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Abstract

Syntactic structure is an important component of natural language
utterances, for both form and content. Therefore, a variety of appli-
cations can benefit from the integration of syntax into their statistical
models of language. In this thesis, two new syntax-based models are
presented, along with their training algorithms: a monolingual gen-
erative model of sentence structure, and a model of the relationship
between the structure of a sentence in one language and the struc-
ture of its translation into another language. After these models are
trained and tested on the respective tasks of monolingual parsing and
word-level bilingual corpus alignment, they are demonstrated in two
additional applications. First, a new statistical parser is automatically
induced for a language in which none was available, using a bilingual
corpus. Second, a statistical translation system is augmented with
syntax-based models. Thus the contributions of this thesis include:
a statistical parsing system; a bilingual parsing system, which in-
fers a structural relationship between two languages using a bilingual
corpus; a method for automatically building a parser for a language
where no parser is available; and a translation model that incorporates
phrase structure.
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Chapter 1

Introduction

1.1 Motivation

Statistical methods are effective for many natural language processing tasks, in-
cluding automatic translation and parsing. This thesis brings these two applica-
tions together in two ways, using translation to aid parser construction and using
parsing to improve translation quality. This is made possible by a statistical model
of syntactic structure and a statistical model of the relationship between the syn-
tactic structures of two languages.

To parse a sentence is to resolve it into its component parts and describe its
grammatical structure. This analysis is prerequisite to many tasks involving hu-
man language, both because a significant part of the meaning of a sentence is
encoded in its grammatical structure (as opposed to the lexical selection), and be-
cause models that ignore structure are insufficient to distinguish well-formed from
ungrammatical utterances. Applications that potentially benefit from syntactic
parsing include corpus analysis, question answering, natural-language command
execution, rule-based automatic translation, and summarization.

Many parsers are based on rules of grammar inferred through linguistic study.
However, these rules are often too rigid to accommodate real-world utterances,
which often bend the rules of “correct” grammar in creative ways, or include mi-
nor errors, but are still easily comprehensible by human listeners. Also, many
sentences are structurally ambiguous according to grammar rules, but easily dis-
ambiguated by human listeners. In these cases, correct analysis may require lexi-
cal and distributional knowledge not found in hand-crafted grammar rules. Instead
of attempting to encode this knowledge manually, which would be far too difficult,
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10 CHAPTER 1. INTRODUCTION

researchers have turned to corpus-based statistical techniques, in which lexical and
distributional knowledge is gathered from large corpora of real human-generated
sentences. In addition to increased accuracy, statistical parsers tend to exhibit
greater robustness in dealing with unusual utterances, which would cause a more
strictly rule-based parser to fail. They also have the advantage of being easier to
build and to customize, because they do not require the work of a language expert
to carefully design a grammar and patiently encode a dictionary. Instead, given
an appropriate framework, all but the most basic grammar rules can be learned
automatically from data, resulting in a huge savings in time and effort, especially
if an existing parsing system is being ported to a new language or domain.

To train a statistical parser requires large quantities of annotated data. Typ-
ically, the training data must consist of real sentences annotated with structural
information of the kind the parser will eventually generate. Unfortunately, anno-
tating these sentences can require a huge amount of work by language experts,
comparable to that required to develop a rule-based grammar. However, if a rule-
based parser already exists for a given language, it can be used to automatically
annotate real sentences, which can then be fed into a statistical parser. Thus we
posit that a rule-based parser can be parlayed into a new parser with all the advan-
tages of a statistical technique, without the need for a language expert.

Training a parser on the output of another parser is likely to be somewhat of
a controversial idea, because some of the knowledge encoded in the handcrafted
grammar will likely be lost in the transfer, which could result in a statistical parser
that is less accurate than the rule-based parser from which it was trained. How-
ever, this technique has several advantages. Statistical parsing is more robust than
rule-based methods, and can respond to difficult inputs with graceful degrada-
tion rather than sudden failure. This is not to say that there are no rule-based
ways of increasing robustness, but that it comes naturally with statistical meth-
ods. Secondly, the use of real sentences in training actually adds information to
the system, enabling it to make use of lexical and distributional knowledge ig-
nored by the original rule-based system, which is especially useful in ambiguous
cases. Even if the original parser is not always correct when generating training
examples from ambiguous sentences, a large amount of training data should allow
the statistical parser to overcome the noise and learn the patterns that occur most
often. A third advantage of this technique is its versatility. Training data for a
statistical parser could come not only from a single existing parser, but from vari-
ous sources, if desired. For example, a few hand-coded examples could be added
to introduce a new grammatical construct not found in the original parser, or the
output of two or three parsers with different strengths and weaknesses could be
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combined to produce a new parser that combines their strengths.
When a parser is needed for a language in which no parser is yet available,

the choice between carefully designing a rule-based parser or tediously annotat-
ing large amounts of data by hand in order to train a statistical parser is rather
unappealing, since either approach requires a large amount of work by a language
expert. However, perhaps bilingual resources can come to the rescue by enabling
us to automatically annotate foreign sentences to use as training data for a new
parser. If the relationship between the structure of the foreign language and a
language for which a parser exists, such as English, can be systematically under-
stood, then the structures generated by the English parser can be transferred over
to the new language across an aligned bilingual corpus, resulting in a corpus of
syntactically-analyzed sentences suitable for training a statistical parser in the new
language. In order for this to work, a model is needed of the relationship between
the syntactic structures of the two languages, along with an unsupervised learning
technique to train the model based on a bilingual corpus where the syntactic struc-
ture is known for only one of the two languages. If a technique can be found to
infer the structure of a given foreign sentence given the words and structure of its
English translation, then the resulting foreign sentence structures can be used to
automatically train a new parser for the foreign language in which no parser was
previously available, without the need for language experts to design grammar
rules or annotate data.

Since ancient times, the ability to translate from one language to another has
been valued. The hope of creating an automatic system to do this translation is
now closer to fruition than ever before, though for open-domain translation, the
output quality of automated systems cannot yet come anywhere near that of bilin-
gual human. Corpus-based statistical methods currently dominate machine trans-
lation research, because it is just too difficult to write rules that capture all the
complexities of actual utterances, while relatively simple statistical models have
brought systems a long way toward comprehensible translation. However, the
models used in most statistical translation systems are much too simple to capture
the syntactic structure of each sentence, often resulting in output that is ungram-
matical or has the wrong meaning. Because important information is carried not
only in the choice of words, but in their grammatical relationships, it is necessary
to incorporate syntactic structure into translation models in order for meaning to
be conveyed accurately and grammatically.

In this thesis, two new techniques are presented and then applied together in
two different ways. First, a new statistical parser is presented. This parser, called
Lynx, is trained from sentences annotated automatically by another parser, and
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achieves results comparable to the original parser. Second, a statistical model
of the relationship between the syntactic structure of two languages is presented,
along with an unsupervised training algorithm, titled LinkSet. Putting these two
parts together, we then go on to demonstrate two applications. First, we automat-
ically induce a parser for a foreign language across a bilingual corpus. Then we
improve the output of an automatic translation system by incorporating syntactic
structure into its translation and language models.

1.2 Thesis Statement

My thesis statement has 4 parts:

1. To train a new statistical parser, it is not necessary to hand-annotate a large
corpus with structural information if a rule-based parser is available, be-
cause a parser trained on automatically-generated data can perform as well
as or better than the original parser.

2. A statistical model of the relationship between the syntactic structures of
two different languages can be effectively learned from a bilingual corpus
by an unsupervised learning technique, even when syntactic annotations are
available for only one of the languages.

3. Using a bilingual corpus and an existing parser in one language, a new
parser can be automatically induced for the other language, without the
aid of a language expert. This induced parser can then be incrementally
improved.

4. Integrating syntactic structure into the statistical models used for automatic
translation can increase the quality of translated output.

1.3 Overview

This section gives a high-level theoretical overview of the models developed through-
out this thesis. Beginning with the structural model of English sentences used in
the Lynx parser, discussed in Chapter 2, we then introduce the model of the re-
lationship between English and a foreign language used in the LinkSet bilingual
parser discussed in Chapter 3. Then the combination and application of these two
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models to the induction of a new foreign-language parser and to an automatic
translation system, discussed in Chapters 4 and 5 (respectively) are outlined.

The Lynx parser uses a generative modelPr(E) of a structured English sen-
tenceE , a syntactic tree structure including words and labels. Parsing a given
English sentence stringe is the same as finding the most likely treeÊe that yields
the same surface string. Since each syntax treeE includes the words of the sen-
tence, the probability ofE givene is equal to the probability ofE if the words of
E matche, and zero otherwise. To parsee, we findÊe as follows:

Êe = argmax
E

Pr(E|e)

Since the wordse are contained in the structureE , this is equivalent to limiting
the range of the structure such that it must match the given string, in which case
the conditioning on the probability upone becomes redundant:

Êe = argmax
E:WORDS(E)=e

Pr(E)

The modelPr(E), which assigns a probability to any structured English sen-
tence, is recursively structured, breaking down the sentence structure into sub-
trees, and conditioning the probability of each node on the properties of its parent
and immediately adjacent sibling (if any). Once it has been trained on annotated
English sentences, this model can be used for parsing by searching the space of
structures possible for a given sentence for the one to which the model assigns the
highest probability.

When a structured English sentence is given along with its translation into a
foreign language, their relationship can be modeled using the LinkSet structured
translation model, which is a generative modelPr(F|E) of the transformation of
a structured English sentence into a structured foreign sentence. This structured
translation model, which models the probability of a given foreign sentence tree
F given an English sentence treeE , is used by the LinkSet bilingual parser to find
the most likely structurêFE,f for a given foreign sentencef , when the words and
structure of its English counterpart are known. Again, since the sentence structure
F includes the words of the sentence, the probability ofF givenE andf is the
same as the probability ofF givenE if the words ofF match the stringf , and
zero otherwise. Thus to find the most likely structureF̂E,f of a a foreign sentence
f given an English structureE , we maximize the following expression:

F̂E,f = argmax
F

Pr(F|E , f)
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As before, the wordsf are contained in the structureF , so we can again simplify
by stipulating the correspondence between the wordsf and the structureF :

F̂E,f = argmax
F :WORDS(F)=f

Pr(F|E)

In principle, these models of English sentence structure and of foreign sen-
tence structure given English sentence structure can be composed to generate a
model of foreign sentence structurePr(F), which can then be used to parse for-
eign sentences monolingually. The probability of a foreign sentence structure can
be defined in terms of the model of English structurePr(E) and the model of
foreign structure given English structurePr(F|E).

Pr(F) =
∑
E

Pr(E) Pr(F|E)

As it is given here, the probability ofF is impractical to compute, since it
requires summing over all (infinitely many) English structures. However, it can
be approximated, as explained below in Chapter4. Once we build a model of
foreign structure, we can parse foreign sentences the same way we do English:

F̂f = argmax
F

Pr(F|f)

= argmax
F :WORDS(F)=f

Pr(F)

Composed differently, the monolingual English structure modelPr(E) and the
structured translation modelPr(F|E) can in principle be used for translation, that
is, to find the most probable English rendering of a given foreign sentence. Fol-
lowing the noisy-channel interpretation of statistical translation that has become
standard, we pretend that the foreign sentencef is a transformed version of some
“original” English sentencee. To translate, we simply “decode” the foreign signal
by finding the English stringemost likely to have generated the foreign stringf:

êf = argmax
e

Pr(e|f)

Using Bayes’ rule, we can turn this around and factor out thePr(f) that would
appear in the denominator, since it does not depend one. Then translation from a
foreign language into English requires only an English language modelPr(e) and
a modelPr(f |e) of translation from English to the foreign language.

êf = argmax
e

Pr(e) Pr(f |e)
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So far we have described translation of sentence strings, ignoring syntactic
structure. We can incorporate our structured models of English and of the re-
lationship between English and a foreign language by summing over all foreign
structures that are consistent with the foreign string we are translating, and over
all English structures. To find the most likely English translationêf of a foreign
sentencef , we maximize the following sum:

êf = argmax
e

∑
E:WORDS(E)=e

Pr(E)
∑

F :WORDS(F)=f

Pr(F|E)

With this combined model, the best translation of a foreign sentencef can
in principle be found. In practice, the sum over all English structures and over
all foreign structures consistent with the given foreign sentence is infeasible to
calculate. However, an approximation can enable translation hypotheses to be
scored and reranked at a reasonable computational cost, as shown in Chapter5.

The overview above serves as an outline of this thesis. We will first intro-
duce a model of English sentence structure, along with a method for using it to
parse English sentences. Using training data derived from an existing parser, we
will train the model, and then test this new statistical parser by comparing its
ability to bracket sentence constituents with that of the other parser, as measured
against human-annotated bracketings. Then we will introduce a model of foreign
sentence structure given English sentence structure, along with an unsupervised
learning technique. Training this model with a bilingual corpus, we will test its
ability to align sentences by comparing the most probable alignments according
to the model, as compared to human-annotated alignments. Finally, we will use
these models together in two different ways. First, we will compose them to gen-
erate a stand-alone model of foreign sentence structure, which we will then use to
parse foreign sentences. We will test this new parser by comparing its accuracy in
bracketing unseen foreign sentences with respect to human-annotated bracketings.
Second, we will enhance an automatic translation system by using these structured
models to reevaluate the hypotheses it generates, comparing the resulting transla-
tions against the original system’s output using standard evaluation metrics such
as the BLEU and NIST scores. Along the way, we hope to gain insight into how
and why to integrate syntactic structure into statistical models of natural language.
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Chapter 2

Monolingual Probabilistic Parsing

2.1 Motivation

Syntactic parsing is the analysis of a sentence for its syntactic structure. The
grammar and lexicon of a language together define which structures are possible
in that language and which words may go where in that structure. There are many
applications of parsing, ranging from grammar checking in word processors and
language modeling for tasks such as speech recognition, to natural language un-
derstanding tasks, including dialog systems, command systems, and translation
systems. Parsing can also be useful for various kinds of corpus analysis and infor-
mation extraction.

A common approach to parsing is to carefully encode the grammar and lexicon
of a language into a computer system, allowing that system to find a valid structure
(if one exists) for any given input. When ambiguous input arises, heuristics can
be used to select a structure likely to be the correct one. However, encoding
a grammar requires a great deal of effort by an expert in the language and in
the technique of grammar encoding, expertise that may be hard to find, and this
encoding must be done all over again whenever the system is ported to another
language. While these rule-based systems encode the grammar rules implicitly
known by speakers of the language being parsed, they typically do not make use
of the semantic and distributional (statistical) knowledge speakers have, which is
very important for selecting the right meaning of an ambiguous utterance. A third
disadvantage of grammar-based parsing systems is that natural language often
does not conform to the rules of the grammar. Unusual constructions, casual
speech, innovative expressions, mistakes, noise, and interruptions can all result in

17
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sentences that are quite understandable to a human reader or listener, but utterly
confusing to a rule-based parser.

Statistical parsing, on the other hand, can deal with each of these weaknesses.
A statistical model is typically learned from data rather than being painstakingly
constructed by a language expert. Also, a grammar learned from real data will
match the actual forms seen in use, rather than an idealized grammar that may
not correspond to everyday speech, or the idioms of the community for which the
parser is trained. Lexical statistics allow a statistical parser to make subtle dis-
tinctions based on the specific words in the sentence, providing a more principled
way to deal with ambiguity than the heuristics use in rule-based systems. Robust-
ness is another advantage of statistical systems: since parsing is a maximization
problem, a sentence that is not well-formed according to a rule-based system (re-
sulting either in total failure or in skipping part of the sentence) will just have a
lower probability for its best structure in a statistical system, resulting in graceful
degradation rather than sudden failure when the going gets tough. Even better, a
statistical system may be able to correctly handle unusual constructions not seen
before (by the system designer or in the training data) just by choosing the most
probable way to analyze a given phrase.

While a statistical parser can be trained from data, it is not necessarily easier
to obtain a large quantity of hand-annotated sentences than to design a grammar
by hand. However, there are various shortcuts. One approach is to use a hand-
designed grammar, but then enhance it with statistics. In this case, less hand-
annotated data should be necessary. This approach might give good results, but it
still requires an expert to design a grammar and annotate a good deal of data by
hand.

Another approach is to use an existing rule-based parser to automatically an-
notate data. This amounts to transferring a grammar from rules to statistics, and
of course requires that a rule based parser already exist; however, it does add dis-
tributional information from real-life data, giving many of the advantages of a
statistical parser. One disadvantage is that the rule-based parser will make mis-
takes, adding noise to the statistics of the new parser; however, one would hope
that the noise would be insignificant compared to the signal. While it may not
require a language expert to build a statistical parser using an existing parser, this
does not yet solve the problem of building a parser for a language for which one
does not yet exist. However, it is halfway there: if training data can be generated
in the target language, a statistical parser for that language can be trained with
little additional effort, given a general-purpose statistical parser. This process is
the subject of Chapters3 and4. Meanwhile, we will see that in English a sta-
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tistical parser can offer some advantages over a rule-based parser, even when the
statistical parser’s training data was all generated by the rule-based parser against
which it is being compared.

How should such a statistical parser be designed? The most important con-
sideration is the model itself. It must be able to capture the relevant linguistic
phenomena, but also to generalize from a reasonable amount of training data, not
requiring too much data nor taking up too much space, but dealing with sparse
training data by capturing the relevant features. A secondary consideration is the
search algorithm. The model must be designed so that search can be done effi-
ciently. Fortunately, natural language has a hierarchical structure, the locality of
which is a key both to efficient search and to generalization from sparse data. A re-
cursive generative model of sentence structure, picturing a sentence as a tree, can
capture this locality by conditioning the probability of each node only on nearby
nodes.

2.2 Related Work

2.2.1 Background: Link Grammar

A link grammaris a formal grammatical system, such that a sequence of words
is in its language if there is a way to draw links between words so the local re-
quirements of each word are satisfied, the links do not cross, and the words form
a connected graph. The idea was introduced by Sleator and Temperley, who also
encoded English grammar as a link grammar and developed software, which will
be referred to as the Link Parser, to parse sentences using this grammar [25].

In a link grammar, each word (or group of similar words) in the dictionary
has local linking requirements which must be satisfied in a well-formedlinkage.
These requirements consist of lists of labeledconnectorsbranching either to the
left or the right, which must meet connectors with matching labels coming from
other words in the sentence. Multipledisjuncts, as these lists of connectors are
called, may be valid options for a word.

For example, Figure2.1 shows a few words or word classes from a simplified
dictionary. Each word has various connectors on either side, each of which must
be joined with a matching connector in order to build a well-formed linkage. The
nouns in this example can act either as objects or subjects but not both, so one and
only one of the connectorsO andS must be satisfied for these words, a fact not
shown in the diagram, but nevertheless encoded in the dictionary. In a real dictio-
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a
the

D

cat
snake

D S

O

chased

S O

ran

SS

Mary

O

Figure 2.1: Part of a dictionary.

the cat

S

chased

S

O

a snake

D D

O

D D

Figure 2.2: A sentence.

nary, some words may have only one possible disjunct, while others have many
possible combinations of connectors. In Figure2.2 some words are assembled
into a linkage, which corresponds to the sentence “the cat chased a snake.” Each
connector is satisfied and no links cross, and all the words are connected, so this
is a well-formed linkage.

Link grammars are very similar to dependency grammars, in which each word
(except theroot word) is linked by a directed arc to one other word. A linkage,
on the other hand, is an undirected graph, and may contain cycles. Both link
grammars and dependency grammars arecontext-free.

The Link Parser uses a dynamic programming technique to find a linkage that
satisfies some disjunct of each word in a sentence, forming a connected graph
with no crossed links. A range of words is parsed by first selecting a word within
that range that connects to one of the connectors available from either the left or
right end of the range, and then recursively parsing the sub-ranges on each side of
the chosen word. The asymptotic running time of this algorithm isO(n3) to parse
ann-word sentence. For long sentences, this is still quite slow, so some advanced
pruning techniques are used to eliminate connectors that will never be satisfied,
resulting in a significant speed-up in the average case.
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2.2.2 Statistical Models based on Link Grammar

Several others have adapted the link grammar formalism to build statistical models
of language. These models combine the advantages of lexical statistics and long-
range dependencies, setting the stage for the more complex Lynx parser.

Grammatical Trigrams

Lafferty, Sleator, and Temperley, in 1992, introduced a generative grammar model,
called Grammatical Trigrams, which combined the strengths of trigrams and a
link grammar [17]. The key advantage of this combination is that the result is
both highly lexical and able to capture long-range dependencies beyond the reach
of ordinary trigrams.

The Grammatical Trigrams model generates the sub-range bordered by words
L andR on the left and right, respectively, and having incoming connectorsl
andr, by generating a wordw, a disjunctd to determine what connectors will
branch fromw, and an orientationo which determines whetherw will be linked
to l, r, or both. A disjunct is a pair of ordered lists of connector labelsd =
((lm, lm−1, ..., l1), (r1, r2, ..., rn)) determining which links will branch to the left
and right of the word to which it attaches. The probabilities ofw, d, ando are
conditioned onL,R, l, andr.

The Grammatical Trigrams model could be trained from example linkages
(of the same kind used to train the Lynx parser) using the Inside–Outside (EM)
algorithm. Methods of smoothing the model were also suggested. No concrete
results were reported.

Inference and Estimation of a Long-Range Trigram Model

The Grammatical Trigrams model was adapted in 1994 by a group at IBM, re-
sulting in a probabilistic link grammar, which they used as a language model to
a achieve slight improvement in they output of a translation system [23]. This
extended trigram model generates the next word in a sentence by first deciding
whether to halt, step, or branch, conditioned on the previous two words. When
branch is selected, an additional word is generated according to a long-range tri-
gram model; this additional word will be linked to the current word, but will
appear to the right of all words subsequently generated from this word. For both
step and branch, a word is generated according to a regular trigram model for
placement to the immediate right of the current word. Like ordinary trigrams, the
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grammatical trigram model is trained automatically from data. While the model
does not label its links, nor is it expressive enough to generate every structure
allowed by link grammar, it is a significant step forward from ordinary trigrams,
and shares their advantage of not needing an explicit grammar.

Restricted Probabilistic Link Grammars

Much like the Grammatical Trigrams model, the Restricted Probabilistic Link
Grammar (RPLG) of Fong and Wu [19] generates words, orientations, and dis-
juncts based on(L,R, l, r). Like the Long-Range Trigram Model, RPLG treats
all links the same (ignoring labels), which greatly reduces the space of possible
disjuncts, thus making learning more feasible but at the same time reducing the
predictive power of links within the model. RPLG also adds a dependency on ori-
entation to word probabilities, which increases the accuracy of word predictions.
Orientation is restricted so that if connectors are available on both sides, either the
left or both left and right may be grabbed, but not just the right, thus preventing a
single sentence graph from having multiple derivations. Just like the Grammatical
Trigrams model, the RPLG model was trained using the Inside–Outside EM algo-
rithm. A parsing experiment shows improvement over the Grammatical Trigrams
model.

Structure and Performance of a Dependency Language Model

Again motivated by the need for a better language model than simple trigrams,
although this time for speech recognition rather than translation, a 1997 sum-
mer workshop at Johns Hopkins designed and implemented a maximum entropy
dependency-grammar model [8]. As in the previous models, this one generates
each word and its disjunct, with probability conditioned on a subset of the words
and disjuncts to its left. In this case, maximum entropy training is used to select
features from the following set: the immediately previous words (as in ordinary
trigrams), any connector labels branching out from a previous word but not yet
connected, and the source words for those unsatisfied connectors. This formu-
lation gives the probability of the structure given the sentence, or of the sentence
given the structure, but not of their joint probability. Using an existing dependency
parser, they compared several variants of this model as the language-modeling
component of a speech recognition system.
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2.2.3 Other Statistical Grammar Models

Although based on phrase-structure grammar rather than link grammar, three gen-
erative parsing models proposed by Michael Collins in 1997 [9] have significant
similarity to the Lynx model. As in Lynx, his Model 1 parser finds the most prob-
able parse tree for a sentence by maximizing the joint probability of the sentence
and its parse tree. Model 1 is trained on a tree bank of examples rather than using
an explicit grammar, but it achieves higher precision and recall than competing
parsers with which it was compared, partly because it is trained on hand-built ex-
amples rather than an errorful automatically-parsed training set. It is a generative
lexicalized probabilistic context-free grammar, distinguishing internal nodes from
leaves, which hold the words. In contrast, the link grammar formalism has no
internal nodes. In Model 1, internal nodes are lexicalized, marked with the word
that is theheadof the phrase represented by that subtree. Collins expanded Model
1 with additional non-terminal symbols and gaps to create two more models with
slightly better accuracy.

Similarly, Eisner had proposed three dependency grammar models in 1996
[11], and developed them further the following year [12]. Model C, which will
be considered here, models unlabeled dependencies between words, as did the
Long-Range Trigram Model and RPLG. Unlike RPLG and Grammatical Tri-
grams, Model C generates links with their corresponding words and subtrees one
at a time rather than as a monolithic disjunct for each word. Also, each word is
marked with a category tag, upon which other probabilities depend, thus reduc-
ing the effects of lexical sparsity. Model C recursively generates subranges of a
sentence by generating a word and at the same time proceeding to generate the
subrange rooted at that word, which consists of a sequence of links, each with its
associated tag and word, and then, recursively, any subtree rooted at that word.
The sequences of links generated on the left and right side of a word are mutually
independent, and Markovian independence is assumed among links, making the
probability for each link depend on the previous link generated but not on any
other links generated by the word.

In a detailed exposition of his parsing algorithm for bilexical grammars [13],
which condition grammar rules (probabilities) on pairs of words, Eisner noted a
strong connection between his method and the Link Parser, both of which require
timeO(n3) to parse a sentence ofn words.
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2.3 The Lynx Model

Based on the link grammar formalism to define the types of structures it can
model, the Lynx parser is a very different creature, using automatically-learned
statistics rather than hand-crafted rules to define its grammar. Hence the name
LYNX, which stands forL inks,YetNot eXactly.

The core the of Lynx parser is a generative model of a sentence with syntactic
structure. We notate an English sentence ase, and the sentence together with its
structure asE . Once this model is defined and trained, parsing a sentence is just a
matter of selecting the most probable structure for that sentence.

Êe = argmax
E:WORDS(E)=e

Pr(E)

Of course there are myriad ways the modelPr(E) could be formulated, some
better than others. A good model must be sensitive enough to capture the relevant
linguistic phenomena, but concise enough to overcome the challenges of training
data sparsity, limited memory space, and limited computation time. The Lynx
model is a recursive generative model of sentence structure, in which the prob-
ability of generating a node in the syntax tree is conditioned only on features of
nearby nodes, in particular the parent and the next elder sibling.

In order to define the model in more detail, it will be useful to establish some
notation. A structured English sentenceE is a collection of nodes, arranged in a
tree structure. A nodeν (nu) is a tuple〈c, t, w〉, whereν.w is a word,ν.t is a part-
of-speech tag assigned to that word, and the link between nodeν and its parent
has the connector labelν.c. The children of each node are ordered left to right and
may fall on either side of the word associated with the node. That is, the nodes
of the tree are arranged in a total ordering from left to right, which corresponds
to the order of the words in the sentence and to an inorder traversal of the tree.
The function WORDS(E) returns the words ofE in order. The root of the tree is a
special symbol call theleft wall.

To facilitate tree operations, we use the following functions: PARENT(ν),
CHILDREN(ν), and ELDER(ν). Each returns a (possibly empty) set: respectively,
the parent, children, or immediate elder sibling ofν. They return a set of nodes (or
references to nodes). Each node except the root has a unique parent. The children
of a node are all the nodes that have that node as their parent. The unique imme-
diate elder sibling ofν, if it exists, has the same parent asν and is farther from
the parent thanν is, according to the total ordering on nodes, and there is no other
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Figure 2.3: The six contexts of connectors, words, and tags.

node closer toν that has these properties. With these definitions, it is possible to
order the nodes such that each node is preceded by its parent and elder, although
this ordering does not necessarily correspond to the linear order of words in the
sentence.

Using this notation we can write an equation for the probability of a structured
sentence, showing the main independence assumption of the model:

Pr(E) =
∏
ν∈E

P (ν|PARENT(ν),ELDER(ν))

This equation means that in this model the probability of a sentence and its
structure is the product of the probabilities of the individual nodes and words,
and that the probability of each node and its corresponding word is conditioned
on the parent and elder sibling of the node, and on the word associated with the
parent, not on other nodes or words. That is, the model exhibits locality in the tree
structure.

To break down the model further, let us distinguish six different contexts in
which a node may occur, shown in Figure2.3. The context of a nodeν is a
deterministic function of its parent and elder, with the range{LFL, RFR, LFR, RFL,
LUL , RUR} and which we will notate asC(ν). To simplify the equations below,
we also define two setsCt = {LFL, RFR, LFR, RFL} andCu = {LUL , RUR}.
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P (ν| . . .) = P (ν|C(ν),ELDER(ν).c,PARENT(ν).〈c, t, w〉)
= P (ν.c| . . .)P (ν.t|ν.c, . . .)P (ν.w|ν.t, ν.c, . . .)

P (ν.c| . . .) = P (ν.c|C(ν),ELDER(ν).c,PARENT(ν).〈c, t, w〉)

=

{
P (ν.c|C(ν),PARENT(ν).〈c, t, w〉) C(ν) ∈ Ct
P (ν.c|C(ν),ELDER(ν).c,PARENT(ν).〈t, w〉) C(ν) ∈ Cu

P (ν.t| . . .) = P (ν.t|ν.c, PARENT(ν).w)

P (ν.w| . . .) = P (ν.w|PARENT(ν).w, ν.c, ν.t)

Thus the model is broken down into sub-models which are limited in what
they are conditioned upon.

2.3.1 Smoothing

Several of the sub-models listed above, however, are still conditioned on enough
variables that they would have problems with memory requirements and data spar-
sity if they were not in turn composed of smaller, simpler models. Thus several
sub-models are linear combinations of two or more basic models, shown below
with λ’s as mixing parameters; theseλ’s can be hand-tuned and should sum to one
within each group.

P (ν.t| . . .) = λ1P (ν.t|C(ν), ν.c) + λ2P (ν.t|C(ν),PARENT(ν).w)

P (ν.w| . . .) = λ1P (ν.w|ν.c, ν.t) + λ2P (ν.w|PARENT(ν).w, ν.t) +

λ3P (ν.w|ν.t)

P (ν.c| . . .) =



λ1P (ν.c|C(ν),PARENT(ν).c) +
λ2P (ν.c|C(ν),PARENT(ν).t) +
λ3P (ν.c|C(ν),PARENT(ν).〈c, t〉) +
λ4P (ν.c|C(ν),PARENT(ν).〈c, w〉)

C(ν) ∈ Ct

λ1P (ν.c|C(ν),ELDER(ν).c) +
λ2P (ν.c|C(ν),PARENT(ν).t) +
λ3P (ν.c|C(ν),ELDER(ν).c,PARENT(ν).t) +
λ4P (ν.c|C(ν),ELDER(ν).c,PARENT(ν).w)

C(ν) ∈ Cu

The contextC(ν) is really a model selector, not a parameter. Thus we have a
model that is broken down into pieces of practical size. The sub-models forν.t,
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ν.w, andν.c have no components that condition on more than two parameters,
allowing it to avoid serious problems with data sparsity and excessive memory
requirements.

2.3.2 Link Grammar and Cycles

The Lynx model is based on link grammar (described in Section2.2.1) in that it
is a generative model of linkages having the same format as those described by
link grammar. Link grammar describes undirected graphs, while the Lynx model
describes directed trees. To translate an undirected linkage into a directed tree,
the graph is traversed starting at theleft wall (which becomes the root of the tree)
assigning the direction of traversal to each edge followed, resulting in a directed
tree in which any node can be reached from the root. Trees are inherently acyclic,
and since the undirected graphs described by link grammar may contain cycles,
these cycles must be dealt with before converting the graph into a Lynx-style tree.
The simplest solution is to cut them. We do this by removing the longer of the two
links that connect to the rightmost word in the cycle. Inspection of numerous real
sentences containing cycles shows that this is the cut that most often would result
in the smallest loss of useful information.

At an earlier stage in the research, we attempted to model these cycles instead
of cutting them. One solution was to generate the rightmost node of a cycle con-
ditioned on both incoming links (in contrast, other nodes are each conditioned
on a single parent node), and to model links that are part of a cycle separately
from links that are not. This approach, while maintaining linkages in a shape
exactly equivalent to that of link grammar (and thus of the Link Parser), and be-
ing basically effective at modeling sentences with cycles, nevertheless had some
significant problems. Although it was still a proper generative model, the model
was made more complex and confusing. Training the model took hours instead
of minutes, because some parameters had to be summed over all possible pairs of
connectors. This approach also made search more difficult, not only making the
algorithm more complicated, but making the search less able to use the model as
a guide, resulting in a choice between a slower or a less accurate search. Because
of these problems and the additional problem of dealing with cycles in a bilingual
parsing model, this approach was abandoned (after much suffering) in favor of the
much simpler cycle-cutting approach.
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2.3.3 Training

The simplest way to train the Lynx model is to simply use empirical counts from
a large corpus of linkages. In theory it would be possible, and perhaps preferable,
to use an EM approach to train the parameters of this model, but in practice the
simple approach works reasonably well, while the small improvement EM would
probably provide is likely not worth its considerable computational cost.

Large annotated corpora are available in other formalisms (notably context-
free grammar), for example the Penn Treebank, but these cannot be used to train
the Lynx parser because there is no well-defined way to translate from CFG to link
grammar. This difficulty is due to the ambiguity inherent in the annotations used
for the Treebank, resulting in more than one possible linkage consistent with each
annotated Treebank sentence. Translating from link grammar to CFG is similarly
difficult, due to ambiguities in link grammar with respect to the annotations used
in the Treebank.

Since no large corpus of hand-compiled linkages exists in link grammar, the
next best thing is to parse text using the Link Parser to automatically generate a
corpus of linkages. Of course, a machine-parsed corpus will be a less reliable
source of knowledge, but there is reason to hope that the noise introduced by
parsing errors will not overwhelm the signal, especially if a large amount of data
is used. One way to improve the odds of this is to use a corpus that has been
hand-analyzed in a different formalism (since such a corpus does exist) and to
either translate syntactic structures from that formalism into link grammar, or use
them to constrain the Link Parser in some way. Since direct translation is difficult,
we adapted the Link Parser to select the linkage that corresponds most closely in
terms of bracketing structure with the hand-annotated structure, when such anno-
tations were available.

2.4 Search

The goal of parsing is to find the most likely structure of a given sentence string.
Since we have a model of sentence structure that includes the string (a genera-
tive joint model), we could in theory enumerate every structure consistent with
the given string, evaluate the probability of each, and select the most probable.
Unfortunately, this is obviously infeasible because of the huge variety of possible
structures. Fortunately, the model has been designed with locality in terms of hi-
erarchical structure, so that substructures that exist in multiple sentence trees can
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procedure PARSESENTENCE(sentence)
return (CHOOSEL INK ANDWORD(LEFTWALL ,NONE))

procedure CHOOSEL INK ANDWORD(L,R)
if L+ 1 = R

then return (1)
for eachword ∈ L..R

do


for each tag ∈ tags[word]

do


cset← connectors[L,word] ∪ connectors[R,word]
for each connector ∈ cset

do heap.INSERT

(
〈connector, tag, word〉,

Pr(connector, tag, word|L,R)

)
prob← 0
limit← MAX (ε, γ × heap.PEEK(〈connector, tag, word〉))
while heap.POP(〈connector, tag, word〉) ≥ limit

do

subprob←
 Pr(connector, tag, word|L,R)×

CHOOSEL INK ANDWORD(L,word)×
CHOOSEL INK ANDWORD(word,R)


prob← MAX (prob, subprob)

return (prob)

Figure 2.4: The Lynx parsing algorithm, simplified.
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share the cost of computing their probabilities. The most probable subtree of each
node is the same regardless of what happens elsewhere in the tree.

Based on this recursively-structured model, a simple search algorithm would
be to enumerate all values for a node that might be the root of a tree covering a
particular range of words (starting with the entire sentence), and then recursively
search for the best subtree given each value of the node. The best subtree of each
node (and its probability) is cached, greatly reducing the computational burden
compared to a naive exhaustive search.

However, the above search is still both exhaustive and expensive. While a
complete search is good in that it guarantees that the best structure (according to
the model) will be found, it is too slow for many applications. Fortunately, the
model itself holds the key to directing the search intelligently. When a search path
is being selected, the model can be used to search the most promising path first,
that is, the path with the most probable first step. Any subtree less probable than
a known alternative need not be searched any further, so finding good paths early
on will speed up search even without sacrificing completeness.

At each juncture, it is common for there to be a wide range of possibilities,
but only a few with reasonable probability. A lot of time could be saved with-
out introducing many search errors by not considering those options that are far
less likely. For example, the search could ignore any step having a probability
below some global threshold. This is known as a beam search. Unfortunately,
setting such a threshold does not work in this case because at some points in the
search the probability distribution is quite smooth (requiring a low cutoff) and at
others it is quite sharp (requiring a higher cutoff). The answer to this is to use
a cutoff that is proportional to the most probable option at each juncture rather
than a fixed threshold. This is known as adynamic beam search, a variant of the
beam search method popular in speech recognition[18, 21]. The ratio between
the highest probability option and the lowest probability that will be considered
at that juncture is known as thebeam ratio, which we notate here asγ, such that
pmin = γ · pmax. Adjusting the beam ratio adjusts a trade-off between speed and
completeness:γ = 1 yields a greedy search, andγ = 0 a complete search.

Figure2.4 shows the search algorithm used in the Lynx parser, simplified for
readability. Given a range of words, it returns the probability of the most probable
structure that produces those words. It has two main steps. First, it gathers all the
possible directions the search could take from this point, and finds the probability
according to the model of the first step of each. A step in this case is the selection
of a word from within the given range to be generated next, a POS (part of speech)
tag for that word, and a connector from among those that might possibly connect
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this word to the word on its right or left. Second, it goes through the gathered
possibilities from the most likely to the least (until the dynamic beam cutoff is
reached), recursively searching the sub-ranges to the left and right of the selected
word. In the real implementation, the best structure is of course returned along
with its probability, and there are some additional optimizations.

2.5 Results

The experiments below show that the Lynx parser performs about as well as the
Link parser, which is an interesting result because all the training data used as
input to the Lynx parser was output from the Link parser. The two systems score
quite differently on a sentence-by-sentence basis, indicating that the Lynx parser
is not just learning to imitate the Link parser, but to outdo it on many sentences.

Two data sets were used in the following experiments, both taken from the
Wall Street Journal. Long sentences and sentences containing conjunctions and
were removed. Also, some other problematic sentences were removed, such as
those containing strange characters. TheWSJ-1989data set consists of 14817
sentences from 1989. TheWSJ-1987data set is much larger, consisting of 282879
sentences from 1987.

2.5.1 Quantitatively comparing Link vs. Lynx

To quantitatively evaluate the Lynx parser, we took text that had been annotated
for constituent structure from thePenn Treebank, and computed the precision and
recall of constituent structures found by Lynx with respect to the hand-annotated
structures. For comparison, we also evaluated the output of the Link parser in the
same way on the same sentences.

The comparison was performed using 10-fold cross-validation. To test each
fold, the Lynx parser was trained using sentences from the other 9 folds, so it was
never tested on sentences on which its current model had been trained. To train
each model for the Lynx parser, training sentences were parsed using the Link
parser. Annotations were available for these sentences as part of theTreebank, so
it would have been nice to be able to use those directly instead of having to rely on
an automatic parser to generate training data. However, the formalism used in the
Treebankcan not be translated simply and directly into link grammar, so instead
we used the annotations to select the best among the various hypotheses generated
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recall precision F1-score

Lynx 68.43%± 0.23% 73.29%± 0.15% 70.77%± 0.19%
Link 67.60%± 0.18% 74.97%± 0.12% 71.09%± 0.15%
Nulls 68.89%± 0.19% 74.72%± 0.14% 71.68%± 0.17%
Oracle* 72.38%± 0.19% 78.90%± 0.13% 75.50%± 0.16%
Link-opt* 72.17%± 0.18% 79.53%± 0.16% 75.67%± 0.15%

Table 2.1: Comparison of the Link and Lynx parsers on theWSJ-1987data set
with simple and optimal hybrid approaches, plus the filtered system used to gen-
erate training data. Means and standard deviations are shown for recall, precision,
andF1-score. Systems that “cheat” are marked with an asterisk.

by the Link parser when parsing each sentence, and then trained the Lynx parser
on these selected parse structures.

Table 2.1 shows the aggregate precision and recall of the Link and Lynx
parsers on both data sets, along with two hybrid approaches, which simply select
the output of either parser on a sentence-by-sentence basis. The first hybrid ap-
proach,Nulls, uses a very simple heuristic, selecting the Link parser for sentences
which it is able to analyze completely, and selecting the Lynx parser whenever
the Link parser requiresnull links to complete its analysis. The second hybrid
approach is a cheating oracle, which always knows which parser will do better; it
is included to show an upper bound on the performance of sentence-level hybrids.
Also shown is a cheating version of the Link parser,Link-opt, which looks at the
correct answer when selecting the best among its hypotheses. The output of this
version was used as training data for the Lynx parser.

For all the percentages in Table2.1, the standard deviations (over 10 trials) are
under a quarter of a percentage point. All pairwise comparisons that can be made
from this table are statistically significant atp = 0.001, with one exception: the
comparison of Link vs. Nulls on precision is significant atp = 0.01.

As these results show, the Lynx parser performs about as well as the Link
parser, yet the two systems score quite differently on a sentence-by-sentence basis.
On the largeWSJ-1987dataset, the Lynx parser achieves a slightly higher recall
than the Link parser, at only slightly less precision. This is particularly interesting
because all the training data used by the Lynx parser came from the Link parser.

Figure2.5 shows comparisons of the Lynx parser vs. the Link parser on the
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Figure 2.5: Sentence-by-sentence comparsion of the Link parser and the Lynx
parser byF1-score on theWSJ-1987dataset.

respective data sets. For each sentence, they compare theF1-score1 of the Link
parser (on the X axis) against theF1-score of the Lynx parser (on the Y axis). Any
points on the diagonal (x = y) indicate sentences in which both parsers got the
same score, while sentences above the diagonal were analyzed more correctly by
the Lynx parser, and sentences below the diagonal were analyzed more correctly
by the Link parser. The grid-like structure of the scatter plots appears because
each sentence must have a whole number of brackets, limiting the possible scores
to a range of fractions where both the numerator and denominator are integers less
than twice the number of words in the sentence.

Figure2.6 shows theF1-score of each of the parsers and hybrids for each of
the 10 folds in the cross-validation experiment, with 10 four-way comparisons in
an arbitrary order.

While the plot in Figure2.5 shows that there are many sentences for which
one parser does better, and many where the other does better, the way these are
distributed can be seen quantitatively in Table2.2, which shows the number and
percentage of sentences for which each system out-scores each other system. Each

1f1 = 2pr/(p+ r)
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Figure 2.6: Comparsion of the Link and Lynx parsers and two hybrids byF1-score
on theWSJ-1987dataset, broken down into 10 trials.

Link Lynx Nulls Oracle

Link 84967 30% 28066 10% 84967 30%
Lynx 85078 30% 65284 23% 85078 30%
Nulls 19794 7% 56901 20% 76695 27%

Table 2.2: The number and percentage of sentences for which the column method
beats the row method on theWSJ-1987dataset.
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WSJ-1989 WSJ-1987
zero perfect zero perfect

Link 791 5.3% 2467 16.6% 6874 2.4% 0
Lynx 718 4.8% 1885 12.7% 4765 1.7% 0

Table 2.3: The number of sentences for which each parser scored zero or 100%.

cell represents the number of sentences on which the system at the head of its
column scores higher than the system at the start of its row. No system can out-
score theOracle (by definition), so it appears only among the columns. On40%
of all sentences, the parsers scored equally well.

Points on the borders of the scatter plots represent sentences for which at least
one system got either a perfect score or a zero. Quite a few points fall into these
categories, as quantified in Table2.3. As this table shows, the Link parser is both
more likely to get a zero score and more likely to get a perfect score than the
Lynx parser. On the more difficultWSJ-1987corpus, neither parser bracketed
any sentence perfectly, and the Lynx parser had just over half the failure rate of
the Link parser. One of the keys to Lynx’s success is its increased coverage due
to the graceful degradation of a statistical parser, in contrast to the rigidity of a
knowledge-based parser. Because of its smoother performance curve, the Lynx
parser is less likely to fail completely when faced with a difficult sentence.

As shown in Figure2.5 and Table2.2, there are many sentences on which
one parser does better, and many on which the other does better, with the data
almost equally divided between the two. This shows that each parser is getting
different things right (and different things wrong), motivating the use of a hybrid
approach, which selects the more accurate parser for each sentence in order to give
better results than either parser alone. As shown in Table2.1, the trivial hybrid
Nulls, which uses the Link parser for each sentence which it can analyze without
skipping any words, and uses the Lynx parser otherwise, does slightly better than
either parser alone. TheOraclehybrid, which is not a real system but shows the
best that could be done by selecting between Link and Lynx on a sentence-by-
sentence basis, outperformsNulls by several percentage points, showing that a
better selection scheme could offer significant improvement over either of the two
parsers. Again, this shows that the Lynx parser is accurately parsing sentences that
were missed by the Link parser, even if it is also missing some sentences correctly
parsed by the Link parser.
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source recall precision
unfiltered 76.0% 74.5%
filtered 77.3% 75.4%

Table 2.4: Recall and precision of the Lynx parser trained with filtered and unfil-
tered data, onWSJ-1989

2.5.2 Quality of training data

In the above experiment, the training data for Lynx was all generated usingLink-
opt, a version of the Link parser that selects from among the possible linkages of
a given sentence the structure most consistent with a given constituent structure.
Hand-annotated constituent structures were taken from thePenn Treebankfor this
purpose, and were also used to evaluate the results of the parsers and hybrids.
Using this optimized version of Link to train Lynx is a kind of semi-supervised
learning, since hand-annotated data was used, but could not be converted directly
into training data. In order to measure the effect of this hand-annotated data, the
WSJ-1989data set was parsed twice, using training data generated with and with-
out the benefit of hand-annotations. Ten-fold cross-validation was used, with each
tenth being evaluated on a model trained on the other nine tenths. The results are
shown in Table2.4. Filtering the training data based on hand-annotations gives an
improvement of about one percentage point. This comparison is statistically sig-
nificant atp = 0.05, a somewhat weak significance result but enough to indicate
that filtering is worthwhile given appropriate data.

2.5.3 Training Size

To see how much training data the Lynx model needs for best results, we built a
series of models from differing amounts of training data, testing each model for
constituent bracketing based on the same held-out set of 552 hand-parsedWSJ
sentences from thePenn Treebankto produce the recall curve in Figure2.7. The
corresponding precision curve has approximately the same shape.

Once training size reaches about 30,000 sentences, the learning curve levels
off and additional training data does not give any additional increase in accuracy.
Since the data added later is from articles farther away (temporally) from the test
set, it is likely that it is less similar to the test data and therefore less useful for
parsing it. It seems reasonable that having training data that is similar in style
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Figure 2.7: Lynx recall vs. training size

and vocabulary to the test data is more important than having large quantities of
training data.

2.5.4 Beam Ratio

As mentioned above (Section2.4), the beam ratio is a search parameter that selects
a trade-off between speed and accuracy. A beam ratio of 1 would give a greedy
search, and a beam ratio of 0 would give a complete search. Figure2.8 shows
this trade-off at several different beam ratios, with theF1-score of 552 sentences
evaluated for constituent bracketing compared with the time required to parse the
entire test set (using a relatively slow computer). As expected, smaller beam ratios
resulted in both longer parsing times and higher accuracy.

2.5.5 Examples

Figures2.9 and2.10 show the same five sentences parsed by the Lynx and Link
parsers, respectively. These sentences were selected because they demonstrate
typical constructions on which the Lynx parser does better than the Link parser.

• This time around, they’re moving even faster.
The Link parser doesn’t know the idiom “this time around,” and it does not
allow the propositionaround to appear without an object, so it resorts to a
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LEFT−WALL That does n’t help Procter & Gamble Co. , maker of Cascade dishwasher detergent .

LEFT−WALL Ten minutes later , the Dow hit bottom − down 100 points , another 100 .

LEFT−WALL She has also served on several task forces on acquired immune deficiency syndrome .

LEFT−WALL The 3000 hours of work will save the state $ 55000 .

LEFT−WALL This time around , they ’re moving even faster .
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Figure 2.9: Selected sentences parsed by the Lynx parser
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LEFT−WALL She has also served on several task forces

LEFT−WALL That does n’t help

LEFT−WALL Ten minutes later , the Dow hit bottom − down 100 points , another 100 .

[on] acquired [immune] [deficiency] [syndrome] .

Procter & Gamble Co . , [maker] of Cascade [dishwasher] [detergent] .

LEFT−WALL The 3000 hours of work will save the [state] $ 55000 .

LEFT−WALL This time [around] , they ’re moving even faster .
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Figure 2.10: Selected sentences parsed by the Link parser

null link, while the Lynx parser analyzesaroundas a prepositional phrase
modifying time.

• 3000 hours of work will save the state$55000.
The Link parser doesn’t know thatsavecan be ditransitive (take two objects)
but the Lynx parser allows it.

• She has also served on several task forces on acquired immune deficiency
syndrome.
The Link parser chokes on the phraseacquired immune deficiency syndrome
because it has no determiner, but the Lynx parser easily adapts.

• Ten minutes later, the Dow hit bottom — down 100 points, another 100.
The Link parser chokes on the phrasehit bottombecause it expectsbottom
to be preceded by a determiner, and tries a totally different analysis, where
minutesis the subject anddown is the verb. The Lynx parser doesn’t have
this problem.

• That doesn’t help Procter & Gamble Co., maker of Cascade dishwasher
detergent.
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LEFT−WALL Sales totaled $ 914 million .

LEFT−WALL The group recently announced the sale of the company ’s heavy−duty wheel subsidiaries .

LEFT−WALL London shares prices ended higher in light trading .

LEFT−WALL The security−guard scandal is complicated by questions surrounding the military ’s subsequent investigation of the matter .

LEFT−WALL We still have to go an extra step to prove to people that we ’re capable .

LEFT−WALL How to cure skins to make clothes for the unprotected bodies of humans .

LEFT−WALL Of this , $ 70 million was for military aid , $ 30 million for humanitarian aid .

LEFT−WALL But Washington is taking little credit for the sudden turn of events . RIGHT−WALL

LEFT−WALL She said the vinyl chloride standard could cause an additional cancer case in one of 10,000 water users . RIGHT−WALL
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Figure 2.11: Randomly selected sentences parsed by the Lynx parser
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Again, the Link parser expectsmakerto have a determiner, and is unable to
come up with a reasonable parse. The Lynx parser, again, deals gracefully
with missing items.

For fairness, balancing the selected sentences above, nine sentences were also
selected at random from theWSJ-1987corpus parsed by Lynx; these are shown
in Figure2.11. Six of the nine are fully correct; we will look in detail at the other
three.

• The group recently announced the sale of the company’s heavy-duty wheel
subsidiaries.
The analysis given by Lynx incorrectly connectsof to companywith a Jp
link, meaning thatcompanyis the object of the prepositionof. Instead, this
link should have connectedof with subsidiaries. The Link parser analyzes
this sentence correctly. The Lynx parser can also analyze this sentence cor-
rectly when a wider beam is used, which indicates that the error is due to a
search deficiency rather than a problem with the model.

• How to cure skins to make clothes for the unprotected bodies of humans.
While this is not strictly a well-formed English sentence, the Lynx parser
does reasonably well at analyzing the entire fragment; the Link parser, on
the other hand, skips the first two words and interprets the verb as an im-
perative. The parse shown here, however, has two incorrect attachments.
First, the connection betweenskinsand to is wrong; it should be replaced
by a link labeledMVi from cureto to. Second, the attachment of the prepo-
sitional phrase starting withfor should be toclothesrather thancure. Both
of these are parsed correctly by the Link parser, and both are also parsed
correctly if the Lynx parser uses a wider beam.

• Of this,$70 million was for military aid,$30 million for humanitarian aid.
The structure shown means that$70 million was $30 million for human-
itarian aid, for the purpose ofmilitary aid. Instead, it should mean that
$70 million was for military aidand that$30 million wasfor humanitarian
aid. Since link grammar does not handle deletion (of the verb in the second
phrase) there is no fully correct linkage possible, so the Link parser cannot
solve this one either.

Finally, the 25 worst sentences from theWSJ-1987corpus on which the Link
parser did fine but the Lynx parser scored lowest were found and categorized. Of
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1. But Jerry isn’t quite the stereotype he appears to be.

2. In Montreal, Dominion declined to comment except to say, “We’re review-
ing the situation.”

3. His conception did not include petit dejeuner tete-a-tete.

4. Don’t say that something is within a statute’s reach; say it’s within its ‘am-
bit.’

5. The mafrag is designed for afternoon gatherings called “qat” chews.

6. Of his East-bloc brushes, Geoff says, “We don’t mingle.

7. We genuinely feel our proposed plan was a good-faith effort to resolve the
issue.

8. Mrs. Walton worries that Lafeyette has become unusually withdrawn: “He
says talking isn’t going to help him.

9. “But most people who are confronted with this pay.”

10. The economy is growing moderately despite the stock market crash, a Jour-
nal survey of economists says.

11. Viewed through these eyes, Fresno wins hands down.

12. A spokeswoman for British & Commonwealth, a U.K. financial-services
concern, declined to discuss the purported talks.

13. Dealers are reluctant to talk for the record because the usually secretive IBM
has been extraordinarily so on this go-round.

14. She says the commercial is the only one she doesn’t fast-forward through
her video recorder.

15. “Oversights were made in these instances which I genuinely regret,” Rep.
Coelho said in a brief statement.

Table 2.5: Some sentences on which Lynx had difficulty
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these worst offenders, 60% failed completely, due either to search errors, model
errors, bogus or strange sentences, or software bugs. However, on a second at-
tempt, with a more generous beam ratio, better-trained model, and a more careful
eye for software bugs, 32% were quite successful, including 40% of those that
had failed completely in the original experiment. Some of the worst sentences are
shown in Table2.5. Many of these problem sentences contain quotation marks,
which do not cause problems directly, but often indicate a sentences that will be
difficult to parse. The improvement due to minor tweaking of the model and
search parameters shows that additional training and computational resources can
be of significant help in dealing with difficult sentences.

2.6 Discussion

The Lynx parser analyzes sentences for syntactic structure by finding the most
probable structure consistent with the given text, according to a statistical model of
structured sentences. The model is trained from examples. Because it is expensive
to annotate examples by hand, we used an existing parser to analyze sentences
collected from news articles, and used its output as training data. Although this
automatically-generated training set has significantly more errors than one would
expect from a hand-labeled training set, the Lynx parser is able to score as well as
the Link parser at constituent bracketing. In the experiment above (see Table2.1),
the Lynx parser achieved anF1-score better than or equal to the score achieved by
the Link parser on 70% of the sentences, and the mean scores are very close. This
shows that the Lynx parser compares favorably with an established parser, which
is good. However, this result is made more meaningful by the observation that
the Link parser is the source of all the training data for the Lynx parser. That is,
everything the Lynx parser knows about English grammar, it learned from the Link
parser, with the exception of the very general principles implicit in the model’s
framework.

Admittedly, the Lynx parser does not score better than its source of training
data, only about the same. However, on 30% of the sentences evaluated, the Lynx
parser scores better than the Link parser, showing that it actually does have a
significant improvement in the ability to parse some sentences, offset by inferior
performance on some other sentences. Another way of looking at the difference
between the two parsers is to predict the score that would result if both cooperated.
If a highly accurate selector could be trained to choose which parser has a better
analysis of each sentence, a gain of almost 5 percentage points is possible.
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Why is the Lynx parser able to score better than its source of training data on so
many sentences? There are several reasons, but the most obvious is that statistical
parsing offers a significant advantage in robustness over rule-based parsing. In the
rule-based Link parser, any constructions not anticipated by the designers of the
grammar can only be covered throughnull links. There is a sharp dividing line be-
tween what is considered grammatical and what is not, which can cause sentences
with a missing word to be analyzed strangely or not at all. A statistical parser
such as Lynx, on the other hand, does not have a division between grammatical
and ungrammatical sentences, but only a probability distribution. Thus when con-
fronted with a sentence that would be considered ungrammatical by a more rigid
grammar, a stochastic syntax model simply assigns a lower score, nevertheless se-
lecting the structure most probable under the circumstances. This generalization
yields a great increase in robustness, allowing performance to degrade gracefully
on more difficult sentences.

In the task of modeling the grammar of a language, as in many machine-
learning tasks, there’s a tension between under-generalizing and over-generalizing.
If a rule-based grammar model is too general, it will over-generate, coming up
with ungrammatical parses, but if it’s too narrow, it will fail to parse some gram-
matical sentences. A statistical parser, on the other hand, does not need to sharply
distinguish valid from invalid parses, but only to assign a probability to each in a
way that gives the most correct analysis the highest probability. If the model is too
flat, or does not take crucial dependencies into account, it will be unable to distin-
guish good from bad structures. A model that is too sharp, however, will assign
zero probability to unfamiliar sentences, failing in much the same way as a rule-
based parser might. In fact, this problem can be even worse on an unsmoothed
stochastic model than a rule-based model because the lexical dependencies in the
model could be trained on too sparse a training set to obtain reasonable probabili-
ties. Striking the right balance between over-generalizing and under-generalizing
is important in the design of a statistical syntax model.

The robustness gained through statistical modeling clearly depends on the
framework in which that model is learned, and on how the model is smoothed.
It would be possible to design a statistical model that captures exactly the gram-
mar used by the Link parser and does not generalize beyond it. Such a model
could still have an advantage over the original Link parser because it would use
statistics rather than heuristics to select the best from among all parses consistent
with the grammar for a given sentence. The easiest way to implement such a sys-
tem would be to simply add a statistical component on top of the existing Link
parser, as a post-processing step. Such a system could be useful, but it would not
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be any more robust than the original Link parser. In contrast, the model used in
the Lynx parser is smoothed to assign part of its probability mass to structures that
were never seen in the training data. The probability of each link and each word is
considered separately (rather than a disjunct of connectors being treated as a unit),
so while a missing, misplaced, or unknown word may make a structure as a whole
less probable, the parts that are recognized will continue to assign it their share
of probability, making partial analyses possible. In order for this to work well,
the framework of the Lynx model had to be designed well, with good decisions
made as to which probabilities should be conditioned on which, and which should
be considered independent. As shown in Section2.3 above, the main assumption
made is that syntax has a hierarchical structure and that dependencies are local
within that structure.

Because of the independence assumptions and smoothing of the Lynx model, it
can easily handle inserted or deleted words and phrases. In the examples discussed
above (Section2.5.5), the Lynx parser’s analysis of the sentence “3000 hours of
work will save the state$55000” (Figure 2.9) shows the verbsavetaking two
objects, which was not allowed by the Link parser. The three following sentences
each demonstrate the Lynx parser’s ability to correctly parse a noun phrase that
is missing a determiner, considered ungrammatical by the Link parser, which is
thus not able to analyze it correctly. A noun phrase that always has a determiner
in the training data will score a lower probability (according to the Lynx model)
in the absence of one; however, the probability of the noun in the presence of
the determiner is smoothed with the probability of the noun disregarding context,
thus allowing the phrase to be correctly analyzed. In contrast, the Link parser’s
null link mechanism allows it to gloss over a inserted word, but not to connect an
inserted phrase in a meaningful way. It has no mechanism to deal with missing
words. Thus the design of the Lynx model framework helps it to parse robustly.

Although all the data used to train the Lynx model was generated by the Link
parser, the sentences which the Link parser parsed for this purpose were real sen-
tences, constituting new input to the system. One of the reasons the Lynx parser is
able to do so well is that it gains the benefit of the grammatical and distributional
knowledge implicit in the sentences used for training, even though the analysis of
these sentences by the Link parser is fallible. Most of the errors made by the Link
parser when generating training data are compensated for by the large amount of
data. While this training is a fully automated process, given a human-generated
but unannotated text corpus (a plentiful resource), it is asemi-supervisedlearning
process because the explicit grammar knowledge exercised by the Link parser acts
as a kind of supervisor. The combination of this explicit grammar knowledge with
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real data contains more information than either alone.
While this semi-supervised learning technique brings reasonably good results,

there are still many sentences which the Lynx parser does not analyze as accu-
rately as the Link parser can. However, many of these errors are only search
errors, which can be avoided at the expense of a little more computation time. As
described above, a significant portion of sentences on which the Lynx parser failed
in the WSJ-1987experiment can be handled correctly with just a little coaxing.
Therefore, while the Lynx parser’s results are currently comparable with those of
the Link parser, with a mix between improvements and deterioration, much of the
deterioration could be addressed with a moderate additional investment, resulting
in a parser that significantly out-scores the Link parser overall. However, it is also
likely that a similar investment in the Link parser could yield comparable returns.
This agenda was not pursued because the goal of the Lynx parser is not primar-
ily to provide a new parser that does the same task as the Link parser does, only
better. Rather, the purpose of the Lynx parser is to provide a system for quickly
constructing a parser from data. Two applications of this capability are explored
in Chapters4 and5 of this thesis: inducing a monolingual parser through bilingual
parsing, and reranking translation hypotheses with a bilingual parsing model.



Chapter 3

Bilingual Parsing

3.1 Motivation

In order to create a parser for a language in which no parser is available, without
requiring extensive labor by a language expert to either design a grammar or anno-
tate a corpus, it would be very useful to be able to automatically infer the syntactic
structure of foreign sentences. When given a bilingual corpus where a parser is
already available for the opposite language (such as English), this could be done
in principle by word-aligning the corpus and “copying” the structure across the
alignments. Of course, figuring out the details of how this “copying” would take
place could be quite tricky, or even impossible, since alignments are not always
one-to-one.

In order to build a statistical translation system that accurately models the hi-
erarchical structure of natural language, it would be very useful to be able to train
a model of a structured foreign sentence given a structured English sentence. This
would require designing a model that captures the relevant features of the relation-
ship between structures in two languages. Even when given a bilingual corpus in
which structures are available for both languages, training such a transformational
model might not be straightforward, because the relationship between the struc-
tures would have to be defined in a way that could be modeled. Such corpora are
not usually available anyway, especially if the two languages must be annotated
using the same formalism.

Putting these two problems together, we need a way to infer the structure of
a given foreign sentence (with no previous knowledge of the foreign language),
given an English translation and its structure; and we need a way to train a trans-

47
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formational model that generates the foreign structure given the English structure.
Solving these problems would allow us to build both a parser for the foreign lan-
guage and a statistical translation system between that language and English that
takes into account the syntactic structure of each sentence.

The LinkSet bilingual parser solves these two problems together by simulta-
neously inferring the structure of foreign sentences, based on their English coun-
terparts, and training a model of how the English sentences’ structure must be
transformed to produce the inferred foreign structures. Inferring the structure of a
sentence is usually a parsing problem, but in this case the grammar of the foreign
language is unknown. However, we assume that the structure of each foreign sen-
tence is related to the known structure of its English counterpart, according to the
transformations allowed by our model. We call this approachbilingual parsingbe-
cause we use the structure of an English sentence to generate a specialized gram-
mar in order to parse its foreign counterpart. Once our model has been trained, it
should be reasonably straightforward to find the best structure (according to the
model) for any foreign sentence in our sentence-aligned bilingual corpus. But
how can we train the model in the first place? The answer is essentially an EM
approach: starting with a flat model for each structural transformation, we use a
word-translation model trained using IBM Model 2 (or some equivalent) to assign
a probability to each possible foreign structure. Each valid foreign structure is
equivalent to a particular way of transforming the given English structure, which
in turn is equivalent to a particular word-to-word alignment between the English
and foreign sentences. We use the probability of this alignment to update the pa-
rameters of the transformation model for the particular transformations necessary
to generate the corresponding foreign structure. Performing this update for every
possible alignment of every sentence pair in the corpus constitutes one round of
training. As a byproduct of each round of training, the most probable structure
of each foreign sentence can trivially be found, since each possible structure is
assigned a score. These structures are used in Chapter4 to automatically induce
a foreign-language parser. In addition to improving the quality of foreign struc-
tures inferred, the learned transformational model can then be used in a translation
system, which is the subject of Chapter5.
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3.2 Related Work

3.2.1 Basic Statistical Alignment

As mentioned in the first chapter, in the early 1990’s an IBM research group devel-
oped a foundational series of generative translation models [4, 5]. These models
all worked in terms of an alignment between the words of the English and foreign
versions of each sentence, such that each foreign word was either associated with
one English word or with a special null word. Some models allowed more than
one French word to align with a single English word; others required one-to-one
alignment. While they do not account for syntactic structure, these simple models
work reasonably well at aligning the words of parallel sentences, and their pa-
rameters can be used as a stochastic translation dictionary. The word-translation
model for the LinkSet bilingual parser was trained using IBM Model 2, which
includes distortion probabilities to model the position of each word, along with
the word-translation probabilities; however, the distortion model was not explic-
itly used by LinkSet. Many others have adopted or adapted the five IBM Models,
and many different alignment models have been proposed, too many to enumerate
here. We will focus instead on those models that attempt to account for syntactic
structure.

3.2.2 Structural Alignment

Stochastic Inversion Transduction Grammars and Bilingual Parsing of Par-
allel Corpora

Inversion transduction grammar (ITG), introduced in 1997 by Dekai Wu [27], is
a formalism capable of representing bilingual context-free grammars, adding to
the power of ordinary transduction grammars, which rigidly require the two lan-
guages to have the same structure, by allowing some subtrees to have opposite
orderings in the two languages. Stochastic inversion transduction grammars as-
sociate a probability with each rewrite rule. Wu uses the termbilingual parsing
to refer to his unsupervised method for learning an ITG from a bilingual corpus,
which is similar to but not the same as our use of the term to refer to our method
for learning a bilingual structural mapping from a bilingual corpus where one side
has been annotated by a parser. From a Chinese-English bilingual corpus and a
stochastic translation dictionary, Wu trained an ITG with only one non-terminal
symbol and evaluated its bracketing accuracy at80% compared to human bracket-
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ings. As future work, Wu suggested using known English parse trees to constrain
the bilingual parsing, in order to transfer grammatical knowledge from English to
Chinese, an idea that is similar to what the LinkSet parser does. One key sim-
ilarity of ITG to LinkSet is that both consider all possible alignments between
each sentence pair, rather than selecting a single alignment first from which to
constrain other learning. The two techniques have different points of view in that
ITG simultaneously describes the structure of two sentences, while the LinkSet
model describes the relationship between two distinct parse trees. While ITG can
model any alignments the LinkSet model can, it is much more restrictive in the
shape of the two syntax trees, and particularly in the relationship between them.
Because of this, a bilingual grammar learned in an ITG framework may not be
able to conform to a standard grammar of either language, but settles for a task-
driven decomposition, while the LinkSet model begins with a standard grammar
in one language and maps to a similar grammar in the other.

Learning Dependency Translation Models as Collections of Finite State Head
Transducers

Similar to ITG are weighted head transducers, introduced in 2000 by Alshawi,
Bangalore, and Douglas [1], which, like the LinkSet bilingual parsing model, have
a less restricted grammar because they allow arbitrary branching factors and arbi-
trary reordering within parse trees. Their method is to search first for hierarchical
alignments based on correlation statistics, and then construct head transducers
consistent with these alignments. The transducers can then be used for trans-
lation, and successful translation was demonstrated from English to Spanish in
the air travel domain, and to Japanese in the telephone-operator domain. These
experiments were in task-oriented domains with small vocabularies, in contrast
with the harder general domain problem at which the LinkSet system is aimed.
This method first selects an alignment and then builds a transducer, rather than
integrating the full range of potential alignments into the model as do ITG and
LinkSet.

3.2.3 Alignment Using Known Structure

Grammar Inference and Statistical Machine Translation

In his 1998 thesis, Ye-Yi Wang [26] developed a bilingual word-clustering tech-
nique based on mutual information, which improves the quality of monolingual
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word classes by using bilingual data. These classes were then used to find bilin-
gual phrases, common word-class sequences that often have a corresponding phrase
as a translation. These phrases were then used in a statistical machine translation
system to model sentence structure more accurately than the distortion models of
the original statistical machine translation work. Wang’s Structure-based Align-
ment Model works by first parsing an English sentence into phrases, and then
generating a translation based on those phrases. Thus it projects simple structural
information from English to the foreign language when generating a translation.

A Syntax-based Statistical Translation Model

The previous work most closely related to the LinkSet model is the syntax-based
statistical translation model designed by Yamada and Knight [28], which accepts
an English parse tree as an input and generates a Japanese parse tree by applying
three channel operators: reordering of the children of any node, insertion of a word
adjacent to any node, and translation of each leaf node. While the expressiveness
of this mapping between parse trees is very similar to the LinkSet bilingual pars-
ing model, the LinkSet model gains expressiveness with the additional operations
of subtree-deletion, head-deletion, and null-linking. Yamada and Knight trained
their model efficiently using the Inside–Outside algorithm, and used it to produce
alignments judged by humans to be more accurate than alignments produced us-
ing IBM Model 5. Because structure of this model is so similar to the LinkSet
model, we use a variant of their training algorithm to efficiently train the LinkSet
model.

More recently (2003), Knight and Yamada teamed up with Charniak to build
a translation system based on their model [6]. Although the model was trained us-
ing English sentences parsed with Collins’ parser, they adapted Charniak’s parser
to act as a decoder, formulating translation as parsing of a foreign sentence using
special grammar rules. To generate these rules, English CFG rules were supple-
mented with all variants that can be made by reordering the right-hand side, plus
an insertion rule, and, finally, a translation rule for each equivalent English/foreign
word pair. They showed an increase in high-quality translations (especially in syn-
tactic well-formedness) compared to two other systems.

The insight that translation can be viewed as a parsing problem with a spe-
cial grammar underlies the LinkSet system as well: LinkSet specializes parsing
rules for each sentence during training in order to efficiently search for the most
probable structured alignment between an English and a foreign training sentence.
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Loosely Tree-Based Alignment for Machine Translation

When structural information is available for both languages in an alignment task,
tree-to-tree alignment is possible, as recently demonstrated by Gildea [16]. Ex-
panding on the work of Yamada and Knight, Gildea’s tree-to-tree alignment sys-
tem does not achieve a significant improvement in alignment quality over tree-to-
string alignment, but does achieve greatly increased efficiency due to the much
more constrained nature of tree-to-tree alignment. However, the additional con-
straints imposed by a pair of trees can often be too tight to allow a correct align-
ment between languages with different structure, so Gildea relaxes the model by
introducing a subtree-cloning operation, which by allowing a subtree to be cloned
and inserted at any point (along the linear word order) turns the model into a sort
of hybrid between tree-based and unstructured, IBM-style alignment models.

A Best-first Alignment Algorithm for Automatic Extraction of Transfer Map-
pings from Bilingual Corpora

Like our LinkSet method, the methods of Wang, and of Yamada, Knight, and
Charniak assume that the structure of English is known, while that of the foreign
language is not. When structure is known for both languages, however, a higher-
quality mapping should be possible. Menezes and Richardson [20] present an
alignment algorithm that uses 18 rules and a translation dictionary to align the
logical form of two structured sentences, one being a translation of the other.
Using this alignment, they generate more general transfer mappings, which can
then be used in a translation system. Evaluation of the resulting system, trained
for the same domain as the test set, showed it to be comparable to an unspecialized
commercial translation engine.

3.3 The LinkSet Model

The LinkSet bilingual parser simultaneously trains and uses a structural transla-
tion model to find the most likely structure of a foreign sentence, when the sen-
tence is given along with its English structure and text. The most likely structure
F̂f for a foreign sentencef can be found by maximizing the probability of the
structure (given its English counterpartE) over all structures consistent with the
foreign sentence:

F̂f = argmax
F :WORDS(F)=f

Pr(F|E)
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early this morning , another colorless green idea from the Linguistics department slept furiously
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Figure 3.1: An example sentence structure
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Figure 3.2: The same structure as a syntax tree

This structural translation model is a transformational model of a foreign sen-
tence and its structure, given an English sentence and its structure. Thus the for-
eign sentence structure and text are generated with the probability of generating
each node in the syntax tree conditioned on the corresponding English node.

The syntactic tree structures introduced in the previous chapter are based on a
link grammar, from which we’ve picked a special node to be the root, and imposed
direction on all the dependencies based on that choice. Our view, in which each
node has children to its left and right, is equivalent, as a comparison of Figures
3.1 and3.2 will show. In Figure3.2, the asterisks represent the position of the
current node relative to its children, dividing the left from the right. In Figure3.3,
we again see the same tree, but this time with each node holding ordered lists of
children (divided between left and right), with the local node label preceding these
lists. Here the positions of the nodes and the lines connecting the nodes give no
information not already shown inside the nodes.
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Figure 3.3: The same structure as a syntax tree, showing children as lists
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Figure 3.4: The same structure with binary links added
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Figure 3.5: The same structure as a binary syntax tree

procedure CONVERTTREE(L,R)
if L 6= ∅

thenZ ← L.POP()
elseZ ← R.POP()
L ← CONVERTTREE(L,Z.L)
R← CONVERTTREE(Z.R,R)
return (L,R)

Figure 3.6: CONVERTTREE algorithm
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The LinkSet search algorithm uses a different tree structure to represent the
syntax of each sentence, one that more closely fits the operation of the algorithm,
which is related to the algorithm used in the Link parser. There is a one-to-one
mapping between this new tree representation and the original one, but unlike
the original representation, it is always a binary tree. Although the information
content is essentially the same, the relationships between nodes are managed dif-
ferently. The parsing algorithms used by the Link, Lynx, and LinkSet parsers
divide sentences recursively into two parts, where each part is characterized by
the range of words it covers and by the labels of the links connecting it to the rest
of the sentence. A range of words with its associated incoming links corresponds
to a node in the binary tree used to represent the sentence.

To show the relationship between a tree of the more intuitive type and the
binary trees used for parsing, Figure3.4 is an intermediate stage, showing the
links of both kinds of trees. The dotted lines are the old connections carried over
from Figure3.3, and the curving solid links are the connections of the new binary
structure. The unique left and right children of a node are the outermost left and
right children (respectively) of the corresponding N-ary node, if any. Nodes that
originally had no children on a side will adopt their nearest sibling or ancestor’s
sibling in that direction. Thus the order of nodes, according to an inorder traversal,
is the same between the two representations, preserving the word order of the
sentence.

Figure3.5 shows the fully-transformed binary tree. The dotted links being re-
moved, it has the binary links added in the previous figure, and the contents of the
nodes have been revised. Each major node (shown as a double rectangle) consists
of two lists of minor nodes, which are words with their incoming connectors. The
two lists correspond to the incoming connectors available to the range of words
covered by the major node. The minor node that heads a major node is the top-
most connector on its left side, if any, or otherwise the topmost connector on the
right side. Once the head is removed, the left and right children are the farthest
children (in the original tree) of the head, if they exist, or the top nodes in the
respective lists of incoming connectors. Any remaining incoming connectors are
inherited by the major node’s children on their respective sides. Since the lists of
minor nodes in each major node represent inherited incoming connectors but not
true children of the current head, the links between major nodes contain important
information, rather than being redundant with respect to the node contents, as in
Figure3.3.

A more formal description follows. Each major node is a tuple〈L,R〉 of vec-
tors of minor nodes for the left and right, respectively, where each minor node in
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those vectors is a tuple〈c, t, w, L,R〉, where〈c, t, w〉 has the same interpretation
as in Section2.3 above (connector, tag, and word) and〈L,R〉 gives the minor
node’s immediate left and right children, each of which is a major node. Each ma-
jor node〈L,R〉 is associated with a single minor node, which is the topmost minor
node inL, unlessL = ∅, in which case it is the topmost minor node inR. For
convenience, we define the simple function TOP(ν.L, ν.R) to give the minor node
associated with the major nodeν. The CONVERTTREE algorithm, shown in Fig-
ure3.6, converts from the N-ary tree representation (see Figure3.3) to the binary
representation (see Figure3.5), when started with the parameters〈 W:idea, ∅〉,
where W:idea represents the top minor node. The binary representation will be
assumed for the rest of this chapter.

The probabilityPr(F|E) of generating a structured foreign sentence given a
structured English sentence can be expressed as the probability of passing the
English sentence tree through certain transformations and finding the foreign sen-
tence tree as a result. Each major node of the tree passes through the following
transformations recursively, starting with the root.

1. A minor node is selected (from among those listed at the current major
node) to head the current major node.

2. The selected node may be replaced with one of its descendants. (This is
calledhead-deletion.)

3. The word at the selected node (or its replacement) is translated from English
to the foreign language.

4. Any remaining minor node may be deleted.

5. The remaining minor nodes are repartitioned into left and right sets.

6. On either side, a new minor node may be inserted. Inserted nodes corre-
spond tonull links.

The probability of a foreign sentence tree given an English sentence tree is the
product over all nodes in the English tree of the probabilities of applying these
transformations in a way that results in the foreign sentence tree.

1. The first step in the transformation of the English major node〈LE ,RE〉 into
the foreign major node〈LF ,RF〉 is the selection of a minor nodeνs from
among its members to be the head:
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Pr(LF ,RF |LE ,RE) =
∑
νs

PC(νs|LE ,RE) P2(LF ,RF |νs,LE ,RE)

2. Once a head is selected, the second step allowsνs to be replaced by one of
its descendants:

P2(LF ,RF |νs,LE ,RE) =
∑
νh

PH(νh|νs) P3(LF ,RF |νh,LE ,RE)

3. Then the selected minor node is translated, which includes translation of its
word and copying of its POS tag:

P3(LF ,RF |νh,LE ,RE) = PT (TOP(LF ,RF)|νh) P4(LF ,RF |νh)

4. After the translation step, remaining minor nodes (candidates to be children
of this node) may be deleted:

P4(LF ,RF |νh) =
∑
L′,R′

PD(L′|νh.L.R) PD(R′|νh.R.L)×

P5(LF ,RF |L′,R′, νh)

5. After deletion, the left and right sets are repartitioned:

P5(LF ,RF |L′,R′, νh) =
∑
L′′

PF (L′′|L′,R′)×

P6(LF ,RF |L′′, ((L′ ∪R′)− L′′), νh)

6. Finally, null links may be inserted, and the left and right major-node chil-
dren are transformed recursively.

P6(LF ,RF |L′′,R′′, νh) =
∑
L′′′,R′′′

PI(L′′′|L′′) PI(R′′′|R′′)×

Pr(LF − TOP(LF ,RF),L′′′|νh.L)×
Pr(R′′′,RF − TOP(LF ,RF)|νh.R)
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Each step in the sequence above refers to a sub-models relevant to its respec-
tive transformation step. These models arePC , PH , PT , PD, PF , andPI ; they will
now be described in more detail:

1. PC(ν|L,R) models the probability of selecting a particular minor node to
be the top of the transformed major node. In practice, an approximation
PC(ν.c) depending only on the label of the selected connector is used.

2. PH(ν ′|ν) models the head-deletion operation, which may replace any node
with one of its descendants. The probability is zero unless(ν ′ = ν) or (ν ′ ∈
DESCENDANTS(ν)). If ν = ν ′, then the probability is just the probability
of not head-deleting that node:

PH(ν|ν) = 1− Pr(HEADDEL|ν.c)

Otherwise, we recursively apply the probability of head-deleting this node
until a path to the original is found:

PH(ν ′|ν) = Pr(HEADDEL|ν.c)
∑

ν′′∈CHILDREN(ν)

PH(ν ′|ν ′′)

3. PT (νF |νE) models the translation operation. It gives the probability of trans-
lating the English worde (with POS tagt) into the foreign wordf . The tag
is copied, so the probability must be zero ifνF .t 6= νE .t.

PT (νF |νE) = PT (νF .w|νE .w, νE .t)

4. PD(S ′|S) models the deletion operation, giving the probability ofS ′ be-
ing left after a (possibly empty) subset ofS is deleted. The probability is
zero unlessS ′ ⊆ S. The probability of each deletion is considered to be
independent.

PD(S ′|S) =
∏
ν∈S

[1− P (DEL|ν)]δ(ν∈S
′) P (DEL|ν)δ(ν /∈S

′)

5. PF (L′|L,R) models the reordering operation. It gives the probability of
the nodes inL′ being on the left side after reordering, when the nodes inL
andR originated on the left and right sides, respectively. It models which
nodes “flip” between left and right, which is why it we label itPF . The
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probability is zero unlessL′ ⊆ (L ∪R), since new nodes cannot appear
through flipping.

PF (L′|L,R) =

(∏
ν∈L

Pr(FLIP|ν.c)δ(ν /∈L′) [1− Pr(FLIP|ν.c)]δ(ν∈L
′)

)
×(∏

ν∈R

[1− Pr(FLIP|ν.c)]δ(ν /∈L
′) Pr(FLIP|ν.c)δ(ν∈L′)

)

6. PI(S ′|S) models the insertion operation. It gives the probability of extra
null nodes being inserted. The probability is zero unlessS ′ ⊇ S, since
insertion never makes nodes disappear. Also, every inserted node must have
the connector labelnull and not be aligned with any node in the original
English tree, or the probability will be zero. Since all inserted nodes are
internally identical, they all have the same probability.

PI(S ′|S) =
∏
ν∈S′

Pr(INS|ν)δ(ν /∈S)

= Pr(INS)
∑
ν∈S′ δ(ν /∈S)

In summary, the basic building blocks of LinkSet’s structured translation model
are: PC(c), Pr(HEADDEL|c), PT (f |e, t), Pr(DEL|c), Pr(FLIP|c), andPr(INS).
Once trained, these sub-models each have about 100-500 parameters. In the
simplest version of LinkSet, all these sub-models except the translation model
PT (f |e, t) are uniform at the lowest level shown here. Reasonable results can
be obtained even with this simplified model. Then, the other sub-models can be
trained using EM, which should give even better results.

3.4 EM Training

While the LinkSet bilingual parser works reasonably well using a structured trans-
lation model in which all sub-models are flat except for the word translation prob-
abilities, it is reasonable to expect improved modeling if the parameters are trained
using an EM approach.

The Inside–Outside Algorithm is a dynamic programming EM technique com-
monly used to parse context-free grammars. It involves calculating two kinds of
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probabilities with respect to each pairing of a non-terminal symbol with a partic-
ular span of words. The inside probabilityi is the probability that the words in the
current span are generated given the current non-terminal symbol. The outside
probabilityo is the probability of generating the words to the left of the current
span, then the current non-terminal, and then the words to the right of the current
span. Thus the product of the inside and outside probabilities associated with any
particular non-terminal and span is the probability that the sentence is generated
and contains that non-terminal in that position.

To adapt this algorithm for the LinkSet model, we use a major node〈L,R〉 to
fulfill the role of a non-terminal symbol. Thus the inside probabilityi(L,R; f rl )
is the probability that the words(fl . . . fr) in the current span are generated,
given the pair of sets of incoming connectors〈L,R〉. The outside probability
o(L,R; f rl ) is the probability of generating the words(f1 . . . fl−1) to the left of
the current span, then the current pair〈L,R〉, and then the words(fl+1 . . . fn)
to the right of the current span. The formulae below assume that ifl ≥ r then
i(L,R; f rl ) = 0 ando(L,R; f rl ) = 0. For brevity, we combine the contributions
of the deletion, flipping (reordering), and insertion steps in a single probability
distributionPDFI :

PDFI(L,R|ν) =
∑
L′,R′,L′′

 PD(L′′|ν.L.R) PD(R′′|ν.R.L)×
PF (L′′|L′,R′) ×

PI(L|L′′) PI(R|(L′ ∪R′)− L)


Figure3.7 shows a node and its inside, dividing a range of words into two

sub-ranges, and both left- and right-side variants of a node and its outside. These
contexts should be helpful in interpreting the following formulae.
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Figure 3.7: The recursive structure of〈L,R〉l,r
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i(L,R; f rl ) =
∑

ν0∈TOP(L,R)

PC(ν0.c)
3∑

h=0

∑
νh1

Pr(¬HEADDEL|νh.c)×

[ ∏h−1
g=0 Pr(HEADDEL|νg.c)PC(νg+1.c)×
δ(νg+1.a ∈ CHILDREN(νg.a))

]
×∑

l≤m≤r

PT (fm|νh.a.〈w, t〉)
∑
R′,L′′

PDFI(R′,L′′|νh.a)×

i(L − {νh},R′; fm−1
l ) i(L′′,R− {νh}; f rm+1)

o(L,R; f rl ) =
∑
L′,R′

∑
ν0∈TOP(L′,R′)

PC(ν0.c)
3∑

h=0

∑
νh1

Pr(¬HEADDEL|νh.c)×

[ ∏h−1
g=0 Pr(HEADDEL|νg.c)PC(νg+1.c)×
δ(νg+1.a ∈ CHILDREN(νg.a))

]
×

 ∑1≤l′<l PT (fl−1|νh.a.〈w, t〉) o(L′,R′; f rl′)×∑
R′′ PDFI(R′′,L|νh.a)×

i(L′ − {νh},R′′; fm−1
l )


+ ∑r+1<r′≤n PT (fr+1|νh.a.〈w, t〉) o(L′,R′; f r′l )×∑

L′′ PDFI(R,L′′|νh.a)×
i(L′′,R′ − {νh}; f rm+1)




The formulae below follow this basic outline: For an itemX, ix(x,C; f rl ) is

the probability of generating the words(fl . . . fr) given thatx occurs in contextC,
andox(C; f rl ) is the probability of generating the contextC (covering positionsl
throughr), generating anX within that context, and generating the words outside
that range.

i(L,R; f rl ) =
∑

ν0∈TOP(L,R)

PC(ν0.c) ic(L,R, ν; f rl )

ic(L,R, ν; f rl ) =
3∑

h=0

∑
νh1

Pr(¬HEADDEL|νh.c)×

[ ∏h−1
g=0 Pr(HEADDEL|νg.c)PC(νg+1.c)×
δ(νg+1.a ∈ CHILDREN(νg.a))

]
×
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ih(L,R, νh; f rl )

ih(L,R, νh; f rl ) =
∑
l≤m≤r

PT (fm|νh.a.〈w, t〉) it(L,R, νh,m; f rl )

it(L,R, νh,m; f rl ) =
∑
R′,L′′

PDFI(R′,L′′|νh.a)×

idfi(L,R, νh,m,R′,L′′; f rl )

idfi(L,R, νh,m,R′,L′′; f rl ) = i(L − {νh},R′; fm−1
l ) i(L′′,R− {νh}; f rm+1)

oc(L,R, ν; f rl ) = δ(ν = TOP(L,R)) PC(ν.c) o(L,R; f rl )

oh(L,R, h, νh0 ; f rl ) =

[ ∏h−1
g=0 Pr(HEADDEL|νg.c)PC(νg+1.c)×
δ(νg+1.a ∈ CHILDREN(νg.a))

]
×

oc(L,R, ν; f rl )

ot(L,R, h, νh0 ,m; f rl ) = PT (fm|νh.a.〈w, t〉) oh(L,R, h, νh0 ; f rl )

odfi(L,R, νh,m,R′,L′′; f rl ) = PDFI(R′,L′′|νh.a)
∑
νh−1
0

ot(L,R, h, νh0 ,m; f rl )

We can then use these detailed inside and outside probabilities to update the
countsCX for each parameterX ∈ {C,H, T,D, F}. The formulae below show
the contribution of a single sentence pair to the counts for each parameter. They
are normalized by the probability of the sentence pair regardless of alignment.

γ =
1

i(root; f)

CC(c) = γ
∑
L,R,l,r

∑
ν

δ(ν.c = c) oc(L,R, ν; f rl ) ic(L,R, ν; f rl )

CH(HEADDEL; c) = γ
∑
L,R,l,r

3∑
h=0

∑
νh0

(
h−1∑
g=0

δ(c = νg.c)

)
×

oh(L,R, h, νh0 ; f rl ) ih(L,R, νh; f rl )

CH(¬HEADDEL; c) = γ
∑
L,R,l,r

3∑
h=0

∑
νh0

δ(c = νh.c)×

oh(L,R, h, νh0 ; f rl ) ih(L,R, νh; f rl )

CT (f ; e) = γ
∑
L,R,l,r

∑
ν

δ(ν.a.w = e)
∑
l≤m≤r

δ(fm = f)×
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ot(L,R, c,m; f rl ) it(L,R, c,m; f rl )

CD(DEL; c) = γ
∑
L,R,l,r

∑
νh,m,R′,L′′

∑
ν

δ(ν.c = c) ×

δ(ν.a ∈ (νh.a.L ∪ νh.a.R) ∧ ν /∈ (R′ ∪ L′′))×
odfi(L,R, νh,m,R′,L′′; f rl ) idfi(L,R, νh,m,R′,L′′; f rl )

CD(¬DEL; c) = γ
∑
L,R,l,r

∑
νh,m,R′,L′′

∑
ν

δ(ν.c = c) ×

δ(ν.a ∈ (νh.a.L ∪ νh.a.R) ∧ ν ∈ (R′ ∪ L′′))×
odfi(L,R, νh,m,R′,L′′; f rl ) idfi(L,R, νh,m,R′,L′′; f rl )

CF (FLIP; c) = γ
∑
L,R,l,r

∑
νh,m,R′,L′′

∑
ν

δ(ν.c = c) ×

δ((ν.a ∈ νh.a.L ∧ ν ∈ L′′) ∨ (ν.a ∈ νh.a.R ∧ ν ∈ R′))×
odfi(L,R, νh,m,R′,L′′; f rl ) idfi(L,R, νh,m,R′,L′′; f rl )

CF (¬FLIP; c) = γ
∑
L,R,l,r

∑
νh,m,R′,L′′

∑
ν

δ(ν.c = c) ×

δ((ν.a ∈ νh.a.L ∧ ν ∈ R′) ∨ (ν.a ∈ νh.a.R ∧ ν ∈ L′′))×
odfi(L,R, νh,m,R′,L′′; f rl ) idfi(L,R, νh,m,R′,L′′; f rl )

Once the counts are collected for all sentence pairs in the whole training set,
we can reestimate the probabilities, as follows:

PC(c) = CC(c) /
∑
c′

CC(c′)

PT (f |e) = CT (f ; e) /
∑
f ′

CT (f ′; e)

PH(HEADDEL|c) =
CH(HEADDEL; c)

CH(¬HEADDEL; c) + CH(HEADDEL; c)

PD(DEL|c) =
CD(DEL; c)

CD(¬DEL; c) + CD(DEL; c)

PF (FLIP|c) =
CF (FLIP; c)

CF (¬FLIP; c) + CF (FLIP; c)



66 CHAPTER 3. BILINGUAL PARSING

3.5 Search

The task of finding the most probable structure of a given foreign sentence given
its structured English translation can be framed as a parsing problem. We use the
known English structure to define the grammar rules that apply to each foreign
sentence, and then parse the foreign sentence to determine how those rules apply,
which is equivalent to determining an alignment between the English and foreign
sentences. Recursive parsing with memoization allows the implicit enumeration
of all possible parses, while a probabilistic model can simultaneously be used
to weight all possible parses for the EM training of the model and to select the
most probable parse. TheLinkSet Bilingual Parsing Algorithmis an efficient way
to deterministically enumerate all the grammar structures allowed by a bilingual
structure model. It was designed with our syntax-tree transformations in mind, but
it is also quite similar to the efficient algorithm used by the rule-based Link Parser.
One insight that led to this algorithm is that it would be very wasteful to maintain a
distinction between subtree deletions or reorderings that occur in different orders
but result in the same tree. Thus in recursive parsing we want to delay decisions
until they become relevant, so that we don’t miss out on opportunities to reuse
work through memoization because we picked a different value for some variable
that has no effect on the result until a later stage. Therefore, while the Link Parser
keeps track of stacks of connectors, the LinkSet Parser commits only to unordered
sets of connectors.

Figures 3.8 and 3.9 show a rule-based version of the LinkSet parser that simply
counts the possible parses. Probabilistic modeling and some optimizations have
been abstracted away. At each recursive step in parsing, a range of the foreign
sentence is parsed given a setL of connectors available on the left and a setR of
connectors available on the right.

L

f1 f2 f3 f4 f5 f6 f7 f8 f9

R

For each word in the range, an attempt is made to connect to that word using one
of the incoming connectors. Each valid disjunct (there may be one or more for
each word and each incoming connectorν) defines a set of outgoing connectors.
The parser tries all subsets of that outgoing connector set, and then for each subset,
tries all partitions of that set into left and right halves (R′ andL′′ respectively).
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procedure PARSE(L,R, f rl )
if n← cache[L,R, l, r]

then return (n)
elsen← 0

if L+ 1 = R

then


if L = ∅ andR = ∅

then return (1)
else return (0)

if L = ∅ andR = ∅

then


n← PARSE(L,R, f rl+1)
cache[L,R, l, r]← n
return (n)

if L 6= ∅

then


for eachν ∈ L

do
{
n← n+ CONNECT(L − {ν.c},R, f rl , ν)

cache[L,R, l, r]← n
return (n)

if R 6= ∅

then


for eachν ∈ R

do
{
n← n+ CONNECT(L, (R− {ν.c}), f rl , ν)

cache[L,R, l, r]← n
return (n)

return (0)

Figure 3.8: The LinkSet bilingual parsing algorithm, simplified.
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procedure CONNECT(L,R, f rl , ν)
n← 0
c← (ν.L.R∪ ν.R.L)
for each s ⊂ c

do



for eachR′ ⊂ s

do


L′′ ← (s−R′)
for each l < m < r

do


nL ← PARSE(L,R′, fml )
nR ← PARSE(L′′,R, f rm)
n← n+ nL × nR

return (n)

Figure 3.9: The LinkSet bilingual parsing algorithm, continued.

Then the left and right sub-ranges are recursively parsed, using the appropriate
connector sets, as shown in Figure3.10. If there is no connector available on the
left, then a connection comes from the right instead, as shown in Figure3.11.

If a range has zero width, it is parsed successfully if and only if both incoming
sets are empty. On the other hand, a range that contains words may be parsed even
with empty connector sets through the use ofnull links. This allowance makes the
parser robust, able to continue when there is no known way to connect part of a
sentence, as shown in Figure3.12.

f1 f2 f3 f4 f5 f6 f7 f8 f9

RL′′
R′

ν.c

L − {ν.c}

Figure 3.10: The left and right sub-ranges are recursively parsed.
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f1 f2 f3 f4 f5 f6 f7 f8 f9

ν.c

R′′ L′L = ∅ R − {ν.c}

Figure 3.11: A connection comes from the right instead.

w1 w2 w3 w4w1 w2 w3 w4

Null Null
∅ ∅

Figure 3.12: Robust parsing withnull links.

3.6 Results

It is difficult to evaluate the results of bilingual parsing directly, because it is hard
to define the “correct” answers, since the relationship between two languages
is complex and messy. The following two chapters, which use these results to
induce a monolingual parser and to rerank translation hypotheses, will provide
better opportunities to evaluate its effectiveness. However, since bilingual pars-
ing implicitly aligns the words of each bilingual sentence pair, we can evaluate
its performance by selecting the highest-scoring alignment and comparing it to a
hand-aligned standard.

3.6.1 The Corpora

In the following experiments we used several different corpora, each bilingual be-
tween English and one of French, Romanian, or Chinese. Each corpus is aligned
sentence-by-sentence. Perhaps the most well-known corpus in the statistical trans-
lation community is the Canadian Hansard corpus, which comprises over a million
sentences transcribed from the Canadian parliament, which is conducted in both
English and French. We used two different collections of Hansard data, with dif-
ferent sizes and different preprocessing, obtained from two different intermediate
sources. For Romanian and English, we used a corpus consisting of news, the
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Romanian Constitution, and text from Orwell’s novel1984. For Chinese and En-
glish, we used a combination of news sources, including Hong Kong News and
Xinhua News. Table3.1 shows the amount of data used from each corpus, along
with vocabulary sizes.

3.6.2 Training a Word-Translation Model

The first step in bilingual parsing, after gathering a bilingual corpus, is to train a
word-translation model, which will form the basis for word-to-word alignment of
the corpus, and for the structured translation model of which word-translation is a
key component. To train the word-translation parameters of the bilingual structure
model, we used GIZA++, an extension by Franz Josef Och of a toolkit developed
by by the Statistical Machine Translation team during the summer workshop in
1999 at the Center for Language and Speech Processing at Johns-Hopkins Uni-
versity [22].

To reduce the perplexity of the word-translation model, a few easily-translated
types of words were replaced with tokens, such as NUMBER or DATE. Most
punctuation was separated from adjacent words.

In order to provide some additional smoothing, we trained an additional model
that translated from an English part-of-speech tag to a foreign word. We modified
GIZA++ to train these models jointly, maximizing the probability of the training
data given a linear combination of the word-to-word and tag-to-word models. The
same linear combination of these models was then used for bilingual parsing.
This smoother model is especially helpful for less-common words, for which the
words-only model may be less accurate.

In order to build a model based on POS tags, of course, the English side of the
corpus must be tagged. We used Eric Brill’s rule-based tagger [3].

training pairs used vocabulary size
Corpus words structure English foreign

English–French(A) 500k 250k 48k 65k
English–French(B) 1130k 250k 44k 62k
English–Chinese 282k 90k 49k 72k
English–Romanian 50k 26k 44k

Table 3.1: Sentence-pairs used in various corpora to train a word-translation
model and a structured translation model; vocabulary sizes. (k=1000)
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A second application of POS tags to translation is word-sense disambigua-
tion. In order to distinguish various senses of the same English word, we built
a translation model in which each English word was appended with a POS tag.
Thus word-forms that represent multiple parts of speech have separate translation
models for each type, which makes sense linguistically because in a different lan-
guage they are likely to have separate forms. We tested this model only on the
Chinese–English language pair.

3.6.3 Evaluation of Alignment

One way to test how well LinkSet works is to compare the alignments it produces
with “correct” alignments specified by a language expert. While alignments are
somewhat subjective, they do provide a quantifiable measure that allows compar-
ison between different techniques on the same test data. To provide context for
LinkSet’s alignment scores, a baseline and oracle are also scored. The baseline
is an alignment using the basic word-translation model, but no syntactic struc-
ture, to select the most probable English counterpart for each foreign word. More
specifically, the baseline was computed by selecting the most probable English
word to align to each foreign word, according to the same word-translation model
used as a component of the LinkSet model, which is equivalent to IBM Model 1.
This word-translation model was trained using IBM Model 2. The oracle gives
the best alignment possible under the constraints that the alignment must be one-
to-one and that it must be possible to derive the foreign sentence structure from
the English structure by means of the transformations described above (Section
3.3). The best alignment, for the oracle, is defined as the best recall possible at
100% precision. Showing the degree of mismatch between the assumptions of
the alignment framework and the particular evaluation set, the oracle provides an
upper bound on the possible performance of LinkSet, thus putting the LinkSet
alignment scores in perspective.

For French–English bilingual parsing, two different training sets and two dif-
ferent test sets were available. For our first experiment, we used training set A,
which consists of 500 thousand sentence pairs, and has relatively clean prepro-
cessing. We had 65 sentences aligned by hand, and compared these alignments
to those found by LinkSet. We compared two different mixtures of the word-
translation model, either using POS tags or not. We also trained a structural trans-
lation model on 250 thousand sentence pairs, of which the English side was parsed
with the Link parser, in two rounds of EM, comparing the results after 0, 1, and 2
rounds. Table3.2 shows the results. The best result was achieved using the simple
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Model EM recall precision F1-score

baseline 64.5% 47.3% 54.6%
0 68.2% 54.5% 60.6%

λPr(f |e) + (1− λ) Pr(f |t) 1 69.8% 56.3% 62.3%
2 67.9% 54.3% 60.4%
0 74.4% 61.1% 67.1%

Pr(f |e) 1 73.2% 60.5% 66.2%
2 74.7% 61.7% 67.6%

oracle 83.6% 100.0% 91.1%

Table 3.2: Alignment results forFrench, using word-translation models trained
on 500k sentence pairs (training set A) and a structure model trained on 250k
sentence pairs (using 0-2 rounds of EM), tested on 65 hand-aligned sentence pairs.

word translation model (no tags) and 2 rounds of EM, exceeding the score of the
baseline by over 12 percentage points.

A second French–English experiment was evaluated on a larger test set pro-
vided for the HLT-NAACL 2003 Workshop Shared Task. In addition to compar-
ing translation models with and without POS tags and comparing amounts of EM
training for the structural translation model, we also used two different training
sets: set A, used in the previous experiment, and set B, which was also provided
for the HLT-NAACL workshop. Table3.3 shows the results. The best result
was achieved using simple word translation model (no tags) and 1 round of EM.
However, the best recall was achieved using the word-translation model with tags.
Training set A consistently gave better results than training set B, probably be-
cause the preprocessing was better for this set, although it is possible that the
larger set (B) was disadvantageous for some other reason.

To test Chinese–English alignment accuracy, we used three different combina-
tions of word-translation model: one using words smoothed with tags, one using
tags to disambiguate words, and one just using words. We also built a structural
translation model, and compared results without this model, and using the versions
after one or two rounds of EM. We tested these combinations on 183 hand-aligned
sentence pairs from Xinhua news. The results, visible in Table3.4, show that the
simple words-only translation model and the structural translation model after one
round of EM combine to achieve the best score.

In this experiment, the second round of EM caused a slight degradation in
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Model Training Set EM recall precision F1-score

baseline 60.2% 35.0% 44.3%
0 58.3% 37.3% 44.3%

B 1 60.0% 38.5% 45.5%
Pr(f |e) 2 59.9% 38.4% 46.8%

0 62.1% 40.1% 48.7%
A 1 62.7% 40.5% 49.2%

2 62.3% 40.4% 49.1%
0 60.1% 38.1% 46.8%

B 1 60.6% 38.1% 46.8%
λPr(f |e)+ 2 60.4% 38.0% 46.6%
(1− λ) Pr(f |t) 0 62.4% 39.3% 48.2%

A 1 63.2% 39.9% 48.9%
2 62.6% 39.5% 48.4%

oracle 70.4% 100.0% 82.6%

Table 3.3: Alignment results forFrench, using a structure model trained on 250k
sentence pairs (using 0-2 rounds of EM), tested on 484 hand-aligned sentence
pairs.

Model EM recall precision F1-score

baseline 60.5% 58.9% 59.7%
0 62.2% 55.3% 58.5%

λPr(f |e) + (1− λ) Pr(f |t) 1 62.5% 55.6% 58.9%
2 61.7% 54.8% 58.0%
0 66.7% 55.3% 63.4%

Pr(f |e, t) 1 66.6% 55.6% 63.5%
2 65.9% 54.8% 62.8%
0 66.8% 63.4% 65.1%

Pr(f |e) 1 67.0% 64.0% 65.4%
2 66.4% 63.6% 65.0%

oracle 78.5% 100.0% 88.0%

Table 3.4: Alignment results forChinese, using word-translation models trained
on 282k sentence pairs, and a structure model trained on 90k sentence pairs (using
0-2 rounds of EM), and evaluated on 183 hand-aligned sentences.
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recall precision F1-score
baseline 39.7% 54.3% 45.8%
Pr(f |e) 49.9% 69.0% 57.9%

λPr(f |e) + (1− λ) Pr(f |t) 50.4% 69.5% 58.4%
oracle 56.7% 100.0% 72.3%

Table 3.5: Alignment results forRomanian, using a word-translation model
trained on 50k sentence pairs, without a structure model, and evaluated on 13
hand-aligned sentences.

Romanian Chinese French French
sentences 13 183 65 484
baseline 45.8% 59.7% 54.6% 44.3%
LinkSet 50.4% 65.4% 67.6% 49.2%
oracle 72.3% 88.0% 91.1% 82.6%

improvement 17.4% 20.1% 35.6% 12.8%

Table 3.6: Cross-linguistic comparison of alignment results, showingF1-scores
for the baseline, the best LinkSet configuration, and the oracle. The portion of the
space between the baseline and oracle claimed by LinkSet is shown as “improve-
ment.”

performance. This was also true in the French–English experiments, in 5 out of 6
cases. This is probably caused by overfitting. While using a structural translation
model still improves results in only 6 of the 9 EM comparisons, these include the
best results for each test set. Thus the EM-trained structural translation model
improves alignment accuracy.

Finally, since we had the data, we did a quick test of alignment between Ro-
manian and English. A small Romanian–English corpus, along with test data, was
provided for the 2003 HLT-NAACL workshop. Minimal effort was expended to
train a word translation model using 50k sentence pairs. LinkSet’s alignment re-
sults were evaluated, along with a baseline and oracle, on hand-aligned test data,
and the results are shown in Table3.5.

A summary of the four experiments is shown in Table 3.6. In all four cases,
the LinkSet bilingual parser was able to align the words of bilingual sentence pairs
significantly better than a baseline technique which took the most probable align-
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ment according to the word-translation model without any structural information.

3.6.4 Examples

In order to show more qualitatively what the results of bilingual parsing with
LinkSet look like, representative sentence pairs were selected from among the
results of the experiment above. Above-average pairs were chosen, since mostly-
correct answers are more interesting to examine than incorrect answers. Figures
3.13 and3.14 show selected pairs of French and English sentences, and Figure
3.15 shows selected pairs of Chinese and English sentences. Each of the English
sentences was parsed using the Link parser, and the resulting structure is shown
above the sentence. The lines connecting English words to foreign words show
the most probable alignment found by LinkSet. Beneath the foreign sentence is
the structure induced through bilingual parsing. Dashed lines indicate incorrect
alignments made by LinkSet, and dotted lines indicate true alignments incorrectly
omitted by LinkSet. Solid lines show correct alignments found by LinkSet. The
following paragraphs offer some comments on the sentences shown.

• The problem he raised is indeed a real one.
The parse and the alignment are correct. Some French words do not have
English counterparts and are left out, but the induced French structure is
otherwise correct.

• Mr. Speaker, may I direct a question to the Minister of Labour.
The English parse is slightly incorrect, leaving out the wordmay, which
results in the corresponding omission ofmay from the alignment and the
French structure.

• As this is what is required, it is the target the government has in mind.
While three of the alignments shown here (in dashed lines) are considered
incorrect by the test set, not having the same meanings word-for-word, it
could be argued that they are actually correctly aligned:as andet, while
they don’t have exactly the same meaning, both serve structurally to join
two statements; the phrasesis requiredand il faut mean the same thing,
even though their individual words do not. Since this system allows only
one-to-one alignments, it is not possible to alignwhat to bothceandque.

• Federal government carpenters get$6.42 in Toronto and$5.23 in Halifax
and Moncton.
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Ce est ce que il faut et ce est le objectif visé par le gouvernement.

Le problème qu’ il a soulevé est en effet un problème réel.

The problem  he  raised  is  indeed  a  real  one.

Les menuisiers de le gouvernement fédéral touchent $ 6.42 à Toronto contre $ 5.23 à Halifax et Moncton.

Monsieur l’ Orateur, puis je poser une question au ministre du Travail.

Le salaire de base est actuellement de $ 4.96 l’ heure.

As this is what is required, it is the target the government has in mind.

The   base  rate   now   is   $ 4.96  an  hour.

Federal  government carpenters  get  $ 6.42  in  Toronto and  $ 5.23  in  Halifax  and  Moncton.

Mr. Speaker, may I direct a question to the Minister of Labour.
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Figure 3.13: Selected French–English sentence pairs aligned with LinkSet.
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Nous croyons que il est temps de établir de les règlements et de les méthodes comme il se doit.

We think that now is the time for the regulations and procedures to be properly established.

La question de les relations commerciales avec nos homologues Européens devrait être envisagée très sérieusement.

Cela encouragera la construction de nouvelles embarcations de pêche et la création de nouvelles conserveries.

It will spur the construction of new fishing boats and cause new processing facilities to be built.

The matter of trade relations with our European counterparts should be very seriously considered.

It is at the second stage of review that the Supreme Court has ruled that a hearing is compulsory.

Ce est à la deuxième étape de réexamen que la Cour Suprême a établi que une audience est obligatoire.
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Figure 3.14: Selected French–English sentence pairs aligned with LinkSet.
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Wan  Li  meets  with  guests  from  Thailand

Then ,  the  United  Nations  will  hold  various  commemorative  activities  .

Premier  Peng  Li  invited  premier  Zumegloph  to  visit  China  at  his  convenience  .

This  year,  Siemens  will  diligently  participate  in  China ’s  construction of the Three Gorge Project .
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Figure 3.15: Selected Chinese–English sentence pairs aligned with LinkSet.
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The analysis shown is correct. The short French words that are not aligned
to English are correctly connected to the induced French structure usingnull
links (not shown).

• The base rate now is$4.96 an hour.
The analysis shown is correct.

• We think that now is the time for the regulations and procedures to be prop-
erly established.
The English parse is incorrect, particularly in connectingestablishedto time
rather thanbe andproperly. This, combined with the fact that the French
sentence has a slightly different structure, causes problems for the alignment
and the induced structure.

• It is at the second stage of review that the Supreme Court has ruled that a
hearing is compulsory.
The analysis shown is correct, except for the missing alignment between
ruled andtabli.

• The matter of trade relations with our European counterparts should be
very seriously considered.
The analysis shown is correct.

• It will spur the construction of new fishing boats and cause new processing
facilities to be built.
The analysis shown is mostly correct, but two spurious alignments (shown
in dashed lines) connect common words that have no correct alignment
available. Common words tend to have flatter translation models, allowing
them to connect to almost any word when under pressure from the structure.
The desired alignment ofbuilt to cration is not possible (in the configura-
tion tested) because it would require too many consecutive head-deletion
operations.

• Wan Li meets with guests from Thailand
The analysis shown is correct. The two English prepositions have no equiv-
alent Chinese words.

• Then, the United Nations will hold various commemorative activities.
The analysis shown has two misaligned words, shown by dashed lines, with
the dotted line showing a better alignment that was not selected by LinkSet.
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Since the system is biased in favor of aligning more words rather than leav-
ing them unaligned, the correct alignment would get a lower score due to its
decrease in the number of aligned words.

• Premier Peng Li invited premier Zumegloph to visit China at his conve-
nience.
The analysis shown is mostly correct, but aligns one pair of words (shown
by dashed lines) that should each be left unaligned. These are both very
common words, and thus have flat translation models, making it easy to
erroneously align them to each other.

• This year, Siemens will diligently participate in China’s construction of the
Three Gorge Project.
Just as in the previous sentence, the analysis shown is mostly correct, but
aligned a common English word to a common Chinese punctuation mark.

3.7 Discussion

Because the LinkSet Bilingual Parser is an intermediate step leading to mono-
lingual parsers for other languages, and to structured transformation models for
translation, evaluating it directly in terms of word-to-word alignment fails to fully
describe its effectiveness. However, it seems reasonable to expect that the useful-
ness of the models trained using LinkSet would be limited by its ability to assign
meaningful correspondences between the English and foreign versions of a train-
ing sentence. The results shown above, while they fall short of what oracles show
may be possible with better modeling, are good enough to inspire hope that the
noise introduced by incorrect alignments will not overwhelm the useful content in
the models derived from the alignment process for the purposes of translation and
monolingual parsing. The following two chapters will demonstrate to what degree
models trained with LinkSet achieve practical results in spite of noisy alignments.

As the experiments above show, EM training of the bilingual parsing model
was helpful in improving the quality of alignments found. In most cases, a single
round of EM offered a small boost in alignment quality, while successive rounds
did not. Overall, the gain offered by EM was fairly small.

In this section we will discuss both the model we used to align sentences
within this framework, and the framework itself. Here we refer to the structure
of the syntax trees and the valid transformations on those trees as theframework,
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and we refer to the way the probabilities of specific transformations are calculated
as themodel.

Our goals in the design of the LinkSet model include the following. The model
must match the framework; that is, it must provide a probability distribution cov-
ering the same transformations allowed by the framework. Each part of the model
should be detailed enough to capture the relevant features that enable the sys-
tem to distinguish and prefer the appropriate transformation in each case, but at
the same time be general enough to avoid the twin pitfalls of computational in-
tractability and data sparsity. Also, for the sake of robustness, it is desirable that
the model never assign zero probability to a sentence pair, however poorly it fits
the framework, but allows some best guess (however weak) to be selected.

When designing the LinkSet model, we defined a sub-model for each trans-
formation defined in the framework, and simplified the parameterization of each
sub-model to avoid sparsity and to keep the search algorithm relatively efficient.
This was apparently successful. However, it may be that some of these simplifica-
tions went too far, such that increasing the parameterization of one or two models
in a strategic way might pay off in terms of improved discrimination and better
alignment results, without a large cost in terms of increased data sparsity, model
size, and computational complexity.

One candidate for this reparameterization is the probabilityPC(ν|L,R) ≈
PC(ν.c) of selecting a nodeν as the next connector. It seems reasonable that the
probability of a particular connector appearing at a syntactic node be conditioned
on the set of alternatives, but this is problematic since there are too many possible
sets of alternatives. Perhaps some representation could be devised to partition
the space of sets of connectors in a meaningful way, which might then allow this
connector-selection probability to be more effective.

A second candidate for reparameterization is the reordering operation. Be-
cause sparsity sets in if we try to parameterize on a set of connectors, we model
reordering as a series of independent binary decisions, whether or not to flip a con-
nector to the opposite side from its original position, relative to the parent node.
This solves the sparsity and efficiency problems, but perhaps it leaves something
lacking in discriminative power. One problem with the current approach is that
connectors may have to “decide” whether to flip each time they are passed down
to a lower node, which happens when a sibling is chosen first to head the next
major node. It seems that the probability of flipping should depend not only on
the label of the connector that might flip, but also on its parent connector.

These two candidates work together to determine the new ordering of connec-
tors in a transformed syntax tree. They do so in a somewhat unintuitive way due
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to the inside-out structure of the efficient LinkSet parsing algorithm, a structure
inherited from the Link parser, in which it was less confusing. It would be nice to
be able to model the reordering of nodes in a more intuitive way, which probably
means directly transforming the order of a set of connectors which would be sib-
lings in the original, non-binary, tree representation, rather than pulling the binary
tree structure of the LinkSet algorithm into this part of the model. However, this
breach between the structure of the model and the algorithm, while technically
not breaking the LinkSet framework, would probably have a similar effect on the
efficiency of the algorithm, or at least on the comprehensibility of the modified
algorithm.

A basic feature of this framework is that the children of a node may have a
different ordering across languages. Combined with the fact that two ostensible
translations may in fact have considerable mismatch, and that the translation prob-
abilities of many common words are fairly flat, this occasionally yields bizarre
results. In one relatively common case, the inferred structure of the foreign sen-
tence has a link jumping from the first word to the end of the sentence, and then
back again to the second word. In such cases, the word near the end of the sen-
tence is a misaligned common word that has no direct complement in the English
sentence. A better analysis would be to perform head-deletion, replacing the pair
of links that connect the first and second word via the last word with a direct link,
and attaching the last word to a neighbor with a null link. However, the current
system is biased against null links for the obvious reason that a preference for
null links would result in many sentence pairs with no alignment at all. What is
needed is better modeling of the probability of using a null link. The easiest way
to approach this would be to reparameterize the probabilityPr(INS) of inserting
a new subtree using a null link so that it depends on the word being connected by
the null link, and perhaps also on its parent node.

The binary tree structure used in this framework lends itself quite well to ef-
ficient computation, which is a very important factor when dealing with experi-
ments that may require hundreds of hours of CPU time. However, as we observed
in our analysis of possible shortcomings in the model, it would be more intuitive
to have an N-ary tree, allowing each node to connect directly to the nodes with
which it has a close linguistic relationship. The value of an “intuitive” model is
more than just that of being easy to understand. A framework that more closely
follows linguistic intuition is more likely to capture the relevant distinctions in
the parameterization of its model. However, such a model will be susceptible to
computational inefficiency, parameter bloat, and data sparsity, unless great care is
taken to design the framework, model, and algorithm well.
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The LinkSet framework in some sense assumes that cross-lingual word align-
ments are one-to-one, an obvious untruth that varies in severity depending on the
particular corpus. However, tree structure gives this assumption some wiggle-
room. For example, if a two-word phrase in English matches a single word in an-
other language, the head of the two-word phrase could be aligned with the single-
word translation. Conversely, if a single English word matches a two-word foreign
phrase, the head of the foreign phrase could be aligned to the English word, and
the other foreign word could be null-linked to its head. Thus the structure de-
duced for the foreign phrase would still be correct. Variants of this analysis exist
for other numbers of words on each side. A better analysis, however, might be
to align the head of an opaque multi-word phrase with the head of its translation,
and not try to force the words inside the phrases to align, when they clearly do
not have a direct correspondence. In this case, the members of the foreign phrase
would be connected to its head by null links. This is what LinkSet does, given
a well-trained model. However, in this case it might make more sense to assign
the foreign phrase a flat structure, with each word linked to the head, rather than
putting null links in series (a right-branching structure); perhaps this decision is
language dependent, or should be conditioned on the tag of the head (distinguish-
ing noun phrases and verb phrases). In order to do this well, the model would
need to have a better way of determining the boundaries of an opaque phrase.
One way to do this would be to augment the word-translation model with phrase-
to-phrase translations. Another possibility would be to use monolingual models
to estimate the probability that a particular phrase is opaque to translation. While
the LinkSet framework does not explicitly account for multi-word phrases, it is
flexible enough to align them in a reasonable way. However, a framework and
model that explicitly handle such alignments should be able to learn their correct
mappings more readily.

In summary, the design of the LinkSet framework and model has been directed
toward the goal of effectively modeling the data-driven mapping of sentence struc-
ture across languages along a pathway that avoids the swamp-lands of overly sim-
plistic modeling on one side, and the twin pitfalls of computational complexity
and data sparsity on the other. Our compass for this journey has been the incorpo-
ration of linguistic insight into the structure of statistical models. That is, we used
linguistic intuition to guide the design of our model so it would capture the rele-
vant phenomena. This approach not only gives a model the right discriminative
power, but also helps to make it tractable and trainable, by removing dependen-
cies that linguistic intuition tells us are less relevant. The right simplifications are
crucial if a model is to avoid the ill effects of data sparsity and overly-taxing com-
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putational and storage requirements. When the need to discriminate and the need
to simplify collide, we can take comfort in the fact that computers are still getting
faster, and today’s overnight job could be real-time in a decade or two.

One of the key linguistic insights guiding this framework is that the recursive
structure of a sentence can be much the same in two different languages even
when different ordering of that syntax tree makes the observed strings completely
different. This simple idea has taken us a long way, but it has also revealed some
limitations. The deepest of these is that a good translation of certain thoughts
into a given language might have a completely different structure from its En-
glish equivalent. In these cases, the correspondence must simply be “memorized,”
though perhaps even a completely idiomatic translation would still be amenable
to some generalization through modeling. It remains an open question how best
to integrate this kind of mapping into a generative model based on deep structural
similarity.

The LinkSet bilingual parser demonstrates a data-driven statistical translation
model that brings statistical modeling closer to capturing the structural syntac-
tic relationships between two languages. It is reasonably effective at aligning
the words of bilingual sentence pairs in an unsupervised way, and in it is laid
the groundwork for the two applications presented in the next two chapters: in-
ducing a monolingual parser through bilingual parsing, and reranking translation
hypotheses with a bilingual parsing model.



Chapter 4

Inducing a Monolingual Parser
through Bilingual Parsing

4.1 Motivation

Natural language parsers, which analyze human-language sentences, are useful
for a wide variety of tasks, including (but not limited to) dialog, translation, clas-
sification, and corpus adaptation. Unfortunately, parsing is a hard problem, and
constructing a new parsing system that works reasonably well typically requires
a large effort by language experts, either in designing a grammar or in annotating
training data. However, by training the Lynx parser (described in Chapter2) using
data annotated automatically by the LinkSet bilingual parser (described in Chap-
ter3), a quick-and-dirty parser can be constructed with minimal effort and without
much need for language expertise. Incremental improvements can then be made
by addressing the various deficiencies of the resulting monolingual parser.

4.2 Related Work

Unsupervised methods for inducing a part-of-speech tagger and a noun-phrase
bracketer across a bilingual corpus were put forward in 2001 by Yarowsky and
Ngai [29]. Soon thereafter, Yarowsky, Ngai and Wicentowski added morphologi-
cal analysis to their suite of induced text analysis tools [30]. Starting with an En-
glish POS tagger and standard IBM Model 3 alignments, they induced POS tags
in the other language by copying tags across alignments, and trained a POS tagger
on the other side. Similarly, they induced a NP bracketer by copying NP identi-
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fiers across alignments. Focusing on robust learning methods for noisy alignment
data, they showed that robust projection outperforms simple projection even on
hand-aligned data. This work is similar to ours in two key ways. First, alignments
are used to project grammar knowledge from English to another language. Sec-
ond, both depend on noise-robust learning techniques, since both the alignments
and the grammar knowledge, not to mention the translations themselves, tend to
be too noisy for traditional supervised-learning techniques.

4.3 Model

Combining the model of monolingual sentence structurePr(E) described in Chap-
ter 2, and the modelPr(F|E) of a structured foreign sentence given a structured
English sentence described in Chapter3, we can in principle derive a model of
monolingual sentence structurePr(F) for the foreign language.

Pr(F) =
∑
E

Pr(E) Pr(F|E) (4.1)

That model can then be used to parse foreign sentences, by finding the most
probable structure consistent with the given foreign sentence stringf.

F̂f = argmax
F :WORDS(F)=f

Pr(F) (4.2)

However, in practice the model composition shown in Equation4.1 is infea-
sible, since it requires a sum over all (infinitely many) possible English sentence
structures for each French structure. We can estimate this sum using a large bilin-
gual corpus, so that only attested sentence pairs contribute to a smoothed model
of French structure. That is, we restrict the sum overE in Equation4.1 to En-
glish structures that actually co-occur with the French structureF in our training
corpus.

Without some kind of smoothing, the resulting model would assign probabil-
ity mass only to those foreign sentence structures that had actually been seen in
our training corpus. However, since both the translation modelPr(F|E) and the
monolingual structure modelPr(F) have simplifications and smoothing built in,
the gross simplification of using only observed〈E ,F〉 pairs does not result in an
overly rigid model. Another reason this works is that the probability of the vast
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Penn Treebank Hand Bracketed
system recall precision recall precision
Lynx 75.1% 80.1% 91.6% 93.0%
Link 78.8% 86.6% 92.0% 93.5%

baseline 7.9% 7.8% 68.2% 68.2%

Table 4.1: Recall and precision of 100 English sentences on Lynx, Link and a
right-branching baseline, according to two evaluation metrics.

majority of English sentences, given any particular foreign sentence, will be very
close to zero, as these will not be valid translations, so zero is a reasonable esti-
mate. Only those English structures that form possible translations of the given
foreign sentence need be considered. Limiting this to a single translation is less
desirable, but not unreasonable, considering the limitations of available corpora.

Using a large parallel corpus, we first perform bilingual parsing using LinkSet,
selecting the most probable sentence structureF for each foreign sentence. Then
this set of structured foreign sentences is used to train the Lynx parser, building
a modelPr(F) in exactly the same way we built the model of English structure
Pr(E) in Chapter2. Once this model is built, we can use it to parse foreign
sentences.

4.4 Results

To test this ability to quickly build a working parser for a foreign language, we
used two bilingual corpora (French–English and Chinese–English) to automati-
cally build monolingual parsers for French and Chinese. We then tested these
parsers by parsing test sets in each language, and comparing the structures as-
signed by the new parsers against hand-bracketings of the same test sentences.

4.4.1 Comparing Linkages and Bracketings

The evaluation of a parser is somewhat of a subjective matter, since even hu-
man experts may disagree on what is the correct structure of a given sentence.
However, a commonly-used metric for syntactic parsing is constituent bracket-
ing, because it allows a given structure to be compared against a hand-bracketed
canonical structure, yielding easily-interpreted recall and precision percentages.
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1. Locate all constituents according to the canonical bracketing.

2. Find all subtrees of the linkage, excluding single leaf nodes.

3. For each subtree:

(a) If this subtree is coextensive with a constituent, consider them
matched.

(b) Otherwise, for every constituent inside the subtree:

i. If this subtree and constituent are consistent (no crossing),
consider them matched. This may result in multiple con-
stituents matching the same subtree.

ii. Otherwise, consider this constituent to have failed to match.

4. The recall is the number of matches divided by the total number of
constituents.

5. The precision is the number of matches divided by the number of con-
stituents that either matched or failed to match a subtree.

Figure 4.1: An algorithm for link grammar bracket matching
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The difficulty of evaluating parsing results is compounded when a formalism
such as link grammar is used rather than the more traditional phrase structure
grammar, which corresponds directly to a constituent bracketing. Link gram-
mar structures can not be translated unambiguously to constituent bracketings,
so instead of translating each linkage into a bracketing for comparison against
the corresponding canonical bracketing, we compared linkages against canonical
bracketings in a way that accounts for the ambiguity present both in linkages and
in incomplete bracketings. An algorithm for computing the new metric is shown
in Figure4.1. To verify the validity of this evaluation metric, we used it to score
some English structures that had already been evaluated using the old method
(from Chapter2) in which each structure was translated into a constituent brack-
eting using language-specific heuristics, and then compared with a bracketing for
the same sentence from the Penn Treebank. Each of the two evaluation metrics
works with different bracketing formats, so the sentences had to bracketed again
by hand. The results of this comparison are shown in Table4.1. While the num-
bers are not the same for the two methods, they are somewhat similar. Our goal in
any case is not just to duplicate the results of the Penn Treebank metric in a lan-
guage independent way, but also to avoid its problem with arbitrary interpretation
of ambiguous structure. This evalution metric, then, allows linkages to be com-
pared with bracketings in languages other than English, without arbitrarily forcing
ambiguous structures into a particular bracketing, and without requiring hard-to-
build and unreliable language-specific software to convert linkages to bracketings
for each language.

4.4.2 Refining the Model

The training data given to the Lynx parser in these experiments, which was gener-
ated using the LinkSet bilingual parser, was quite noisy, a result of both word-level
translation ambiguity and of mismatches in structure between many sentences and
their translations. In an attempt to reduce the negative effects of this noise, we
used two approaches: EM and attenuation.

Since the model used by the Lynx parser is too complex to allow proper EM
training without significant redevelopment of the system, we used a crude approx-
imation of EM by simply re-weighting each sentence structure in the training data
based on the score the previous model assigned to that structure. One attempt,
which used these scores directly as weights, was rapidly overtrained and gave
very poor results. Therefore we reduced the learning rate by weighting each train-
ing round based on a function of the weights given by the previous round, plus
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EM recall precision
Lynx 0 76.4% 80.5%
Lynx 1 71.9% 76.7%
Lynx 2 73.0% 77.8%
Lynx 3 71.3% 75.6%

baseline 76.0% 76.0%

Table 4.2: Recall and precision of the Lynx parser in French

smoothing for any zero-weighted sentences, yielding much better results. Various
weighting functions were tried, including multiplication by a factor that serves as
a learning rate (which did not work well) and multiplication of the log score by a
learning rate factor (which worked better), the latter being used for the reported
results.

Having observed that unreasonably long tails on the distributions of many
parameters of the model were having an adverse effect, not only on results, but
also on the speed of parsing, we attenuated the model using a combination of
maximum limits on the number of values for an attribute and maximum ratios
between the most and least probable values. This reduction in model size had the
immediate effect of speeding up parsing, thanks to reduced search space, and also
improved parsing results by several percentage points.

In the experiments reported here, EM was applied first (with no attenuation)
and then the resulting model was attenuated before being used to parse the test
set. While the EM did yield a small improvement before attenuation, that gain
was hidden by the larger improvement given by model attenuation, which yielded
bigger gains in the no-EM case than after one or two rounds of EM. Thus, the best
models in these experiments were those that did not use EM.

4.4.3 The Experiments

As a point of comparison for all these experiments, we generated a baseline score
by constructing a right-branching parse of each sentence, taking punctuation into
account. This simple method gives quite good results for many languages, thus
providing a good basis of comparison for other methods. We also compared the
reported results against a few other potential baselines, such as random bracket-
ing or left-branching bracketing, but these were consistently outperformed by the
right-branching baseline. Since we assume that natural-language syntax is struc-
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EM recall precision
Lynx 0 40.6% 47.8%
Lynx 1 38.6% 47.1%
Lynx 2 37.5% 45.2%
Lynx 3 37.6% 45.3%

baseline 34.2% 38.9%

Table 4.3: Recall and precision of the Lynx parser in Chinese

tured like a tree, we would expect, for most languages, that either a left-branching
or right-branching a baseline would do reasonably well, depending on how flex-
ible the word order is for that language. For the languages we tested (English,
French, and Chinese) the right-branching method worked best as a baseline.

For our first experiment, we used 29 hand-bracketed French sentences from
section 100 of the Canadian Hansard corpus to test a French parser built au-
tomatically from sections 0 through 99 of the same corpus. The training data
consisted of bilingual sentence pairs, where the English version of each sentence
was parsed using the Link parser. The resulting French parser achieved a recall
of 76.4% and precision of 80.5%, slightly better than the right-branching base-
line. We later did another French experiment with 344 sentences from the Paris 7
treebank (produced by the LLF laboratory of the University of Paris), and found
lower scores, but a much more significant difference between the baseline and our
automatically-induced parser. In this case, recall was 53.6% and precision was
55.8%.

For our second experiment, we used 265 Chinese sentences from the Xinhua
Treebank to test a Chinese parser built automatically from other sentences from
Xinhua News. The training data consisted of bilingual sentence pairs, where the
English version of each sentence was parsed using the Link parser. The resulting
Chinese parser achieved a recall of 40.6% and precision of 47.8%, significantly
better than the right-branching baseline.

A summary of the results above is shown in Table4.4, which compares the
Lynx bracketing score in each language against the corresponding right-branching
baseline score. Unsurprisingly, the English version of the parser is most able to
exceed the performance of its baseline. Although the Chinese version does not
achieve a very impressive score, it does make a significant improvement over its
baseline. The first French test (number 1 in the table), on the other hand, is almost
the reverse of the Chinese: While failing to improve very much over its baseline,



92 CHAPTER 4. INDUCING A MONOLINGUAL PARSER

baseline Lynx improvement
English 68.2% 92.3% 36%
Chinese 36.4% 43.9% 21%

French (1) 76.0% 78.4% 3%
French (2) 40.3% 54.7% 36%

Table 4.4: A cross-linguistic comparison of the Lynx parser vs. the right-
branching baseline, by bracketingF1 score, with the margin by which Lynx does
better than the baseline.

it does quite well overall, with high precision and recall. The French baseline
scores higher than the English baseline, perhaps because the French sentences
are more consistently right-branching than English or Chinese, or perhaps be-
cause the hand-annotator favored right-branching interpretations of the sentences.
However, a second test of the French Lynx parser on the more difficult Paris 7 test
set (number 2 in the table) shows a much more significant improvement over the
right-branching baseline.

4.4.4 Improving the French Parser

Upon closer examination of the French Lynx parser’s output, we discovered sev-
eral common constructions that were not handled correctly. In order to show how
these problems can be addressed, we focus here on just one common construc-
tion in French,ne ... pas, which corresponds to the Englishnot. This is tricky
for LinkSet to handle because a non-contiguous two-word French phrase needs to
be aligned to a single English word, which is not possible in the LinkSet model
as presented above. The best we can hope for in the standard configuration of
LinkSet is to havenotalign to eitherneor pas, thus connecting it to its antecedent
with an N link, and a null link connect the other. If this happens throughout its
training data, and bothneandpasare seen withN links, the French Lynx parser
will then be equipped to correctly link both of them withN links to the verb they
modify. However, in practice we found that this was not happening.

Looking back at the training data, we found that whilenot was often aligned
with ne(46%) orpas(23%), the other word was often not null linked, but aligned
to some common word, such asthe. This is not too surprising, since the automat-
ically trained word-translation model tends to assign a substantial probability to
the alignment of any common English word to and common French word.
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Having diagnosed the problem, we proceeded to attempt a quick fix. Using
a list of 47 English words with meaning similar tonot, we purged the word-
translation model of any probability of aligningne or pas to any word not in
the list. Then we ran the LinkSet bilingual parser on the original bilingual corpus,
using this restricted model, and generated training data for an improved French
Lynx parser.

This simple change had the desired effect of forcing every instance ofne or
pasin the training data to either align tonot or a synonym, or ne null linked. As
we had hoped, the resulting French Lynx parser was now able to correctly use the
link N when connecting bothneandpas. However, a problem still remained:ne
was very often linked to the word on its left, rather than the verb on its right, to
which it should have been linked. This can be easily explained. By default, null
links generated in LinkSet connect an unaligned word to the word on its left.

While they work quite well when a contiguous French phrase is aligned to
a single English word, null links are not really will-equipped to handle discon-
tiguous French phrases. A better approach would be to allow both French words
to align to the same English word. An equivalent notion would be to allow the
English word to “duplicate” itself, so that each copy could align to one of the cor-
responding French words. When the English word being duplicated is connected
to only one other word in its English structure (provided as input to LinkSet),
this operation carries no risk of causing a cycle or violating the no-crossing con-
straint on links. Thus we propose dealing with this problem by adding optional
duplication of leaf nodes to the transformations carried out by the LinkSet parser.
Viewing the LinkSet model as an alignment model, we can conceptualize this
cloning operation as a fertility model, where the probability of duplicating an En-
glish word is the probability of increasing its fertility, allowing it to align to more
than one foreign word. To test this idea without a complete redesign of LinkSet,
we can simulate the operation by duplicating the wordnot in the training data for
every English sentence in which it’s French counterpart containsne...pas. A sim-
ple script can accomplish this. Then we run LinkSet on the modified training set
and build a new French Lynx parsing model.

Voil à! The new monolingual French Lynx parser now correctly analyzes the
ne...pasconstruction the majority of the time, with both words connected to the
verb they modify withN links.

Figure4.2 shows the effect of these changes on one fairly typical sentence,
which in English means: “I am pointing out that we cannot continue to rip off
the Canadian people.” First it shows the analysis generated by the original French
Lynx parser. Then, in (b), it shows the results of retraining the parser with its word
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LEFT−WALL Je signale que nous ne pouvons pas continuer à voler les Canadiens .

LEFT−WALL Je signale que nous ne pouvons pas continuer à voler les Canadiens .

LEFT−WALL Je signale que nous ne pouvons pas continuer à voler les Canadiens .
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Figure 4.2: A single French sentence, parsed by the French Lynx parser at various
stages of the improvements inspired by the phrasene...pas: (a) the original French
Lynx parser, (b) the parser retrained using a restricted word translation model,
and (c) the parser retrained using duplication in addition to the restricted word
translation model.
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C connects subordinating conjunctions and certain verbs and adjectives with
subjects of clauses.

D connects determiners to nouns.

I connects certain verbs with infinitives.

N connects the word “not” to preceding auxiliaries and modals.

O connects transitive verbs to direct or indirect objects.

S connects subject-nouns to finite verbs.

TH connects words that take “that [clause]” complements with the word “that”.

TO connects verbs and adjectives which take infinitival complements to the
word “to”.

W is used to attach main clauses to theleft wall.

X is used to connect punctuation symbols to words.

Table 4.5: The meanings of connector labels used in Figure4.2.

100 sentences 18 negative sentences
recall precision recall precision

baseline 82.0% 82.0% 89.3% 89.3%
original 79.0% 82.9% 83.5% 85.1%
word translation fix 77.4% 84.1% 70.9% 88.0%
word fix + duplication 78.9% 84.6% 81.6% 96.6%

Table 4.6: A comparison of bracketing precision and recall for the French Lynx
parser at various stages of the improvements inspired by the phrasene...pas, eval-
uated both on a set of 100 sentences, and on the subset of those 100 that contain
the phrase.
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translation model restricted so thatneandpascannot be aligned to anything but
not or one of its synonyms. Third, in (c), it shows the same sentence analyzed
using a parser trained using both the word translation restriction and the ability to
duplicate leaf nodes in the English structures used for training. The first analysis
is quite wrong, and does not recognizene and pas as modifiers of the modal
verb pouvons. The second analysis is much better, correctly pulling outne and
pasas negative words (indicated by theN link labels), but it incorrectly connects
ne to nousas if that were the word being negated, rather than the verb. The
third attempt, however, solves this problem as well, and achieves a fully correct
analysis.

In addition to looking carefully at the output of our improved French Lynx
parser, we evaluated it for bracketing precision and recall on a set of 100 hand-
bracketed sentences at each step of the process, comparing the results to a base-
line. We also performed the same tests on a selection of sentences for which our
changes are particularly relevant; that is, we selected all 18 sentences, from among
the 100, that contain the wordsne andpas. The results are shown in Table4.6.
According to this metric, our changes produced a significant increase in precision,
but a slight drop in recall.

This exercise shows some relatively simple modifications solving a significant
problem in an induced parser’s ability. This suggests that not only can a quick-
and-sloppy parser be whipped together for a new language with little additional
effort (once the LinkSet system is provided), but that such a parser can be in-
crementally improved with a little bit of analysis and simple intervention in the
training process. It seems likely that many similar problems in a rough parser
could be addressed in a similar way, adding up to significant improvement with a
reasonable amount of ongoing effort.

4.5 Discussion

To our knowledge this is the first demonstration of a monolingual parser being
induced across a bilingual corpus. (As mentioned above, others have induced
more basic text analysis tools.) No knowledge was used except for the sentence-
alignment of the corpus and the original English parser; given these resources, the
building of a foreign-language parser was completely unsupervised.

In this unsupervised-learning setting, it came as somewhat of a surprise that
EM training was unable to improve the quality of the induced parsers beyond
their original levels. In some sense it could be considered a relief, considering the
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huge computational cost involved. On the down-side, this could indicate a prob-
lem with the model. However, it is likely that the problem lies instead with the
way EM was applied. Our EM training was a fairly crude approximation of the
ideal parameter estimation method, with sentence-level rather than feature-level
granularity, so a better EM technique might work better. To address the glaring
problem of sentence-level granularity, the EM training should retrain the model
based on the scores assigned to each part of each sentence, rather than based on
each entire sentence. A related improvement would be to use the entire lattice
generated by the LinkSet bilingual parser for each sentence, rather than just the
most probable sentence found within it. While this would probably increase com-
putational and memory requirements, a cleverly integrated system could probably
accomplish this kind of training without massively increasing the (already quite
high) processing burden for training. Such a system would probably give better
results; whether they would be significantly better is hard to say without having
time to actually do the experiment.

The difficulty of comparing the quality of parsers for different languages should
be obvious: since the language is different, it is impossible to use the same test
set in each language for a direct comparison. Furthermore, limited resources may
necessitate the use of test sets of differing domain, size, and quality. Even given a
reasonably comparable set of test sentences, the canonical analyses available for
them may differ in style across languages. Yet another difficulty is introduced
by incompatibility between the form of available test data and the form used by
the system under evaluation. We were able to partially overcome this last hur-
dle by designing a modified metric for comparison of a linkage and a constituent
bracketing.

Even with all these caveats, the bracketing scores should tell us something
useful, though perhaps not with great precision. Both the French and Chinese
Lynx parsers, while unsurprisingly unable to reach the high quality of the En-
glish version unencumbered by a language barrier, achieve substantial success in
surmising the syntactic structure of their respective languages. The quantitative
comparison confirms what a less systematic look at the results seemed to say. In
many cases, the induced parsers are able to analyze foreign-language sentences
with complete or substantial correctness, but significant problems remain, both
for unusual constructions not sufficiently represented in the training data, and for
structures systematically misanalyzed due to mismatches in structure between the
two languages that were too difficult for the LinkSet model to align properly.

Our case study on the French negation phrase (ne...pas) focused on one such
mismatch. In the original formulation, the LinkSet model was unable to account
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for this phrase properly, because of its one-to-one alignment model. While the
LinkSet model can, through the use of null links, deal reasonably well with con-
tiguous multi-word phrases aligned to single words in the other language, a non-
contiguous phrase presented a problem. Because the LinkSet parser was unable
to correctly align this phrase, part of the phrase was incorrectly aligned each time
it appeared in the training data, resulting in an incorrect model of the phrase in the
French Lynx parser. However, we were able to address this problem fairly easily
by narrowing the overly broad word-translation model for those specific words
and by allowing some English words to effectively align to more than one foreign
word.

The problem of discontiguous many-to-one alignment is quite general and
may be at the root of many misaligned phrases. Therefore this case study is not
just about one difficult phrase, but about a whole class of mappings between lan-
guages that many alignment techniques are unable to handle. While many trans-
lation systems use phrase-to-phrase alignment, these approaches typically deal
only with contiguous phrases. As our experiment shows, a simple extension to
the LinkSet model can enable it to handle discontiguous phrases. (While a rela-
tively straightforward extension of the LinkSet model, it is still significant enough
a change to be implemented with a quick fix to the existing code base; hence the
narrowly focused experiment.) Making this modification to LinkSet in general
would probably be a significant step forward, but undoubtedly some tricky mis-
matches would remain. However, our case study suggests that for any particular
language pair, progress could quickly be made from a quick and dirty induced
parser to a higher-quality parser through focused incremental improvements such
as the one we have demonstrated.



Chapter 5

Reranking Translation Hypotheses
with a Bilingual Parsing Model

5.1 Motivation

Automatic translation of foreign languages is a goal that hardly needs motiva-
tion. Not only would high-quality automatic translation open up to anyone a vast
storehouse of worldwide information resources, it could enable collaboration and
understanding between people who were previously unable to communicate, and
make travel much easier. Although some might say such a technology could bring
about a new era of global peace and prosperity, others realize that, while such
a tool would indeed be useful, there is more to getting along than communica-
tion, and more to communication than information. Still others might complain
about the inevitable misunderstandings that will be promoted by such a technol-
ogy, which encourages people to assume they can easily communicate with those
of a different culture without taking the effort to learn to understand where the
others are coming from by learning their language and culture. Nevertheless, it
is widely assumed that there is hope of making automatic translation work well
enough to be very useful to many people.

There have been two main schools of thought in automatic translation work:
theory-based approaches, and corpus-based approaches. The latter have been the
more successful at producing practical solutions in the past two decades, even
when using relatively simple statistical models that clearly ignore much of what
we know about how language works. However, the simplicity of these models,
which is important in making them trainable on a reasonable-size corpus and in a

99
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reasonable amount of time, also limits their ability to properly capture and trans-
form the form and meaning of the languages they model. For example, N-gram
language models are unable to ensure that their output is grammatical because
they cannot model the relationships between words that are separated by other
phrases, which can have arbitrary length. IBM-style statistical translation mod-
els are unable to transform the structure of a sentence properly when translating it,
looking only at the words and their approximate positions rather than the structural
relationships between them, and could easily produce a translation that means the
opposite, or has no discernible meaning. Looking at the output of today’s state-of-
the-art statistical translation systems, the translations are obviously flawed; they
often do not look like grammatical English sentences at all, even when the correct
meaning can be inferred from the resulting jumble.

In order to address this situation, more complex models are needed, mod-
els that can capture the structure of a sentence in a way that properly transmits
the meaning. These new models are a sort of hybrid, incorporating increasing
amounts of theoretical linguistic knowledge while remaining corpus-driven statis-
tical models. By using the Lynx model of English syntax and the LinkSet model
of the structural relationship between English syntax and the syntax of a foreign
language, we hope to equip automatic translation systems to generate grammati-
cal English translations with the correct structural relationship to the original (and
thus the correct meaning).

In order to economically test the efficacy of the syntax-based Lynx and LinkSet
models in a translation system, we use the models to assign scores to the transla-
tion hypotheses generated by a current statistical translation system. Using these
scores, we can rerank the hypotheses and select the best one according to the new
models. This method allows various models to be compared on the translation
task without requiring a whole new translation system to be built each time. How-
ever, it does have one major drawback: when the new models are used to rerank
the hypotheses generated by another system, they are limited to selecting the best
translation generated by that system, even if the new model would have assigned
a higher score to a better translation never generated by the base system. Thus,
a reranking approach will tend to underestimate the potential of a new model be-
cause its range of outputs is artificially constrained. On the other hand, a reranking
experiment is a good first step in evaluating new models for translation, because
of its relatively low cost. If a model will not work well, we would want to discover
that fact before investing months of effort in building a new translation decoder.
If a reranking experiment shows that a new model has good potential, the effort of
building a decoder that can take advantage of its strengths may then be justified.
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5.2 Related Work

5.2.1 Background: Statistical Translation

Early attempts at machine translation used linguistically-informed rule-based ap-
proaches, but in the 1980’s statistical approaches emerged, enabling translation
models to be learned automatically from parallel bilingual corpora. A group at
IBM proposed a statistical approach to translating from French to English [4].
Based on concepts from information theory, the approach imagines that every
French sentence is generated from an English sentence, so the task of translation
from French to English is the task of recovering the original English sentence.
According to Bayes’ theorem, finding the most probable English sentence to have
generated a French sentence is the same as maximizing the product of the prob-
abilities of the English sentence alone and of the French sentence given the En-
glish sentence, which yields what they call the Fundamental Equation of Machine
Translation:

ê = argmax
e

Pr(e) Pr(f |e)

The English language model probabilityPr(e) can exist independently of any
translation work, and the n-gram language modeling technique is known well
enough that no detail need be given here. To estimate the parameters of the trans-
lation modelPr(f |e), Brown (et al.) use the bilingual corpus that comes from the
records of the Canadian Parliament, which are kept in both French and English.
They proposed five generative translation models, all of which involve word-level
alignments between corresponding English and French sentences and are trained
using an EM (expectation maximization) algorithm [5]. The training corpus is
already aligned so that corresponding English and French sentences are matched
together, but a major part of the parameter estimation is finding word-level align-
ments, which connect individual words in an English sentence to individual words
in the corresponding French sentence. Each model generates a French string and
a set of connections between English words and French words. The probability of
a French string given an English string according to a model is then the sum over
all alignments (all sets of connections) of the probability of the French sentence
and the alignment given the English sentence.

Pr(f |e) =
∑

a

Pr(f , a|e)
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The probabilityPr(f , a|e) of a French string and alignment to a given English
string is a product, over all the words in the French string, of the probability of its
connectionaj given all previous connectionsaj−1

1 , all previous wordsf j−1
1 , the

lengthm of the French string, and the English stringe, times the probability of
the French wordfj given all connections up to the presentaj1, all previous words
f j−1

1 , the lengthm of the French string, and the English stringe.

Pr(f , a|e) = Pr(m|e)
m∏
j=1

Pr(aj|aj−1
1 , f j−1

1 ,m, e) Pr(fj|aj1, f
j−1
1 ,m, e)

In Models 1 and 2, a lengthm for the French string is generated first, and
then for each position in that string a French word is generated along with how to
connect it to the English string. Model 1 naı̈vely considers all connections equally
likely, thus ignoring word order. Model 2 adds a dependency on string length and
word position for the probability of a connection. These simple models do not
give very accurate translation results, but they can be trained faster than more
sophisticated models, and their output can be used as input to later models, thus
improving both the speed and accuracy of parameter estimation overall.

In Models 3, 4, and 5, the French string is generated as follows: For each
English word, choose how many French words to connect to it, then generate those
words, and then choose positions for those words. In Model 3, the probability of
a connection depends on string length and word position, as in Model 2. Model 4
adds a dependency on the actual words (French and English) being connected and
on the positions of any other French words connected to the same English word.
Model 5 is much like Model 4, except that unlike Models 3 and 4 it does not waste
any of its probability on possibilities that are not valid French strings.

Candide, a system based on these models, demonstrated French-to-English
translation with results comparable to those of Systran, a major rule-based trans-
lation system [2].

5.2.2 Parsing for Language Modeling

In our experiments on translation hypothesis reranking, the Lynx parser essen-
tially acts as a syntax-savvy language model, assigning a fluency score to each
hypothesis based on a lexicalized structural model of the English language. Sev-
eral others have devised language models that take into account syntactic struc-
ture. Some of these, closely related to link grammar, are described in Section
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2.2 above, such as the IBM long-range trigram model, and Chelba’s dependency
language model [23, 8]. Other language models that incorporate parsing include:
Charniak’s immediate-head parser [7], which demonstrates improvements over
two strict left-to-right parsers without the need for any trilexical statistics; Roark’s
broad-coverage PCFG parser [24]; and the dependency language model of Jian-
feng and Suzuki [15], which uses EM to learn a bilexical dependency model from
unlabeled data, rather than requiring a preexisting grammar.

5.2.3 Reranking Hypothesis Lists

Similarly, Zechner’s 1997 application of a chunk parser to spontaneous speech un-
derstanding made use of syntactic information in language modeling, using chunk
scores to rerank hypotheses from the speech recognizer [31]. This N-best list
reranking slightly decreased the word error rate of the speech recognizer, hope-
fully selecting more meaningful hypotheses for further parsing in order to improve
the amount of useful information that could be gathered from the input.

Applying hypothesis-reranking to the parsing domain, Collins in 2000 devel-
oped a technique for efficiently using arbitrary features for high-quality parsing
[10]. Using a simple parser to get a set of candidate parses, this approach then
uses a second parsing model to rerank the hypotheses. Since reranking is done
on complete parse structures, the second model can use arbitrary features which
might be difficult to incorporate into an ordinary parser. Collins presents two dis-
criminative reranking techniques, which could also be applied to domains such as
translation.

Most recently, a summer 2003 workshop titledSyntax for Statistical Machine
Translation, hosted by Johns Hopkins’ Center for Language and Speech Process-
ing [14] attacked the difficult problem of hypothesis reranking for translation us-
ing syntax, the same application we address in this chapter. They used the same
evaluation set of 993 Chinese sentences with four reference translations. Some of
their conclusions were fairly pessimistic. Oracle experiments showed that even a
system that could select the best from 1000 hypotheses (quite unlikely!) would not
have very good translation quality. Although a decent improvement was achieved,
the majority of it could be accounted for by IBM Model 1, a very simple transla-
tion model with no syntactic knowledge. Several attempts to use grammar struc-
ture to score sentences gave results worse than the baseline. While progress was
made, these results underscore the difficulty of this problem.



104 CHAPTER 5. TRANSLATION

5.3 Model

Combining the model of monolingual sentence structurePr(E) described in Chap-
ter 2, and the modelPr(F|E) of a structured foreign sentence given a structured
English sentence described in Chapter3, we can derive a model of a foreign sen-
tence string given an English sentence string.

Pr(f |e) =
∑
E

Pr(E|e) Pr(f |E)

=
∑
E

Pr(E|e)
∑
F

Pr(F|E) Pr(f |F)

=
∑
E

Pr(E|e)
∑

F :WORDS(F)=f

Pr(F|E)

Here we have defined the probability of a foreign sentence given an English
sentence to be the sum over all possible English structures of the probability of
that structure given the English sentence times the sum over all foreign struc-
tures consistent with the given foreign sentence of the probability of the foreign
structure given the English structure. Next we use Bayes’ rule to break down the
probability of an English structure given an English sentence string:

Pr(E|e) =
Pr(E) Pr(e|E)∑
E ′ Pr(E ′) Pr(e|E ′)

=
Pr(E)δ(WORDS(E) = e)∑
E ′ Pr(E ′)δ(WORDS(E ′) = e)

The delta function is1 if it’s condition is true, and0 otherwise, so here it
simply has the effect of requiring the structure to match the string. When we plug
this expression back into the expression forPr(f |e), we get the following:

Pr(f |e) =
∑

E:WORDS(E)=e

Pr(E)∑
E ′:WORDS(E ′)=e Pr(E ′)

∑
F :WORDS(F)=f

Pr(F|E)

This model can then (in theory) be used for translation, by finding the English
sentence string most likely to have produced a given foreign sentence string.
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êf = argmax
e

Pr(f |e)

= argmax
e

∑
E:WORDS(E)=e

Pr(E)
∑

F :WORDS(F)=f

Pr(F|E)

As in the case of building a monolingual model of foreign sentence structure
from a structure translation model and a model of English structure, it is impracti-
cal to build this model by iterating over all possible English and foreign structures.

The problem of reranking translation hypotheses is computationally easier
than that of translation, because it is necessary only to assign a score to each
translation, rather than searching over all possible translations to find the best.
However, even when both the English and foreign sentence strings are given, the
huge search space of all possible structures on both the English and foreign side
can be prohibitive.

One way to approximate this is to replace a sum with a maximum. First search
for the best English structureE consistent with the given English stringe, and
then find either the probabilityPr(F) of the best foreign structure or the sum of
probabilities of foreign structures given the English structureE .

êf = argmax
e

∑
E:WORDS(E)=e

Pr(E)
∑

F :WORDS(F)=f

Pr(F|E)

≈ argmax
e

max
E:WORDS(E)=e

Pr(E)
∑

F :WORDS(F)=f

Pr(F|E)

≈ argmax
e

max
E:WORDS(E)=e

Pr(E) max
F :WORDS(F)=f

Pr(F|E)

The output of the Lynx parser is the maximumPr(E) (along withE), while
the output of the LinkSet bilingual parser is the maximumPr(F|E). Therefore,
by composing them we can directly compute the expression to be maximized for
each hypothesise, and findêf .

5.4 Search

Our translation system, which uses the Lynx and LinkSet models to rerank hy-
potheses, works as follows:
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1. Begin with a foreign sentence needing translation into English.

2. Get an N-best list from some other translation system.

3. Rescore each translation hypothesis as follows:

(a) Parse the candidate using the Lynx parser, obtaining the most probable
structure and its probability.

(b) Use LinkSet to find the probability of aligning the parsed candidate
with the foreign sentence.

(c) Combine the new scores with those from the translation system.

4. Rank the hypothesis list by the interpolated scores. The top-ranked candi-
date is now output as the English translation of the foreign sentence.

At this level of abstraction, this method is quite simple: use two existing sys-
tems to find scores for each hypothesis, combine these with the original decoder
score, and select the top hypothesis. In practice, of course, it is more complex.
First, an appropriate training corpus must be selected and used to train the Lynx
parser, which involves parsing the English side of the training corpus with the
Link parser. Then, the LinkSet model must be trained, which includes building
a word-translation model from the sentence-aligned training corpus, and running
LinkSet on the parsed training set. However, this last step can be omitted if the
EM training of LinkSet’s parameters is skipped. In the alignment experiments
in the previous chapter, this training was not shown to improve results, so the
building of a word-translation model may be sufficient to train LinkSet, at a lower
computational cost. Once these models are trained, it is conceptually simple to
run the parsers and score each sentence, although this may still incur a significant
computational cost.

5.5 Results

To test this approach, we trained the Lynx and LinkSet parsers using a Chinese–
English corpus, and used an existing statistical translation system to generate 100-
best lists of English translations for another corpus of Chinese sentences, for each
of which four reference translations were available. We reranked the translation
hypotheses using scores from Lynx and LinkSet, and evaluated the improvement
in translation quality using a variety of measures.
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The test corpus, which was used to evaluate competing translation systems
within the TIDES project, consists of 993 Chinese sentences fromXinhua News,
each with 4 English references translated by different human experts.

Two different training corpora were used for different parts of the system. To
train the Lynx parser, 343k English sentences fromThe Wall Street Journaland
3540 English sentences fromXinhua Newswere parsed using the Link parser. To
train the word-translation model used by the LinkSet bilingual parser, we used
a large bilingual corpus of 282k sentences from a variety of sources. We were
careful to avoid using any sentences from the test set for training.

Parsing the 347k English training sentences with the Link parser and building
the word-translation model based on 282k sentence pairs took about 2 days on a
machine with eight 700MHz Intel processors.

For each of the 993 test sentences, a list of 100 English translation hypothe-
ses was generated using a decoder built at Carnegie Mellon within the RADD-MT
group. (Credit belongs to Stephan Vogel and Bing Zhao for generating these trans-
lation hypotheses.) Each hypothesis was accompanied by a score assigned by the
decoder.

Using the Lynx parser, we parsed each hypothesis to find its most probable
structure and the probability of that structure. This was the most computationally
expensive step in the process. While the Lynx parser is reasonably fast on short
sentences, its worst-case performance scales as the cube of the sentence length,
with a fairly high constant factor. Compromises in search quality can improve
the speed, but even so, extremely long sentences could not be parsed at all with
reasonable time and space constraints, and long sentences that were parsed had
results of declining quality. Parsing 99300 hypotheses took over a week on multi-
ple machines, about 260 hours total processor time, which is an average of under
10 seconds per hypothesis. This speed was achieved only at the expense of a rel-
atively lax beam ratio, combined with a time-out preventing any one hypothesis
from taking more than ten minutes. This necessary compromise and constraint
cause a decrease in search quality. Without the time-out, the longest sentences
would probably have taken hours each to parse, and even in this case there was a
very wide range of times, from a fraction of a second for short sentences, to the
ten-minute maximum on long ones. Memory requirements for this parsing was
also relatively high at several hundred megabytes per process, which meant that
even on multi-processor machines, only one or two could run at a time. When
this stage in the experiment was completed, we had a structure for each English
translation hypothesis and a probability score for each structure.

As the final step, we used the LinkSet bilingual parser to align each structured
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length D D+LS D+L D+L+LS L L+LS
0-9 27.55 29.12 29.55 29.05 29.48 29.02

10-19 36.52 29.64 28.89 28.81 28.89 28.80
20-29 38.67 31.94 28.87 28.63 28.87 28.63
30-39 40.43 38.78 27.89 27.94 27.89 27.94
40-49 40.63 39.80 28.30 28.33 28.30 28.33
50-59 41.23 41.23 30.42 30.42 30.42 30.42
60-69 42.35 42.35 36.27 36.27 36.27 36.27
70-79 42.05 42.05 42.05 42.05 42.05 42.05
80-89 36.64 36.64 36.64 36.64 36.64 36.64
90-99 46.24 46.24 46.24 46.24 46.24 46.24

all 37.93 33.83 28.92 28.80 28.91 28.79

Table 5.1: Average Kendall’s-τ rank-distance between the NIST-score ranking
and rankings generated by the Decoder, Decoder+LinkSet, Decoder+Lynx, De-
coder+Lynx+LinkSet, Lynx, and Lynx+LinkSet, respectively, grouped by sen-
tence length. The shortest (best) distances are highlighted for each length.

English hypothesis with its original Chinese version. To align 58200 hypothe-
ses took 325 hours of processor time, an average of 20 seconds per hypothesis.
The remaining 411 hypotheses could not be aligned for various reasons, the most
common reason being that the current implementation of LinkSet can not handle
sentences longer than 64 words. This problem could be remedied at an increased
cost in space and processor usage, but again the longest sentences require a pro-
hibitively long time to process. The sentences that could not be aligned were
simply assigned a score of zero for alignment.

In order to evaluate the resulting hypothesis rankings, we scored each hypoth-
esis using two standard measures of translation quality, the BLEU score and the
NIST score. However, since standard BLEU scores include a geometric mean of
various N-gram scores, they are unsuitable for evaluating individual sentences be-
cause they assign a score of zero to any sentence that does not contains at least
one 4-gram in common with a reference. Therefore, we used a modified version
of the BLEU score, which has an arithmetic mean rather than a geometric mean,
and is much less prone to assign zero scores. To calculate the NIST and BLEU
scores for each hypothesis, we used the four reference translations available for
each sentence.

For each sentence, sorting the 100 translation hypotheses by score yields a
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Figure 5.1: Average Kendall’s-τ rank-distance between the NIST-score ranking
and rankings generated by the various system combinations. Table5.1 shows the
data for this chart in detail.
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Figure 5.2: Average Kendall’s-τ rank-distance between the BLEU-score ranking
and rankings generated by the various system combinations.
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Figure 5.3: Average Kendall’s-τ rank-distance between the METEOR-score rank-
ing and rankings generated by the various system combinations.
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Figure 5.4: Average Kendall’s-τ rank-distance between the basic METEOR-score
ranking and rankings generated by the various system combinations.
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hypothesis ranking. We ranked the hypotheses according to the original decoder
score, the Lynx score, the LinkSet score, and by combinations of these scores. To
evaluate these rankings, we also ranked the hypotheses according to their BLEU
and NIST scores with respect to the reference translations.

To evaluate the system-generated rankings, we measured the rank-order dis-
tance between each system’s ranking for each sentence and the corresponding
rankings given by BLEU score and by NIST score. We used the Kendall rank
correlation (τ ) as a measure of agreement between rankings; this distance is
the number of adjacent pairs that must be swapped in order to bring the rank-
ings into agreement. Because the rankings are defined through sorting a list of
scores, any sets of identical scores will yield partial orderings; this is not a prob-
lem for this distance metric. The longest possible distance for 100 hypotheses
is
∑99

i=1 i = 4950, which would occur if the rankings being compared were in
reverse order.

Figure5.1 shows the average distance between the rankings of various sys-
tems and the NIST-score ranking, grouped by sentence length. The sentences
were grouped by length into bins of width five. Six different system combinations
were compared: the original decoder score, the Lynx score, both of these together,
and each of these three with the LinkSet score. For these experiments, each sys-
tem was weighted equally. Additional trials, in which varying weights were used
for each system, gave almost identical results. In this graph, three distinct lines
are visible, the top (worst) one representing the decoder alone, the next one repre-
senting the decoder plus LinkSet, and the bottom (best) line representing the rest
of the system combinations, which all have very similar results. All of these best
combinations include the Lynx score. This chart shows that among these systems,
the Lynx score is the best approximation of the ranking given by the NIST scores,
and that no combination of systems significantly outperforms the unadorned Lynx
score. However, a look at the more detailed Table5.1, which contains the same
data, shows that, overall, the combination of all three systems does slightly better
than the Lynx score alone. Meanwhile, the LinkSet score is able to bring a small
improvement when added to the decoder score, but not as much as the Lynx score.
For long sentences, especially those 80 words and longer, the lines converge. This
happens because we were unable to get Lynx and LinkSet scores for the longest
sentences due to the computational constraints mentioned above. The steady de-
cline in quality as sentences get longer, clearly visible on the chart, is probably
caused by a corresponding decline in Lynx parser accuracy caused by the combi-
nation of the increased complexity of parsing longer sentences and the effect of
time-outs cutting short the search for the best parse according to the Lynx model.
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Figure 5.5: Percentage of sentences for which various systems achieve shorter
(better) rank distances from the canonical ranking (according to NIST score) than
the Decoder alone, grouped by sentence length.

The equivalent graph using BLEU scores is shown in Figure5.2. While the
difference in rank-distance between different systems is less pronounced with
BLEU scores, it shares some important features with the NIST-score rank-distance
comparison: the decoder alone is again worst, followed by the decoder plus
LinkSet, and the combinations that include Lynx, being about equal to each other,
have the shortest (best) distance from the optimal ranking according to BLEU
scores.

A new translation evaluation metric under development at Carnegie Mellon,
known as METEOR, explicitly deals with the relative positions of matching words
and phrases in the translation hypothesis vs. the reference translations. The same
rank-distance experiment was carried out using two variants of this metric, the
full METEOR score and a more basic version, as shown in Figures5.3 and5.4,
respectively. The results are similar to those of the NIST metric, but with an even
more pronounced separation between the three major lines.

Figure5.5 shows the proportion of sentences for which each system combina-
tion achieves a ranking closer to the NIST ranking than that of the original trans-
lation system. As in the previous chart, here every system incorporating Lynx
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System NIST BLEU
Decoder 0.0% 0.0%
Decoder+LinkSet 28.0% 10.4%
Decoder+Lynx 59.1% 25.1%
Lynx 59.5% 24.9%
Lynx+LinkSet 59.9% 26.3%
Decoder+Lynx+LinkSet 60.3% 26.1%

Table 5.2: Percentage of sentences for which various systems achieve shorter
(better) rank distances from the canonical ranking (according to NIST or BLEU
scores, respectively) than the Decoder alone.

0

20

40

60

80

100

0 20 40 60 80 100

pe
rc

en
ta

ge
 im

pr
ov

em
en

t o
ve

r D
ec

od
er

sentence length

Decoder+Lynx+LinkSet
Decoder+LinkSet

Decoder+Lynx
Lynx+LinkSet

Lynx
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(better) rank distances from the canonical ranking (according to BLEU score)
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system NIST BLEU sentence
ref the construction of all these projects has been going on smoothly.

Lynx 3.1016 0.1488 conjectured average construction project proceeded smoothly .
Decoder 4.0897 0.1845 these engineering construction chong-ils proceeded smoothly .

ref china to speed up construction of its talents market system
Lynx 10.2757 0.0714 china will speed talent market system construction

Decoder 6.0227 0.0714 china will accelerate talent market system building
ref maclaren held talk with zou jiahua

Lynx 5.4181 0.1488 mccain crana jiahua mentenegro lengsavat held talks
Decoder 5.4181 0.1488 mccain crana year-on-year lynden zou held talks

ref china and u.s. signed high-tech cooperation agreements in shanghai
Lynx 1.9568 0.0805 sino-us at shanghai-based high-tech japan-manchukuo cooperation agreement

Decoder 1.7388 0.0850 sino-us at shanghai-based japan-manchukuo hi-tech cooperation agreements
ref tang jiaxuan replied as follows:

Lynx 3.9668 0.1071 tangxian tang is unscrupulously said the :
Decoder 5.5865 0.1429 jiaxuan is hears tang said the :

ref now, let’s first take a look at canada.
Lynx 5.5407 0.2394 sensing why we look canada first .

Decoder 5.5407 0.2394 eavesdrop ? we look canada first .
ref the commercials will be televised early next year.

Lynx 2.6578 0.1387 126.6 will stay early next broadcast .
Decoder 2.6578 0.1387 advertisements will stay early next broadcast .

ref reported by manila correspondent ferdinand
Lynx 3.6274 0.0714 manila defensives fee southern de newspaper reports

Decoder 3.6274 0.0714 manila fee-to-tax surgery yugoslav de newspaper reports
ref correspondent liu zhenting reporting from bangkok

Lynx 5.2482 0.1071 bangkok baosheng liu zhuo tinghan newspaper reports
Decoder 5.2482 0.1071 bangkok surgery liu zhuo roman newspaper reports

ref development of township enterprises in southeast fujian of china continues to take the lead
Lynx 1.3073 0.0975 china mawei-fuzhou southeastern township enterprises develop continued presentations

Decoder 1.6525 0.0948 china mawei-fuzhou southeastern township enterprise development presentations continue
ref china’s foreign capital utilization increased 27% as of november

Lynx 3.5693 0.1159 chinas 20-21 november using capital 15.639 rose 27%
Decoder 4.3576 0.1386 chinese 20-21 november using capital amounts 27% growth

ref – good for the long-term prosperity and stability of hong kong’s economy.
Lynx 4.2947 0.1994 hong shuo favorable economic prosperity long-term stability .

Decoder 2.9978 0.1289 hong pluralized favorable economic stability long-standing prosperity .
ref china to continue the policy of opening up financial sector to the outside

Lynx 7.2309 0.3676 china will continue practiced outside financial opening policy
Decoder 4.6636 0.1920 china’s will continue non-actionable outside financial opening-up policy

ref the surplus from trade with japan was 1.7 billion us dollars.
Lynx 3.8873 0.1570 japan against trade surplus 17000 dollars dollars .

Decoder 2.6942 0.1191 china-japan imposed trade surplus 17000 dollars dollars .
ref rapid development of foreign cooperation seen in china’s construction material industry

Lynx 4.0760 0.0827 tung chinas ceramic industrial cooperation outside develops rapidly
Decoder 4.0760 0.0827 chinas nonferrous metallurgy industrial cooperation outside develops rapidly

ref foreign-invested enterprises, a spotlight of growth in the national economy of shandong
Lynx 3.0519 0.1381 capital enterprises become shandong’s national marked growth points

Decoder 2.5334 0.0975 foreign-funded enterprises become shandong’s shanddong notable growth points
ref china to use loans from world bank to build railroad communication network

Lynx 4.6301 0.1217 chinas use world 51.9 building railway network communications
Decoder 3.8767 0.1252 chinas using world discount building railway communication network

Table 5.3: The translation hypotheses ranked first by Lynx and by the decoder for
sentences having 7-8 word translation hypotheses, with NIST and BLEU scores
relative to four reference translations, one of which is shown.
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Figure 5.7: Average NIST score of top hypothesis for various systems, by sentence
length. Higher scores are better.

scores has approximately the same curve, which is the highest (best) curve on the
chart. An equivalent chart using BLEU scores is shown in Figure5.6. While its
percentages are lower, its basic shape is very similar to the NIST-score chart. In
both charts, we see again that improvement due to Lynx drops off for very long
sentences, which occurs because the results for long sentences were incomplete
due to computational expense. It is interesting that moderately long sentences
yield more improvement than shorter sentences; perhaps there is more room for
improvement in the original decoder’s output at these lengths. The same data are
summarized on Table5.2, where we can see clearly that all combinations that in-
clude Lynx yield better rankings on a majority of sentences according to NIST
scores, and on over a quarter of sentences according to BLEU scores. For both
metrics, the systems that include both Lynx and LinkSet do best.

While the figures above have shown a definite improvement over the origi-
nal decoder in the ranking of translation hypotheses when the Lynx and LinkSet
parsers are used for scoring, practical translation systems need to choose only one
best translation for output. Improving the quality of the top-ranked hypothesis on
a well-made translation system is quite difficult, and is the goal of many lines of
research. When we limit ourselves to reranking hypotheses generated by a specific
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Figure 5.8: Average NIST score of top 10 hypotheses for various systems, by
sentence length. Higher scores are better.
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Figure 5.10: Average BLEU score of top 10 hypotheses for various systems, by
sentence length. Higher scores are better.

decoder, we limit the possible improvement in translation quality by the quality of
the best hypothesis generated. If all 100 hypotheses are equally bad, no amount
of reranking will do any good.

The NIST score of the number-one-ranked hypothesis and the average NIST
score of the top 10 hypotheses, as ranked by each system, are shown in Figures5.7
and5.8, respectively, averaged in groups of similar-length sentences. An Oracle
score is also shown in each chart, indicating the best possible score, which would
be received by a system that gave exactly the same ranking as the NIST scores do.
In general, the six system combination score almost identically, with the excep-
tion of very short sentences. The closeness of the Oracle score to the other systems
shows that there is not much room for improvement through reranking. Indeed,
the addition of Lynx and LinkSet scores to the decoder scores does not give signif-
icant improvement in the top NIST score, nor the top ten NIST scores, except on
very short sentences. Examination of the NIST scores for short sentences shows
a much wider range of scores within each N-best list; this is probably due mostly
to the length normalization in the NIST score. On these short sentences, where
there is more room for improvement through reranking, significant improvement
is shown when Lynx and/or LinkSet scores are used. Equivalent comparisons of
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Figure 5.11: Charts showing mean scores with error bars at one standard deviation
for the same data shown in Figures5.7 (top left),5.8 (top right), and5.1 (bottom).

average BLEU scores for the number-one-ranked hypothesis the top 10 hypothe-
ses, respectively, are shown in Figures5.9 and5.10. Their shape is essentially the
same as for the NIST scores.

Because of the many lines shown on each of the above-mentioned figures, they
are not shown with error bars, which would make the charts illegible. Instead,
Figures5.11 and5.12 summarize the same data, this time using sentence-length
buckets of width 20 (rather than 5) and including error bars. The variance in
scores appears fairly high, but this is not surprising considering the wide range
of sentences on which the translation system was evaluated. Unfortunately, the
consequence is a result with very weak statistical significance.

5.6 Discussion

Our experiments have shown that scores assigned by the Lynx and LinkSet parsers
to translation decoder output can produce a significant improvement in the rank-
ing of the hypotheses over the decoder’s original ranking. However, when only
the number-one hypothesis is taken into account, no significant gains were made
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Figure 5.12: Charts showing mean scores with error bars at one standard deviation
for the same data shown in Figures5.9 (top left),5.10 (top right), and5.2 (bottom).

in the end-to-end performance of the translation system. Improving this bottom-
line measure of real, useable translation quality is a very hard problem, especially
when we confine ourselves to the space between current system performance and
the best performance possible through reordering the hypotheses the decoder cur-
rently produces.

If a new translation system were designed to incorporate these models through-
out, there would be more space for improvement. However, designing such a sys-
tem would require some well-considered compromises between a complete search
on the true model, which would be far too expensive for most applications, and
a time-saving approximation such as the one we have demonstrated. A complete
search would include not only all possible structures of the foreign sentence to be
translated, but also all English structures of which it could be a transformation,
and all English strings consistent with those structures. While this space may be
too large for a practical system, it does suggest a way forward. The decoding prob-
lem could be treated as a parsing problem, as in the LinkSet bilingual parser. In
this case, however, where no English string is given, the grammar with which the
foreign sentence is parsed would be much less constrained. However, a dynamic
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beam search may be sufficiently efficient to make the problem tractable, though
perhaps still impractical for real-time applications. The grammar with which a
foreign sentence to be translated would be parsed would be an English grammar
composed with a tree-translation grammar; that is, for example, the Lynx model
combined with the LinkSet model. This would be a natural extension of the work
presented in this chapter.

In order to enable a decoder built on the Lynx and LinkSet models to have
reasonable speed, it is important to constrain the models to reduce the search
space, without reducing it so far as to eliminate correct translations and structures.
In practice, the IBM Model 2 word-translation models used to train and use the
LinkSet structural model are extremely noisy. However, an overly clean model
would fail to allow many sentence pairs to align at all, since many translations are
not exact, and related words that are not proper translations of each other should
still be able to align with each other. While EM can begin to address this problem,
our experiments show that a much simpler dynamic-beam–style attenuation does
just as well or better than a sentence-level approximation of EM (see Section
4.4.2). It is quite possible that a more exact EM formulation would not only deal
better with this problem, but result in a better model all around (see Section4.5).

In the interest of improved model quality, it would also be interesting to com-
pare various parameterizations of the LinkSet model within the same framework
and on the same experimental data. Perhaps changing the structure of the model
in terms of its dependencies and independence assumptions would lead to a bet-
ter model. Unfortunately, in the current framework and code base, varying the
structure in this way is a nontrivial task.

An modification of the model that could potentially bring big rewards in trans-
lation accuracy, although it might bring corresponding costs in training and decod-
ing time and model size, would be to condition word-translation probabilities on
syntactic structures. For example, the probability of a foreign word could be con-
ditioned not only on the corresponding English word, but also on the label of the
link generating the word. One challenge in training such a model is that it might
require a very large corpus of annotated sentences, although automatic annotation
should be very useful here, as it was in the training of the Lynx parser.

The main point of this work has been the integration of syntactic structure into
the statistical models used in translation — both monolingual language models
and models of translation from one language to another. Through the development
of the Lynx and LinkSet models and parsers, we have taken a big step in that direc-
tion, and shown that adding models of syntactic structure can improve the output
of a state-of-the-art statistical translation system. In the future, we hope to see
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systems that continue in this direction to combine the best of both the knowledge-
based and statistical worlds, using statistical models carefully crafted to capture
all the features linguistic theory tells us are relevant, constrained enough to be
trained on a reasonable amount of data, and general enough to apply to a broad
range of languages and domains.
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Chapter 6

Conclusions

6.1 Conclusions

Here is a concise summary of the conclusions detailed in the chapters above:

1. To train a new statistical parser, it is not necessary to hand-annotate a large
corpus with structural information if a rule-based parser is available, be-
cause a parser trained on automatically-generated data can perform as well
as or better than the original parser, taking advantage of the distributional
information in the unannotated training corpus.

2. A statistical model of the relationship between the syntactic structures of
two different languages can be effectively learned from a bilingual corpus
by an unsupervised learning technique, even when syntactic annotations are
available for only one of the languages.

(a) The alignments found when training this model are significantly better
than those given by a standard IBM-style alignment model.

(b) Expectation maximization training improves the model.

(c) Careful model design is important in order to avoid the complementary
hazards of computational complexity and data sparsity.

3. Using a bilingual corpus and an existing parser in one language, a new
parser can be automatically induced for the other language, without the aid
of a language expert.

123
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(a) While the induced parser naturally does not work as well as the orignal
English parser, it does better than baseline techniques at constituent
bracketing, and in many cases yields syntactic analyses that are com-
pletely correct.

(b) A rough-grain approximation of expectation maximization training
does not improve the model. However, a more fine-grained EM ap-
proach might work much better.

(c) The induced parser can be incrementally improved through cleaning of
the translation lexicon and adjustment of the model to handle common
structures missed during the original training.

(d) The assumption that phrases for translation must be contiguous, a
weakness of many translation systems, can be relaxed with a simple
modification to the LinkSet model, resulting in improved alignments
and parsing.

4. Integrating syntactic structure into the statistical models used for automatic
translation can increase the quality of translated output.

(a) The use of syntax-based models significantly improves the overall
ranking of hypotheses according to the standard NIST evaluation of
each hypothesis.

(b) However, improvement of the top-ranked hypothesis, which has the
most practical value, was small.

(c) This improvement was limited by the small space available for im-
provement of a state-of-the-art statistical translation system through
reranking of translation hypotheses.

6.2 Contributions

These are the main contributions of this thesis:

1. A new technique for training a statistical link grammar parser from exam-
ples, implemented as the Lynx parser.

2. A new syntax-based generative model of the relationship between two lan-
guages, with an efficient unsupervised training algorithm implemented as
the LinkSet bilingual parser.
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3. A new method of inducing a parser for a foreign language given a bilingual
corpus and an English parser, implemented as a combination of the Lynx
and LinkSet parsers.

4. A new method of incorporating syntactic structure into a statistical transla-
tion model, demonstrated by reranking decoder outputs using the Lynx and
LinkSet parsers.

6.3 Future Research

The discussions throughout this thesis immediately suggest some low-hanging
fruit for near-term future research:

1. Investigate how to improve the LinkSet model by altering its structure and
parameters (see Section3.7). Incorporate the leaf-node–duplication opera-
tion demonstrated above (in Section4.4.4) into the model.

2. Implement fine-grained EM training for parser induction, and see how much
it improves the resulting foreign parsers (see Section4.5).

3. Try seeding an induced foreign-language parser with selected hand-annotated
data, to investigate the work/payoff ratio for incremental improvement.

4. Develop better evaluation methods for statistical link grammar parsers (see
Section4.4.1).

5. Build a translation system that fully incorporates the structural model tested
above (see Section5.6).

The juiciest of these low-hanging fruits is probably the advanced EM training
for foreign-parser induction. It seems quite possible that this will give a significant
improvement in parser quality, while maintaining the fully-automatic nature of the
induction algorithm.

Taking a step back from the details of this thesis, we can see a theme running
throughout:incorporating syntax into generative models of human language,
which is just a special case of a more general theme:combining knowledge
with statistical models. In this thesis we incorporated linguistic knowledge into
statistical models of language structure and of the relationship between different
languages’ structures. The linguistic knowledge appears in the guise of model
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structure and of the selection and dependencies of model parameters. That is,
theory guides the construction of models so that they can capture the phenom-
ena the theory tells us are relevant. An alternate way of combining knowledge
with statistical modeling is to incorporate plenty of small statistical models into
what is structurally a knowledge-based system, which could also be pictured as a
rule-based system in which statistical models govern the application of each rule.
Such approaches that give more explicit attention to rules may be more appro-
priate for certain applications, especially those in which the rules can be easily
expressed. Our approach, which implicitly incorporates knowledge into the de-
sign of an over-arching statistical model, is in many ways more elegant because
it has a simple probabilistic interpretation and is very flexible in its ability to be
trained on new data without special programming. However, it can sometimes be
difficult to modify such a model to capture phenomena previously missed, or to
make sure it does not suffer too much from the complexity that requires too much
time, space, and training data to be useful.

Therefore, it would be interesting and useful to investigate in a more general
way how to incorporate theoretical knowledge into the design of generative mod-
els. How can such a model be brought quickly and flexibly from the drawing
board to an implementation including EM training and search, allowing changes
to the parameterization of the model without significant recoding? (Perhaps max-
imum entropy models would be a good starting point.) A toolkit for this purpose
would be a very useful research tool.

A flexible platform for testing knowledge-motivated generative models would
present an opportunity to explore a wide range of models for various language-
processing tasks, including parsing and translation, not to mention the ubiquitous
language modeling used in speech recognition, generation, translation, and many
other tasks. It would be interesting to extend current models not only to include
syntax, but also word-segmentation, morphology and phonology, or in the other
direction, discourse structures larger than sentences.

In order to enable computers to handle the complexities of natural language,
and of many other phenomena as well, we need the combined power of knowledge
and statistics. Creating tools to bring these together should pay off not only in
natural language processing, but in a variety of fields.
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