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Abstract

We consider the language inclusion problem for timed automata: given two timed
automata A and B, are all the timed traces accepted by B also accepted by A?
While this problem is known to be undecidable, we show here that it becomes
decidable if A is restricted to having at most one clock. This is somewhat sur-
prising, since it is well-known that there exist timed automata with a single
clock that cannot be complemented. The crux of our proof consists in reducing
the language inclusion problem to a reachability question on an infinite graph;
we then construct a suitable well-quasi-order on the nodes of this graph, which
ensures the termination of our search algorithm.
We also show that the language inclusion problem is decidable if the only con-
stant appearing among the clock constraints of A is zero. Moreover, these two
cases are essentially the only decidable instances of language inclusion, in terms
of restricting the various resources of timed automata.
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1 Introduction

Timed automata were introduced by Alur and Dill in [5] and have since be-
come a standard modeling formalism for real-time systems. Unfortunately, the
algorithmic analysis of timed automata is limited by the undecidability of the
language inclusion problem (given two timed automata A and B, are all the
timed traces accepted by B also accepted by A?) [5]. In spite of this hindrance,
there has been much research in the last decade on various aspects of timed
language inclusion—see, e.g., [27, 19, 17, 9, 12, 23, 6, 26, 11, 7, 21, 25, 24]. In
this paper, we show that, if the timed automaton A is restricted to having a
single clock, the language inclusion question of whether L(B) ⊆ L(A) becomes
decidable.

This is somewhat surprising, since the vast majority of decidable instances
of language inclusion among both timed and untimed computational models
proceed by complementation and emptiness checking of the intersection [15]:
L(B) ⊆ L(A) iff L(B) ∩ L(A) = ∅. However, it is well-known that there ex-
ist timed automata with a single clock that cannot be complemented, which
precludes any (direct) use of the above equivalence.

We solve the timed automaton language inclusion problem L(B) ⊆ L(A), in
which A is assumed to have at most one clock, by converting it to a reachability
problem on an infinite ‘joint state space’ of A and B. This procedure requires
us to determinize and complement A on-the-fly, creating an unbounded object.
Fortunately, we are able to construct a suitable well-quasi-order on the state
space, which ensures termination.

We also show that the timed automaton language inclusion problem L(B) ⊆
L(A) is decidable if the only constant appearing among the clock constraints of A
is zero (in this case, of course, both timed automata are allowed arbitrarily many
clocks). Interestingly, no other set of ‘reasonable’ restrictions on the resources
of timed automata (number of clocks, number of locations, magnitude of clock
constraints, and size of alphabet) yields a decidable language inclusion problem.

The results presented in this paper paint a fairly complete theoretical picture
of the language inclusion problem for timed automata. We believe that they also
have promising practical applications, as we now argue.

In software engineering, it is common to have several representations of a
system under development, at different levels of abstraction. One of the most
widespread abstraction and specification formalisms is that of finite-state ma-
chines—see, e.g., [10, 18, 20]. The intention is that more concrete representations
of the system, including in particular any proposed implementation, should al-
ways conform to the abstract specification. A standard notion of conformance
is that of (untimed) language inclusion: every trace of the system should also
be a trace of the specification. Unfortunately, finite-state machines are time-
abstract, in that they do not incorporate timing details. However, for many
systems (such as communication protocols or plant controllers), timing consid-
erations can be crucial to ensure correctness. For this reason, many researchers
advocate the use of timed finite-state machines to represent specifications, with
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timed language inclusion as the conformance relation between implementation
and specification—see, e.g., [27, 9, 6, 24, 17].

Although this notion of conformance between an implementation and a timed
specification is easy to state, verifying whether it holds, as discussed above, is
in general undecidable. The main result of this paper, which provides an algo-
rithm to check timed language inclusion between implementations and single-
clock timed specifications, opens the way to the formal hierarchical modeling and
automated verification of a large class of systems; one such example is the proto-
col TCP, used to transmit information over the Internet, whose functional spec-
ification can be given as a finite-state machine equipped with a single clock [16,
pages 15–23].

Related work. The first paper to consider the timed automaton language
inclusion question L(B) ⊆ L(A) was [5], in which the undecidability of the
general case was established. Although the proof was only sketched, it clearly
showed that the problem is undecidable even if A is restricted to having two
clocks. On the other hand, the paper’s region automaton construction, drawing
on earlier work [4], showed that the problem is decidable if A is not permitted
the use of any clock. The remaining case—A having a single clock—has, to the
best of our knowledge, never been studied before.

Several researchers have investigated timed automaton language inclusion
under various other assumptions. Among others, we note the use of (i) topological
restrictions and digitization techniques [11, 7, 25, 21, 24], (ii) fuzzy semantics [9,
12, 23], (iii) determinizable subclasses of timed automata [6, 26], and (iv) timed
simulation relations and homomorphisms [27, 19, 17].

Most decision algorithms for timed automata are based on clock region con-
structions [4, 5]. Clock regions partition the dense (infinite) state space of clocks
into finitely many pieces, in such a way that the resulting quotient exhibits the
same qualitative behavior as the original system. Unfortunately, this relationship
is not strong enough to preserve quantitative properties such as timed language
inclusion.

Although the constructions we use in this paper rely in part on clock regions,
they give rise in general to objects that are intrinsically infinite. We are able to
ensure termination of our algorithm by carefully manufacturing and exploiting
a suitable well-quasi-order (wqo) on our state space. The use of wqos to provide
termination guarantees for algorithms that operate on infinite structures is cer-
tainly not new: other decidability results include questions of reachability, main-
tainability, termination, coverability/sub-coverability of markings (in Petri nets),
and simulation by/of finite-state machines. We refer the reader to the excellent
surveys [3, 8] for more details on these matters. To our knowledge, however, our
work is the first to apply the theory of wqos to a language inclusion problem.

The wqo we use in this paper relies on Higman’s lemma [14] and is obtained
through an elaborate process in which, among others, we demonstrate the wqo’s
compatibility with the decision problem at hand. Other applications of wqos
based on Higman’s lemma include reachability algorithms for lossy channel sys-
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tems [1] and parameterized networks of timed processes [2]; additional examples
can be found in the two surveys cited earlier.

Structure of the paper. The next section briefly reviews the necessary
material on well-quasi-orders and Higman’s lemma. Section 3 then carefully
presents the model of timed automata we shall use in this paper, along with
related definitions and conventions. We also give an example of a single-clock
timed automaton that cannot be complemented. In Section 4, we state and
prove both of our language inclusion decidability results. Section 5 then presents
a number of undecidability results about the universality problem, a special case
of language inclusion. Together, Sections 4 and 5 essentially characterize the de-
cidable instances of the language inclusion problem as a function of the resources
allocated to timed automata. Lastly, Section 6 offers conclusions and discusses
future work.

2 Well-Quasi-Orders and Higman’s Lemma

Given a set Q, a quasi-order1 on Q is a reflexive and transitive relation 4 ⊆
Q×Q.

An infinite sequence 〈q1, q2, . . . 〉 in Q is said to be saturating if there exist
indices i < j such that qi 4 qj . A quasi-order 4 is a well-quasi-order (wqo for
short) on Q if every infinite sequence in Q is saturating.

Let v be a quasi-order on Λ. Define the induced monotone domination order
4 on Λ∗, the set of finite words over Λ, as follows: a1 . . . am 4 b1 . . . bn if there
exists a strictly increasing function f : {1, . . . ,m} → {1, . . . , n} such that, for
all 1 6 i 6 m, ai v bf(i).

The following result is known as Higman’s lemma [14]:

Lemma 1. If v is a wqo on Λ, then the induced monotone domination order
4 is also a wqo on Λ∗.

Example 2. Let Λ = {A,B, . . . , Z} be the standard Roman alphabet, and define
the relation v on Λ to be equality: x v y iff x = y. v is clearly a wqo since Λ
is finite. The induced monotone domination order 4 on Λ∗ is then none other
than the ‘subword’ order. For example, HIGMAN 4 HIGHMOUNTAIN since
HIGMAN is a subword of HIGHMOUNTAIN. Higman’s lemma states that 4
is a wqo: if one starts writing down an unending sequence of words, one will
eventually write down a superword of an earlier word in the sequence.

3 Timed Automata

Let C be a finite set of clocks, denoted x, y, z, etc. We define the set ΦC of
clock constraints over C via the following grammar, where k ∈ N stands for any
non-negative integer, and ./ ∈ {=, <,>,6,>} is a comparison operator:

φ ::= true | x ./ k | ¬φ | φ ∧ φ | φ ∨ φ .

1 Also sometimes called a preorder.
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Definition 3. A timed automaton is a tuple (Σ,S, S0, Sf , C,E), where

– Σ is a finite set (alphabet) of events,
– S is a finite set of locations,
– S0 ⊆ S is a set of start locations,
– Sf ⊆ S is a set of accepting locations,
– C is a finite set of clocks, and
– E ⊆ S × S × Σ × ΦC × P(C) is a finite set of transitions. A transition

(s, s′, a, φ,R) allows a jump from location s to s′, communicating event a ∈ Σ
in the process, provided the constraint φ on clocks is met. Afterwards, the
clocks in R are reset to zero, while all other clocks remain unchanged.

Remark 4. One finds many variants of the definition of timed automaton in the
literature: allowing diagonal clock constraints (of the form x− y ./ k); allowing
rational, rather than integer, bounds in clock constraints; adding invariant clock
constraints to locations. It is however not difficult to verify that our main results
extend straightforwardly to any combination of these variants.

For the remainder of this section, we are assuming a fixed timed automaton
A = (Σ,S, S0, Sf , C,E).

A clock valuation is a function ν : C → R
+, where R+ stands for the non-

negative real numbers. If t ∈ R+, we let ν + t be the clock valuation such that
(ν + t)(x) = ν(x) + t for all x ∈ C.

A state of A is a pair (s, ν), where s ∈ S is a location and ν is a clock
valuation.

A run of A is a finite alternating sequence of states and delayed transi-
tions e = (s0, ν0)

t1,θ1−→ (s1, ν1)
t2,θ2−→ . . .

tn,θn−→ (sn, νn), where ti ∈ R
+ and

θi = (si−1, si, ai, φi, Ri) ∈ E, subject to the conditions:

1. for all 0 6 i 6 n− 1, νi + ti+1 satisfies φi+1, and
2. for all 0 6 i 6 n − 1, νi+1(x) = νi(x) + ti+1 for all x ∈ C \ Ri+1, and
νi+1(x) = 0 for all x ∈ Ri+1.

Each ti is interpreted as the time delay between the firing of transitions, and
each state (si, νi), for i > 1, records the data immediately following transition
θi. We often abuse notation and write runs in the form (s0, ν0)

t1,a1−→ (s1, ν1)
t2,a2−→

. . .
tn,an−→ (sn, νn) to highlight the run’s events.
An A-configuration is a finite set of states of A. Given an A-configuration G,

a G-initialized run is a run whose first state belongs to G. An accepting run, on
the other hand, is a run whose last state belongs to Sf .

A timed event is a pair (t, a), where t ∈ R+ is a delay and a ∈ Σ is an event.
A timed trace is a finite sequence of timed events, in which each delay represents
the time elapsed since the occurrence of the previous event (or since time 0 in
the case of the first event). We write TT to denote the set of all timed traces.

Given a run e = (s0, ν0)
t1,a1−→ (s1, ν1)

t2,a2−→ . . .
tn,an−→ (sn, νn), we produce an

associated timed trace tt(e) =̂ 〈(t1, a1), (t2, a2), . . . , (tn, an)〉.
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Let G be an A-configuration. We define the G-initialized timed language of
A to be the set

L(A[G]) =̂ {tt(e) | e is an accepting G-initialized run of A}

of dense-time timed traces accepted by A, when started in configuration G. A
very important special case is that in which G = S0 × {0}, where 0 is the clock
valuation mapping every clock to 0. In that case, we write

L(A) =̂ L(A[S0 × {0}])

to denote the timed language accepted by A (from its standard initial config-
uration). Another notable instance is that of a singleton A-configuration G =
{(s, ν)}, in which case we write L(A[(s, ν)]) rather than L(A[{(s, ν)}]). Lastly,
observe that L(A[∅]) = ∅.

Remark 5. The reader will have noticed that our timed trace semantics is weakly
monotonic, in that multiple events are allowed to occur ‘simultaneously’ (i.e.,
with no delay between them). None of the results of Section 4 are affected if one
adopts instead a strongly monotonic semantics, in which all delays are required to
be strictly positive. The effects of a strongly monotonic semantics on Theorem 20
in Section 5 are listed in a footnote attached to the statement of the theorem.

Example 6. We reproduce below from [5] an example of a timed automaton2 A,
equipped with a single clock, that cannot be complemented: there does not exist
a timed automaton A′ such that L(A′) = TT \ L(A).

A : //ONMLHIJK
@GF ECD
a

��
a

x:=0
//ONMLHIJK a

x=1?
//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD
a

��

.

The complement of L(A) contains all timed traces in which no pair of a’s is
separated by exactly one time unit. Intuitively, since there is no bound on the
number of a’s that can occur in any unit-duration time interval, any timed au-
tomaton capturing the complement of L(A) would require an unbounded number
of clocks to keep track of the times of all the a’s within the past one time unit.
A formal proof that A cannot be complemented is given in [13].

4 Decidable Cases of Language Inclusion

We now present two decidable instances of the language inclusion problem
L(B) ⊆ L(A), where A and B are two timed automata. The main result is
2 Our representation of timed automata follows standard practice: start locations are

depicted with an incoming arrow not originating from any other location, and ac-
cepting locations are doubly circled. Clock constraints are decorated with question
marks (?), whereas clock resets use assignment symbols (:=). The rest of the notation
is self-explanatory.
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Theorem 17 in Section 4.1, which asserts that the problem is decidable provided
that A is restricted to having at most one clock. Theorem 19 in Section 4.2, on
the other hand, states that the problem is also decidable if A does not make use
of constants other than 0 in its clock constraints.

4.1 Single-clock restriction

The main result of this section is Theorem 17, which we present after a number
of preliminaries. We shall assume throughout two fixed timed automata A =
(ΣA, SA, SA0 , S

A
f , C

A, EA) and B = (ΣB , SB , SB0 , S
B
f , C

B , EB), with A having a
single clock x. Let us moreover postulate, without loss of generality, that A and
B share the same alphabet Σ = ΣA = ΣB , and do not have any other data in
common.

The overall strategy for deciding whether L(B) ⊆ L(A) is to explore a certain
‘joint state space’ of A and B, either making sure throughout that whenever B
can accept a particular timed trace then so can A, or otherwise answering the lan-
guage inclusion query in the negative. As described, this procedure requires that
A be determinized, and therefore involves exploring a potentially infinite state
space. We ensure termination both by determinizing A on-the-fly, as needed,
and by constructing a suitable well-quasi-order which forces us only to explore
a finite portion of the entire state space.

Since A has only one clock, states of A are simply pairs (s, u), with s ∈ SA,
and u ∈ R+ representing the value of clock x. Define an A/B-configuration to
be a pair (G, (q, ν)), where G is an A-configuration (a finite set of states of A),
and (q, ν) is a single state of B.

Intuitively, an A/B-configuration will be used to represent a particular state
that B can be in having performed some timed trace π, together with the set
of all states that A can be in having performed the same timed trace π. A/B-
configurations can therefore be viewed as states of the ‘synchronous parallel
composition’ of A and B, in which A has been determinized.

For (q, ν) a state of B, t ∈ R+, and a ∈ Σ, let

SuccB((q, ν), t, a) =̂ {(q′, ν′) | (q, ν)
t,a−→ (q′, ν′) is a run of B}

be the set of (t, a)-successor states of (q, ν). A similar definition yields a func-
tion SuccA for the timed automaton A, which we lift to A-configurations in the
obvious way:

SuccA(G, t, a) =̂ {(s′, u′) | ∃(s, u) ∈ G � (s, u)
t,a−→ (s′, u′) is a run of A} .

Note that SuccA(G, t, a) is again an A-configuration, albeit possibly empty.
Let Γ1 = (G1, (q1, ν1)) and Γ2 = (G2, (q2, ν2)) be two A/B-configurations,

and let a ∈ Σ be an event. Postulate an a-transition from Γ1 to Γ2 (writ-
ten Γ1

a−→ Γ2) if there exists t ∈ R+ such that G2 = SuccA(G1, t, a) and
(q2, ν2) ∈ SuccB((q1, ν1), t, a); moreover, if t = 0 is a valid such witness, we
say that the a-transition is immediate. In this way, we view the collection of all
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A/B-configurations as an infinite labeled transition system G. For Γ and Γ ′ two
A/B-configurations, we say that Γ ′ is reachable from Γ if there exists a finite
path Γ

a1−→ . . .
an−→ Γ ′ from Γ to Γ ′ in G. We include paths of length 0 in this

definition, so that any A/B-configuration is reachable from itself.
Let (G, (q, ν)) be an A/B-configuration. We say that (G, (q, ν)) is bad if

both q is accepting (q ∈ SBf ), and none of the states in G are accepting (for
all (s, u) ∈ G, s /∈ SAf ). We also say that (G, (q, ν)) is doomed if some bad
A/B-configuration is reachable from (G, (q, ν)). In particular, every bad A/B-
configuration is doomed. An A/B-configuration is safe if it is not doomed.

Lemma 7. For any A/B-configuration Γ = (G, (q, ν)), L(B[(q, ν)]) ⊆ L(A[G])
iff Γ is safe.

Proof. Suppose first that Γ is safe, and let 〈(t1, a1), . . . , (tn, an)〉 ∈ L(B[(q, ν)]).
There is then a corresponding path Γ

a1−→ Γ1
a2−→ . . .

an−→ Γn = (Gn, (qn, νn)) in
G, where qn ∈ SBf . Since Γ is safe, Γn cannot be bad, and therefore there must be
some (s, u) ∈ Gn with s ∈ SAf . We conclude that A must have a G-initialized run
ending in (s, u) that yields the timed trace 〈(t1, a1), . . . , (tn, an)〉, which shows
that L(B[(q, ν)]) ⊆ L(A[G]) as required.

The other direction proceeds similarly and is left to the reader. ut

Let us call any A/B-configuration of the form (SA0 ×{0}, (q,0)), with q ∈ SB0 ,
an initial A/B-configuration. (Recall that 0 stands for the clock valuation that
maps all of B’s clocks to 0). We now have:

Corollary 8. L(B) ⊆ L(A) iff all initial A/B-configurations are safe.

Proof. Follows immediately from Lemma 7. ut

Corollary 8 therefore reduces our language inclusion question L(B) ⊆ L(A) to
a reachability query on the infinite labeled transition system G. We now construct
an equivalence relation on G by encoding A/B-configurations as words over a
certain alphabet. This will enable us to define a suitable well-quasi-order on the
resulting quotient labeled transition system.

Let K be the largest constant appearing in any of the clock constraints of
A and B. We partition R+ into a finite collection of one-dimensional regions
REG =̂ {r0, r1, . . . , r2K+1}, as follows: for 0 6 i 6 K, r2i =̂ {i} and r2i+1 =̂
(i, i+ 1), and r2K+1 =̂ (K,∞).

Define an alphabet Λ =̂ P
(
(SA × REG) ∪ (SB × CB × REG)

)
: the ‘letters’

it contains are finite sets of pairs (s, r) and triples (q, y, r), where s and q are
locations of A and B respectively, y is a clock of B, and r is a region. Since
Λ, being finite, is clearly well-quasi-ordered by set inclusion, Higman’s lemma
states that the set Λ∗ of finite words over Λ is well-quasi-ordered by the induced
monotone domination order 4: ρ1 . . . ρm 4 γ1 . . . γn if there exists a strictly
increasing function f : {1, . . . ,m} → {1, . . . , n} such that, for all 1 6 i 6 m,
ρi ⊆ γf(i). Note that this order is different from the ‘subword’ order seen in
Example 2.
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We now explain how to associate to any A/B-configuration Γ = (G, (q, ν))
a canonical word H(Γ ) ∈ Λ∗. Let us assume that the timed automaton B has
M clocks y1, . . . , yM . If G = {(s1, u1), . . . , (sk, uk)}, we can first equivalently
represent Γ as the set

{(si, reg(ui), ui) | 1 6 i 6 k} ∪ {(q, yj , reg(ν(yj)), ν(yj)) | 1 6 j 6M} ,

where reg(t) ∈ REG denotes the region to which the real number t ∈ R+ belongs,
and t ∈ [0, 1) represents the fractional part of t.

Since every pair (si, reg(ui)) and every triple (q, yj , reg(ν(yj))) corresponds
to a (singleton) letter of Λ, we can instead write Γ as

{(µl, vl) | 1 6 l 6 k +M} ,

where each µl is one of the Λ-letters in question (of the form {(si, reg(ui))} or
{(q, yj , reg(ν(yj)))}), and each vl is its associated fractional part (of the form ui
or ν(yj)).

Finally, let us group together Λ-letters whose associated fractional parts are
identical, yielding a new set of Λ-letters paired with fractional parts

{(ρi, wi) | 1 6 i 6 p}

as representation of Γ . Here each ρi is a union of µl’s, and the fractional parts
wi are all distinct; formally: ρi =

⋃
{µl | vl = wi}, and p is the number of such

new pairs, i.e., the total number of distinct fractional parts in Γ . Note that some
of the ρi’s may well still be singletons. We then let

H(Γ ) =̂ ρiz1ρiz2 . . . ρizp ,

where z1 . . . zp is the permutation of 1 . . . p that puts wz1 . . . wzp in ascending
order.

Example 9. Let s1, s2 be two locations of the timed automaton A, and let q be
a location of the timed automaton B. Suppose that B has two clocks, y1 and y2.
Let G = {(s1, 0.0), (s1, 0.3), (s1, 1.2), (s2, 0.4), (s2, 1.0)} be an A-configuration,
and let (q, ν) be a state of B, where ν(y1) = 0.8 and ν(y2) = 1.3. Finally, let
Γ = (G, (q, ν)) be an A/B-configuration.

Write r0 to represent the region {0}, r1
0 to represent the region (interval)

(0, 1), r1 to represent the region {1}, and r2
1 to represent the region (interval)

(1, 2). Then H(Γ ) is the 5-letter word{
(s1, r0), (s2, r1)

}{
(s1, r

2
1)
}{

(s1, r
1
0), (q, y2, r

2
1)
}{

(s2, r
1
0)
}{

(q, y1, r
1
0)
}

.

We say that two A/B-configurations Γ and Γ ′ are equivalent, written Γ ∼ Γ ′,
if H(Γ ) = H(Γ ′). We also say that Γ is dominated by Γ ′, written Γ 4 Γ ′, if
(writing Γ ′ = (G, (q, ν))) there exists G′ ⊆ G such that Γ ∼ (G′, (q, ν)). The
overloading of 4 is justified in view of the following:
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Proposition 10. For any A/B-configurations Γ and Γ ′, Γ 4 Γ ′ iff H(Γ ) 4
H(Γ ′).

Proof. By straightforward inspection of the relevant definitions. ut

We earlier showed that the assertion L(B) ⊆ L(A) is equivalent to showing
that no bad A/B-configuration is reachable in G. Unfortunately, since there are
uncountably many A/B-configurations, it is necessary to reason in terms of Λ-
words instead. In the next few propositions, we develop the required machinery
to do this.

We begin by showing that ∼ is a bisimulation relation:

Proposition 11. For any A/B-configurations Γ1, Γ
′
1 and event a ∈ Σ, if Γ1 ∼

Γ ′1 then

1. for any Γ2 such that Γ1
a−→ Γ2, there exists Γ ′2 with Γ ′1

a−→ Γ ′2 and Γ2 ∼ Γ ′2,
2. for any Γ ′2 such that Γ ′1

a−→ Γ ′2, there exists Γ2 with Γ1
a−→ Γ2 and Γ2 ∼ Γ ′2.

Proof. Let Γ1, Γ
′
1 be A/B-configurations such that Γ1 ∼ Γ ′1, and let Γ2 be an

A/B-configuration with Γ1
a−→ Γ2. We must show that there exists an A/B-

configuration Γ ′2 such that Γ ′1
a−→ Γ ′2 and Γ2 ∼ Γ ′2.

The transition Γ1
a−→ Γ2 can be decomposed into a time evolution from Γ1

to Γ1 + t (for some t ∈ R), followed by an immediate transition Γ1 + t
a−→ Γ2.

Here Γ1 + t represents the result of adding t to all clock valuations (of both A
and B) in Γ1.

Write Γ1 = (G, (q, ν)) and Γ ′1 = (G′, (q′, ν′)). Since Γ1 ∼ Γ ′1, we have q = q′.
Moreover, ν and ν′ must agree on (i) the integer parts of all clocks (if no greater
than K), (ii) whether or not clocks have null fractional part, and (iii) the ordering
of the fractional parts of all clocks. It easily follows that there must exist t′ ∈
R

+ such that ν + t and ν′ + t′ are also in similar agreement; moreover, since
the relationship Γ1 ∼ Γ ′1 also requires the global matching of the integer and
fractional parts of the clock valuations in both G and ν with those in G′ and ν′,
we can in fact find t′ such that Γ1 + t ∼ Γ ′1 + t′.

The agreement described above between ν+ t and ν′+ t′ entails that, for any
clock constraint φ ∈ ΦCB , ν+ t satisfies φ iff ν′+ t′ satisfies φ (a formal proof of
this fact is an easy structural induction on φ). The same of course holds for clock
valuations in G and G′ with respect to clock constraints in ΦCA . Consequently,
Γ1 + t and Γ ′1 + t′ enable exactly the same transitions of the timed automata A
and B.

Let us therefore define Γ ′2 to be the A/B-configuration obtained from Γ ′1 + t′

upon immediately taking the same a-transitions as those associated with the
jump Γ1 + t

a−→ Γ2. Observe that, upon taking these transitions, corresponding
clocks in Γ1 + t and Γ ′1 + t′ are (in both Γ1 + t and Γ ′1 + t′) either left unchanged,
or reset to zero. Since Γ1 + t ∼ Γ ′1 + t′, it easily follows that Γ2 ∼ Γ ′2, as required.

ut

Corollary 12. The relation ∼ preserves badness, doom, and safety: for any
A/B-configurations Γ ∼ Γ ′, Γ is bad iff Γ ′ is bad, Γ is doomed iff Γ ′ is doomed,
and Γ is safe iff Γ ′ is safe.
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Proof. The case of badness is immediate, whereas doom and safety follow from
the preservation of badness and Proposition 11. ut

We are therefore only interested in A/B-configurations up to ∼-equivalence,
and thus define a quotient labeled transition system H ⊆ Λ∗ as follows:

H =̂ G/∼ =̂ {H(Γ ) | Γ is an A/B-configuration} ,

and, for W1,W2 ∈ H and a ∈ Σ, postulate a transition W1
a−→ W2 if, for all

Γ1 ∈ H−1(W1) there exists Γ2 ∈ H−1(W2) with Γ1
a−→ Γ2. Lastly, let

H0 =̂ {H(Γ ) | Γ is an initial A/B-configuration}

denote the (finite) set of initial words of H.

Corollary 13. For any W1,W2 ∈ H and a ∈ Σ, W1
a−→ W2 iff there exist

A/B-configurations Γ1 ∈ H−1(W1) and Γ2 ∈ H−1(W2) with Γ1
a−→ Γ2.

Proof. Follows immediately from Proposition 11. ut

Given a word W ∈ H, let

Succ(W ) =̂ {W ′ ∈ H | ∃ a ∈ Σ �W a−→W ′}

denote the set of successors of W in H.

Proposition 14. For any word W ∈ H, the set Succ(W ) is finite and effectively
computable.

Proof. Given W , it is easy to construct an A/B-configuration Γ such that
H(Γ ) = W . Then, given any a ∈ Σ, note that there are only finitely many
A/B-configurations Γ ′ with transition Γ

a−→ Γ ′ immediately enabled, the list
of which can readily be computed.

Next, observe that, for any t ∈ R+, H(Γ +t) is a word with the same number
of letters as W , the finite collection of which is also straightforward to enumerate.
For each of these words, and for every event a ∈ Σ, computing the immediate
a-successors can again be done effectively by simply examining a corresponding
A/B-configuration. Note that, according to Corollary 13, the particular choices
of A/B-configuration we make to compute successors are unimportant. Since the
function H, which converts A/B-configurations back into H-words, in clearly
computable, what we have just described is an effective algorithm to generate
the set Succ(W ). ut

Next, we show that the wqo 4 on H is a simulation relation:

Lemma 15. Let W1,W
′
1 ∈ H be two words such that W1 4 W ′1. Then, for any

a ∈ Σ, W ′2 ∈ H, and transition W ′1
a−→ W ′2, there exists a word W2 ∈ H such

that W1
a−→W2 and W2 4W ′2.
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Proof. Let W1, W ′1, and W ′2 be as above, and let Γ1 ∈ H−1(W1), Γ ′1 ∈ H−1(W ′1),
and Γ ′2 ∈ H−1(W ′2) be such that there is a transition Γ ′1

a−→ Γ ′2. By Corollary 13,
it suffices to show there exists Γ2 4 Γ ′2 such that Γ1

a−→ Γ2.
Write Γ1 = (G1, (q1, ν1)), Γ ′1 = (G′1, (q

′
1, ν
′
1)), and Γ ′2 = (G′2, (q

′
2, ν
′
2)). Since

Γ ′1
a−→ Γ ′2, by definition there must be some t ∈ R+ such thatG′2 = SuccA(G′1, t, a)

and (q′2, ν
′
2) ∈ SuccB((q′1, ν

′
1), t, a). Since W1 4 W ′1, Γ1 4 Γ ′1, i.e., there ex-

ists G′′1 ⊆ G′1 such that Γ1 ∼ (G′′1 , (q
′
1, ν
′
1)). Write Γ ′′1 = (G′′1 , (q

′
1, ν
′
1)), G′′2 =

SuccA(G′′1 , t, a), and Γ ′′2 = (G′′2 , (q
′
2, ν
′
2)). We then have Γ1 ∼ Γ ′′1 and Γ ′′1

a−→ Γ ′′2 .
We can therefore invoke Proposition 11 to conclude that there exists an A/B-
configuration Γ2 with Γ1

a−→ Γ2 and Γ2 ∼ Γ ′′2 .
Now notice that, since G′′1 ⊆ G′1, G′′2 = SuccA(G′′1 , t, a) ⊆ SuccA(G′1, t, a) =

G′2, and hence Γ ′′2 4 Γ ′2. Combining this fact with Γ2 ∼ Γ ′′2 , we easily see that
Γ2 4 Γ ′2, as required. ut

(Note that < is also a simulation, but we will not need this.)
Let W ∈ H be a word and let Γ ∈ H−1(W ) be a corresponding A/B-

configuration. We attach the expressions bad, doomed, and safe to W according
to whether they respectively apply to Γ . (Note that, in doing so, the particular
choice of Γ is unimportant, thanks to Corollary 12.) If W is doomed and if i ∈ N
is the length of a shortest path from W to a bad word, let us say that W is
i-doomed. Thus, in particular, bad words are 0-doomed.

Proposition 16. Let W,W ′ ∈ H be two words such that W 4 W ′. If W ′ is
i-doomed, then W is j-doomed for some j 6 i.

Proof. Follows immediately from Lemma 15 and the following observation: for
any A/B-configurations Γ and Γ ′, if Γ 4 Γ ′ and Γ ′ is bad, then so is Γ . ut

Figure 1 gives an algorithm for deciding whether L(B) ⊆ L(A). This algo-
rithm uses two set variables, ToExplore and Explored, in which to store words.
Its correctness is the subject of Theorem 17.

let ToExplore = H0

let Explored = ∅
repeat forever

repeat

if ToExplore = ∅ then return ‘L(B) ⊆ L(A)’
remove some W from ToExplore
if W is bad then return ‘L(B) * L(A)’

until ∀V ∈ Explored � V 64W
let ToExplore = ToExplore ∪ Succ(W )
let Explored = Explored ∪ {W}.

Fig. 1. Algorithm to decide whether L(B) ⊆ L(A)
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Theorem 17. Let A and B be two timed automata, with A having at most one
clock. Then the language inclusion question of whether L(B) ⊆ L(A) is decidable.

Proof. From Corollary 8, we know that L(B) ⊆ L(A) iff all initial words are safe.
We now show that the latter is precisely what the algorithm given in Figure 1
decides.

We first observe that the algorithm terminates: indeed, if it did not, since
ToExplore is always a finite set, an infinite collection W1,W2, . . . of words would
over time be added to Explored, each new word having the property that it does
not dominate any of its predecessors. This would constitute an infinite non-
saturating sequence, directly contradicting Higman’s lemma.

Next, it is clear that if the algorithm returns ‘L(B) * L(A)’, then that
statement is accurate: some bad word is reachable from one of the initial words
in H0. On the other hand, if ToExplore ever comes to contain a bad word, then
the algorithm will inevitably return ‘L(B) * L(A)’.

We now claim that, if ToExplore ever comes to contain a doomed word,
then eventually the algorithm will also return ‘L(B) * L(A)’. Suppose, on the
contrary, that in a given complete execution of the algorithm, the lowest doom
index achieved by ToExplore is some i > 1; i.e., at some point, an i-doomed
word W belonged to ToExplore, and for every other word V to have belonged
to ToExplore, V was either safe or j-doomed, for some j > i. Since W is i-
doomed, one of its successors in Succ(W ) must be (i − 1)-doomed. Thus when
W was examined in the inner repeat loop, it cannot have satisfied the exit
condition ∀V ∈ Explored �V 64W , otherwise Succ(W ) would have been added to
ToExplore, contradicting our minimal choice of i. It follows that there must have
been some word V ∈ Explored with V 4W , from which we deduce, according to
Proposition 16, that V is j-doomed for some j 6 i. But V ’s presence in Explored
implies that Succ(V )—which contains a (j−i)-doomed word—was at some point
added to ToExplore. This again contradicts our minimal choice of i and shows
that, if any initial word in H0 fails to be safe, then the algorithm will return
‘L(B) * L(A)’, as required. ut

4.2 Null-constant restriction

We now show that the language inclusion question L(B) ⊆ L(A) is decidable
even if both A and B are allowed arbitrarily many clocks, provided that A never
compare its clocks to any constant other than 0.

A timed automaton is said to be deterministic if it has a unique start location,
and if, whenever two transitions from a common location are labeled with the
same event, then their clock constraints are disjoint.

The following result makes use of a construction similar to that given in [28].

Lemma 18. Let A be a timed automaton with 0 the only constant appearing
among its clock constraints. Then one can construct a deterministic timed au-
tomaton A′ which accepts the same timed language: L(A) = L(A′). (In addition,
A′ has a single clock and uses only the constant 0 in its clock constraints.)
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Proof. Let A be as above. The idea is to construct a deterministic version of the
region automaton3 of A. We will in addition equip this region automaton with a
single clock, so as to keep track, on any transition, of whether a strictly positive
amount of time has elapsed (since the firing of the last transition) or not. Since
A is itself unable to make any finer timed distinctions, the resulting automaton
will be equivalent to it.

Let A = (Σ,S, S0, Sf , C,E), with C = {x1, . . . , xM} the set of clocks of
A. A clock region of A is simply an M -tuple of bits, with each bit recording
whether its corresponding clock has current value 0 or not. Let REG denote
the set of all clock regions. Define a basic location to be a pair (s, r), with
s ∈ S a location of A, and r ∈ REG a clock region. For a ∈ Σ, postulate a
basic transition (s, r)

0,a−→ (s′, r′) if an immediate transition between (s, r) and
(s′, r′) is consistent with some immediate transition of A, and postulate a basic
transition (s, r)

1,a−→ (s′, r′) if a delayed transition between (s, r) and (s′, r′) is
consistent with some (strictly positive) time-delayed transition of A.

We now construct a deterministic timed automaton A′ as follows: its alphabet
is the same as that of A, Σ. Its set of locations is P(S×REG)—in other words,
locations of A′ are simply sets of basic locations. Its unique start location is
S0 × {0}, where 0 represents the region consisting entirely of null bits. The
accepting locations of A′ are those which contain at least one basic location
whose first component is accepting (belongs to Sf ). A′ has a single clock, z,
which is reset on every transition. Lastly, for Q,Q′ two locations of A′ and a ∈ Σ,
define a transition Q

0,a−→ Q′ if Q′ = {(s′, r′) | ∃(s, r) ∈ Q � (s, r) 0,a−→ (s′, r′)}, and
likewise for Q

1,a−→ Q′. In writing Q
1,a−→ Q′ we denote the a-labeled transition

from Q to Q′ which is constrained by z > 0 and which subsequently resets z,
whereas Q

0,a−→ Q′ represents the same transition, but constrained by z = 0
rather than z > 0.

It is readily seen that A′ is deterministic, and that it accepts the same timed
language as A. The latter rests on the observation that, whenever A accepts a
timed trace π, A also accepts any timed trace which is identical to π except for
the precise non-zero values of all strictly positive delays. ut

Theorem 19. Let A and B be two timed automata, with 0 the only constant
appearing among the clock constraints of A. Then the language inclusion question
of whether L(B) ⊆ L(A) is decidable.

Proof. Follows immediately from Lemma 18, the fact that deterministic timed
automata can be complemented, the fact that timed automata are closed under
intersection, and the well-known fact that language emptiness is decidable [5].
(Alternately, one could directly invoke Theorem 17, since by Lemma 18 A is
equivalent to a timed automaton equipped with a single clock.) ut

3 The region automaton construction, introduced in [5], takes as input a timed au-
tomaton A and produces an untimed automaton that accepts the untimed language
of A: the very same sequences of events, without the delays.



18

5 Undecidability of Universality with Minimal Resources

In Section 4, we examined two decidable instances of the language inclusion
problem between timed automata. It turns out that these are, for all practical
purposes, the only decidable instances, at least in terms of placing restrictions
on the resources of timed automata (number of clocks, number of locations,
magnitude of clock constraints, and size of alphabet).

To make this statement more precise, we consider a special case of language
inclusion, namely the universality problem (whether a timed automaton accepts
every timed trace). For arbitrary timed automata, this problem was shown to
be undecidable in [5]. We sharpen this result in the following theorem:

Theorem 20. For A a timed automaton, the universality question of whether
L(A) = TT remains undecidable under any of the following restrictions:

1. A has two clocks and a one-event alphabet4, or

2. A has two clocks and uses a single constant in clock constraints, or

3. A has a single location and a one-event alphabet4, or

4. A has a single location and uses a single constant in clock constraints.

Remark 21. We recall that diagonal clock constraints (of the form x − y ./ k)
are not allowed in our model of timed automata. This restriction considerably
complicates cases (3) and (4), since multiple locations cannot simply be encoded
through the ordering of clock values, as is otherwise standard [28].

Proof. (Sketch.) In all four cases, the idea of the proof is similar to that presented
by Alur and Dill in [5]. Given a two-counter machine M , one constructs a timed
automaton A satisfying the relevant restrictions and which moreover rejects
precisely those timed traces that correspond (via a certain encoding) to the
halting computations of M . It follows that M halts iff L(A) 6= TT. Since the
halting problem is undecidable for two-counter machines, so is the universality
problem for the corresponding type of timed automata.

Note that Alur and Dill’s result imposes no restrictions on timed automata,
contrary to Theorem 20. Our encodings and constructions—in particular those
pertaining to cases (3) and (4)—are therefore significantly more intricate. Full
details can be found in [22]. ut

Note, of course, that the assertion L(A) = TT reduces to L(B) ⊆ L(A), if
B is chosen to be any timed automaton that accepts every timed trace.

An interesting consequence of Theorem 20 (cases (1) and (3)) is that the
‘communication’ structure of timed automata plays no role in the undecidability
of universality. This suggests that the type of questions considered in this paper
are no easier to handle in an event-less timed framework than they are here.

4 Over strongly monotonic time, we require two events in A’s alphabet.
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6 Conclusion and Future Work

The main contribution of this paper is an algorithm to decide the timed au-
tomaton language inclusion question of whether L(B) ⊆ L(A), provided A has
at most one clock. We have also shown that the problem is decidable if the only
constant appearing among the clock constraints of A is zero. Moreover, these
two cases are essentially the only decidable instances of language inclusion, in
terms of restricting the resources of timed automata.

From a practical point of view, our main decidability result enables the auto-
mated verification of (timed) systems against functional specifications expressed
as finite-state machines equipped with a single clock. We believe this to be a
substantial improvement in expressiveness over (untimed) finite-state machines,
although the feasibility and usefulness of this approach will need to be demon-
strated through case studies.

Finally, let us list two interesting directions for future work:

– What is the complexity of our algorithm?
– Can we extend our decidability result to Büchi timed automata?
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