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Abstract

We consider the problem of maintaining frequency counts for items occurring frequently in the union of multiple dis-
tributed data streams. Nee methods of combining approximate frequency counts from multiple nodes tend to result in
excessively large data structures that are costly to transfer among nodes. To minimize communication requirements,
the degree of precision maintained by each node while counting item frequencies must be managed carefully. We
introduce the concept ofrecision gradienfor managing precision when nodes are arranged in a hierarchical com-
munication structure. We then study the optimization problem of how to set the precision gradient so as to minimize
communication, and provide optimal solutions that minimize worst-case communication load over all possible inputs.
We then introduce a variant designed to perform well in practice, with input data that does not conform to worst-
case characteristics. We verify the effectiveness of our approach empirically using real-world data, and show that our
methods incur substantially less communication thdmenapproaches while providing the same error guarantees on
answers.

In addition, we extend techniques for maintaining frequency counts of high-frequency items in one or more streams by
making them time-sensitive. Time-sensitivity is achieved by associating weights with items that decay exponentially
with time. We analyze the error bounds and worst-case space bounds for the extended algorithms.
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1 Introduction

The problem of identifying frequently occurring items in continuous data streams has attracted significant attention
recently [4, 8,10, 13,17, 20]. Potential applications include identifying large network flows [10], answering iceberg
gueries [11], computing iceberg cubes [15] and finding frequent itemsets and association rules [1].

However, earlier work on identifying frequent items in data streams and estimating their occurrence frequencies
falls short of meeting the needs of the many real-world applications that exhibit one or both of the following two
properties:

1. Distributed streams. Streams originate from multiple distributed sources. The data needs to be aggregated to
arrive at the final result, as in the distributed streams model of [12]. This situation occurs, for example, if we wish to
detect frequent events in a sensor network environment.

2. Time sensitivity. Recent data is more important than older data. For example, in telecommunications, most
processing focuses on recent call records [7].

We briefly describe two real-world applications exhibiting the properties just mentioned:

Detecting DDoS Attacks. Early detection oDistributed Denial of Servic€DDoS) attacks is an important topic in
network security. While a DDoS attack typically targets a single “victim” node or organization, there is generally no
common path that all packets take. In fact, even packets sent to the same destination and originating from within the
same organization may follow different routes, due to so-called “hot potato” routing [3]. This property makes it very
difficult to detect distributed denial of service attacks effectively by only considering the traffic passing through any
single monitoring point, and motivates a distributed monitoring approach. Furthermore, techniques that weigh recent
data more than past data may help in early detection of attacks.

Usage Monitoring in Large-scale Distributed Systems.Web content providers using the services ofantent

Delivery Network(CDN) like Akamai [2] may wish to monitor recent access frequencies of content served (e.g.,
HTML pages/images), to keep tabs on current “hot spots.” The CDN may serve requests from any of a number of
cache nodes (Akamai currently has over 10,000 such nodes); typically requests are served by the cache node closest
to the end-user making the request in order to minimize latency. Hence, keeping tabs on overall access frequencies
requires distributed monitoring across many CDN cache nodes.

1.1 Problem Variants

Both applications outlined above require algorithms for identifying recent high-frequency items in the union of many
distributed streams, and estimating the corresponding occurrence frequencies. In general, we can classify applica-
tions of frequent item counting into four categories, in terms of whether they require time-sensitivity and distributed
monitoring capability, as shown in Table 1. We briefly describe each problem variant:

(1) Finding frequent items in a single stream: A single node sees an ordered stream of possibly repeating items.
The goal is to maintain frequency counts of items whose frequency currently exceeds a user-supplied fraction of the
size of the overall stream seen so far.

(2) Finding recently frequent items in a single stream:ln this variant recent occurrences of items in the stream are
considered more important than older occurrences of items. At any given time, a numeric weight is associated with
each item occurrence in the stream that is a function of the amount of time that has elapsed since the appearance of
the item in the stream. A commonly-used weighting schenexi®nential decaf6], in which weights are assigned
according to a negative-exponential function of elapsed time. The goal is to identify items whose cumulative weighted
frequency currently exceeds a user-supplied fraction of the total across all items, and provide an estimate of the
cumulative weighted frequencies of any such items.

(3) Finding frequent items in the union of distributed streams: In this variant there aren ordered streams
S1,59,...,5m, each produced at a different node in a distributed environment and consisting of a sequence of item
occurrences. The goal is the same as in Variant (1), except that item frequencies are computed over the union of
streamsSy, So, . . ., S, instead of over a single stream.



Table 1: Problem variants.
Single Stream | Distributed Streams

Time-insensitive (2) 3)

Time-sensitive 2 (4)

(4) Finding recently frequent items in the union of distributed streams: This variant represents the natural combi-
nation of Variants (2) and (3).

Of these four variants, only Variant (1) has been studied in prior work. Algorithms for time-insensitive frequency
counting over a single stream include those presented in [8,17,20]. While it is relatively straightforward to extend
these algorithms to handle Variant (2), the effect on the space bounds and error guarantees of the resulting algorithms
in some cases is honobvious. In this paper we provide rigorous analysis of these aspects.

Variants (3) and (4) present a larger challenge. As we will show, simple adaptations of existing frequency counting
algorithms to work in a distributed setting incur excessive communication. In this paper we present a new framework
for distributed frequency counting that minimizes communication requirements. Before outlining our approach we
first provide a formal problem statement that unifies the four variants listed above.

1.2 Unified Problem Statement

Our problem statement extends that of [20]. Thererare 1 ordered data streants, S, . .., .S,,. Each streany;
consists of a sequence of item occurrences with time-stafeps:t;i1), (0i2, ti2), €tc. Each item occurreneg; is
drawn from a fixed sel/ of items, i.e. Vi, j, 0;; € U. Arbitrary repetition of item occurrences in streams is allowed.
Each strean$; is monitored by a correspondimgonitor nodeM;, of which there aren. Monitored frequency counts
for high frequency items are to be supplied to a cemtrat nodeR, which may or may not be the same as one of the
monitor nodes.

Let S be the sequence preserving union of stredms., . . ., S,,,. Further, let(u) be the frequency of occurrence
of item « in S up to the current time, weighted by recency of occurrence in an exponentially decaying fashion.
Mathematically,

cw)= 3 ol

(0i,ti)€S,0i=u

wheret ., denotes the current time, ancandT are user-supplied parameters. The parameter(0, 1] controls the
aggressiveness of exponential weighting. As a special case, setting causes all item occurrences to be weighted
equally, regardless of age (as in Variants (1) and (3) of Section 1.1). The pardmetercontrols the frequency with
which answers are reported, and also the granularity of time-sensitivity. A time periotro€ units is referred to as
anepoch

The objective is to supply, at the end of every epoch (i.e., e¥etiyne units), an estimat&u) of ¢(u) for items
occurring inS whose true time-weighted frequencit:) exceeds aupport threshold. 7 is defined as the product
of a user-suppliedupport parametes € [0, 1], and the sum of the weighted item occurrences seen so far on all input
streams,N = X,cpc(u), i.e.,7 = s-N. The amount of allowable inaccuracy in the frequency estim&tesis
governed by a user-supplied parametelt is required that < ¢ < s (usually,e < s). Each time an answer is
produced, it must adhere to the following guarantees:

1. All items whose true time-weighted frequency exceeds are output.
2. No item whose true time-weighted frequency is less ttsan ¢)- N is output.

3. Each estimaté(u) supplied in the answer satisfigaax {0, c(u) — e- N} < é(u) < c(u).



A useful data structure for storing intermediate answers ig am)-synopsiof item frequencies over a stream or
union of several streams. AR, «)-synopsisS consists of a (possibly empty) set of time-weighted frequency estimates
each denoted:é(u), where eaclt(u) estimate satisfiesiax {0, c(u) — e-S:n} < é(u) < ¢(u). S:n denotes the total
time-weighted frequency of all items in the synopsis®, = ., ¢(u)). The salient property of af¥, a)-synopsis
is that items with weighted frequency belewS:n need not be stored, resulting in a reduced-size representation.

1.3 Overview of this Paper

Finding recently frequent items (Section 2): To begin, we show how to extend two recent frequency counting
algorithms that producg:, 1)-synopses to produde, «)-synopses, for any € (0, 1], to achieve Variant 2 of Table 1.

We analyze the correctness and space requirements of the resulting algorithms. In particular, we show that the worst-
case size of time-sensitive synopses is bounded by a time-independent constant.

Finding (recently) frequent items in distributed streams (Section 3):There are two obvious, simple strategies for
adapting single-stream frequency counting algorithms to a distributed setting to achieve Variants 3 and 4 of Table 1,
and both have serious drawbacks:

SS1: Periodically, at the end of every epoch, each monitor nbfjesends to the root nodR the exact frequency
counts of all items occurring i§; over the lasfl’ time units. NodeR then combines the counts received from
the monitor nodes with (possibly time-decayed) counts maintained over prior epochs, and outputs items whose
overall weighted counts exceed the support threstiold

SS2: Each monitor nodé/; maintains arie, 1)-synopsisS; over the recent portion of its local strean Intuitively,
the (e, 1)-synopsis is a reduced summary of item frequencies that does not include items whose frequency in
S; is small. Periodically, at the end of every epoch, eA¢hsends its local synopsiS; to nodeR. Upon
receiving all local synopses, nodecombines them into a single unifi€el, 1)-synopsis containing estimated
item frequencies for the union of the contents of all input streams in the most recent epoch. This synopsis is then
combined additively with arfe, «)-synopsis containing estimated weighted counts from previous epochs, after
multiplying those synopsis counts lay to generate a new, o)-synopsis valid for the current epoch. Lastly,
items whose estimated time-decayed counts exceed the support thréstadidr taking into account the error
tolerance) in this synopsis are outhut

Clearly, strategy SS1 is likely to incur excessive communication because frequency counts for all items, including
rare ones, must be transmitted over the network. Furthermore, the rootfhodest process a large number of
incoming counts. While strategy SS2 alleviates load on the root node to some extent, in the presence of a large number
of monitor nodes and rapid incoming streams, the root node may still represent a significant bottleneck. To further
reduce the load on the root node, nodes can be arranged in a hierarchical communication structure (see Figure 1),
in which synopses are combined additively at intermediate nodes as they make their way to the root. In this setting
SS2 compresses data (by dropping small counts) as much as possible at each leaf node without viotagimgrthe
bound. Consequently no further compression can be performed as synopses are combined on their way to the root or
at the root node itself, making it impossible to eliminate counts for items whose frequency exdesedi®n of one
or more individual streams but does not excedihction in the union of the streams whose synopses are combined
at a non-leaf node. Hence, if input streams have different distributions of item occurrences, counts for items of small
frequency may reach the root node unnecessarily under strategy SS2.

There are thus two main disadvantages of using SS2:

1. High communication load on root node
2. High space requirement dR.

Suppose that, instead of applying maximal synopsis compression at the leaf nodes, some compression capability is
reserved until synopses of multiple incoming streams are combined at non-leaf nodes. If that is done, more aggressive

INote that in both strategies time-sensitivity is only introduced at fodk is not possible to introduce time-sensitivity in data before it is sent
to R, since all item frequencies in the most recent epoch have weight 1 in our formulation.
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Figure 1: Hierarchical communication structure.

compression can be performed by non-leaf nodes by taking into account the distributions of item frequencies over a
larger set of input streams. As a result, the synopses reaching the root (and the synopsis maintained over previous
epochs at the root) will likely be significantly smaller than in SS2. On the other hand, the synopses passed from the
leaf nodes to their parents may be larger than in SS2, which is an undesirable side-effect.

Indeed, to avoid excessive communication load on any particular node or link, the amount of compression per-
formed by each node while creating or combining synopses must be managed carefully. In hierarchically-structured
monitoring environments we can configure the amount of compression performed, and consequently, the amount of
error introduced at each level so that synopses follpreaision gradienas they flow from leaves to the root. It turns
out that worst-case communication load on any link is minimized by using a gradual precision gradient, rather than
either deferring the introduction of error entirely until data reaches the root (as in SS1), or introducing the maximum
allowable error at the leaf nodes (as in SS2). Still, the best gradual precision gradient to use is not obvious.

In this paper we study the problem of how best to set the precision gradient formally. We first show how use of a
gradual precision gradient alleviates storage requirements at the roofindden, we derive optimal settings of the
precision gradient under two objectives: (a) minimize load on the root fivdad (b) minimize maximum load on
any single communication link under worst-case input behavior. We then introduce a variant that aims to achieve low
load on all links in practice, when input data may not exhibit worst-case characteristics, by exploiting a small sample
of the expected input data obtained in advance.

Remainder of paper: In Section 4 we confirm our analytical findings of Sections 2 and 3 through extensive experi-
mental evaluation on three real-world data sets. Our experiments demonstratéuwbahethods of finding frequent

items in distributed streams (SS1 and SS2) can incur high communication and storage costs compared with our meth-
ods. Related work is discussed in Section 5, and we summarize the paper in Section 6.

2 Finding Recently Frequent Iltems

Given a simple frequency counting algorithm that maintairi§,d)-synopsis, i.e., one with exact, time-insensitive
frequency counts for all items, it is straightforward to add time-sensitivity in the form of exponential weighting by
some desiredv € (0,1]. By multiplying each count in the synopsis byonce everyl" time units, we achieve a
(0, a)-synopsis. It is tempting to apply the same method to extend approximate frequency counting algorithms such
as [8, 17, 20] that maintaife, 1)-synopses to instead maintgin «)-synopses. However, in each instance care must
be taken to ensure that the error guarantees specified in Section 1.2 hold for the modified algorithms.

We study the effect of adding time-sensitivity to two recent approximate frequency counting algoritass:



counting[20] and the essentially identical algorithms of [8] and [17], which we refer tmaj@rityt counting The

two algorithms (lossy counting and majoritycounting) use slightly different, although not unrelated, techniques to

compute arfe, 1)-synopsis over a single stream. In lossy counting, all frequency counts in the synopsis are periodically

decremented by. The period of time between decrement operations is carefully chosen so that the resulting synopsis

is guaranteed to be af, 1)-synopsis. In contrast, in majoritycounting all frequency counts in the synopsis are

decremented by whenever the synopsis size (measured in terms of the number of frequency counts) exceeds a

predetermined threshold that depends oit has been shown analytically that majoritgounting produces &, 1)-

synopsis [8,17]. In Appendix A.1 we prove that by adding exponentially decaying weighting to nTajodtinting

we arrive at an algorithm that maintains @nc«)-synopsis conforming to the error guarantees specified in Section 1.2.
Turning to lossy counting, it is relatively easy to show that by adding exponential weighting to lossy counting (and

taking care to “catch up” by decrementing frequency estimates at epoch boundaries) we achieve a correct algorithm

for maintaining ar(e, «)-synopsis; we omit the simple proof (The modified algorithm is provided in Appendix A.2.).

However, analysis of the space bound of the resulting synopsis is nontrivial. In Appendix A.2 we show that a time-

independent space bound proportional to the logarithm of the maximum stream rate holds. Hence, the maximum size

of an exponentially decayed lossy counting synopsis does not increase over time as long as the stream rate remains

steady. In contrast, in the original lossy counting approach (i.e., uskadl), the synopsis can grow logarithmically

with time.

3 Finding Frequent Items in Distributed Streams

In this section we show how to maintain approximate time-sensitive frequency counts for frequent items in a distributed
setting, and study how to set the precision gradient so as to minimize communication. Recall that in our seenario,
monitor noded\f,, Mo, ..., M,, relay data periodically, once evefytime units, to a central root node. Data may
be relayed through a hierarchy of nodes interposed between the monitor nodes and the central root node, as illustrated
in Figure 1. Let! > 2 denote the number of levels in the hierarchy. We number the levels from root to leaf, with
the root nodeR of the communication hierarchy representing le¥geits children representing levé| etc., and the
monitor nodesM, ..., M,, representing leve{l — 1). Letd > 2 denote the fanout of all non-leaf nodes in the
hierarchy, i.e., the number of child nodes relaying data to each internaPnode.

In this hierarchical communication structure, we associate with each non-rootlleveli < (I — 1) of the
communication hierarchy an error tolerange For correctness it must be ensured that ¢; > ... > ¢_1 > 0,
which gives rise to grecision gradientilong the communication hierarchyAny values ofe, ..., _; satisfying
the above constraints can be used, and the guarantees of Section 1.2 will hold. The manner in which the precision
gradient (i.e.g1, ..., €1 values) is set determines the size of the synopsis that must be stored persisténths at
well as the amount of communication that must be performed during frequency counting. For now, let us assume that
some precision gradient has been decided upon. We return to the issue of how best to set the precision gradient in
Section 3.1.

Given a precision gradient, our procedure for computing time-sensitive frequency counts for items occurring fre-
quently inS = S; U S, U...U S, is as follows. Recall that time is divided into equal epochs of lefigtiburing
each epoch, each monitor nodlg invokes a single-stream approximate frequency counting algorithm [8,17,20] using
error parametet;_; to generate afx;_, 1)-synopsis for the portion of streaff} seen so far during the current epoch.
Each monitor node then sends(its_1, 1)-synopsis to its parent in the communication hierarchy, which combines the
d (e,_1,1)-synopses it receives from itschildren into a singlde;_», 1)-synopsis using Algorithm“. The same
process is repeated until each ®6 children combines thé (e, 1)-synopses they receive into &y, 1)-synopsis
which is then sent t&.

The root nodeR maintains at all times a single, «)-synopsisS 4, from which the answer is derived. When, at

2For simplicity we assume all internal nodes of the communication hierarchy have the same fanout.

3For simplicity we assume that all nodes at the same level in the hierarchy use the same error tolerance.

4Algorithm 1 is based on lossy counting [20]. Alternatively, an algorithm based on majoeiyinting [8, 17], in whicke is substituted by
(ei — €;41), can be used for the same purpose. It can easily be shown that the corresponding algorithm based oh owjatihg never results
in smaller synopses than Algorithm 1.



the end of each epoclR receivesd (e, 1)-synopses from its childrer? updatesS,4 using Algorithm 2. Then, R
generates the new answer to be output for the current epoch by finding itéfnswhose approximate count ifi4
exceedgs —¢)-Sa:n.

Algorithm 1: Combine synopses from children (executed by nodes other than leaves and root)

Inputs: d(€;1,1)-synopses, S, - -+, Sy
Output: single(e;, 1)-synopsisS

d
1. SetS:n:= Y S;:n

j=1
d d
2. For eachu € _Ulsj, setS:é(u) = ) S;:é(u)
J= j=1
3. Foreachu € S, setS:é(u) == S:é(u) — (6; — €i41)-Sn

Algorithm 2: Update the answer synopsis (executed at the root nodRg)

Input: d (€1, 1)-synopsesSy, ..., Sq, Sa
Output: new answefe, a)-SynopsisS 4

1. Foreachu € S4, setSa:é(u) := a-Sa:é(u)
2. SetSq:n:=a-Sx:n

3. For eachu € fjlsj, setSa:é(u) == Sa:é(u) + X9, S;:¢(u)
=

4, SetSa:n:=8Sx:n+ E?zlsj:n

5. Foreachu € S4, setS4:¢(u) := Sa:é(u) — (e — 61)'2?:18]‘571

3.1 Setting the Precision Gradient

Our approach is to first sef based on space considerations at nBd@ising worst-case analysis), and then set the
remaining error tolerance values, . . ., ¢;_1 SO as to minimize communication.

The value ofe; determines the maximum size of the synopSisthat must be stored by node at all times.
Assuming a gradual precision gradient is used suchethat ¢, analysis of the maximum size 6%, is similar to the
analysis of [20] and our analysis in [19] of time-sensitive lossy counting over a single-stream. If no time-sensitivity is

employed & = 1), the size ofS, is at mostM counts (formula adapted from [20]); far < 1, the size
3+In (2k8+k))

is at most:te= 61)(6 - counts, where? = ﬂog (1 + ﬂ + 1 andk denotes the maximum number of
item occurrences on any input stream during any single epoch Usirge, the synopsissS, does not grow with

5Algorithm 2 is based on lossy counting [20]. Alternatively, an algorithm based on majocibyinting [8, 17], in whicke is substituted by
(e—e€1), can be used for the same purpose. The space used by such an algorithm id Always; ). However, as pointed out in [20], for common
input streams (in particular, when input streams are Zipfian), the space requirement for an algorithm based on lossy-counting is significantly smaller
thanl/(e — €1).
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Table 2: Communication loads in example scenario.

Load on Maximum load on any link Maximum load
€2 root nodeR excluding links to R on any link
0 2 27 27
0.03 2 14 14
0.05 54 14 27

time after reaching a steady-state size,as long as stream rates remain steady. In contrast=whéas in strategy
SS2), the space requirement is much greater as we demonstrate empirically in Section 4.3. Our approadh is to set
such that the worst-case size®f (under the maximum possible stream ria}és below any space constraint/t

Given a value fokq, the remaining error tolerance valugs. . . , ¢;_; making up the precision gradient determine
the communication load incurred. We illustrate the effect of the precision gradient on communication using the
following rather contrived but simple example that highlights the effect clearly; our experimental results presented
later in Section 4 are conducted over real-world data.

3.1.1 Motivating Example

Figure 2 shows the communication topology we use for our example. Suppose the overall user-specified error tolerance
e = 0.05, and for simplicity assume; ~ ¢ = 0.05. Suppose that during one epoth0 items occur on each of

51,52, 53 andSy, drawn from a universe of 27 distinct items. For ease of comprehension, we partition the 27 distinct
items into three categories: A, B, and C. Category A contains one item and categories B and C each contain 13. The

Table 3: Link loads in example scenario.

M, — Iy and M3 — I My — Iy and My — I I, — Randl; — R
€2 category | frequency || category| frequency || category | frequency
estimate estimate estimate
0 A 9 A 9 A 8
B 6 B 1
C 1 C 6
0.03 A 6 A 6 A 8
B 3 C 3
0.05 A 4 A 4 A 8
B 1 C 1 B 1
C 1




frequency of occurrence in each input stream of items in each category is given in the shaded region of Table 3. The
single item in category A occurs nine times in each9fSs, S3 andSy. Each item in category B occurs six times
each inS; andS;3 but only once each i8; andS,. The opposite is true for items in category C: each occurs once in
each ofS; andS; but six times in each o, and.S;.

Table 2 summarizes the effects of varyiag which determines the amount of error introduced at level 2 (nodes
My, — My), assuming lossy counting with per-epoch batch processing is used to produce the initial synopses at the
leaf nodes. Three measures of communication load are reported: (1) load on the rodt,n@jenaximum load
on any link excluding links taR, and (3) maximum load on any link. In all cases, communication load is measured
in terms of the number of frequency counts transmitted during the epoch. Settiad).05 corresponds to simple
strategy SS2 outlined in Section 1.3. (We do not report measurements for SS1, inewhich ande; = 0, since
communication load is higher than under any of our three example strategies under all three metrics.)

To understand how these numbers come about, consider Table 3, which shows, for each settisgoofs the
frequency estimate for items of each category sent along each link. In the case ineyvkidh the estimated counts
sent from leaf noded/; — M, to nodesl; andI; (shown with shaded background) are exact. All other values in
Table 3 are underestimates. We focus on the case in which 0.03 to illustrate how these underestimates are
computed. At each leaf node, when= 0.03 application of the lossy counting algorithm leads to undercounting of
each item’s frequency ba;-100 = 0.03-100 = 3. Hence, estimated counts transmitted in synopses from the leaf nodes
M, — M, to nodesl; andI, are less than their actual counts &5ysome counts fall below zero and are eliminated.
Once these synopses are received at nédasd,, Algorithm 1 is invoked, in which synopsis counts received from
leaf nodes are first combined additively, and then decrementée, by ¢;)-200 = 0.02-200 = 4. For the single
item in Category A, leaf nodek/; and M, each supply a count @fto nodel;, for a combined count af2, which is
then decremented byfor a final estimated count & to be sent to nod&. Items in Categories B and C each have
combined counts df at I;, which fall below zero when decremented4gnd thus are not transmitted i

From Table 2 we observe a tradeoff between communication load on the rootfhade load on links not
connected taR. Furthermore, in this particular case (although not always true in general), of our three example
strategies, the strategy of using a gradual precision gradignt (0.03) is best with respect to all three metrics. To
see why, consider that if error tolerances are made large for levels of the communication hierarchy close to the leaves
(in the most extreme case, by setting; = ¢, as in SS2), some locally-infrequent items are eliminated early, thereby
reducing communication near the leaves. However, an undesirable side-effect arises in the presence of items just
frequent enough at one or more leaf nodes to survive elimination locally, but not frequent enough overall to exceed
the error threshold (as with items in categories B and C in our example). Counts for such items may avoid being
eliminated until very late (or, worse, may never be eliminated), thus resulting in increased communication near the
root. Hence, there is a tradeoff between high communication among non-root nodes and heavy load on the root node
R.

The best way to set the precision gradient depends on the application scenario. For some applications the most
important criterion may be to minimize load on the root nddievhere the answers are generated, which may need
to devote the majority of its resources to other critical tasks for the application, even if that means increased load on
the nodes responsible for monitoring streams and merging synopses. For other applications, it is most important to
minimize the maximum load on any link to ensure that large volumes of input data can be handled without overloading
network resources.

Next, we study the optimization problem of how best to set the precision gradient to achieve one of two objectives:
(1) minimize communication load on the root nole or (2) minimize worst-case communication load on the most
heavily-loaded link in the hierarchy. Communication load is measured in terms of the number of frequency counts
transmitted during one epoch. We study each optimization objective in turn in Sections 3.1.2 and 3.1.3, and provide
optimal settings of the error tolerances. . ., ;1 making up the precision gradient. Then, since real-world data is
unlikely to exhibit worst-case behavior, in Section 3.1.4 we propose a variant that seeks to achieve low load on the
most heavily-loaded link, under non-worst-case inputs for which estimated data distributions are available.

3.1.2 Minimizing Total Load on the Root Node

Settinge; = 0 for all 2 < ¢ < [ — 1, whereby all decrementing and elimination of synopsis counts is performed
by children of nodeR, minimizes communication load on the root noBeunder any input streams. We term this



precision gradient setting MinRootLoad.

Lemma 1 Given a value foey, for any input streams no valuesaf, . . ., ¢;_; satisfyinge; > ex > ... > ¢;_; result
in lower total communication load on nodethan the valueg, = e3 = ... = ¢_1 = 0.

Proof: Consider nodeX, an arbitrary child of the root nodB. Let Sx denote the union of all streams arriving at
the monitor nodes belonging to the subtree rooted aturing one epoch. Algorithm 1 ensures that, for any setting
of e2,..., €1, counts for all items with frequencyc(v) > €; -|Sx | are sent over the link fronX to R (here,|Sx|
denotes the number of item occurrences$’jp). Usinges = €3 = ... = ¢,_1 = 0, it is easy to see that an iteawill

be sent over the link fronX to R only if c(u) > €;-|Sx|. Therefore, this setting @k, . . ., ;1 results in the smallest
possible number of counts sent over the link fréfrto R. Since this property holds for any child of R, strategy
MinRootLoad minimizes the total communication load®nfor any input streams. ]

3.1.3 Minimizing Worst-Case Maximum Load on Any Link

In this section we show how to set, ..., ¢_1 to minimize the maximum load on any communication link, in the
worst case over all possible input streams. Our analysis assumes lossy counting is used to generate the local synopsis
at each monitor node. We assume the buffer each monitor node uses for lossy counting is large enough to store
frequency counts of all items arriving on the input stream during any one epoch. As we later confirm in Section 4, this
assumption poses no problem in practice, particularly if the epoch duration is small.

For our worst-case analysis, we extend the set of possible inputs in two minor ways:

1. The occurrence frequency of an item arriving on an input stream can be a positive real number.

2. Associated with each itemis a weightw,, € [0, 1]. In an epoch, at most one item occurrence per input stream
can be an occurrence of an item of weight less than 1. The cost of transmitting the count ofatdmweight
Wy, IS Wy IN @ SynopsisS:n = > w, - c(u).

As will become clear later, both of these enhancements allow load on a link to be expressed as a continuous function,
which in turn simplifies our worst-case analysis. Neither enhancement alters the worst-case input significantly. First,
during an epoch, at most one item occurrence per input stream can have non-integral weight. Second, any input with
real-valued item frequencies can be transformed into an input with nearly integral frequencies that yields identical
results by multiplying each frequency by a large number, and dividing all answers produced by the same number.

For notational ease, we transform the problem of setting. ., ¢;_; to that of settingAo, ..., A;_1, where for
all2 <i<I1—-2A; =¢ — €41 andA;_; = ¢_1. Itisrequired thath; > 0 forall 2 < ¢ <[ -1, and that
Eﬁ;éAi < €1. A; denotes th@recision margirat leveli, i.e., the difference between the error tolerances at lexed
leveli + 1.

Let the vectorA = (Ay, As, ..., A;_;). Let I denote the contents of all input streas. . ., S,,, during a single
epoch. LetZ denote the set of all possible instanced of

Given an input/, a communication hierarchy (defined by degreé and number of level§, and a setting of the
precision gradienf\, letw represent the maximum load on any link in the communication hierarchy:

w(l,T,A) = keﬁ;}g};m{load(k)}

Worst-case loadll” is defined as: - B
W(T,A) = r}la%({w(l, T,A)}
S

Given a communication hierarcty, the objective is to seh such that the worst-case lo&d(7, A) is minimized.
We denote such a value of by A, defined as:

Ay = argmin{W(7T,A)}
A



We first show that it is sufficient to consider a specific subset of all instances of the general problem for worst-case
analysis. Then we find precision gradient valdesalues that cause the worst-case load under any of these instances
to be minimal.

There exists a subs&t,. of the set of all input instances such that for all instances € 7 — 7Z,,.., there exists
an instancd’ € 7. such that for any7, A, w(I’,7,A) > w(I,T,A). HenceZ,. denotes the set aforst-case
inputs Instancel is a member of,,.. if and only if it satisfies each of the following three properties:

e P1: For any two input stream$; and.S;, there is no item occurrence common to bstrand.sS;.
e P2 For any input streany;, all items occurring inS; occur with equal frequency.

e P3: For any two input stream$; andS;, both the number of item occurrences, and the number of distinct items,
in S; andS; are equal.

Lemma 2 For fixed7 and A, given any input instancé, it is possible to find an input instandé € Z,,. such that
w(I',T,A) >w(I,T,A).

Our proof of Lemma 2 is rather involved, and is provided in Appendix B.
From Lemma 2 we know it iisufficient to consider theBgt for worst-case communication load. Hence, we can
rewrite our expression fd (7, A) as:

W(T,A) = I%%fc{w(l’ T,A)}
Property P3 ofZ,,. implies that the total number of item occurrences at any leaf node is the same deabte this
number (S;] = nforall 1 < i < m). Lette(j) denote the total number of item occurrences arriving on streams
monitored by at the leaf nodes of a subtree rooted at a node ajjldvés easy to see that(;j) = d*~'~7) . n, where
l is the number of levels in the communication hierarchy dnslthe fanout of all non-leaf nhodes. The next lemma
shows that worst-case inputs induce a high degree of symmetry on the resulting synopses.

Lemma 3 For any input instancd € Z,,., the following two properties hold for th& (e;, 1)-synopses relayed by
thed’ levels nodes to their parents:

e No item is present in more than one synopsis.

e The estimated frequency counts corresponding to any two items, even if present in two different synopses, have
the same value.

Proof: We prove Lemma 3 by induction gn

Base Casqj = [ — 1): First, any input instance from the sgf. satisfies properties P1 and P3. Furthermore,
recall that we assume each leaf node buffers stream contents for an entire epoch before reducing counts using the lossy
counting algorithm. Hence, each leaf node reduces the frequency estimate corresponding to each item by the same
amount:te(l — 1) - A;_;. Thus, it is easy to see that Lemma 3 holdsjfet (I — 1).

Induction Step: Assume the lemma holds for levgl At level j — 1, the frequency estimate for each item is
reduced by the same amoutt(j — 1) - A,_4, in Step (3) of Algorithm 1 (for convenience, we uAg to denote
€1 — Zi;; A;). Therefore, Lemma 3 holds for levgl 1. O

Due to the high degree of symmetry formalized in Lemma 3, the count for each item is eliminated (due to being
decremented and falling below zero) at the same level of the communication hierarchy. Let us call this lieak|
counts are dropped at the leaf level, thea- | — 1. If all counts are retained through the entire process and are sent
to the root nodeR (level 0), thena = 0. Otherwise, all counts are dropped at some intermediate levet <[ — 2.

The most heavily loaded link(s) are the ones leading to lev@b see why, consider that no data is transmitted on
subsequent links and previous links have lower load since data is spread more thinly (in any communication hierarchy
T, the number of links between levels decreases monotonically as data moves from leaves to the root).

When synopses are combined at nodes of leusling Algorithm 1, the frequency count estimate of each item is
decremented by the quantity(i) - A; (letA; = €1 — Eﬁ;éAi). Hence, the true frequency count of any item occurring
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on some input stream must be= Eé;iﬂ(tc(j) -A;) + 6, whered is a small quantity. The number of items present

in each input stream is thy’. Since synopses faf' ~'~* input streams are transmitted through a node at leyel
the load on the most heavily loaded link(s)li§z) = d'~'~* - Z. Clearly, the maximum value df(x) is achieved
whend — 0. The expression foL(x) can be simplified to:

1

LB, )

L(z)

Now, our expression for the worst-case load on any link can be reduced to:

W(T,A) = maxli2{L(x)}

z=0,1,...,
We desire to minimizéV (7, A) subject to the constraints,, ..., A; 1 > 0 andEé;gAj < ¢;. Itis easy to show
that this minimum is achieved whdi(0) = L(1) = --- = L(l — 2).
Solving forA,, ..., A;_1, we obtain:A; = ¢ - Mfl%ldﬁ, 2<i<l—2andA;_;=¢ - m. Translating

to error tolerances, we set = ¢; - %ﬁ;{“ forall 2 < i <[ — 1. This setting ok, ..., ¢_1 minimizes the

worst-case communication load on any lifkWe term this strategy MinMaxLoaW/C.

3.1.4 Good Precision Gradients for Non-Worst-Case Inputs

Real data is unlikely to exhibit worst-case characteristics. Consequently, strategies that are optimal in the worst case
may not always perform well in practice. In terms of minimizing the maximum communication load on any link, the
worst-case inputs are ones in which the set of items occurring on each input stream are disjoint. When this situation
arises, a gradual precision gradient is best to use (as shown in Section 3.1.3). Using a gradual precision gradient, some
of the pruning of frequency counts is delayed until a better estimate of the overall distribution is available closer to
the root, thereby enabling more effective pruning. In the opposite extreme, when all input streams contain identical
distributions of item occurrences, there is no benefit to delaying pruning, and performing maximal pruning at the leaf
nodes (as in strategy SS2) is most effective at minimizing communication. In fact, it is easy to show that SS2 is the
optimal strategy for minimizing the maximum load on any link when all input streams are comprised of identical
distributions; we omit a formal proof. (Note, however, that SS2 still incurs a high space requirement on the root node
R since it setg; =¢.)

We posit that most real-world data falls somewhere between these two extremes. To determine where exactly a data
set lies with regard to the two extremes, we estimate the commonality between input sfieamsS,,, by inspecting
an epoch worth of data from each stream. We compuateranonality parametey € [0, 1] asy = %'2221 % where
G; andL; are defined over streas) as follows. The quantityz; is defined as the number of distinct items occurring
in S; that occur at least: | S;| times inS; and also at least | S| times inS = S; U S, U --- U S, where|S| denotes
the number of item occurrences $hduring the epoch of measurement. The quantitys defined as the number of
distinct items occurring irb; that occur at least- |.S;| times inS;. Hence, commonality parametemeasures the
fraction of items frequent enough in one input stream to be included in a leaf-level synopsis by siié?eipat are
also at least as frequent globally (in the union of all input streams).

A natural hybrid strategy is to use a linear combination of MinMaxL¥&@ and SS2, weighted by. The strategy

is as follows: se¢; = (1 —7)-(61 : %) +v-(e) for2 < i < (1—2),ande_; = (1—7)~(61~m> +
~-(€). We term this hybrid strategy MinMaxLoadWC (for non-worst-case). Commonality parametet 1 implies

that locally frequent items are also globally frequent, and SS2 (modified te, use) is a good choice. Conversely,
~ = 0 indicates that MinMaxLoadVC is a good choice. Fdr < v < 1, a weighted mixture of the two strategies is

best.

SRecall that we allow the frequency of an item to be a real number.

"More precisely, each stream contal_ngj items of weightl each and one item of weight & — L%J. Note that each input stream contains
at most one item with weight less than 1, as stipulated earlier.

8Lastly, we note that MinMaxLoadlVC remains the optimal precision gradient setting for minimizing the worst-case communication load on
any link even if different nodes on the same level can have differealues. We omit a formal proof.
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Table 4: Summary of precision gradient settings studied.

Strategy | Description | Section Introduced

Simple Strategy | (SS1) Transmits raw data to root node 1.3

Simple Strategy (SS2) | Reduces data maximally at leaf nodes 1.3

MinRootLoad Minimizes total load on root in all cases 3.1.2

MinMaxLoad WC Minimizes worst-case maximum load on any link3.1.3

MinMaxLoad NWC Variant for achieving low load on most 3.14
heavily-loaded link, under non-worst-case inputs

—Ss1 -#-SS2 MinRootLoad
—A&MinMaxLoad_WC -@-MinMaxLoad_NWC
input leaf Tree level (i) root
4 3

2 1 0

o

o
o
=]
S
)

Error tolerance §;
o o
o o
o o
o o
(3] B

0.0008 -

0.001

Figure 3: Precision gradients € = 0.001; we assumey = 0.5 for MinMaxLoad _-NWC).

3.2 Summary

We now summarize the methods we introduced in Section 3.1 for setting the precision gradient, which consists of a set
of error tolerance values> ¢; > ...¢_1 > 0 associated with each level in the communication hierarchy. First, in all
cases; should be set according to any space limitations at the root Rogéhich must persistently store a synopsis

of recent item frequencies. The remaining error toleramges . , ;1 may then be set so as to minimize the overall

load on the root node or, alternatively, to minimize load on the most heavily-loaded communication link.

To minimize overall load on the root node, we introduced strategy MinRootLoad in Section 3.1.2, which delays all
decrementing and elimination of frequency counts until immediately before data reaches the root node, in order to min-
imize the number of counts reaching the root. We also proposed two strategies aimed at minimizing communication
load on the most heavily-loaded link: MinMaxLoAdIC (Section 3.1.3) and MinMaxLoadWC (Section 3.1.4). The
former is guaranteed to minimize worst-case communication load on any link, whereas the latter aims to achieve low
load in the presence of data that does not exhibit worst-case characteristics, and is therefore parameterized by certain
high-level characteristics of the expected input data. Our strategies for setting the precision gradient are summarized
in Table 4, and sample precision gradients are illustrated in Figure 3.

4 Experimental Evaluation

In this section we evaluate the performance of our newly-proposed strategies for setting the precision gradient, using
the two nédve strategies suggested in Section 1 as baselines. We begin in Section 4.1 by describing the real-world
data and simulated distributed monitoring environment we used. Then, in Section 4.2, we analyze the data using our
model of Section 3.1.4 to derive appropriate parameters for our MinMaxMNW@ strategy that is geared toward
performing in the presence of non-worst-case data. We report our measurements of space utilization/déimnode
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Table 5: Configurations of web application benchmarks.

Benchmark| DB size Details
AUCTION 489 MB 100,000 users
33,667 items

BBOARD 429 MB 500,000 users
213,292 comments

Section 4.3, and provide measurements of communication load in Section 4.4.

4.1 Data Sets

As described in Section 1, our motivating applications include detecting DDoS attacks and monitoring “hot spots” in
large-scale distributed systems. For the first type of application, we used traffic logs from Internet2 [16], and sought to
identify hosts receiving large numbers of packets recently. For the second type, we sought to identify frequently-issued
SQL queries in two dynamic Web application benchmarks configured to execute in a distributed fashion.

The INTERNET2 [16] traffic traces were obtained by collecting anonymized netflow data from nine core routers of
the Abilene network. Data were collected for one full day of router operation and were broken into 288 five-minute
epochs. To simulate a larger number of nodes, we divided the data from each router in a random fashion. We simulated
an environment with 216 network nodes, which also serve as monitor nodes.

For the web applications, we used Java Servlet versions of two publicly available dynamic Web application bench-
marks: RUBIS [23] and RUBBO0S [22]. RUBIS is modeled after eBay [9], an online auction site, and RUBBOS is
modeled after slashdot [21], an online bulletin-board, so we refer thexo@sioN andBBOARD, respectively. We
used the suggested configuration parameters for each application (given in Table 5), and ran each benchmark for 40
hours on a single node.We then partitioned the database requests into 216 groups in a round-robin fashion, honoring
user session boundaries. We simulated a distributed execution of each benchmark with 216 nodes each executing one
group of database requests and also serving as a monitor node.

For all data sets, we simulated an environment With monitoring nodes+ = 216) and a communication
hierarchy of fanout sixd = 6). Consequently, our simulated communication hierarchy consisted of four levels
including the root nodel (= 4). We sets = 0.01, ¢ = 0.1 - s, ande; = 0.9 - e. Our simulated monitor nodes used
lossy counting [20] in batch mode, whereby frequency estimates were reduced only at the end of each epoch (in all
cases, less than 64KB of buffer space was used), to create synopses over local streams. The epoch duration T was set
to 5 minutes for theNTERNET2 data set and 15 minutes for the other two data sets.

4.2 Data Characteristics

Using samples of each of our three data sets, we estimated the commonality parafoeteach data set. Recall
that we usey to parameterize our strategy MinMaxLo&WC presented in Section 3.1.4. We obtainedalues of
0.675 0.839 and 0.571 for th@TERNET2, AUCTION andBBOARD data sets respectively. Hence, thecTION data
set exhibited the most commonality among all three data sets. Results presented in Section 4.4 showrtoat
indeed has the most commonality.

4.3 Space Requirement on Root Node

Figure 4 plots space utilization at the root nd@as a function of time (in units of epochs), for different values of the
decay parameter, using two different strategies for the precision gradient. The plots shown are foutE@NET2

data set. The y-axis of each graph plots the current number of counts stored(indheasynopsisS,4 maintained

by the root nodeR. Figure 4a plots synopsis size under our MinMaxLOEE strategy under three different values

of a: 0.6, 0.9 and 1. As predicted by our analysis of Appendix A.1, whex 1 the size ofS, remains roughly
constant after reaching steady-state, whereas whenl synopsis size increases logarithmically with time (similar
results were obtained for the non-distributed single-stream case). In contrast, when SS2 is used to set the precision
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Figure 4: Space needed at nod& to store answer synopsisS 4.

gradient (Figure 4b), the space requirement is almost an order of magnitude greater. This difference in synopsis size
occurs because in SS2 frequency counts are only pruned from synopses at leaf nodes, so counts for all items that are
locally frequent in one or more local streams reach the root node. No pruning power is reserved for the root node,
and therefore no count ifi4 is ever discarded (irrespective of thevalue). This result underscores the importance of
settinge; < e in order to limit the size 06 4, as discussed in Section 3.1.

4.4 Communication Load

Figure 5 shows our communication measurements under each of our two metrics, for each of our three data sets, under
each of the five strategies for setting the precision gradient listed in Table 4. First of all, as expected, the overhead of
SS1 is excessive under both metrics. Second, by inspecting Figure 5a we see that strategy MinRootLoad does indeed
incur the least load on the root nodiein all cases, as predicted by our analysis of Section 3.1.2. Under this metric,
MinRootLoad outperforms both simple strategies SS1 and SS2 by a factor of five or more in all cases measured.
However, MinRootLoad performs poorly in terms of maximum load on any link, as shown in Figure 5b because no
early elimination of counts for infrequent items is performed and, consequently, synopses exchanged near the leaf
nodes tend to be quite large. As expected, MinMaxLbB#IC performs best under that metric on all data sets. For

the AUCTION data set, even though SS2 outperforms MinMaxLWé@ (to be expected because of the higialue),

our hybrid strategy MinMaxLoadNWC is superior to SS2 by over a factor of two. For thd ERNET2 andBBOARD

data sets, the improvement over SS2 is more than a factor of three.

5 Related Work

Most prior work on identifying frequent items in streams, e.g., [8,17, 20], only considers the single-stream case, and
does not incorporate time-sensitivity. Recently, Arasu et al. [4] proposed a technique for finding frequent items in a
sliding window over a single stream, which is a method of achieving time-sensitivity. Other recent work by Golab et
al. [14] concentrates on specialized networking applications and proposes technigues for maintaining exact frequency
counts over sliding windows, again over a single stream. In this paper we explore an alternative to sliding windows
for achieving time-sensitivity, exponential weighting, and our primary focus is on distributed streams.

While we are not aware of any work on maintaining frequency counts for frequent items in a distributed stream
setting, work by Babcock et al. [5] does address a related problem. In [5] the problem is to monitor continuously
changing numerical values, which could represent frequency counts, in a distributed setting. The objective is to
maintain a list of the tof aggregated values, where each aggregated value represents the sum of a set of individual
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Figure 5: Communication measurements (“k” denotes thousands).

values, each of which is stored on a different node. The work of [5] assumes a single-level communication topology
and does not consider how to manage synopsis precision in hierarchical communication structures using in-network
aggregation, which is the main focus of this paper.

6 Summary

In this paper we studied ways to extend algorithms for finding frequent items in a single data stream to incorporate
time-sensitivity and work in a distributed setting. We began by analyzing the effect of applying exponentially decaying
weighting to achieve time-sensitivity, and showed that the maximum space requirement becomes constant with respect
to time.

We then turned to the problem of finding frequent items in the union of multiple distributed streams. The central
issue is how best to manage the degree of approximation performed as partial synopses from multiple nodes are
combined. We characterized this process for hierarchical communication topologies in terms of a precision gradient
followed by synopses as they are passed from leaves to the root and combined incrementally. We studied the problem of
finding the optimal precision gradient under two alternative and incompatible optimization objectives: (1) minimizing
load on the central node to which answers are delivered, and (2) minimizing worst-case load on any communication
link. We then introduced a heuristic designed to perform well for the second objective in practice, when data does not
conform to worst-case input characteristics. Our experimental results on three real-world data sets showed that our
methods of setting the precision gradient are greatly superiorit@ istrategies under both metrics, on all data sets
studied.
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A Analysis of Time-Sensitive Extensions

A.1 Proof that Time-Sensitive Extension to Majority™ Counting Ensures Error Guarantees

To make majority” counting [8, 17] time-sensitive, we extend it in a straight-forward fashion: each count in the
synopsis is multiplied byr whenever a new epoch begins. For completeness, we provide the extended algorithm as
Algorithm 3. We prove that this algorithm ensures the error guarantees specified in Section 1.2, i.e., for anif,item

as before¢(u) denotes the weighted frequency of occurrence of iterendS: é(u) denotes its estimate produced by
Algorithm 3, then(c(u) — -y, oy ¢(w)) < S:é(u). This inequality follows from the following lemma:

Lemma 4
YueU, (c(u)—3S8:é(u))<e- Z (c(w) = S:é(w))

welU
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Algorithm 3: Time-Sensitive Majority T Counting — maintaining (e, «)-SynopsisS

Initially, S:n =0
On arrival of a new item u:

1. If S:é(u) exists, setS:é(u) := S:é(u) + 1. Else, creats:é(u); setS:é(u) :=1
2. If |S| > 1/¢, for eachu € S, setS:é(u) := S:é(u) — 1; if S:é(u) < 0, eliminate countS:é(u)
3. SetS:n:=8Sn+1
On start of a new epoch
1. Foreachu € S, setS:¢(u) := a-S:é(u)
2. SetS:n:=a-S:n

Proof: We prove this inequality by induction gi the number of epochs completed (recall that an epoch consists of
T time units). For each item, let(u) andS:¢;(u) denote the actual and estimated weighted frequencies at the end
of epochj.

Base casef = 1): The left-hand side of the inequality represents the total number of times the count for item
u was decremented by 1 during the first epoch. Each time ttewas decremented (Step 3 of Algorithm 3), a
total of (5 counts (includingu’s count) were decremented by 1. Therefore, the total undercounting whenever

decremented is at Iea&M. This quantity cannot exceed the total number of undercounting across all items
(X wer (ci(w) = S:é1(w))). Hence, for epoch Iey (u) — S:é1(u)) <e- > (a(w) =S : éi(w)).

welU
Inductive step: Assume that Lemma 4 holds for epoghi.e., (c;(u) — S:¢;(u)) < e-Tyev(cj(w) — S:é(w)).
By adapting the argument made in the base case 1), we obtain:

%((CjJrl(“) —a-¢j(u) = (S:é41(u) — - S:é;(u))) < <0<" oS w) + Y (e (w) — a~cj(w))> =) Sia(w) (1)

welU welU welU

The term €41 (u) — a-cj(u)) on the left-hand side in the above inequality, is the number of timesitenturred in
epoch(j + 1). Similarly, (S:¢;41(u) — a-S:¢;(u))) represents the increase in iterls count during epoclij + 1).
Therefore, the difference of the two quantitié§;; 11 (v) — a-c;(u)) — (S:éj41(u) — a-S:é;(u))), represents the
number of times the count for itemwas decremented by 1 during epgoch 1. Each time itemu was decremented,

a total of [5 counts (includingu’s count) were decremented. The left-hand side of Inequality (1) represents the
minimum value of the total undercounting wheneveras decremented during epogh+ 1). This quantity cannot
exceed the total amount of undercounting across all items during €peeh), the right-hand side of Inequality (1).
The first term on the right-hand side is the initial sum of all counts at the end of gpachiltiplied by «, plus the

number of items that arrived during epaght-1). The second term is the sum of all counts at the end of eppeil).
Combining Inequality (1) with the statement of the lemma for epgake obtain:

L) = Séa() < Y (ega(w) = Sy (w)

welU

A.2 Derivation of Space Bound for Time-Sensitive Extension to Lossy Counting

In the original lossy counting algorithm [20], there is a single type of decrement operation: each count is decremented
by 1 whenevef1/¢] items arrive. In the time sensitive extension to lossy counting that we propose (for completeness,
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Algorithm 4: Time-Sensitive Lossy Counting — maintaining (¢, «)-synopsisS

Initially, num = 0, andS:n =0
On arrival of a new item u:

1. If S:é(u) exists, setS:¢(u) := S:é(u) + 1. Else, creats:¢(u); setS:é(u) := 1
2. SetS:n:=8:n+1
3. Setnum := num + 1
4. If num = [17:
(a) Setnum :=0
(b) Foreachu € S, setS:¢é(u) :=S:é(u) —1
(c) If S:é(u) <0, eliminate countS:é(u)
On start of a new epoch:

1. Foreachu € S:

(@) SetS:é(u) = S:é(u) — e
(b) If S:é(u) < 0, eliminate countS: é(u)

(c) SetS:é(u) := a-S:é(u)

2. Setnum :=0

3. SetS:n:=a-S:n

we provide the extended algorithm as Algorithf),4requency estimates are reduced in value when either (a) a new
epoch starts, or (b)1] items have arrived since the last count reduction operation. We provide detailed analysis of
the worst-case space requirement for our time-sensitive extension to lossy counting. Before proceeding, we introduce
some notation.

Letr; = [{(w;,t;) € S| j-T <t; < (j+1)-T}| denote the number of items arriving on stredrin epochj.
Let 8 = [logs (1 + 2)] + 1 and lett,,,, denote the current time and let= | 22« | denote the number of epochs
completed at time,,,,,. Letk = Orgjaécp{fj} denote the maximum number of items arriving $1in any epoch. We

assumey < 1 throughout this section.

Lemma 5 With k defined as above, the maximum weighted frequency count of any item is bounded from above as
follows: ma[}((c(u)) <A
ue

tnow —t;

al™*7—"1 Using the definition of:,

Proof: Recall from Section 1.2 that by definitiomu) = > (

w;,ti)ESui=u

D ' k
k- P=I <
jgoa T 1l-a

c(u)

IN

]

As a result of the count reduction operations (mentioned at the start of this Section), any item occurrence within

the current epoch results inréﬁreduction in the frequency count of each item. Sirﬁéﬁe > 1., any occurrence of

9Algorithm 4 can be modified in a straightforward way to achieve constant worst-case processing time.
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an item within the current epoch results in the frequency count of each item being reduced by gt le&ksting this
observation, we show in the next lemma that we can discount old occurrences of items from our calculations.

Lemma 6 Assume a count reduction operation has just been carried out. Ifitesmot among thé: - 5 most recent
item occurrences it¥, thenS:é(u) = 0.

Proof: Let 3; epoch boundaries occur during the |ast item occurrences. Since at mdsitems can appear afiin
any epochp; > (6 —1).

Let S:¢& (u) denote the value of item’s count before thé;- 3 occurrences. There afg epoch boundaries since
item u's count wasS : ¢ (u); and each epoch boundary scales down the count value oreover, arrival of any
itemr epochs before, results in a scaled-down decrement by herefore, the minimum decrement duektg item

occurrences igt, ~Z§;§L}f‘l(k-al’—j). ThereforeS:é(u) can be bounded from above as:
¢ p—pF1+6-1
S:é(u) < aP-8:é (u) — : k-aP™
éu) < ¢ (u) T j_;ﬁ a

Using Lemma 5, the expression 8té(u) becomes:

k € 1—aPf

S:é < B, — k- .oPr—B+1,
w) < a 11—« 1—|—ea l—«

k €

_ B1—pB+1Y . (Bl (1 — AP
(@% )20 - (1 - af)
24¢ €
B-1, _ -
(a 1+e 1+4c¢€

= 0 (substitutingx®~! = ﬁ follows from definition ofg3)
€

k

: ) (sincea” P! < 1anda” < of1)
—

SinceS:¢(u) < 0, S:¢é(uw) must have been dropped from the synopsis. O
To help us analyze the maximum number of counts required, we associate a position with each item occurrence.
We use this information to label the frequency counts present in the synopsis at,simeThe label of a frequency
count isi if it was created just after th&" most recent item occurrence arrived. detlenote the number of counts in
the synopsis with labgl Lemma 7 and Lemma 8 boumfd, which is eventually used to bound the maximum number
of counts used by our time-sensitive extension to lossy counting.

Lemma 7 Immediately after a count reduction operation is carried out,

€
1+e€

J
D d) < § Vie{l2,..}
i=1

Proof. At t,.., Step (5) and 1(a) of Algorithm 4 ensure that each count with latieldecremented by at least
7+ -4. Therefore, counts with labels up jdor anyj € {1,2,...} are decremented by at Ieaﬁk-zgzlzﬂdi. If we

+e °
consider the lasf item occurrences, the maximum possible addition to all counts with labels atjn®gt Hence,

oml(ied) <5 Yied{l2...).

]

Lemma 8 Immediately after a count reduction operation is carried out,

l—ie'zdi < Z% vie{1,2,...}
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Proof: This proof is similar to the proof in [20] for bounding the maximum number of counts that time-insensitive
lossy counting maintains.

Base casejf = 1): Follows from Lemma 7.

Inductive step (j = r): LetLemma 8 hold foj = 1,2,...,r—1. Adding Lemma 7 forj = r to (r — 1) instances
of Lemma 8 (one each forvarying from1 tor — 1) gives

€
1+e€

1 1
X _jiedi+ —— (S d + S d 4+ 50 d;) < v+ (2} =+ -+z;;_117.)

1—|—

"_,d; < r-X7_ 1 Thus, lemma 8 holds foi = 7. O

Theorem 1 The (e, a)-synopsis maintained by our time-sensitive extension to the lossy counting algorithm contains
at most G CEIHR) non.7ero entries.

Proof: We first analyze the maximum number of counts maintained by our time-sensitive extension to lossy counting
at an instant just after a count reduction operation, as characterized at the beginning of this section.
Let z denote the number of item occurrences$im the current epoch. Consid2rk- 5 + x most recent items.
As before, letd; denote the number of counts in the synopsis with labeét D = X ;- 2.544)d;-
Lemma 8 implies:
J J
S d; < HE-Zlforj:1,27...72~k-ﬁ+x—1 @)
€ P 1

i=1

Any count in the synopsis with label greater tftak- 3 + x must occur more thatk- 5 + z)- 15
2-k-B 4 x items (This is because even if the value of each of the counts had the maximum possible value immediately
after the(2-k-3+ x)t" most recent element arrived, it would have decayed to zero by the iffie- )" most recent
element arrived (Lemma 6), and after that the count value is decrementéd by z) - 1+ i
similar to Lemma 7, we get:

2k-B+x

1i€-< > i-di—&—(kﬂ—l—w)D) <2.kfB4z

i=1

By rearranging, we arrive at:

2kB+z—1 D
> iedi + (dokpra + ) @k B+a) <

=1

FEE ek B+ a) ©)

By induction step similar to that employed in proof of Lemma 8, we obtain:

2kBtz—1 1+6 Rbte
di + (doggie + D/2) < 2 4
Y di+(dokpya +DJ2) < g ; 4

i=1

Adding Wﬁ times Inequality (3) to Inequality (4), we obtain:

2k-B+z+1 2k-B+x
Number of counts in the synopsis >~ d; < 1+ ) 1/i) <
i=1 i=1

1+e€ 1+e€

2+ In(2-k-B+k)) (5)

The above proof holds for instants immediately after a count decrement operation is performed. However, between
any two consecutive count decrement operations, at Mdsitems can arrive. Therefore, at any time the number of

counts in the synopsis can be at mEst 3R CREER) "yheres — Mogs(1+2)] + 1. O

Note that this space bound is mdependent of time. Hence, wherl the worst-case space requirement does not
increase with time as long as stream rates remain steady.
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B Proof of Lemma 2

We prove Lemma 2 in three steps. First, we show how to transform any input ingtario@n instancé’ that satisfies
Property P1 and has(I’,7,A) > w(I,7,A). Then, we show how to transform an input instar¢eatisfying
Property P1 into an instand¢’ so that it satisfies both Properties P1 and P2 andul{d¥, 7, A) > w(I',T,A).
Lastly, we show how to transform an input instaniée satisfying Properties P1 and P2 into an instafi¢ethat
satisfies all three Properties P1, P2 and P3 (helft¢es Z4) and hasw(I"’,T,A) > w(I",T,A).

Step 1: For any input instancd, let the node that transmits on the most heavily loaded link be gdehose
level we denote by. Let 7, be the subtree of which nodg is the root. Let us partition the input instanée
into two parts: (a)l; denoting the part of arriving at leaf nodes irYz, and (b)/-z denoting the rest of after
excludingly; (I = Iz U I.z). Since7 is a hierarchical communication structure, the load thaiends on its
outgoing link (recall that load is measured in terms of the number of counts transmitted) depends balyTdrs
observation leads naturally to a two-part procedure for transforming any inpta I’ such that instancé& satisfies
Property P1 and has(I’,7,A) > w(I,7T,A) : (a) transforml into I/, so thatl}, satisfies Property P1 and has
w(ly Ul.z,T,A) > w(I,T,A), and (b) transformi_ into I’ , so thatl, U I’ , = I’ satisfies Property P1 and
hasw(I',T,A) > w(I,T,A).

Step 1(a)To ensure that no item occurs at more than one leaf nodg jrior each itemu that occurs aj different
leaf nodesM,, Ms, ..., M; with frequency counts;, ¢z, . . ., c; respectively, we creatgnew itemsuy, us, . . ., u;.
Instead of itemy, itemuy, is included in the input streasl, with weightc,/ >", ¢; and frequency , ¢;.

While this operation might reduce the load on links insilg it does not change the load on any link outside
Tz. Hence, the load on the link from nodgto its parent remains unchanged. Thus, the resulting input instgnce
satisfies Property P1 and ha¢l,, U I_7,7,A) > w(I,T,A).

Step 1(b) The only two reasons why, U Iz might not satisfy Property P1 are (a) an item that occutk,imlso
occurs inl- z, or (b) an item occurs at more than one leafip,. To remedy either of (a) or (b), any conflicting item
in Iz can be renamed to a new item. Thus, the resulting input instéiriee I, U I’ ,) satisfies Property P1.

As with Step 1, we proceed in two parts in Steps 2 and 3.

Step 2(a) I/, satisfies Property P1. Consider an iterthat arrives at a leaf nodg of subtree7Z;. For any levelj,
nodeY has an unique level-ancestor. For each such leyekncestor nodeX, let tc(j) denote the total number of
item occurrences in the the leaf nodes of the subtree rooted atfio@nceu does not occur at any other leaf node
(Property P1), itis part of the synopsis nadleends to its parent if and only if its occurrence frequendy e greater
thany = ¥%_, | A; - te(j). Furthermore, the total number of item occurrences at noéetc(! — 1). Therefore, no
more thanic(l — 1)/(y + §) items that traverse the link from nodeto its parent could have arrived at notle for
smalld > 0. To transforml7, into I7;, we replace all item occurrences at nddevith tc(l — 1)/(y + 6) new items,
each of frequencyy + ¢). We repeat this procedure for all other leaf nodes of the sulizednput instancd’, thus
obtained satisfies Properties P1 and P2,atl, U I’ ,, 7,A) > w(I',T,A).

Step 2(b) The inputl’ , can easily be transformed so tHgtU I”, satisfies Properties P1 and P2 by replacing each

item that occurs at any leaf node Ifi, with a new item with occurrence frequency equabptdor any constang.
The resulting input instancE’ (= I U I” ;) satisfies Properties P1 and P2.

Step 3 (a) I} satisfies properties P1 and P2. We first prove the following hypothesis: If the Ifjpsatisfies
Properties P1 and P2, the load on the link from a n&d&n ancestor of, to its parent due td’ is maximal when
all leaf nodes ir7; have the same number of item occurrences and the same number of distinct items. We prove this
by induction on the height df ;.

Base Case/ is a leaf node) Induction hypothesis is trivially true.

Induction Step: LetY;,Ys,. .., Yy denote thel children of Z, and let eacly; contributep; to the total count at
node X. Assume that the hypothesis holds for eacpfYs, ..., Y;. Let us term the subtrees of which soigis
a rootchild-subtrees Each child-subtree satisfies all three properties P1, P2 and P3. The load on the link from node
X to its parent due td is E?zlm, whereA, = ¥!Z} ,d@+D=IA; andA depends on precision gradient of
nodes between nodé and nodeX. This expressio@?zlm, subject top; + p2 + ... + pg = 1 attains its
maximum (it can be seen for example, using the technique of Lagrange Multipliers [18]) whemedlequal. Hence,
the induction hypothesis holds for node
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I’ can be obtained by multiplying the frequency counts of each item in the subtree rodtetyatl/w;. The
resulting instancé’, satisfies all three properties P1, P2 and P3 andtédg U 1”,,7,A) > w(I",T,A).

Step 3(b) Sincel) satisfies Properties P1, P2 and P3tléems occur with frequency each, at any leaf node in
Tz. We transformi”’, into I””/, as follows: at any leaf node not belongingZg, we create distinct items each with
occurrence frequenay Thus, the resulting input instanéé€’ (= 17, U I””,) satisfies Properties P1, P2 and P3.

Finally, we note that if two items andv with weightsw,, andw,, in some input stream have the same frequency,
we can replace them by a single itgnwith weightw, = w, + w, and same frequency as thatwfindv. This
transformation does not change the behavior of our algorithm or the load on any link. By applying this procedure
repeatedly td””’, we can ensure that there is at most one item with weight less than 1 on each input Btream.
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