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Abstract

Modern society has produced a wealth of data to preserve for the long term. Some

data we keep for cultural benefit, in order to make it available to future generations,

while other data we keep because of legal imperatives. One way to preserve such

data is to store it using survivable storage systems. Survivable storage is distinct from

reliable storage in that it tolerates confidentiality failures in which unauthorized users

compromise component storage servers, as well as crash failures of servers. Thus, a

survivable storage system can guarantee both the availability and the confidentiality of

stored data.

Research into survivable storage systems investigates the use of m-of-n threshold

sharing schemes to distribute data to servers, in which each server receives a share of

the data. Any m shares can be used to reconstruct the data, but any m−1 shares reveal

no information about the data. The central thesis of this dissertation is that to truly

preserve data for the long term, a system that uses threshold schemes must incorporate

recovery protocols able to overcome server failures, adapt to changing availability or

confidentiality requirements, and operate in a decentralized manner.

To support the thesis, I present the design and experimental performance analysis

of a verifiable secret redistribution protocol for threshold sharing schemes. The pro-

tocol redistributes shares of data from old to new, possibly disjoint, sets of servers,

such that new shares generated by redistribution cannot be combined with old shares to

reconstruct the original data. The protocol is decentralized, and does not require inter-

mediate reconstruction of the data; thus, one does not create a central point of failure

or risk the exposure of the data during protocol execution. The protocol incorporates a

verification capability that enables new servers to confirm that their shares can be used

to reconstruct the original data.
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Chapter 1

Introduction

Modern society has produced a wealth of data to preserve for the long term. Some data we keep for

cultural benefit, in order to make it available to future generations. For example, the Internet Archive

(http://www.archive.org) aims to preserve indefinitely both the contents of all Internet

websites and of all digitized physical media. Other data we keep because of legal imperatives. For

example, several laws (e.g., the Gramm-Leach-Bliley Act of 1999 and the Sarbanes-Oxley Act of

2002) mandate retention and privacy standards for financial records.

One way to preserve long-term data is to store it using survivable storage systems. Surviv-

able storage systems are generally aggregations of unreliable components, such as heterogeneous

“bricks” able to provide both storage and metadata management functions [22, 34], or peer-to-peer

workstations [1, 46]. They are distinct from reliable storage systems [40] in that they tolerate con-

fidentiality failures (in which unauthorized users compromise components) as well as crash failures

of components. Thus, survivable storage systems are able to guarantee both availability (will one

be able to recover one’s data?) and confidentiality (can one be sure that an unauthorized person has

not obtained one’s data?).

A number of researchers propose using m-of-n threshold sharing schemes [49] in survivable

storage systems to tolerate component failures. A system that uses a threshold scheme distributes

n shares of the original data to components such that any m can be used to reconstruct the data.

Moreover, any m− 1 shares reveal no information about the data. Thus, the system can tolerate

the loss n−m shares without losing data availability, and the compromise of m− 1 shares (i.e.,

revelation to an unauthorized user) without losing data confidentiality. Some examples of such

systems include e-Vault [33] and PASIS [53].

http://www.archive.org
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3

Availability

Time

"You−lose" line

2−of−3 threshold scheme
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Figure 1.1: A storage system that uses a 2-of-3 threshold sharing scheme without recovery. Availability

is plotted informally on the y axis, and time is plotted on the x axis. Suppose that the system suffers a

server failure at time 1. Data remains available through time 2 because enough servers (i.e., 2) remain to

serve shares. However, suppose that the system suffers another failure at time 3. From that time forward, an

insufficient number of servers remain.

A survivable storage system requires mechanisms to recover from component failures, as a

threshold scheme by itself is insufficient for the long term. Consider the graph in Figure 1.1 of a

three-component system that uses a 2-of-3 scheme to store data. If one assumes that all components

will eventually fail, then the system will reach a point when only one non-failed component remains.

By then, the end-user’s data will be lost. To recover from failures in threshold sharing scheme-based

systems, researchers have proposed proactive secret sharing (PSS) schemes [19, 20, 21, 31, 32, 44,

56, 55]. PSS schemes enable systems to replace lost shares and render compromised shares useless.

Recovery mechanisms for survivable storage systems must be decentralized. A naı̈ve approach

to recovery would be for a system to use a recovery server to reconstruct all of the stored data and

redistribute new shares. An obvious shortcoming with this centralized approach is that it introduces

a single point of failure in the system. If the recovery server itself crashes, recovery becomes

impossible. Worse, unauthorized users who compromise the server immediately gain the ability to

obtain all stored data.

This dissertation research contributes the first recovery mechanism that enables a system to

adjust m and n, even if some of its components are controlled by unauthorized users. The limitation

with mechanisms that only replace lost shares (such as PSS schemes) is that the assumptions behind

the selection of m and n may prove to be invalid over time: components may be more crash-prone,

or unauthorized users may be more aggressive in their attacks. The ability to change m and n

enables a system to survive more crash-prone components, by increasing m, or to defend against

more aggressive unauthorized users, by increasing n.
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1.1 Thesis statement

The thesis statement of this dissertation is:

We can create a survivable storage system that:

• Recovers from component failures,

• Adapts to changing requirements, and

• Accomplishes these goals in a decentralized manner.

To support the thesis, I present the design and experimental performance analysis of a verifiable

secret redistribution (VSR) protocol for Shamir’s threshold sharing scheme [49]. The VSR protocol

redistributes shares of data from old to new, possibly disjoint, sets of servers, such that new shares

generated by redistribution cannot be combined with old shares to reconstruct the original data. The

protocol is decentralized, and does not require intermediate reconstruction of the data; thus, one

does not create a central point of failure or risk the exposure of the data during protocol execution.

The protocol incorporates a verification capability that enables new servers to confirm that their

shares can be used to reconstruct the original data.

The rest of this dissertation is organized as follows. In Chapter 2, I present an abstract model of

a survivable storage system, and a model of a mobile adversary who subverts servers in the system

and causes them to fail. I also postulate the design requirements for a recovery protocol in the

context of a mobile adversary. In Chapter 3, I present the design of the VSR protocol, which can

be used by a storage system to counteract the adversary discussed in Chapter 2. I prove that the

shares held by servers after protocol execution can be used to reconstruct the original secret, and

demonstrate that it satisfies all of the design requirements for a recovery protocol. In Chapter 4,

I discuss the design and implementation of an experimental storage system called Hathor. The

primary purpose of Hathor is to provide a platform on which to evaluate the end-to-end cost of

storing, redistributing, and retrieving data using a variety of data distribution schemes (including

Shamir’s scheme). In Chapter 5, I present and analyze the results of experiments done to measure

the raw computational performance of the VSR protocol, as well as the results of experiments done

to measure the end-to-end cost of storing, redistributing, and retrieving data with Hathor. The

results demonstrate that although the VSR protocol is computationally expensive, the cost can be

offset through careful selection of the data distribution scheme. In Chapter 6, I survey the related

work on survivable storage systems and recovery protocols for threshold sharing schemes. Finally,

in Chapter 7, I end with a discussion of conclusions, research results, and directions of future work.
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Chapter 2

System model

Lay not up for yourselves treasures upon earth, where moth and rust doth corrupt,

and where thieves break through and steal.

— Matthew 6:19 (KJV)

In this chapter, I present an abstract model of a survivable storage system consisting of clients,

servers, and a communication network. I also present a model of how an adversary might subvert

the servers in such a system, and discuss how the subverted servers could attempt to disrupt system

operation. I then discuss how the system can use a recovery protocol to counteract the actions of

the adversary, and identify the design requirements for the protocol.

2.1 Abstract storage system model

The abstract storage system model consists of clients, servers, and a communications network.

Figure 2.1 shows clients, servers, and the network channels that connect clients and servers to

each other. In this section, I present a high-level description of the system components, and the

assumptions I make about their behavior.

Clients are hosts that store and retrieve data with m-of-n distribution schemes. Clients are always

correct: given data d and scheme s, a client applies s to d according to the specification of s. Servers

are hosts that store pieces of data on stable storage. Servers are usually correct: given a piece p of

data, a server saves p on stable storage when it receives p from a client, and returns p when requested

by the client. However, a server may sometimes be faulty, exhibiting Byzantine behavior: given p,



6 CHAPTER 2. SYSTEM MODEL

B
ro

a
d

c
a
s
t 

c
h

a
n

n
e
l

Clients

Servers

����

����

����

����

����

����

����

����

����

n

1

m

Figure 2.1: Abstract model of a storage system with n servers. The solid lines show point-to-point connec-

tions between components: clients are connected to servers, and a server is connected to all other servers.

The dashed lines show connections of servers to a broadcast channel. Dots indicate elided clients or servers.

a faulty server may refuse to save p on stable storage, or save a corrupted piece p′ instead of p, or

refuse to return p. I assume that correct servers make forward progress; in particular, a server is

deemed faulty if it does not send messages when expected to in a timely manner.

I assume that underlying authentication and permission mechanisms exist for a server to confirm

that a client has the right to store a piece at the server. I also assume for now that the membership

of the set of servers is constant, though I will relax this assumption later.

The network in the system provides point-to-point channels from a client to all servers, and from

a server to all other servers. The channels deliver messages reliably in first-in, first-out (FIFO) order

for each pair of hosts: if a host A sends a message M to host B, B is guaranteed to receive M, and

guaranteed to receive M before any other message M′ that A sends after sending M. The channels

are authenticated: if A sends a message to B, no host E can masquerade as either A or B. Lastly, the

channels are private: if A sends a message to B, its contents are known only to A and B.

The network also provides a broadcast channel that connects all servers. The channel delivers

messages from a server reliably in FIFO order: if a server broadcasts a message M followed by

M′, all other servers receive M followed by M′. However, the channel does not enforce an ordering

between messages sent by different servers: if server A broadcasts MA, and server B broadcasts

MB, server C may receive MA followed by MB or MB followed by MA, and server D may receive
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MA and MB in an order different from C. The channel is authenticated: no server E, regardless of

whether it is correct or faulty, can masquerade as some other server (i.e., E cannot forge signatures

on messages).

2.2 The mobile adversary and its effect on servers

An adversary is an external entity that attempts to subvert servers. Once subverted, a server is

controlled by the adversary, and may behave in ways that deviate from its specification. In this

section, I present a temporal model of how an adversary may subvert target servers.

Conceptually, the adversary is an external host that is connected by point-to-point channels to all

servers, while also being connected to the broadcast channel. The adversary is not connected to the

clients, and in any case cannot subvert the clients (consistent with the assumption of correct clients).

The adversary cannot eavesdrop on the point-to-point channels, or inject messages into those chan-

nels that purport to be from other hosts (consistent with the assumptions about the point-to-point

channels). The adversary can see all messages sent over the broadcast channel, and can also send

messages over the channel or inject messages via servers under its control. The adversary causes

subverted servers to become faulty, and exhibit the Byzantine behavior discussed in Section 2.1. In

turn, a faulty server may reveal its memory contents (e.g., stored pieces of data) to the adversary.

To reason about the temporal behavior of the adversary, I adopt the mobile adversary model

proposed by Ostrovsky and Yung [39] and refined by Herzberg et al. [32]. In the model, time is

divided into epochs in which the adversary may subvert a limited number of servers. The limit is

specified implicitly by the data distribution scheme used in the system, e.g., for an m-of-n scheme,

the adversary may control at most m−1 servers per epoch. An update phase separate consecutive

epochs. At the start of the update phase, the system tries to remove all subverted servers from

under the control of the adversary, though it might succeed in removing only some or none. A

formerly subverted server may have corrupted memory contents. After the end of the update phase,

the adversary may again subvert servers, up to the limit specified by the distribution scheme. The

adversary is constrained from re-subverting servers during the update phase, which is reasonable

provided that an update phase is short relative an epoch. Ostrovsky and Yung assume that the

system has some external mechanism for the detection and repair of subverted servers.

One can visualize the mobile adversary as having a fixed number of “pebbles” that it may place

on servers during each epoch. A server is covered by at most one pebble. At the start of the update

phase, the system tries to remove all pebbles and gives them back to the adversary, though it might
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Figure 2.2: A storage system that uses an m-of-n data distribution scheme, in the presence of a mobile

adversary. The memory contents (i.e., pieces of data) of the adversary and servers are shown. The adversary

may only control at most m−1 servers per epoch. Crosshatched servers are controlled by the adversary. In

epoch t, the adversary subverts servers 1 through m− 1 and obtains their pieces. During the update phase,

the system removes all servers from under the control of the adversary. In epoch t +1, the adversary subverts

server m and obtains its piece. The adversary can then reconstruct the original data.

succeed in removing only some or none. At the start of the next epoch, the adversary may again

place pebbles on servers. A server that is covered by a pebble is controlled by the adversary. A

covered server that is later uncovered is no longer controlled by the adversary.

Even though a mobile adversary can only subvert a limited number of servers in each epoch,

it can eventually subvert every server over multiple epochs. For example, consider the system in

Figure 2.2 that uses an m-of-n scheme. The adversary may control at most m−1 servers per epoch.

Initially, in epoch t, the adversary subverts servers 1 through m−1, and obtains the pieces held by

those servers. During the update phase, the system removes all of the servers from under the control

of the adversary. In epoch t + 1, the adversary subverts server m, and obtains the piece held by m;

thus, the adversary may now reconstruct the original data.

To counteract the adversary, the system requires a recovery protocol to execute after it has tried

to remove subverted servers from under the control of the adversary. I postulate the following

protocol design requirements in the context of the mobile adversary model:

• It must generate new pieces for the next epoch such that they can be used to reconstruct

the secret, and such that they cannot be combined with pieces from the current epoch to

reconstruct the secret.
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Figure 2.3: A storage system with a recovery protocol in the presence of a mobile adversary. The adversary

may only control at most m− 1 servers per epoch. Crosshatched servers are controlled by the adversary.

The system executes a recovery protocol during the update phase to generate new (shaded) pieces for correct

servers. New pieces cannot be combined with current pieces to reconstruct the original data. In epoch t, the

adversary subverts servers 1 through m− 1 and obtains their pieces. During the update phase, the system

removes all servers from under the control of the adversary. In epoch t + 1, the adversary subverts server m

and obtains its piece. However, the adversary does not obtain enough pieces (current or new) to reconstruct

the original data.

• It must include mechanisms to prevent the adversary from corrupting protocol execution,

because the adversary may still control some servers during the update phase.

• It must erase the pieces for the current epoch from server memories, to prevent the adversary

from ever obtaining any other current pieces it needs.

With a recovery protocol that satisfies these design requirements, the system can prevent a mo-

bile adversary from ever obtaining enough pieces to reconstruct the original data; I will prove this

point in Section 3.3. For example, consider the system in Figure 2.3 that uses an m-of-n scheme,

and contrast it with the system in Figure 2.2. As before, the adversary may control at most m− 1

servers per epoch. Initially, in epoch t, the adversary subverts servers 1 through m−1, and obtains

the pieces held by those servers. During the update phase, the system removes all of the servers

from under the control of the adversary, and executes the recovery protocol. In epoch t +1, the ad-

versary subverts server m, and obtains the piece held by m; however, this piece cannot be combined

with the pieces from t to reconstruct the data.
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2.3 The dynamic membership model

Ostrovsky and Yung assume a static membership model of the system in their mobile adversary

model [39]. In their model, the number of servers, the membership of the set of servers, and the

threshold parameter of the underlying data distribution scheme are all fixed throughout the duration

of system operation. In practice, however, one might wish for the system to exclude subverted

servers from the system, replacing them with new servers. Also, one might wish to increase the

number of servers in the system (and the threshold parameter of the underlying distribution scheme),

in order to increase the number of servers the adversary must subvert in order to reconstruct data.

I adopt a dynamic membership model of a system by extending the mobile adversary model to

allow servers to join and leave the system. As in the original model, I divide time into epochs during

which an adversary may subvert a limited number of servers. Consecutive epochs are separated

by an update phase. At the start of the update phase, the system tries to remove all subverted

servers from under the control of the adversary (though it might succeed in removing only some or

none), and admits new servers. It then executes the recovery protocol before allowing old servers

to leave the system. After the end of the update phase, the adversary may again subvert servers.

The adversary is constrained from subverting servers during the update phase, and from corrupting

the state of underlying membership protocols that manage the set of servers. An old server, once it

leaves the system, is treated like a new server if it tries to rejoin the system.

The dynamic membership model impacts the design of mechanisms put in place to prevent an

adversary from corrupting recovery protocol execution (the second requirement in Section 2.2).

The set of servers in the next epoch may be completely disjoint from the set in the current epoch,

thus none of the new servers will have any information about the original data, (e.g., none of them

will have ever stored pieces of the data). This lack of information rules out simple adaptations of

recovery protocols designed around static membership models, in which participant servers perform

verification computations (to prevent an adversary from corrupting execution) in the current update

phase that require information that they have received in the previous update phase.

I impose a new requirement on the recovery protocol to accommodate dynamic membership:

• It must enable the system to change the threshold parameter of the underlying data distribution

scheme.

I motivate the new requirement with the following example. Consider a system of n servers

that uses an n-of-n scheme. Suppose that the set of servers changes such that there are n′ servers,
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where n′ < n. The system must change the parameters of the underlying distribution scheme so that

a lower number of pieces can be used to reconstruct the data.

Because the threshold parameter may change, I need to add a new pair of assumptions to the

adversary model. Suppose the system uses an m-of-n scheme in the current epoch, and will use an

m′-of-n′ scheme in the next epoch. With these parameters, the adversary can control at most m−1

servers in the current epoch, and at most m′− 1 servers in the next epoch. Also, at the start of the

update phase, I assume that the system removes subverted servers from under the control of the

adversary such that, during the update phase, at most m− 1 servers from the current epoch and at

most m′−1 servers from the next epoch are subverted. Previously, in a system that used an m-of-n

scheme, the adversary could control at most m− 1 servers per epoch; I assumed that the system

would try to remove all subverted servers from under the control of the adversary at the start of the

update phase, though it might succeed in removing only some or none.

2.4 Summary

I have presented the abstract storage system model that I will use throughout the remainder of this

dissertation. Distinct from previous work, the set of servers in the system has a dynamic member-

ship: the number of servers, the membership of the set, and the threshold parameter of the under-

lying data distribution scheme may change during the lifetime of the system. I have also discussed

the design requirements for a recovery protocol that the system can use to counteract an adversary

in the context of a dynamic membership model.



12 CHAPTER 2. SYSTEM MODEL



Chapter 3

Verifiable Secret Redistribution

Trust, but verify.

— Russian proverb

In this chapter, I present the verifiable secret redistribution (VSR) protocol for threshold sharing

schemes. The VSR protocol is designed to counteract a mobile adversary in a system of servers

with dynamic membership, and ensure that the servers have valid shares of data after redistribution.

The protocol executes in the update phase between epochs, after the system has removed some

(perhaps none) of the servers from under the control of the adversary. Any shares of data obtained by

the adversary prior to protocol execution are rendered useless after successful execution, provided

that the adversary had only obtained a sub-threshold number of shares. Moreover, the adversary

cannot combine shares obtained prior to protocol execution with shares obtained after execution to

reconstruct the data.

In the presentation of the VSR protocol, I employ the terminology that is generally used in the

discussion of threshold sharing schemes. Thus, in this chapter I refer to data as secrets, clients as

dealers, and servers as shareholders.

The rest of this chapter is organized as follows. In Section 3.1, I outline the cryptographic pro-

tocols that are the building blocks for the VSR protocol. In Section 3.2, I present the VSR protocol,

and prove that shares held by shareholders after protocol execution can be used to reconstruct the

original secret. In Section 3.3, I show that the VSR protocol fulfills all of the design requirements

discussed in Chapter 2, and demonstrate how it counteracts a mobile adversary.
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3.1 Cryptographic building blocks

In this section, I outline the building blocks of the VSR protocol: Shamir’s threshold sharing scheme

[49], Desmedt and Jajodia’s secret redistribution protocol [16], and Feldman’s VSS scheme [17].

3.1.1 Shamir’s threshold sharing scheme

Shamir presents a scheme for distributing n shares of a secret to n shareholders, such that the shares

of any subset of m unique shareholders can be used to reconstruct the secret [49]. Secrets k are in the

finite field of integers Zp (where p is prime and p > n). Shareholders i are in the set of participants

P (|P | = n). Shares si of i are also in the set Zp. Each subset of m unique shareholders forms an

authorized subset B; all authorized subsets are in the access structure Γ
(m,n)
P

.

To distribute k to i ∈ P , a dealer selects a random m−1 degree polynomial a(x) with constant

term equal to k and random coefficients a1 ... am−1 ∈ Zp, and uses a(x) to generate si for each i:

si = k +a1i+ . . .+am−1im−1 mod p (3.1)

To reconstruct k, the dealer retrieves m shares si of i ∈ B , and uses Lagrange interpolation to

recover the constant term of a(x), i.e., k:

k = ∑
i∈B

bisi mod p where bi = ∏
j∈B, j 6=i

j

( j− i)
mod p (3.2)

For the rest of the chapter, I omit the modulus operator to simply the notation.

3.1.2 Desmedt and Jajodia’s secret redistribution protocol

Desmedt and Jajodia present a protocol for the redistribution of shares of secrets for threshold

sharing schemes [16] that does not require the intermediate reconstruction of the secret. I summarize

a specialized version of their protocol for use with Shamir’s threshold sharing scheme [49], as shown

in Figure 3.1. To redistribute a secret k from the access structure Γ
(m,n)
P

to the access structure

Γ
(m′,n′)
P ′ , one selects an authorized subset B ∈ Γ

(m,n)
P

. Each shareholder i ∈ B uses Shamir’s scheme

to distribute subshares ŝi j of its share si to each shareholder j ∈ P
′:

ŝi j = si +a′i1′ j + . . .+a′i(m′−1) jm′−1 (3.3)
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Desmedt and Jajodia’s Secret Redistribution protocol for Shamir’s scheme

To redistribute a secret k ∈ Zp from the access structure Γ
(m,n)
P

to the access structure Γ
(m′,n′)
P ′ using the

authorized subset B ∈ Γ
(m,n)
P

:

1. For each i ∈ B , use the random polynomial a′i( j) = si +a′i1 j + . . .+a′
i(m′−1) jm′−1 to compute the

subshares ŝi j of si, and send ŝi j to the corresponding j ∈ P
′.

2. For each j ∈ P
′, generate a new share s′j by Lagrange interpolation:

s′j = ∑
i∈B

biŝi j where bi = ∏
x∈B,x 6=i

x

(x− i)

bi are constant for each i ∈ B , are independent of the choice of a′i(x), and may be precomputed.

Figure 3.1: Protocol for the redistribution of shares of a secret from the access structure Γ
(m,n)
P

to the access

structure Γ
(m′,n′)
P ′ [16] with Shamir’s threshold sharing scheme [49].

Each j then generates a new share s′j by Lagrange interpolation:

s′j = ∑
i∈B

biŝi j where bi = ∏
x∈B,x 6=i

x

(x− i)
(3.4)

One can redistribute shares of k an arbitrary number of times prior to the reconstruction of k.

To reconstruct k after redistribution, one retrieves m′ shares s′j of j ∈ B
′, and uses Lagrange

interpolation:

k = ∑
j∈B ′

b′js j where b′j = ∏
x∈B ′,x 6= j

x

(x− j)
(3.5)

3.1.3 Feldman’s VSS scheme

Feldman presents a scheme for verifiable secret sharing (VSS) [17] that shareholders of a secret can

use to verify that their shares are valid; i.e., the shares of any authorized subset of shareholders can

be used to reconstruct the original secret.

To use Feldman’s scheme, assume that there exists a homomorphic witness function W (x) of the

form
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Feldman’s Verifiable Secret Sharing scheme for Shamir’s scheme

To distribute a secret k ∈ Zp to the access structure Γ
(m,n)
P

:

1. Use the random polynomial a(i) = k+a1i+ . . .+am−1im−1 to compute the shares si of k, and send si to the

corresponding i ∈ P over private channels.

2. Use a witness function W (x) to compute W (k),W (a1) . . .W (am−1), and send them to all i ∈ P over the

broadcast channel.

3. For each i ∈ P , verify that:

W (si) ≡W (k)⊕ (W (a1)⊗ i)⊕ . . .⊕ (W (a1)⊗ im−1)

If the condition holds, i broadcasts a “commit” message. Otherwise, i broadcasts an “abort” message.

Figure 3.2: Feldman’s VSS scheme [17] for Shamir’s threshold sharing scheme [49].

W (a+b) = W (a)⊕W (b) (3.6)

W (ab) = W (a)⊗b (3.7)

for which inversion is intractable: that is, given W (x) it is intractable to compute x. The witness

functions allows one to prove knowledge of some value without revealing the value. The ⊕ and

⊗ operations are the homomorphic equivalents of addition and multiplication in the finite field of

integers.

The VSS scheme works as follows. The dealer uses Shamir’s scheme with a random polynomial

a(x) to distribute the secret k ∈ Zp to the access structure Γ
(m,n)
P

. In addition to sending the shares si

to shareholders i ∈ P , the dealer broadcasts witnesses of k and the coefficients a1 ... am−1 of a(x),

i.e., W (k) and W (a1) ... W (am−1). Each i may then verify that si is a valid share of k using

W (si) ≡W (k)⊕ (W (a1)⊗ i)⊕ . . .⊕ (W (a1)⊗ im−1) (3.8)

which is the result of applying W (x) to a(x) (Equation (3.1)). Because the inversion of W (x) is

intractable, no one can learn k or a1 ... am−1 from the broadcast of the witnesses.

In this dissertation, I consider two candidate witness functions: exponentiation in a finite field

and point multiplication on an elliptic curve.
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Exponentiation

The finite field of integers Zp (p prime) has a corresponding multiplicative ring Z
∗
q (q prime; q =

pr +1; r is a positive integer). Given Zp and Z
∗
q, one can define a witness function

W (x) = gx where x ∈ Zp (3.9)

where integer g ∈ Z
∗
q is a publicly-known generator of a sub-ring of Z

∗
q of prime order. The in-

tractability of the inversion of W (x) is based on the discrete logarithm problem (DLP) for finite

fields: given g and gk, it is hard to compute k. The ⊕ operation is multiplication in Z
∗
q, and the ⊗

operation is exponentiation in Z
∗
q (cf. Equation (3.6)):

W (a+b) = gagb (3.10)

W (ab) = (ga)b (3.11)

Point multiplication on an elliptic curve

An elliptic curve E over the finite field Fpm (p prime; m is a positive integer) is denoted by E(Fpm),

and is defined by the equation

y2 = x3 +ax+b (p ≥ 3) (3.12)

y2 + xy = x3 +ax+b (p = 2) (3.13)

where the coordinate points x,y ∈ Fpm . The points on the curve form a group comprising |E(Fpm)|

points, with a rule that defines the addition of points P and Q and another rule that defines the

multiplication of a point P by a scalar integer k. The group contains an additive identity called the

point at infinity O (that is, a point P added to the point at infinity yields P). Blake, Seroussi, and

Smart present a more comprehensive discussion of elliptic curves in cryptography [6].

Given an elliptic curve, one can define a witness function

W (x) = [x]G where 1 < x < r, [r]G = O (3.14)
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where G ∈ E(Fpm) is a publicly-known point (cf., g for exponentiation) that generates a prime order

subgroup of E(Fpm) of order r < |E(Fpm)|. The notation [x]G distinguishes the scalar variable x

from the multi-dimensional coordinate G. The intractability of the inversion of W (x) is based on

the analog to the DLP for elliptic curves: given P and [k]P, it is hard to compute k. The ⊕ operation

is point addition, and the ⊗ operation is scalar multiplication (cf. Equation (3.6)):

W (a+b) = [a]G+[b]G (3.15)

W (ab) = [b]([a]G) (3.16)

3.2 The VSR protocol

Here, I present the verifiable secret redistribution protocol for secrets distributed with Shamir’s

threshold sharing scheme [49]. The protocol takes as input shares of a secret distributed to an

authorized subset B in the access structure Γ
(m,n)
P

, and outputs shares of the secret distributed to the

access structure Γ
(m′,n′)
P ′ . I assume that there exists a witness function W (x) with the properties shown

in Equation (3.6), and assume that inversion of W (x) is intractable. The system model is the one

presented in Section 2.1, in which the dealer is always correct, but in which some of the shareholders

may be subverted by an adversary. I assume that there are at least m correct old shareholders, and

that there are at most m−1 faulty old shareholders. I also assume that there are at least m′ correct

new shareholders, and that there are at most m′− 1 faulty new shareholders. I assume that correct

shareholders make forward progress; a shareholder is deemed faulty if it does not send protocol

messages in a timely manner. The dealer and shareholders are fully connected to each other by

private channels, and shareholders are also connected to each other by a broadcast channel.

The initial distribution of a secret (INITIAL in Figure 3.3) is with Shamir’s threshold scheme

[49]. The dealer of secret k distributes shares si to each shareholder i ∈ P , using the random poly-

nomial a(i) (step 1 of INITIAL). The dealer also sends the witness W (k) to each i (step 2). Each i

receives the same value for W (k), consistent with the assumption that the dealer is correct.

Redistribution of the secret (REDIST in Figure 3.3) is similar to Desmedt and Jajodia’s protocol

[16]. Each i in an authorized subset B ∈ Γ
(m,n)
P

uses Shamir’s scheme (with the random polynomial

a′i( j)) to distribute subshares ŝi j ∈ Zp of its share si to shareholders j ∈ P
′ (step 1 of REDIST). Each

j receives ŝi j from each i, and generates a new share s′j (Equation (3.4), which is step 4). One can

redistribute shares of k an arbitrary number of times prior to reconstruction of k.
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Verifiable Secret Redistribution protocol for Shamir’s sharing scheme

INITIAL

To distribute a secret k ∈ Zp to the access structure Γ
(m,n)
P

:

1. Use the random polynomial a(i) = k+a1i+ . . .+am−1im−1 to compute the shares si of k, and send si to the

corresponding i ∈ P over private channels.

2. Use witness function W (x) to compute W (k), and send it to all i ∈ P over private channels.

REDIST

To redistribute k ∈ Zp from the authorized subset B in the access structure Γ
(m,n)
P

to the access structure Γ
(m′,n′)
P ′ :

1. For each i ∈ B , use the random polynomial a′i( j) = si +a′i1 j + . . .+a′
i(m′−1) jm

′−1 to compute the subshares

ŝi j of si, and send ŝi j to the corresponding j ∈ P
′ over private channels. An i that has a null share sends

nothing. A j that does not receive a timely ŝi j from i broadcasts an “abort” message.

2. For each i ∈ B , use W (x) to compute W (si),W (a′i1) . . .W (a′
i(m′−1)), and send them and W (k) to all j ∈ P

′

over the broadcast channel. An i that has a null share sends nothing. A j that does not receive a timely

broadcast from i broadcasts an “abort” message.

3. For each j ∈ P
′, verify that:

∀i ∈ B : W (ŝi j) ≡W (si)⊕ (W (a′i1)⊗ j)⊕ . . .⊕ (W (a′i(m′−1))⊗ jm
′−1)

and:

W (k) ≡
M

i∈B

W (si)⊗bi where bi = ∏
l∈B,l 6=i

l

(l − i)

If the conditions hold, j broadcasts a “commit” message. Otherwise, j broadcasts an “abort” message. A j

that does not send a timely “commit” message is assumed to have implicitly sent an “abort” message.

4. If at least 2m′−1 j ∈ P
′ broadcast “commit” messages, each j generates a new share s′j:

s′j = ∑
i∈B

biŝi j where bi = ∏
l∈B,l 6=i

l

(l − i)

and stores s′j and W (k); all i ∈ P then erase their shares. A j that has received fewer than m subshares

generates a null share.

5. If at least m′ j ∈ P
′ broadcast “abort” messages, all i ∈ B and all j ∈ P

′ abort the protocol.

Figure 3.3: Protocol for the verifiable redistribution of shares of a secret from the authorized subset B in the

access structure Γ
(m,n)
P

to the access structure Γ
(m′,n′)
P ′ with Shamir’s threshold sharing scheme [49].
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For the new shareholders to have a valid sharing of the secret after redistribution, two conditions,

called SHARES-VALID and SUBSHARES-VALID, must hold:

SHARES-VALID:

k = ∑i∈B bisi

SUBSHARES-VALID:

∃B
′ ∈ Γ

(m′,n′)
P ′ : ∀i ∈ B : si = ∑ j∈B ′ b′j ŝi j

The VSR protocol must ensure that correct new shareholders have a valid sharing after protocol

execution, i.e., that there exists an authorized subset with shares that can be used to reconstruct

the original secret. Thus, I define a NEW-SHARES-VALID condition, which holds if an authorized

subset of new shareholders have valid shares of the secret. I prove in Section 3.2.4 that NEW-

-SHARES-VALID holds if SHARES-VALID and SUBSHARES-VALID hold. The definition of NEW-

SHARES-VALID is similar to Equation (3.2):

NEW-SHARES-VALID:

∃B
′ ∈ Γ

(m′,n′)
P ′ : k = ∑ j∈B ′ b′js

′
j

The definition of NEW-SHARES-VALID may seem counterintuitive, as one may expect any sub-

set of m′ new shareholders to have shares than can be used to reconstruct k. However, observe that

some new shareholders may not have valid shares. First, faulty new shareholders may not have

valid shares. Second, when 2m′ − 1 shareholders broadcast a “commit” message (step 5 of RE-

DIST), there may exist new shareholders that have received fewer than m subshares, and thus cannot

generate new shares; such shareholders must store a null share. As I will prove in Section 3.2.4,

there will still exist at least m′ new shareholders that can generate new shares.

I use Feldman’s VSS scheme [17] to verify that SUBSHARES-VALID holds. The distribution of

ŝi j from si (step 1 of REDIST) is just an application of Shamir’s scheme. Thus, each i∈B broadcasts

witnesses of its share and the coefficients of a′i( j), W (si) and W (ai1) ... W (ai(m−1)), which each j

uses to verify the validity of ŝi j (step 2).

The key insight embodied in the VSR protocol is that the naı̈ve extension of Desmedt and

Jajodia’s protocol with Feldman’s scheme does not in itself allow the new shareholders to verify that

NEW-SHARES-VALID holds. The difficulty arises because Feldman’s scheme only verifies that SUB-

SHARES-VALID holds, which in the absence of SHARES-VALID is insufficient to verify that NEW-

-SHARES-VALID holds. Although Desmedt and Jajodia observe that the linear properties of their
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protocol and the properties of W (x) ensure that each j generates valid shares [16], they implicitly

assume that each i ∈ B distributes subshares of valid si. The VSS scheme only enables i to prove

that it distributed valid ŝi j of some value. However, i may have distributed “subshares” of some

random value instead of subshares of si. Thus, one requires a sub-protocol for i to prove that it

distributed ŝi j of si.

A similar flaw can be found in the proactive RSA scheme proposed by Frankel et al. [18]. Their

protocol uses a poly-to-sum redistribution from a polynomial sharing scheme to an additive sharing

scheme, and a sum-to-poly redistribution from the additive scheme back to a polynomial scheme.

They suggest that changes in the threshold and number of shareholders can be accommodated in

the poly-to-sum redistribution. Unfortunately, their verification checks hold only if one retains the

same set of shareholders, because their “proper secret” check relies on a witness (gsiL2 in their

paper) computed from information distributed in the preceding execution of the protocol.

To allow the new shareholders to verify that SHARES-VALID holds, the old shareholders in

the protocol broadcast a witness of the original secret k. Each i ∈ B stores W (k) received during

INITIAL and later broadcast it to all j ∈ P
′. Recall that each j receives W (si) from each i to verify

that SUBSHARES-VALID holds. Once j receives W (k), it verifies that each si is a valid share of k:

W (k) =
M

i∈B

W (si)⊗bi (3.17)

which is the result of applying W (x) to Equation (3.2). Because inversion of W (x) is intractable,

no-one can learn k directly from the broadcast of W (k).

3.2.1 Assumptions about faulty shareholders

During redistribution from the authorized subset B in access structure Γ
(m,n)
P

to access structure

Γ
(m′,n′)
P ′ with the VSR protocol, I assume that at least m shareholders in P are correct, and that at

most m−1 shareholders in P are faulty. I also assume that at least m′ shareholders in P
′ are correct,

and that at most m′ − 1 shareholders in P
′ are faulty. I denote faulty shareholders and invalid

values with over-bars. A correct shareholder i ∈ P distributes valid subshares ŝi j of its share si to

all shareholders j ∈ P
′ and broadcasts W (k) corresponding to secret k (REDIST in Figure 3.3). A

faulty shareholder ı ∈ P may distribute invalid subshares ŝı j or broadcast W (k) not corresponding

to k; of course, ı may instead distribute valid subshares or valid witnesses.
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One can derive a relationship between the old threshold scheme parameters m and n. If at least

m old shareholders must be correct and at most m−1 old shareholders may be faulty, it is required

that m+m−1 ≤ n, or

m ≤

⌊

n+1

2

⌋

(3.18)

One can also derive a relationship between the new threshold scheme parameters m′ and n′. To

avoid a race condition in which some new shareholders have received at least 2m′ − 1 “commit”

messages and fewer than m′ “abort” messages, while others have received at least m′ “abort” mes-

sages but fewer than 2m′−1 “commit” messages, it is required that (2m′−1)+(m′−1)≥ n′. Also,

to ensure that new shareholders broadcast at least 2m′− 1 “commit” messages, it is required that

2m′−1 ≤ n′. Hence,

⌈

n′ +2

3

⌉

≤ m′ ≤

⌊

n′ +1

2

⌋

(3.19)

3.2.2 Detection of faulty old shareholders

The VSR protocol enables new shareholders to detect that some subset of the old shareholders are

faulty. However, depending on the actions taken by faulty shareholders, the new shareholders may

not be able to pinpoint the identity of the faulty shareholders. I consider two different scenarios for

redistribution between access structures Γ
(m,n)
P

and Γ
(m′,n′)
P ′ , and show the circumstances in which the

new shareholders can pinpoint a faulty old shareholder ı in an authorized subset B ∈ Γ
(m,n)
P

.

First, suppose that ı ∈ B broadcasts valid witnesses W (k), W (sı) and W (aı1) ... W (aı(m−1))

(step 2 of REDIST in Figure 3.3). If ı sends an invalid subshare ŝı j to j ∈ P
′, j will find that

the SUBSHARES-VALID condition does not hold. j can pinpoint ı, because only ı can generate

the information used to verify whether or not SUBSHARES-VALID holds (i.e., W (sı), W (aı1) ...

W (aı(m−1)), and ŝı j). j will therefore broadcast an “abort” message (step 3 of REDIST).

On the other hand, suppose that ı broadcasts an invalid witness W (k) 6=W (k) (or an invalid wit-

ness W (sı)), while the other shareholders i ∈ B broadcast the valid witness W (k) (or valid witnesses

W (si)). j will find that the SHARES-VALID condition does not hold. However, j cannot pinpoint ı,

because j cannot distinguish between the case where ı broadcasts an invalid witness, and the case

where ı is correct and the other shareholders in B have conspired to broadcast invalid witnesses.
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Any randomly selected authorized subset B must contain at least one correct shareholder (con-

sistent with the assumption that at most m−1 old shareholders are faulty). If the new shareholders

find that one of the SHARES-VALID or SUBSHARES-VALID conditions does not hold, they can restart

the redistribution protocol with another authorized subset until both conditions hold. For Γ
(m,n)
P

, the

number of times the new shareholders must restart the redistribution protocol is bounded in the

worst case by the number of sets of size m containing at least one faulty shareholder, given m− 1

faulty shareholders:

(

n

m

)

−

(

n−m+1

m

)

=
m−1

∑
i=1

(

m−1

i

)(

n−m+1

m− i

)

(3.20)

The VSR protocol does not specify a restart mechanism. A system that incorporates the VSR

protocol would need to implement a mechanism to detect “abort” messages (step 3 of REDIST in

Figure 3.3), and restart the protocol with a different authorized subset in Γ
(m,n)
P

.

3.2.3 Computation cost

The computation cost of verification for each old shareholder in the VSR protocol (step 2 of REDIST

in Figure 3.3) is O(m′) W (x) computations. Consider redistribution from the access structure Γ
(m,n)
P

to the access structure Γ
(m′,n′)
P ′ . Each old shareholder i ∈ B (B ∈ Γ

(m,n)
P

) computes W (si) for its share

si, and W (ai j) for each of the m′−1 coefficients ai j in the subshare generation polynomial ai(x), for

a total cost of O(m′).

The computation cost of verification for each new shareholder (step 3 of REDIST) is O(m) W (x)

computations, O(mm′)⊕ operations, and O(mm′)⊗ operations. Again, consider redistribution from

the access structure Γ
(m,n)
P

to the access structure Γ
(m′,n′)
P ′ . Each new shareholder j ∈ P

′ computes

W (ŝi j) to obtain a witness of the subshare ŝi j from each i (i ∈ B , |B| = m), for a total cost of

O(m). Each j also performs m′− 1 ⊕ operations (B ′ ∈ ΓP ′ ; |B ′| = m′) and m′− 1 ⊗ operations

for m old shareholders i ∈ B to verify that SUBSHARES-VALID holds (Equation (3.8)), for a total

cost of O(mm′). Finally, each j also performs m− 1 ⊕ operations and m ⊗ operations to verify

that SHARES-VALID holds (Equation (3.17)), for a total cost of O(m); I exclude the (small) cost of

computing the powers of i because it is generally small compared to the cost of W (x), ⊕, and ⊗

(Chapter 5).
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3.2.4 Protocol correctness on termination

For the verifiable redistribution of shares of a secret k from an authorized subset B in the access

structure Γ
(m,n)
P

to the access structure Γ
(m′,n′)
P ′ , I prove that if at least 2m′ − 1 new shareholders

broadcast a “commit” message, SHARES-VALID and SUBSHARES-VALID both hold. I then prove

that SHARES-VALID and SUBSHARES-VALID are sufficient conditions for NEW-SHARES-VALID.

Lemma 1 If at least 2m′ − 1 shareholders in P
′ broadcast a “commit” message, SUBSHARES-

VALID holds.

PROOF: Assume that at least 2m′ − 1 shareholders in P
′ broadcast a “commit” message. Also,

recall the assumption that, at most, m′− 1 shareholders in P
′ are faulty. I then need to prove that

SUBSHARES-VALID holds.

Consider the shares si of old shareholders i ∈ B , and the subshares ŝi j that are distributed to new

shareholders j ∈ P
′. At most, m′− 1 “commit” messages originate from faulty new shareholders.

Because at least 2m′−1 new shareholders broadcast “commit” messages, at least m′ messages must

originate from correct shareholders that together constitute an authorized subset B
′ ∈ Γ

(m′,n′)
P ′ . Each

j ∈ B
′ broadcasts a “commit” message only if Equation (3.8) holds for its subshare ŝi j from each i

(step 3 of REDIST in Figure 3.3), i.e.,

∀ j ∈ B
′ : ∀i ∈ B : W (ŝi j) ≡W (si)⊕ (W (a′i1)⊗ j)⊕ . . .⊕ (W (a′i(m′−1))⊗ jm′−1)

which (from the homomorphic properties of the witness function W (x)) is equivalent to

∀ j ∈ B
′ : ∀i ∈ B : ŝi j = si +a′i1 j . . .a′i(m′−1) jm′−1

The ŝi j of j can be used to reconstruct si by Lagrange interpolation, i.e.,

∀i ∈ B : si = ∑
j∈B ′

b′j ŝi j

¤
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Lemma 2 If at least m′ shareholders in P
′ broadcast a “commit” message, SHARES-VALID holds.

PROOF: Assume that at least m′ shareholders in P
′ broadcast a “commit” message. Also, recall the

assumption that, at most, m′− 1 shareholders in P
′ are faulty. I then needs to prove that SHARES-

VALID holds.

Consider the secret k, the shares si of old shareholders i ∈ B , and the witnesses W (si) of the

shares and W (k) of the secret. At most, m′−1 “commit” messages originate from faulty sharehold-

ers. Any remaining “commit” messages must originate from correct shareholders j ∈ P
′. Each j

broadcasts a “commit” message only if Equation (3.17) holds (step 3 of REDIST in Figure 3.3), i.e.,

W (k) =
M

i∈B

W (si)⊗bi

which (from the homomorphic properties of the witness function W (x)) is equivalent to

k = ∑
i∈B

bisi

Note that because the witnesses are sent by reliable broadcast, all new shareholders will see the

same values. Thus, if SHARES-VALID holds at one correct shareholder, it will hold at all correct

shareholders. ¤

Theorem 1 (VSR correctness on termination) If SHARES-VALID and SUBSHARES-VALID hold,

NEW-SHARES-VALID holds.

PROOF: Assume that SHARES-VALID and SUBSHARES-VALID hold. One then needs to prove that

NEW-SHARES-VALID holds.

The correctness proof is similar to that for Desmedt and Jajodia’s secret redistribution protocol

[16]. There exists B
′ ∈ Γ

(m′,n′)
P ′ such that:
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k = ∑
i∈B

bisi (Lemma 2)

= ∑
i∈B

(

bi ∑
j∈B ′

b′j ŝi j

)

(Lemma 1)

= ∑
i∈B

∑
j∈B ′

bib
′
j ŝi j (x(y+ z) = xy+ xz)

= ∑
i∈B

∑
j∈B ′

b′jbiŝi j (xy = yx)

= ∑
j∈B ′

∑
i∈B

b′jbiŝi j (x+ y = y+ x)

= ∑
j∈B ′

(

b′j ∑
i∈B

biŝi j

)

(xy+ xz = x(y+ z))

= ∑
j∈B ′

b′js
′
j (Equation (3.4))

¤

3.2.5 Protocol security

For the verifiable redistribution of shares of a secret k from an authorized subset B in the access

structure Γ
(m,n)
P

to the access structure Γ
(m′,n′)
P ′ , I show that an adversary cannot reconstruct k from

a combination of shares from the old and new sets of shareholders. In particular, I prove a lemma,

Lemma 7, that an adversary cannot combine the shares of shareholders in the non-authorized sub-

set B /∈ Γ
(m,n)
P

(|B| < m) and the shares of shareholders in the non-authorized subset B ′ /∈ Γ
(m′,n′)
P ′

(|B ′| < m′) to uniquely determine k. I have not been able to prove a second lemma, Lemma 8, that

a computationally-bound adversary cannot use the shares of shareholders in B with the witnesses

W (k),W (s1), . . . ,W (sm) to uniquely determine k. I do, however, provide a conjecture (and corre-

sponding proof sketch) that would follow from Lemmas 7 and 8: a computationally-bound adver-

sary cannot use the shares of shareholders in B and B ′, and the witnesses W (k),W (s1), . . . ,W (sm)

to uniquely determine k.
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I require some lemmas presented by Beaumont [4] and Kostrikin [36] for systems of u linear

equations in v unknowns of the form

m11x1 +m12x2 + · · · +m1vxv = b1

m21x1 +m22x2 + · · · +m2vxv = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mu1x1 +mu2x2 + · · · +muvxv = bu

(3.21)

Let M, x, and b denote

M =









m11 · · · m1v

...
. . .

...

mu1 · · · muv









, x =









x1

...

xv









, b =









b1

...

bu









let [M|b] denote the augmented matrix

[M|b] =









m11 · · · m1v b1

...
. . .

...
...

mu1 · · · muv bu









let rank(M) denote the rank of M (number of linearly independent columns in M), and let det(M)

denote the determinant of M.

Lemma 3 rank(M) = rank(MT ).

Lemma 4 (Kronecker-Capelli theorem) Iff rank(M) = rank([M|b]), Equation (3.21) has a solu-

tion for x. Furthermore, if rank(M) < v, Equation (3.21) has no unique solution for x.

Lemma 5 (Cramer’s rule) If u = v and det(M) 6=0, Equation (3.21) has a unique solution for x.

Lemma 6 For u×u matrix A, v× v matrix B, and u× v matrix C,

det

([

A C

0 B

])

= det(A)det(B)

PROOF: By Kostrikin [36]. ¤
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Lemma 7 (VSR share security) An adversary cannot combine the shares si of shareholders i in

any non-authorized subset B /∈ Γ
(m,n)
P

(|B| < m) with the shares s′j of shareholders j in any non-

authorized subset B ′ /∈ Γ
(m′,n′)
P ′ (|B ′| < m′) to uniquely determine k.

PROOF: Assume that there is a unique solution for k from the shares of shareholders in B and B ′. I

will show that this assumption leads to a contradiction.

Suppose that |B|= m−1 and |B ′|= m′−1, and suppose that the adversary has obtained si of i ∈

B and s′j of j ∈ B ′. Without loss of generality, suppose that the shares are s1, . . . ,sm−1,s
′
1, . . . ,s

′
m′−1.

Equation (3.1) can be used to construct the system of equations





















































1 1 · · · 1m−1 0 · · · 0

...
... · · ·

...
...

...

1 i · · · im−1
...

. . .
...

...
... · · ·

...
...

...

1 (m−1) · · · (m−1)m−1
0 · · · 0

1 0 · · · 0 1 · · · 1m′−1

1
...

...
... · · ·

...

1
...

. . .
... j · · · jm′−1

1
...

...
... · · ·

...

1 0 · · · 0 (m′−1) · · · (m′−1)m′−1



















































































k

a1

...

am−1

a′1
...

a′
m′−1































=

















































s1

...

si

...

sm−1

s′1
...

s′j
...

s′
m′−1

















































(3.22)

Let M denote the left-hand matrix in Equation (3.22), a the coefficient vector k, a1 ... a′m′−1, and

s the share vector. The maximum possible value for rank(M) is the number of rows (m+m′−2, by

Lemma 3), which is less than the number of values in a (m+m′−1). Also, rank(M) = rank([M|s])

since s is a linear combination of the columns of M (by the method of share generation). Thus, there

are no unique solutions for a in Equation (3.22) (by Lemma 4). One arrives at the same conclusion

for any B ′′ /∈ Γ
(m′,n′)
P ′ such that |B ′′| < m′−1.
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By assumption, there is a unique solution for k, thus Equation (3.22) can be re-written as





















































1 · · · 1m−1 0 · · · 0

... · · ·
...

...
...

i · · · im−1
...

. . .
...

... · · ·
...

...
...

(m−1) · · · (m−1)m−1
0 · · · 0

0 · · · 0 1 · · · 1m′−1

...
...

... · · ·
...

...
. . .

... j · · · jm′−1

...
...

... · · ·
...

0 · · · 0 (m′−1) · · · (m′−1)m′−1















































































a1

...

am−1

a′1
...

a′
m′−1



























=

















































s1 − k

...

si − k

...

sm−1 − k

s′1 − k

...

s′j − k

...

s′
m′−1

− k

















































(3.23)

Let Mk denote the left-hand matrix in Equation (3.23), and let ak denote the coefficient vector

a1 ... a′m′−1. Let MUL
k and MLR

k denote the upper-left and lower-right square sub-matrices of Mk

MUL
k =









1 · · · 1m−1

...
. . .

...

(m−1) · · · (m−1)m−1









and

MLR
k =









1 · · · 1m′−1

...
. . .

...

(m′−1) · · · (m′−1)m′−1









One can express det(MUL
k ) as

det(MUL
k ) = 1 · · ·(m−1)

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1m−2

...
. . .

...

1 · · · (m−1)m−2

∣

∣

∣

∣

∣

∣

∣

∣

= 1 · · ·(m−1) ∏
1≤i, j≤m−1;i> j

(i− j)

and observe immediately that det(MUL
k ) and det(MLR

k ) are non-zero. Thus, det(Mk) is non-zero

since det(Mk) = det(MUL
k )det(MLR

k ) (by Lemma 6).
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Equation (3.23) has a unique solution for ak, because det(Mk) is non-zero (by Lemma 5). If

Equation (3.23) has a unique solution for ak, Equation (3.22) has a unique solution for a, because

there is a unique solution for k. But it has been established that there is no unique solutions for a,

so assuming that there is a unique solution for k has led to a contradiction. ¤

Lemma 8 (VSR witness security) A computationally-bound adversary cannot use the shares of

shareholders in any non-authorized subset B /∈ Γ
(m,n)
P

(|B| < m) with the witnesses W (k), W (s1),

. . ., W (sm) to uniquely determine k.

PROOF SKETCH: To prove the lemma, I would prove that determining k from the shares of share-

holders in B and the witnesses W (k),W (s1), . . . ,W (sm) is computationally equivalent to the in-

tractable problem of determining k from W (k)

Conjecture 1 (VSR security) A computationally-bound adversary cannot use the shares of share-

holders in any non-authorized subset B /∈ Γ
(m,n)
P

(|B| < m), the shares of shareholders in any non-

authorized subset B ′ /∈ Γ
(m′,n′)
P ′ (|B ′| < m′), and the witnesses W (k),W (s1), . . . ,W (sm) to uniquely

determine k.

PROOF SKETCH: From Lemma 7, the adversary cannot uniquely determine k from the shares of

shareholders in B and B ′. From Lemma 8, the adversary cannot uniquely determine k from the

shares of shareholders in B and W (k),W (s1), . . . ,W (sm).

3.3 The mobile adversary and the VSR protocol

Here, I show that the VSR protocol fulfills requirements from Chapter 2 for a recovery protocol.

• It generates new shares for the next epoch such that they can be used to reconstruct the secret

(Theorem 1), and such that they cannot be combined with shares from the current epoch to

reconstruct the secret (Lemma 7).

• It includes mechanisms to prevent the adversary from corrupting protocol execution, because

the adversary may still control some servers (i.e., shareholders) during the update phase. The

old servers broadcast witnesses for the SHARES-VALID and SUBSHARES-VALID conditions

(step 2 of REDIST in Figure 3.3). The new servers then verify that the SHARES-VALID and
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SUBSHARES-VALID conditions hold before they generate new shares (step 3); if the con-

ditions hold, the new shares are valid (Theorem 1). The protocol does not reconstruct the

original secret, thus there is no server the adversary can subvert to obtain the secret directly.

• It erases the shares for the current epoch from server memories (step 4 of REDIST), to prevent

the adversary from ever obtaining any other current shares it needs.

• It must allow the system to change the threshold parameter of the underlying data distribution

scheme. The system can accomplish such a change when executing the protocol (step 1 of

REDIST).

I show how an abstract storage system with dynamic membership can use the VSR protocol

to counteract a mobile adversary. Consider the system shown in Figure 3.4. The figure shows

the memory contents of the servers and the adversary during two consecutive epochs t and t + 1

and the intervening update phase. The system uses Shamir’s threshold sharing scheme [49], with

the parameters (m,n) in epoch t and (m′,n′) in epoch t + 1. For simplicity, assume that the sets of

servers in the two epochs are disjoint. In each epoch, the adversary may only control a sub-threshold

number of servers.

Initially, in epoch t, the adversary has subverted servers 1 through m−1 and has obtained their

shares. During the update phase, m correct servers from epoch t (say, m through 2m− 1) use the

VSR protocol to redistribute their shares to the servers from epoch t + 1; note that the adversary

still controls servers 1 through m−1, but does not control any of the new servers 1′ through n′. At

the end of the update phase, servers from epoch t erase their shares. In epoch t + 1, the adversary

subverts servers 1′ through m′−1 and obtains their shares.

The VSR protocol, by fulfilling the design requirements for a recovery protocol, is able to

prevent the mobile adversary from ever obtaining enough shares to reconstruct the original data. In

epoch t + 1, the adversary will have the shares from all of the servers it subverted in all epochs,

i.e., at most m− 1 shares from epoch t and m′− 1 shares from epoch t + 1. However, it is unable

to combine the two sets of shares to reconstruct k (Section 3.2.5). The adversary can never obtain

more than m− 1 shares from epoch t because all of the correct servers from epoch t erase their

shares (step 4 of REDIST). There is no server that the adversary can subvert to obtain k directly

because the protocol does not reconstruct the secret at any server. Finally, the adversary cannot

learn k directly from the broadcast of W (k) (step 2 of REDIST), consistent with the assumption that

inversion of the witness function is intractable.
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Figure 3.4: A storage system with dynamic membership that uses the VSR protocol to redistribute shares of

a secret from the access structure Γ
(m,n)
P

to the access structure Γ
(m′,n′)
P ′ , in the presence of a mobile adversary.

The memory contents (i.e., shares) of the adversary and servers are shown for two consecutive epochs t and

t +1 and the intervening update phase. The adversary may only control m−1 servers in epoch t, and m′−1

servers in epoch t + 1. Crosshatched servers are under the control of the adversary. The sets of servers in

epochs t and t + 1 are disjoint. The system executes the VSR protocol during the update phase to generate

new (marked by primes) shares for correct servers. New shares cannot be combined with current shares to

reconstruct the original data. The distribution of subshares during the update phase is shown, but the broadcast

of witnesses is omitted to simplify the figure. In epoch t, the adversary subverts servers 1 through m−1 and

obtains their shares. During the update phase, the system removes all servers from under the control of the

adversary. In epoch t +1, the adversary subverts servers 1′ through m′−1 and obtains their shares. However,

the adversary does not (and can never) obtain enough shares (current or new) to reconstruct the original data.
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3.4 Summary

I have presented the VSR protocol for Shamir’s sharing scheme. The VSR protocol operates by

having an authorized subset of old shareholders distribute subshares of their shares to new share-

holders. The new shareholders generate new shares from the subshares. A key insight embodied in

the VSR protocol is that the verification is a two-step process: not only must the new shareholders

verify the validity of the subshares they receive (the SUBSHARES-VALID condition), but they must

also verify the validity of the shares used to distribute those subshares (the SHARES-VALID con-

dition). To enable verification of the validity of old shares, the dealer of the original secret must

provide a witness of the secret to the old shareholders during the distribution of shares, and the old

shareholders in the authorized subset must all broadcast the witness to the new shareholders. The

old shareholders must also broadcast witnesses of their shares, and of the coefficients of the sub-

share generation polynomials. By verifying the validity of shares and subshares, new shareholders

implicitly verify the validity of their new shares (the NEW-SHARES-VALID condition).

I have shown how a storage system can use the VSR protocol to counteract the mobile adversary

in a system with dynamic membership. If a faulty old shareholder (i.e., a shareholder under the con-

trol of the adversary) sends invalid protocol information, the new shareholders will detect that some

subset of the old shareholders are faulty. The new shareholders in some cases can pinpoint faulty

shareholders that send invalid information (e.g., if a faulty shareholder sends an invalid subshare),

but otherwise can only detect that faulty shareholders exist.
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Chapter 4

Hathor: An Experimental Storage

System

O thou beautiful Being, thou dost renew thyself in thy season in the form of the

Disk, within thy mother Hathor.

— Papyrus of Nekht, Brit. Mus. No. 10471, Sheet 2

In this chapter, I discuss the design and implementation of an experimental storage system called

Hathor1. The primary purpose of Hathor is to prove the thesis that recovery can be efficient. It is

an experimental platform for the evaluation of the end-to-end cost of storing, redistributing, and

retrieving data, using a variety of data distribution schemes. Hathor is designed to operate in the

system environment defined by the abstract system model described in Chapter 2: a client-server

environment in which clients are always correct, but in which some number of servers may be

controlled by an adversary—that is, they may be faulty. In what follows, I use “the client” as a

shorthand to refer to the portion of Hathor that executes on clients in the system, and “the server”

as a shorthand to refer to the portion that executes on servers.

1Hathor is the Greek transliteration of the Egyptian name Ht-Hrt. In Egyptian mythology, Hathor is the Goddess of

the Dead and the Protectoress of the City of the Dead in Thebes. I wanted to pick a system name that (for once) was

not a Greek or Roman name. Also, Hathor was originally conceived as a write-infrequently, read-mostly data archive

prototype, which made the name seem particularly appropriate.
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Figure 4.1: REPLICA, THRESHOLD, and HYBRID data distribution schemes implemented in Hathor. In each

scheme, n servers stores a piece of the original data, and m pieces are required to recover the data. For both

REPLICA and HYBRID, the servers store identical encrypted replicas of the data; additionally for HYBRID, the

servers store different shares of the encryption key but identical key witnesses. For THRESHOLD, the servers

store different shares of the data but identical witnesses to the data. Each replica, data share, and data witness

is the same size as the original data; each key share and key witness is the same size as the key.

4.1 Data distribution schemes

Hathor implements three data distribution schemes: REPLICA, THRESHOLD, and HYBRID. I have

selected these schemes in order to model common schemes used in other survivable storage systems.

Thus, the performance evaluation in Chapter 5 should provide a rough guide to the cost of supporting

decentralized recovery in a variety of environments.

All of the schemes are m-of-n schemes. Figure 4.1 shows the contents of the pieces stored by

each server given a particular scheme. To store data, a client distributes a piece of the data to each of

the n servers; each piece contains a replica, a share, and a witness as appropriate for the distribution

scheme in use. To retrieve the data, the client retrieves the pieces from m servers and reconstructs

the data. In terms of the mobile adversary model, I assume that storage and retrieval operations

occur during an epoch (and not during a update phase), and that an adversary can subvert at most

m−1 servers in an epoch.

Informally, the process of distribution and reconstruction of data for each scheme is as follows:

• REPLICA: To store data, the client distributes an encrypted replica of the data to each server,

and stores the encryption key locally. Each server stores the encrypted replica. To retrieve

data, the client retrieves replicas from m servers, verifies that all of the replicas are identical
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(to prevent faulty servers from convincing it to accept an invalid replica), and decrypts one of

the replicas to recover the original data.

REPLICA is similar to the scheme used in the Farsite [1, 11], PAST [47], and Pond [37, 46]

survivable storage systems.

• THRESHOLD: To store data, the client uses the INITIAL phase of the VSR protocol (Fig-

ure 3.3) to generate n shares of the data and a witness of the data. Each server stores a share

and the witness; the servers will use the witness during the redistribution of shares (the RE-

DIST phase of the VSR protocol). To retrieve data, the client retrieves shares from m servers,

and uses Shamir’s scheme [49] to reconstruct the original data.

A variant of THRESHOLD without redistribution is implemented as one of the available

schemes in the PASIS survivable storage system [53].

• HYBRID: To store data, the client distributes an encrypted replica of the data to each server. It

also uses the INITIAL phase of the VSR protocol to generate n key shares and a key witness.

Each server stores the encrypted replica, a key share, and the key witness; the servers will

use the witness during the redistribution of key shares. To retrieve data, the client retrieves

shares and replicas from m servers, verifies that all of the replicas are identical (to prevent

faulty servers from convincing it to accept an invalid replica), and uses Shamir’s scheme to

reconstruct the original encryption key. It then decrypts one of the replicas to recover the

original data.

A variant of HYBRID without redistribution of key shares is similar to the scheme used in the

Publius robust publishing system [52]. It is also similar to the scheme used in the e-Vault data

repository [33]; the difference is that e-Vault stores IDA fragments [42] of the original data at

each server, instead of a complete replica.

Previous comparison studies show that REPLICA is generally faster than either THRESHOLD or

HYBRID [53], which raises the question as to why one would use schemes other than REPLICA. One

reason is that diversity in schemes can provide an additional defense against system compromise,

in the same way that diversity in server operating systems provides a defense: an adversary may

not be able to leverage the ability to compromise data stored with one scheme (e.g, REPLICA)

to compromise data stored with a different scheme (e.g., THRESHOLD). A second reason is that

THRESHOLD and HYBRID enable the client to store data without the need manage an encryption

key: with THRESHOLD, no key is required, while with HYBRID, the key is managed with the data.
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Figure 4.2: Functional modules of the client and server implementations of Hathor. The broken line rep-

resents the border between parts of Hathor that are always correct, and parts of Hathor that may be either

correct or faulty (i.e., the parts that may be controlled by an adversary). The user application is shown as

a module (though it is not strictly part of Hathor), and is included inside the border to emphasize the fact

that the application can only access the servers via the distribution and reconstruction module. The various

point-to-point channels are also included inside the border.

Though I will use REPLICA as the baseline scheme for the performance evaluation in Chapter 5,

one should bear in mind the non-performance reasons for using THRESHOLD or HYBRID.

4.2 Client and server implementation

The Hathor client and server implementations are fairly lightweight. The implementation supports

the REPLICA, THRESHOLD, and HYBRID schemes as described above, and also supports the pro-

tocols necessary to redistribute pieces of data generated by the schemes. It supports enough of

a communications and disk storage infrastructure to measure the end-to-end cost of data storage,

redistribution, and retrieval operations.

The client and server implementations in Hathor are composed of abstract functional modules,

as shown in Figure 4.2. The dashed line around the modules represents the border between the parts

of the Hathor that are always correct and the parts that may potentially be faulty (i.e., the modules

that may be controlled by an adversary). I include the various point-to-point channels inside the

border to emphasize the assumptions about their privacy, reliability, and ordering properties.
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The Hathor client implements the functionality necessary to store and retrieve data. The distri-

bution and reconstruction module implements the threshold sharing and encryption algorithms used

by REPLICA, THRESHOLD, and HYBRID, and the communication module manages the client-server

channels. A user application stores and retrieves data through an interface that is exported by the

distribution module. I assume that the application can only access the servers via the distribution

module, and thus cannot disrupt server operation through the direct injection of invalid messages

into the client-server channel. To emphasize this constraint, I show the application as a module in

the client in Figure 4.2, and include it inside the border of the parts of Hathor that are always correct.

The Hathor server is more complex than the client. The redistribution module implements a

pair of state machines (Section 4.3.2) to manage the redistribution of pieces of data for REPLICA,

THRESHOLD, and HYBRID. A disk I/O module marshals pieces of data to and from the on-disk

representations. An event module parses the messages that drive the redistribution state machine; it

also passes client requests to store and retrieve pieces to the disk I/O module.

The server communication module is largely a wrapper around the Ensemble group communi-

cations toolkit [29]. The module manages the client-server channels, as well as the server-server

channels. The module (in conjunction with the communication modules on other servers) also im-

plements a broadcast channel abstraction on top of the server-server channels. A group membership

service within the module maintains a view of active servers that are sending and receiving broad-

cast messages. The service updates the view whenever a server joins or leaves Hathor, and assigns

a unique rank to each server in the view. The communication module is included inside the border

of modules that are always correct, consistent with the assumption in Chapter 2 that an adversary

cannot disrupt the broadcast channel (e.g., a set of servers controlled by the adversary cannot break

the property that a broadcast message M is either delivered to all servers or to none of them). Note

that the adversary can still see all broadcast messages even if the communication modules are al-

ways correct: a server controlled by the adversary can simply pass on any messages received by the

server at the event module.

4.3 I/O operations

Hathor supports three basic I/O operations: STORE, REDISTRIBUTE, and RETRIEVE. STORE stores

pieces of data to a set of servers. RETRIEVE retrieves a sufficient number of pieces to reconstruct

the original data. REDISTRIBUTE redistributes pieces from an old set of servers to the new set of

servers, and verifies that any new pieces can be used to reconstruct the original data. In this section, I
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Figure 4.3: STORE state machine for clients and servers. States correspond to intermediate computations,

while state transitions correspond to sent or received messages. Clients start in the initial-client state, and

servers start in the initial-server state. Solid arrows indicate transitions taken by correct clients and servers,

while dashed arrows indicate transitions that may be taken by faulty servers. Unlabeled dashed arrows that

loop to the same state indicate no-op self-transitions.

discuss what steps each operation takes for each data distribution scheme. In particular, I show how

the implementation of REDISTRIBUTE for the THRESHOLD scheme corresponds to the VSR pro-

tocol in Section 3.2, and how the implementations of REDISTRIBUTE differ between the REPLICA,

THRESHOLD, and HYBRID schemes (which will help to explain the results in Section 5.3).

For each scheme, I consider storage and retrieval using an m-of-n scheme, and redistribution

to change the scheme parameters from m-of-n to m′-of-n′. As stated before, I assume during a

STORE or RETRIEVE that at most m− 1 servers may be faulty. Additionally, I assume during a

REDISTRIBUTE that at least m old servers are correct, that at most m−1 old servers are faulty, that

at least m′ new servers are correct, and that at most m′− 1 new servers are faulty, consistent with

the assumptions about faulty servers in the presentation of the VSR protocol.

4.3.1 STORE

The state machines in Figure 4.3 show the sequences of steps at the client and server for a STORE

to an m-of-n scheme. Transitions between states are atomic, e.g., the client does not make a transi-

tion from the ack-wait state to the done-client state until it has received all n acknowledgments. I

describe the sequence of steps for a client, a correct server, and a faulty server below.
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A client starts in the initial-client state. When the client receives data from the user application,

it makes a transition to the dist state, in which it obtains the view of active servers from the servers’

group membership service, and distributes a piece of the data to each of the servers. The client also

computes and sends an checksum of the data to each server; it will later use the checksum to verify

the validity of reconstructed data. The client next makes a transition to the ack-wait state, in which

it waits to receive an acknowledgment from each of the n servers; an acknowledgment indicates that

a server has written its piece to disk. The client then makes a final transition to the done-client state.

A correct server starts in the initial-server state. When the server receives a piece of data and a

checksum from a client, it makes a transition to the recv state. In the recv state, the server “sends”

a write request to itself, and immediately makes a transition to the write state. In the write state, the

server writes the piece and the checksum to disk, sends an acknowledgment back to the client, and

makes a transition to the done-server state.

A faulty server also starts in the initial-server state. When the server receives a piece of data

from a client, it makes a transition to the recv state. In the recv state, a faulty server may send an

acknowledgment to the client, and make a transition to the done-server state. The client will think

the server has stored its piece even though the server has not written the piece to disk. However, m

servers are guaranteed to write their pieces to disk (consistent with the assumption that at least m

servers are correct), thus subsequent REDISTRIBUTE or RETRIEVE operations can execute.

A faulty server may also cease to send messages while in the recv or write states, which results

in no-op self-transitions. If the server remains in these states forever, the client that sent the piece

(that triggered the transition from the initial-server state to dist state) will wait forever to receive an

acknowledgment from the server, and will thus wait forever to complete a STORE.

Strictly speaking, a client does not need to wait to receive acknowledgments from the servers,

because the servers are guaranteed to receive pieces sent by the client (consistent with the assump-

tion of reliable private channels in Chapter 2), and at least m correct servers are guaranteed to write

their pieces to disk. In practice, the client waits to receive acknowledgments to measure of the end-

to-end cost of storing data: the client starts its timer when it receives data from the application, and

stops its timer when it receives acknowledgments from the n servers. The client thus runs the risk

that it will wait forever in the ack-wait state if a faulty server does not send an acknowledgment.
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Figure 4.4: REDISTRIBUTE state machine for old servers. States correspond to intermediate computations,

while state transitions correspond to sent or received messages. Old servers start in the initial-old state. Solid

arrows indicate transitions taken by correct servers, while dashed arrows indicate transitions that may be

taken by faulty servers. Unlabeled dashed arrows that loop to the same state indicate no-op self-transitions.

4.3.2 REDISTRIBUTE

The state machines in Figure 4.4 and Figure 4.5 show the sequences of steps for a REDISTRIBUTE

when changing scheme parameters from m-of-n to m′-of-n′, in which m old servers redistribute

their pieces of the original data to n′ new servers. There is no client state machine because clients

do not participate in REDISTRIBUTE. As for STORE, transitions between states are atomic, e.g.,

an old server does not make the transition from the erase-wait state to the erase state until it has

received all n′ “commit” messages. For simplicity, I describe the steps when THRESHOLD is used

to distribute pieces of the original data, and then highlight how REPLICA or HYBRID differ.

In the current implementation of Hathor, m old servers and all n′ new servers participate in

REDISTRIBUTE. Moreover, Hathor requires all n′ new servers to send “commit” messages before

completing redistribution, to ensure that all non-faulty servers have valid pieces of data; thus, a

faulty old server or a faulty new server can cause all servers to either hang or abort. In an exper-

imental system whose primary purpose is to measure the end-to-end cost of redistribution, such

behavior is tolerable: a human operator can shut Hathor down and determine the cause of the fault.

However, such behavior would be unacceptable for a production system.
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Old server state machine

A correct old server follows the state machine transitions indicated by the solid arrows in Figure 4.4.

The server starts in the initial-old state with a share of the original data and a witness of the data.

When the server receives a redistribution request, it makes a transition to the redist state. There, the

server distributes subshares of its share (step 1 of REDIST in the VSR protocol of Figure 3.3) and

the checksum of the original data to each server. The server also broadcasts the witness of the data,

the witness of its share, and the witnesses of the coefficients of its subshare generation polynomial

(step 2 of REDIST). Once the server has sent subshares and witnesses, it makes a transition to the

erase-wait state. In the erase-wait state, the server waits to receive a “commit” message from each

of the n′ new servers. Upon receiving the n′ “commit” messages, the server makes a final transition

to the erase state, and erases its share.

A faulty old server may make the following additional state machine transitions, as indicated by

the dashed arrows in Figure 4.4:

• It may send its share to the adversary while in any state other than the erase state. Sending

a share results in a self-transition. The erase state does not have this self-transition since the

server will have erased its share in this state.

Note that the adversary will never obtain enough shares to reconstruct the original data, con-

sistent with the assumption that at most m−1 old servers are faulty.

• It may “send” an erase request to itself while in any state other than the erase state, which

results in a transition to the erase state.

• It may send invalid subshares, witnesses, or checksums while in the redist state. Recall from

Section 3.2.1 that invalid subshares do not reconstruct a consistent value, and that invalid wit-

nesses do not correspond to the original data, or to shares of the data, or to the coefficients of

the subshare generation polynomial. Sending invalid information results in a self-transition:

the server remains in the redist state.

• It may refuse to send subshares or witnesses while in the redist state, and thus remain in that

state forever (resulting in a no-op self-transition).

• It may refuse to “send” an erase request to itself while in the erase-wait state, and thus remain

in that state forever (resulting in a no-op self-transition).
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Figure 4.5: REDISTRIBUTE state machine for new servers. States correspond to intermediate computations,
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Solid arrows indicate transitions taken by correct servers, while dashed arrows indicate transitions that may

be taken by faulty servers. Unlabeled dashed arrows that loop to the same state indicate no-op self-transitions.

New server state machine

A new server follows the state machine transitions indicated by the solid arrows in Figure 4.5. The

server starts in the initial-new state. When the server receives a redistribution request, it makes a

transition to the verify-wait state, in which the server waits to receive a subshare, the corresponding

witnesses, and a checksum from each of the m old servers; note that a faulty old server may send

invalid information. Upon receiving the m subshares, witnesses, and checksums, the server makes

a transition to the verify state.

While in the verify state, a new server tries to verify that the SHARES-VALID and SUBSHARES-

-VALID conditions hold for the subshares and witnesses (step 3 of REDIST in the VSR protocol of

Figure 3.3). It also tries to verify that all m of the received checksums match (to prevent m−1 faulty

servers from convincing it to accept an invalid checksum). The server may then make one of several

possible transitions:

• If it verifies that the SHARES-VALID and SUBSHARES-VALID conditions hold, and that the

checksums match, it broadcasts a “commit” message, which results in a transition to the gen-

wait state.

• If it finds that the SHARES-VALID and SUBSHARES-VALID conditions do not both hold, or

that the checksums do not match, it broadcasts an “abort” message to indicate that it has
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received invalid information from at least one of the old servers (i.e., at least one of the m old

servers is faulty; recall from Section 3.2.2 that new servers may not be able to pinpoint faulty

old servers). Sending an “abort” message results in a transition to the abort state.

• If it receives an “abort” message, it makes a transition to the abort state.

When the server enters the gen-wait state, it waits to receive a “commit” message from each of

the n′ new servers (note that it will have received its own message). If the server receives an “abort”

message, it makes a transition to the abort state. Otherwise, upon receiving n′ “commit” messages,

the server makes a transition to the gen state, in which it generates a new share from the received

subshares, and writes the share, the witness to the original data, and the checksum to disk.

A faulty old server may make the following additional state machine transitions, as indicated by

the dashed arrows in Figure 4.5:

• It may broadcast a “commit” message while in any of the initial-new, verify-wait, or verify

states, even if it has not verified that the SHARES-VALID and SUBSHARES-VALID conditions

both hold. This results in a transition to the gen-wait state.

• It may broadcast an “abort” message while in any of the initial-new, verify-wait, or verify

states, even if it has not found that the SHARES-VALID and SUBSHARES-VALID conditions do

not both hold. This results in a transition to the abort state.

• It may refuse to broadcast either a “commit” or an “abort” message while in the verify state,

and thus remain in that state forever (resulting in a no-op self-transition).

• It may refuse to generate a new share, and thus remain in the gen-wait state forever (resulting

in a no-op self-transition).

REDISTRIBUTE for REPLICA

The steps for an old server for REPLICA are slightly different from that for THRESHOLD. In the

state machine in Figure 4.4, an old server starts in the initial-old state with an encrypted replica

of the original data. In the redist state, the server sends its encrypted replica (instead of subshares

and witnesses). A faulty old server may instead send an invalid replica (i.e., one that is not an

encryption of the original data). A key difference between REPLICA and THRESHOLD is that no

broadcast occurs during redist.
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The steps for a new server are also slightly different. In the state machine in Figure 4.5, a

new server in the verify-wait state waits to receive a replica from each of the m old servers. In

the verify state, the server tries to verify that all m of the received replicas match (to prevent m−1

faulty servers from convincing it to accept an invalid replica). If the m replicas match, the server

broadcasts a “commit” message, otherwise it broadcasts an “abort” message. In the gen state, the

server simply writes the replica to disk.

Versions of the old and new server state machines for REPLICA are shown in Figure A.1.

REDISTRIBUTE for HYBRID

The steps for HYBRID are a combination of those for both REPLICA and THRESHOLD. In the state

machine in Figure 4.4, an old server starts in the initial-old state with an encrypted replica of the

original data, a share of the encryption key, and a key witness. In the redist state, the server sends

its encrypted replica, and also sends subshares of its key share and the corresponding witnesses. A

faulty old server may instead send invalid information.

The steps for a new server are also a combination. In the state machine in Figure 4.5, the server

in the verify-wait state waits to receive a replica, a key subshare, and witnesses from each of the m

old servers. In the verify state, a server verifies that all m of the received replicas match, and also

verifies that the SHARES-VALID and SUBSHARES-VALID conditions hold for the key subshares and

witnesses. If the m replicas match and the SHARES-VALID and SUBSHARES-VALID conditions hold,

the server broadcasts a “commit” message, otherwise it broadcasts an “abort” message. In the gen

state, the server generates a new key share from the received key subshares, and writes the share,

the key witness, and the replica to disk.

Versions of the old and new server state machines for HYBRID are shown in Figure A.2.

4.3.3 RETRIEVE

The state machines in Figure 4.6 show the sequences of steps at the client and server for a RE-

TRIEVE from an m-of-n scheme. Transitions between states are atomic, e.g., the client does not

make a transition from the reconst-wait state to the reconst state until it has received all m shares,

checksums, and replicas (as appropriate for the distribution scheme). I describe the sequence of

steps for a client, a correct server, and a faulty server below.

A client starts in the initial-client state. When the client receives a retrieval request for the
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Figure 4.6: RETRIEVE state machine for clients and servers. States correspond to intermediate computations,

while state transitions correspond to sent or received messages. Clients start in the initial-client state, and

servers start in the initial-server state. Solid arrows indicate transitions taken by correct clients and servers,

while dashed arrows indicate transitions that may be taken by faulty servers. Unlabeled dashed arrows that

loop to the same state indicate no-op self-transitions.

original data from a user application, it makes a transition to the retrieve state, in which it obtains

the view of active servers from the servers’ group membership service, and sends a retrieval request

to the m highest ranked servers for their pieces of the data and the checksum of the data. The

client then makes a transition to the reconst-wait state, in which it waits to receive a piece and

checksum from each of the m servers. Upon receiving the m pieces and checksums, the client

makes a transition to the reconst state, in which it reconstructs the data from the pieces as described

in Section 4.1. It also verifies that all m of the received checksums match. If the checksums do

not match, or the checksum of the reconstructed data does not match the retrieved checksum, the

client makes a transition to the abort state. Otherwise, it sends the original data back to the user

application, and makes a transition to the done-client state.

A correct server starts in the initial-server state. When the server receives a retrieval request

from a client, it makes a transition to the read state, in which it reads its piece and checksum of the

original data from disk, and sends the piece and checksum to the client. It then makes a transition

to the done-server state.

A faulty server also starts in the initial-server state. When the server receives a retrieval request,

it makes a transition to the read state. In the read state, a faulty server may send an invalid piece or

an invalid checksum to the client. It then makes a transition to the done-server state.
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A faulty server may also cease to send messages while in the read state, which results in a no-op

self-transition. If the server remains in this state forever, the client that requested the piece of data

will wait forever for a piece from the server, and will thus wait forever to complete a RETRIEVE.

In the current implementation of Hathor, RETRIEVE suffers from a similar weakness as REDIS-

TRIBUTE: one or more faulty servers can cause the operation to hang. In a production system, the

client could retrieve pieces from at least m servers and try each m size permutation the pieces until

it found a permutation that contained only valid pieces.

4.4 Summary

I have presented the design and implementation of Hathor, an experimental storage system for

evaluating the cost of storing, redistributing, and retrieving data. The presentation includes details

of the REPLICA, THRESHOLD, and HYBRID data distribution schemes, as well as client and server

state machine specifications for the STORE, REDISTRIBUTE, and RETRIEVE operations.



Chapter 5

Performance Evaluation

I’ve got signals! I’ve got readings—in front and behind!

— Pvt. William Hudson, in “Aliens” (1986)

In this chapter, I present the results of experiments to measure the raw computation performance

of the VSR protocol (Chapter 3). The results show that the cost of the VSR protocol is dominated

by the cost of the witness function used in verification operations. I also present the results of

experiments to measure the end-to-end cost of storing, redistributing, and retrieving data with the

Hathor storage system (Chapter 4), using the REPLICA, THRESHOLD, and HYBRID data distribution

schemes (Section 4.1). The results show that although the overhead of THRESHOLD over REPLICA

increases with file size for all storage operations, the overhead of HYBRID remains roughly constant.

I go on to discuss ways of reducing the overhead still further.

In the presentation of the VSR protocol, I treated secrets as integers drawn from a finite field

with prime modulus p (Section 3.1.1). In practice, blocks of data cannot be treated as a single

integer: to treat a 1024-byte block this way would require a 8193-bit modulus! Thus, I treat blocks

of data as sequences of multi-bit chunks. If the modulus has size | p |, then each chunk has size

| p |−1 bits, to ensure that the integer representation of a chunk is less than p. We will see shortly

that | p |, and hence the chunk size, can have a counterintuitive effect on performance.

All performance numbers were taken on 2 GHz Intel Pentium 4 CPU workstations with 512 MB

of RAM. Arbitrary-precision integer operations were implemented using the Miracl package [50].
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Figure 5.1: Graphs of the time taken to generate n shares of an 8 KB secret, and reconstruct an 8 KB secret

from m shares, when using Shamir’s (m,n) threshold sharing scheme [49].

5.1 Shamir’s threshold sharing scheme performance

In this section, I present the results of experiments to measure the cost of Shamir’s (m,n) thresh-

old sharing scheme [49] in a finite field. Sharing operations were computed modulo a 1024-bit

prime number p. No witness function operations were performed. The results on their own are

unremarkable, but they will serve to show that the bulk of the computation cost of verifiable secret

redistribution is in verification-related operations, and not in threshold sharing operations.

The SHARE and RECONSTRUCT graphs in Figure 5.1 show the time taken to generate n shares of

an 8 KB secret, and the time taken to reconstruct an 8 KB secret from m shares. For both operations,

the time taken is linear in m for fixed n. We observe that the marginal cost for SHARE with increasing

n to generate an extra share is relatively small, and is constant for fixed m.
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5.2 Verifiable secret redistribution performance

In this section, I present the results of experiments to measure the computation cost of the VSR

protocol (Section 3.2). To assist with understanding where the costs are in the VSR protocol, I

present the time taken to execute the following steps within the protocol:

• SUBSHARE: The time taken by an old shareholder i to generate subshares ŝi j and SUB-

SHARES-VALID witnesses W (si), W (a1) . . .W (am−1) for the new shareholders j (steps 1 and

2 of REDIST in the VSR protocol of Figure 3.3).

• SHARES-VALID: The time taken by a new shareholder j to verify that the SHARES-VALID

condition holds (the second verification in step 3).

• SUBSHARES-VALID: The time taken by a new shareholder j to verify that the SUBSHARES-

VALID condition holds, which involves computing W (ŝi j) (the first verification in step 3).

• GENERATE-NEW-SHARE: The time taken by a new shareholder j to generate a new share s′j

from the subshares (step 4).

The cost of the VSR protocol is dominated by the time taken to compute the witness function

W (x) used in SUBSHARE and SUBSHARES-VALID. To investigate the cost, I measured the time

taken by each of the protocol steps using the two witness functions introduced in Section 3.1.3:

exponentiation and point multiplication in an elliptic curve.

5.2.1 VSR with an exponentiation witness function

Here, I present the performance results for SUBSHARE, SHARES-VALID, SUBSHARES-VALID, and

GENERATE-NEW-SHARE with an exponentiation witness function (Section 3.1.3), for redistribution

from an (m,n) to an (m′,n′) threshold scheme. Sharing operations were computed modulo a 1024-

bit prime number p. The witness function was exponentiation modulo a 1025-bit prime number q,

where q = pr + 1 (r being a positive integer); given a q of size | q | bits, the largest possible p has

size | p | less than or equal to | q | −1. The original secret, shares, and subshares were all 8 KB.

The SUBSHARE and SUBSHARES-VALID steps of the VSR protocol involve repeated exponen-

tiation with a common base g. The Miracl [50] package implements basic square-and-multiply

exponentiation, and also implements a method of fast exponentiation (with precomputation of in-

termediate values) presented by Brickell et al. [12]. Brickell exponentiation yields a considerable
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| p | | q | Basic exp (µs) Brickell exp (µs) Brickell precomp (µs)

160 1024 3376 1201 12622

192 1024 3991 1350 15053

1023 1024 19957 5301 62684

257 1025 5445 1627 20619

1024 1025 20283 5486 64408

Table 5.1: Time per exponentiation modulo q for exponents modulo p, for basic square-and-multiply expo-

nentiation and Brickell fast exponentiation [12]. The precomputation time required for Brickell exponentia-

tion is also shown.

performance boost over square-and-multiply (Table 5.1), provided that one amortizes the precom-

putation over multiple exponentiations. Where possible, I used Brickell exponentiation.

The SUBSHARE graph in Figure 5.2 shows the time taken by an old shareholder i to generate

subshares and witnesses from its share for a new (m′,n′) threshold scheme. The time taken is

linear in m′ for fixed n′, as predicted in the performance model of Section 3.2.3. The generation

of subshares (without generation of witnesses) for an (m′,n′) scheme is mathematically equivalent

to generation of shares of a secret for an (m′,n′) scheme, and therefore has the same performance

characteristics as the SHARE operation in Figure 5.1. For fixed m′, the marginal cost with increasing

n′ comes from the time taken to generate an extra subshare.

Given the results for SHARE, and given that generation of subshares is equivalent to generation

of shares, it is clear that the bulk of the cost of SUBSHARE comes from the time taken to generate

the witness gsi for the old share si. Consider Figure 5.3, which shows two curves for n′ = 8: the

time taken to generate subshares, and the time taken to generate subshares and witnesses. The bulk

of the cost of SUBSHARE comes from the time taken to compute the witness gsi for the old share si.

This fact is demonstrated by the points at m′ = 1, at which one only computes gsi (the corresponding

subshare generation polynomial has no coefficients).

The SHARES-VALID graph in Figure 5.2 shows the time taken by a new shareholder j to verify

the validity of shares held by the shareholders in an authorized subset of the old (m,n) threshold

scheme. The verification was performed using witnesses sent by the first m old shareholders (i ∈

B = {1, . . . ,m}). The time taken has a stepping behavior in m. To explain this, recall the SHARES-

VALID verification equation

gk ≡ ∏
i∈B

(gsi)bi (5.1)
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Figure 5.2: Graphs of the time taken by SUBSHARE, SHARES-VALID, SUBSHARES-VALID, and GENERATE-

-NEW-SHARE with an exponentiation witness function. Redistribution was from an (m,n) threshold sharing

scheme to an (m′,n′) scheme. The original secret, shares, and subshares were all 8 KB. The y-axis scales on

the graphs are different because the results are of such different orders of magnitude.
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Figure 5.3: Graph of time taken by SUBSHARE with an exponentiation witness function. The graph shows

both the time take to generate subshares only, and the time taken to generate subshares and witnesses. Redis-

tribution was from an (m,n) threshold sharing scheme to an (m′,n′) scheme. The original secret, shares, and

subshares were all 8 KB.

(Equation (3.17) for exponentiation), and observe that a new shareholder only exponentiates by the

Lagrange coefficients bi. By experiment, I confirmed that the sum of bi given m and p is

∑
i∈B,B={1,...,m}

bi =

⌈

m−1

2

⌉

p+1 (5.2)

i.e., the sum of the exponents in Equation (5.1) is the same for pairs of consecutive m (2 and 3,

4 and 5, etc.), and increases linearly with even values of m. Thus, the cost of computation for

Equation (5.1) will be similar for pairs of consecutive m.

The SUBSHARES-VALID graph in Figure 5.2 shows the time taken by new shareholder j to

verify the validity of the subshares sent by the shareholders in an authorized subset of the old

(m,n) threshold scheme. The time taken is linear in m, as predicted in the performance model of

Section 3.2.3. Moreover, the time is smaller that the SHARES-VALID time for all m; to understand

this, recall the SUBSHARES-VALID verification equation

∀i ∈ B : gŝi j ≡ gsi

m′−1

∏
l=1

(ga′il ) jl

(5.3)

and observe that a new shareholder only computes exponentiations of base g by ŝi j (excluding the

jl term); thus, one can use Brickell exponentiation.
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| p | | q | Exponentiation (µs) Chunk size (bits) Chunks/block Expected time/block (ms)

160 1024 1204 159 413 496

192 1024 1350 191 344 463

1023 1024 5301 1022 65 340

1024 1025 5486 1023 65 351

Table 5.2: Time per exponentiation modulo q for exponents modulo p, using Brickell exponentiation [12].

A block was 8 KB.

The GENERATE-NEW-SHARE graph in Figure 5.2 is unremarkable: because this step is mathe-

matically equivalent to secret reconstruction in Shamir’s threshold sharing scheme [49], the results

are the same as in Figure 5.1.

Protocol cost versus size of secret

One would expect the cost of the VSR protocol to be linear in the block size, and I ran experiments

to confirm that this is the case. The graphs in Figure 5.4 show the time taken by SUBSHARE,

SHARES-VALID, SUBSHARES-VALID, and GENERATE-NEW-SHARE as the block size increases, for

redistribution from a (4,8) threshold sharing scheme to a (4,8) scheme. The results indeed confirm

that the cost is linear in the block size.

Protocol cost versus size of modulus p

At first glance, it would seem that using a prime modulus p of 1024 bits would needlessly incur

a high cost during witness generation, or during verification that the SHARES-VALID and SUB-

SHARES-VALID conditions hold. By comparison, the Digital Signature Standard [51] only specifies

p of 160 bits. Consider Table 5.2, which shows the time taken to exponentiate modulo q given

exponents modulo p with bit size | p |; note the change in the size of q for 1024-bit p. On the one

hand, smaller | p | indeed lowers the time per exponentiation. On the other hand, one must trade off

a lower time per exponentiation against the number of exponentiations required: with a smaller | p |,

one can only process a smaller chunk of data at a time. For example, an 8 KB block of data is 64K

bits, which is equivalent to either 413 159-bit chunks or 65 1022-bit chunks—an almost sevenfold

difference. We see, then, that the expected time to generate a witness for an 8 KB block is greater

with the smaller | p |.
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Figure 5.4: Graphs of the time taken by SUBSHARE, SHARES-VALID, SUBSHARES-VALID, and GENERATE-

-NEW-SHARE with an exponentiation witness function. The time taken is shown as a function of block size.

Redistribution is from a (4,8) threshold sharing scheme to a (4,8) scheme.
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5.2.2 VSR with an elliptic curve witness function

In this section, I present the performance results by SUBSHARE, SHARES-VALID, SUBSHARES-

-VALID, and GENERATE-NEW-SHARE with an elliptic curve witness function (Section 3.1.3), for

redistribution from an (m,n) to an (m′,n′) threshold scheme. Sharing operations were computed

modulo a 192-bit prime number r. The witness function was multiplication of a public point G on

an elliptic curve. The curve was computed over the integers modulo a 192-bit prime number q′ (so

designated to distinguish it from the modulus for the exponentiation witness function). q′ and r

were such that r ≤ q′, and G was such that [r]G was equal to the point at infinity O. The parameters

for the underlying elliptic curve and coordinates of G were those specified in the Digital Signature

Standard [51] for a 192-bit elliptic curve. The original secret, shares, and subshares were all 8 KB.

The results are similar to those for exponentiation (Section 5.2.2). In particular:

• The SHARES-VALID graph in Figure 5.5 exhibits the same stepping behavior as Figure 5.2 for

SHARES-VALID with a exponentiation witness function, for the same reason.

• Brickell exponentiation [12] can be adapted for point multiplication on an elliptic curve [50].

Thus, as with exponentiation, the time taken by SUBSHARES-VALID is lower than than the

time taken for SHARES-VALID for all m.

Comparison with exponentiation witness functions

The use of elliptic curves in cryptography was first proposed by Koblitz [35] and Miller [38]. One

feature of elliptic curves that makes their use in cryptography attractive is that there are no known

sub-exponential algorithms for finding discrete logs on general elliptic curves (though certain curves

have exploitable weaknesses; Blake et al. [6] present a full discussion of weak curves and attacks).

Another is that elliptic curve-based systems require far fewer bits (in the underlying finite field) than

exponentiation-based systems to achieve equivalent “security” in terms of the computational effort

required to solve the DLP. With fewer bits, one would expect an overall reduction in the cost of a

protocol based on the DLP. However, the reduction does not materialize for the VSR protocol.

The reason that the VSR protocol does not benefit from a switch to elliptic curve witness func-

tions is that one must process more chunks for a block of fixed size, similar to the problem discussed

in Section 5.2.1. For elliptic curve point multiplication, the chunk size is limited by | r |, which in

turn is limited by | q′ |; for a 192-bit finite field, the chunk size is 191 bits. Consider Table 5.2 and

Table 5.3, and compare multiplication on a curve computed over a 192-bit field to exponentiation



58 CHAPTER 5. PERFORMANCE EVALUATION

SUBSHARE

(192-bit elliptic curve, 8 KB block)

300

400

500

600

700

800

0 1 2 3 4 5 6 7 8 9

New threshold parameter m'

T
im

e
 (

m
s

)

n' = 2 n' = 3 n' = 4 n' = 5 n' = 6 n' = 7 n' = 8

SHARES-VALID & SUBSHARES-VALID

(192-bit elliptic curve, 8 KB block)

0.0

1.0

2.0

3.0

4.0

5.0

0 1 2 3 4 5 6 7 8 9

T
h

o
u

s
a

n
d

s

Old threshold parameter m

T
im

e
 (

m
s

)

SHARES-VALID SUBSHARES-VALID

GENERATE-NEW-SHARE

(192-bit elliptic curve, 8 KB block)

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9

Old threshold parameter m

T
im

e
 (

m
s

)

Figure 5.5: Graphs of the time taken by SUBSHARE, SHARES-VALID, SUBSHARES-VALID, and GENERATE-

NEW-SHARE with an elliptic curve witness function. The elliptic curve was computed over the 192-bit finite

field specified in the Digital Signature Standard [51]. Redistribution was from an (m,n) threshold sharing

scheme to an (m′,n′) scheme. The y-axis scales on the graphs are different because the results are of such

different orders of magnitude.
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| q′ | Multiplication (µs) Chunk size (bits) Chunks/block Expected time/block (ms)

192 1192 191 344 407

224 1411 223 294 413

256 1742 255 258 446

384 4741 383 172 809

521 8247 520 127 1037

Table 5.3: Time per point multiplication in the elliptic curve computed over the finite field Zq′ , using Brickell

exponentiation [12]). A block was 8 KB. The elliptic curve parameters were taken from the Digital Signature

Standard [51].

in a 1024-bit field (which each require roughly equivalent computational effort to solve the DLP).

If we compare multiplication to exponentiation with 1023-bit exponents (i.e., | p |= 1023, the max-

imum possible size), exponentiation is faster than multiplication: 340 ms/block vs. 407 ms/block.

The reason for the faster performance of exponentiation is that even though the per-exponentiation

cost is higher than the per-multiplication cost by 4.4 times, the number of chunks per block for

exponentiation is lower by 5.3 times.

Even though the results suggest that exponentiation yields better performance than point mul-

tiplication now, the performance advantage will fall away as the bit size of the underlying fields

increases in the future. Figure 5.6 compares the time taken by a new shareholder to verify that

the SHARES-VALID condition holds with both exponentiation and elliptic curve witness functions.

We see that verification based on exponentiation becomes an order of magnitude slower than the

equivalent based on elliptic curves. Thus, for systems that will use larger bit sizes, or to ensure that

a system remains secure for the long term, one should use elliptic curve witness functions.

5.3 Hathor storage system performance

In this section, I present the results of experiments to evaluate the Hathor storage system described

in Chapter 4. The experiments measured the cost of STORE, REDISTRIBUTE, and RETRIEVE op-

erations for the REPLICA, THRESHOLD, and HYBRID data distribution schemes implemented in

Hathor. The results show that the overhead of redistribution incurred by the VSR protocol can be

small, provide one is careful in choosing the data distribution scheme.

The experimental infrastructure comprised seven workstations that ran the Hathor server dae-

mon, and one workstation that ran an experiment client driver. The client and servers were connected

by a switched 100baseT Ethernet network, which provided full link bandwidth between all pairs of

workstations. The client driver initiated STORE and RETRIEVE operations, and also triggered RE-
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Figure 5.6: Graphs of the time taken by SHARES-VALID with both exponentiation and elliptic curve witness

functions, as a function of finite field bit size. The squares and circles highlight points that require roughly

equivalent computational effort to solve the DLP. The elliptic curves were computed over the finite fields

specified in the Digital Signature Standard [51]. Redistribution was from an (4,8) threshold sharing scheme

to an (4,8) scheme.



5.3. HATHOR STORAGE SYSTEM PERFORMANCE 61

Operation REPLICA (ms) THRESHOLD (ms) HYBRID (ms)

STORE 31 73 99

REDISTRIBUTE 39 92 153

RETRIEVE 2 3 2

Table 5.4: Time taken to store, redistribute, and retrieve a 0-byte file in Hathor. Each data point represents

the average cost over 100 executions of an operation.

DISTRIBUTE operations at the servers. Recalling the relationship between the threshold parameter

m and number of shareholders n:

m ≤

⌊

n+2

3

⌋

(Equation (3.18), repeated for convenience), I configured REPLICA, THRESHOLD, and HYBRID as

3-of-7 distribution schemes.

The results for REDISTRIBUTE are for redistribution from a 3-of-7 scheme to a 3-of-7 scheme.

For shares of files in THRESHOLD and shares of encryption keys in HYBRID, REDISTRIBUTE in-

cludes the execution of the VSR protocol (Figure 3.3). For REPLICA and HYBRID, REDISTRIBUTE

includes the time taken for three old servers to send their replicas of a file to the new servers; with

three received replicas, the new servers would be able to detect up to two faulty old servers by

comparing the replicas.

To emphasize the added costs of inter-server communication and disk accesses over raw com-

putation, I used similar bit sizes for the prime number moduli as for the VSR experiments (Sec-

tion 5.2). REPLICA and HYBRID use AES encryption in electronic code-book mode with a 256-bit

key. THRESHOLD performs threshold sharing modulo a 1024-bit prime number, and witness func-

tion exponentiation modulo a 1025-bit prime number. HYBRID performs threshold sharing modulo

a 257-bit prime number, and witness function exponentiation modulo a 1025-bit prime number. Be-

cause the secret size (i.e., the AES key size) for HYBRID is fixed at 256 bits, one can reduce the

cost of witness generation by using the smaller modulus for threshold sharing (and thus reducing

the cost of exponentiation (Table 5.1)). The security of the witness values is not affected in practice;

recall that the Digital Signature Standard [51] specifies a 160-bit modulus for its exponents.

I ran experiments that measured the time taken to store, redistribute, and retrieve a file of zero

bytes in length, in order to understand the overheads introduced by THRESHOLD and HYBRID over

the baseline of REPLICA. Table 5.4 shows results of these experiments. For STORE, the 0-byte
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Operation Average overhead (ms) Standard deviation (ms)

STORE 69 1

REDISTRIBUTE 111 7

RETRIEVE 0 1

Table 5.5: Average STORE, REDISTRIBUTE, and RETRIEVE overhead of HYBRID over REPLICA.

overhead of THRESHOLD and HYBRID over REPLICA arises from the time taken to generate witness

(step 2 of INITIAL in the VSR protocol of Figure 3.3). The overhead of THRESHOLD comes from

the time taken to compute witnesses for the coefficients of the share generation polynomial, even

though these witnesses are not sent to the servers. The overhead of HYBRID comes from the time

taken to generate a random AES key and the time taken to generate key shares and the key witness,

even though no data is encrypted. For REDISTRIBUTE, the 0-byte overhead of the other schemes

over REPLICA is due to the cost of the VSR protocol. The overhead of THRESHOLD comes from

the time taken to generate and broadcast SUBSHARES-VALID witnesses (step 2 of REDIST) from

old servers to new servers, even though the subshares are of zero size. The overhead of HYBRID

comes from the time taken to execute the VSR protocol for shares of the AES key, even though the

(encrypted) file is of zero size.

The trend in overheads of THRESHOLD and HYBRID over REPLICA become very different as

the file size increases. The graphs in Figure 5.7 show the time taken by STORE, REDISTRIBUTE, and

RETRIEVE for different file sizes. The overhead of THRESHOLD over REPLICA for all operations

increases as the file size increases, as one would expect given the results in Figure 5.4. On the other

hand, the overhead of HYBRID over REPLICA for all operations remains roughly constant; Table 5.5

shows the average overhead for each operation. Interestingly, HYBRID imposes no overhead over

REPLICA for RETRIEVE.

5.4 Summary

From the results presented in Section 5.2, we see that the bulk of the cost of the VSR protocol

comes from the time taken by verification-related operations: generation of SUBSHARES-VALID

witnesses at old shareholders, and verification that the SHARES-VALID and SUBSHARES-VALID

conditions hold at the new shareholders. Improvements in CPU performance, or special hardware

for arbitrary-precision integer operations, would likely improve the performance of the protocol.
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Figure 5.7: Log-scale graphs of the time taken by STORE, REDISTRIBUTE, and RETRIEVE in Hathor, as a

function of file size. REPLICA, THRESHOLD, and HYBRID are 3-of-7 distribution schemes. REPLICA and

HYBRID use AES encryption in electronic code-book mode with a 256-bit key. The maximum file size for

THRESHOLD is 96 KB; above this size, the Ensemble group communication toolkit was unstable. Each data

point represents the average cost over 100 executions of an operation.
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A surprising result is that the substitution of an elliptic curve-based witness function for an

exponentiation-based witness function currently hurts rather than helps performance, though the

result makes sense given the analysis in Section 5.2.2. However, we see that as the bit size of

underlying fields increases in the future, elliptic curve-based functions will offer better performance

than exponentiation-based functions.

The high cost of the VSR protocol, if employed in a storage system, can be offset through careful

selection of the data distribution scheme. For a system in which file storage and redistribution

operations are infrequent relative to retrieval operations, one may be willing to trade off the slower

storage and redistribution performance of HYBRID (compared to REPLICA) in return for the ability

to manage the encryption key of a file with its encrypted replicas (Section 4.1), especially given that

retrieval operations for HYBRID incur no extra overhead over REPLICA.
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Related Work

And some things that should not have been forgotten were lost. History became

legend, legend became myth,...

— Galadriel, in “Lord of the Rings: Fellowship of the Ring” (2001)

My thesis covers both the theoretical and practical aspects of designing a survivable storage

system with decentralized recovery. In this chapter, I compare the verifiable secret redistribution

(VSR) protocol to other protocols for protecting threshold-shared data in the face of Byzantine

adversaries. I then survey survivable storage systems and highlight the similarities and differences

between the Hathor system prototype and existing systems. Finally, I discuss some theoretical

design studies for survivable storage system architectures.

6.1 Redistribution for threshold sharing schemes

Since the invention of threshold sharing by Blakley [8] and Shamir [49], many researchers have

proposed mechanisms to make threshold sharing schemes more robust: that is, able to withstand

the failure of some of the participants. In this section, I highlight the differences between the VSR

protocol and other robust (m,n) threshold sharing schemes, and discuss the relative advantages and

disadvantages of the protocol. Table 6.1 summarizes some of the main design points of robust

schemes, and shows the greater flexibility offered by the VSR protocol compared to other schemes.

As in Chapter 3, I refer to data as secrets, clients as dealers, and servers as shareholders.
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Scheme type Faulty Faulty (m,n)
dealer OK shareholders OK changes OK

Verifiable secret redistribution Y Y Y

Secret redistribution: Desmedt and Jajodia [16] N/A N Y

Secret redistribution: Frankel et al. [18] Y Y N

Proactive secret sharing Y Y N

Verifiable secret sharing Y Varies N/A

Table 6.1: A comparison of robust (m,n) threshold sharing schemes, showing the scheme type, whether the

dealer or shareholders may be faulty, and whether m or n may be changed. Note that Desmedt and Jajodia

[16] do not specify a phase for the initial distribution of shares of a secret.

My work on the VSR protocol follows from research on robust schemes that involve physical

redistribution of shares. Desmedt and Jajodia [16] present a redistribution scheme in which current

shareholders distribute subshares of their shares to new shareholders, exactly as in the VSR pro-

tocol. However, their scheme only verifies that the SUBSHARES-VALID condition holds, leaving it

vulnerable to corruption by faulty shareholders. Frankel et al. [18] propose a proactive public-key

cryptography scheme in which shareholders redistribute their shares via two steps: a poly-to-sum

redistribution from an (m,n) polynomial sharing to an (m,m) additive sharing, followed by a sum-to-

poly redistribution from the additive sharing back to an (m,n) polynomial sharing. In their scheme,

the mechanism for the verification of shares after redistribution requires that the membership of the

set of shareholders (and thus n) remains static. The distinguishing features of the VSR protocol

compared to these schemes include the ability to prevent share corruption by faulty shareholders

(up to the limits specified in Section 3.2) and support for changes to m and n.

Other schemes exist that support only limited changes to m or n. Blakley et al. consider thresh-

old schemes that disenroll (remove) shareholders from the access structure with broadcast messages

[7]; the new shareholders are always a subset of the current ones. Cachin proposes a secret sharing

scheme that enrolls (adds) shareholders in the access structure after the initial sharing [13]; the new

shareholders are always a superset of the current ones. By comparison, the VSR protocol supports

arbitrary changes to m and n (provided that m is less than or equal to n).

Blundo et al. present a scheme in which the dealer broadcasts messages to activate different,

possibly disjoint, authorized subsets [10]. A single message activates and deactivates the current

subset. All shareholders have a share even if they are not in the active authorized subset, and thus

receive a share during the initial distribution of the secret. In contrast, in the VSR protocol only cur-

rent shareholders have a share, the trade-off being that both current and new shareholders broadcast

multiple messages—an important consideration in environments where broadcast is expensive.
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The VSR protocol is closely related to proactive secret sharing (PSS) schemes, in which share-

holders periodically refresh their shares of the secret to counteract a mobile adversary [39]. The key

distinction is that PSS schemes keep m and n static, whereas the VSR protocol enables changes to m

and n. Herzberg et al. [31, 32] present a PSS scheme in which shareholders exchange update shares

among themselves, and combine the update shares with their current shares. Zhou, Schneider, and

van Renesse present a PSS scheme called Asynchronous PSS (APSS), also using update shares,

for asynchronous wide-area networks [56, 55]; they independently propose conditions similar to

SHARES-VALID and SUBSHARES-VALID to verify the validity of shares after protocol execution.

Though APSS does not support changes to m and n, it does have the advantage over the VSR pro-

tocol of not requiring a broadcast channel. Frankel et al. [19, 20, 21] and Rabin [44] propose

several PSS schemes in which shareholders exchange subshares of their shares among themselves,

similar to the VSR protocol. Each shareholder then combines the received subshares to generate a

new share. As with the proactive cryptography scheme of Frankel et al. described above [18], the

mechanisms for the verification of new shares require that m and n remain the same.

The VSR protocol is also related to verifiable secret sharing (VSS) schemes, which are designed

to verify that a dealer distributes valid shares of a secret, and to enable (correct) shareholders to

agree that they have valid shares. Non-interactive VSS schemes by Feldman [17] (Section 3.1.3) and

Pedersen [41] assume that only the dealer may be faulty. Interactive VSS schemes assume that either

the dealer or some of the shareholders may be faulty, and include multiple rounds of communication

between the dealer and the shareholders to identify faulty participants; representative examples

include schemes by Chor et al. [15], Benaloh [5], Gennaro and Micali [25, 26], Goldreich et al.

[28], and Rabin and Ben-Or [43, 45]. Interactive schemes, at best, only tolerate shareholders that

become faulty before or during the initial distribution, while the VSR protocol distinguishes itself

in its ability to tolerate shareholders that become faulty after the initial distribution of the secret.

6.2 Survivable storage systems

The Hathor system prototype is an experimental platform on which to evaluate the cost of storage,

redistribution, and retrieval for different data distribution schemes. As such, its design involves

similar decisions as for survivable storage systems: whether or not to redistribute data in response

to server failures, and what type of server failures to tolerate. In this section, I discuss the design

points (summarized in Table 6.2) that distinguish Hathor from related systems.
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System Redistribute Server Distribution

data? failure schemes

mode

Hathor Yes Byzantine Encrypted replication

Threshold sharing

Hybrid sharing + replication

Farsite Yes Byzantine Encrypted replication

PAST Yes Byzantine Encrypted replication

Pond Yes Byzantine Encrypted replication

Erasure-resilient coding

InterMemory Yes Crash Erasure-resilient coding

Pangaea Yes Crash Replication

e-Vault No Byzantine Information dispersal

Publius No Byzantine Hybrid

sharing + replication

PASIS No Crash Encrypted replication

Information dispersal

Threshold sharing

Table 6.2: A comparison of survivable storage systems, showing: whether or not redistribution of data on

server failure is supported, what type of server failures are tolerated, and what data distribution schemes are

implemented.

The underlying research purpose behind Hathor is to develop a decentralized redistribution pro-

tocol for threshold-shared data in a system with dynamic membership. As such, it stands in contrast

to Farsite [1, 11], PAST [47], and Pond [46] (the OceanStore prototype [37]), which implement

redistribution mechanisms for replicated data only (though Farsite also implements a PSS scheme

for refreshing signature keys). However, Hathor and these systems do share common design fea-

tures. They incorporate mechanisms to redistribute data in response to server failures. Also, they

are designed under the assumption that servers suffer Byzantine failures, and thus they include

mechanisms to verify the validity of data received from servers during I/O operations.

InterMemory [14, 27] is a long-term archival service. It stores data using a scheme based on an

erasure-resilient code [9]: one server stores a full copy of the original data, and another n servers

store n erasure-coded fragments of the data, any n/2 of which can be used to reconstruct the data.

InterMemory redistributes data when a server fails by reconstructing a full copy or generating a

new fragment (depending on what the failed server held) on a replacement server. Unlike Hathor,

InterMemory assumes that servers suffer crash failures. Thus, InterMemory does not include mech-

anisms to verify the validity of data received from servers during I/O operations. In practice, a

system designed on the assumption of crash failures may be limited to deployment in closed net-

works, in which hosts are under the control of a trusted administrator.
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Pangaea [48] is a scalable storage utility that uses a high degree of replication to preserve data

availability in the face of server failures. It implements a tree-structured file system with gold and

bronze replicas of regular files and directory files: a gold replica of a file points to other gold replicas

of the file, to the bronze replicas of the file, and to the gold replicas of the parent and children, while

a bronze replica of a file points to the gold replicas of the file and the parent. The distinction

between replica types reduces the overhead of managing file replicas, because only gold replicas

need to be updated when the directory topology changes, or when the gold replica of a child or

parent fails. In particular, the system can quickly create new bronze replicas to replace lost ones.

Like InterMemory, Pangaea assumes that servers suffer crash failures, and thus comes with same

caveat regarding deployability.

e-Vault [33, 23] and Publius [52] rely upon the inherent redundancy in the supported data distri-

bution schemes to protect the availability of data from server failures, as opposed to redistributing

data. e-Vault uses Rabin’s information-dispersal algorithm [42] to generate fragments of the (op-

tionally encrypted) data for each server. Publius uses a distribution scheme identical to HYBRID

(Section 4.1). For all of these systems, the distribution parameters (the number of servers used to

store data, and the number of correct servers required to retrieve the data) are static. Thus, in con-

trast to Hathor, none of these systems can adapt the parameters in response to either server failures

or the addition of new servers (apart from retrieving and re-storing the file).

PASIS [53, 54] also relies upon the inherent redundancy in the supported schemes to protect

data. It implements several distribution schemes to evaluate their relative security, performance, and

availability characteristics, including encrypted replication, Rabin’s IDA, and Shamir’s threshold

sharing scheme [49]. My research on the VSR protocol and Hathor began as a project to devise

decentralized recovery protocols for the distribution schemes in PASIS.

6.3 Design studies for survivable storage systems

In addition to the systems described in Section 6.2, there are several theoretical design studies of

survivable storage systems. I present these studies here, and compare them to my work.

Herlihy and Tygar propose two different system designs for making replicated data secure [30].

One design uses symmetric encryption to preserve the confidentiality of replicated data: the system

distributes shares of the encryption key with Shamir’s (m,n) threshold scheme [49], and retrieves m

shares to reconstruct the key prior to performing I/O operations on the data. The other design uses

asymmetric encryption: the system distributes shares of a decryption key Kd and an encryption key
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Ke with Shamir’s (md ,n) and (me,n) respectively. This allows the system to use different threshold

values on read (md) and write (me) operations, and thus allows the end user to tune the performance,

availability, and security characteristics of each operation. Unlike Hathor, they do not propose any

mechanisms for changing the threshold parameters during system operation (though they do propose

a mechanism for changing the key in the private-key system).

Anderson proposes a design for a long-term data repository called Eternity [3]. The primary

design goal of Eternity is to protect data against attempts to censor stored data by removal or cor-

ruption. Anderson identifies a number of existing technologies that could be used to build Eternity,

including protocols for wide-area data replication, encrypted and anonymized communications, and

Byzantine agreement. He also identifies open-ended research problems in the design of Eternity,

including the need for long-term data indexing services, payment systems, and reliable distributed

clocks. My work on the VSR protocol helps to address the primary goal of Eternity, by providing

a mechanism to both redistribute data upon server removal and to detect when faulty servers send

invalid data.

Alon et al. present a distribution scheme to guarantee the availability of data in environments

where up to half of the storage servers suffer Byzantine failures [2]. In their scheme, a SHARE

function distributes fragments of the data to servers with a Reed-Solomon error-correcting code

[24]. Conceptually, the servers are vertices in a store graph. SHARE also generates verification

information for each vertex, which is used to cross-check both the fragments and the verification

information of neighboring vertices. The scheme offers lower space overheads than traditional error-

correcting codes, but with the trade-off that (with negligible probability) a corrupted fragment may

go undetected during reconstruction of the data. In contrast to my work, Alon et al. do not address

the problem of guaranteeing the confidentiality of data in the face of Byzantine server failures,

considering it to be an orthogonal issue to availability.
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Conclusions and future work

The central thesis of this dissertation is that to truly preserve data for the long term, a survivable

storage system must include recovery protocols capable of overcoming server failures, adapting to

changing availability or confidentiality requirements, and operating in a decentralized manner. To

support this thesis, I presented the design and performance analysis of the verifiable secret redistri-

bution (VSR) protocol. I showed how the VSR protocol is able to preserve the long-term availability

and confidentiality of data stored using threshold sharing schemes by implementing the desired ca-

pabilities for recovery protocols.

A simple, yet critical, observation underpins the design of the VSR protocol: a more accurate

model of a survivable storage system must assume dynamic membership, in which participating

servers may join and leave the system. In the limit, a set of new servers after a round of membership

changes may be disjoint from the old set. This assumption impacts the design of mechanisms to

prevent an adversary from corrupting the execution of recovery protocols. In protocols that assume

static membership, participating servers verify correct protocol execution by using information they

have received in a previous execution. Under an assumption of dynamic membership, one must

include mechanisms in the recovery protocol for new servers to obtain verification information

during the current execution, as they will have no information from any previous execution.

The VSR protocol has a high computational cost, but one can mitigate the cost through careful

selection of the data distribution scheme in a survivable storage system. For systems in which

data storage and redistribution operations are infrequent relative to retrieval operations, a hybrid

threshold sharing and encrypted replication scheme—in which shares of encryption keys are stored

with encrypted replicas of data—offers the ability to manage encryption keys with data. Such ease
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of management comes at the cost of a modest slowdown in storage and redistribution performance

compared to a standard encrypted replication scheme.

7.1 Research contributions

• I presented a new model of a mobile adversary who subverts servers in a storage system. The

new model assumes dynamic membership in the set of participant servers. This assumption

imposes a pair of design requirements on any recovery protocol used in the system to coun-

teract the adversary: it must include mechanisms for new servers to obtain the information

needed to verify correct protocol execution, and it must allow the system to change the thresh-

old parameters of the underlying data distribution scheme. These requirements are in addition

to those that arise under an assumption of static membership in the set of servers.

• I designed and implemented the VSR protocol for the redistribution of shares of a secret orig-

inally distributed with Shamir’s threshold sharing scheme [49]. The protocol performs redis-

tribution from an authorized subset of old shareholders to all new shareholders. I showed that

the protocol satisfies all of the design requirements needed to counteract a mobile adversary

in a system with dynamic membership. In particular, I proved that the shares held by share-

holders after redistribution can be used to reconstruct the original secret, provided that all of

the verification conditions in the protocol hold.

• I conducted a performance analysis to confirm that the bulk of the computational cost of the

VSR protocol is in the time taken to compute the witness functions used in verification-related

operations. Surprisingly, an elliptic curve-based witness function yields poorer performance

than an exponentiation-based witness function, when comparing functions that are currently

considered to be secure. I also analyzed the performance trade-offs between different data

distribution schemes in an experimental storage system.

7.2 Future work

There are many other open issues in survivable storage systems research to explore beyond that

of failure recovery. One area of potential exploration includes developing mechanisms for self-

aggregation: can we arrange for a set of connected storage components (bricks or workstations) to

discover each other, pool their storage, and present a single system image to the end user? Self-
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aggregation is easier in systems where physical connectivity implies membership in the set of com-

ponents (e.g., a rack of disks), but is more difficult in a distributed environment (e.g., a network

of workstations: when a new workstation joins the network, should it immediately incorporate it-

self into the storage system, and should the other components trust it?). How large can the system

grow before it requires a dedicated entity to perform management functions, such as partitioning

the available capacity across different data and user types? Can the system delegate those functions

to one of the storage components, and (especially in the case where a component may be a user’s

workstation) what impact will that have on the performance of the chosen component?

Failure recovery is far from a solved problem, though. This dissertation investigates the ques-

tion “what do we do when system components fail”, but prompts the question “when have failures

occurred”. When one moves beyond considering crash failures, and begins to think about compro-

mised components that eavesdrop on data (but appear outwardly to function correctly), it becomes

clear that detecting failures is a non-trivial problem. Possible avenues of future research include de-

veloping temporal models of how frequently components are likely to become compromised, which

can then be used by a system to decide when to execute a recovery protocol proactively.
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Appendix A

REDISTRIBUTE for REPLICA and

HYBRID

In this appendix, I present the REDISTRIBUTE operation state machines for the REPLICA and HY-

BRID data distribution schemes in Hathor.
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Figure A.1: REDISTRIBUTE state machines for old and new servers, in a system that uses the REPLICA

scheme. States correspond to intermediate computations, while state transitions correspond to sent or received

messages. Old servers start in the initial-old state. New servers start in the initial-new state. Solid arrows

indicate transitions taken by correct servers, while dashed arrows indicate transitions that may be taken by

faulty servers. Unlabelled dashed arrows that loop to the same state indicate no-op self-transitions.
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Figure A.2: REDISTRIBUTE state machines for old and new servers, in a system that uses the HYBRID

scheme. States correspond to intermediate computations, while state transitions correspond to sent or received

messages. Old servers start in the initial-old state. New servers start in the initial-new state. Solid arrows

indicate transitions taken by correct servers, while dashed arrows indicate transitions that may be taken by

faulty servers. Unlabelled dashed arrows that loop to the same state indicate no-op self-transitions.
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[9] J. Blömer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuckerman. An XOR-based

erasure-resilient coding scheme. Technical Report TR-95-048, Intl. Computer Science Inst.,

UC Berkeley, Berkeley, CA, Aug. 1995.

[10] C. Blundo, A. Cresti, A. D. Santis, and U. Vaccaro. Fully dynamic secret sharing schemes.

Theoretical Comput. Sci., 165(2):407–440, Oct. 1996.

[11] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of a serverless distributed

file system deployed on an existing set of desktop PCs. In Proc. of SIGMETRICS 2000, the

Intl. Conf. on Measurement and Modeling of Computing Systems, pp 34–43. June 2000.



80 BIBLIOGRAPHY

[12] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast exponentiation with

precomputation (Extended abstract). In Proc. of CRYPTO 1992, the 12th Ann. Intl.

Cryptology Conf., pp 200–207. Aug. 1992.

[13] C. Cachin. On-line secret sharing. In Proc. of the 5th IMA Conf. on Cryptography and

Coding, pp 90–198. Dec. 1995.

[14] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and P. Yianilos. A prototype

implementation of archival intermemory. In Proc. of the 4th ACM Intl. Conf. on Digital

Libraries, pp 28–37. Aug. 1999.

[15] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achieving

simultaneity in the presence of faults (Extended abstract). In Proc. of the 26th IEEE Ann.

Symp. on Foundations of Computer Science, pp 383–395. Oct. 1985.

[16] Y. Desmedt and S. Jajodia. Redistributing secret shares to new access structures and its

applications. Technical Report ISSE TR-97-01, George Mason University, Fairfax, VA, July

1997.

[17] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In Proc. of the

28th IEEE Ann. Symp. on Foundations of Computer Science, pp 427–437. Oct. 1987.

[18] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Optimal resilience proactive

public-key cryptosystems. In Proc. of the 38th IEEE Ann. Symp. on Foundations of Computer

Science, pp 384–393. Oct. 1997.

[19] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Proactive RSA. In Proc. of CRYPTO

1997, the 17th Ann. Intl. Cryptology Conf., pp 440–454. Aug. 1997.

[20] Y. Frankel, P. D. MacKenzie, and M. Yung. Adaptively-secure optimal-resilience proactive

RSA. In Proc. of ASIACRYPT1999, the 5th Intl. Conf. on the Theory and Application of

Cryptology and Information Security, pp 180–194. Nov. 1999.

[21] Y. Frankel, P. D. MacKenzie, and M. Yung. Adaptive security for the additive-sharing based

proactive RSA. In Proc. of PKC 2001, the 4th Intl. Workshop on Practice and Theory in

Public Key Cryptography, pp 240–263. Febraury 2001.

[22] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. Veitch. FAB: enterprise storage systems

on a shoestring. In Proc. of the 9th IEEE Workshop on Hot Topics in Operating Systems. May

2003.

[23] J. A. Garay, R. Gennaro, C. S. Jutla, and T. Rabin. Secure distributed storage and retrieval.

Theoretical Comput. Sci., 243(1–2):363–389, July 2000.

[24] P. Gemmell and M. Sudan. Highly resilient correctors for polynomials. Inf. Process. Lett.,

43(4):169–174, Sept. 1992.

[25] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures. In

Proc. of EUROCRYPT 1996, the Intl. Conf. on the Theory and Application of Cryptographic

Techniques, pp 354–371. May 1996.



BIBLIOGRAPHY 81

[26] R. Gennaro and S. Micali. Verifiable secret sharing as secure computation. In Proc. of

EUROCRYPT 1995, the Intl. Conf. on the Theory and Application of Cryptographic

Techniques, pp 168–182. May 1995.

[27] A. V. Goldberg and P. N. Yianilos. Towards an archival Intermemory. In Proc. of the IEEE

Forum on Reasearch and Technology Advances in Digital Libraries, pp 147–156. Apr. 1998.

[28] O. Goldreich, S. Micali, and A. Wigderson. How to prove all NP statements in

zero-knowledge and a methodology of cryptograhpic protocol design. In Proc. of CRYPTO

1986, the 6th Ann. Intl. Cryptology Conf., pp 171–185. 1987.

[29] M. Hayden and R. van Renesse. Optimizing layered communications protocols. In Proc. of

the 6th IEEE Symp. on High Performance Distributed Computing, Aug. 1997.

[30] M. Herlihy and J. D. Tygar. How to make replicated data secure. Technical Report

CMU-CS-87-143, Sch. of Computer Science, Carnegie Mellon University, Pittsburgh, PA

15213, Aug. 1987.

[31] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive public key and

signature systems. In Proc. of the 4th ACM Intl. Conf. on Computer and Communications

Security, pp 100–110. Apr. 1997.

[32] A. Herzberg, S. Jarekci, H. Krawczyk, and M. Yung. Proactive secret sharing or: How to

cope with perpetual leakage. In Proc. of CRYPTO 1995, the 15th Ann. Intl. Cryptology Conf.,

pp 339–352. Aug. 1995.

[33] A. Iyengar, R. Cahn, J. A. Garay, and C. Jutla. Design and implementation of a secure

distributed data repository. In Proc. of IFIP/SEC 1998, the 14th Ann. Intl. Conf. on

Information Security. Sept. 1998.

[34] S. Kirkpatrick, W. Wilcke, R. Garner, and H. Huels. Percolation in dense storage arrays.

Physica A, 314(1–4):220–229, Nov. 2002.

[35] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(117):203–209,

Jan. 1987.

[36] A. I. Kostrikin. Introduction to Algebra. Springer-Verlag, 1982.

[37] J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D. Geels, R. Gummadi, S. Rhea, W. Weimer,

C. Wells, H. Weatherspoon, and B. Zhao. OceanStore: An architecture for global-state

persistent storage. In Proc. of ASPLOS IX, the Intl. Conf. on Architectural Support for

Programming Languages and Operating Systems, pp 190–201, Nov. 2000.

[38] V. S. Miller. Use of elliptic curves in cryptography. In Proc. of CRYPTO 1985, the 5th Ann.

Intl. Cryptology Conf., pp 417–426. Aug. 1986.

[39] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Proc. of the 10th Ann.

ACM Symp. on Principles of Distributed Computing, pp 51–59. Aug. 1991.



82 BIBLIOGRAPHY

[40] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for redundant arrays of inexpensive

disks (RAID). In Proc. of 1988 ACM SIGMOD Intl. Conf. on Management of Data, pp

109–116, June 1988.

[41] T. P. Pedersen. Non-iteractive and information-theoretic secure verifiable secret sharing. In

Proc. of CRYPTO 1991, the 11th Ann. Intl. Cryptology Conf., pp 129–140. Aug. 1991.

[42] M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault

tolerance. J. ACM, 36(2):335–348, Apr. 1989.

[43] T. Rabin. Robust sharing of secrets when the dealer is honest or cheating. J. ACM,

41(6):1089–1109, Nov. 1994.

[44] T. Rabin. A simplified approach to threshold and proactive RSA. In Proc. of CRYPTO 1998,

the 18th Ann. Intl. Cryptology Conf., pp 89–104. Aug. 1998.

[45] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest

majority. In Proc. of the 21st Symp. on the Theory of Computing, pp 73–85. May 1989.

[46] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond: The

OceanStore prototype. In Proc. of the 2nd Conf. on File and Storage Technology. Mar.–Apr.

2003.

[47] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale,

persistent peer-to-peer storage utility. In Proc. of the 18th Symp. on Operating Systems

Principles, pp 188–201. Oct. 2001.

[48] Y. Saito, C. Karamonolis, M. Karlsson, and M. Mahalingam. Taming aggressive replication

in the Pangaea wide-area file system. In Proc. of the 5th Symp. on Operating Systems Design

and Implementation. Dec. 2002.

[49] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, Nov. 1979.

[50] Shamus Software Ltd., Ballybough, Dublin 3, Ireland. M.I.R.A.C.L. Users Manual, Nov.

2002.

[51] US National Institute of Standards and Technology. Digital signature standard (DSS). FIPS

PUB 186-2, Jan. 2000. Includes change notice.

[52] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A robust, tamper-evident,

censorship-resistant, web publishing system. In Proc. of the 9th USENIX Security Symp., pp

59–72. Aug. 2000.

[53] J. J. Wylie, M. Bakkaloglu, V. Pandurangan, M. W. Bigrigg, S. Oguz, K. Tew, C. Williams,

G. R. Ganger, and P. K. Khosla. Selecting the right data distribution scheme for a survivable

storage system. Tech. Rep. CMU-CS-01-120, Sch. of Computer Science, Carnegie Mellon

University, Pittsburgh, PA 15213, May 2001.

[54] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliççöte, and P. K. Khosla.
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