can be designed. Notice that the noise
rate has to be determined before the noise actually takes place, and therefore one often has to guess
the rate. If the guess is too high, then too much redundancy would be added and bandwidth wasted;
if the guess is too low, then too little redundancy may cause the loss of information. Furthermore,
there are situations where there simply is not a fixed noise rate. Take the decohering EPR pairs as
an example. The decoherence happens continuously with time, and thus the noise rate is varying
with time (more precisely, increases with time). In this case, it is rather inefficient and inflexible

to use an quantum error correcting code of a fixed rate.

1.3 Correlation Distillation: the Reparative Strategy

Correlation Distillation Protocols (CDPs) and Entanglement Distillation Protocols (EDPs) provide
an alternative strategy for correlation repair. In this strategy, Alice and Bob start by sharing
imperfectly consistent information, and then “distill” near-perfect information via communication
and local operations. See Figure 1.2. If it is the classical information Alice and Bob are to distill,
we call the process a “correlation distillation protocol”; if it is the quantum information, we call it
an “entanglement distillation protocol”. Overall, we call the strategy the “reparative strategy”.
As a technical note, we always assume that the communication in the protocols is classical and

noise-free. It is a standard assumption that only classical communication is allowed in quantum
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Figure 1.2: Reparative strategy for correlation repair.

entanglement distillation protocols, since quantum communication is considerably more expensive.
These protocols that only involve local operations and classical communications are called “LOCC
protocols”, standing for “Local Operation Classical Communication”. The assumption of noise-
free communication can be justified in the following ways. First, the amount of communication is
normally much smaller than the amount of the information Alice and Bob share, and thus they can
afford to protect their communication either using a communication channel of higher quality or
using error correcting codes of high redundancy. In this way, Alice and Bob can virtually assume
noiseless communication. Second, much of the study in this thesis focus on the question of how
much information Alice and Bob need to exchange in order to perform correlation/entanglement
distillation, and the assumption of noiseless communication greatly simplifies the analysis. Finally,
in the case of entanglement distillation, classical communication is used to distill quantum entan-
glement, and it is reasonable to assume a noise-free classical channel while the quantum channel
might be noisy.

Correlation distillation protocols and entanglement distillation protocols solve several problems
with error correcting codes and quantum error correcting codes. First, since the distillation takes
place after the noise, there is no timing constraint for correlation/entanglement distillation. There-
fore, CDPs are suitable for situations such as random beacons. Furthermore, since Alice and Bob
perform distillation only after the correlation corruption, they can measure the noise rate first,
and then choose the appropriate distillation protocol. This is more flexible and some times more
desirable than error correction, which needs to guess the noise rate (for example, in the case of
decohering EPR pairs). In fact, as we shall exhibit later in the thesis, there exist situations (both

in classical and in quantum) where error correction almost completely fails while it is still possible

16



to do correlation distillation (see Section 4.3). Finally, as we shall discuss later, CDP/EDPs admit
a broader range of noise models, and in particular, noise models that are not identical independent
distortion. In particular, while QECCs are not appropriate for quantum key distribution protocols,
where the noise model is adversarial, EDPs turned out to be the perfect solution, as pointed out
by Lo and Chau [57] and Shor and Preskill [84] (they used the term “entanglement purification
protocols” for EDPs). !

Besides the “practical” advantages of EDPs, they have great theoretical importance in quantum
information theory. Quantum entanglement plays a crucial role in quantum information and re-
searchers have striven to understand entanglement, and in particular, ways to measure the amount
the entanglement as a physical resource. Among various proposals is the concept of distillable en-
tanglement[25]. For a quantum state p, its distillable entanglement is defined to be asymptotically
the ratio of the amount of EPR pairs that can be produced by the optimal EDP from n copies of
state p over n, as n increases. Clearly, the study of entanglement distillation protocols is closely
related to that of entanglement.

If we compare the two approaches to information agreement, ECC/QECC and CDP/EDP,
perhaps the most salient difference between them is that ECC/QECCs are algorithms performed by
a single party (Alice for encoding and Bob for decoding), while CDP/EDP are two-party protocols
that involve communication. In designing ECC/QECC s, the overhead is one of the main concerns
and the goal is to design ECC/QECCs with as low as possible overhead that can withstand an as
high as possible noise rate. For CDP/EDPs, the overhead is the amount of communication between
Alice and Bob, i.e., the number of bits exchanged between them. Therefore, the communication

complezity of CDP/EDPs is one of their most important parameters.

1.4 Our Contributions

In this thesis, we study the communication complexity of correlation and entanglement distillation
protocols. Since CDP/EDPs are protocols, they are more complicated objects than ECC/QECCs.

For example, with protocols, one might want to distinguish one-way communication, where only

'Tn fact, Shor and Preskill used CSS codes, which are a special class of quantum error correcting codes, in their
proof. See the discussion before.
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Alice sends information to Bob, who never sends anything back, from two-way communications,
where Alice and Bob exchange bits. A protocol can be deterministic, where both Alice and Bob
are deterministic, randomized, where Alice and Bob can have their own supply of random bits, or
randomized public-coin, where Alice and Bob share a common random source.? It is the focus of
this thesis to study various type of CDP/EDPs over a large range of noise models.

We briefly summarize a collection of results contained in this thesis. The ones marked with a

star (x) are the major results.

1. A Relation Between ECC/QECCs and CDP/EDPs

We relate a large class of error correcting codes and quantum error correcting codes to corre-
lation distillation protocols and entanglement distillation protocols. More precisely, we point
out that every linear ECC corresponds to a CDP over the same noise model with the same
overhead, and every stabilizer QECC corresponds to an EDP over the same noise model with
the same overhead. See Theorem 4.1 and Theorem 4.4. Furthermore, we prove that their
exist natural noise models where CDP/EDPs overperform ECC/QECCs. See Theorem 4.5,

Theorem 4.7, and the discussions in Section 4.3.

2. (x) Impossibility Resulta for Non-Interactive Correlation Distillation

We show several general impossibility result for non-interactive correlation distillation over a
number of natural noise models, including the binary symmetric model, the binary erasure
model, and the extensions. We also show how this result is related to various research areas,
including random beacon and information reconciliation. See Theorem 5.1, Theorem 5.2,

Theorem 5.3, and Theorem 5.4.

3. A Positive Result on One-bit Correlation Distillation

We present a positive result where Alice and Bob, by exchanging one bit of information,
can perform correlation repair, which would be impossible without communication. This
shows that even the minimal amount of communication can help in correlation repair. See

Theorem 6.1.

*We are using the notations from Kushilevitz and Nisan [52].
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4. (x) An Impossibility Result of Non-Interactive Entanglement Distillation

We show several impossibility results for non-interactive entanglement distillation, where Al-
ice and Bob wish to produce near-EPR pairs without communication. These are the first
results in the area of communication complexity of EDPs, and they provide the first step
in understanding entanglement distillation protocols. See Theorem 7.1, Theorem 7.2, Theo-

rem 7.3.

5. An Impossibility Result of EDPs over the Entanglement Noise Model

We prove an impossibility result on entanglement distillation over the so-called “entanglement
noise model”. We show that it is impossible to distill EPR pairs from an arbitrarily entangled
quantum state. We show how this result is related to classical randomness extractors. See

Theorem 8.1.

6. (x) A Complete Characterization of EDPs over the Fidelity Noise Model

We completely characterize the communication complexity of entanglement distillation proto-
cols over the so-called “fidelity noise model”. We present a protocol that distills near-perfect
EPR pairs very efficiently, and prove such a protocol is in fact optimal (up to an additive con-
stant). We also show how this noise model is related to other areas of quantum information
theory, including purity-testing protocols [23] and quantum key-distribution protocols [57, 84].

See Theorem 8.2, Theorem 8.3, Theorem 8.4 and Theorem 8.5.

These results appear in the following publications.

1. A. Ambainis, A. Smith,
Extracting Quantum Entanglement (General Entanglement Purification Protocols).
Appeared in the IEEE Conference of Computational Complexity (CCC 2002), Montréal,

Quebéc, Canada, pp. 103-112, 2002.

On the (Im)possibility of Non-interactive Correlation Distillation.
Appeared in the Latin American Theoretical INformatics (LATIN 2004), Buenos Aires, Ar-

gentina, 2004.
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3. A. Ambainis, —.
Towards the Classical Communication Complexity of Entanglement Distillation Protocols
with Incomplete Information.

To appear in the 19th Annual IEEE Conference of Computational Complezity (CCC 2004),

Ambherst, MA.
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Figure 1.3: Summary of known results

We summarize all the results in this thesis in a table in Figure 1.3. Each row in the table
corresponds to a noise model, and each column corresponds to the amount of the communication
allowed for a protocol. In each cell, we put the known upper and lower bounds on the “quality” of
the best known CDP/EDPs. The ones with a smiley face indicates my original contributions, and
the ones with a non-smiley face indicates my discovery that are independent from other researchers.

The blanks indicate open problems.

1.5 Related Work

We discuss some related work on correlation distillation and communication complexity.

1.5.1 Error Correction

As we discussed before, error correction is closely related to correlation distillation protocols. Er-

ror correction is the preventive strategy for correlation recover, and correlation distillation is the
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reparative strategy.

Not only are error correcting codes extremely useful in information theory, they have also found
numerous applications in other fields, including combinatorics, cryptography, and computational
complexity.

Error correction has received a tremendous amount of attention. Because of its sheer volume,
it is impossible to give an (even remotely) comprehensive list of the literature on this topic. I only
list a few items. Shannon [82] is the first one to consider the problem of error correction, and his
paper marked the beginning of the field of information theory. Blahut [12] has a wonderful book
completely dedicated to error correcting codes and contains abound resources. Sudan [86] has a
very nice survey on ECCs that is more tailor-made for audiences in computational complexity.
Shor [83] and Steane [85] are the first to study quantum error correcting codes and to actually
construct them. Gottesman’s thesis [36] is a great source for the theory behind quantum error
correcting codes with many results. Nielsen and Chuang’s book [69] also gives a nice description

on both classical and quantum error correction.

1.5.2 Two-party Coin-flipping

Two-party coin-flipping is a classical problem in cryptography, where Alice and Bob wish to es-
tablish some commonly agreed random bits by communication. Blum [10] is the first to study the
setting where Alice and Bob initially don’t share any information and one of them could be cheat-
ing. He suggested protocols that are secure against a computationally-limited adversary, based on
number-theoretical assumptions. Following Blum’s work, Lindell [54] studied the parallel version
of the problem under the same setting. Barak [9] consider the two-party coin-tossing resistant to
the man-in-the-middle attack. On the other hand, researchers have studied quantum coin-flipping,
where Alice and Bob exchange quantum information and agree on a classical bit. For results in this
area, see [56, 62, 1, 4, 88, 53]. Classical two-party coin-flipping is a special version of correlation
distillation protocols with the assumption that: 1) the players do not share any prior information;
2) they are polynomial-time bounded; and 3) they don’t necessarily collaborate and are liable to
cheating. As a result, the protocols for two-party coin-flipping rely on cryptographic assumptions

and the communication complexity is higher than the number of coin flips they agreed on. Quantum
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two-party coin-flipping, however, does not fit into this thesis, since it requires a quantum channel

between Alice and Bob.

1.5.3 Information Reconciliation

Information reconciliation is an extensively studied concept [17, 61, 27, 30, 31] with applications
in quantum cryptography and information-theoretical cryptography. In this setting, Alice and Bob
each possesses a sequence of random bits that agree “most of the time”. Here the “agreement”
between Alice’s bits (denoted by A) and Bob’s bits (denoted by B) is described by the mutual
information 7(A; B). Moreover, Eve, the eavesdropper, also possess some information (denoted by
Z) about the bits held by Alice and Bob, which is quantified by the mutual information I(Z; AB).
Alice and Bob wish to “reconcile” their information (namely, to agree on some random information)
by communicating in a public channel (which is noiseless but readable by Eve). Their goal is to
agree on a common random string U with very high probability, while ensuring that Eve gains little
information from U. In terms of the entropy, let C' be the communication between Alice and Bob,
then we should have H(U|AC) = 0, H(U|BC) = 0, and I(U; ZC) = 0. Information reconciliation
and correlation distillation operate in similar models: Alice and Bob share noisy information, and
then communicate to agree on something with higher correlation. However, the primary concern for
information reconciliation is privacy, i.e., that Eve gains little information about the information

agreed upon, while this thesis focus on the communication complexity.

1.5.4 Quantum Entanglement Distillation

As we mentioned before, quantum entanglement distillation protocols are two-party protocols in-
volving only local (quantum) operation and classical communication. These protocols generally
takes some entangled bipartite states as input and output near-perfect EPR pairs. The process
of entanglement distillation was also known as “entanglement concentration” or “entanglement
purification”.

There have been a lot of research efforts on studying entanglement distillation protocols [21,
22, 25, 43, 44, 75, 76, 77, 7]. Different “noise” models on the imperfect EPR pairs are presented

and studied.
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To the best of our knowledge, Bennett, Bernstein, Popescu, and Schumacher are the first
to consider the problem of producing EPR pairs from “less entangled” states. In their seminal
paper [21], they give a protocol that converts many identical copies of pure state | ¢) = (cos 0] 01) +
sin#]10)) to perfect EPR pairs. They call this process “entanglement concentration”. In the same
year, Bennett, Brassard, Popescu, Schumacher, Smolin, and Wootters [22] studied the problem
of “extracting” near-perfect EPR pairs from identical copies of mixed entangled states. This is
the first time that the notion “entanglement purification protocols” was presented, which were
renamed to “entanglement distillation protocols” later. They also pointed out that EDPs can be
used to send quantum information through a noisy channel. Later, Bennett, DiVincenzo, Smolin
and Wootters [25] improved the efficiency of the protocols in [22] and proved a result that closely
related EDPs to quantum error correcting codes, which is an alternative means to transmit quantum
information reliably through a noisy channel. Horodecki, Horodecki, and Horodecki [42, 45] and
Rains [75, 76, 77| give various asymptotic bounds on distillable entanglement for arbitrary entangled
states. They considered the situation where n identical copies of a state are given as input to an
LOCC protocol, which then outputs m EPR pairs. They studied the asymptotic behavior of m/n
as n approaches infinity. Researchers also studied EDPs for a single copy of an arbitrary pure
state, see, for example, Vidal [90], Jonathan and Plenio [49], Hardy [41], and Vidal, Jonathan, and
Nielsen [91]. Much of the work was built on the result of majorization by Nielsen [67], who is the
first one that studied conditions under which one pure state can be transformed into another one
by LOCC.

From another direction, researchers have studied EDPs with incomplete information, where
Alice and Bob do not know the exact state they share. The state is in a mixed state, or is prepared
adversarially. In this case we cannot hope that Alice and Bob would act optimally. However, there
still exist protocols that do reasonably well. Bennett et. al [22, 25] studied the model where Bob’s
share in the EPR pairs underwent a noisy channel, resulting in a mixed state. They showed that
their protocol would “distill” near-perfect EPR pairs even when Alice and Bob do not have the
complete knowledge of the shared state. Under another circumstance, “purity-testing protocols”
were studied implicitly by Lo and Chau [57], Shor and Preskill [84], and later explicitly by Barnum,

Crépeau, Gottesman, Smith, and Tapp [23]. Purity-testing protocols are LOCC protocols that
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approximately distinguish the state of perfect EPR pairs from the rest states. Ambainis, Smith,
and Yang [7] pointed out that purity-testing protocols are indeed EDPs where Alice and Bob only
know the fidelity of the state they share. Using constructions from [23], Ambainis, Smith and Yang
constructed a “Random Hash” protocol that produces (n — s) EPR pairs of conditional fidelity
at least 1 — % on any n qubit-pair input state of fidelity 1 — e¢. Their protocol would fail with
probability e, and the conditional fidelity of its output is the fidelity conditioned on the protocol
not failing.

Much of previous work assumes that Alice and Bob have the complete information about the
state they share, and thus they can act optimally. The main focus of the majority of the previous
work is the yield of the protocols, i.e., the question “how many EPR pairs can be extracted from
the input state, using unlimited classical communication?” Lately, there has been work that start
to study the communication complexity of EDPs, started by Lo and Popescu [58] and followed by
Ambainis and Yang [8]. Here the question is “how many bits need to be exchanged in order to
distill n EPR pairs?” In the thesis, I continue this line of research on the communication complexity

of EDPs with the focus on the situation where Alice and Bob have incomplete information about

their shared states.

1.5.5 Communication Complexity

Classical communication complexity studies the minimal amount of classical information (typically
measured in bits) needed to be transmitted between multiple parties in order to collectively perform
a certain computation. The results are typically information theoretical, and do not rely on any
un-proven assumptions. The field of communication complexity was pioneered by Yao [94], and
now is a very rich field in theoretical computer science, and has found applications in many areas,
like network analysis, VLSI design, data structure, and computational complexity. The readers are
referred to [52] for a nice introduction and tutorial.

Quantum communication complexity mostly studies the minimal amount of quantum informa-
tion (typically measured in qubits) needed to be exchanged in order to perform some (classical or
quantum) task. This field was also first studied by Yao [95], and now it is becoming one of the

main topics in quantum information theory. It is a very successful area, and numerous results have
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emerged. In fact, most known lower bounds in quantum computation can be regarded as commu-
nication complexity results. We refer the readers to [15] for a nice survey, and [19, 50, 51, 78] for
some important techniques and results.

Despite the numerous results emerging from classical and quantum communication complexity,
another class of problem, namely the classical communication complexity for quantum protocols,
has being largely ignored until very recently. This class of problem is concerned with the minimal
number of classical bits needed to be communicated to perform certain quantum tasks. An example
is the classical communication complexity for EDPs. One may ask “how many bits do Alice and
Bob need to exchange in order to distill n EPR pairs?” One reason that not many researchers
pay too much attention to this problem might be the conception that classical communication is
“cheap” compared to quantum communication, and thus one can assume they are free. However,
as pointed by Lo and Popescu [58], there are situations where classical communication can not be
justifiably ignored. One example is the super-dense coding [29]. Alice and Bob can use n qubits to
transmit 2n bits of classical information, if they previously share n EPR pairs. Nevertheless, if it
takes more than n bits of classical communication to distill the n EPR pairs, it would completely
destroy the purpose of super-dense coding. Furthermore, in the study of LOCC protocols over
quantum states, no quantum communication takes place, and it is therefore interesting to study
the classical communication complexity of these (quantum) protocols.

The history of classical communication complexity for quantum protocols can probably traced
back to the seminal paper by Bennett and Wiesner [29], which discussed teleportation and con-
structed a protocol that uses 2n classical bits to transmit n qubits. However, this topic was largely
overlooked until the work by Lo and Popescu [58] and Lo [55]. Lo and Popescu [58] discussed the
classical communication complexity of various protocols by Bennett et. al. [21]. They observed that
the “entanglement concentration protocol” in [21] does not require any classical communication.
However, the “entanglement dilution protocol”, which transforms m EPR pairs into n copies of less
entangled qubit pairs, requires O(n) bits of classical communication. Lo and Popescu then con-
structed a new dilution protocol that only uses O(y/n) bits of communication. This protocol was
proven to be asymptotically optimal independently by Hayden and Winter [47], and Harrow and

Lo [46], who proved matching lower bounds for general entanglement dilution protocols. Lo [55]
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studied the communication complexity for Alice and Bob to jointly prepare many copies of arbitrary
(known) pure states, and proved a non-trivial upper bound.

All the previous results focus on a relatively simple situation, where the input are identical
copies of a known pure state, and only the asymptotic results are known. In this thesis, I study the
communication complexity of EDPs with incomplete information. In this setting, Alice and Bob
do not have the complete knowledge about the input state they share. Rather, the input state is
a mixed state, or is adversarially prepared. I also study the precise communication complexity of
EDPs, rather than their asymptotic behavior. In fact, we try to answer questions of the following
fashion: “On this particular input state class, how many bits of classical communication are needed

in order to just output a single EPR pair with a certain quality?”
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Chapter 2

Quantum Mechanics and Quantum

Information Theory

We introduce the notions and concepts in quantum mechanics and quantum information theory.

2.1 Quantum Mechanics

We briefly summarize the laws and conventions in quantum mechanics used in this thesis. This
summary is by no means complete and we refer the reader to Peres [73] and Nielsen and Chuang [69]

for a more comprehensive treatise.

2.1.1 The Quantum States and the Dirac Notation

A quantum system is described in a Hilbert space, i.e., a linear space with a well-defined inner
product. In this thesis we only consider Hilbert spaces of finite dimension. We use Hy to denote
a Hilbert space of dimension N. A pure state is described by a unit (column) vector in a Hilbert
space Hy and is normally denoted in the so-called Dirac notation as | ¢). A qubit is a two-state
quantum system (and is thus in a 2-dimensional space Hs), and is also the smallest quantum
state possible. A general qubit can be written as | ¢) = «a|0) + 5| 1), where o and § are complex
numbers satisfying |a|? + |8/ = 1. We can view this general state | ¢) as a superposition of the

two basis states |0) and |1). In general, a system of n qubits is described in a Hilbert space of
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dimension 2", which can be conveniently viewed as a tensor product of n two-state subspaces, i.e.,
Hon = Ho @ Ho ® -+ @ Ho. We always assume the existence of a fixed, canonical computational
basis in an N-dimensional Hilbert space, denoted as {|0),|1),...,| N —1)}, and a general pure state
can be written as | ¢) = 23;;61 o, | z), where 23;;61 |z |2 = 1. Naturally we have N = 2". Again,
it is in general a superposition of 2" basis states.

A “bra” is a unit row vector, defined as (¢ | = (| #))', where 2! denotes the operation of applying
transpose followed by the complex conjugate to z. For pure states | ¢) and | %)), their inner product
can be conveniently written as (| @), [9)) = (¢| - |¢) = (¢ | ).

An outer product of two pure states | ¢) and |9) is a matrix defined as |p)¢| = | ¢) - (¢ |.

The outer product and the inner product are conveniently related by the trace of a matrix.

Tr([gXe)) = (4| 4) (2.1)

2.1.2 The Density Matrix and Mixed States

An alternative way to describe a pure state | ¢) is by its outer product with itself, |¢)}¢|. This is
known as the density matriz notation, and |¢)¢| is the density matrix representing state | ¢). One
advantage for the density matrix notation is that it can conveniently represent mized states. A
mixed state emerges when we do not have the complete information about a quantum system but
only partial knowledge represented as a probabilistic distribution. More precisely, a mixed state
is a probabilistic ensemble (mixture) of pure states. In Dirac notation, one writes a mixed state
as {pi,| #i)}, which means this state is in state | ¢;) with probability p;. Naturally, we have that

> ;i = 1. In the density matrix notation, such a state is simply represented as
p=_ pi|diXeil. (2.2)
i

It is easy to see that all density matrices are positive operators (i.e., they are Hermitians and
all their eigenvalues are non-negative) and have trace 1. In fact, one can define a density matrix
as one that is positive and have trace 1. Notice any such matrix can be written in the form of
Eq. (2.2) by spectral decomposition.

Notice that there might exist two very different ensembles of pure states that yield the same
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density matrix. For example, consider an ensemble A which is state |0) with probability 0.5, and
state | 1) with probability 0.5. Its density matrix is p4 = 0.5-|0)0] + 0.5 - |[1X1| = I/2. Consider

another ensemble B that is state |¢y) = |0) + | 1)) with probability 0.5 and state |¢_) =

N
%(\ 0) — | 1)) with probability 0.5. It density matrix is pgp = 0.5 - ¢ Xd4| + 0.5 [¢_Xo_| = /2.
So these two ensembles have the same density matrix, although they are formed very differently.
However, by the laws of quantum mechanics, all the information one can obtain from a quantum
system can be derived from its density matrix. Therefore, if two systems have identical density
matrices, then there is no way to distinguish them. So the two ensembles A and B describe the
same quantum system.

When studying a large quantum system, sometimes it is convenient to focus on a smaller
“subsystem” within the large system. One can derive the reduced density matriz for the subsystem
from the density matrix of the large system. Suppose the smaller system is in a Hilbert space H 4
and the large system is in a Hilbert space H 4p with density matrix p. Then the density matrix pa

for the subsystem can be obtained by “tracing out” the system B, denoted by pa = Trp(p). Here

Trp is a linear operator defined as
Tra(lag)ar|* ® [bo)bi|”) = (bo | b1) - |ao)ai| (2.3)

Here we use superscript to denote the subsystem a state is in: |ag)(ai|? is a state in subsystem A
and |bo)b1|? is a state in subsystem B. It is possible that p is a pure state in the large quantum
system AB, while the local density matrix p4 corresponds to a mixed state. In this case we say that
state AB is entangled. Entanglement is one of the most important features in quantum mechanics

and quantum information theory.

2.1.3 Quantum Operations

There are two types of operations that can be applied to a quantum system, namely unitary
operations and measurements.

A unitary operation is a linear operator. For a quantum system of dimension N, such a linear
operator can be naturally described as an N x N matrix U that maps a pure state | ¢) to U| ¢),

and (equivalently) a mixed state p to UpU'. Such a matrix is unitary, if and only if UUT = I.
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The laws of quantum mechanics stipulate that all unitary operations are allowed. Some of the
most important unitary operations are single-qubit operators known as Pauli operators or Pauli

matrices, denoted by X, Y, and Z, respectively, and defined as

X(al0) +4[1)) = B[0)+al1) (2.4)
Y(al0) +4[1)) = —if|0) +icl1) (2.5)
Z(a]0) + 1)) = «|0)—-p[1) (2.6)

The simplest version of measurements is a projective measurement. A projector is a linear
operator P such that P? = P. An observable is an orthogonal decomposition of the identity
operation. In other words, an observable is a collection of projectors {P;} satisfying Y. P, = I. If
one applies an observable | ¢) to a state | ¢), we have a projective measurement. A measurement is
generally probabilistic: the resulting state is % with probability (¢ |P;| ¢). A measurement
on a mixed state can be naturally generalized. A more general version of measurement, known
as POVM (“Positive Operator-Valued Measurement”), is more conveniently described using the
density matrix notation. A POVM is a collection of measurement operators {E;}, where each F;
is a positive operation and we have ), E; = I. One may write E; = M:Mi for each i. The result
of such a measurement on a quantum state p is state % with probability Tr(MZ-TMip). To
see that POVM is indeed a more general notion, observe that it includes unitary operations as a
special case. It can be shown, however, that any POVM can be realized by unitary operator and
projective measurements with ancillary qubits.

The formalism of super-operators is used to describe how a quantum system evolve when inter-

acting with its environment. A super-operator, normally denoted by &, is a linear operator over

density matrices defined as

Ep) = EipF] (2.7)

where ), EZTEZ < I. We say & is trace-preserving, if ), EZTEZ =1.
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2.2 Quantum Information Theory

We review some of the basic notions in quantum information theory. We do not attempt to give
a complete or comprehensive survey on this topic. Again, the readers are refereed to Nielsen and

Chuang [69] for more comprehensive treatise.

2.2.1 Entropy

The entropy of a quantum state p is denoted by S(p) and known as the von Neumann entropy. It

is defined as

S(p) = =Tr(plog p) (2.8)

where the logarithm is base-2.
It is not hard to derive from the definition that all pure states have entropy zero and the

maximum entropy of an n-qubit system is n, which is achieved by the completely mixed state QL,L

2.2.2 Entanglement

In this thesis we will be mainly interested in bipartite systems shared between Alice and Bob. In
such a bipartite system, the entanglement of a normalized pure state | ¢), denoted by E(| ¢)), is
defined to be the von Neumann entropy of the mixed state obtained by tracing out Bob’s subsystem.

In other words,

E(1¢)) = S(Trp(|lgX4l) (2.9)

A pure state is entangled if its entanglement is non-zero, and is otherwise disentangled or
separable. A mixed state is disentangled if it can be expressed as an ensemble {p;, | ¢;)} where each
| #;) is disentangled. All other mixed states are entangled. However, there isn’t an agreed-upon
definition on the amount of entanglement of a mixed state.

For a bipartite system consisting of n qubit pairs (or 2n qubits in total), its maximum possible

entanglement is n. The most important among the maximally entangled states are the four Bell
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states, defined as

3t = %<|0>A|o>3+1>/4|1>3> (2.10)
3 = %<|0>A|o>31>/4|1>3> (2.11)
A %(|0>A|1>B+1>A|0>B) (2.12)
o= o n® - 108 (2.13)

N

These are maximally entangled two-qubit pure states.

The Bell states are closely related to the Pauli matrices. In particular, it is easy to verify that
unitary operators of the form I @ U, where U € {X,Y, Z} translates one Bell state to another. For
example, we have (I ® X)@T =0+ (I®Y)®t =¥, and (I ® Z)0T =P~

An EPR pair, or an Einstein-Podolsky-Rosen pair, refers to the Bell state ®+.! We denote
the state (®)®", which represents n perfect EPR pairs, by ®,. We also abuse the notation to
use @, to denote both the vector | ®,) and its density matrix |®,)}P,|, when there is no danger of

confusion.

2.2.3 Fidelity

The fidelity is a measure of the “closeness” of two quantum states. For two (mixed) states p and

o of equal dimension, their fidelity if defined as

F(p,0) = Tr*(y/ p'/20p'/2). (2.14)

Notice we are using a different definition as in [NC00], where the square root of (2.14) is used.

If 0 = |p)p]| is a pure state, the definition simplifies to

Flo, lpXel) = (¢ lpl @) (2.15)

A special case for the fidelity is when | ¢) = ®,, for some n. In this case, we call the fidelity of

!There exist contexts where an EPR pair refers to the state ¥ . See, for example, Bohm [14]. But in this thesis,
we use the convention of ®7.
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p and | @) simply the fidelity of state p, denoted as F(p). In other words, we have

F(p) = (®n |p| n) (2.16)

We are often interested in the fidelity of two states of unequal dimensions, and in particular,
the fidelity of a general bipartite state p, and the Bell state ®*. If p has dimension 2, then this
is simply F(p). However, when p has a higher dimension, we need to define its base fidelity as the
fidelity of the state obtained by tracing out all but the first qubit pair of p. We denote the base
fidelity of p by FP(p). Mathematically, we have F®(p) = F(Tr;(p)).

It is easy to verify that the fidelity is linear with respect to ensembles, so long as one of the

inputs is a pure state, as in the following claim.

Claim 2.1 If p is the density matriz for a mized state that is an ensemble {p;, | $;)}, and o is the

density matriz of a pure state, then we have

F(p,0) = Zpi -F(|¢i)il, o). (2.17)

The fidelity is also monotone with respect to trace-preserving operations [69].

Claim 2.2 For any states p and o and any trace-preserving operator &£, we have
F(€(p), (o)) = F(p,0). (2.18)
One useful fact is that the base fidelity of any completely disentangled state is at most 1/2.

Lemma 2.1 If p is a completely disentangled state, then FP(p) < 1/2.

Proof: By the definition of base fidelity, we may assume that p has dimension 2. By Claim 2.1,
we only need to consider the case that p is a pure state |p)$|. Since | ¢) is disentangled, we may

write it as

[¢) = (0] 0) + e[ 1)) © (Bo] 0) + Ai[ 1))
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Then a direct calculation reveals that

Fo(lo)gl) = = laoBo +arfl?
(lewo?[Bo]® + | 2181 [* + aoBoci B + By Br)
(lewol*Bol® + e |*]B81 1> + | Bt ] + | B5 )

(lao|” + [ ) (|Bol” + |B1]?)

NN =N =N —=DN|

2.3 Some Useful Results

2.3.1 The Deviation of Pure States over Unitary Operations

We study how much “deviation” a quantum state undergoes when applied various unitary opera-
tions. In particular, we will prove two lemmas that would be useful in the rest of the thesis.
First, we consider the “deviation” of an arbitrary pure state under the operations {I, X,Y, Z}

over its first qubit.

Lemma 2.2 Let | ¢) and | 1)) be two pure states of the same dimension, not necessarily bipartite.

Let I, X, Y, and Z be the unitary operations over the first qubit of | ¢). Then we have

> glUl)? <2 (2.19)

Ue{l,X,Y,Z}

Proof: We write | ¢) = ag|0)| ¢o) + 1| 1)| ¢1) and ) = Bo|0)| o) + B1]1)] 91)

Then we have

(@l19) = apfoldo o) + aiBi(dr | 1)
(@1X[9) = aiBo(r [vo) + agfi(o | d1)
(@IY[y) = —ioafy(dr | o) + icofi{do|¢n)
(P1Z]y) = agBoldo | o) — aifi(dr | 1)
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Therefore

> @lUI)® = 2lacBol* (b0 |$o)” + 2lenBl’|{br | 1) + 2Bl [(do [91)[* + 2l Bol* (1 [ 4ho)|”

Ue{l,X,Y,Z}
< 2lag*|Bol + 2l P81 % + 2] B1[* + 2] || Bo

= 2o + e ) (|Bo]* + |B1]%)

= 2

An immediate corollary is
Corollary 2.1 For any pure state [ $), 3>y cqr x,v,21 (@ |U] )| < 2.

Next, we consider quantum states and operations over bipartite systems, and study the “de-
viation” of a general bipartite state under unitary operations of the form U ® U*, where U* is
defined as the complex conjugate of U, i.e., one simply takes the conjugate of each entry in U*.
Alternatively, U* is defined as the unique unitary operation that satisfies that U*| ¢*) = (U| ¢))*.
We interpret U ® U* as Alice applies U to her first qubit and Bob applies U* to his first qubit.

Again, we consider U € {I, XY, Z}.

Lemma 2.3 Let | ¢) be a pure state in a bipartite system shared between Alice and Bob. Let I,
X®X*, YY" and Z ® Z* be the unitary operations over the first All these 4 operations work

on the first qubit of Alice and the first qubit of Bob. Then we have

(@1¢) + ($1(X © X*)[§) +{(d|(Y @Y*)[§) + ($1(Z ® Z")| ¢) = 4F°(| ¢)) (2.20)

Proof: We first consider how the Bell states behave under these unitary operations. It is easy to
verify the result, which we compile into the following figure.

It is easy to see that the state ®* is invariant under any of the 4 operations, while other Bell
states will change their signs under some operations.

Notice the 4 Bell states form an orthonormal basis for a bipartite system of 2 qubits. We
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Figure 2.1: The Bell States under Pauli Operators

decompose | ¢) into the Bell basis and write
[¢) = @@ @ [¢o) + 1P @ Y1) + T @ ) + a3 ¥ ® |¢h3)

3 2 _
where 37 || = 1. Therefore we have

(@14) = laol* +]en|” + |azf” + |asl”
BI(X@X)d) = |ao)? —[on|* + |azf” — |as|”
@Iy @Y)d) = |aof —lon]* — |aaf? + |as|
Bl(Zo@Z)| ) = |aof +|a]* — |agf* — sl

and so,

(@1 9) + (D (X @ X")[9) +($|(Y @Y™)[§) + (¢ (Z ® Z*)| §) = 4lex|” = 4F(| ¢))

2.3.2 Positive Operators

For two positive operators A and B, we say A dominates B, if A — B is still a positive operator,

and we write this as A = B, or equivalently, B < A.

Lemma 2.4 For any super-operator € and any positive operators A and B, if A = B, then E(A) >
E(B). ]
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This directly follows the fact that £ is linear and preserves the positivity of operators: If A — B is

a positive operator, then £(A) — £(B) = £(A — B) is also a positive operator.

Lemma 2.5 Let p and o be density matrices such that p = a - o, for some positive number a. For
any POVM {E;}, where E; = M:Mi, let p; = Tr(pM;) and and q; = Tr(oM;) be the probabilities

the measurement result being i for p and o, respectively. Then we have p; > a - g;. [ |

This is obvious, since we have p; —a - q; = Tr((p — a - o) M;) > 0.
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Chapter 3

Preliminaries and Notations

3.1 General Notations

We present some general notations, both classical and quantum, to be used throughout the thesis.

All logarithms are base-2. All vectors are column vectors by default. We use [n] to denote the
set {0,1,...,n —1}. If A and B are two sets, then A x B denotes the Cartesian product between
sets A and B.

We often work with symbols from a particular alphabet, which is a finite set and is normally
denoted by 3. We always assume the existence of a canonical one-to-one correspondence between
an alphabet ¥ of size ¢ and the set [¢], and often identify ¥ with [q].

A string is a sequence of symbols from an alphabet. We often identify a string with a vector
and shall use them interchangeably. For a string = of length n, we use z[j] to denote its j-th entry,
for j = 0,1,...,n — 1. We often also use a tuple to index an entry in a vector. For example, We
index an (a - b)-dimensional vector by (z,y), where z € [a] and y € [b]. In this case, we assume
there exists a canonical mapping from [a] X [b] to [ab]. We use 0,, to denote the all-zero vector
(whose each entry is 0) of dimension 7, and 1,, to denote the all-one vector (whose each entry is 1)
of dimensional n. When the dimension is clear from the context, it is often omitted.

The Hamming distance between 2 strings z and y of equal length is the number of positions
that these 2 strings differ, and is denoted by dist(z,y). For strings z and y, we use z;y to denote

the concatenation of these 2 strings.
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A binary string or binary vector is a string over alphabet {0,1}. We identify an integer with
the binary vector obtained from its binary representation. For a binary vector z, we denote its
Hamming weight by |z|, which is the number of 1’s in . Obviously the Hamming distance between
2 binary strings z and y is simply |z & y|, where z & y denote the string obtained by entry-wise
XORing x and y.

A classical probabilistic distribution for some alphabet 33, normally denoted by D, is a mapping
from ¥* to [0,1], such that ) y. D(z) = 1. A uniform distribution over a set S is denoted by Usg,
and is defined to be Ug(z) = 1/|S| for all z € S.

We identify a random variable with its distribution and shall use the terms “random variable”
and “probabilistic distribution” interchangeably.

The correlation of a pair of random variables X and Y over a distribution D, denoted by

Corp[(X,Y)], is the probability they agree minus the probability they disagree.
Corp[(X,Y)] = Prob p[X = Y] — Prob p[X # Y]. (3.1)
The statistical distance between two distributions X and Y is
SD(X,Y) = %Z Prob [X = 2] — Prob [V — 4] (3.2)

T

If the statistical distance between X and Y is €, then we say that they are e-close.
For any function over a finite set, we identify this function with its truth table, which can be
written as a vector. For example, we regard a function over {0,1}" also as a 2"-dimensional vector.

We assume a canonical ordering of n-bit strings.

3.2 Protocols

We focus on two-party protocols executed between Alice and Bob. A protocol is normally denoted
by P. Classical protocols can be modeled by two interactive Turing machines as by Goldreich [40].
Quantum protocols can be modeled by two quantum circuits connected by classic wires, as defined

by Yao [95]. The actual model of computation isn’t essential for this thesis, since all the lower
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bounds I shall prove are information-theoretical, and therefore are independent from the actual
computation model being used, and all the algorithms I present would be efficiently realizable in
any of the reasonable computation models.

Next, we will give formal definitions on various aspects of the correlation distillation protocols.

However, first we discuss different types of these protocols

Classical vs. Quantum The classical version of correlation distillation protocols work with clas-
sical information. At the beginning of a protocol, Alice and Bob share information that is not
perfectly correlated, and at the end of the protocol, they output classical information that is

almost perfectly correlated.

The quantum version of correlation distillation protocols is more appropriately called entan-
glement distillation protocols. Here, Alice and Bob start with qubits that are imperfectly

entangled, and at the end, they output qubits that are almost perfectly entangled.

Recovering vs. Refreshing Intuitively, the recovering protocols are the ones that try to recover
the information that is “corrupted” by a noisy channel. A bit more formally, a protocol is
a recovering protocol, if Alice directly outputs her local input. Consider the situation where
Alice sends some information A through a noisy channel, and when Bob receives B from the
channel, A and B are not perfectly correlated (or entangled). In a recovering protocol, Alice
and Bob try to reconstruct the information A Alice sent out. At the end of the protocol,

Alice will output A4, and Bob tries to output A that is as “close” to A as possible.

Protocols that are not recovering protocols are called refreshing protocols. These protocols,
on the other hand, aim to generate fresh information that is not necessarily the original
shared information. At the end of a refreshing protocol, Alice and Bob each outputs some
information, which we denote as X and Y. The goal is to have X and Y be as correlated (or

entangled) as possible.

Non-interactive, One-way, and Two-way Depending on the amount of communication, a pro-
tocol can be non-interactive, one-way, or two-way. A non-interactive protocol is one where
Alice and Bob don’t communicate at all. They are perhaps the simplest protocols in their

class. For interactive protocols, we say a protocol P is a k-bit protocol, if it contains k bits
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of communication. In a one-way protocol, only one of the players sends information to the
other party. We always assume that in this case it is Alice that sends information to Bob,
and Bob sends nothing back. In a two-way protocol, Alice and Bob both send information to

each other.

Deterministic, Randomized, and Randomized Public-Coin A distillation protocol is either
deterministic or randomized. Deterministic protocols refer to ones where both Alice and Bob
are deterministic. In a randomized protocol, both Alice and Bob are randomized. They both
have their own supply of random bits, but they do not share any randomness. A protocol is

randomized public-coin, if Alice and Bob have read access to a shared random string.

Clearly a randomized public-coin protocol is more powerful than a randomized one, which
in turn is more powerful than a deterministic protocol. In fact, refreshing protocols with
shared randomness are trivial, since Alice and Bob can simply discard the imperfectly shared
information and use the shared randomness entirely. However, shared randomness does not
trivialize quantum entanglement distillation protocols. In fact, it proves very useful in con-

structing EDPs.

Absolute vs. Conditional We assume that protocols always terminate. However, we make a
distinction between a successful termination and an abort. Protocols that always successfully
terminate are called absolute protocols; protocols that may abort are called conditional proto-
cols. For a conditional protocol, we assume that besides the normal output, Alice will output
a special symbol (either SUCC or FAIL) that indicates if the protocol successfully terminates
or aborts. We assume that this special symbol is output in a special tape (in the Turing
Machine notation) or a special wire (in the circuit notation), so that it will not be confused
with the “normal” output of Alice. We also assume that the special symbol is a piece of

classical information.

A classical correlation distillation protocol PP works over a fixed alphabet .. Both the input and
the output of P are pairs of strings in X.! A string pair S € ¥" x I is written as S = (S4, §P),

indicating that S belongs to Alice and S® belongs to Bob.

'In fact, in some of the protocols we study in the thesis, the input and the output alphabets are different. However,
they can be viewed as a natural extension to our convention here.
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We say P is a (3, n, m)-protocol, if the input string pairs have length n, and the output pairs

have length m. We call m the yield of the protocol P. Formally we may write this as

P(I) =0 (3.3)

where I € 3™ x X" is the input string pair, and O € 3™ x ¥ is the output string pair. At the
beginning of the protocol, Alice receives I as her local input, and Bob receives I” as his. At the
end of the protocol, Alice outputs O as her local output, and Bob outputs OP. Notice that if P
is randomized, then O can be a random variable.

A quantum entanglement distillation protocol P works over qubits. The shared quantum state
between Alice and Bob can be described by a mixed state p. Suppose Alice and Bob share a state
consisting of n qubit pairs, then p is a mixed state in a Hilbert space of dimension 22”. The reduced
density matrices of Alice and Bob represent the local information they possess regarding the state
p. We denote them by p” and p”. In other words, we have p* = Trg[p] and p® = Try[p].

We say P is an (n,m)-protocol, if its input consists n qubit pairs and it outputs m qubit pairs.

We call m the yield of P. Formally we write this as

Plp) = o (3.4)

where p is a density matrix of dimension 22" and ¢ a density matrix of dimension 22™.

3.3 Noise Models

For both classical and quantum protocols, noise models are used to describe the inputs to the
protocols. A noise model is normally denoted by N, and is either classical or quantum, and is either

adversarial or probabilistic.

Definition 3.1 (Adversarial Classical Noise Model) An adversarial classical noise model over

an alphabet ¥, often denoted by N33, , is a set of string pairs.

@, ={I, Iz, It} (3.5)
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where I, € X" x X" for k = 1,2,.... M. When there is no danger of confusion, the subscripts %

and/or n are omitted.

Definition 3.2 (Probabilistic Classical Noise Model) A probabilistic classical noise model
over an alphabet X, often denoted by chp’n, 18 a probabilistic distribution over X" x X™. When

there is no danger of confusion, the subscripts X and/or n are omitted.

Definition 3.3 (Adversarial Quantum Noise Model) An adversarial quantum noise model,

a . . . . . .
often denoted by N3?, is a set of quantum (mized) states in a 2" -dimensional Hilbert space.

N¥* = {po.p1, . prr—1} (3.6)

When there is no danger of confusion, the subscript n is omitted.

Definition 3.4 (Probabilistic Quantum Noise Model) A probabilistic quantum noise model,
often denoted by N3P, is a single density matriz p of dimension 22*. When there is no danger of

confusion, the subscript n is omitted.

All our definitions on noise models (classical/quantum, adversarial /probabilistic) can be natu-

rally extended to families of noise models.

Definition 3.5 (Noise Model Family) A noise model family is an infinite sequence of noise

models over a fized alphabet 3.
N = (Ny,Ng,...;N,,...) (3.7)

3.4 Quality of the Protocols

We define measures for the quality of correlation distillation protocols.

3.4.1 Classical Correlation Distillation Protocols

The quality of a classical protocol is measured by the correlation of the string pair it outputs.
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Definition 3.6 (Correlation of Classical Protocols) If a classical correlation distillation pro-
tocol P produces a string pair O = (OA,OB) on input I, then its correlation on input I is the
correlation between O4 and OB, and it written as as Cor[P(I)]. The correlation of P over an
adversarial noise model N, denoted by Cornea[P], is the minimal correlation of P over all inputs
in N

Corne[P] = Irghrcla {Cor[P(1)]} (3.8)

The correlation of P over a probabilistic noise model NP, denoted by P[NP], is the expected corre-

lation of P over all inputs in N

COI’Ncp [P] = E[ENCP {COF[P(I)]} (39)

Definition 3.7 (Perfect Classical Protocol) A classical correlation distillation protocol P is

perfect for a classical noise model N€, if Corye[P] = 1.

Often there are other constraints on the output besides the correlation. In a recovering protocol,
Alice needs to output the original information she sent over. In a refreshing protocol, both Alice
and Bob need to output (locally) uniformly distributed bits. The performance of a protocol is

measured both in its yield and the correlation of its output with the constraints.

3.4.2 Quantum Entanglement Distillation Protocols

The quality of a quantum protocol is measured by the fidelity of its output and the perfect EPR

pairs.

Definition 3.8 (Fidelity of Quantum Protocols) The fidelity of an entanglement distillation
protocol P on input state p is the fidelity of its output, written as F(P(p)). The fidelity of P over
an adversarial noise model N9, denoted by Fyaa(P), is the minimal fidelity of P on all inputs in
Na2

Fae(P) = min {F(P(0))} (3.10)

The fidelity of a protocol P over NP is simply F(P(N9P)).
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Definition 3.9 (Perfect Quantum Protocol) A quantum correlation distillation protocol P is

perfect for a quantum noise model N9, if Fna(P) = 1.
Definition 3.10 (Conditional Fidelity) For a conditional protocol P, its conditional fidelity

over a noise model N% is its fidelity conditioned on that P succeeds (i.e., outputs “SUCC”), and is

denoted by F{q(P).
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Chapter 4

Error Correcting Codes and

Correlation Distillation Protocols

We discuss the relation between error correcting codes and correlation distillation protocols. In
particular, we shall establish several results. The first result relates classical linear error correcting
codes to classical correlation distillation protocols by proving that every linear ECC corresponds to
a CDP of the same overhead with respect to the same noise model; the second result relates quantum
stabilizer codes to entanglement distillation protocols by proving a similar result, that any stabilizer
QECC corresponds to an EDP of the same overhead with respect to the same noise model." The
last result separates the power of error correction from correlation distillation. In particular, we
present two noisy channels (one classical and one quantum) of such high noise rates that error
correction becomes useless (for noiseless transmission of information), but there exist correlation
distillation protocols that can achieve a positive rate of noiseless information transmission.

The results in this Chapter relative to this thesis are summarized in Figure 4.1.

'n fact, we prove that for any stabilizer QECC with an overhead of ¢ qubits, there exists an EDP with an overhead
of ¢ bits. Thus, in some sense EDPs are much more efficient than QECC, since classical bits are much cheaper than
qubits.
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Figure 4.1: Results in Chapter 4.

4.1 Classical Error Correcting Codes and Correlation Distillation

Protocols

Here we prove a very general result that relates a very large class of error correcting codes to

correlation distillation protocols.

4.1.1 Error Correcting Codes

We describe the notion of Error Correcting Codes very briefly. Generally, an error correcting code
is a systematic way of adding redundancy to the information, so that the redundant information is
resilient to “small” disturbances. In this thesis we only focus on block codes that encode messages

of a fixed length into code-words of a fixed length.

Definition 4.1 (Classical Error Correcting Code) A (classical) error correcting code of pa-
rameter (n,k,d) over an alphabet 3 is function FE : ©% — X" such that for any z,y € ¥, x # v,
dist(F(xz), E(y)) > d. The function E is called an encoder. A string x € X¥ is called a message,

and its image E(x) € X" is called its code-word.

This definition implicitly defines a decoder D as well. Consider an (n, k, d)-code. For any string
t € X", there can be at most one code-word of Hamming distance less than or equal to (d — 1)/2

from ¢. If such a code-word exists, and suppose it is F(z), then ¢ will naturally be decoded to
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message z. If no such code-word exists, the decoding of ¢ is undefined. More formally, D : X" s ©F
is defined as

x if there exists an z s.t. dist(E(z),t) < (d —1)/2
D(t) = (4.1)

uE otherwise
We stress that we focus on the properties of the code-words, rather than computational com-
plezity of encoding/decoding. For example, we don’t require the encoding and decoding algorithms
of the codes to be efficient. Neither do we consider list decoding, where some strings more than
(d —1)/2 away from any code-words may be decoded to a list of “candidate” messages (interested

readers are referred to Guruswami’s Ph.D. thesis [38] for a comprehensive survey).

4.1.2 Linear Codes

Perhaps the most important class of error correcting codes is the class of linear codes. Linear codes
are of particular interest because of their simplicity and beautiful mathematical structures. In fact,
most of the known good codes belong to the class of linear codes. The alphabet of a linear code is
a finite field F, and the encoder F for a linear code is a linear mapping from F* to F*. Therefore F
can be succinctly described as an n x k generator matriz G, and the encoding is simply a matrix
multiplication: a message z, a k-dimensional vector, is mapped to code-word G - z. All the code-
words form a k-dimensional subspace in F”, which is the column space of G2. An (n, k, d)-linear
code is often denoted as a [n,k,d]-code. The square brackets replaces the round parentheses to
indicate that it is a linear code.

Given two linear codes F and F’, represented by generator matrices G and G’, we say they are
equivalent, if G’ can be obtained from G by row permutations and elementary column operations.
Intuitively, if £ and E’ are equivalent, then one is only trivially different from the other, and there
exists a very simple correspondence between the code-words of F and E'.

Next, we describe a special form of linear codes, known as the systematic codes. The definition

is taken from [12, Definition 3.2.4, page 49].

2The column space of G is the subspace generated by the columns of G.
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Definition 4.2 (Systematic Code) A linear code E is a systematic code, if its generator matrix

G is of the form G = , where I is an k x k identity matriz and P o (n — k) x k matriz.
P

Intuitively, a systematic code is one where a code-word is the message it encodes concatenated with
(n — k) so-called “parity-check symbols”.
It is a standard exercise in linear algebra that any linear code is equivalent to a systematic

code [12, Theorem 3.2.5, page 80].

4.1.3 The Classical Bounded Corruption Model

We describe a classical noise model that is used by most error correcting codes, namely, the classical

bounded corruption model.

Definition 4.3 (Classical Bounded Corruption Model) A classical bounded corruption model

of parameter (n,t) over alphabet %, denoted by By, ;, is an adversarial model consisting of all the
pairs (a,b), where both a and b are elements of X" and the Hamming distance between a and b is

at most t. In other words,
fL’t ={(a,b) | a,b € X" dist(a,b) <t} (4.2)

Intuitively, the classical bounded corruption model adversarially corrupts (modifies) up to ¢
symbols in a string of length n.
Now we are ready to state a positive result. We show a relation between systematic linear codes

and correlation distillation protocols over the bounded corruption noise model.

Theorem 4.1 (From ECC to CDP) For every systematic linear code E of parameter [n,k,d]
over alphabet X, there exists a perfect recovering, one-way, (3,k,k)-protocol Py over a classical

. . c B . I
bounded corruption noise model lf»’k’(dfl)/2 that uses (n — k) bits of communication.

Proof: The idea behind this proof is in fact very simple. Let the generator matrix of the sys-

tematic linear code F be G = . Then Pg proceeds as follows. When Pg starts, Alice and
P

Bob each possesses a length-k string, I* and I?, respectively. Alice then computes C = P - I,
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an (n — k)-dimensional vector, sends it over to Bob, and output O4 = I*. Bob then applies the
decoding function D and compute OB = D(I8;C).
We prove that Pg is perfect with respect to Bj (d—1)/2" In fact, I4; C is the code-word for the

message 1*, and since the channel By (d-1)/2 only changes at most (d —1)/2 symbols, we have that

d—1
dist([I*; C], [I®;C]) < (d —1)/2. Therefore, the decoding function D will correctly decode I7;C

to I4. In other words, we have O4 = OF, and thus Pg is perfect. [ |

We present this positive result as a link to relate error correction to correlation distillation. As
the result shows, in general, correlation distillation is at least as efficient as error correction, if not

more efficient, for the majority of the error correction codes.

4.2 Quantum Error Correcting Codes and Entanglement Distilla-

tion Protocols

We relate the notion of quantum error correcting codes (QECCs) to entanglement distillation

protocols (EDPs), with the focus on their efficiencies.

4.2.1 Quantum Error Correcting Codes

Like their counterparts in classical information theory, quantum error correcting codes are system-
atic ways of adding redundancy to the quantum information, so that the encoded information is
resilient to “small” noises. However, quantum error correction is more complicated. First of all,
unlike in the classical case, quantum information cannot be duplicated, due to the No-cloning The-
orem [93]. So the redundancy added by QECCs is limited, and measurement of the error syndrome
should not yield any information about the encoded message. Second, the noise model is more
complicated: one qubit can suffer from a bit flip (an X operator), a phase shift (a Z operator), a
bit flip combined with a phase shift (a Y operator), or a superposition of them. There are infinitely
many (in fact, uncountably many) possible ways to “corrupt” a code-word, and a QECC needs to
correct all of them. Indeed, less than one decade ago, it was not even clear if QECC was possible
at all, and a positive answer by Shor [83] and Steane [85] caused quite a surprise in the quantum

information community. In a nutshell, QECC is possible because of the following reasons. First, for
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properly designed codes, the measurement of the error syndrome will only yield information about
the errors on a code-word, and no information about the encoded message, thus not violating the
no-cloning theorem. Second, due to the linearity of quantum mechanics, it suffices to correct the
basis errors, and all other errors will be automatically corrected (by “collapsing” into one of the
basis errors), thus solving the problem of infinitely many errors.

We now formally define QECCs. We always assume that these codes work over qubits, and

they are block codes.

Definition 4.4 (Quantum Error Correcting Code) An error correcting code of parameter (n, k,r)
is a pair of quantum algorithms (E, D), both over n qubits as input (they can have ancillary qubits,

)
that can be obtained from | ¢,) by (arbitrarily) modifying at most r qubits, we have D|) = |z) ® p

initialized to state |0™)), such that for every x € {0,1}%, | ¢,) = E| x)| 0"~F), and for any state

for some mized state p of n — k qubits. We write such a code a [n,k,r]-code.

4.2.2 The Quantum Bounded Corruption Model

We describe the quantum bounded corruption model, which is the quantum counterpart of the
classical bounded corruption model. Correspondingly, this model is used by most quantum error
correcting codes.

Before giving the formal definition, we need some additional notations. Recall that X, Y, and Z
denote the Pauli operators, while I denotes the identity operator, all over a single qubit. We define
X0 =YY"= 20=1. We use X}, Y}, and Z; to denote these operators over the k-th qubit. Given
a 2n-bit vector v = (zg, 1, ..., Tn_1, 20, 21, ---2n—1), which we call a Pauli vector, we can associate
it with a unique multi-qubit Pauli operator U,, defined as

P,=XZ'® X, 2 (4.3)

n—1

which is a unitary operator over n qubits. Notice that since X - Z = —4iY, we have X°Z0 = ],
X0zl = 7, X170 = X, and X'Z' = —iY. In other words, a Pauli vector designates a unitary
operator formed by applying one of the four operators in {I, X, Y, Z} to each of the n qubits. We

define the degree of a Pauli vector to be the number of £’s where z; and z; are not both 0, and we
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denote this by deg(v).
We use [A, B] to denote AB — BA, and we say operators A and B commute, if [A, B] = 0. We
use {A, B} to denote AB + BA, and we say operators A and B anti-commute, if {A, B} = 0. It is

not hard to see that any two Pauli operators either commute or anti-commute.

Definition 4.5 (Quantum Bounded Corruption Model) A quantum bounded corruption model
of parameter (n,r), denoted by By, is an adversarial quantum noise model consisting of all states

of the form (I ® P,)®,,, where v is a Pauli vector of degree at most k. In other words,

Bi, ={(I®P,) ®, | deg(v) <r} (4.4)

Intuitively, the quantum bounded corruption model adversarially corrupts up to » EPR pairs.
The corruption appears quite limited, since it only allows applying one of the Pauli operators to
Bob’s share of the qubit (we call them “Pauli corruptions”). There are certainly more ways to
corrupt the qubits; in fact there are uncountably many. However, since Pauli matrices, along with
the identity operator, form a basis for one-qubit operations, any corruption can be decomposed
into a linear superposition of the Pauli corruptions (or a mixture of them, if the corruption involves

measurements).

4.2.3 An Equivalence between QECCs and One-way EDPs

Bennett et. al. [25] showed that every QECC corresponds to a one-way EDP with the same “effi-

ciency”. We review their results here.

Theorem 4.2 (From QECC to EDP [25]) For every [n,k,r]-code, there exists a correspond-
ing perfect, deterministic, one-way, (n,k)-protocol over a quantum bounded corruption model By ,

that uses 2n bits of communication.

Proof’s sketch: Let (E,D) be an [n,k,r]-code. We construct a protocol P as follows. First
Alice generates k fresh EPR pairs locally, keeps half of them, and encodes the other half using F.
Next, Alice sends these n qubits to Bob by teleportation, using the shared n EPR pairs. Finally

Bob decodes the n qubits received using D. Since at most r out of the n original EPR pairs are
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corrupted, the n qubits Bob receives from the teleportation contains at most r errors, and they can

be recovered by the decoding algorithm D. [ |

Theorem 4.3 (From EDP to QECC [25]) For every perfect, one-way (n,k)-protocol over a

quantum bounded corruption model By, ,, there exists a corresponding [n, k,r]-code.

Proof’s sketch: First, we show how Alice and Bob can turn the EDP protocol into a error-
correcting protocol with one-way communication. This is simple: Alice and Bob first use the EDP
to distill k& perfect EPR pairs, and then Alice teleport k qubits to Bob using the distilled EPR
pairs. In both the EDP and the teleportation, only one-way communication is used. Finally, it was
proven that any error-correcting protocol with one-way communication corresponds to a QECC

with the same rate but no communication [25]. ]

4.2.4 Stabilizer Codes and EDPs

Theorems 4.2 and Theorem 4.3 establishes the equivalence between QECCs and EDPs over the
quantum bounded corruption model. In particular, Theorem 4.2 shows a positive result on the
power of EDPs. However, the construction of the EDPs in this theorem is not very efficient. Since
n teleportation procedures are used, a total of 2n bits of communication is needed. Can we do

better than this? The answer is “yes” for a large class of QECCs, namely the stabilizer codes.

Stabilizer Code

The class of stabilizer codes is a very general class of quantum error correcting codes, and is
the analogue of the class of linear codes in classical error correction. We briefly describe the
properties, and the readers are referred to Gottesman [37] and Nielsen and Chuang [69] for a
comprehensive tutorial. Informally, a stabilizer code S is a collection of “parity check” operators
S ={My, My,...,M;_1}, where each M; is a Pauli operator, and a state | z) is a code-word, if and
only if M;|z) = |z) for all i = 1,2,....,4 — 1. We use (S) to denote the subgroup generated by S,
and N(S) the normalizer of S, which consists of all Pauli operators P such that P-S-Pf = 5. We
say a subspace L is stabilized by S, if every element | ¢) € L is invariant under all elements in S.
In other words, L = {|¢) | Vi € [¢], M;| ¢) = | $)}, and we write this as L = C(S). Then C(S5) is

also precisely the subspace spanned by all the code-words.
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Definition 4.6 (Stablizer Code) A [n,k,r]-stabilizer code S is an independent set of (n — k)
Pauli vectors of dimension 2n, denoted by S = { My, My, ..., My, 1}, such that for any two Pauli

vectors Py, Py of degree at most r, PgPl Z N(S) — (5).

It is known that an [n, k, r]-stabilizer code is an [n, k, r]-QECC [37, 69]. In other words, there
exists generic constructions of the encoding/decoding circuit pair (£, D) from any stabilizer code.
In particular, the decoding circuit D takes the following form. First, a unitary operator M is
applied to all n qubits, which, intuitively, computes the (n — k) “parity checks” defined by the
(n— k) operators My, My, ..., M, ;1 € S. Then, (n— k) qubits are measured in the computational
basis, resulting an “error syndrome” e. Finally, an appropriate “correction” circuit U, is applied
to the remaining k qubits. In particular, if the error syndrome is 0%, then the correction circuit

is the identity circuit.

Theorem 4.4 (From Stabilizer QECC to EDP) For every [n, k,r]-stabilizer code, there ex-
ists a corresponding perfect, one-way, (n,k)-protocol over a quantum bounded corruption model

By that uses (n — k) bits of communication.

Comparing this result to Theorem 4.2, we see a large improvement for communication complexity
(from 2n to n — k). Notice that there exists [n, k,r]-stabilizer codes where ¢ is a constant and
k = n—clogn. In this case, Theorem 4.4 yields an exponential improvement over Theorem 4.2. This
result appears to be a folk-lore in the quantum information theory community and in particular,
appeared as an exercise in Nielsen and Chuang [69, pp.597].

We present a sketch of the proof for completeness.

Proof’s sketch: Let S = {My, M,,...,M,,__1} be an [n, k, r]-stabilizer code, and (¥, D) be the
corresponding encoding/decoding circuit pair. In particular, we assume that D takes the form
of a parity check circuit M (which is a linear mapping modulo 2) followed by measuring (n — k)
qubits and then a family of correction circuits U.. We construct a corresponding EDP Pg as
follows. Alice applies the decoding circuit D to her share of qubits, i.e., she applies the parity check
circuit M followed by a measurement and the corresponding correction circuit. She then outputs
the remaining k£ qubits and sends the (n — k) bits of the measurement result, denoted by ey, to

Bob. Bob performs the same parity check circuit M to his share of qubits, followed by the same
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measurement and obtain (n — k) bits, denoted by eg. Then Bob computes e = e4 @ ep and applies
the correction circuit U, to his remaining k& qubits and output them.

We prove that protocol Pg is perfect. The main observation is that a stabilizer code is linear.
The entire space of n-qubit states can be decomposed into 2" * subspaces, each of dimension 2*
and denoted by L., where e € {0,1}"7%, such that each subspace L, is stabilized by the group
generated by S, = {(—1)°°- My, ..., (=1)%—*-1-M,_,_1}. In particular, Ly is the subspace spanned

2"~k subspaces are isomorphic to each other.

by all code-words. Naturally, all these

Now consider the operation in Pg. If the input to the protocol is (I ® P,)|¢)?| ¢)?, then
this state becomes (M ® M P,)| $)?| $)? after both Alice and Bob have applied their parity check
circuits. If | ¢) is a code-word, then it is clear that Alice’s measurement would yield ey = 0 and

Bob will apply the correction circuit U, = U,,, which will correct the “corrupted code-word”

ens
P,| ¢), and result in state | )?| )2, where |4) is the decoding of state | ¢). Now, we fixed P, and
consider the case | ¢) € L, is not a code-word. In this case, it is not hard to see that M|¢) will
yield a measurement result of a. Furthermore, the measurement of MP,| ¢)? will give a result of
e & a, since | ¢) is stabilized by (S.), which has the same commute/anti-commute property with
P, as (S.), since a phase change does not affect commutability. Therefore, Bob will still apply the
correcting circuit U, effectively “remove” the affect of P, this is by the isomorphism between
Lg and L,.

Finally, notice that the state ®, can is a superposition of 2" states of form | ¢,)"| ¢,)?, with

2F 2’s from each subspace L.. Overall, we conclude that the output of the protocol Pg is ®;. m

4.3 Separating Error Correction from Correlation Distillation

We present two (very) noisy channels, one classical, one quantum. In both channels the error cor-
rection almost completely fails to transmit information noiselessly (because of the high noise rate),
while there exist correlation distillation protocols promising a positive rate of noiseless information
transmission. These results show a separation between the power of error correction and that of

correlation distillation.
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4.3.1 Separation Result for Classical Channels

Consider a classical bounded corruption model B / It is a classical result that a perfect error

.
correcting code can only encode two bits of information for such a channel. So error correction is

almost useless.

Theorem 4.5 (Limits on ECCs) A perfect error correcting code for B n/3 €N only encode 2

bits of information.

Proof: We prove that there can be at most 4 n-bit vectors such that any two of them have
Hamming distance at least 2n/3. This will imply the theorem.

We write these vectors as vy, v9, ..., vy, and define m new vectors uy, usg, .., uy, as follows: wu;[j] =
2v;[j] — 1. Thus each entry of u; is £1 and we have (u;,u;) < —1/3, where (z,y) denotes the scaled

;x[i] - y[i]. This is because any u; and u; must differ at at least 2n/3 of

inner product (z,y) = %Z

their entries. Now, let u = )", u;, and we compute (u,u). We have

(u,u) = Z(ui,ui) + Z(ui,uj) <m-—m(m—1)/3=m(4—m)/3

i i#
Since we have (u,u) > 0, we have m < 4. ]

However, using correlation distillation protocols, we can do much better. To show the result,
we need to introduce some notions from [72, 65].

Consider a cooperative game played by two players, the “sender” S and the “receiver” R. At the
beginning of the game, S receives a private input = and R receives a private input y, where the pair
(x,y) is drawn from a pre-determined set T C {(z,y)|z,y € {0,1}*}. Here we call T' the support set.
Furthermore, we define the projection of T on the sender S to be T's = {z : (z,y) € T for some y},
and T'g similarly. During the game, S and R communicate, using a pre-determined protocol P. At
the end of the game, R outputs z’, and they win if ' = z. A winning protocol is one that always
wins over all inputs in T". The communication complexity of the protocol P is the maximum number
of bits exchanged between S and R over all possible inputs (z,y) € T. Clearly this game is closely
related to correlation distillation protocols, and in particular, if the support set T is an adversarial

classical noise model, then the protocol is precisely a perfect recovering classical protocol.
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For a fixed support set T and a string y, we define the ambiguity of y (with respect to T') to be

ply, T) =Kz« (z,y) € T}, (4.5)

and the mazimum ambiguity of T to be

i(T) = ;relgig{u(y,T)}- (4.6)

An element y € Tg defines a hyperedge

Bly) = {« : (z.y) € T}. (4.7)

Finally, we define the edge count of T' is defined as

o(T) = HE(y) : y € Tr}l. (4.8)

Naor et al.[65] proved the following theorem.

Theorem 4.6 (Communication Compleiry Result [65]) For any support set T, there exists

a four-round winning protocol with communication complexity at most
loglogo(T) + log a(T') + 3loglog i(T) + 7 (4.9)

Now we bring our attention to the case where T' = By ; is a classical bounded corruption model.
It is straightforward to compute the maximum ambiguity and the edge count of T'. In fact, we have
a(T) = o(T) = Z?:/g (") < g (H(1/3)+0(1)) (we refer the readers to, for example, Sudan’s course
note [87] for proofs). Plugging in this to Theorem 4.6, we have
Theorem 4.7 (Separating ECC from CDP) There exists a four-round perfect correlation dis-

tillation protocol for the noise model By, , with communication complexity n - (H(1/3) + o(1)).

Here H(z) is defined as H(z) = —x - log(z). Notice that logi(7T") dominates all other terms

in (4.9). By investing about n - H(1/3) = 0.918n bits of communication, Alice and Bob are able
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transmit n bits of information. So the saving is about 0.082n bits. By contrast, the error correction

approach can only manage to get two bits through.

4.3.2 Separation Results for Quantum Channels

The separation results for quantum channels is in fact given by Bennett et al. [25]. We briefly
sketch a slight variation of their result here for completeness.

Consider a quantum bounded corruption model Bg,n/Q' In other words, the model corrupts up
to half of the qubits transmitted. One can easily prove that there does not exist perfect QECC for
such a channel. Here is a brief sketch. Assuming otherwise, then we can feed a k-qubit state | ¢)
into the encoding algorithm and obtain an n-qubit state |1). The decoding algorithm would be
able to recover | ¢) from the first n/2 qubits of | 1), as well as the last n/2 qubits of | ). If we do
both, we can effectively clone the state | ¢), which contradicts the No-cloning Theorem. Therefore
no QECC can be used here to even transmit a single qubit perfectly.

On the other hand, there exists a two-round entanglement distillation protocol for B?L,n /2 that
produces a constant fraction (0.00457) of perfect EPR pairs that can then be used to transmit

quantum information through teleportation. The detailed protocol can be found in [25].
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Chapter 5

Non-Interactive Correlation

Distillation

Here we demonstrate a series of negative results that aim to understand one of the most basic prob-
lems in the communication complexity of correlation distillation, i.e., how well Alice and Bob can
do if there is no communication ot all? We call this process non-interactive correlation distillation
(NICD).

The results in this Chapter relative to this thesis are summarized in Figure 5.1.

communication L = lower bound
noise model 0 1 | many U = upper bound
. © = my orignal result
bounded corruption | _ | | L | &= independent result
()

a

binary symmetric

binary erasurel | ©) U

TeoTss

(*9)
tensor product \ &)

L | non-interactive correlation distillation

. D)
bounded corruption | &)

o
bounded measurement | &) U

depolarization | ) @

entanglement | ) | u () U

unjuenb

fidelity | ©OLu ©OLu |©LU

Figure 5.1: Results in Chapter 5.

At the first glimpse of the problem, it may be tempting to answer “nothing interesting”. Intu-
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itively, it makes sense; if Alice and Bob do not communicate at all, they have no knowledge about
the other party, and how would they possible “recover” the information?

This intuition is in some sense correct for recovering protocols. Recall that in a recovering
protocol, Alice simply outputs her input (O4 = I'4), and Bob wishes to output a OF that is as
close to O* as possible. For an adversarial noise model, the optimal behavior of Bob is determined
by the minimax theorem. For a probabilistic noise model, Bob knows I” and the joint distribution
(I, IB), and therefore his optimal strategy is to “guess” I according to the Bayes rule. In other

words, Bob needs to choose X such that

D(z, 1P
X = argmax , {%} (5.1)

where D is the distribution of (I, I®) according to the noise model. Therefore, the noise model
essentially determines the optimal strategy of Alice and Bob for non-interactive recovering protocols.

However, the situation is quite different for refreshing protocols over a probabilistic noise model.
In a refreshing protocol, Alice and Bob share a probabilistic noise model, which is a distribution
over the string pairs. Alice does not need to output her input string verbatim. Rather, Alice and
Bob have the liberty to output anything. Furthermore, Alice and Bob may gather a large collection
of the samples, all from the same distribution, and then hope to “concentrate” the correlation down
to a small number of symbols. In this case, the problem of whether Alice and Bob can distill highly
correlated bits without communication is not intuitively clear.

In fact, this problem of non-interactive correlation distillation has been considered by various
researchers from different perspectives.

Consider the study of information reconciliation. In information reconciliation, Alice and Bob
each possess some information that are not perfectly correlated. They wish to distill highly cor-
related bits by communication, yet maintaining privacy. In this model, Eve, the eavesdropper,
can see all the communication between Alice and Bob. Therefore, if Alice and Bob could distill
correlated bits non-interactively, this would be ideal for information reconciliation. Moreover, only
after having an impossibility result on non-interactive distillation should one consider interactive
information reconciliation. In this sense, the problem of non-interactive correlation distillation is

the underlying problem of the study of information reconciliation, and only a negative answer to
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this problem can justify the existence of this study.

A similar situation exists in the study of random beacons. In this setting, Alice (the beacon
owner) and Bob (the verifier) each possesses the measurement data from an extraterrestrial object.
Due to the measurement error, their data are correlated but not perfectly so. Alice would convert
her measurement into a sequence of random bits and publish these bits. The goal of the study of
random beacons is to construct a publicly verifiable random source, and prevent Alice (the beacon
owner) from cheating, i.e., affecting the outcome of the bits. If it is possible to distill highly
correlated bits non-interactively, then the random beacon problem would be perfectly solved. Alice
distills her bits from the measurement and publishes them. Then Bob can apply his part of the
distillation, and with very high probability the result would agree with the bits Alice publishes.
If the bits do not agree, Bob announces that Alice is cheating. In this way Alice would have no
motives to cheat, since Bob can catch her cheating with very high probability. Therefore, here
again, the problem of non-interactive distillation underlies the study of random beacons, and a
negative answer to this problem lies at the foundation of this study.

Given the importance of this problem, it is not surprising that many researchers have considered
it. In fact, a basic version of the problem was discovered and proven independently by several
researchers beginning in 1991, including Alon, Maurer, Wigderson [3], Mossel and O’Donnell [63],
and Yang [96].

We shall prove a sequence of negative answers to various versions of this problem. We assume
that in all the protocols considered in this section, Alice and Bob only output one bit each. We
make this assumption, since it seems to be the minimal requirement for a useful refreshing protocol.
In some of the results, we will consider protocols whose output alphabets differ from their input

alphabets.

5.1 Tensor Product Noise Models

The noise models we discuss in this section are of a special form, which we call the “tensor product

noise models”. First, we review the definitions of the tensor product.

Definition 5.1 (Tensor Product of Vectors) The tensor product of an n-dimensional vector v

and an m-dimensional vector u is an (n-m)-dimensional vector, denoted by w, such that w[(x,y)] =
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v[x] - uly], for x € [n] and y € [m]. We use v°F to denote the vector obtained by taking the tensor

product of k copies of v, and call it the n-th tensor power of v.

Definition 5.2 (Tensor Product of Matrices) The tensor product of an a X ¢ matriz A and
a bx d matriz B is an (ab) x (cd) matriz P, such that Py ;) (yw) = Azy - Bow for x € [a], y € [b],
z € [c], and w € [d]. We write this as P = A® B. We use A to denote the matriz obtained by

taking the tensor product of k copies of A, and call it the n-th tensor power of A.

Definition 5.3 (Tensor Product of Probabilistic Distributions) The tensor product of a
probabilistic distribution D4 over set A and a distribution D over set B is a distribution D over
set A x B, such that D(a,b) = Da(a) - Dp(b). We write this as D = Dy ® Dg. We use D to
denote the matriz obtained by taking the tensor product of k copies of D, and call it the n-th tensor

power of D.

Definition 5.4 (Tensor Product Classical Noise Model) A probabilistic classical noise model
chpn 15 a tensor product classical noise model, if there exists a probabilistic distribution D over
3 x X such that chp,n is formed by the pair (agay - - an_1,bb1 -+ by_1), where (ag,bg) is indepen-
dently drawn from D, for k = 0,1,....,n — 1. The distribution D is called the base distribution of
NSP

Xn’

In other words, the distribution of chpn is simply the n-th tensor power of the distribution D

with symbols rearranged.

5.2 The Binary Symmetric Model

We first prove the negative result to perhaps the most basic version of the problem.

Definition 5.5 (Binary Symmetric Model) A binary symmetric model of parameter (n,p),

denoted as Sy, p, is a probabilistic noise model defined as follows
1 n—|a®b| _|adb|
Sppla,b) = 2—n(1 - D) P (5.2)

where a,b € {0,1}".
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The binary symmetric model is indeed a tensor produce noise model, and its base distribution
is defined as D(0,0) = D(1,1) = (1 — p)/2 and D(0,1) = D(1,0) = p/2. This model is closely
related to the so-called “Binary Symmetric Channel”. Imagine that Alice generates a uniform bit
A as her local input, and sends it to Bob through a noisy channel that flips each bit independently
with probability p. If we denote the bit received by Bob by B, then the distribution of (A, B) is
precisely D.

Now suppose the bit strings of Alice and Bob are described by S,, ;,. Alice and Bob each wishes
to output one bit, denoted by a and b, respectively, such that the correlation between a and b is
maximized. We also require that ¢ and b themselves be unbiased. What is the maximum possible
correlation of @ and b, if Alice and Bob are not allowed to communicate?

If Alice and Bob simply output the kth bit of their strings, for any k& € [n], their outputs will
have a correlation 1 — 2p. This method is very simple, and almost appear naive. Do there exist
more sophisticated methods which will yield a higher correlation? Intuitively, it is not entirely
clear that there do not. Our first negative result addresses this problem and proves that in fact the
“naive” method is optimal, and no protocol can yield a higher correlation than 1 — 2p.

First, we need to define a restricted class of protocols, namely, locally uniform protocols.

Definition 5.6 (Locally Uniform Protocols) A protocol P is locally uniform over a probabilis-
tic noise model NP if the distribution of its outputs are locally uniform bits, i.e., both O and OB

are uniform distributions over {0,1}, where (04, OPB) = P(NP).

Theorem 5.1 (NICD for the Binary Symmetric Model) The correlation of any locally uni-
form, randomized, non-interactive protocol over the binary symmetric model of parameter (n,p) is

at most 1 — 2p for p < 1/2.

The deterministic version of Theorem 5.1 (where the protocol is restricted to deterministic)
was discovered and proven independently since 1991 by many researchers, including Alon, Maurer,
Wigderson, Mossel, O’Donnell, and Yang [3, 63, 96], and was attributed to “folklore” by Mossel
and O’Donnell [63].

Proof: To prove the theorem, it suffices to consider protocols of yield 1, namely, protocols where

Alice and Bob only output one bit each.
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Consider a non-interactive protocol P. Since there is no communication, the most general
characterization of the protocol would be that both Alice and Bob apply a (randomized) boolean

function to their share of bit strings, and output the result.

We define the character functions of Alice and Bob as follows. The character function of Alice,

denoted by ¢, maps strings from {0, 1}" to real numbers within [1, 4+1]. Over input z,
¢ () = 2 Prob [Alice outputs 1 over input z] — 1, (5.3)

where the probability is taken over the random bits used by Alice. Similarly the character function

#® of Bob can be defined.

Since P is locally uniform over the binary symmetric model S, ,, we have

Eyyes,, 19" (1)) = By yes, ,[67(y)] = 0 (5.4)

Notice that for any x, we have

! - 1
anm(may) = on Z(l — p)n 20yl L pludyl = o
Yy x

and thus (5.4) simplifies to
D ¢tx) =D ¢P) =0 (5.5)

It is easy to verify if Alice receives = as her input and Bob receives y, then ¢4 (z) - $Z(y) is

the correlation between their outputs. Therefore, the correlation of protocol P over the binary

symmetric model is

COFSn’p[P] = Z Z Sn,p(xay) ) ¢A($) ) ¢B(y)

ze{0,1}" ye{0,1}

= 5 X el i) P )

ze{0,1}" ye{0,1}»

Now we view the summation above as a quadratic form. We define a 2" x 2" matrix S, where

Sy = (1 — p)la@ul _ploey
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We identify the character functions ¢ and ¢® with their truth tables, which are 2”-dimensional

real vectors. Then it is easy to verify that
Cors, , [Pl = 5 (") - S " (5.6)

We can diagonalize the matrix S and it turns out it is a positive matrix with eigenvectors being
parity functions. More formally, define parity functions as @,z = (—1)**, where a,z € {0,1}",
and a - ¢ is the inner product of @ and x. Then each @, is an eigenvector with eigenvalue A, =
(1 — 2p)lal. The statement and the proof are postponed to Lemma 5.1 (after this proof). An
important observation is that the unique largest eigenvalue is 1, with corresponding eigenvector
@o. Here we use 0 as a shorthand to denote the all-zero vector. All other eigenvalues are at most
1 — 2p.

We now perform a Fourier Analysis to vectors ¢? and ¢”. First we define an inner prod-
uct for 2"-dimensional vectors: for vectors A and B, their inner product is defined as (4, B) =
> > zefoyn Alz]Blz]. It is then easy to verify that all the parity functions {®a},c(,1y» form an
orthonormal basis. We can then write qSA = ZsE{O,l}" as®P, and d)B = Zse{o,l}“ Bs@s. Notice that
since [¢[z]| < 1, we know that |[¢“|| < 1, and thus )., @? < 1, by Parseval. Similarly we have

> B <L

Furthermore, since @y is the constant function, we know that

00 = 5 36 (r) @0 () = 57 > (x) = 0

Similarly we have Gy = 0.
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Next, we break down the summation in (5.6):

Cors,,,[P] = 2%(¢A)T 54"

S {er) s (g
ARV ACEER)
= Xajaa-ﬂa- a

Now, since ag = By = 0, and Ay < 1 — 2p for all a # 0, we have

CorSn,p[P] < (1 - 2]7) ’ Zaa < Ba < 1* 2]7 <Za ) ’ <ZB§) =1-2p (57)

The second inequality is by Cauchy-Schwartz. [ |

Lemma 5.1 Let S be a 2" x 2" matriz defined by Sy = p/*®Y/(1 — p)"~ =], Let e, (z) be function

defined by eq(z) = (—=1)*" Then we have S - e, = (1 — 2p)l® - ¢,
Proof: Notice that for any x € {0,1}", we have
(S-ed)lz] = D proI(1 —pyr O (—1)0
y
— Zp\y\(l _p)nf\y\ . (_1)a-(fv®y)

= (;1)“ . Zp\y\(l — )"l (1)
y
= eqlz]- Zp\y\(l —p)" Wl (1)
y

Now it should already be clear that e, is an eigenvector. Next, we compute the corresponding

eigenvalue. We shall prove that
SopM ) () = (1 2p)
y
WLOG we assume that a contains k 1’s followed by (n — k) 0’s. We partition each y into yg
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and y1, where yg contains the first k& bits, and y; contains the last (n — k) bits. We use yo;y1 to

denote the concatenation of yg and y;. Then the previous formula becomes

Zp\y\(l —p)n Wl (—1)ey = Z Z plwoltlul (1 — pyn=lvol=lwal. (_1)lvol

yo€{0,1}F y1€{0,1}n—F

(Z(_p)yo(l_ )= yo) ( Yol 1_p)nky1)
Yo

(-p+1=p)(p+1-p) "

= (1-2p)°

In fact, this proof implies more than the theorem. From the proof, we can see that the only
protocols that saturate the 1 — 2p upper bound are the ones where Alice and Bob both output
the k-th bit or the complement of the k-th bit, for some k € [n]. To see this, we re-examine the
proof. The only way to make (5.7) an equality is that for all a such that A\, < 1 — 2p, we have
@+ B = 0. Also we must have . a2 = Y 2 = 1, and a, = B, for all by. Putting things
together, we see that for all a’s of Hamming weight more than 1, we have «, = 0. So we have
¢ (z) = > ja|=1 @a Da (2). There are n such a,’s, and we can always find an z such that ®,(z) has

the same sign as a,. Denote this x by z, and then we have

Z g By (Z) = Z |ag| > Z a (5.8)
la]=1 la]=1 la]=1)

However, we have ¢* (%) < 1, and thus the inequality in (5.8) must be an equality, which means
each a, is either 0, 1, or -1. So there exists a k such that both ¢ and ¢P are parity functions Br)

“naive” protocols where Alice and Bob both

or its complement. These functions correspond to the
outputs the k-th bit or the complement of the k-th bit.

We can further extend Theorem 5.1 to protocols that are not locally uniform.

Definition 5.7 (d-Locally Uniform Protocols) A protocol P is d-locally uniform over a prob-
abilistic noise model NP, if the distribution of its output are locally d-close to uniform bits, i.e.,

both O4 and OP are 6-close to uniform distributions over {0,1}, where (04, OB) = P(NP).
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Theorem 5.2 (NICD for the Binary Symmetric Model, extended) The correlation of any
d-locally uniform, randomized, non-interactive protocol over the binary symmetric model of param-

eter (n,p) is at most 1 — 2p(1 — 462) for p < 1/2.

Proof: Consider a ({0,1},n,1)-protocol P. But definition it outputs a single bit-pair O =
(04, 0P). Since P is é-locally uniform, we know that O is d-close to Ujo,1y- We define Prob 04 =
0] = 1/2 — t, then we have Prob [0# = 1] = 1/2 + ¢, and SD(OA,LI{OJ}) = |t|. Therefore if we
denote the character functions of Alice and Bob by ¢4 and ¢, respectively, then we have |t| < 4.

On the other hand, E, yes, ,[¢” ()] = 2 Prob [0" = 1] — 1 = 2¢, and thus we have

1> ¢t (z) < 5-2m ! (5.9)

Similarly we have

1> P (a) <o-2mt (5.10)

As in the proof to Theorem 5.1, we perform Fourier analysis to ¢ and ¢¥, and white ¢4 =
> sefo1yn ¥s®s and $P = > sefo1yn Bs®s. Then we know from (5.9) and (5.9) that [ag| < 26 and
1Bol < 20.

Then we know that

Cors, [Pl = > 0a-Ba-Aa <40% + (1 —46%)(1 —2p) =1 —2p(1 — 46°)

Theorem 5.2 shows a trade-off between the “local uniformness” of a protocol and its correlation.

5.3 General Noise Models

Here, we extend the previous result to a general class of noise models.

Definition 5.8 (Distribution Matrix) Let D be a probabilistic distribution over ¥ x X, where

|X| = q. We say a q x ¢ matriz M is the distribution matrix for D, if M,, = D(x,y) for all
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z,y € ©.1 We write the distribution matriz of D by Mp.

Definition 5.9 (Regular Matrix) A g x ¢ matriz M is regular if it is symmetric and 1, is the
unique eigenvector with the largest absolute eigenvalue. Let € be the difference between the largest
absolute eigenvalue and the second largest. Then q - € is called the scaled eigenvalue gap of M. A

distribution D is regular if its distribution matriz is reqular.

Notice that a distribution matrix M is non-negative (that every entry is non-negative). By
the Perron-Frobenius Theorem [59], if M is symmetric, irreducible, and has 1, as an eigenvector,
then 1, is the unique eigenvector with the largest eigenvalue, and thus M is regular. Therefore,
intuitively, a noise model N is regular if it satisfies the following three requirements: that it is
symmetric, i.e., NP(a,b) = NP(b,a) for every a,b € 3; that it is locally uniform, i.e., both the
distributions of the local inputs of Alice and Bob are uniform; that it is connected, i.e., ¥ cannot
be partitioned into 3y and %7 such that N (a,b) = NP(b,a) = 0 for all a € 3y and b € 3. Notice
that if a noise model is not connected, that non-interactive correlation distillation is indeed possible
for such a model. Suppose ¥ is partitioned into ¥y and ;. If Alice and Bob interpret symbols in
Y as a “0” and symbols in X1 as a “1”7, then they essentially have a noiseless binary noise model

which allows for non-interactive correlation distillation.

Theorem 5.3 (NICD for the General Noise Model) If N§¥ s a tensor product noise model
whose base distribution is reqular with scaled eigenvalue gap €, then the correlation of any d-locally

uniform, randomized, non-interactive (X, n, 1)-protocol over the classical probabilistic noise model

D" s at most 1 — e(1 — 4462).

To see that Theorem 5.3 is indeed a more general result, notice that the base distribution of

the binary symmetric model is indeed regular with scaled eigenvalue gap 2p.

Proof: The strategy of this proof is the same as of that to Theorem 5.1. We convert the correlation
of a protocol P into a quadratic form, and then we diagonalize the matrix and use Fourier analysis

to upper bound the correlation.

'"Here we identify ¥ with [q].
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We define ¢ = || and identify ¥ with [q] for the rest of the proof. We still use ¢ and ¢
to denote the character functions of Alice and Bob (notice both Alice and Bob still only output
one bit in P). We use M to denote the distribution matrix of the distribution D. We denote the
eigenvector of M by wvg,v1,...,v4—1 with corresponding eigenvalues Ag, ..., A\q—1. We assume that
Ao > A > ---Ag—1. Since M is regular, A\g is the unique largest eigenvalue that corresponds to
eigenvector 1,.

Since M is the distribution matrix, we know that the sum of all its entries is 1. Thus we have
T T
1:1q'M'1q:>‘U'1q'1q:>‘U'qa

or A\g = 1/q. Since the scaled eigenvalue gap of M is e, we know that the second largest absolute
eigenvalue of M is (1 —€)/q.

The distribution matrix of D®™ is M®™. As in the proof to Theorem 5.1, we denote the character
functions of Alice and Bob by ¢ and ¢?, respectively. Both ¢4 and ¢” are vectors of dimension

q". Since P is §-locally uniform, we have

Y D D¥May) - ¢t (z)| <20

TEX™ yexn
or \qun - M®" . pA| < 26. Since 1, is an eigenvector of M with eigenvalue 1/¢, 1,4 is an eigenvector
of M®" with eigenvalue 1/¢". Since M is symmetric, so is M®". Thus we have |11, - ¢| < 26 ¢".
Similarly we have |1an - pB| <26 - g

Again, as in the proof of Theorem 5.1, we can express the correlation of protocol P in terms of
a quadratic form: Corpen[P] = (¢*)T - M®" - ¢B.

We diagonalize the matrix M®". First we define a natural notion of inner product: (4, B) =
qin > sesn Alz]Blz]. Since M®" is symmetric, it has a set of eigenvectors that form an orthonormal
basis. We denote the eigenvectors of M®™ by u; with corresponding eigenvalues p;, where t € [¢"].
We assume that po > g1 > -+ pgn 1. By the property of the tensor product (see Lemma 5.2 after
this proof), the eigenvalues y; are of the form []_; A, where k; € [¢]. Therefore M®" also has
a unique maximum eigenvalue A\j = 1/¢", which corresponds to the eigenvector 129" = 14n. The

n—1

second largest value is (1 —€)/q-1/¢" ' = (1 — €)/q". In other words, M®" has the same scaled
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eigenvalue gap as M.
Now we perform a Fourier analysis to vectors ¢ and ¢P. We write ¢* = Zte[qn} oy - up and
P8 = > tefqn] Bt - ug- Then we have 3, o? <1,%, 82 <1,and |ag| <26, |Bo] < 20.

Now, putting things together, we have

Corpen[P] = (¢™)" - M®"-¢" = ¢ Z - B <46% + (1 e) - (1-40%) <1 (1~ 467)
telg]

Lemma 5.2 Let A be an a X a matriz of eigenvectors vg, ...,vq_1, With corresponding eigenvalues
A0y s Aa—1- Let B be a b x b matriz of eigenvectors ug, ..., up_1, with corresponding eigenvalues
Hos s ip—1- Then the eigenvalues of the matric A ® B are v; ® u; with corresponding eigenvalues

i i, fori € [a] and j € [b)].

Proof: We prove that for every i € [a] and j € [b], (A ® B)(vi ® uj) = A - 5 - (v; ® u;), which
will imply that (v; ® u;) is an eigenvector. Then, since (A® B) is an (ab) x (ab) matrix, it only has
ab eigenvectors. Therefore this would imply our lemma.

Now we prove that (A ® B)(v; ® uj) = Ai - pj - (v; @ ;).

(A®B)(wi@uw)[(z.9)] = > (A®B) @y sp) - (vi @uy)l(s,1)]
s€[al,teb]
= > Ay By -uifs]-uft]
s€[al,te[b]

= Z Ag,s - vils] | - Z By, - ujlt]
s€|a] te[b]
= Ai-vi[z] - pyusly]

= A~ Wi - (UZ' X U])[(xuy)]

Since the equation holds for all z € [a],y € [b], we have (A® B)(v; @ uj) = X - pij - (v; ® uj). W

Theorem 5.3 provides a general negative answer to the question of non-interactive correlation
distillation. Notice the upper bound on the correlation is independent of n, the size of the input

to the protocols. Therefore, if the noise model is regular, then Alice and Bob cannot distill the
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correlation any higher than what is dictated by the scaled eigenvalue gap, even if they are willing
to collect many samples from the same model and then “concentrate” them them into one single

symbol.

5.4 The Binary Erasure Noise Model

We prove a similar impossibility result for another noise model, namely the binary erasure noise
model. Intuitively, this model describes the situation where Alice sends an unbiased bit to Bob,

which is erased (and replaced by a special symbol L) with probability p.

Definition 5.10 (Binary Erasure Noise Model) The binary erasure noise model, denoted by
&y is a tensor product noise model with base distribution Dg over alphabet {0,1, L}, defined as

Dg(0,0) = De(1,1) = (1 - p)/2, De(0, L) = De(1, L) = p/2.

Perhaps the binary erasure noise model is the simplest noise model that is not symmetric, and
thus isn’t regular. It is, however, a realistic one. Consider as example the situation where Alice and
Bob receive their inputs by observing a pulsar. It is quite likely that the noise of the measurements
by Alice and Bob are of the “erasure-type”, i.e., the corruption of information can be detected.
Furthermore, it is also possible that Alice and Bob have different measurement apparatus and
different levels of accuracy. In the random beacon problem, Alice (as the beacon owner) might
own a more sophisticated (and more expensive) measuring device with higher accuracy, while Bob
(as the verifier) has a more noisy measurement device. An extreme case would be that Alice has
near-perfect accuracy in her measurement, but Bob’s measurement is noisy. Such a situation can
be well approximated by the binary erasure noise model.

Notice that in this model, Alice’s input is the uniform distribution over {0,1}, and Bob’s input
is 0 and 1 with probability (1 — p)/2 each, and L with probability p. A naive protocol under this
model only uses the first pair of the inputs. Alice outputs her bit, and Bob outputs his bit if his
input is 0 or 1, and outputs a random bit if his input is L. This is a locally uniform protocol with
correlation 1 — p.

The next theorem shows that no protocol can do much better than the naive protocol.
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Theorem 5.4 (NICD for the Binary Erasure Model) The correlation of any locally uniform

protocol over the noise model &, is at most \/1 — p(1 — 44?).

We suspect that it is not a tight bound, but it is sufficient to show that it is bounded away
from 1 and is independent from n. Therefore, even with perfect accuracy in Alice’s measurement,

non-interactive correlation distillation is impossible if Bob’s measurement is noisy.

Proof: We introduce more notations. A binary string is a string over alphabet {0,1}. For a
binary string x, we denote its Hamming weight by |z|, which is the number of 1’s in z. We call a
vector v over alphabet {0, 1, L} an extended bit vector, and define its degree, denoted by deg(v), to
be the number of L’s in it. An error vector, denoted by u is a vector over alphabet {x, L}, and its
degree also the number of 1’s in it. Take a k-dimensional bit vector v and an n-dimensional error
vector u of degree (n — k), we define their composition to be an n-dimensional extended bit vector
x defined as

vly] if uli) =% and 7 =[{l : 0 <[ < i,ulj] ==}

z[i] = (5.11)

1 if uli] =L
and we write this as x = v >wu. As an example, we have (1,0,1) > (L, %, x, L, %) = (L,1,0, L,1).
Notice that every extended bit vector x can be uniquely written as such a composition of a bit
vector v and an error vector u. So we denote v to be the extracted bit vector of x, and write it as
v = [z]; we denote u to be the error vector of x and write it as u = {z}.

For a bit vector z and an extended bit vector v, both of dimension n, we say x is consistent
with v, if for every i such that v[i] #L, we have z[i] = v[i]. We denote this as z C v.

For a bit vector z and an error vector u of degree d, we define the restricted vector of z with
respect to u to be the unique (n — d)-dimensional bit vector v such that z C (v > u), and we write
this as v = z|,. The exzcluded vector of x with respect to u is the d-dimensional vector v’ defined
to be v'[i] = 2[k] where k = [{j : 0 < j < i,u[j] = x}|. We also write z = v ~~ ¢, and say z is
joined by v and v’ with respect to u.

We now fix a protocol P and consider its characteristic functions ¢ and ¢ (we omit the
subscript n). Both are real functions over {0,1, L}". Both since in the erasure model, the input to

Alice never contains L, we assume that ¢ is a function over {0,1}™. We perform Fourier analysis
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to ¢*, using parity functions as the orthonormal basis.
¢ (z) =D, @, (z) (5.12)
5
where we have Y a2 < 1. Since P is d-locally uniform, we have
lag| < 26. (5.13)

The analysis for ¢” is more complicated. We decompose ¢? into 2" “sub-functions”, according
to the 2" error vectors. For error vector u, we define a function 1, that maps (n — k)-dimensional
bit vectors to {—1,+1}, where k is the degree of u. Then we perform a Fourier analysis for every

sub-function, and write

?/Ju(ﬂﬂ) = Z/Bu,s Ds (:U) (5.14)

Again we have ) ,Bg’s < 1 for every error vector u.
We define A = p/(1—p), then it is easy to see that the probability that Bob receives an extended

error vector of degree d is A% - (1 — p)". Furthermore, it is easy to verify that

T ) -3 (:) A= ﬁ (5.15)

u€{*,L}" k=0

For the rest of the proof, we write \” as a shorthand for \de8(®).

Finally, we estimate the correlation between the outputs. We denote it by n and it is not hard

(5 5

ue{x,L}"

to see that

NN M @) (]) (5.16)

By substituting in the Fourier coefficients, we have

- () T AT Y Y ase@el

u€{x,L}n T sC{0,1}" ¢C{0,1}n—deg(u)

_ <1Tp) S Y Y s (;@S(x)eat(“)>

u€{x,L}n 5C{0,1}" ¢tC{0,1}n—deg(u)
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Now, we fix an error vector u of degree r, and fix sets s, t. We write s = sy U s1, such that for
every i € sg, we have u[i] = * and for every i € s, we have u[i] =L. We write this as sg = s/y. I

s1 = 0, we say that s is consistent with u, and we write this as s C u. Then we have

> @) & (wl) Yo D @) ey, (v) @ (v)

ze{0,1}" ve{0,1}n—4 v’ €{0,1}4
= ) @eml() Y @ (v)
ve{0,1}n—d v’ €{0,1}¢

So the only we we get non-zero as a result is when sg = ¢ and s; = (), which means s = t.

Therefore, we have

no = (1_p)n Z Xuzasﬂu,s\u

ue{*,L}n sCu

1/2 9-1/2
< (1-p" Z A |- Zasﬁu’s‘u (Cauchy-Schwartz)
ue{x,L}" |_u€{*,L}" sCu J

- 1/2
Cae e we(ye) (san)] s

ue{*,L}" sCu sCu J

- 1/2
< (1-pm2. Z At Z o? -| (Parseval, ZsEu sl S 1 )

ue{* 1yn sCu J

1/2
= (1-p"? Za Zx\}
u:sCu

1/2
= (1-p)™?. Za (1+ )bl

1/2

< (1-p)"?[ [( +>\)”*1(1+462(1+>\))] (BEq. 5.13)

= V1-p(1-482)
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Chapter 6

A Positive Result on One-bit

Correlation Distillation

The impossibility results from the previous chapter suggest that for many noise models, communi-
cation is essential for correlation distillation. Thus it is interesting to ask how much communication
is essential. In particular, we were interested in the question “does a single bit of communication
help?” We answer this question positively by presenting a protocol that non-trivially distills cor-
relation from the binary symmetric noise model with one bit of communication. This result shows
that even the minimal amount of communication is provably more powerful than no communication
at all.

The result in this Chapter relative to this thesis is summarized in Figure 6.1.

Recall that over a binary symmetric noise model S, ;,, no non-interactive, locally uniform pro-
tocols can have a correlation more than 1 — 2p. Now, we consider protocols with one bit of
communication. Suppose Alice sends one bit to Bob, which Bob receives with perfect accuracy. If
we still only require Alice and Bob each to output a single bit, then the problem is trivial: Alice
can generate an unbiased bit z and send it to Bob, and then Alice and Bob both output x. This
protocol has perfect correlation. Thus, to make the problem non-trivial, we require that Alice and

Bob must output two bits each. Suppose Alice outputs (X7, Xy) and Bob outputs (Y7,Y3). We
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Figure 6.1: The Result in Chapter 6.

define the correlation of a protocol to be
2+ min {Prob [X; =Vi]} — 1

In this situation, we say a protocol is locally uniform, if both (X5, X3) and (Y7,Y3) are uniformly
distributed.

Now we describe a locally uniform protocol of correlation about 1—3p/2. The protocol is called
the “AND” protocol. Both Alice and Bob only take the first two bits as their inputs. Alice directly
output her bits, and sends the AND of her bits to Bob. Then, intuitively, Bob “guesses” Alice’s
bits using the Bayes rule and outputs them. A technical issue is that Bob has to “balance” his
output so that the protocol is still locally uniform. The detailed description is in Figure 6.2.

We can easily verify (by a straightforward computation) the following result.

Theorem 6.1 (One-bit Protocol for the Binary Symmetric Model) The AND protocol is

a locally uniform protocol with correlation 1 — 37” + %. [ |

This is a constant-factor improvement over the non-interactive case.
This result may seem a little surprising. It appears that Alice isn’t fully utilizing the one-bit
communication, since she is sending an AND of two bits, whose entropy is less than 1. It is tempting

to speculate that by having Alice send the XOR of the two bits, Alice and Bob can obtain a better
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STEP I Alice computes 7 := a1 A ag, sends r to Bob, and outputs (ay, as).
STEP II Bob, upon receiving r from Alice:

IF r =1 THEN output (1,1).
ELSE IF b; = by =1 THEN output
— (0,0) with probability p/(2 — p);
— (0,1) with probability (1 —p)/(2 — p);
— (1,0) with probability (1 —p)/(2 — p);
ELSE output (b, b9).

Alice receives input bits aq, as, and Bob received input bits by, by, where (ajag, b1by) is drawn from
S®2
P

Figure 6.2: The AND protocol

result, since Bob gets more information. Nevertheless, the XOR doesn’t work, in some sense due to
its “symmetry”. Consider the case that Alice sends the XOR of her bits to Bob. Bob can compute
the XOR of his bits, and if the two XOR’s agree, Bob knows that with high probability, both
his bits agrees with Alice’s. However, if the two XOR’s don’t agree, Bob knows one of his bits is
“corrupted”, but he has no information about which one. Furthermore, however Bob guesses, he
will be wrong with probability 1/2. On the other hand, in the AND protocol, if Bob receives a
“1” as the AND of the bits from Alice, he knows for sure that Alice has (1,1) and thus he simply
outputs (1,1); if r = 0 and by = by = 1, he knows that his input is “corrupted”, and he “guesses”
Alice’s bit according to the Bayes rule of posterior probabilities. If Bob receives a “0” as the AND
and (b1,bs) # (1,1), then the data looks “consistent” and Bob just outputs his bits. In this way,
1/4 of the time (when Bob receives a 1), Bob knows Alice’s bits for sure and can achieve perfect
correlation; otherwise Alice and Bob behave almost like in the non-interactive case, which gives

1 — 2p correlation. So the overall correlation is about 1/4 -1+ (3/4) - (1 —2p) =1 — 3p/2.
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Chapter 7

Non-Interactive Entanglement

Distillation

We study non-interactive entanglement distillation (NIED) protocols. As in the case of non-
interactive classical correlation distillation, non-interactive entanglement distillation also serves
as the most basic problem in the study of communication complexity of EDPs. Notice that a
priori, it is not necessarily obvious that non-interactive protocols would be useless. In fact, Ben-
nett et. al. [21] constructed a non-interactive entanglement distillation protocol for a specific noise
model where Alice and Bob share a large number of identical copies of some pure state.! However,
as we shall soon see, non-interactive entanglement distillation is impossible for a number of less
“benign” noise models.

In this section, we only study protocols that only output one qubit pair, since these are the
minimally “useful” protocols, and a lower bound on their fidelities suffices as a general lower bound.
In particular, we consider three noise models, namely the bounded decoherence model, the bounded
corruption model, and the depolarization model, and prove corresponding bounds on the fidelity
of non-interactive EDPs over them. These bounds are tight or almost tight.

The results in this Chapter relative to this thesis are summarized in Figure 7.1.

!They call their scheme “entanglement concentration”.
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Figure 7.1: Results in Chapter 7.

7.1 The Bounded Measurement Model

We define the bounded measurement noise model, and prove a tight lower bound on the fidelity of
non-interactive protocols over such a model. We first need some more notation. An error indicator
vector is a n-dimensional vector from an alphabet v € {0, 1,*}. The degree of a vector v, denoted

by deg(v), is the number of entries in v that are not “«”. Each v corresponds to a measurement

error state | gv) = ®]";& | ¢;), where

[0)410) if v[] =0
[$) =4 | DA DB ifvi]=1

o if v[j] = *
The degree of a measurement error state | ¢v) is the degree of v.

Definition 7.1 (Bounded Measurement Model) A bounded measurement model of parame-
ter (n,t), denoted by My, ¢, is an adversarial quantum noise model consisting of all measurement

error states of degree at most t. In other words,

M ={l¢v) | deg(v) <t} (7.1)
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Intuitively, the bounded measurement model describes the situation where up to ¢ (unknown)
EPR pairs are measured in the computational basis (thus each pair results in either | 0)| 0) or | 1)| 1)).
Therefore, this model is in some sense more “benign” than the quantum bounded corruption model,
where the corruptions on an EPR pair can be more general. However, this simpler model is already

interesting enough to ensure a non-trivial result.

Theorem 7.1 (NIED for the Bounded Measurement Model) The fidelity of any non-interactive,
randomized public-coin entanglement distillation protocols over a bounded measurement model M, ,

N T
1s at most 1 — 5 -

Notice that there exists a very simple non-interactive, randomized public-coin protocol that
achieves a fidelity of 1 — 5-. Alice and Bob use their shared randomness to select a random input
qubit pair to output. If this pair is not measured, it has fidelity 1; if the pair is measured, it has
fidelity % Clearly, a random pair is measured with probability at most . Therefore, the overall

fidelity is at least 1 — o~

2n?

and the upper bound in Theorem 7.1 is tight.
Despite the fact that the matching upper bound is almost trivial, the proof to this lower bound

does not appear so.

Proof: (of Theorem 7.1) We consider a slightly different noise model, where r random EPR

pairs are measured. This corresponds to the density matrix

> dvev]

V:deg(V)=r

We shall prove that no deterministic non-interactive protocol can have a fidelity higher than 1 — 5~
if p is the input. Then, we conclude that no share-randomized protocol can have a fidelity higher
than 1 — 5~ too, since fidelity is a linear function.

Consider a deterministic non-interactive protocol P. Notice P doesn’t involve any communica-
tion, we can model it as Alice and Bob both applying a unitary operation to their share of qubits,
output the first qubits and discard the rest.

Suppose the unitary operators of Alice and Bob are Uy and Ug. We denote the states under
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these operations by

Ualz) — |da)

UB|$> — |¢m>

Notice that we use “—” instead of “="

since we allow Alice and Bob to use ancillary bits. Clearly,
the vectors {| ¢)}» are orthonormal, and so are the vectors {| 1) }.

We shall prove that

[[Fb((UA ® Up)lpv)ov|(Ua@Up)')| <1 - i (7.2)
deg(V)=r

which implies the theorem.

By Lemma 2.3, Eq.(7.2) is equivalent to

e Y| Y iU WU Was U | <40- 1) (13)
(7) deg V=r |U€{l,X,Y,2} "

We expand the left hand side: Notice that

1
(Ua®@Up)|dv) = PICEYE] > ba) tha)

LV

where z C v if = is consistent with v (that is, if z[j] = v[j] for all j such that v[j] # ).

Therefore, we have

(¢v|(Ua@Up) (U U )(Ua® Up)ldv) = 5 Z D (e U ) - (e (U] hy)
zCVyCv

for any unitary operation U. So, Eq.(7.3) is equivalent to

P3P DY (b U1 y) - (85 |U*| ) < 41— ) (7.4)

degV_r zCVyCv Ue{Il,X,Y,Z}
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However, by Cauchy-Schwartz, we have

S Y (eI (@ (U]

deg V=rzLVyLV Ue{I,X)Y,Z}

ST T KU L DD YT DT W U4y

degV=razCVyCV Ue{Il,X,Y,Z} deg V=r 2LV yLV Uc{l,X,Y,Z}

¥
¥

IN

Next, we estimate the terms on the right hand side:

S X leaUle = DT Y s lUldy)P > 1

degv=rzCVyCV Uc{I,X,Y,Z} Ty UEe{l,X,Y,Z} degV=r:z;CVAz2CV

Notice that since | ¢5)’s are all orthonormal, we have 3 |(¢s U] ¢y)* <1 for all z’s. Thus

YD D WeslUlga)? <2

Ty Ue{l,X,Y,Z}

For any x and y, we have

( n— |z &yl )
> 1=
deg V=r: zCVAYLCV nere \xGBy\
The reason is simple: the only freedom for v is where to put the (n —r) *’s. But for every position
k such that z[k] # y[k], we have to have v[k] = *. Then we still have (n —r — |z ® y|) *’s we can
put anywhere. So if x # vy,
-1
> o)
n—r—1
deg V=r: zCVAYLCV

Also notice that by Lemma 2.2, we have 3¢/ x v 7y [(¢a U] ¢:)|? < 2 for any z.
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Putting things together, we have

D 3D DIED SN UAAPHTEN (15 DD DRI S T8 s

deg V=r 2CV yCV UE{I,X,Y,Z} T Ue{l,X,Y,7}

B YD SRR

£y Ue{I,X,Y,Z}

- 0)-(C2) ' = wedviar+

T Ue{l,X,Y,Z}

(2)EE T lewiar

Ty Ue{l,X,y,z}

- (D) =
- 2"+2<:‘>(1%)

Similarly, we have

) 3D DD DRI A IEEE il G TR

deg V=r2CVyCV Uc{I,X,Y,Z}

too.

Thus we have

S XY X v wloe) <2 (- L

degV=rzCVyLCV Uc{I,X,Y,Z}

which proves (7.4). ]

7.2 The Bounded Corruption Model

We prove a similar upper bound on the fidelity of non-interactive protocols over a bounded corrup-

tion model.

Theorem 7.2 (NIED for the Bounded Corruption Model) The fidelity of any non-interactive,
randomized public-coin entanglement distillation protocols over a quantum bounded corruption model

q : T
Bn,r is at most 1 — 5 -

84



Notice that if Alice and Bob use their shared random bits to select an input pair and output

them, they will achieve a fidelity of 1 — Z. So this upper bound is almost tight (up to a constant

n

factor).

Proof: (of Theorem 7.2) As in the proof for Theorem 7.1, we consider a different “random
corruption” noise model, where r EPR pairs are randomly chosen and each is independently replaced
by a random Bell state. We shall prove that the fidelity of any deterministic, non-interactive
protocol over such a noise model is at most 1 — 5, which will imply our theorem.

It is easy to verify that

% (@T+ @ +TT + T ) =— (J00)00] + |01)01] 4 [10)10] + [11)}11]) = i (7.5)

e

So we can interpret the random corruption noise model as randomly choosing r EPR pairs and
replace each of them by the completely mixed state I/4.

We present more notations and definitions. As corruption indicator vector, often denoted by
u, is an n-dimensional vector, whose each entry is an element from alphabet {00,01,10,11,x}. Its
degree is the number of entries that are not *x. There are 4" (f) corruption indicator vectors of

degree r, where each u corresponds to a unique bipartite state |1y) in the following way:

(

[0)410)8 if u[4] = 00
ne1 )4 1)P ifuly] =11
‘T/Ju> = ® | ¢j>7 where \¢]> = ‘ 1>A‘ 0>B if u[j] —10 (7.6)
7=0
HADE ifalf] =11
| o7 if ulj] = +

We call such an | u) an corruption error state.

An 2n-bit string z is consistent with a corruption indicator vector u, if z[j]; z[n + j] = u[j] for
all j such that v[j] # *, and z[j] = z[n + j] for all j such that v[j] = x. We write this as z C u.
There are 2"~" bit-strings consistent with a corruption indicator vector of degree r. We often view

x as the concatenation of 2 n-bit string: = = [;7, and we write them as [ = LT(z) and r = RT(x).
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With the notations, we can write the corruption error states as

Yu = s O [T RT ()" (7.7)

zCUu

We define the discrepancy of a 2n-bit string z to be DIS(z) = LT(s)®RT(s), where “®’ stands for
bit-wise XOR. The degree of discrepancy of x is |DIS(z)|, the Hamming weight of DIS(z). Clearly,
there are (Z) 2™ 0-1 vectors of dimension 2n having degree of discrepancy d. Furthermore, if z has
degree of discrepancy d, then the number of degree-r corruption indicator vectors u such that z £ u
is (Z:g) This is because for every j such that z[j] # z[n + j], we must have u[j] = z[j]; z[n + j]
in order to have z C u. So the only freedom for u is to put (n — r) *’s in the n — d places where
2lj] = aln + ).

Consider a deterministic non-interactive protocol P. Again, since P is non-interactive, we can
model it by a pair of unitary operators (U4, Up), such that P consists of Alice and Bob each
applying their operators, outputs the first qubits, and discarding the rest. We write the unitary

operators as

UA|=T> — |¢az>

UB| =T> — |¢x>
Then as in the proof to Theorem 7.1, we shall prove that

ln) SIS WulUaeUpn) U eU)UseUs)lpa)| <40-—)  (78)

4r ( 2n
r/ degU=r |Uc{l,X,Y,Z}

which implies our theorem.

Notice that

1
(Ua ® Un)lu) = 5o ;l | ST ()| YRT ()
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and so we have

(Yul(Ua @ Up) (U@ U")(Ua ® Up)|¢u) = %ZZ@LT(NUWLT ) (URT@) [UYRT ()

zCUuyCu

So we only need to prove that

r

Z DD (LT (@) WU 0LT () ORT () U1 ¥RT () < 4L = 5-) (7.9)

deg u=rrzCuyCuve{l X,v,7z}

2n+r

By Cauchy-Schwartz, we have

YooY Y (AT UILT) - (URTw U YRT )

degu=rzCuyCuvec{l,X,Y,Z}

(Z SN Heitw IUldTg, >)

1
2

degu=rzCUuyCUUE{I,X,Y,Z}

N[

(Z Yod Y RTw U YRT, ))

degu=rzCUyCUUEC{I,X,Y,Z}

Now we estimate

Yo Y e Ul LTI

degu=rzCUyCUUE{I,X,Y,Z}

Notice we can write x as = LT(z); (LT(z) @ DIS(z)) and y as y = LT (y); (LT (y) @ DIS(y)). If

there exists an extended indicator vector u such that z C u and y C u, we must have DIS(z)
DIS(y). This is because that for every j such that DIS(z)[j] = 1, z[j] and z[n + j] differ. Thus we
[n + 7], which implies that v[j] = y[j]; y[n + j], and DIS(y)[j] = 1. In fact,

must have v[j] = z[j]; z[n

for every j such that DIS(z)[j] = 1, we have z[j] = y[j] and z[n + j| = y[n + j].

So we have
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DX Y HoTw Ul bLT )

degu=rzCUyCUUE{I,X,Y,Z}

= > Y Y Kl Y |

ac{0,1}" be{0,1}* Ue{Il,X,Y,Z} ce{0,1}" deg U=r: [(a;(adc)) CU]A[(b;(bdc))CU]

by a substituting a for LT(z), b for LT (y), and ¢ for DIS(z).

Now we fix a and b, and compute

>, . 1
a®e))CU

c€{0,1}7 deg U=r: [(a;( JAl(Bs(b@e) Ul

We define k = |a @ b|. For every j where a[j] # b[j], we must have ¢[j] = 0 and u[j] = *. For
every j where a[j] = b[j], if we have c[j] = 1, then we must have u[j] = a[j]; (a[j] & 1); if we have
c[j] = 0, then u can be either a[j]; a[j] or *. Therefore, of n — k positions where a[j] = b[j],  would
be chosen where u has a non-x entry. Of these r places, one has the freedom to choose c[j] = 0 or

c[j] = 1. For all other places, c¢[j] =0 and u = *. So we have
> > (")
ce{0,1}" deg U=r: [(a;(ade)) CUIA[(bi(bbe)) EU] "
In other words,

S YY Y erelUler,)t= XYY <¢aU|¢b>|2‘2r‘(n:®b)

deg U=r zCUyCU UE{I,X,Y,Z} a€{0,1}" be{0,1}" Ue{I,X,Y,Z}
(7.10)

Since | ¢,)’s are orthogonal, we have

D2 D> ealUlgy)® <22

a b Ue{l,X,Y,%}

Also by Lemma 2.2, we have
> HdalU]ga)” < 2°H!

a
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Therefore

Z Z Z <¢a|U¢b>2.2T,<”|:69b>

a€{0,1}" be{0,1} UE{I,X,Y,Z}

sl [n n—1 Pfn—1
< Slwwiar-r [C)-(" D+2() X X vl
a ae{0,1}7 be{0,1}» Ue{I,X,Y,Z}
< gnirer [(M) _(n 1 Logntr+2 (T 1
B T T T
2n+r+2 n 1— L
<r ( 2n)
which implies (7.9), which implies the theorem. [

7.3 The Depolarization Model

Depolarization Model We define the depolarization noise model, which is a commonly used
model for quantum noises [92, 69]. Intuitively, a depolarization model of parameter p describes
the situation where each of Bob’s qubits is replaced by a completely mixed state independently
with probability p. In particular, if Alice and Bob initially share the Bell state ®*, then the

“depolarization” noise moves it to
_ 3PV eyt o Pi1d—ya— +\pt N
pp= (1= ) @TXST [+ (187K | + [LTXTT| + [T7KT ) (7.11)

which is also known as the “Werner state” [92].

Definition 7.2 (Depolarization Model) A depolarization model of parameter (n,p) is a prob-

abilistic quantum noise model defined as D,, ;, = pff”.

Theorem 7.3 (NIED for the Depolarization Model) The fidelity of any non-interactive, ran-
domized public-coin entanglement distillation protocols over a depolarization model D, , is at most

1—

[\lS ]

Notice that there exists a very simple non-interactive protocol of fidelity 1 — %Tp. If Alice and

Bob simply outputs the first qubit of their shares, the fidelity of the output is 1 — %”. Notice that
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this protocol is deterministic. Therefore the upper bound in Theorem 7.3 is almost tight (up to a

constant factor).

Proof: (of Theorem 7.3) Notice that in the depolarization model, the probability that r EPR

)"~ ". Conditioned on that r pairs are corrupted, each of these

pairs are corrupted is (?)p"(1 — p
r pairs are replaced by a completely mixed state, and this it is exactly the “random corruption”
model in the proof of Theorem 7.2. So in this case, the fidelity of any non-interactive protocol is at

most 1 — r/2n. Thus, the overall fidelity of any non-interactive protocol is at most ) (Z)p’"(l -

p)" " (L —r/2n) =1-p/2 m
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Chapter 8

The Fidelity Noise Model

We introduce the fidelity noise model and study the communication complexity of entanglement
distillation protocols over this model. We start by discussing the motivation for this noise model,
namely, the problem of General Entanglement Extraction. Then we introduce the model and
present our results.

The results in this Chapter relative to this thesis are summarized in Figure 8.1.

conmuni cati on L = lower bound
noi se nodel 0 1 | many U = upper bound
_ © = my orignal result
bounded corruption| | | | | 2| = independent result
binary symmetric | @U @L 77777777777777 §
binary erasure | © U o
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 3
tensor product | © U -
bounded corruption | © U] | L |
bounded measurement ©U ,,,,,,,,,,,,,,,, L |2 impossibility for general
depolarization | © 2 EPR extraction
— 1 ] }!\ i
entanglemer( @ uUl® ul®e u { matching lower/upper bounds
fidelity] O L U@L U[OLU

Figure 8.1: Results in Chapter 8.
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8.1 DMotivation: General Entanglement Extraction

The problem of general entanglement extraction is formulated (informally) as follows. Given an
arbitrarily state of certain entanglement (say k), is it possible for Alice and Bob to extractor “high-
quality” entanglement, namely EPR pairs? This problem is naturally motivated by an analogy

between classical randomness extraction and quantum entanglement distillation.

8.1.1 Classical Randomness Extraction

Classical randomness extraction is a fascinating topic in theoretical computer science by itself. The
motivation for study randomness extraction is that randomness plays an important role in classical
computation (see Motwani and Raghavan [64] for a comprehensive explanation), but it can be very
expensive, if not impossible, to have a perfect random source that produces unbiased, uncorrelated
random bits. Therefore, it is very natural to ask if it is possible to perform randomized computation
using less-than-perfect random sources. In particular, is it possible to have an automatic process to
convert any randomized computation that was designed to have a perfect random source as input
into one that works with imperfect random sources?

A series of results established by various researchers answered positive to this question, and the
notion of randomness extractors was developed along this line of research. Intuitively, a randomness
extractor is a procedure that converts input from an imperfect random source to almost-perfect
random bits as its output. Technically, an extractor also takes a small number of perfect random
bits from an auxiliary input. But the size of auxiliary input is normally logarithmically small as
compare to the size of its main input. See Figure 8.2.

Input
$ Input: random source

extractor Aux Aux: uniform random bits

7 Output: near—uniform random bits

Output

Figure 8.2: Classical randomness extractor

We briefly review some of the work on extractors and refer the readers to Nisan and Ta-

Shma [70] and Shaltiel [81] for a more comprehensive and up-to-date survey. In the early stages of

92



research on extractors, people have considered various specific models of “imperfect random bits”.
Von Neumann [66] showed that a linear number of perfect random bits can be extracted from
independent tosses of a biased coin with unknown bias. Blum [11] extended the model of a biased
coin to a Markov chain. Santha and Vazirani [80] considered extractors with many independent,
yet adversarial random sources, as input. This contrasts with the modern stage, started by Nisan
and Zuckerman [71], where researcher started to study extractors over arbitrary input. Today, the
state-of-art extractors can extract near-perfect random bits from random source [89, 79]. We also
have a quite good understanding about the limit of extractors. For example, we know that the
yield (size of the output) of an extractor is determined by the min entropy of the input, and that
the size of the auxiliary input needs to be logarithmic in the size of input. On the other hand,

there exist constructions of extractors that match these limits [89, 79].

8.1.2 Similarity Between Extractors and EDPs

We discuss the similarity between classical extractors and quantum entanglement distillation proto-
cols. Entanglement plays a central role in quantum information theory and quantum computation.
It was argued that entanglement is the essential physical phenomenon that gives quantum com-
putation its power of exponential speed-up over classical computation. Although it is still under
heated debate and relentless research whether entanglement is essential for quantum computa-
tion [24, 48, 20], it is widely believed that that entanglement plays a crucial part for quantum
information theory. However, somewhat like in the case of classical randomness, it is very hard
to have a perfect source of entanglement. EPR pairs, as with currently technology, are notori-
ously hard to maintain. They decohere very easily and become “less entangled”. As randomness
extractors convert less-than-perfect random bits into near-perfect ones, entanglement distillation
protocols convert less entangled quantum states into almost perfect EPR pairs.

There exist even deeper similarities. An extractor, being a deterministic procedure, cannot
create randomness by itself. It needs to “distill” the randomness from the input bits into randomness
of the purest form, namely unbiased, uncorrelated random bits. An entanglement distillation
protocol, being an LOCC protocol, cannot create entanglement by itself. Therefore an EDP also

needs to distill the entanglement from the input into EPR pairs, which are the entanglement of the
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purest form — each pair is maximally entangled and separable from the rest.

Moreover, the early stage of searches on EDPs greatly resembles that on the randomness ex-
tractors, in that people have considered various specific models of “imperfect EPR pairs” and
constructed protocols over these specific models. As an example, the first work we are aware of on
EDPs is by Bennett, Bernstein, Popescu, and Schumacher [21], which used the model where many
identical copies of the pure state | ¢) = (cos@|01) + sinf|10)) is given as the input. The resem-
blance of this model, as well as the solution, to the the biased coin model used by von Neumann [66]
is striking. More complicated models were proposed later, as Bennett, Brassard, Popescu, Schu-
macher, Smolin, and Wootters [22] studied the case where the input is identical copies of a mixed
state. Horodecki, Horodecki, and Horodecki [42, 45] and Rains [75, 76, 77] studied the case where
the input is many identical copies of a known pure state. Notice that the classical counterpart of
this state would be an input with known distribution, for which case the problem of randomness
extraction was long solved by Shannon [82]. This sharp contrast somewhat demonstrates the dif-
ficulty of quantum information theory, as very simple problems in classical information theory can
become highly non-trivial in the quantum case.

However, despite the similarities and the correspondence between the early stages in research
on randomness extractors and entanglement distillation protocols, there has not been a counterpart
of the modern stage of extractors in the study of EDPs. In other words, there hasn’t much work
on EDPs over arbitrary entangled states. This observation naturally motivates the entanglement

noise model and the study on EDPs over such a model.

8.1.3 The Entanglement Noise Model and the Impossibility Result

We describe the entanglement noise model, which contains all pure states of a certain amount of

entanglement.

Definition 8.1 (Entanglement Noise Model) A entanglement noise model of parameter (n, k),
denoted by &, i, is an adversarial quantum noise model consisting of all 2n-qubit pure states of en-

tanglement at least k. In other words,

Enie =11 8) € Homn | E(¢) > k) (8.1)
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Unfortunately, there don’t exist entanglement distillation protocols over the entanglement noise
model. This is true even if we restrict ourselves to starting states with the maximum possible

entanglement and only requires the protocol to output a single EPR pair ®7.

Theorem 8.1 (Entanglement Model) There do not exist perfect (n,1)-protocols over the en-

tanglement noise model &, ,,.

Proof: Consider a quantum system of 2n qubits. The maximum possible entanglement of such
a system is n. Unlike in the classical world where there is just one probability distribution over 2"
elements with entropy n (the uniform distribution), there are infinitely many quantum states with

entanglement n. Namely, any quantum state of the form

N—-1

|6) = aild)li) (8.2)

1=0

with |a;|2 = 1/N for all i € {0,..., N — 1} has entanglement log N, where we denote N = 2". In

particular, this includes
N—1

1 ..
[ o) = Y ——e /N b)| b)
> 7w

b=
for a € {1,...,N}. Assume that we have a protocol that extracts ®* from any |¢,). This means
that, given | ¢,), the protocol ends with the final state of the form ®* ® | /). We consider running
this protocol on the mixed state p that is | ¢g) with probability 1/N, | ¢1) with probability 1/N, ...,
| 1) with probability 1/N. Then, the final state is of the form ® ® p' where p' is some mixed
state.

The problem is that p is equivalent to the mixed state that is |0)|0) with probability 1/N,
| 1)| 1) with probability 1/N, ..., | N — 1)| N — 1) with probability 1/N. (This equivalence can be
verified by writing out the density matrices of both states.) None of the states |i)|i) is entangled,
so the mixed state obtained by combining them is also not entangled. Yet, since this mixed state
is equivalent to p, it gets transformed into ®* ® p’, which is entangled.

We have constructed a protocol that transforms a disentangled starting state into entangled
end state without quantum communication. Since this is impossible [21], our assumption is wrong

and there is no protocol that extracts any ®* from an arbitrary | ¢ ). [
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The argument described above is still valid if we relax the requirement to extracting a state
close to ®.

This is a clear distinction between the situation of classical randomness extraction and quantum
entanglement extraction. In the classical case, all the probabilities are non-negative real numbers,
and the min entropy of a random distribution already characterizes the distribution well. In the
quantum case, the magnitudes are complex numbers, and the entanglement alone isn’t good enough
to describe the state. Even more interestingly, since one has the freedom to switch bases in quantum,
we can build a mixed state which is a mixture of maximally entangled states, yet the mixed state
itself is completely disentangled. This phenomenon doesn’t seem to have a counterpart in classical

probability.

8.2 The Fidelity Noise Model

With the motivation of studying EDPs for a general class of noise models and the impossibility
result for the (too general) entanglement noise model, we consider the fidelity noise model as one
that is still quite general, but also useful. Intuitively, the entanglement noise model fails because
there exists many maximally entangled states that are orthogonal to each other, and no protocol can
work with all of them. Therefore, some “closeness” condition is needed, i.e., we need some guarantee
that the input state is close to a fixed maximally entangled state. This intuition naturally leads to
the fidelity noise model, which, informally speaking, describes the situation where the input state
has a reasonably high fidelity with the perfect EPR pairs.

We give the definition of the fidelity noise model.

Definition 8.2 (Fidelity Noise Model) A fidelity noise model of parameter (n,a), denoted by
Fn,a, 18 an adversarial quantum noise model consisting of all 2n-qubit mized states of fidelity at
least a. In other words,

Fna =1{p € Hau | F(p) = a} (8.3)

This model was also independently considered by Lo and Chau [57] and Shor and Preskill [84] in
proving the security of the BB84 quantum key distribution protocol [16], and by Barnum et. al. [23]

in studying the so-called “purity-testing protocols”.
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8.3 Our Results

We present our results here, where are arranged in three parts. The first part is concerned with
absolute protocols, whereas we prove both lower and upper bounds for the quality of the optimal
protocols; the second part relates conditional protocols with so-called “purity-testing protocols”
and we construct a protocol called “random hashing” that works with the fidelity model; in the
third part, we prove an almost tight bound (up to an additive constant) on the communication
complexity of EDPs over the fidelity model. Our result implies that the “random hashing” protocol

is optimal.

8.3.1 Part I: Absolute Protocols

We prove that no absolute protocol would work well over a fidelity noise model. In fact, we can
prove an even stronger result, which extends to protocols that accept perfect EPR pairs as auxiliary

inputs.

Protocols with Auxiliary Input We consider protocols with auxiliary inputs as a slight ex-
tension to “standard” entanglement distillation protocols. In addition to the input states, Alice
and Bob also receive k EPR pairs (each pair is shared between Alice and Bob) as auxiliary inputs.
Obviously a protocol with auxiliary input would be more powerful than one without. An imme-
diate example is that a deterministic protocol with auxiliary inputs can simulate a randomized
public-coin protocol, since Alice and Bob can use the shared EPR pairs to simulate shared random

bits.

Theorem 8.2 (Absolute Protocols for the Fidelity Model) The fidelity of any (n,m)-protocol

. . .. . . . m__ 9k n
with k < m EPR pairs as auziliary inputs over a fidelity model F,, 1_¢ is at most 1 — 22—"?%6

Moreover, this upper bound is tight, in that for every n,m,n, there exists an (n, m)-protocol using

k EPR pairs as auziliary inputs of fidelity 1 — QmQZFC %e.

Typically, the size of the auxiliary input, k is very small compared to the size of the input and
the output. Since a protocol with £ EPR pairs of auxiliary input can trivially output k perfect

EPR pairs, we require that m, the size of the output of such a protocol to be greater than k. In
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particular, even in the “minimal case”, where £k = 0 and m = 1, the maximum possible fidelity

of any protocol is bounded by 1 — %e <1 - €/2. So it is impossible to arbitrarily increase the
fidelity to be close to 1, even with unlimited communication.

To prove this theorem, we need the following lemma (we define N = 2", K = 2% and M = 2™).

Lemma 8.1 Let |¢) = (|Ox ® Oy)) ® Oy, be a state in a bipartite system Hy e @ HY o shared
between Alice and Bob. Let o be the state Alice and Bob output after performing (arbitrary) LOCC
K

operations. Suppose that o is in the subspace 7{]‘?4 ® Hﬁ. We have F(o) < ;.

This lemma is a a direct corollary of a result by Vidal, Jonathan, and Nielsen [91]. For the
completeness of the paper, we give a somewhat simpler proof here.

For a self-adjoint matrix M, we define its spectrum written as S(M), to be a vector formed by
the eigenvalues of M, and whose entries are sorted in a decreasing order. In other words, if the
eigenvalues of M are Aj, Ao, ..., \g, where Ay > X9 > -+ > Ay, then S(M) = (A1, Ag, ...y Ag)-

For a mixed state p, if we write p as
d
p=_pildiXeil
i=1
where p1 > pa > -+ > pg, and {| ¢;)} is an orthonormal basis, then

S(p) = (p1,p2, -, 0a)

A useful fact about the spectrum of a tensor product of two matrices is the following:

Lemma 8.2 Let A and B be square matrices such that the eigenvalues for A are {\, Ao, ..., A\m }

and the eigenvalues for B are {1, pa,....pum}. Then the eigenvalues for the matriz A ® B are

{Ni-pitiz12,m, j=12,.m-

Proof: IfA-v=X-vand B-4=p -4, then (AQB)- (vQu) =\ p)(v®u) [ ]
A corollary the above fact is as follows.

Corollary 8.1 Let p?, pP be the density matrices for quantum systems H* and HP. Then we
have

rank (p @ p?) > rank (p?) (8.4)
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Proof: The rank of a matrix equals the number of non-zero eigenvalues of this matrix. Since p?
is a density matrix, it has trace 1, and thus it has at least one non-zero eigenvalue  assume it is
p1. We denote the eigenvalues of p? by A1, Ag, ..., A, then by Lemma 8.2, X\ - pu1, Ao - 41, o, Am - f11
are all eigenvalues of p? - pB. Therefore, they contain at many non-zero numbers as the eigenvalues

A

of p”. [

Proof: (of Lemma 8.1)
We consider an arbitrary protocol P between Alice and Bob involving only LOCC. We assume

that P consists of steps, where each step could be one of the following operations ':

1. Unitary Operation:

Alice (or Bob) applies a unitary operation to her (or his) subsystem.

2. Measurement:

Alice (or Bob) performs a measurement to her (or his) subsystem.

3. Tracing Out:
Alice (or Bob) discards part of her (or his) subsystem, or equivalently, traces out part of the

subsystem.

4. Classical Operation:

Alice (or Bob) sends a (classical) message to the other party.

We first convert this protocol P into another protocol P’ in the following way: for each tracing-
out operation Alice (or Bob) performs, we insert a measurement operation right before the tracing-
out, and the measurement is a full measurement of the subsystem to be traced out. Notice that
P’ will have exactly the same output as P, since the subsystem that was traced out isn’t part of
the output. However, P’ has the property that for each subsystem traced out in the protocol, that
subsystem is disentangled from the rest, since it is already completely measured.

Now we analyze the new protocol P'. We denote the partial density matrix of Alice for the

state | ¢) by pA:

pt = Tru(|g)g)) (8.5)

!We assume that Alice have enough ancillary qubit at the beginning of the protocol and not more new ancillary
qubits need to be introduced during the protocol.
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Since we know | ¢) precisely, we can compute p? precisely, and in particular, its spectrum. Tt

is easy to verify that the spectrum of p? is

S(p*) =(1/K,1/K,...1/K,0,0,...,0)
e H,—/

K (N-1)K

So the rank of p# (which is also the Schmidt Number of | ¢)) is K.
We focus on how p” changes with the local operations Alice performs (apparently it doesn’t
change with Bob’s local operations): we shall prove that the rank of p? never increases. There are

3 types of operations Alice can perform: unitary operations, local measurements, and tracing out

a subsystem, we analyze them one by one:

e Unitary Operations
This operation changes a mixed state p” to UpUT, where U is a unitary operation. Obviously

the rank doesn’t change.

e Local Measurements
Suppose measurement operator is {M,,} satisfying > M,LMm = I, and the measurement

yields result m. Then Alice ends in state

MmPAML

e
Tr (M, My, p?)

Again, we have rank (p,,) < rank (p?).

e Tracing Out a Subsystem
We write HA = HA° @ HA1, and we suppose that the subsystem HA! is traced out. We write

the partial density matrix for H4° as pA40, and we have p° = Try, (p?).

We know that in protocol P’, the subsystem H4° is disentangled from the subsystem H4!.

Thus we have

oA = o @ ph
for some density matrix p1. and by Corollary 8.1, we have rank (p?) < rank (p?).
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So, as Alice and Bob perform local operations, the rank of the partial density matrix for Alice
never increases. This fact remains true even if Alice and Bob perform classical communications
(this just means that Alice has the ability to perform different local operations according to Bob’s
measurement result, but no local operation Alice performs can increase the rank).

We denote the density matrix for the final state after the protocol P to be pg, and we define
pa = Trp(pr) to be the partial density matrix for Alice. Then we have rank (p7}) < K. Notice pi
should be an M x M matrix since Alice and Bob are supposed to arrive at a state in 7—[]‘?4 & ’Hﬁ,.
We use pg‘ to denote the partial density matrix for Alice if we trace out the system 7-[5, from the
target state Wps. It is easy to verify that ,06‘ = ﬁ[, where [ is the identity matrix.

By monotonicity of fidelity, we have

F(pe, [Yu)Pu|) < Flog, pi)

However, we have

Floihpd) = Trwp 12 (o) 12
1
Var Ve

We write the spectrum of p’g as

S(pé}) = (>‘17 >‘27 B AM)

and we know that Agy1 = Agi9 =+ = Ay = 0 since rank (pé) < K. Therefore, we have

F(pi, () \/7 Tr\/;_\/7

F(pr) = F(pE,

and thus

Therefore we have

XUn|) < Flpg.pg) <

Sk
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Proof: (of Theorem 8.2)

We prove the theorem by demonstrating a particular mixed state p of fidelity 1 — €, such that

. . . M-K _N
no LOCC protocol can increase its fidelity to more than 1 — == —e.
Let € = 25e. We define the state p to be
P:(1*6,)‘(I)n+€,‘|0N®0N><0N®0N‘ (8.6)

In other words, p is the maximally entangled state @, with probability (1 — €') and the completely
disentangled state 0 ® Oy with probability €.

It is easy to verify that F(p) =1 — ¢, since (®, |0y ® Oy) = ﬁ and, therefore,
/ / / 1 / 1 /
F(p) =(1 —€)F(®,) + €F(|0y @On)0n @O0y]) = (1 —€) + N = 1-(1- N)e =1-e (8.7)

For an arbitrary LOCC protocol P, we define f; = F(P(®,,)) and f, = F(P(|0ON®0x)X0nR0xN]))
Then we have f; <1 and by Lemma 8.1, fo < K/M.

By the linearity of fidelity of quantum operations, we know that

FP(p) = (1— eV refp<t - M- Koy MK N (8.8)

Now, we prove that this lower bound is tight by demonstrating an (n, m)-protocol that saturates
the bound in (8.8). The protocol is called the “random permutation protocol”. In the simplest
version, it doesn’t use any auxiliary input (i.e. £ = 0). Again, we define N = 2", M = 2™ and

K =2~
Construction 8.1 (Random Permutation Protocol)

1. Alice generates a uniformly random permutation © on {0,1}" using classical randomness and

transmits the permutation to Bob.
2. Alice applies permutation m on Hx, mapping | i) to | (i)), Bob does the same on HEY.
3. Alice and Bob decompose Hy as Hyr ® Hr,, L = N/M and measure the Hy, part.
4. Alice sends the result of her measurement to Bob, Bob sends his result to Alice.
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5. They compare the results. If the results are the same, they output the state that they have in

Hy @ HE . If the results are different, they output | Zp) @ | Zas).

We compute the fidelity of the random permutation protocol. We need one more notation.

For a symmetric, bipartite system H = ’HA ® HE we denote by HP the N-dimensional subspace

N—-1
{ zaz--uw}
=0

and we call it the diagonal subspace of Hﬁ ® Hﬁ. A mixed state p is in the diagonal subspace, if

spanned by

there exists a decomposition of p:
p=" pilpiXeil
i

such that all pure states | ¢;) are in the diagonal subspace.

We start with the case when the state of Alice and Bob is in the diagonal subspace.

Lemma 8.3 If the input state to the random permutation protocol is in the diagonal subspace, then

the fidelity of the output is %%e

Proof: Without loss of generality, we assume that the input state is pure. Let | ¢) = ZN Ll iyA]i)B
be the starting state. For a permutation 7, let U, be the unitary transformation defined by
Ur (|11) ®|4)P) = |7(i))*| n(5))P. Then, if Alice and Bob use a permutation 7, the resulting

state is
| ¢x) = Uzl ¢) = Zam ) (i) Zaﬂl Aa)®.

There are N! permutations 7 on a set of N elements. Therefore, each of them gets applied with
probability 1/N!. This means that the final state is a mixed state of | ¢, ) with probabilities 1/N!

each. We calculate the density matrix p of this state. It is equal to

o )@y M (W% Qe ()%

1 Otﬂfl(Q)a;,l Otﬂfl(g)a;,l Otﬂfl(g)a;,l
DEHERICHER) g w ” "
O (M) @-1(1) a1 O (V) Y
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We claim that all diagonal entries p;; are equal to 1/N and all off-diagonal entries p;;, i # j are
equal to some value a which is real. This follows from the symmetries created by summing over all
permutations.

Consider a diagonal entry p;;. For each j € {1,..., N}, there are (N — 1)! permutations that

map j to i. Therefore,
N

Pii = Z(N - a]a = Z |0‘J|2

7j=1
Z;-V:l |j|? is the same as ||¢||? which is equal to 1. Therefore, p; = .
Next, consider an off-diagonal entry p;;. For each k.l, k # [, there are (N — 2)! permutations

that map k to 7 and [ to j. Therefore,

N N
:Z Z —2'—akal Z Z akaf.

k=11=1,l£k k=11=1 l;ék

This immediately implies that p;; is the same for all ¢ # j. Also, notice that (apa))* = ajay.
Therefore, aga] + oy, is real and p;; (which is a sum of terms of this form) is real as well. Let

a = p;;. We have shown that

1
N a
1
(IW a
p=
1
a a ~

Notice that the density matrix p can be also obtained from a mixed state that is ®, with
probability Na and each of basis states |i)|i)? with probability + —

We now consider applying steps 3-5 to those states. Measuring 7-[’;? ® Hf for @,, always gives
the same results and leaves Alice and Bob with the state ®,, in 7—[]‘?4 ® HE,. The fidelity of this
state with ®,, is, of course, 1. Measuring H4' and H2 for |i)#|i)? also gives the same results and
leaves Alice and Bob with some basis state |i')4|i')? in the diagonal subspace of H4, ® HE. The
fidelity of this state and | ¥,/) is ﬁ By the linearity of fidelity, if we apply those steps to the state

p, we get that the fidelity is

1 1 1 1



We now lower-bound a. Again by the linearity of fidelity, we have F(p) = 5 > F(] ¢x)). Since
permuting the basis states | i) |i)” preserves the maximally entangled state ®, = \/Lﬁ Zf\il 1i)A]4) B,
the fidelity of any | ¢,) is the same as the fidelity of | ¢). Therefore, F(p) = F(| ¢)) > 1 — €. By

applying the definition of fidelity,

G fF e
1 o L a
Flp) = VN N IR I 1
VN VN VN
AVERIR
1
= N+ N(V = 1)-a
= 1+(N 1)

Since F(p) > 1 — e, it must be the case that a > 1 — +*5. By substituting that into (8.9), the

fidelity of the final state with ®,, is at least

It remains to show that the protocol also succeeds for states not in the diagonal subspace. Let

| #) be a state such that F(|¢)) > 1 —e. We decompose

[¢) = V1 —4| ¢1) + V6| $2),

with | ¢1) € HP and | ¢o) € (HP)L. Let F(| ¢1)) = 1 —0d". Since @, is in HP and | ¢y) is orthogonal
to HP, we have F(| ¢2)) = 0 and F(| ¢)) = (1—6)(1—¢'). Notice that (1 —9)(1—4") > 1 —e€ because
F(4) > 1.

Applying Uy maps |§) to | ¢x) = VI =0 ¢x1) + V0| drs) where | ¢x1) = Uzl dn), | drs) =
Uzl ¢2). Since U, preserves the diagonal subspace, | ¢ 1) € HP and |¢r2) € (HP)L. Measuring
H’;} and Hf for a state in HP always gives the same results and produces a state in the diagonal

subspace of H4y, ® HB,. Measuring H7 and HP for a state in (HP)L either gives the different
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results for Alice and Bob or gives the same results but produces a state orthogonal to the diagonal
subspace of 7-[’;\1/[ @HD.

The fidelity of the final state consists of two parts: the fidelity of the final state if Alice’s and
Bob’s measurements of Hj, give the same answer and the fidelity if measurements give the different
answer. The first part is just (1 — ¢) times the fidelity of the final state if the starting state was
| 1) (instead of | ¢)). Since | ¢1) is in the diagonal subspace, Lemma 8.3 implies that the final state
of the protocol | ¢1) has the fidelity at least 1 — D§’ where D = %% Therefore, the first part
is at least

(1-6)(1-Dd)y=(1-8)(1-46)+(1-D)§(1-9) (8.10)

The second part is the probability of measurements giving different answers times the fidelity of
the state | 0) ® | 0) which Alice and Bob output in this case. The fidelity of this state is % and the
probability of this case is given by the following lemma.

Lemma 8.4 The probability that Alice’s and Bob’s measurements give different answers is ]}[V:Al/ld

Proof: First, we look at the state | ¢2). Since this state is in (HP)1, it is of the form

N
(o) = D aigli)ti)”.

i j=1,i#]

Applying U, maps it to

[ br2) = D cigl @) 7P =D a1yl )57
i#£] i£]

The probability of Alice and Bob getting different results is equal to the sum of ‘aﬂ-fl(l‘),ﬂ-fl(]‘)‘Q

over all basis [1)”, | j)P that differ in the #{; part. If this sum is averaged over all permutations 7,

it becomes the same for all 4, j, ¢ # j. Therefore, the probability of Alice and Bob getting different

because for each ¢,

. . . .o . . . N—-M
results is just the fraction of pairs (i,7) that differ in the H, part. It is =

=1
there are (N —1) j € {1,...,N}, j # i and M — 1 of them differ only in the Hx but the remaining
N — M differ in the Hj, part.

If the starting state is | ¢), the probability of Alice and Bob getting different results is 0 times

the probability for | ¢2) because | ¢) = /1 — 0| ¢1) + /3| $2) and the measurements always give the
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same answer on | ¢p). ]

Therefore, the second part of the fidelity is ﬁ%:]\{[é. Notice that 1 — D =1 — % =

(Mfll‘)/;\(]];i/]l()lvfl) = M]\([X,{/[l). Thus, the second part is (1 — D)d and the overall fidelity is at least

1-8)1-8)+1-D)(1-86)0+(1-D)j=1-D(§(1—-5)+7d).

Since (1 —=0)(1 —4") > 1—¢, 6(1 —d') + &' < e. Therefore, the overall fidelity is at least 1 — De.
This completes the proof of the second part of Theorem 8.2 for K = 1.
For K > 1, we can just produce an entangled state of dimension M’ = M /K without the use

of | W) by the protocol above and then output this state and the original | W ). This achieves the

fidelity of at least 1 — De for D = MA’[,I N]L = M]é[?([;l N]L = MA}K Nlil, proving that the bound of

Theorem 8.2 is tight for £ > 0.

Interestingly, we can show that communication almost does not help for entanglement distilla-
tion over the fidelity model. The next theorem states that the random permutation protocol can

be modified into an non-interactive one with only with a small loss of fidelity.

Theorem 8.3 (Non-interactive Absolute Protocols for the Fidelity Model) There exists

a non-interactive, randomized public-coin entanglement distillation (n,1)-protocol of fidelity 1 —

n_2
%;Tfe over a fidelity noise model F, 1_c. Furthermore, this it is almost the best possible, in that

the fidelity of any non-interactive, randomized public-coin entanglement distillation (n,1)-protocol

. 2n 2n __
over the model Fp1_¢ is 1 — %22271—7167 fore< 22271—+11

It is interesting to compare this result to a special case of Theorem 8.2, where k = 0 and m = 1.
We see that with communication, the maximum fidelity of a protocol is about 1 — €/2, and there
exists a protocol that matches this bound exactly. Without communication, the maximum fidelity
is about 1 — 3¢/4, and it is tight, too. Therefore, communication does help in this case, but not

much.

Proof: (of Theorem 8.3) We first show that the random permutation protocol in Construc-

tion 8.1 cane modified into a non-interactive one.
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Construction 8.2 (Non-interactive Random Permutation Protocol)

1. Using the shared random string, Alice and Bob generate a uniformly random permutation

m € Son and x1 € {—1,1}, xz9 € {—1,1}, ..., zon € {—1,1}.
2. Alice and Bob apply the transformation U mapping U|i) = (—1)"| w(3)) to their qubits.

3. They each output the first qubit and trace out the rest.

Note that if they are given the perfect state ®,, then U @ U|®,,) = ®,, and the output is a

perfect EPR pair. If the starting state is not perfect, then the first two steps “symmetrize” it.

Lemma 8.5 Let p be the mixed state obtained after the first two steps. Then,

P =po| Vo) (Vy | + p1p1 + p2p2 + p3p3

where p1 is a uniform mizture of 2" states |i)|i), pa is a uniform mizture of 2™(2" — 1) states
L (1)) + 1)), G i, py is o uniform misture of 21(2" — 1) states (1] 3) — |7)|i)), § # i

and Po, P1, P2, P3 € R.

Proof: We divide the transformation into two parts: U = U"U’, U/, = (=1)%, U"|i) = | n(i)).

!
l4)
Let p’' be the intermediate density matrix after applying U’. Then, the only nonzero entries in p’
ave i) )i [(i[, [} 1G], 13)/3)(61G 1, 191390 [(i]. Applying U” after that makes all entries of
each type equal.

Let a, b, c,d be their values. Then, we can set pg = 2"a, p; = 2"(b — a), py = 2"(2" — 1)(c + d),

p3 =2"(2" = 1)(c — d). u

We have F(py) =1, F(p1) = 5= and F(ps) = F(p3) = 0. We note that

1
Pot g 21 —e (8.11)

because each of states U @ U| 1)) has the same fidelity as | ) and fidelity is convex. We can rewrite

(8.11) as Ztpy +po +p3 < e
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Outputting the first EPR pair and tracing out the rest transforms pg into a state of fidelity 1,
p1 into a state of fidelity 1/2 and py and p3 into states of fidelity (27 ' —1)/2(2" — 1). Thus, the
final fidelity is 1 — 4,

1 3.om1 -1 3.2m1 -1 32" —2/3

6:— B T — < =
LA To T Y G R T s T

Next, we prove the second part of the theorem, that this is almost the best a non-interactive
protocol can do.

2211

Let p be the mixture of ®,, with probability 1— ﬁe and the completely mixed state in 2" x 2™
dimensions with probability 222;—i1€ Since the perfect state has fidelity 1 and the completely mixed
state has fidelity 22%, this state has fidelity 1 — e.

W.Lo.g., a non-interactive protocol consists of Alice applying U4, Bob applying Ug and each
of them outputting the first qubit.

Let p4 be the density matrix of Alice’s first qubit if she starts with her system in 2"-dimensional

completely mixed state. As any density matrix on one qubit, p 4 has can be decomposed into mixture

of two orthogonal one-qubit states (its eigenstates)

pa=M|pa)(tpa |+ N vi) (W |

where A o are the eigenvalues of p4. Since eigenvalues of a density matrix must sum up to 1, we
can assume that \; = % +d4 and Ny = % — 04, 04 > 0. Let pg be the density matrix of Bob’s
first qubit if he starts with his system in 2"-dimensional completely mixed state. We define |4 3),

|45), dp similarly. Let 6 = max(da,0p).

Lemma 8.6 If the starting state is ®,,, the fidelity of the final state is at most 1 — 62.

Proof: W.l.o.g. assume that § = 4.

Consider Alice’s part of ®,,. It is the completely mixed state on Alice’s 2" dimensional system.
Therefore, Alice’s output qubit will be in the state p4. This means that the fidelity of the state
output by Alice+Bob and |00) + | 11) is at most the fidelity between p4 and 31 (density matrix of

Alice’s part of %(\ 00) + | 11))).
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Let U be the unitary transformation that maps |0) to [14) and | 1) to |4%). Then,

1 _ 1
F(pAaEI) :F(U lpAUaiI) =F

Lemma 8.7 If the starting state is the completely mized state in 2°" dimensions, the fidelity of

the final state is at most % + €.

Proof: Since the completely mixed state is the tensor product of completely mixed states of Alice
and Bob, the final state of output qubits is pa ® pp. This state is a mixture of |9) ® |9'), where

|4) (or [¢')) is one of [4) and |¢x) (or |4p) and |¢5)) with probabilities (5 £ 64)(3 + dp).

Notice that
1 1
V2 V2

for any one qubit state |1). In particular, we can take |) = |1p4). Let a = [(¢%]1p)]*. Then,

(100) +111)) = —= (| 9) 9*) +9) (¥)))

the fidelity of states [14) ® |¢p) and |) ® |1b5) is 5 and the fidelity of states |1)4) ® | ¥) and

|¢j) ® |YB) is 15“. Therefore, the overall fidelity of the final state is

3 (GranG+am+ (G o0G o)+ 5 (GHonG o)+ G- oG +w)

a (1 1—a /1 1/1 1 9
e i < Z | = < - .
9 <2+25A5B> + 5 <2 25,453) S5 <2+25A5B> < 4+5

|
Therefore, the fidelity of the protocol on py is at most
22n ) 22n 1 ) 3 22n

If Alice and Bob share randomness, we can fix one value r for randomness and take U4 and Up
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for this . The bound of Eq (8.12) applies for any particular r, Therefore, it also applies on the

average over all r. [ |

8.3.2 Part II: Purity Testing Protocols and Conditional Protocols

Theorem 8.2 spells a negative result for absolute protocols over the fidelity noise model by demon-
strating a state p such that no LOCC protocol can increase its fidelity significantly. However, the
situation is vastly different for the case of conditional protocols. We shall prove that very efficient
entanglement distillation protocols exist that can increase the conditional fidelity to as close to 1
as possible. As we shall see, one construction of such protocols is closely related to the notion of

purity testing protocols.

Theorem 8.4 (Conditional Protocols for the Fidelity Model) For all integers n > s, there
exists an conditional, randomized, (2ns + s)-bit one-way, (n,n — s) protocol over the fidelity noise

model Fp,1—¢ with success probability at least 1 — € and conditional fidelity 1 — 14-3;*24

We prove this theorem by first demonstrating a closely related notion, namely the purity testing

protocols, and then showing how these protocols are in fact entanglement distillation protocols,

followed by an explicit construction.

Purity Testing Protocols

A purity testing protocol is an LOCC protocol where the input is joint state shared by Alice and
Bob which they think might be the EPR state ®,,. Alice and Bob want to test if their shared
state is indeed ®,,, while sacrificing the least number of EPR pairs. The concept of purity testing
protocols were studied implicitly by Lo and Chau [57] and Shor and Preskill [84] in the context of
proving the security of the BB84 quantum key distribution protocol [16], and later explicitly by

Barnum, Crépeau, Gottesman, Smith, and Tapp [23].

Definition 8.3 (Purity Testing Protocol, adapted from [23]) A purity testing protocol with
parameters (n,m, «) is a LOCC super-operator Ty, m o which maps 2n qubits (half held by Alice and
half held by Bob) to 2m + 1 qubits (m of which are held by Bob) and satisfies the following two

conditions:
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e Completeness: 7(®,,) = ¢, ® | SUCC)
e Soundness: Let P be the projection on the subspace spanned by ®,, ®| SUCC) and |¢)®| FAIL)

for all | 4). Then T is sound with error « if for all p,

Tr (PT(p)) 21— a.

It’s convenient to think of purity testing as approximating the measurement given by the pro-

jector onto @, and its orthogonal complement.

Purity Testing Protocols are Entanglement Distillation Protocols

We prove that every purity testing protocol is in fact an entanglement distillation protocol.

Lemma 8.8 FEwvery purity testing protocol Ty m o corresponds to an conditional entanglement dis-

tillation (n, m)-protocol over the fidelity noise model Fy 1. with success probability at least 1 — e

«a
l—eta”

and conditional fidelity at least 1 —

Proof: We show that the purity testing protocol 7y, is in fact an entanglement distillation
protocol with the slightest modification. Alice and Bob simply run the purity-testing protocol,
with Alice outputting FAIL when the purity testing rejects the input. Now we estimate the success
probability and the conditional fidelity of this protocol.

Suppose at the end of the protocol Alice and Bob trace out everything except the 2m output

qubits and the qubit indicating accept/reject. Consider the three projectors:

P = &,®]|SUCCHSUCC|
Py, = (Iy — ®,)®|SUCC)(SUCC|

Py = Iy ®|FAIL)(FAIL |

And define v; = Tr[P;p'] where p' is the final state.
If the input to the system had fidelity 1 —¢, then the completeness of the purity-testing protocol

implies that the fidelity of the output to ®,,| SUCC) must be 1 — ¢, and so 3 > 1 — €. Therefore
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the success probability is at least 1 — €. If the purity-testing protocol has soundness error «, then
the soundness condition implies v < a.
Now the output fidelity conditioned on acceptance is

4! 2 a

=1- >1 - — .
Y1+ Y2 Y1+ Y2 l-e+ta

This finishes the proof. [ |

Constructing Purity Testing Protocols

Purity testing protocols are in fact easy to construct and are very efficient. A particularly simple
purity-testing protocol consists of picking a random stabilizer code of dimension 2" %, having Alice
and Bob both measure the syndrome of the code, and then extracting the encoded state if both

measurement results are the same.

Lemma 8.9 (Random hashing) For all integers n > s, there exist purity testing protocols of
parameters (n,m,«) such that such that m = n — s, a < 27° and which use ns + s + 1 bits of

classical communication.

This lemma actually follows from the observation that the set of all stabilizer codes [36] of
dimension 2" is a purity-testing code family with error a < 27%. However, we give a direct proof
with an explicit protocol description below.

Without loss of generality, we describe the protocol in terms of purifying the state | ¥ ~)2. We
describe a protocol with m = n—1 and error a = % Repeating the protocol s times yields m = n—s

and o =275,
Construction 8.3 (Simple Random Hashing Protocol)
1. Alice picks 2n random bits x1,...,%Tn, 21, ..., 2n Such that not all the bits are 0.

2. Alice will measure the operator given by

X7 @~ X*Z* . To do this Alice:

2For example, Bob can perform a “phase-shift” (Z) followed by a “bit-flip” (X) to every qubit he possesses. This
will transform | &%) to | U™).
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(a) Considers only qubits where (xz;,z;) # (0,0). Say there £ qubits left.

(b) On qubit j, applies either

o)
H=2 if (zj,2) = (0,1),
1 -1
i)
B = V2 if (x5,25) = (1,1),
i1

the identity if (z;,z;) = (1,0).
(¢) Applies CNOT from each of the first £ — 1 qubits onto the last.
(d) Measures the last in the computational basis.

(e) Applies the inverse transformation to the remaining qubits.
3. Alice sends x1,...,Ty, 21, ..., 2n, and her measurement result to Bob.
4. Bob performs the same measurement and sends back the result.

5. Alice and Bob accept if the two results are different and reject otherwise.

Proof: (of Lemma 8.9)

It is sufficient to consider the performance of the protocol on states of the form XaZE\ g yen
where X% denotes X ® --- ® X* when @ = (a1, ...,a,) € {0,1}". Without the loss of generality,
we assume all the error operators are applied to Alice’s share of the EPR pairs.

The reduction to these Bell states is via a “quantum-to-classical reduction”, as used in [57] for
key distribution. The reduction works because ultimately, the accept/reject decision is diagonal in
the Bell basis, and moreover if the input to the protocol can be described as XEZE\ U)®" the the
output can be written Xa'Zg'\ g yem,

The idea is that measuring the operator X' Z* ® --- ® X**Z** on both Alice and Bob’s
shares and comparing the results is equivalent to measuring the bit ¢ © £ + bo Z, i.e. a random
linear function of the vector (#,7). To see this, first observe that HX?Z? = (—~1)?X*Z°H and
BX%Z" = i*X** 7B, Moreover, both B® B and H ® H have | U~) as an eigenvector. Thus, in
each position we will end up with a state proportional to X%i%+2i% 7¢| ¥~) after Alice and Bob

have applied their transformations and before they measure, where c is a bit. Measuring both halves
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in the computational basis and comparing results allows one to compute x;a; + z;b;. Similarly, the
protocol computes T ® a + bo Z.

A random linear function will detect a non-zero vector with probability % Thus, the overall
error probability of the one-step protocol is bounded by % Repeating the protocol s times lowers

this error to 27°. |
Proof: (of Theorem 8.4) It directly follows Lemma 8.8 and Lemma 8.9. ]

In fact, a closer look at the Construction 8.3 reveals that of the (2n 4 1) bits of communication
in this protocol, 2n of them are used for selecting a random string, which can be spared if Alice
and Bob initially share a random string. This observation leads to the following corollary to

Theorem 8.4.

Corollary 8.2 For all integers n > s, there exists an conditional, randomized public-coin, s-bit
one-way, (n,n—s) protocol over the fidelity noise model F, 1 with success probability at least 1 —e

9—s

14+275—¢" u

and conditional fidelity at least 1 —

Here, we see an exponential trade-off between the conditional fidelity and the amount of com-
munication: each additional bit communicated will reduce the gap between the conditional fidelity
and 1 by almost half. This contrasts sharply with the relation between fidelity and communication,

where communication does help a little, but by only at most a constant factor.

8.3.3 Part IIl: The Communication Complexity

We study the communication complexity of entanglement distillation protocols over the fidelity
noise model. We prove a lower bound that matches the result from Corollary 8.2 up to an additive

constant. This effectively shows that the construction of Corollary 8.2 is optimal.

Definition 8.4 (Ideal Success Probability) The ideal success probability of a conditional quan-
tum entanglement distillation (n,m)-protocol is the probability that it succeeds over the input ®,,.

A protocol is ideal if its ideal success probability is 1.

Theorem 8.5 (Communication Complexity of Protocols for the Fidelity Model) The con-
ditional fidelity of any randomized public-coin s-bit (n, m)-protocol of ideal success probability p is

at most 1 — 5&+ over a fidelity noise model Fp 1
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An immediate corollary of this theorem is that the conditional fidelity of an s-bit ideal protocol
is at most 1 — /257!, Therefore, to achieve a fidelity or 1 —§ on the output, log(1/d) +log(e-p) — 1
bits of classical communication is needed. On the other hand, Corollary 8.2 yields a communication
complexity of log(1/J) +log(1 —¢€). In the case where both € and p are constants, these two results
match up to an additive constant. It is a rather interesting observation, besides the fact that it
implies the optimal of Corollary 8.2 and the tightness of Theorem 8.5. Notice that Theorem 8.5
is proven for protocols that only output a single qubit pair — a minimal possible yield, while
the construction from the random hash protocol used by Corollary 8.2 outputs (n — s) qubits
an asymptotically maximum possible yield.? Despite the two extreme cases on the yield of the

protocols, this two result match nicely.
Proof: (of Theorem 8.5) WLOG we assume the protocol only outputs one qubit pair, i.e.,
m = 1, by the monotonicity of fidelity. Consider a particular input state

I
PO = (1 — EI)\I/n + El . 2Tn (813)

It is a mixture of the perfect EPR pairs ®, (with probability 1 — ¢') and the completely mixed
state 75 (with probability €'). Notice that F(55z) = 5=. So if we set € = 2225—116, then we
have F(p) = 1 — e. We shall prove that no deterministic, s-bit protocol has fidelity more than
1 — 2 6tep over state po, which implies the theorem.

We fix a protocol P. WLOG, we assume it proceeds in rounds: in each round, one of the two
parties (Alice or Bob) applies a super-operator £ to his or her share of qubits, and then sends one
(classical) bit to the other party. The protocol consists of s rounds: one bit is sent in each round.
Finally, Alice outputs the special symbol, determining if the protocol succeeds or fails.

To analyze the behavior of the protocol P over the input py, we consider how P behaves over
state ®,, and state 22%, respectively. We use p (resp. q) to denote the probabilities that P succeeds

over state ®,, (resp. 22%) Notice p is in fact the ideal success probability of protocol P. Then it is

easy to see that
(1 =€)p-F(P(Pn)) +€'q- F(P(g5))
(1-€)p+eq

®Notice that because of the exponential trade-off, it is normally sufficient to have s = o(n), and in that case the
random hash protocol outputs almost all the input qubit pairs.

FE(P(po)) = (8.14)
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Notice that we always have F¢(P(®,,)) < 1. Since 22% is a disentangled state, 73(22%) is also

disentangled. Therefore we have FC(P(?L”)) < 1/2 by Lemma 2.1. We shall prove that

q 2p2/2s, (8.15)

which will imply that

(1 _ 6’) + 6/p/2s+1 B elp

(T—€)+ep/2e  21(1 = ;2 ep)

F(P(po)) < <1—ep/27t (8.16)

Now we prove that g > p?/2°. We analyze two cases separately: in case I, the state ®,, is the

input to the protocol; in case II, the state 2% is the input to the protocol. For each case, we keep

track of the local density matrices of Alice and Bob. In case I, we use T,}A and T,E’B to denote the

local density matrices of Alice and Bob after the k-th round; in case 11, we use TgI’A and T,%I’B,
respectively. For k = 0, we define the Tg’A, T&’A, TgI’A, and TgI’A to be the density matrices at the

moment that protocol starts.
We give more definitions: after the k-th round, there are 2* possibilities depending on the first

k bits communicated. For any binary string ¢+ € {0,1}*, we use otI’A (resp. otI’B)

to denote the
local density matrix of Alice (resp. Bob) after the k-th round in case I, conditioned on that the
first k bits communicated so far are ¢[0],¢[1], ..., {[k — 1]. We use p} to denote the probability that
this happens (that the first k bits are #[0],#[1], ..., [k — 1]). Obviously we have p! = p};g -I—p%;l for

any t € {0,1}*. Furthermore, we have the following equalities

Sopl =1 (8.17)

te{0,1}*
I La IA
Z Py - 0y = T (8.18)
te{0,1}*
1 IB LB
Y. o = (8.19)
te{0,1}*
I,A II,B 11 .
We define o, ", 0, ", and p;~ for case II, similarly.

We use € to denote the empty string. So we have p% = p? =1

One important observation is that when the protocol starts, the local density matrices for Alice
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and Bob are identical in both cases:

LA LB 11,4 ns I
o =0t =0y =0 = o (8.20)

When the protocol proceeds, the local density matrices in two cases will become different, since
the state ®,, is an entangled state, while 2% is not. However, they cannot differ “too far”, as we

shall prove in the following lemma:

Lemma 8.10 For allk =0,1,...,s —1 and all t € {0, 1}’“, we have p%-atI’A =< a}I’A and p% . atI’B =

1I,B
Ut .

Proof: By induction. The base case is obvious. Now the inductive case. Consider the situation
at the end of the k-th round. Suppose the first & bits sent are t[0],¢[1],...,t[k — 1]. WLOG we
assume that in the (k + 1)-th round, Alice applies a super-operator £ to her share of qubits, and
send one bit a to Bob.

First we consider the density matrix for Alice. Notice that in general, a is the result of the

measurement from £. Therefore, we can “split” £ into two positive super-operators £ and &1, such

that
LA P%U LA
Eoloy™) = 1 %10 (8.21)
by
LA P%l LA
(o) = ooy (8.22)
by
11,4 py{] 11,4
Eoloy™") = =1 %o (8.23)
by
11,4 pyl 11,4
Ei(oy) = p—ﬁ'%f (8.24)
t

Intuitively, & corresponds to the case that @ = 0 is sent, and £; corresponds to the case that a =1
is sent.

By inductive hypothesis, we have

IL4 (8.25)

p;-oy 2o
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Combining (8.25), (8.21) and (8.23) with Lemma 2.4 yields that

11
T LA LA 11,4 Pio 11,4 I1,A
Pro - Oo = 50( 0y") X &oloy ) = T %0 = Oko (8.26)
t

Combining (8.25), (8.22) and (8.24) with Lemma 2.4 yields that

11
I LA I IA 11,4 Pta 11,4 11,4
Py 01 = Eilpy o) 2 Ei(0y ") = 1 %1 = Oy (8.27)
t

Now we consider the local density matrix for Bob. In case I, the qubits between Alice and Bob
are entangled. Therefore, the bit Alice sends to Bob carries some information about his state. In
terms of the density matrix, Bob’s local density matrix will “split” from 0} to J}f and J}lB.
Notice that Bob doesn’t perform any operation to his qubits, and thus we have
o LB p%l LB
0 = —F 00 +—1 0 (8.28)

t p
In case II, the qubits between Alice and Bob are disentangled. Therefore, the bit sent by Alice
carries no information about Bob’s own state. Thus Bob’s local density matrix remains unchanged.

Thus we have

1I,B II,B 1I,B
oy =045 =044 (8.29)
By inductive hypothesis, we have
phooy? 2o (8.30)

Combining (8.28), (8.29), and (8.30), we have

I 1B I IB IL.B II,B

Pro 0o = Pi- 2oy =0y (8.31)
I 1B LB II B II,B
P10y = Pt o 2o =0y (8.32)
So the inductive case is proved. [ |
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Now we are ready to prove (8.15). After s bits are sent, Alice will decide whether to succeed
or fail. In case I, we use r; to denote the probability that Alice choose to succeed conditioned on
that the bits communicated are £[0], ¢[1], ..., t[s — 1]. Notice we have p! - ag’A = atH’A, and thus by

Lemma 8.10, we know that in case II, the success probability is at least p% T

Therefore, we have

p = > mop (8.33)
te{0,1}s

¢ > > rnepop (8.34)
te{o,1}*

which implies that

¢ > Y rt-(p})Q (8.35)

te{0,1}s
1 1\?2
> X | X ne (o) (8.36)
te{0,1}s te{0,1}s
2
1
te{0,1}s
2
p
= 5 (8.38)
This proves the theorem. [ |
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Appendix A

Private Communication with

Ambainis and Gottesman

I attach the results from Ambainis and Gottesman on entanglement distillation protocols that beat

quantum error correcting codes.

A.1 Quoted communication from Daniel Gottesman

The most interesting one is when you have 9 EPR pairs and
at most 2 errors. The smallest QECC to correct 2 errors

encodes 1 qubit is 11.

Using two-way communications, you can use the following
procedure: divide the 9 EPR pairs up into a group of 5 and

a group of 4. On the group of 5, measure the 4 generators
of 5-qubit code (which has distance 3, and can therefore
correct 1 general error, or detect 2 errors). On the group
of 4, measure the 2 generators of the [[4,2,2]] code (that
is, XX X X and Z Z Z Z, parity checks in the X and Z bases).

The 4-qubit code has distance 2, which means it cannot correct
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a general error, but it can detect any single error. We initially
use the information to detect errors on the two sets. We divide

the results up into 3 cases:

1) error detected on group of 5, no error on group of 4

In this case, there is at least one error in the group of 5, so
there could only have been at most one error in the group of 4,
which we would have detected. Therefore, there were no errors
in the group of 4, and we can use the 2 remaining pairs from

that group.

Result: 2 EPR pairs.

2) no error on group of 5 (there may or may not be an error

detected on the group of 4).

In this case, we know there cannot be any errors on the group

of 5, or we would have detected them. Therefore, we can use

the one remaining EPR pair from the group of 5 safely.

Result: 1 EPR pair.

3) error detected in both groups

In this case, we know there is exactly ome error in each

group. The group of 4 is hopeless -- we cannot correct

errors, but the group of 5 is also a code to correct one

general error, and we know there is only one error there.
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Therefore, we can correct that error, and extract a single

good EPR pair

Result: 1 EPR pair.

In all cases, we get at least 1 good EPR pair out.

A.2 Quoted communication from Andris Ambainis

here is a very simple particular case of what you wrote to me a while
ago. Take 4 EPR pairs (8 bits). Measure XOR of all odd bits, destroying

the 4th pair.

1) If it is 1, take the 2nd and the 3rd pairs, measure the
X0R of their odd bits, destroying the 3rd pair. If this XOR is O, we know
that the 2nd pair does not have an error. If it is 1, the 1st pair doesn’t

have an error.

2) If it is O, measure the XOR of the even bits of the 2nd and the 3rd

pair. The rest is similar to 1).
In contrast, the smallest quantum error correcting code for correcting one

error uses 5 qubits. So, we have another case where our protocols beat

QECCs for small number of qubits/errors.
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Appendix B

List of Symbols

B.1 Mathematical Notations

X, Y, Z : Pauli matrices
o+, &, U, U : Bell states
®,, : n EPR pairs

E(] ¢)) : the entanglement of the pure state | ¢)

E(p) : a superoperator over the mixed state p

Hny : a Hilbert space of dimension N.

S(p) : the von Neumann entropy of the mixed
state p

(n,k,d)-code : a classical error correcting code

[n,k,d]-code : a linear classical error correcting
code

[n,k,d]-code : a quantum error correcting code

B.2 Protocols

(3, n,m)-protocol : a classical correlation dis-

tillation protocol over alphabet ¥ with in-

puts from 3" x 3™ and outputs in X™ x 3™

(n,m)-protocol : a quantum entanglement dis-

tillation protocol with inputs from Hon ®

Hor and outputs inHom ® Hom

B.3 Noise Models

By, . : the classical bounded corruption model
BE, , : the bounded erasure model

Bg,r : the quantum bounded corruption model
M., the bounded measurement model

D, : the depolarization model

Enk ¢ the entanglement noise model

Fn.a : the fidelity noise model

Tn,m,a : the purity testing protocol
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Index

d-locally uniform protocol, see protocol, d-locally

uniform

e-close, 39

AND protocol, 77

auxiliary input, 97

base distribution, 62

Bell state, 32

binary erasure noise model, see noise model,
binary erasure

binary string, see string, binary

binary symmetric model, 62

binary vector, see vector, binary

bounded measurement model, see noise model,
bounded measurement

bra, 28

CDP, see correlation distillation protocol

classical bounded corruption model, see noise
model, classical bounded corruption

coin-flipping, 21

concatenation, 38

conditional fidelity, see fidelity, conditional

correlation, 39

of classical protocols, 43
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correlation corruption, 10
correlation distillation protocol, 15
correlation recovery, 10

corruption error state, 85

corruption indicator vector, 85

degree
of corruption indicator vector, 85
of measurement error indicator vector, 80
of measurement error state, 80
of Pauli vector, 52
of discrepancy of a bit string, 86
density matrix, 28
reduced, 29
depolarization model, see noise model, depo-
larization
diagonal subspace, 103
Dirac notation, 27
discrepancy
of bit string, 86
disentangled, 31
distillation entanglement, 17
distribution, 39
regular, 69

uniform, 39



distribution matrix, 68

dominate, 36

ECC, see error correcting code
EDP, see entanglement distillation protocol
entanglement, 29, 31
entanglement distillation protocol, 15
entanglement noise model, see noise model,
entanglement
entanglement purification protocol, 17
entropy
min, 93
von Neumann, 31
EPR pair, 12, 32
error correcting code, 13, 20
classical, 47
linear, 48
systematic, 48
quantum, 50
stabilizer, 53

extractor, 92

fidelity, 32
base, 33
conditional, 45
of a state, 33
of quantum protocols, 44

fidelity noise model, see noise model, fidelity

generator matrix, 48

Hamming distance, 38
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Hamming weight, 39

Hilbert space, 27

ideal success probability, 115

identical independent distortion, 14

IID, see identical independent distortion
information reconciliation, 22, 60

interactive Turing machine, 39

ket, 27

linear code, see error correcting code, classi-
cal, linear

list decoding, 48

local operation classical communication, 12,
16

locally uniform protocol, see protocol, locally
uniform

LOCC, see local operation classical communi-

cation

matrix
regular, 69
measurement
positive operator-valued, 30
measurement error state, 80
measurement indicator vector, see vector, mea-
surement indicator
measurement operator, 30
min entropy, 93

mixed state, 28



NICD, see non-interactive correlation distilla-
tion
NIED, see non-interactive entanglement dis-
tillation
noise model, 11, 42
binary erasure, 72
binary symmetric, 62
bounded measurement, 80
classical
adversarial, 42
probabilistic, 43
tensor product, 62
classical bounded corruption, 49
depolarization, 89
entanglement, 94
fidelity, 96
quantum
adversarial, 43
probabilistic, 43
quantum bounded corruption, 52
noise model family, 43
noisy channel, 11
non-interactive correlation distillation, 59
non-interactive entanglement distillation, 79
non-interactive random permutation protocol,

108

observable, 30

out product, 28

Pauli
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matrix, 30
operator, 30, 51
vector, 51
perfect classical protocol, see protocol, classi-
cal, perfect
perfect quantum protocol, see protocol, quan-
tum, perfect
projective measurement, 30
projector, 30
protocol
d-locally uniform, 67
absolute, 41
classical, 40
perfect, 44
conditional, 41, 111
ideal, 115
deterministic, 41
locally uniform, 63, 77
non-interactive, 40
one-way, 40
purity testing, 111
quantum, 40
perfect, 44
random permutation, 102
non-interactive, 108
randomized, 41
randomized public-coin, 41
recovering, 40

refreshing, 40



two-way, 40
with auxiliary input, 97
pure state, 27

purity testing protocol, 111

QECC, see quantum error correcting code
quantum bounded corruption model, see noise

model, quantum bounded corruption
quantum error correcting code, 13

qubit, 27

random beacon, 11, 61

random permutation protocol, 102
recovering protocol, see protocol, recovering
refreshing protocol, see protocol, refreshing
regular distribution, see distribution, regular

regular matrix, see matrix, regular

scaled eigenvalue gap, 69
separable, 31
stabilizer code, see error correcting code, quan-
tum, stabilizer

state

corruption error, 85

pure, 27

Werner, 89
statistical distance, 39
string

binary, 39
super-operator, 30

superposition, 27

systematic code, see error correcting code, clas-

sical, systematic

tensor product
of distributions, 62
of matrices, 62
of vectors, 61
tensor product noise model, see noise model,
classical, tensor product
trace out, 29

trace-preserving, 30

unitary
matrix, 29

operation, 29

vector
binary, 39
corruption indicator, 85

measurement indicator, 80

Werner state, 89

yield
of a classical correlation distillation pro-
tocol, 42
of a classical randomness extractor, 93
of a quantum entanglement distillation pro-

tocol, 42
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