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Abstract

Support Vector Machines have received extensive attention in machine learn-
ing community and have been successfully applied in pattern recognition and
regression problems. Recently, it has also been proposed to solve novelty detec-
tion problems, whose objective is to detect novel objects from existing instances.
New Event Detection (NED), which can be treated as one special application
of novelty detection, has been a research topic in Topic Detection and Tracking
(TDT) community for several years. However, the winning technology of NED
in the TDT community has remained to be the nearest neighbor method with
suitable distance metric in the document vector space. In this paper we inves-
tigated Support Vector Machines and kernel regression (as a smoothed nearest
neighbor method) for the NED task, and compared them to the nearest neighbor
method. We conducted a set of experiments on TDT benchmark collections, and
provided analysis on the failure of SVM for not being able to capture Misses.
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1 Introduction

New Event Detection (a.k.a. First Story Detection) is the task of online identi-
fication of the earliest report for each event ! as soon as that report arrives in
the temporal sequence of documents. Being a part of the Topic Detection and
Tracking (TDT), New Event Detection (NED) has been recognized as the most
difficult one (Allan et al., 2000) among all tasks in TDT. Current approaches of
NED mainly focus on comparing a new document to all the documents in the
past, and various clustering techniques have been applied to aid the detection.

The difficulties of the NED task lie in several aspects. First, as a special case
of novelty detection, it is an online unsupervised learning task, which is more
difficult than traditional supervised learning tasks or retrospective unsupervised
learning. Second, unlike novelty detection for handwritten digits (Kivinen et
al., 2002), text data is usually sparse and high-dimensional, and the number of
possible classes in the history can be up to thousands of, which greatly increases
the complexity and difficulty of the task.

Yang et al. (1998) discussed the task of event tracking and detection, and
proposed the GAC-INCR algorithm which achieved the best performance in
TDT evaluation in recent years. In this approach, clustering techniques plus
cosine similarity metric are used on top of TFIDF term weighting. Besides,
time decay is also applied which gives recent stories more weights than older
ones.

Tax and Ruin (1999) proposed to use a variant of Support Vector Machines
called Support Vector Domain Description (SVDD), for the task of novelty
detection. Scholkopf et al. (1999) proposed to use v-SVM to estimate the
support region of a high-dimensional distribution, and showed their method is
equivalent to SVDD under certain conditions.

One-class document classification, which shares many properties with NED,
has also been studied in the literature. In particular, Manevitz and Yousef
(2001) compared several methods for one-class classification, and their results
illustrated that although SVM has good performance in this task, it is very sensi-
tive to the parameter tuning and number of features. Since it has been observed
in text categorization that SVM is robust and suitable even with many relevant
features (Joachims, 1998), it would be interesting to analyze what makes the
difference.

Another recently proposed method, called Topic-Conditioned Novelty De-
tection (Yang et al., 2002), treats NED as a two-step process. Documents are
first classified into corresponding topics (a group of similar events), then event
detection is performed at each topic node. One advantage of this approach is
that topic-informative features and event-informative features can be used at
different steps, thus the confusability between stories within the same topic but

1«Fvent” and “topic” have been used interchangeably in the TDT literature for historical
reasons.



not the same event can be reduced. However, our investigation here is orthog-
onal to that approach, i.e., we focus only on event-level detection where all the
methods in this paper can be applied to.

In this paper, we compare the nearest neighbor method with Support Vector
Machines and kernel regression method in the NED task. The variant of SVM
we used, Support Vector Domain Description, is trying to find a hyper-ball in
the feature space that can enclose all the data points and thus can be used as
an estimation of the support region of the underlying density. Kernel regression
is a natural generalization of nearest neighbor method in the sense that it will
consider all surrounding data points with appropriate weights (decaying based
on distance) rather than the nearest neighbor alone. By tuning its bandwidth
we are able to investigate the sensitivity of the NED task. Since it has been
reported that SVM is very robust with many features in text categorization
tasks, by conducting this comparison, we would also be able to explore that
whether SVM is suitable for this unsupervised task with high-dimensional and
sparse text data. We would also like to investigate how the estimated support
region in such a high-dimensional case (Scholkopf et al., 2000) help our novelty
detection task.

2 METHODS

2.1 NEAREST NEIGHBOR FOR NOVELTY DETEC-
TION

Nearest Neighbor method is one of the simplest methods in machine learning.
Given a metric, it simply compute the distances between the test data & and all
the training examples %, %2, . . ., £n and use the highest similarity score (lowest
distance score) plus a threshold (a radius around that example) to make the
novelty prediction. In this paper, we will use the Cosine similarity between two
vectors, which is the same as the inner product between two normalized vectors:

n )
cos(Z,9) = T
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where || - || denotes the Euclidean norm (2-norm).

Although simple, nearest neighbor with cosine similarity has been one of
the most successful approaches in the NED task and many other Information
Retrieval tasks like adaptive filtering.

2.2 SVM FOR NOVELTY DETECTION

Support Vector Domain Description (SVDD) is proposed by Tax and Duin
(1999) for novelty detection. The basic idea is that it tries to find a hyper-
ball in the feature space which can enclose all the training data (already seen



examples in our case) with the minimum volume. Mathematically, it is aimed
to minimize the following objective

N
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where ¢ is the center of the hyper-ball and &;’s are slack variables measuring
how far the data point is away from the surface of the hyper-ball, and as in the
traditional SVM for classification, the coefficient C' controls the balance between
minimum volume and the tolerance errors. By incorporating those constraints
into the objective function, we get the Lagrangian:
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with Lagrange multipliers a;,y; > 0. By setting the derivatives with respect to
the primal variables ¢, 5 and R to zero, we get: ¢ = ZN R
=1 €T3, 0 < a; < C and
N
Ei:l Q; = 1.
Substituting the above formulas into the Lagrangian we obtain the dual
problem
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subject to: 3N
" ~,_,0;=1and 0 < a; < C and the center of the hyper-ball can

be computed as ¢= YN L .
i1 @iT;. Like in SVM, we can replace the inner product

#T'§ by any positive definite kernel K (&, %) in the above formula. As a result,
the resulting hyper-ball will enclose data examples that are mapped into a high
dimensional feature space. To test whether a new data point 2" is within the
region we need to evaluate

F()=R-(Z-97(Z-9.

A test example Z will be predicted as novel if F'(2) is less than the threshold
0.



2.2.1 Equivalence to One-Class v-SVM

It has been shown in previous work that the SVDD method is equivalent to
the one-class ¥-SVM when certain kind of kernels are used. The following text
follows (Scholkopf et al., 1999) to introduce the »~-SVM and summarize the
equivalence derivation. The v-SVM tries to separate the data from the origin
with maximum margin. To solve the problem, we need to solve the following
optimization problem:

1 1 &
. —112
min §||w|| +m;§i—p

w,E€,p

subject to: W >p—6,6>0

By applying the Lagrange, we can maximize its dual problem:
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Based on KKT conditions, p can be computed as p = >, a; K(&;, 1) where
&, is any training example whose 0 < a; < k.

Now, by comparing equation (1) and (2), it is clear that if K (#, Z) is constant,
then those two methods are equivalent. It is obvious that the RBF kernel
automatically satisfies this condition since K (¥, %) = exp(—||# — #||*>/0?) = 1,
and for linear kernel, since we are using normalized document vector, K (¥, %) =
[|Z||?> = 1. So in our problem where normalized document vector is used, those
two formulations are equivalent, and we will briefly refer it as SVM in the rest

of this paper.

2.2.2 Hard-Margin versus Soft-Margin

When SVM is used for classification, people usually use the soft-margin SVM
mainly for the reason that it is a generalized version of hard-margin SVM, and
that it handles linearly non-separable dataset. However, for one-class SVM the
second issue does not exist, since for every finite training set we can find a
hyper-ball that encloses all the data examples in the feature space.

Here the hard-margin SVM is the same as the soft-margin one except that
all the upper bounds of a’s are removed in equation (1) or (2). For our new
event detection task, suppose we meet one novel story in the input stream and
the system correctly identifies it as a novel story and output a score which is
above the novelty threshold. Then if the next document is exactly the same
(or almost the same), its prediction is still very likely to be above the novelty



threshold (due to the soft margin). However, by the definition of the NED task,
the latter document should clearly be a non-novel story. Though it can still
be corrected by varying the novelty threshold, we believe that there is no big
difference between those two formalism?. Plus, we can also gain efficiency since
the hard-margin SVM is simplfied due to less involved constraints. Hence, we
only investigate the hard-margin SVM for the NED task in our experiments.

2.2.3 Online Learning Algorithm

New Event Detection requires online predictions. That is, we need to an online
version of SVM optimization algorithm. At first glance, it might seem extremely
expensive to use SVM for the NED task, which usually contains tens of thou-
sands of documents to be processed, while the number of features can also be
over ten thousands. However, notice that when processing the documents, the
model does not need to be re-trained when an incoming document is classified
as not-novel. Retraining only happens when the input document is predicted
as novel. Furthermore, when we retrain the model, since all the a’s except the
new one are already optimized in the last run, so similar to the idea used by
the chunking algorithm, it should be very efficient if we start with the old &’s
value to retrain the model.

We use the SMO algorithm (Platt, 1998) as the training algorithm for SVM,
and only slight modifications are needed to convert it into the online algorithm as
we just mentioned. Notice that although there are online approximate algorithm
available for one-class SVM (Kivinen et al., 2002), it does not compute exact
solution. Furthermore, it requires one-pass of the entire dataset before getting
stable results, which severely violates the TDT requirement.

2.3 Kernel Regression for Novelty Detection

Kernel regression is a natural generalization of k-Nearest Neighbor regression
method. Compared with the wiggy, discontinuous regression curve generated by
k-Nearest Neighbor, its curve is smooth and more intuitive. And theoretically
it has faster convergence rate than k-Nearest Neighbor. A popular version is
the Nadaraya-Watson kernel estimator defined as follows:

Definition: The Nadaraya-Watson kernel estimator is defined by #(Z) =
N o . . o .
> i1 wi(Z)y; where K is a kernel and the weights w;(Z) are given by

K(=%+)
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2Though not reported in this paper, our separate results for hard-margin SVM also support
this argument.




In our experiments we still choose the Gaussian kernel 3 K (%‘ ) = exp(—7||Z—
#]|?) where both h and the original o2 are absorbed into one parameter .

We use Figure 1 to further illustrate how kernel regression works as «
changes. From the graph we can see that when v — 0, kernel regression is
simply average of all the y;’s, which is also called “oversmoothing”; and when
v — 400 (means we do not limit the number of features in the document vec-
tor), kernel regression behaves more and more like the one Nearest Neighbor

(1-NN) method, which is also corresponding to the “undersmoothing” case *.

Nearest Neighhor Global Average
undersmooth oversmooth
0 B+ o

¢ of Kernel Regression

Figure 1: v of Kernel Regression

By tuning the parameter v of kernel regression, we are able to investigate
whether using a distribution of scores will help to improve the novelty detection
performance. This will help us to justify why 1-NN method works so well in the
NED task.

2.4 Summary of Methods

Due to similarities between the methods we mentioned above, we summa-
rize them in this section. Suppose at time ¢ we have N history documents

T1,%2,...,ZnN, and we are going to predict whether the current document ¥ is
novel. We also assume that the similarities between the current document # and
history documents are already calculated as s1, s2,...,sn. Then, the prediction
of all methods can be summarized as
N
S@ = Y wi@s
i=1

where w; () is the normalized weight of document Z; in the history. To be more
specific,

e Nearest Neighbor (1-NN): The w; (%) for the nearest neighbor is 1.0, while
all the other w’s are 0.0. It can be treated as an extreme case of the above
formula

3Notice that the definition of “kernel” is slightly different in statistics from that in SVM.
Here we use the definition in statistics. And it has been observed that the choice of the kernel,
unlike the bandwidth h, is usually numerically indistinguishable in kernel regression.

4The radius of 1-NN method is another smoothing parameter (Baillo et al., 2000). However,
since it can be adjusted by our threshold, we simply ignore it in this paper.



e SVM: The w; is the same as «;, the Lagrangian multiplier of the opti-
mization problem that are learned from training data. In other words, all
support vectors have positive influence on the prediction of the new docu-
ment, while the non-support vectors are simply ignored in the prediction.
Unlike the w’s in 1-NN; the o’s are fixed constant once trained and do not
depend on the query point Z.

e Kernel Regression (KR): The normalized weight w; is decided by the Ker-
nel function we chose (mainly by its parameter), and as we tune the kernel
parameter, it can result in a broad range of versions with different degree
of smoothing, where 1-NN method is one extreme case. In other words,
kernel regression will consider a whole distribution of neighbors (as op-
posed to 1-NN method only a single nearest neighbor will be taken into
consideration).

Though it is true that in SVM the s;’s are generated by kernel K (Z, #;), this can
easily extended to Nearest Neighbor and Kernel Regression as well. However,
since plugging in the kernel usually will not change the order of similarities, this
change will not significantly influence the results of 1-NN and Kernel Regression.

3 EXPERIMENTAL SETUP

To compare SVM and KR with the 1-NN method in the NED task, we want
to investiage how sensitive they are with respect to their parameter settings.
One thing pointed out by previous research on one-class document classification
(Manevitz & Yousef, 2001) is that compared with other methods, one-class SVM
is more sensitive to parameter settings and thus is regarded not as robust as
others like Neural Networks.

Our testbed, TDT-3 corpus %, is made up of English stories from the last
three months of 1998 as well as 120 events judged for relevance against those sto-
ries. Among those stories only a small portion are judged according to whether
it discusses each of the defined events. Stories are given to the system sequen-
tially based on their time order, and the system need to predict novelty results
simultaneously®.

In our experiments we use the standard TDT evaluation measure (TDT,
2002) to evaluation our results. The performance is characterized in terms of
the probability of two types of errors: miss and false-alarm (Pas;ss and Pra).
These error probabilities are then combined into a single detection cost, Cpet,

5TDT-3 corpus contains stories from eight English, three Chinese, and four Arabic sources.
However, only English stories are used for the New Event Detection task.

8The official NED task allows some deferral window. That is, the system can output
decisions no later than some point after it sees the document. Though this condition makes
the system more realistic, we simply ignore this information here to simplify our comparison
and focus on more important factors.



by assigning costs to miss and false-alarm errors:
Cpet = Ciss - Prriss - Prarget + CFa - Pra - Pron—target
where
o Cpriss and Crg are the costs of a Miss and a False Alarm, respectively,

e Pyiss and Ppyg are the conditional probabilities of a Miss and a False
Alarm, respectively, and

® Piarget and Ppon—_targer are the a priori target probabilities (Parger =
1- Pnon—target)-
It is the normalized cost that is used in evaluating various TDT systems:

CDet
min(CMiss . Ptargeta CFA . Pnon—tcwget)

(CDet)Norm =

And when we mention cost later, we will refer to this normalized cost.

In TDT two types of evaluations are used, namely topic-weighted and story-
weighted evaluations. In topic-weighted evaluation (macro-average), the cost
is computed for every event, and then the average is taken. In story-weighted
evaluation (micro-average) the cost is computed for all stories in the system, thus
large event might have bigger impact on the overall performance. Note that in
official TDT evaluation, topic-weighted cost is used as the primary evaluation
measure.

In addition to the binary decision “novel” or “non-novel”, each system is
also required to generate a confidence score. Then its performance can be easily
evaluated based on those confidence scores by simply varying the threshold.
This leads to the DET curve which is extensively used in the TDT evaluation.
Similar to the ROC curve, the DET curve reflects the system’s performance as
the threshold varies, in terms of the tradeoff between miss and false-alarm.

To sum up, the input of the system is a sequence of documents, and the
system need to output online decision for each document in the stream. In this
paper we will evaluate our methods with either the minimum normalized cost
(as we vary the threshold) or the DET curve.

4 EXPERIMENTAL RESULTS

In this section we will describe our experiments as well as show the results. Up
to now, one thing we have not mentioned is how to create document vectors
from the dataset. We use the following popular TFIDF term weighting method,
which is also called “LTC” term weighting in the literature:

o o N
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where w; the jth word, TF(wj, Z) is the Term Frequency (TF) of the word w;
in document ¥, and DF(w;) is the Document Frequency (DF) of word w; in
the corpus. To make a stable estimation of the DF, we load an initial corpus
before processing any test document.

We will use the normalized cost as the evaluation measure, as people did in
TDT. However, the normalized cost is related to the choice of threshold, which
makes the comparison tedious. So we decide to first get the minimum normalized
cost by varying the threshold and then compare this single number. We will
also compare some of the DET curves when necessary, which can give further
information about how the normalized cost changes as we vary the threshold.

As observed in (Manevitz & Yousef, 2001), SVM for one-class classification
task is very sensitive to the number of features used. Since our task is unsuper-
vised, there is no explicit criteria to select features. Instead, we truncate our
document vector length based on the significance of term weighting (which is
LTC term weighting). After this truncation, each document vector can contain
at most vlen number of features. However, this is quite different from feature se-
lection since those remaining features for each document vector will be different
across documents.

4.1 RESULTS WITH NEAREST NEIGHBOR

One thing that slightly helps the performance of nearest neighbor method is
adaptive IDF. That is, the IDF will be online updated as new document comes
in, which will more accurately reflect the corpus statistics.

4.2 RESULTS WITH LINEAR-SVM

One thing to notice is that in both SVM algorithms (linear-kernel and RBF-
kernel), the adaptive IDF option is turned off, otherwise the SVM model needs
to be re-trained for each incoming document, and the computation becomes
inapplicable for our dataset (around 40k documents) 7.

4.3 RESULTS WITH RBF-SVM

Compared with linear-kernel SVM, one important factor for RBF-kernel SVM
is the kernel parameter v = 1/02. Previous studies (Manevitz & Yousef, 2001)
show that the choice of the kernel parameter is very sensitive to the results. We
start from an initial value of v: v = e Hla?i—a?jHZ = 0.5 which has been used
as the starting point in the Support Vector Clustering framework (Ben-Hur et
al., 2001), and the right equation comes from the fact that in our experiments

"Though it is not fair for SVM to use static instead of adaptive IDF, we also conducted
separate experiments for nearest neighbor by turning off the adaptive IDF option, and results
are consistent with our current ones.



all document vectors are normalized and have only positive components:

max ||# — &|[* = max {||Z|* + [13]* - 28/ %;} = 2.0
, ,

Although we did all experiments by tuning the -y value (among 0.5, 0.7, 1.0,
3.0) for each possible vlen’s value, we only report the best performance for each

vlen here.
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Figure 2: Results for 1-NN, LINEAR-SVM, RBF-SVM and Kernel Regression
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4.4 RESULTS WITH KERNEL REGRESSION

Based on observations of nearest neighbor method, here we fix the variable
vlen = 100 and only vary the kernel paremeter v = 1/02. Results are shown
in Figure 2, from which we can see that when = is as large as 50.0 the perfor-
mance of Kernel Regression coincides with the nearest neighbor method, as we
expected.

4.5 DET CURVE COMPARISON

For each method, we choose the best result among all parameter settings from
nearest neighbor, linear SVM and RBF SVM and plot them in Figure 3 (Topic-
Weighted Results) and Figure 4 (Story-Weighted Results). We did not include
kernel regression since it reduces to nearest neighbor for its best condition. From
the graphs we can easily see that both SVM and Kernel Regression are worse
than nearest neighbor method in terms of the global trend. SVM curves, in
particular, has good performance at the high-miss, low-false-alarm region and
bad performance at the low-miss, high-false-alarm region.
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4.6 DISCUSSION

Quite different from what people observed in supervised learning where SVM can
deal with many features without degrading the performance, in our NED task
SVM performs badly when using many features. Manevitz and Yousef also ob-
served that for one-class document classification, SVM works better with fewer
features than many features. The reason is that for unsupervised learning with
SVM, since there is no target information, it is very hard for algorithms to tell
which features are more informative than others by just looking at hyber-balls
surrounding the data points. However, using good heuristics such as TFIDF
term weighting can greatly cut off non-informative features, which will make it
much easier for algorithms to learn models in a less-noisy situation.

Another important thing we found is that, as we also showed in the DET
curve comparison, SVM results tend to have more misses than 1-NN. Although
theoretical justifications for one-class SVM have been given in (Scholkopf et al.,
1999), they only analyzed w.r.t. controling the first type of error — false-alarm
and simply ignored the second type of error — miss. This can also be seen from
the fact that it simply uses a hyperball to enclose all the data points without
looking at how data point are distributed in the interior region. However, in
most novelty detection applications reducing both kinds of errors are important
to the suceess of the system. Though the RBF kernel in the extreme case will
give the same result as 1-NN method (as v — +00), we believe that finding
a right kernel to for a tight estimation of the support region is hard for this
unsupervised learning task.

Our results about Kernel Regression show that only using the nearest neigh-
bor score can achieve the better performance than considering scores generated
by more neighbors with weight decay. On the other hand, smoothing in NED
is an issue which can be seen from the threshold choosing (Baillo et al., 2000).
However, for simplicity we only consider the minimum cost by varying the de-
cision threshold in our experiments.

5 CONCLUSIONS AND FUTURE WORK

In this paper we compared Nearest Neighbor method, SVM, and Kernel Regres-
sion in our New Event Detection task. Our findings are not only the relative
performance of those three methods in the NED task. By conducting a set of
experiments, we are also able to conclude the following two issues:

e One interesting thing we found about SVM is that for our unsupervised
task, when the number of features are large, it performs very badly, which
is different from the results people got in the supervised learning task of
text categorization where SVM has been shown to be very robust to a large
number of features. This can be alleviated by using some unsupervised
heuristics like TFIDF term weighting.

12



e SVM for novelty detection does not give a good balance between two
types of errors (miss and false alarm) which are common in real world
applications. In particular, it suffers from the miss rate compared with
the nearest neighbor method.

e Through the tuning of bandwidth parameter of kernel regression, we can
see that simply using the whole distribution of similarity scores actually
hurts the performance.

In future work we plan to investigate the usage of mixture of SVM balls
for novelty detection, which can both give a confident support estimation as
well as have a good control of the miss rate. Besides, learning an appropriate
metric through history datasets might be useful to further improve the system
performance.
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APPENDIX: Detailed Results

Table 1: New Event Detection with Nearest Neighbor

Topic-Weighted Scores | Story-Weighted Scores
COST (MISS, FA) COST (MISS, FA)
vlen = +o0 0.6960 (0.5088, 0.0382) 0.7074 (0.5088, 0.0405)
vlen = 300 0.6945 (0.5614, 0.0272) 0.7090 (0.5614, 0.0301)
vlen = 100 0.6902 (0.5439, 0.0299) 0.7260 (0.5439, 0.0372)
vlen = 50 0.6890 (0.5439, 0.0296) 0.7135 (0.5439, 0.0346)
vlen = 30 0.7047 (0.5088, 0.0400) 0.7143 (0.5088, 0.0419)
vlen = 20 0.7393 (0.5263, 0.0435) 0.7098 (0.5263, 0.0374)
vlen = 10 0.9159 (0.5789, 0.0688) 0.8245 (0.5789, 0.0501)

Table 2: New Event Detection with Linear-kernel SVM

Topic-Weighted Scores | Story-Weighted Scores
COST (MISS, FA) COST (MISS, FA)
vlen = +00 0.8673 (0.8596, 0.0016) 0.8600 (0.8421, 0.0037)
vlen = 300 0.8673 (0.8596, 0.0016) 0.8600 (0.8421, 0.0037)
vlen = 100 0.8421 (0.8246, 0.0036) 0.8381 (0.7719, 0.0135)
vlen = 50 0.7646 (0.6316, 0.0271) 0.7075 (0.6316, 0.0271)
vlen = 30 0.7799 (0.5614, 0.0446) 0.6800 (0.5614, 0.0242)
vlen = 20 0.7452 (0.6316, 0.0232) 0.6842 (0.5614, 0.0251)
vlen = 10 0.7492 (0.6140, 0.0276) 0.6777 (0.5439, 0.0273)
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Table 3: New Event Detection with RBF-kernel SVM (“NA” entries are cases
where our algorithm does not converge in reasonable amount of time)

Topic-Weighted Scores | Story-Weighted Scores

COST (MISS, FA)

COST (MISS, FA)

vlen = 10,7 = 0.5

0.7546 (0.5789, 0.0359

0.6797 (0.5789, 0.0206

vlen = 10,7 = 0.7

0.7676 (0.6316, 0.0278

0.6574 (0.5263, 0.0267

vlen =10,7=1.0

0.7783 (0.6316, 0.0299

0.6585 (0.4737, 0.0377

vlen = 10,7 = 3.0

0.8300 (0.7544, 0.0154

0.7423 (0.6140, 0.0262

vlen = 20,7 = 0.5

vlen = 20,7 = 0.7

0.8047 (0.5965, 0.0425

0.6818 (0.5439, 0.0282

vlen = 20,7 =1.0

0.7881 (0.6316, 0.0319

0.6747 (0.4912, 0.0374

vlen = 20,7 = 3.0

— = — = | [

(
E
0.7863 (0.6491, 0.0280
(
(
(

0.8316 (0.7544, 0.0158

T — | — = | — [N

(
E
0.6794 (0.5263, 0.0312
(
(
(

0.7492 (0.6140, 0.0276

vlen = 30,7 = 0.5

NA

NA

vlen = 30,7 =0.7

0.7759 (0.5614, 0.0438)

0.6814 (0.5614, 0.0245)

vlen = 30,7 =1.0

0.7617 (0.5614, 0.0409)

0.6674 (0.5088, 0.0324)

vlen = 30,7 = 3.0

0.8326 (0.7544, 0.0160)

0.7242 (0.5614, 0.0332)

vlen = 50,7 = 0.5

0.7824 (0.6316, 0.0308

0.7075 (0.6316, 0.0155

vlen = 50,7 =0.7

vlen = 50,7 =1.0

vlen = 50,7 = 3.0

0.8321 (0.5614, 0.0552

0.7094 (0.5439, 0.0338

vlen = 100,y = 0.5

(

( )
0.7727 (0.6316, 0.0288)
0.8030 (0.7368, 0.0135)

( )

( )

0.8290 (0.8070, 0.0045

(

( )
0.7088 (0.6316, 0.0158)
0.6840 (0.5088, 0.0358)

( )

( )

0.8123 (0.7544, 0.0118

vlen = 100,v = 0.7

NA

NA

vlen = 100,y = 1.0 | 0.8062 (0.7719, 0.0070) 0.7995 (0.7719, 0.0056)
vlen = 100,v = 3.0 | 0.8372 (0.7544, 0.0169) 0.7228 (0.5614, 0.0329)
vlen = 300,7 = 0.5 | 0.8572 (0.8421, 0.0031) 0.8559 (0.8421, 0.0028)
vlen = 300,v=0.7 | 0.8572 (0.8421, 0.0031) 0.8559 (0.8421, 0.0028)
vlen = 300,7 = 1.0 | 0.8406 (0.8246, 0.0033) 0.8397 (0.8246, 0.0031)
vlen = 300,v = 3.0 | 0.8592 (0.7544, 0.0214) 0.7788 (0.6491, 0.0265)
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Table 4: New Event Detection with Kernel Regression

Topic-Weighted Scores

Story-Weighted Scores

COST (MISS, FA)

COST (MISS, FA)

v=103

1.0658 (0.9825, 0.0170

1.0563 (0.9474, 0.0222

v=0.5

1.0658 (0.9825, 0.0170

1.0563 (0.9474, 0.0222

v=0.8

1.0625 (0.9825, 0.0163

1.0550 (0.9474, 0.0220

v=1.0

1.0625 (0.9825, 0.0163

1.0536 (0.9474, 0.0217

v=3.0

v=25.0

1.0257 (0.9123, 0.0231

0.9989 (0.7368, 0.0535

v =10.0

0.8394 (0.4912, 0.0710

0.8010 (0.4561, 0.0704

v =20.0

)

( )

( )

( )

1.0371 (0.9649, 0.0147)
( )

( )

( )

0.7401 (0.5263, 0.0436

)

( )

( )

( )

1.0420 (0.9123, 0.0265)
( )

( )

( )

0.7524 (0.5965, 0.0318

7 =50.0

0.6954 (0.5439, 0.0309)

0.7411 (0.5439, 0.0403)
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