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Abstract

This paper examines a class of evolutionary models in which large shocks cause frequent
movement between short-term “stable” equilibria. Mutations are rare in our model, but
their effects are magnified by a “spread process” which causes a finite proportion of the
population to initially adopt the entering strategy before the short-term selection dynamics
takes effect. We examine the long run invariant distribution for a variety of games, under
several different spread processes: most interestingly, we find that cooperative strategies
prevail in the long run in the Finitely Repeated Prisoner’s Dilemma game, contrary to
the backward induction solution. We also study equilibrium selection in 2x2 and NxN
coordination games, establishing conditions under which the risk-dominant equilibrium is
selected, and demonstrate rapid convergence to the long run invariant distribution.
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1 Introduction

The concept of Nash equilibrium (Nash, 1950) and its various refinements (ex. Selten, 1975)
serve as the foundations of non-cooperative game theory, and have been widely applied in
economics and many other fields. These equilibrium concepts attempt to answer the question
of what actions a perfectly rational player should choose in a given decision situation, under
the strong assumptions that players have common knowledge of rationality and unlimited
computational powers. These assumptions often do not apply to economic interactions in
the real-world, and thus their results sometimes conflict with experimental observations.
Moreover, notions of equilibrium fail to answer two basic questions: when does play converge
to an equilibrium, and (in games with multiple equilibria) which equilibrium is chosen?

Thus much attention has been drawn to the study of “evolutionary games,” which assume
a population of players interacting over time, and provide an explicit dynamic process of how
players adapt their behavior. These processes include not only evolution in the Darwinian
sense, but also individual processes including imitation, adaptation, and learning. Players
are not assumed to have common knowledge or perfect rationality, though often some degree
of (myopic or bounded) rationality is assumed. The assumption common to all of these
models is that of “fitness-dependent selection”: strategies which earn higher payoffs have
higher fitness and are able to survive and reproduce, while less successful strategies die off.
This may be because biological or economic forces select against unsuccessful behaviors, or
because players tend to adopt or imitate more successful behaviors. For a more in-depth
discussion of evolutionary game theory, the reader is directed to the recent texts of Weibull
(1995), Fudenberg & Levine (1998), Vega-Redondo (1996), and Hofbauer & Sigmund (1998),
as well as the review articles of Samuelson (2002) and Mailath (1998).

We focus on a class of models which combine two processes: selection and mutation.
Selection is any process by which the proportion of “better” strategies in the population
increases, and the proportion of “worse” strategies in the population decreases, where a
strategy’s fitness is measured by its payoff in the current population. As discussed above,
these include both biological processes (fitter strategies are more likely to survive and have
offspring), as well as individual processes of adaptation (individuals are more likely to adopt
strategies which are more successful). We assume that the selection process does not intro-
duce new strategies into the population; it only changes the proportions of strategies present
in the population, possibly causing some strategies present in the population to die off. New
strategies are introduced to the population by the process of mutation: we assume that
mutations are relatively rare, and that the new mutant strategy is chosen at random. Again,
a variety of mutation processes are possible, ranging from genetic mutation, to invasion by
a new species, to individual experimentation or discovery of new ideas.

For a useful viewpoint on models combining selection and mutation, we turn to the
biological literature on population dynamics (Eshel et al, 1998; Eshel, 1996). Eshel et al
describe evolution as a process of “trial and error,” in which the population is carried from
one state to another as the result of new mutations being introduced into the system. They
refer to the change in population shares due to selection as “short-term evolution”; a stable
state of the selection dynamics may be a stable (monomorphic or polymorphic) population,
or a cyclic or even chaotic fluctuation in the population shares. “Long-term evolution,”



on the other hand, is “the process whereby successful mutations invade the population,
renewing the process of short-term evolution towards a new stable equilibrium, cycle, or
state of chaos” (Eshel et al, 1998). Essentially, we can think of the selection-mutation model
as a series of time steps, where each time step consists of a mutation (introduction of a
new strategy into the population) followed by convergence of the selection dynamics to a
stable state (which may be identical to, or substantially different from, the previous stable
state). Eshel (1996) notes that it is impossible to precisely predict the long-term behavior
of an evolutionary system, because “it is impossible to tell when and in which order the
various rare, potentially advantageous mutations will appear in the population.” However,
in some cases it is possible to find strategies which are “stable” in the long-term, under
certain assumptions on the frequency, type, and impact of mutations.

The most influential concept of long-term stability is the “evolutionarily stable strategy”
(ESS), as defined by Maynard Smith & Price (1973) and Maynard Smith (1982). Maynard
Smith’s model assumes a large homogeneous population of a strategy X, which is visited
periodically by a small number of mutants playing some alternative strategy A. If players of
the common strategy obtain a higher average payoff than players of the alternative strategy,
then X resists the invasion, and natural selection eliminates the mutants. Otherwise, the
mutants will be able to invade the population, and possibly to replace the common strategy.
If strategy X can resist invasion by any alternative strategy A, we say that X is evolutionarily
stable. The ESS concept makes three important assumptions: first, mutations must be
rare enough that the short-term dynamics can evolve to a stable state; in other words,
an ESS must be allowed sufficient time to fight off each invasion before a new mutation
occurs. Second, only a single type of mutant is allowed to invade on any given time step; a
simultaneous invasion by two or more types of mutant is not considered.! Third (and most
importantly to our discussion), the number of mutants is assumed to be extremely small in
relation to the population size. In fact, the initial population share of the mutant strategy is
assumed to be infinitesimal: thus each strategy’s “average payoft” is simply its payoff against
the common strategy, and the strategies’ payoffs against the alternative strategy are only
relevant in the case of a tie. As we will discuss, however, in many real-world interactions
the alternative strategy will be initially adopted by a finite (and possibly large) proportion
of the population. In these cases, the self-payoff of the alternative strategy, as well as the
payoff of the common strategy against the alternative strategy, become important to the
evolutionary dynamics.

Another influential long-term stability concept is that of “stochastic stability,” pioneered
by Foster & Young (1990), Kandori et al (1993), and Young (1993). Foster and Young were
the first to consider games with continual small stochastic shocks; these shocks, accumulated
over time, can move the system between the basins of attraction of different equilibria. They
argued that, in games with multiple strict Nash equilibria (and thus multiple evolutionarily
stable strategies), some equilibria are more likely to emerge than others in the presence of
shocks; the “stochastically stable equilibria” are defined as the set of equilibria which occur
with finite probability as the amount of noise goes to zero. Kandori et al and Young extend

LA stronger notion of stability, due to Boyd and Lorberbaum (1987) requires strategies to resist simul-
taneous invasion by multiple mutant types; however, this requirement is sufficiently strong that no stable
strategies exist for many games.



this concept by presenting methods for calculating which equilibria are stochastically stable
in 2x2 and NxN coordination games respectively; we examine their work, as well as several
other papers on stochastic stability, in our discussion on equilibrium selection in Section 4.
For now, we note that the concept of stochastic stability resembles evolutionary stability in
its assumptions on the type and impact of mutations. The difference is in the frequency of
mutations: shocks to the population are assumed to be continual rather than extremely rare,
and thus a different set of techniques must be used to compute which strategies are stable.

Thus we have considered “evolutionarily stable” strategies, which are robust to isolated
small shocks, and “stochastically stable” strategies, which are robust to continuous small
shocks. Neither of these concepts consider cases where the impact of a shock is significant:
when a mutation introduces a non-negligible proportion of a new strategy into the population.
In this paper we consider isolated large shocks: mutations are rare, but each mutation causes
a finite (and possibly large) proportion of the population to adopt the entering strategy before
the short-term selection dynamics takes effect. If the impact of the shocks is large enough,
many games will have no stable equilibrium; in such games, any population can be invaded
by a sufficiently large proportion of some other strategy. Thus, we focus on the invariant
distribution (also called the limiting distribution): the proportion of time, in the long run,
that the population spends in each state. Strategies which are more evolutionarily stable
(resistant to invasion by other strategies) and more evolutionarily potent (able to invade
other strategies) will occur with higher probability in the long run.

Our model relies heavily on the notion of a “spread process,” a process that causes
the entering strategy to spread to some proportion of the population before the short-term
dynamics takes effect. We consider a number of scenarios (including models of evolution,
learning, and adaptation) and the type of spread process that might result in each. The
spread process can be represented mathematically by a probability density function on the
interval [0,1], representing the proportion of the population to which the entering strategy
spreads: we call this the “spread function.” The long run invariant distribution for a given
game is dependent on the spread function; however, under relatively loose constraints, the
invariant distribution will be unique (and thus, not dependent on initial conditions) for a
given game and spread function.

Our model has a number of interesting features, which distinguish it from other models
of evolutionary dynamics. First, it is very general, representing a variety of evolutionary
scenarios with large aggregate shocks. Under certain constraints on the spread function, we
can even examine a model similar to the stochastic stability models of Kandori et al (1993)
and Young (1993), where large shocks can result from the (extremely rare) occurrence of
multiple simultaneous mutations. Second, frequent large shocks result in faster convergence
to the long-run invariant distribution; thus we can focus on this distribution rather than the
variety of “quasi-stable” states which may (depending on the initial conditions) persist for
long periods of time in models with small shocks. Third, for coordination games and other
games with no stable polymorphisms, calculation of the invariant distribution is generally
simpler than finding stochastically stable strategies, since transition probabilities are based
only on a notion of pairwise risk dominance. Fourth, the system may spend a large proportion
of time far from Nash equilibrium: strategies with high average risk dominance may occur
frequently in the long run, even if these strategies are (strictly or weakly) dominated. In fact,



we find that cooperative strategies prevail in the long run in the Finitely Repeated Prisoner’s
Dilemma game, contrary to the backward induction solution. This is very different than
other evolutionary models, where (partial) cooperation may be quasi-stable, but defection
eventually prevails. Finally, a model with large aggregate shocks is less likely to be “stuck”
at any given equilibrium for long periods of time; we conjecture that more experimentation
allows a population to adapt more quickly to a changing environment, resulting in greater
probability of survival in the long run.

In section 2, we present our model of evolutionary dynamics with large aggregate shocks,
assuming a spread process represented by an arbitrary spread function. We prove various
properties of the model (ex. existence of a unique invariant distribution) under certain
constraints on the game and the spread function. In section 3, we justify the assumption of
large aggregate shocks by presenting a variety of (evolutionary and adaptive) scenarios where
spread processes occur. In sections 4-5, we present results of our model. Section 4 discusses
equilibrium selection in 2x2 and NxN coordination games, and several other games with no
stable polymorphisms; we examine the conditions under which a risk-dominant equilibrium
is selected, and the speed of convergence to the invariant distribution. Section 5 discusses
our results for the Finitely Repeated Prisoner’s Dilemma game. Section 6 extends the model
to games with stable polymorphisms, and presents a variety of examples. In section 7 we
consider extensions and applications of the model, and section 8 concludes the paper.

2 The model

We assume a symmetric, two player game in strategic form; let S = s;...sy be the (finite)
set of pure strategies available to each player. The game can be represented by an Nx/N
payoff table W, where w;; is the payoff that a player of strategy s; receives against a player
of strategy s;. We assume an infinite population of players, playing the game represented by
W we assume further that the population is well-mixed, so that a player’s payoft is equal to
the average of his payoffs against every player in the population. At a given point in time,
the population can be represented by a N-dimensional vector Z, where z; is the proportion of
the population playing strategy s;, and Zf\; 1 Z; = 1. Then the payoff to a player of strategy
s; can be computed as u; = Z;V:1 zjw;j. We initially assume that the game has the no stable
polymorphisms (NSP) property: for any pair of strategies s; and s;, either w;; > wj;, or
wjj > W4, or both. Games with stable polymorphisms will be treated in section 6. We now
discuss our evolutionary model in detail. We first consider the short-term dynamics (i.e. the
effects of selection alone), then the simple long-term dynamics (i.e. the effects of selection
plus isolated small shocks), and finally the long-term dynamics with spread (i.e. the effects
of selection plus isolated large shocks).

2.1 Short-term dynamics

As discussed above, the short-term dynamics represents a process of selection: over time,
the proportion of “better” strategies in the population increases, and the proportion of
“worse” strategies in the population decreases, where a strategy’s fitness is measured by its
payoff in the current population. In our model, we assume that the short-term dynamics
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are payoff-monotone and continuous in time (Nachbar, 1990; Friedman, 1991): strategies
with higher payoffs u; have higher growth rates %’ where the dot represents the derivative
with respect to time. One such process is the well-known “replicator equation” (Taylor
& Jonker, 1978), in which the growth of a strategy’s population share is proportional to
the difference between the strategy’s payoff and the average payoff of the population: z; =
x;(u; — u), where u = Z;V:l zjuj. Though we assume (for concreteness) that the short-term
dynamics evolves according to the replicator equation, all payoff-monotone, deterministic
dynamics give identical results for two-strategy interactions. On the other hand, the result
of a multi-strategy evolutionary interaction may be dependent on different strategies’ rates
of adjustment; we consider this possibility in more detail in Section 6.

Note that we are considering only “pure selection” dynamics rather than “innovation”
dynamics: this means that strategies not currently present in the population will not appear
until they are reintroduced by random mutations. This rules out models such as the best
response dynamics (Gilboa & Matsui, 1991), in which individuals switch strategies in the
direction of the best reply to the current population. Our use of a pure selection dynamics
for short-term evolution differs from the work of Kandori et al (1993) and Young (1993),
who assume the best response dynamics, but several other papers on stochastic stability (ex.
Foster & Young, 1990; Fudenberg & Harris, 1992) assume forms of the replicator dynamics.
Because of our assumption of a pure selection dynamics, our model is probably not the
best description of a “fully rational” population with complete information and unlimited
computational powers; if players were fully rational, we would expect them to be able to
compute and play the best response strategy even if that strategy is not currently present in
the population. On the other hand, the assumption of a pure selection dynamics makes sense
when considering models of imitation (a strategy that is not present cannot be imitated) or
Darwinian evolution; it also applies to adaptive players with bounded rationality (or limited
knowledge of the strategy space) who cannot simply compute and play a best response.

We are most interested in the stable states of the short-term dynamics: for any combi-
nation of strategies, the dynamics will eventually evolve to a stable population, or one of
several other limiting distributions (e.g. a limit cycle or chaotic attractor). For two-strategy
interactions, the limiting distributions are particularly simple, since limit cycles and chaotic
attractors cannot occur. For games with no stable polymorphisms, the limiting distributions
are even simpler, since evolution always results in a monomorphic population (a population
where all individuals play the same strategy). To see this, we consider the definition of an
NSP game: given a pair of strategies s; and s;, we have either w; > wj;, or w;; > w;j, or
both.

If only the first inequality holds, players of strategy s; always score higher than players
of strategy s; in any population consisting of a mixture of the two strategies. Thus by
the selection dynamics, the proportion of s; increases, and the proportion of s; decreases,
until the population consists entirely of strategy s;. In this case, any initial proportion of
strategy s; can take over, and completely wipe out, strategy s;. We say that s; evolutionarily
dominates s;, and write s; — s;. Conversely, if only the second inequality holds, s; will take
over any population consisting of a mixture of the two strategies (eliminating strategy s;).
Thus we say that s; evolutionarily dominates s;, and write s; — s;.

If both inequalities hold, s; and s; are in bistable equilibrium: either strategy s; or strategy



s; will take over the population depending on the initial proportions of the two strategies.
Assuming that the initial proportion of strategy s; is m, and the initial proportion of strategy
s; is 1 —m, we calculate u; = mw; + (1 —m)w;; and u; = mw,; + (1 —m)w;;. Thus strategy
s; will take over if its initial proportion is higher than:

Wjj — Wi

m = .
Wii — Wi + Wjj — Wi

In this case we write s; & sj, or equivalently, s; =4 S;-

If neither inequality holds, a stable polymorphism is possible: both strategies may survive
in the combined population. We consider games with stable polymorphisms in Section 6,
and extend our model to deal with these games.

2.2 Long-term dynamics with small shocks

We begin by considering a simple model of selection and mutation: we assume that a large
(initially homogeneous) population is visited periodically by a small number of mutants
playing an alternative strategy. We first select the initial strategy s randomly (assuming
some, possibly uniform, prior distribution) from s; ... sy. Then a mutant strain s’ is selected
randomly from our space of strategies, and added to the population; the combined population
evolves according to the short-term selection dynamics until it reaches a stable state. Because
we have assumed that the game is NSP, the mutant strain s’ either takes over the population
(replacing strategy s) or dies off, and the population remains homogeneous. This process
of random mutation, followed by selection, is repeated indefinitely. This model of invasion
dynamics has been used by Nowak & Sigmund (1993) to study the repeated Prisoner’s
Dilemma game: Nowak and Sigmund perform a computer simulation, and examine which
strategies most frequently dominate the population over a large number of time steps. Rather
than simulating this random process, however, we prefer to apply probabilistic techniques in
order to obtain exact results for the limiting distribution in the long run.

Since the population remains homogeneous, and there are N possible strategies, we can
treat the process as a Markov chain with N states, where the state i is determined by
which strategy s; is currently dominating the population. Letting one “time step” consist of
introduction of a single mutant strategy, followed by convergence of the selection dynamics
to a homogeneous population, we can compute the probability of transitioning from each
strategy to each other strategy. The probability p;; of transitioning from s; to s; is the
product of two probabilities: the prior probability that strategy s; will attempt to invade,
and the probability g;; that the invasion attempt will succeed. We generally assume that
mutations are completely random (undirected). Thus the prior probability of selecting any
strategy s; is equal to %, and p;; = % < % for all strategies s; and s, @ # j. The probability
of a “self-transition” p;; is the probability that either an invasion will fail, or that strategy
s; will be selected to invade itself: p; =1 — Z#i Dij > %

Once we have computed p;; for each pair of states ¢ and j, we can compute the invariant
distribution % of the Markov chain by solving the matrix equation ¥P = 7, subject to the
constraint that Zfil y; = 1. However, the Markov chain may or may not have a single
ergodic set, and thus the long run invariant distribution may or may not be unique. If the



Markov chain has a single ergodic set, then the invariant distribution ¥ is unique: regardless
of the initial conditions, we would expect each strategy s; to dominate the population a
proportion of the time that converges in the limit to y;. Thus y; can be thought of as a
measure of the evolutionary performance of a strategy s;, for a given game and a given
spread function. If the Markov chain has multiple ergodic sets, on the other hand, then
the invariant distribution is dependent on the initial conditions. As we prove below, the
invariant distribution will be unique whenever the spread function meets certain (relatively
loose) conditions.

Now we consider how the invasion success probabilities g;; are computed. If strategy
s; evolutionarily dominates strategy s;, then s; will always succeed in invading s;, and
s; will never succeed in invading s;: thus ¢;; = 1 and ¢; = 0. This is why we write
s; — s; for the evolutionary dominance relation: in this case the evolutionary process
can only move from 7 to j, and not in the reverse direction. For a bistable equilibrium
s & sj, the probability that an invasion is successful depends on our assumptions about
the impact of a mutation (the initial proportion of the entering strategy). A simple model
of small shocks, based on Maynard Smith’s invasion criteria (1982), would assume that the
population of the invader is vanishingly small compared to the population being invaded.
Thus s; invades s; if wj; > w;;, or wj; = wy; and wj; > w;;. For this “simple invasion model,”
if 5; and s; are in bistable equilibrium, neither strategy will succeed in invading the other:
the proportion of mutants always remains below the threshold needed to invade. Thus for
strategies in bistable equilibrium, the simple invasion model gives g;; = g;; = 0. Note that
the resulting Markov chain often has multiple ergodic sets, and in these cases the invariant
distribution is dependent on initial conditions. For example, for any 2x2 coordination game,
the two strategies are in bistable equilibrium, so the simple invasion model converges to one
equilibrium or the other, depending on the proportions of strategies in the initial population.

2.3 Long-term dynamics with large shocks

Now consider a large, initially homogenous population of a strategy s;, and an attempted
invasion by a strategy s;, where s; & sj and m ~ 0. According to the simple invasion model,
strategy s; cannot invade strategy s;, and ¢;; = ¢;; = 0. However, in this case it is clear
that strategy s; can take over strategy s; even if only a very small (but finite) proportion
of the population plays s;. This finite proportion of s; mutants can arise in a number of
ways. If the population is finite, and we assume that a player faces all members of the
population including himself, a single s; mutation results in a finite proportion of s;. If the
population is finite, and a player faces all members of the population but himself, multiple
mutations are necessary for the self-payoff of the invader to be relevant.? Even in an infinite
population, various “spread processes” may cause a finite, and possibly large, proportion of
the population to adopt the entering strategy; we consider these processes in detail in the

2In this case, we must also take the finite population correction of Schaffer (1988) into account. For very
large but technically finite populations, this correction turns out to be irrelevant for games with no stable
polymorphisms, but may be relevant in other games; Neill (2003) discusses this issue in more detail, and
proposes criteria for a large population ESS, as distinct from Maynard Smith’s infinite population ESS and
Schaffer’s finite population ESS.



next section. Thus the assumption that the proportion of invaders is zero, and thus that
¢ij = ¢;i = 0 even for very small m, does not necessarily make sense for many evolutionary
scenarios.

We define, for each common strategy s; and invading strategy s;, a real-valued random
variable X;;, restricted to the closed interval [0,1]. Assuming that strategy s; attempts to
invade strategy s;, X;; determines the proportion of the population to which the invading
strategy spreads. We initially assume that the spread of the invading strategy is independent
of the types of the common or invading strategies: thus we can define a spread process by
a single real-valued random variable X, restricted to [0,1]. The distribution of the random
variable X can be characterized by the cumulative distribution function F'(z) = Pr(X < z),
which we call the “cumulative spread function.” The cumulative spread function is monotone
increasing, and is continuous from the right. We assume that the spread process always
results in a population that contains some non-zero proportion of both the common and
invading strategies: thus lim, o F'(z) = F(0) = 0, and limg4y F(z) = F(1) = 1. We call this
the “large aggregate shocks” (LASH) property. For simplicity, we also assume that F'(z) is
absolutely continuous, and thus we can define the function f(x) = dF(z) Then f(z) is the

probability density function for the random variable X: f b flz)dz = Pr(a < X <b). Thus

we call f(z) the “spread function.” We have f(z) > 0 for all z € [0, 1], and fo z)dr = 1.
It will also often be useful to work with the quantity Pr(X > z) =1— F(x). We denote this
by the function F(x).

Now we consider the invasion success probability g;; for a given spread function f(z).
As for the simple invasion model, if s; — s;, we have ¢;; = 1 and ¢;; = 0. This is because
the spread function always results in a mixture of the two strategies; then the selection
dynamics will result in s; taking over the combined population, and wiping out s;. For
bistable equilibria, on the other hand, we no longer have ¢;; = ¢;; = 0. For s; & s, we know
that s; will invade s; if the proportion of mutants is at least m: thus ¢;; = Pr(X > m) =
f f(x)dz = F(m). Similarly, s] Will invade s; if the proportion of mutants is at least 1 —m:
thus ¢;; = Pr(X > 1 — fl x)dr = F(1—m).

We now consider various common types of spread function, computing the transition
probabilities ¢;; and g;; for each when s; & s;. The simplest spread function is the “uniform
spread function,” f(z) =1 for z € [0, 1]. In this case, F(z) = z, so ¢;; = 1 —m, and ¢;; = m.
We can also consider an “interval-uniform spread function,” f(z) = ;% for = € [a, 0], and
f(z) = 0 otherwise. In this case, ¢;; = 1 if m < a, ¢;; = 0if m > b, and ¢;; = I;;TT if
a <m < b. Similarly, ¢g;; = 0ifm <1-1b,¢; =1ifm >1-aq, and ¢;; = bfgl:am) if
1—b<m<1-—a. We denote the uniform spread function by U, and the interval-uniform
spread functions by U(a,b).

Several “degenerate” spread functions are also important to our discussion: a degenerate
spread function is the limit of a sequence of spread functions, but is technically a distri-
bution (generalized function) rather than a function in the strict sense. For example, the
“delta spread function” is important for evolutionary scenarios where the population always
consists of the same proportion of mutants. This can occur when the probability of an indi-
vidual agent adopting the entering strategy is identical for all agents, and choices are made
independently: since the variance of the proportion of mutants decreases with the population




size, the aggregate shock becomes deterministic as the population size goes to infinity. Of
course, many other spread functions are possible, since choices are not always independent or
identically distributed: for instance, if individuals make choices based on some characteristic
(such as aspiration levels) which is assumed to be a uniformly distributed random variable,
then this would result in a uniform (or interval-uniform) spread function. The delta spread
function 6(k), for 0 < k < 1, is defined as the limit, for small ¢, of the interval-uniform func-
tions centered at k with width 2e: §(k) = lim._,o U(k — €, k + €). Thus all of the probability
mass of f(z) is concentrated at the point x = k. The cumulative spread function F'(z) is
equal to 0 if z < k, 1 if z > k, and § if z = k. Thus for s; & s;, gj; = F'(m) =1if m < k, 0
if m >k, and % if m = k. Similarly, ¢;; =0if m <1—k, 1ifm >1—k, and % ifm=1—k.

Using degenerate spread functions, we can also connect our model to various models in
the evolutionary games literature. These include models based on evolutionary stability (and
thus, assuming isolated small shocks) as well as models based on stochastic stability (and
thus, assuming continuous small shocks). We find that the latter type of model, but not the
former, obeys the LASH property.

First, we consider the limit of the interval-uniform spread functions U(0,¢) as € — 0.
In this case, all of the probability mass of f(x) is concentrated at the point x = 0. The
cumulative spread function F(z) = 0 if z = 0, and F(z) = 1 otherwise; thus for s; & s;,
we have ¢;; = g;; = 0. Since the invasion success probabilities are identical to those given
by Maynard Smith’s invasion criteria, we denote this spread function by MS. Note that MS
does not satisfy the LASH property given above, since lim, o F'(z) # 0; thus any results that
we prove for LASH spread functions may not hold for this degenerate spread function.

Next, we consider a finite but large population N, with discrete generations and a proba-
bility € of mutation. Then let Y be a random variable corresponding to the number of muta-
tions in a given generation: Y is binomially distributed with parameters (N, €). For € ~ 0, the
probability that Y > zN decreases exponentially as eV = e~ %% where Ifs: = —Nloge > 0.

l—e™ "%

Thus we consider cumulative spread functions of the form F'(r) = ~=5—, where k is very

large, and Z = 1 — e ® &~ 1 is a normalizing factor which ensures that F(1) = 1. The
associated spread function is f(z) = %gf) = @ For large but finite &, almost all of

the probability mass of f(z) is concentrated near z = 0, but we still have f(z) > 0 for all

z € [0,1]. Now consider two transition probabilities g;; and ¢;, where s; & s;and 5| & s}
e*km_efk

We calculate ¢j; = F(m) = “-=5— ~ e”*™. Similarly, ¢}, = F(m') ~ e*™'. Thus, if

—k(m—m')

m > m', we find % e ~ 0 for k sufficiently large. Using similar reasoning, we

i
obtain % ~ 0 for large k. This is very similar to the Kandori-Mailath-Rob model: any
number of mutations are possible, but since mutations are very unlikely, a transition which
requires more mutations is much less likely than a transition that requires less mutations.
Hence we call this the KMR spread function; of course, as discussed above, our model is not
identical to that of Kandori et al (1993) since it assumes the replicator dynamics rather than
the best-response dynamics. We also note that the KMR spread function obeys the LASH
property: we have lim, o F'(z) = F(0) = 0 and limgy F(z) = F(1) = 1. Thus any properties
that we prove for LASH functions also hold for KMR; this would not be true if we made the
assumption of an infinite (rather than finite but very large) value of k.

This brings us to an important question: under what circumstances does a unique invari-



ant distribution exist for a given game W and a given spread function f(z)? We examine this
question in more detail in Section 4, but a partial answer is given by the following theorem:

Theorem 2.1 For a given spread function [ with associated cumulative spread function F,
there exists a unique invariant distribution (independent of initial conditions) for all NSP
games if and only if F(3) < 1.

Proof Assume F (%) < 1. Then for each pair of strategies s; and s;, either g;; > 0 or
gji > 0 or both. To see this, we first note that, if s; — s;, ¢;; =1 > 0, and if 5; — s;,
gi=1>0. If s; & s;, then ¢;; = 1 — F(1 —m), and g;; = 1 — F(m). In this case,
at least one of m and 1 — m is less than or equal to % Thus, since F' is non-decreasing,
F(m) < F(3) or F(1 —m) < F(3). Then since F(3) < 1, we know that F(m) < 1 or
F(1 —m) < 1, and thus g;; > 0 or ¢;; > 0. Thus if F(3) < 1, we know that for each
pair of states ¢ and j in our Markov chain, either i is accessible from 7, or j is accessible
from i, or both. This implies that the Markov chain has a single ergodic set (though the
entire chain may not be ergodic, since some states may be transient). To see that there is a
single ergodic set, consider the possibility that multiple ergodic sets exist. Then pick states
1 and j from two separate ergodic sets; either 7 is accessible from j or j is accessible from
1, which contradicts the assumption that both sets are irreducible. Thus we have a Markov
chain with a single ergodic set, and possibly some other transient states. We also note that
the chain is aperiodic, since every state has a positive probability of self-transition. Thus a
unique invariant distribution 7 exists, such that all states 7 in the ergodic set have positive
probabilities y;, and all transient states j have probabilities y; = 0 (Kemeny & Snell, 1960,
p.117). To prove the converse, assume F (%) = 1. Then the 2x2 coordination game defined
by wi; = wj; = 1 and w;; = w;; = 0 does not have a unique invariant distribution, since both
states are absorbing. |}

This implies that the uniform spread function U always has a unique invariant, as does
any interval-uniform spread function U (a, b) where b > % Similarly, the delta spread function
d(k) always has a unique invariant for any k > % Likewise, the KMR, spread function has
a unique invariant. The MS spread function, on the other hand, does not always have a
unique invariant, and as noted above, the invariant distribution is not unique for any 2x2
coordination game.

Finally, we consider one other property of spread functions: whether the current strategy
is given a benefit or a penalty for being established. Most of the time, the spread function
will be “conservative”: for all m € (0, 1), given a pair of strategies s; & s, the sum of the
probabilities g;; and gj; is at most one. This means that, given an opposing strategy s;, a
strategy s; is at least as likely to take over the combined population when it is the common
strategy as when it is the invading strategy. In other words, strategies are not penalized for
being established. A special case occurs when the spread function is “fair”: for all m € (0, 1),
given a pair of strategies s; & sj, we have ¢;; + g;; = 1. In this case, neither the common
strategy nor the invading strategy is given an advantage, and the probability of s; taking
over the combined population will be identical whether s; invades or is invaded by s;. In
the next section, we consider several spread processes which result in fair spread functions.
We note that the uniform spread function U is fair, as is the §(3) spread function, and any
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interval-uniform spread function U(a, b) with = 5. In fact, a necessary and sufficient
1

condition for fairness is that the spread function is symmetric about x = 5. Conservative
but unfair spread functions include §(k) for k < %, as well as the MS and KMR spread
functions, and any interval-uniform spread function U (a, b) with “T“’ < % It is also possible
for the spread function to be “progressive,” where the common strategy is penalized for being
established, but we conjecture that evolutionary scenarios with this sort of spread function

would be rare.

3 Models with large aggregate shocks

We now examine a variety of evolutionary and adaptive scenarios which result in large aggre-
gate shocks, and consider which spread functions would be appropriate for each model. We
have already discussed one such scenario: simultaneous multiple mutations in a finite popu-
lation, as in the stochastic stability model of Kandori, Mailath, and Rob (1993). In this case,
we have shown that the spread function is very conservative; f(z) decreases exponentially
with the proportion of mutants, and almost all of the probability mass is concentrated near
x = 0. In the following subsections, we consider a variety of other spread processes which
would result in large aggregate shocks even in very large or infinite populations. We divide
these into three groups: models of Darwinian evolution, models of learning and adaptation,
and single player “imaginary play” models.

We also note that, in all of these models, we continue to make the assumption that
the population is well mixed: every individual’s fitness is measured by his average payoff
against the entire population. If we assume instead that the game is spatially localized, and
individuals play only their immediate neighbors, it is possible that the invaders will form
spatially clustered groups. This would increase the importance of the invader’s self-payoff,
since each invader would face a proportion of invaders that is significantly higher than the
actual proportion of invaders in the population. As a result, the “effective size” of shocks
may be increased. We neglect this effect in the following models, but note that it is another
reason why large shocks, rather than only negligible ones, must be considered.

3.1 Models of Darwinian evolution

The first evolutionary scenario that we consider is the invasion of a population by the migra-
tion of individuals from outside the population. This is very different than invasions resulting
from mutations within the population: while we would expect mutations to be isolated (or at
least, confined to a kin group), migrants could invade a population in large numbers, possibly
even greater than the size of the initial population. Nevertheless, we typically assume that
the number of migrants is, on average, smaller than the population being invaded, resulting
in a conservative spread function. For example, the simulations of Nowak & Sigmund (1993)
assume that the proportion of the invading strategy is only 1% of the combined population,
equivalent to a 6(.01) spread function. A variant of this scenario occurs when “invasions”
result from the combination of populations that were formerly spatially isolated. Assume
a large number of such populations; at random intervals, two populations meet, combine,
and then the combined population evolves according to the short-term selection dynamic. If
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we focus on a single initial population, this is equivalent to a model where the population
is occasionally invaded by a very large number of migrants. On average, we would expect
the size of the “invading” population to be equal to the size of the common population,
resulting in a fair spread function. If every isolated population is exactly the same size, we
would have a ¢ (%) spread function; more likely, the size of each population is dependent on
other unmodeled factors, and thus can be treated as a random variable with some specified
distribution. For example, if each population is chosen uniformly from the interval (0, V),
this would result in a spread function that is fair and approximately uniform. It is also
possible that the size of a population is a function of its self-payoff, in which case the spread
function becomes dependent on the common and invading strategies.

A second evolutionary scenario is the temporary shock model. We assume that the
proportion of the mutant strategy in the population is initially small, but a large (but tem-
porary) payoff shock allows the proportion of mutants to grow. This could model major but
temporary environmental changes such as natural disasters, disease epidemics, or seasonal
fluctuations. This scenario was inspired by the stochastic evolutionary models of Foster &
Young (1990), Fudenberg & Harris (1992), and Cabrales (2000), which assume small but
continual shocks in the replicator equation (Foster & Young) or the payoffs (Fudenberg &
Harris, Cabrales) respectively. The difference is that the stochastic models assume small
fluctuations, and thus, that the direction of a shock can change from instant to instant: we
assume a large shock which either a) gives the common strategy an advantage, or b) gives
the mutant strategy an advantage, for an extended period of time. In the former case, we
assume that the small initial proportion of the mutant strategy dies out: this case can be
ignored from the perspective of our long-term evolutionary model. In the latter case, the
mutant strategy spreads through the population, with any spread function possible depend-
ing on the length of the shock and the speed of adjustment. We assume that the duration
of a shock is not long enough for the common strategy to be wiped out, and thus the spread
function obeys the LASH property. Some types of shock might favor the invading strategy
over the common strategy: for instance, if the invading strategy s; and common strategy
s; are antagonistic, and the invader has the advantage of surprise, this might result in large
values of wj; and small values of w;;, until the common strategy can develop defenses against
the invader’s attacks. On the other hand, natural disasters, diseases, or seasonal changes
would result in a random shock direction, either in favor of the invaders or in favor of the
common strategy.

Another evolutionary scenario, closely related to the temporary shock model, is neutral
evolution: an initially neutral mutation spreads through the population by drift, with its
effects (i.e. differing payoffs from the common strategy) triggered by later environmental
changes or other mutations. Kimura (1983) has argued that such neutral mutations play a
significant role in determining the course of evolution. If drift is completely random, and
if the boundary states are absorbing, either the common strategy or the mutant strategy
will eventually take over the population; if the initial proportion of the mutant is small, the
mutant will be wiped out with high probability. If, on the other hand, a constant flux of
mutants or migrants causes the boundary states to be reflecting, a uniform spread function
will result. Binmore & Samuelson (1999) instead consider directed drift, where the drift
results from unmodeled factors whose impact is small enough that they can be neglected
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except when the selective pressure is weak. In this case, directed drift in favor of an initially
neutral mutation would cause that mutation to spread through the population, as in the
random shocks model. This directed drift can result from a number of factors: for example,
genetic linkage could cause the neutral mutation to be positively correlated with another
(evolutionarily beneficial) trait.

The final evolutionary scenario we consider is Darwinian evolution in a communicating
population. 1t is well known that the spread of ideas through a communicating population can
occur at much shorter time scales than those required for natural selection. In this scenario,
a single mutant conceives of an “idea” which is contrary to the established idea and thus
prescribes a pattern of behavior different from the common strategy. This idea is then spread
(by direct communication or by imitation of behavior) to various members of the population,
who in turn spread the idea to others, until the idea has been distributed through the entire
population. Some proportion of the population will adopt the invading idea, changing their
behavior as a result, and pass the changed behavior on to their offspring by teaching or
imitation. We assume that every individual in the original population independently chooses
whether or not to adopt the new idea, based on some measure of its “attractiveness.” The
attractiveness of an idea is not necessarily related to its long-term payoff: consider the
rapid spread of cigarette smoking before its long-term health risks were known, and its
continued prevalence even in the face of medical warnings and legal restrictions. It is, of
course, possible that the attractiveness of a strategy may be positively correlated to its
payoff, depending on whether the benefits and costs are immediately apparent; this would
result in a strategy-dependent spread function. For simplicity, we assume that attractiveness
is strategy-independent: for example, if attractiveness is uniformly distributed, and the
population is large enough to ignore variance, this could result in a uniform spread function.
Once some proportion of the population has adopted the entering strategy, natural selection
can take effect, and the population evolves according to the replicator equation.

3.2 Models of learning, imitation, and adaptation

We now consider a variety of scenarios which are based not on evolution in the Darwinian
sense, but on individual adaptation through processes such as learning and imitation. One
simple adaptive process is proportional imitation (Schlag, 1998): each instant, some frac-
tion of the population randomly samples another agent’s strategy and switches (if the other
agent’s realized payoff is higher) with probability proportional to how much better the other
agent performed. Schlag derives the proportional imitation rule through an axiomatic ap-
proach; others have justified proportional imitation by uniformly distributed costs of switch-
ing strategies, or uniformly distributed “aspiration levels” (Gale et al, 1995), where an agent
becomes active only when his payoff falls below his aspiration level. Schlag has shown that,
for a large population, the trajectories of the proportional imitation process converge to
the replicator dynamics; moreover, a much broader class of imitation processes converges to
some payoff-monotone selection dynamics.

In adaptive models, large aggregate shocks can result from a variety of phenomena.
First, if a minority of the population makes their choices based on some criterion other than
expected payoff maximization, this can result in non-negligible spread. For example, if a
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small proportion £ of the population are “progressives” who always initially adopt an entering
strategy, this will result in a §(k) spread function. Alternatively, consider a game with two
pure strategies, where most players are “adaptive” (readjusting their strategy at the end of
each interaction, according to its relative success) but a small proportion of the population
are “fanatics” who maintain their original strategy regardless of its relative success. This
model, used in the paper of Bicchieri & Rovelli (1995), would also result in a delta spread
function. Yet another possibility is that some proportion & of the population is “Kantian”:
they choose the strategy they would wish to become a general rule (i.e. the strategy with
higher self-payoff). This results in a strategy-dependent spread function: (k) if the self-
payoff of the entering strategy is higher, and MS otherwise. In all of these cases, we expect
the proportion of the “minority” to be relatively small, and thus we have a conservative
spread function. We also note that a distinct “minority” population is unnecessary: if each
person has independent probability k£ of initial adoption, and the population is sufficiently
large, this becomes equivalent to a model where a minority of £ initially adopts the entering
strategy.

Another interesting adaptive scenario results when players have foresight: they are not
myopic optimizers, but have the ability to choose strategies which will be more successful in
the post-invasion environment. This is related to the concept of robustness to equilibrium
entrants (Swinkels, 1992), a weaker form of evolutionary stability which requires entering
strategies to be a best response to some mixture of the common and entering strategies.
However, we assume that players can only choose between the common and entering strate-
gies, rather than “innovating” and playing a best response. Thus entering strategies need
only be a better reply than the common strategy against some mixture of the two strategies.
We imagine a “coalition” model, where a single individual conceives of a new idea, and con-
vinces a group of other players to coordinate decisions to play that strategy. This agreement
must be stable against possible deviations from the deviation: but since the only possible
deviation we consider is playing the common strategy instead of the alternative strategy, the
agreement is stable whenever the invading strategy’s self-payoff is greater than the payoff of
the common strategy against the invading strategy. Then any spread function is possible,
depending on the size of the coalition formed. However, if players are sufficiently rational
(and this is common knowledge), we might also want to place another condition on the agree-
ment: players will only agree to play a deviation which will (in the long run) increase their
average payoff, and thus the self-payoff of the entering strategy must also be higher than
the self-payoff of the common strategy. In this case, we again have a strategy-dependent
spread function: any spread function (depending on the distribution of coalition sizes) if the
entering strategy has higher self-payoff, and the MS spread function if the common strategy
has higher self-payoff.

Our final group of adaptive scenarios are uncertainty models, where the spread function
results from individuals’ initial uncertainty about the relative benefits or harms of the enter-
ing strategy. We assume that all individuals are informed about their possible choices (either
the common or entering strategy) and cannot “innovate” and choose a different strategy. In-
dividuals receive noisy statistical information about the expected payoffs of each strategy in
the population; at random intervals, a small proportion of the population is given the option
of switching strategies, and each individual chooses the strategy that he believes to have
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higher payoff. This is similar but not identical to the directed imitation model of Bjornerst-
edt & Weibull (1995) and Weibull (1995), in which a player receives noisy information about
his own expected payoff and the expected payoff of a randomly sampled player, switching if
the other strategy’s payoff is higher. We consider several cases in which players are initially
uncertain about the payoffs of the entering strategy, resulting in large aggregate shocks.

The first case we consider is when individuals initially believe (incorrectly) that they know
the relative performance of the entering strategy. In this case, we assume that the statistical
information that players receive is so noisy that each individual’s decision is independent of
the true relative performance. Let k£ equal the probability that an individual believes that the
entering strategy’s payoff is higher; we assume that this probability is equal for all individuals
in the population. Then the proportion of the entering strategy converges toward £, and
if the duration of payoff uncertainty is long enough, this results in a §(k) spread function.
Once the amount of uncertainty is reduced to more normal levels, selective pressures will
push the population in the direction of the strategy with higher actual expected payoff, and
the population will evolve according to a payoff-monotone dynamics.

The second case we consider is when the relative performance of the entering strategy
is unknown, but the individuals know that they do not know its relative performance. In
this case, players may be completely indifferent until the uncertainty is resolved. If players
occasionally switch strategies by imitating another player at random, or (rarely) choosing
one of the two strategies at random, this results in an undirected random walk with reflecting
boundaries, and hence a uniform spread function. Alternatively, choices whether to switch
strategies may be controlled by parameters such as “desire for novelty” and the cost of
switching strategies, and the spread function is determined by the distribution of these
parameters.

The third and final case of large aggregate shocks in uncertainty models is when imitation
is driven by dissatisfaction (Bjornerstedt, 1995). In Bjornerstedt’s model, agents with less
successful strategies switch strategies (by imitating an individual chosen at random from the
population) at a higher rate than individuals with more successful strategies. Bjornerstedt
shows that this converges to a payoff-monotone dynamics, and if the review rate is linearly
decreasing in current payoff, it converges to the replicator dynamics. We assume that,
initially, individuals switch only if and only if they are dissatisfied with the old strategy;
since they do not know the payoffs of the new strategy yet, they cannot be dissatisfied with
it. The proportion dissatisfied may be dependent on the self-payoff of the common strategy,
in which case the spread function is strategy-dependent, or dependent on other unmodeled
factors, in which case the spread function may be strategy-independent. In all of these cases,
once the uncertainty of relative payoffs is resolved, the population will evolve according to
a payoff-monotonic imitation dynamics, whether this results from proportional imitation,
directed imitation, or imitation due to dissatisfaction.

3.3 Single player, “imaginary play” models

Our final class of scenarios is very different than typical models of evolution or of adaptation.
Instead, we consider a single, boundedly rational player, who is attempting to decide which
strategy to play in an NSP game. However, the player does not know all of his possible
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strategy choices, nor does he have the computational ability to decide which strategy is a best
reply to a given strategy. Thus his method, rather than optimizing, is one of “brainstorming”:
he maintains a current “favorite” strategy and continually compares a randomly selected
(“discovered”) strategy to his current favorite, switching strategies if the new strategy is
“better.” Since play is imaginary, there is no cost to switching strategies. Thus the current
strategy is given no bonus for being established; strategies are compared on their own merits.
If the new strategy evolutionarily dominates the current strategy, the player will switch
strategies; conversely, if the current strategy evolutionarily dominates the new strategy, the
player will not switch. If the two strategies are bistable, there are several possibilities. One
option is to always keep the strategy that “risk-dominates” the other. Strategy s; risk-
dominates strategy s; if wy; — wj; > w;; — wy;. Thus, if s; & s;, s; risk-dominates s; when
m < % Thus, if the player chooses always to keep the risk-dominant strategy, his choice of
strategy evolves as in a LASH model with ¢ (%) spread function. Alternatively, rather than a
deterministic approach, the player can take a stochastic approach, where he keeps the risk-
dominant strategy with probability proportional to its level of risk-dominance; this has the
advantage of distinguishing between stronger and weaker risk-dominance relations. Thus,
if 5; & sj, he would choose s; with probability 1 — m. In this case, his choice of strategy
evolves as in a LASH model with uniform spread function. Many other spread functions
are possible; we assume that the common strategy is given no bonus or penalty for being
established, and hence the resulting spread function is fair. Thus, in addition to a variety of
evolutionary and adaptive scenarios, our model of large aggregate shocks also describes the
decision-making process of a rational player with limited knowledge of the strategy space:
a player who cannot simply compute and choose the optimal strategy, but must instead
continually explore and test new alternatives.

4 Equilibrium selection

One of the most widely discussed topics in game theory is equilibrium selection in games
with multiple Nash equilibria. There exists an extensive literature on refinements of Nash
equilibrium, and procedures for convergence to equilibrium; for a general reference, see
Harsanyi and Selten (1988), and for connections to evolutionary games, see Samuelson (1997).
For the purposes of our discussion, we focus on two major concepts, risk-dominance and p-
dominance. Harsanyi and Selten (1988) define risk-dominance for symmetric NxN games:
a strategy s risk-dominates a strategy s’ if s is a better response than s’ against a mixture
%s + %s’ . They then define a risk-dominant equilibrium as a Nash equilibrium that risk-
dominates every other Nash equilibrium; not every game has a risk-dominant equilibrium,
but if one exists, it is unique. For NSP games, we note that s risk-dominates s’ if s’ — s,
orif s & s and m < % Morris, Rob, and Shin (1995) define the stronger notion of p-
dominance: a symmetric Nash equilibrium (s,s) is p-dominant if s is a strict best response
to any mixed strategy placing probability at least p on s. Thus %-dominance is a refinement
of risk-dominance: every %-dominant strategy is risk-dominant, but not the reverse.
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4.1 Simple 2x2 games

Our main focus for equilibrium selection, as is common in the literature, is coordination
games, or games with two or more strict Nash equilibria. But as a preliminary exercise (and
demonstration of the properties of our evolutionary model), we first consider two simple
symmetric 2x2 games: the Prisoner’s Dilemma (with payoffs given in Table 1), and the joint
venture game (with payoffs given in Table 2).

In the Prisoner’s Dilemma, there is a single strict Nash equilibrium, (Y,Y"). Since X — Y,
strategy Y takes over any polymorphic population containing both X and Y. Since we
assume a LASH spread function, any mutation results in a population consisting of a mixture
of X and Y, and then the short-term selection dynamics converge to a state containing only
Y. Thus the long run invariant distribution places all of the probability mass on Y for any
LASH spread function.

In the joint venture game, there are two Nash equilibria: the strict equilibrium (X,X)
and the weak equilibrium (Y,Y). For this game we calculate Y — X. Again, since the
spread function is LASH (and thus, the initial population always contains some proportion
of the strict Nash equilibrium strategy), the short-term dynamics always converges back to
the strict Nash equilibrium. Thus the invariant distribution places all of the probability
mass on X for any LASH spread function.

Thus, in both of these examples, the size of the mutation is not important: as long as
there is some non-zero proportion of the dominant strategy, the short-term dynamics will
always converge to that strategy. For games with multiple strict equilibria, on the other
hand, the short-term dynamics can converge to either equilibrium, depending on the basin
of attraction in which the short-term process begins. Hence significant shocks are needed to
move the long-term process between strict equilibria, whether resulting from the aggregation
of small shocks (as in the stochastic stability literature) or resulting from isolated but large
shocks as in the present model.

4.2 Coordination games

As discussed above, equilibrium selection in games with multiple strict equilibria has been a
major focus of the evolutionary games literature, especially in the recent literature on models
of stochastic evolutionary dynamics. Here we consider two 2x2 coordination games: in each
game, both strategy X and strategy Y are strict Nash equilibria. In the game given in

Table 3, strategy Y risk-dominates strategy X; the two strategies are in bistable equilibrium

with X g’ Y. Also, Y Pareto-dominates X, giving higher payoffs to both players. Thus

this is a simple coordination game, where the risk-dominant and Pareto-dominant equilibria
coincide. In this case, nearly all of the stochastic evolutionary models in the literature will
choose the equilibrium that is both risk-dominant and Pareto-dominant. A more interesting
situation occurs in the game given in Table 4: strategy Y again risk-dominates strategy

X, with X i@ Y, but in this case X is Pareto-dominant. In this case, the question of
which equilibrium to select is more difficult; while most evolutionary models choose the
risk-dominant equilibrium, some choose the Pareto-dominant equilibrium instead.

Our model is closest in spirit to the models of Kandori et al (1993) and Young (1993),
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since in these models the long run invariant distribution depends on the probability of large
jumps across basins of attraction, as opposed to depending on the accumulation of smaller
shocks over time (as in Foster & Young, 1990, and Fudenberg & Harris, 1992). Kandori et al
consider a discrete time, finite population best-response dynamics, where each period each
player mutates with a small probability €. Young considers sampled fictitious play models,
in which players with finite memory choose best responses to a sample of the history, but can
make mistakes. In both of these models, movement between equilibria takes a large number
of simultaneous mutations, and thus it can be represented by an exponentially decreasing
spread function. They then look at the limit as the probability of mutation (or error) goes
to 0, resulting in the (degenerate) KMR spread function given above. In a 2x2 coordination
game, both dynamics converge to the risk-dominant equilibrium.

Other stochastic stability models, where small stochastic shocks accumulate over time,
cannot be easily represented by a LASH model. Foster and Young (1990) add a Brown-
ian motion noise term to the replicator equation, giving a system of stochastic differential
equations. Because of their reliance on gradual local movements, their equilibrium selection
results depend not only on the payoffs, but also on the details of the selection and mutation
processes. Similarly, Fudenberg & Harris (1992) assume stochastic payoff shocks. Their dy-
namics does not result in a unique invariant distribution; it converges to one of the equilibria
with probabilities depending on the initial conditions. This is because the perturbation in
payoffs does not have a significant effect on population shares when the population is nearly
homogeneous. They also consider a further modification of the replicator dynamics assuming
a deterministic flow of mutations as well as payoff shocks. This makes the system ergodic,
and results in convergence to the risk-dominant equilibrium.

Thus most of the models above, when they give unique equilibrium selection results, se-
lect the risk-dominant equilibrium over the Pareto-dominant equilibrium. However, certain
models give the opposite results. Robson & Vega-Redondo (1996) consider random matching
of players (rather than the assumption of “expected payoffs” or round-robin matching). Be-
cause transitions can occur when sufficiently many players of a Pareto-dominant strategy are
randomly matched together (causing the rest of the population to switch to this strategy),
their model results in convergence to the Pareto-dominant equilibrium in 2x2 symmetric
coordination games. The “noisy selection” models of Binmore et al (1995) and Binmore
& Samuelson (1997), representing a “musical chairs” model of evolution and a “muddling”
model of learning respectively, give still different equilibrium selection results: their dynam-
ics converge to either the Pareto-dominant or risk-dominant equilibrium depending on the
payoffs and certain parameters of the model. The difference is that the noisy selection mod-
els depend on the absolute payoffs as compared to the background “death rate” or revision
probability. In the models of Kandori et al and Young, on the other hand, fitnesses de-
pend only on the relative payoffs w;; — wj; and w;; — w;j, resulting in selection according to
risk-dominance rather than payoff~-dominance.

Our model, like the models of Kandori et al and Young, considers only the relative
payoffs, and hence we would expect it to select the risk-dominant strategy. In fact, this is
the case: for symmetric 2x2 coordination games, the long run invariant distribution of our
model places more probability mass on the risk-dominant strategy, regardless of whether or

not this strategy is Pareto-dominant. We note that X ‘i@ Y for both of the coordination
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games presented above; hence the transition probabilities, and our evolutionary results, are
identical for both games. However, the exact results depend on the spread function: we
calculate gxy = F(3) and gyx = F(3). Thus, if F(3) < 1, we have gxy > 0, so the system
has a unique invariant distribution. In this case, the invariant probability mass of X is

p(;(f%p)(g)’ and the invariant probability mass of Y is F(%F)%%F)(g) Since F(3) > F(3), the

system places at least half the mass on the risk-dominant equilibrium Y’; this inequality is

strict for all spread functions with probability mass in the interval (%, %) Also, note that if

the system has a unique invariant distribution and F' (%) = 1, then all of the probability mass

is placed on the risk-dominant equilibrium. For example, the delta spread function 6(k), for
4

any 5 < k < g, places all of the probability mass on the risk-dominant equilibrium. For

the uniform spread function U, we have F(z) = z, so we calculate gy x = % and gxy = %.
Thus the risk-dominant equilibrium gets 80% of the probability mass for the uniform spread
function. For the KMR spread function, we have ZYX ~ 0, so the risk-dominant equilibrium
gets almost all of the probability mass. Finally, as noted above, the MS spread function does
not have a unique invariant distribution: it converges to either X or Y depending on the

initial conditions.

4.3 NxN coordination games

We now consider equilibrium selection for Nx/N coordination games, focusing on an example

game given in Young (1993). For this game, given in Table 5, we calculate X i Y, X Ly ,

and Y %j Z. Thus Z risk-dominates X and Y, and Y risk-dominates X. Since Z is the

risk-dominant equilibrium in this game, we might expect the models of Kandori et al (1993)
and Young (1993) to converge to this equilibrium. However, as Young shows, both models
converge to strategy Y instead, and thus do not always choose the risk-dominant strategy.
We note that, though strategy Z is risk-dominant, it is not %—dominant, since Y (not Z) is
the best reply to a population consisting of X + 1Z. Maruta (1997) and Ellison (2000)
show that the Kandori et al and Young models choose the %—dominant strategy, if one exists,
in an Nx/N coordination game.

We now consider the results of our model for this game. We note that state Z is absorbing
whenever F(2) = 1, state Y is absorbing whenever F(2) = 1, and state X is absorbing
whenever F(g) = 1. Thus, any spread function with F(2) < 1 and F(3) = 1 will converge
to an invariant distribution which places all of the probability mass on Z. This includes
the 0 (%) spread function, which as we show below, always converges to the risk-dominant
equilibrium if one exists.

Theorem 4.1 For any symmetric coordination game W with a risk-dominant equilibrium
(si, i), the LASH model with 6(3) spread function converges to an invariant distribution
which places all of the probability mass on s;.

Proof For each other strategy s;, we know s; & s; with m < % Thus F(m) = 0 and
F(1 —m) =1 for the 6(3) spread function. This implies that ¢;; = F(m) = 1 and ¢;; =
F(1 —m) = 0. Hence s; is absorbing, and accessible from every other strategy, so it is the
unique absorbing state. |
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There are two other possibilities for the spread function. If F(%) = 1, then both Y and
Z are absorbing. In this case, the invariant distribution is not unique, and is dependent on
initial conditions. If, on the other hand, F(%) < 1, then none of the equilibria are absorbing;
as a result, the Markov chain is ergodic, and all states will have non-zero probability mass
in the invariant distribution. Nevertheless, the KMR spread function will place almost all
of the probability mass on the risk-dominant equilibrium Z for any given (large) rate of
exponential decrease k. As k goes to infinity, the invariant distribution converges to one
which places all probability mass on Z. In fact, the KMR spread function always selects the
risk-dominant equilibrium if one exists:

Theorem 4.2 For any symmeltric coordination game W with a risk-dominant equilibrium
(si, 8;), the LASH model with KMR spread function converges to an invariant distribution
which places all of the probability mass on s;.

Proof For each other strategy s;, we know s; & s; with m < % For the KMR spread
function F(z) = 1_eZ_k$, the transition probability ¢;; = F(m) = # Let mg < 35 be

the highest value of m such that s; & sj. Then the probability p;, of entering state ¢, if

originally in a different state, is at least 6_1"201; RPN e_lkvmo. Similarly, the probability p,,; of

(N—1)(e~h(-m0)_e=k) _, (N—1)(e"k(1~m0)
ZN ~ N

). Since N and my are constants, and mg < %, we know that

leaving state 7 is at most

e~ kmo — _1 efk(Qmofl
(N-1)(e *(-m0)) = N-1

z% goes to infinity as £ goes to infinity, and hence the invariant distribution places all of
the probability mass on s;. |}

. Thus the ratio z% is at least

We note that this result is very different than the results of Young (1993), even though the
spread processes are essentially identical (i.e. multiple rare mutations in a large population).
In Young’s 3x3 game, our model chooses the risk-dominant equilibrium Z while his model
chooses equilibrium Y. This difference results from the fact that Young’s model assumes the
best-response dynamics rather than the replicator dynamics. As a result, when computing
the probability of a strategy s; taking over a strategy s;, he calculates the smallest proportion
of mutants of any sort, not just the smallest proportion of s; mutants, needed to go from
s; to s;. Thus the “shortest path” from s; to s; might actually be through invasion by
a third strategy si, or even a combination of strategies s; and s;. If s; is a strict best
response to the combined population, it will take over even if it is not currently present in
the population. For example, in Young’s game, strategy Y can take over strategy Z if the
population is invaded by at least a % proportion of X mutants. Moreover, the alternative
strategy must be a best response to take over the population, not simply a better response
than the common strategy: thus, a % proportion of X mutants cannot take over Z, because
Y (not X) is the best response. These complications make finding the stochastically stable
equilibrium difficult, since a best possible spanning tree must be found.> Our model, based
only on pairwise risk-dominance comparisons, is much simpler to compute.

Young notes that risk-dominance and stochastic stability differ in two respects. First,
risk-dominance considers only the subgame consisting of the two strategies, while stochas-
tic stability examines all transitions between the two strategies, including those that go

3For more details on this process, see Young (1993), Kandori et al (1993), and Ellison (2000).
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through other strategies. Second, a risk-dominant strategy does not always exist, while a
best spanning tree (and thus, a set of stochastically stable equilibria) can always be found.
Our method keeps the simplicity of risk-dominance calculations, while avoiding Young’s crit-
icisms. The key is that pairwise risk dominance is used to determine transition probabilities
in our model: thus, even though the short-term dynamics only considers subgames consisting
of two strategies, indirect transitions are essential to the long-term dynamics. Moreover, for
a large class of spread functions, a unique invariant distribution can be found, even in games
with no risk-dominant strategy.

Finally, we compute the results for Young’s 3x3 game, with the uniform spread function
U. In this case, we find the invariant distribution [X Y Z] = [.1601 .4231 .4168]. Thus Y
and Z have nearly equal probability mass, but Y has slightly greater probability even though
Z is risk-dominant. This result occurs because Z transitions to X far more often than Y
does: pzx = % and pyx = i. Thus Y outperforms Z even though py; = % is greater than
Dzy = % Though Young’s model also selects equilibrium Y, this occurs for a very different
reason: the stability of Z is weakened because of an indirect short-term transition from
Z to Y through X, which is impossible in our model. Also, Young’s equilibrium selection
result is strong (all probability mass is placed on Y'), while our equilibrium selection result
places almost as much mass on Z. We believe that this is a reasonable solution to Young’s
game, where there are good reasons to select either Y or Z; compare this to the results
for the 2x2 coordination games above, where we select the risk-dominant equilibrium much
more strongly (with probability mass 0.8 in the long run invariant distribution). Thus
the uniform spread function allows greater discrimination between the relative strengths of
equilibria in different games. We also note two other advantages, over the delta and KMR
spread functions respectively. First, the uniform spread function can distinguish between
equilibria based on amount of risk-dominance, rather than simply a binary decision as to
which strategy risk-dominates the other; this is also true for KMR, or any other spread
function where f(x) > 0 for z € (0,1), but is not true for delta spread functions. Second,
spread functions such as KMR (where almost all of the probability mass of f(z) is near
xz = 0) result in very long waiting times before the distribution of states converges to the
long run invariant distribution. Functions with larger spread, such as the uniform or § (%)
spread functions, do not share this problem; we consider this issue in more detail below.

4.4 Other NSP games

Next we consider two other examples of NSP games that are not coordination games: games
in which both evolutionary dominance relations and bistable equilibria occur. First, consider
the game in Table 6, initially assuming ;4 = 1. In this game we have a cycle of evolutionary
dominance relations: X — Y — Z — W — X. Imagining the four strategies as corners
of a square, we expect movement around the square in a single direction, from X to Y to

Z to W, back to X. Also, since X g)% Z and Y g W, we can also have transitions across
the diagonal of the square if F’ (%) < 1. In any case, since the system is both ergodic and
symmetric, we know that the invariant distribution places 25% of the probability mass on
each of the four pure strategies. Now let us consider the same payoff table with 4 = 1.5.

X is still dominated by Y and still dominates W, but now X 2<4>5 /. Thus, assuming that
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F (%) > F (%), we would expect X to have the most, and Z to have the least, probability
mass in the invariant distribution. For a uniform spread function, we find the invariant
distribution [X Y Z W] = [.27 .26 .23 .24]. For the 6(3) spread function, we find [X YV
Z W] =1[.35.30 .15 .20]. Thus when the symmetry is broken by increasing the self-payoff
of one strategy, its probability mass increases as expected. However, for the KMR spread
function, we find convergence to [; 1 1 I]. This is because, in the limit as k — oo, the
bistable transitions become extremely rare and hence irrelevant. Similarly, for a §(k) spread
function with k£ < %, the bistable transitions never occur, so we again find convergence to [i
i i i] For this game, the KMR and some delta spread functions fail to pick out the obvious
focal point equilibrium.

Next, we consider the game in Table 7. Note that we have a 3-cycle of evolutionary

dominance relations: X - Y — Z — X. Also, W is bistable with each of X, Y, and Z; we

L L
calculate X,Y,Z & W. Thus the probability mass on W is FIF(%, and the total
(i) F3F ()
Fr( L
probability mass on X, Y, and Z is FISF(%; by symmetry, we know the probability
(1) +3F (1)

(b
is split evenly between the three strategies, and each has probability Fl(% For a
(71+”)+3F(711+”) o

uniform spread function this results in the invariant distribution [X Y Z W] =[5 115 13

i3] For example, if 4 = 2, we have [X ¥ Z W] = [t £ £ 2]. For the §(3) and KMR spread
functions, three different distributions are possible depending on the value of pu. If p > 1,
W gets all of the probability mass: since it risk-dominates each of the other strategies, it is
an absorbing state. If u < 1, the three strategies X, Y, and Z evenly split the probability
mass: since W is risk-dominated by each of the other strategies, it is a transient state and
gets no probability mass. If 4 =1, then F(ﬁ) =F({f) = F(3), so all four strategies get
1 of the probability mass by symmetry.

4.5 General results for NSP games

We now prove some general results for NSP games, based on a notion of pairwise risk-
dominance. As in Neill (2001), we define the pairwise risk-dominance dom(s; |s;) = 1 if
sj — 8, 0if s; = s5,and 1 —m if s, a sj. Then we note the following three properties of
pairwise risk-dominance. First, dom(s; | s;) +dom(s;|s;) = 1. Second, ¢;; = F(dom(s; | s;))-
Third, g;; = F(dom(s; | s;)). Now, let a path from strategy s; to strategy s; be a sequence of
strategies s(1) = s;, 8(2), ... , Sk) = S;j. Let the shock threshold st of a path be the maximum
value of dom(sg | 5¢i41)) for i = 1...k — 1. It is clear that s; is accessible from s; through
the path sq)...sq if and only if F(st) < 1. Let the minimum shock threshold mst(i — j)
be the minimum value of st over all paths from s; to s;. It is clear that s; is accessible from
s; if and only if F(mst(i — j)) < 1. We also note that mst(: — j) < dom(s;|s;) for all
and j, since the direct path from s; to s; has shock threshold dom(s; | s;).

Now, we define mst(i <> j) to be the minimum of mst(i — j) and mst(j — 7). It is clear
that either s; is accessible from s; or s; is accessible from s;, if and only if F'(mst(: <> j)) < 1.
We also note that mst(i <+ j) < min(dom(s; |s;),dom(s;|s;)) < % for all 7 and j. Now
define the mazimum pathwise bistability (mptb) of an NSP game as the maximum value
of mst(i <» j) for all strategies s; and s;, i # j. Also, we define the mazimum pairwise
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bistability (mprb) of an NSP game as the maximum value of min(dom(s; | s;),dom(s; | s;))
for all strategies s; and s;, © # j. It is clear that mptb < mprb < % for every NSP game.
We now prove the following theorem:

Theorem 4.3 For a given NSP game with mptb = k, and for a given spread function f(z)
with associated cumulative spread function F(z), the long run invariant distribution is unique
if and only if F(k) < 1.

Proof As we argue above, either s; is accessible from s; or s; is accessible from s;, if and
only if Fi(mst(i +> 7)) < 1. Also, for all ¢ and j, mst(i <> j) < k, so F(mst(i <> j)) < F(k).
Then if F'(k) < 1, we know F'(mst(i <> j)) < 1, and thus either s; is accessible from s; or s,
is accessible from s;, for all strategies s; and s;, ¢ # j. Hence the Markov chain has a single
ergodic set, and a unique invariant distribution, as per Theorem 2.1. If F'(k) = 1, we know
F(mst(i <+ j)) =1, and thus neither of s; and s; is accessible from the other, for some pair
of strategies s; and s;. Hence the Markov chain has multiple ergodic sets, and the invariant
distribution is not unique, as per Theorem 2.1. |

This immediately implies the following useful corollary:

Corollary 4.4 For a given NSP game with mprb = k, and for a given spread function f(x)
with associated cumulative spread function F(zx) such that F(k) < 1, the long run invariant
distribution is unique.

This is useful because the maximum pairwise bistability is much easier to compute than
the maximum pathwise bistability: mprb requires only calculation over all pairs of strate-
gies, while mptb requires calculation over all possible paths between strategies. Moreover,
Theorem 2.1 follows trivially since mprb < %:

Corollary 4.5 For a given NSP game, and for a given spread function f(x) with associated
cumulative spread function F(x) such that F(3) < 1, the long run invariant distribution is
unique.

If we limit ourselves to coordination games, we can prove several other useful results. For
a coordination game, we know 0 < dom(s; | s;) < 1 for all strategies s; and s;. This implies
that 0 < mst(: — j) < 1 for all ¢ and j. Thus, if Fi(z) < 1 for all z € (0, 1), every strategy
is accessible from every other strategy. This implies that the system is ergodic, and hence
there exists a unique invariant distribution where all strategies have non-zero probability
mass. This is the case for the uniform and KMR spread functions; however, for the KMR
spread function, the probability masses may converge to 0 as the rate of exponential decrease
k goes to infinity. Also, if Fi(z) = 1 for all z € (0,1), no strategy is accessible from any
other strategy, and hence the invariant distribution is not unique. This is the case for the
MS spread function.

Finally, we consider some sufficient conditions for the model to give strong equilibrium
selection results, i.e. when all of the probability mass is concentrated at a single strategy.
Let the minimum dominance score of a strategy s; be defined as d; = min;,; dom(s; | s;).
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Then state ¢ is absorbing if and only if F(d;) = 1. Now assume that the game and the
spread function are such that the invariant distribution is unique, that is, F'(k) < 1 for
k< % equal to the maximum pathwise bistability of the game. In this case, the model gives
strong equilibrium selection results if exactly one equilibrium is absorbing. Let D denote
the maximum d; over all strategies s;, and let d denote the second highest d;. Then the
model gives strong equilibrium selection results if F(d) < 1 and F(D) = 1. This includes
any spread function 6(k) where d < k < D. Thus for any game with a unique maximum d;,
there exists a spread function f(z) such that the invariant distribution places all probability
mass on s;.

We also note that d + D < 1, and thus if D > 1, we have d < § < D. This is the case
when there exists a risk-dominant strategy s;, and in this case D = d;. Thus the spread
function ¢ (%) always puts all probability mass on the risk-dominant strategy if one exists.
Even if no risk-dominant strategy exists, we can still have strong equilibrium selection for
some spread function 6(k) for d < k < D < % For example, consider a game similar to
Young’s 3x3 game, but with X Z& Y,Y ?QQ Z,and X 3/<:;Z Z, i.e. the relationship between X
and Z has been reversed. In this case, X is absorbing if F'(3) = 1, Y is absorbing if F(2) = 1,
and Z is absorbing if F/(3) = 1. Hence we will obtain strong equilibrium selection results
for any §(k) where 2 < k < 2; in these cases strategy Z will be selected with probability 1,
even though it is not risk-dominant.

4.6 A note on time to reach equilibrium

Though the stochastic stability models of Kandori et al (1993) and Young (1993) have been
extremely influential in the evolutionary games literature, certain aspects of the models
have caused some researchers to question the applicability of their results. In particular,
both models depend on the occurrence of a large number of simultaneous mutations to
move between the basins of attraction of different equilibria. Since the models assume that
mutations are very rare (€ = 0), and the necessary number of mutations £ may be large,
movements between equilibria occur with a very small probability €¥. Hence, though the
models eventually converge to the risk-dominant equilibrium in 2x2 symmetric coordination
games, they may take a huge number of time steps to reach this equilibrium. As Ellison
(1993) and Binmore & Samuelson (1997, 1999) have argued, for plausible values of the payoffs
and the population size, the Kandori et al and Young models change basins so infrequently
that for all practical purposes the result is determined by the initial condition. At least three
solutions to this problem have been proposed. Ellison (1993) shows that convergence to the
risk-dominant equilibrium is much faster when interaction is “local,” i.e. players interact
with, and choose best replies to, only a few close “neighbors” rather than the population as
a whole. However, this solution is not applicable when the population is well mixed, and
each player interacts with a large sample of the population, not only his close neighbors.
Binmore, Samuelson, and Vaughan (1995) and Binmore & Samuelson (1997) show that
incorporating noise into the selection process itself increases the speed of convergence to the
invariant distribution, by offering the system more opportunities to climb out of basins of
attraction that are not selected in the long run. They give an example where their model
takes 5000 periods to converge, while the Kandori et al model requires an incredible 107
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periods. Nevertheless, several thousand periods is still a long time until convergence to the
invariant, and the waiting time still grows explosively as population size increases. Thus
Binmore & Samuelson (1999) focus on the history-dependent convergence of the short-term
dynamics (which they call the “long run”) as opposed to the limiting distribution of the long-
term dynamics (which they call the “ultralong run”). Since, they argue, the time needed to
reach the “ultralong run” makes this irrelevant in many contexts, the “long run” results will
be more relevant in applied work. We cannot dispute this criticism of the Kandori et al and
Young models: if a model requires a huge number of periods to converge to the invariant
distribution, this distribution may not be as relevant on the time scales under consideration.
However, the “long run” results of Binmore & Samuelson (1999) have the disadvantage of
being strongly dependent on initial conditions: thus even a very poor equilibrium may be
selected if the system happens to start in that equilibrium’s small basin of attraction.

Our solution is to allow large aggregate shocks, as opposed to models such as Kandori et
al, where the impact of shocks is negligible. We find that models with large shocks have the
advantage of converging much more quickly to the invariant distribution: thus the results
of these models are both independent of initial conditions, and applicable on “reasonable”
time scales, assuming that the shocks are sufficiently large. A simple way to think of this
is that large shocks enable the system to move much more frequently between equilibria,
resulting in rapid mixing of the Markov chain. To quantify this claim, we compute bounds
on the speed of convergence for three games, and thus demonstrate that the uniform and
6(3) spread functions (where large shocks are frequent) converge much more quickly than
the KMR spread function (where large shocks are very infrequent). To do so, we rely on a
well-known “minorization” result on the speed of convergence of Markov chains (Rosenthal,
1995), which we present here without proof.

Assume that the Markov chain T is finite (N states), aperiodic, and has a single ergodic
set. Let P = {p;;} be the matrix of transition probabilities from state i to state j. Then for
any initial probability distribution ), we know that the sequence &, = ¥, P* will converge
to the invariant distribution % as £ goes to infinity. To determine the speed of convergence,
we can measure the total variation distance Vi = ||Zx — §ll = 3 Yi1 n|Tki — yi|. We know
that Vi goes to zero as k goes to infinity, and the relative speeds of convergence of two chains
can be measured by how fast V} goes to zero for each. In particular, we choose an arbitrary
constant ¢ = .005, and compute the minimum number of periods k& such that V}, < € for each
chain. To do so, we note that since the chain has a single ergodic set, there exists a state
Jjo and a positive integer kg such that j; is accessible from every state ¢ in ko steps. Then
let g = ijl_"N min;_i _n pf}’. Since pf}’o > 0 for each state 7, we know 3 > 0. Given these
values of ky and 3, Rosenthal (1995) proves that the total variation distance is bounded by
Vi < (1 — B)Lk/kol,

For example, for the 2x2 coordination games given in Tables 3-4, we have X g’ Y,
and thus pxy = F(Z%) and pyx = F(Q%). Also, for any spread function where the invariant
distribution is unique, we know that Y is accessible from X in 1 step. Then 8 = pxy +pyx =
F(%)+F(%), and Vj < (1— 3)*. We now consider the uniform spread function, the § (%) spread

e—100z _,—100

function, and the KMR spread function with F(z) = “——fp— ~ ¢ 1. Then § =  for
the uniform and ¢ (%) spread functions, while 3 for the KMR spread function is approximately
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5 ° 7 1079, Thus we know that the uniform and 6(3) spread functions take 8 periods to
guarantee V, < .005, while the KMR spread function takes approximately 5 x 10° periods.

Next we consider the 3x3 coordination game of Young (1993) with payoffs given in Table

5. For this game, recall that X @ YV, X g} Z,and Y (i) 7. For simplicity, we assume a

spread function with F' (7) < 1; in this case, Z is accessible from X and Y in 1 step. Then

_ _ FHFE)HFE) k : :
B =pyx +pxz+pzy = —F——5——=, and V}, < (1 — B)*. For the uniform spread function
U, we compute 8 = %, and thus the total variation distance V} is guaranteed to be less
than .005 in 12 periods. For the 6(3) spread function, 8 = 3, and thus V; < .005 in 14

—300/7 _
¢ ~ 8 x 1072,

periods. For the KMR spread function given above, we compute
and thus V, < .005 in approximately 7 x 10 periods.
Finally, we consider the NSP game given in Table 6, assuming p = 1. For this game, we

have X - Y - 272 ->W —- X, X é& Z, and Y W We first consider the case where
F(3) < 1, allowing transitions between X and Z, and between Y and W. In this case,
any strategy is accessible from any other strategy in 2 periods: for example, strategy X is
not accessible from strategy Y in 1 period, but is accessible from strategy Y in two periods
via either Z or W. The minimum transition probablhty for each of the four strategies is
2 X @ X %%) = F; 2) Thus we calculate 8 = ( ), < (1 — B)*/2 For the uniform
and (5(%) spread functions, we have g = }l, and thus Vi < .005 in 37 periods. For the
KMR spread function, we have 3 = 6;50 ~ 10722, and thus the total variation distance is
guaranteed to be less than .005 in approximately 10?3 periods. However, we can also derive

a tighter bound by noting that every strategy is accessible from any other strategy in three

periods, with minimum probability ( (0)) 5 4, regardless of the spread function. In other
words, we can follow the cycle of dominance relatlons X—>Y —>7—>W — X, until
reaching any of the four strategies. Thus = & = 16, and Vi < (1 — B)¥/3). This gives us

Vi < .005 in 247 periods.

Thus, for the game in Table 6, the cycle of dominance relations allows the KMR spread
function to converge to the invariant distribution in only ~ 250 periods. For the other two
examples, however, the KMR function takes a very long time to converge, on the order of 5
billion periods for the 2x2 coordination game, and 70 billion billion periods for Young’s 3x3
coordination game. This was assuming that the spread function f(z) decreases as e~1%%; this
value approximates a population of 22 individuals with a 1% chance of mutation. For a larger
population, or smaller probability of mutation, the invariant distribution takes even longer
to converge. For the uniform or §(1) spread functions (where large shocks are frequent),
on the other hand, convergence was extremely fast in all examples, ranging from 8 to 37
periods. This demonstrates that models with large shocks converge quickly enough for the
invariant distribution to be an accurate reflection of the behavior of the model on reasonable
time scales.

5 The Finitely Repeated Prisoner’s Dilemma

We now consider the Prisoner’s Dilemma game, as given in Table 1, in more detail. The
Prisoner’s Dilemma is a widely used model of interactions between individuals with partially
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conflicting goals, where each player must choose between cooperation for mutual benefit,
and defection for individual benefit (harming the other player). If both players cooperate,
each receives a high payoff R as a reward for mutual cooperation. If both defect, each
receives a low payoff P as a punishment for mutual defection. If one player defects while
the other cooperates, the defector receives a very high payoff T as a temptation to defect,
and the cooperator receives a very low sucker payoff S. For the Prisoner’s Dilemma game
in Table 1, strategy X corresponds to cooperation and strategy Y corresponds to defection;
we assume the payoffs ' =3, R = 2, P =0, and S = —1. Note that the Pareto-optimal
result (X,X) is dominated by the strict Nash equilibrium (Y,Y"). Thus, despite the fact that
mutual cooperation is preferred to mutual defection, each player scores higher if he defects
regardless of the opponent’s choice, and hence mutual defection is the only rational outcome.

In an “Iterated Prisoner’s Dilemma” (IPD), a Prisoner’s Dilemma interaction is repeated
between the same two players over a number of rounds. Based on past results, reciprocal
altruism can develop, enabling mutual cooperation to become a rational option. The IPD
game has sparked various theories of the evolution of cooperation based on reciprocity, and
these models have been applied to fields ranging from economics to biology (Axelrod &
Hamilton, 1981; Maynard Smith, 1982; Axelrod, 1984).

The Finitely Repeated Prisoner’s Dilemma (FRPD) is a variant of the Iterated Prisoner’s
Dilemma in which the number of rounds M is given and known in advance by both players.
We might expect that two rational strategies would be able to achieve cooperation in the
FRPD; however, under the assumption of common knowledge of rationality, we can use an
argument of backward induction to show that each player defects continually. This argument
proceeds as follows: on round M, both players will defect, as in the one-shot Prisoner’s
Dilemma. Then on round M — 1, both players know that, whatever they do now, both will
defect on the next round in any case. Since the player’s move on round M — 1 will not
influence the opponent to reciprocate cooperation on future moves, it is rational to defect
on round M — 1. This argument can be applied to round M — 2 and each preceding move,
in turn, and we reach the conclusion that two rational players will defect on every round.
This argument was first put forth by Luce & Raiffa (1957), and Aumann (1995) proved
that common knowledge of rationality implies the backward induction solution. But human
players tend to treat the FRPD as a Prisoner’s Dilemma interaction of indeterminate length
until nearly the end of the game, reciprocating the other player’s cooperation until the final
few rounds. Thus we have a “paradox of rational choice” in which perfectly rational agents
perform significantly worse than agents with imperfect rationality.

Traditional “solutions” to the Finitely Repeated Prisoner’s Dilemma attempt to justify
cooperation by weakening the assumptions of common knowledge of (perfect) rationality
or of the structure of the game. The best known result along these lines is the “Gang of
Four” paper (Kreps et al, 1982): Kreps et al explain cooperation by incomplete information
about one or both players’ options, motivation, or behavior. They prove an upper bound
on the number of defections in the FRPD if players believe that one player may possibly
(with probability €) be committed to a “Tit for Tat” (reciprocating) strategy. Also, if both
players are uncertain about the other’s payoff function, they prove that both cooperative
and non-cooperative sequential equilibria are possible. Similarly, Fudenberg & Maskin (1986)
assume that one player may possibly be “crazy” (punishing defections that would otherwise
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be too near the end of the game to be deterred by credible threats), resulting in cooperative
equilibria. Neyman (1999) shows that cooperation can be achieved in the FRPD if the
number of stages is not common knowledge; even an exponentially small deviation is sufficient
for cooperation. Neyman (1985) considers finite automata playing the FRPD, and shows
that bounded complexity results in cooperation. Finally, Radner (1986) shows that if players
“satisfice” rather than strictly optimizing (i.e. each player is satisfied if he gets e-close to
the Nash equilibrium payoff), then cooperation is possible.

Evolutionary models have also been applied to the Finitely Repeated Prisoner’s Dilemma,
but most of the results in the literature tend to reinforce the backward induction argument
rather than suggesting how cooperation can emerge. In fact, assuming a simple invasion
model based on the criteria of Maynard Smith (1982), we observe an evolutionary equivalent
of the backward induction argument. First assume that we have a population of continual
cooperators; this strategy can be invaded, and taken over, by a strategy that cooperates until
move M —1 and defects on move M. The strategy that cooperates until move M —1, in turn,
can be taken over by a strategy that cooperates until move M — 2, and defects thereafter.
This process continues, with each strategy being invaded by a strategy that starts defecting
one round earlier, until the population consists entirely of continual defectors. Continual
defection is evolutionarily stable, and thus the evolutionary process ends with a population
of defectors.

In other evolutionary models, cooperation may be quasi-stable and persist for long peri-
ods of time, but in the long run, behavior eventually converges to defection. Nachbar (1992)
assumes a polymorphic population (with all strategies initially present), and allows this pop-
ulation to evolve according to a deterministic, payoff-monotone selection dynamics. Again
we observe a form of “evolutionary backward induction”: each pure strategy in turn has a
time interval where it achieves a large population share, then its population share decreases
as it is replaced by the strategy which starts defecting one round earlier. This continues
until the population consists entirely of strategies which defect on every round. Interest-
ingly, Nachbar’s simulations demonstrate that partial cooperation can flourish for extended
periods of time. Since defectors perform poorly in early (mostly cooperative) stages, their
population shares are small, and it takes a long time before they can recover a significant
population share under the replicator dynamics. He gives an example of a 6-round FRPD
where the strategy “cooperate in the first round and defect afterward” maintains a 99% pop-
ulation share for 300 periods of simulation, before defectors take over. Nevertheless, in the
long run, defection is permanently triumphant. Cressman (1996) extends Nachbar’s results,
proving that “any initially polymorphic population evolves under the replicator dynamics to
one where all strategy types remaining defect against each other at every stage.”

However, some researchers have observed that a defecting population, though immune to
isolated small mutations, might be invaded by a finite proportion of a cooperative strategy.
Axelrod (1984) observes that, though defection is evolutionarily stable, the invasion of a
small proportion of conditional cooperators might topple the defecting regime. Schuessler
(1989) concludes from this that “a cyclical rise and decline of cooperativeness has to be
expected if random perturbation occurs ... the gradual decline of cooperation holds true
as a general tendency, but not for all periods of the evolutionary process.” In fact, the
conclusion we draw from this is much stronger: shocks resulting in a finite proportion of
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mutants will enable cooperators to dominate the population in the long run. This is very
different from the results of Nachbar and Cressman, where cooperation is “quasi-stable” but
defectors eventually triumph. In the next subsection, we prove that, for sufficiently long
FRPD games, the population is dominated by a cooperative strategy almost all of the time
in the long run invariant distribution. Moreover, this is true not only for models with very
large shocks, but holds for any model that satisfies the LASH property (i.e. assumes a finite
proportion of invaders).

5.1 Finitely Repeated Prisoner’s Dilemma: results

To simplify our calculations, and present the paradox in its most common and essential form,
we assume that once cooperation has failed (i.e. either player has defected), it cannot be
resumed, and the rest of the game will consist of mutual defection. Since we have assumed
P = 0, this is equivalent to an FPRD game that stops upon either player’s defection.
Alternatively, we can think of this as a standard no-noise FRPD, with all strategies chosen
from the strategy space s;, i = 1...(M + 1). A strategy s; will cooperate on turn & if and
only if both of the following are true: k£ < ¢, and its opponent has cooperated on turns
1 through £ — 1. Thus s; always defects, and s;;,; always reciprocates cooperation with
cooperation.

We now calculate the total payoff w;; to strategy s; against strategy s;, in an M-round
FRPD game. There are three cases to consider. First, if i = j, both strategies will cooperate
until round i — 1 and defect thereafter, receiving total payoff 2(i — 1). Second, if i > j,
strategy s; receives j — 1 reward payoffs, followed by a sucker payoff. Thus its total payoff
is 2(j — 1) — 1. Third, if 7 < j, strategy s; receives i — 1 reward payoffs, followed by
a temptation payoff. Thus its total payoff is 2(i — 1) + 3. We can summarize this as
wi; =2min(i — 1,7 — 1) +3(i < j) — (¢ > j), where (i op j) equals 1 if the expression is true
and 0 otherwise. Now we compute the evolutionary relationship between strategies s; and
sj, assuming without loss of generality that ¢ > j. If i — j = 1, we find w;; — w;; = 1 and
Wi — Wi = 1, and thus s; — Sj- Ifi—7 > 1, we find Wjj— Wi = 1 and Wi —Wj; = Q(i—j—l)—l,
and thus s; & sj, where m = m
of type s; can invade a population of type s; even if they make up only a very small (but
finite) proportion of the population. On the other hand, if shocks are negligible (as in the
MS spread function), then s; cannot invade. We also note that, for any spread function,
strategy s; is accessible from every other strategy. This implies that there is a single ergodic
set, and thus the long run invariant distribution is unique.

We now examine the invariant distribution ¢, first for models with small shocks (the
MS spread function) and then for models with large shocks (all other spread functions we
have considered). For the MS spread function, the only possible transitions are from s; to
sj_1, for all j > 1. Hence the number of rounds of cooperation decreases monotonically,
until s; (the strategy that defects continually) dominates the population. s; is the unique
absorbing state, and thus it receives all of the probability mass in the invariant distribution.
For models with large shocks, on the other hand, we expect to observe two phenomena
in the FRPD: “evolutionary backward induction” (s; invaded by s;_1) and “evolutionary
forward progression” (s; invaded by s;, i > j). For a large number of rounds M, and

Note that if # > j, we have m ~ 0, and thus mutants
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for most strategies s;, there are a large number of strategies s; with ¢ > j. Thus we
would expect evolutionary forward progression to be much more common than evolutionary
backward induction. As a result, we would expect the evolutionary process to be “pushed”
toward continual cooperation rather than continual defection, resulting in domination of the
population by strategies that cooperate until nearly the end of the game.

We now calculate the long run invariant distribution g, for various game lengths M,
initially assuming a uniform spread function. For each M, we record three values: the best
strategy s; (the strategy with the highest y,s;), the proportion of the time the population is
dominated by “cooperative” strategies (strategies that cooperate at least 90% of the game),
and the proportion of the time the population is dominated by “uncooperative” strategies
(strategies that cooperate at most 10% of the game). These results are given in Table 8.

From these results, we observe that defectors dominate the population for very short
games, but for longer games, the population is dominated by strategies that cooperate until
near the end of the game. For M = 20, less than 1% of dominating strategies were unco-
operative, and more than 50% of dominating strategies were cooperative. For M = 800,
less than 0.01% of dominating strategies were uncooperative, and 99% were cooperative. sy,
the strategy which always defects, was the most successful for M < 3, but for all M > 3,
the most successful strategy was s,s, the strategy that cooperates through the next-to-last
round.

Our empirical results suggest that the proportion of “cooperative” strategies goes to 1 as
M goes to infinity. In fact, we can prove a much stronger result than this: for any constant &,
0 < k < 1, the proportion of strategies cooperating through turn kM goes to 1 as M — oc.
In other words, if we had chosen 99.999% cooperation instead of 90% as the threshold for
a “cooperative” strategy, the population would still be dominated by cooperative strategies
for large enough M. Moreover, this is true not only for the uniform spread function, but for
any LASH spread function (i.e. all of the spread functions we have considered, except for
MS). To show this, we first prove the following lemma:

Lemma 5.1 For the Finitely Repeated Prisoner’s Dilemma game, limy_,o @iy = 1 and
limy,_, o0 (k)i = 0 for any spread function satisfying the LASH property.

Proof For £k > 1, we know s; & Sitk, Where m = 1 — Q(k—l—l) Thus limg_, o Gi(itk)

— limg_yo (1 _F (ﬁ)) — 1 — limpo F(k). Since the spread function is LASH, we

know limy_,o F(k) = 0, and thus limy_, gitiyxy = 1. Similarly, limy_, g(itk)i is equal to

limg o (1 _F (1 _ ﬁ)) — 1 — limy_,1 F(k). Since the spread function is LASH, we

know limy_,; F'(k) = 1, and thus limy_, g1k = 0. |

Now consider an M-stage Finitely Repeated Prisoner’s Dilemma game, with stage payoffs
given in Table 1 and the strategy space defined as above. Let i3, be the unique invariant
distribution for this game. Let f(x) denote the spread function for this game, with associated
cumulative spread function F'(z). We then state the main theorem as follows:

Theorem 5.2 If the spread function f(z) satisfies the LASH property, then for any constant
kE,0 <k <1, umymi = 1 and Y, 1, ymi — 0 as the number of stages M goes to
infinity.
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Proof For simplicity of notation, we assume that kM is not an integer. We call a strategy
s; “cooperative” if kM < i < M + 1, and “uncooperative” if 1 <4¢ < kM. Let yuig, denote
the proportion of cooperative strategies in the invariant distribution, and ¥4, denote the
proportion of uncooperative strategies. We will show that, for any fixed € ~ 0, limp;_ o0 Yiow <
e. It then follows trivially that limas_,o0 Yiow = 0, and thus limps_,o0 Ypign = 1.

First, let p;o, denote the probability of switching to an uncooperative strategy, given that
the current strategy is cooperative:

M+1 kM
. Zi:[kM] Ymi Z]L-zljpij
Piow = M1 .
D i k] Yai

Similarly, let ppign denote the probability of switching to a cooperative strategy, given that
the current strategy is uncooperative:

kM M+1
ZZL:1 Ly 2Tk Pis
S s

We know that 10, = I#"ghm. From this, we can find an upper bound for y;,,, by computing

an upper bound for p;,, and a lower bound for ppig,. To do this, we rely on the following
observations: for j > 4, p;; is decreasing with ¢ and increasing with j, and pj; is decreasing

Phigh =

with 7 and increasing with 7. Thus pj,,, the weighted average of ZJULAI/[J pi; for all ¢ =
[kM]...(M + 1), is bounded by:

kM v
§ : _ E : [kM]j
Plow < p Premi; = p M+1

Similarly, phign, the weighted average of Z]Nf;klm pij for all i =1...|kM], is bounded by:

M+1 M+1

_ LT
Phigh = . Z PleMm|j = | Z m
J=[kM] j=[kM]

We now define Z = €(1 — k)M. Then we can compute the following bounds for p,, and

Phigh:
7] qremij el qremij 7] qreM (kM| —[Z el qremM | kM
Diow < [kM]j + [kM]j < Z [kM](kM]|-[Z]) + Z [kM][kM]
- M+1 , M+1 : M+1 , M+1
j=1 j=|kM]—|Z] j=1 j=kM]|—|Z]

ArkMI (kM| [2]) [ Z]
— (kM| —[Z
(LeM] = 121) M+l M+l

_ B _ qrem)(em]—[ei—k)m]) | [€(1 —k)M]
= (lkM] - [e(1 — k)M]) Y] T
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[kM]+|Z] M+1 [kM]+|Z] M+1
q kM |j

q\kM|j kM |[kM)] QM |([kM]+[Z])
N > ZIEMIIEM ]
Phigh = _Z M1 > M+1° _Z M1 > M+1
j=TkM] G=TEM] +12] j=TkM] G=TkM]+12]

9kM|([kM]+[Z])
=(M — |EM| — |Z
(M — (kM) — | z)) LML

_ _ _ _ q1kM|([kM]+[e(1—k)M])
= (M — |kM] — [e(1 — k)M]) by .

We now apply Lemma 5.1, giving us qpear (k] -[e(i—k)nm]) — 0 and quear)(tras)+[e(i—k)m]) — 1
as M — oo. Thus we have:

. . le(l—Ek)M]
< -— 7 @ = — k).
R S
. M- (kM| - el —k)M]|
P = i M +1 = mal=h
. . Diow 6(1 - k)
1 ow = 1 < = €.
MI_I>IC1’° u Ml_rgo Plow +ph,z'gh 6(1 - k) + (1 - 6)(1 - k) ‘

Thus for any €, limus_y00 Yiow < € and limas—o0 Ynigh = 1 — Yiow > 1 — €. Therefore 404
goes to 0, and ypign goes to 1, as M goes to infinity. |

Thus, if the game length is sufficiently long, cooperative strategies dominate the popula-
tion for any LASH spread function. This does not include the MS spread function, of course,
but it does include the KMR spread function for any fized rate of decrease k. Note that this
result for KMR is dependent on the order of limits: if we take £ — oo before M — oo, then
the KMR spread function does not obey the LASH property, and gives results identical to
MS (i.e. convergence to continual defection). It should also be noted that, for models where
F(z) = 1 except for z = 0, very large M may be required for cooperation to succeed. To
demonstrate this, we compute (for a variety of spread functions) the minimum M such that
an invasion of s; by sps41 is successful with probability gy(ar41) > % Since s; & Sy41 With

m=1- m, we must find the minimum M such that F (%) > 1. For the uniform

or 6(3) spread functions, F(z) > 1 for z < 1, and thus we have M > 2. On the other hand,
consider the interval-uniform spread function U (0, €) for a small, fixed € &~ 0. In this case,
we have F(z) > % for x < £, and thus we have M > 1+ % For example, for e = 0.001, we
obtain M > 1001. Similarly, for the delta spread function §(e), we obtain M > 1+ 5-, and
thus M > 501 for € = 0.001. Finally, for the KMR spread function F(z) ~ e %% we have
M>1+ ﬁ; for £ = 1000, we have M > 722. Thus for some spread functions, the game
length must be very long for cooperation to be rational. Nevertheless, since cooperation is

rational for long enough games, the evolutionary FRPD paradox is resolved.
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6 Games with stable polymorphisms

Up to this point, we have considered only games which satisfy the “no stable polymorphisms”
(NSP) property: for any pair of strategies s; and s;, either w;; > wj; or wj; > wjj, or both.
Games with this property are “nice” in the sense that, given an initially polymorphic popu-
lation consisting of two strategies, the population will evolve under the replicator dynamics
(or any other payoff-monotone selection dynamics) to a state where only a single strategy
is present. Thus, under the assumptions that mutations are isolated (i.e. the population is
given sufficient time to evolve to a short-term stable state between mutations) and that only
a single type of mutant can invade at a time, we can consider the long-term dynamics as a
series of transitions between monomorphic populations (populations consisting only of a sin-
gle strategy type). This enables a simple Markov chain representation, where the number of
states is equal to the number of pure strategies, and transition probabilities are independent,
of the underlying short-term dynamics.

For games which do not satisfy the NSP property, however, it may be possible for multiple
strategies to coexist in a stable polymorphic population. Consider an interaction between
two strategies s; and s;, for which the NSP property is not satisfied, i.e. w;; > w;; and
wj; > w;. There are four cases to consider. First, if w;; > w;; and wj; > w;;, then no
matter what the initial proportions of strategies s; and s;, the two strategies reach a stable
equilibrium where the proportion of strategy s; is given by:

Wi — Wjj

p =
Wi — Wjj + Wji — Wi

In this case, we write s; & s, or equivalently s; g S;-

If w;; > w;; and wj; = wy;, any initial proportion of strategy s; will take over the
combined population, reducing the population share of strategy s; to zero. However, we
are not guaranteed that strategy s; will be completely wiped out. As Neill (2003) shows, a
small number of s; strategists may be able to survive, under the more realistic assumptions
that the population is very large but technically finite, and that players face all members of
the population excluding themselves. This can make a huge difference if the population is
then invaded by a third strategy, possibly allowing s; to reemerge. According to Neill’s large
population ESS, strategy s; will wipe out strategy s; if w;; > wj;. In this case, s; dominates

sj, and we write s; — s; as above. If w;; < wj;, a finite number M = ZE=20 of 5, strategists
27

Wij —Wjj
can survive. In this case, we say that s; “quasi-dominates” s;, and write s; — s;. Under the
simpler assumption that players face all members of the population including themselves, s;
wipes out s; in any case, and we can treat domination and quasi-domination as identical.
Conversely, if wj; > w;; and w;; = wj;, then s; dominates s; if wj; > w;;, and quasi-dominates
s; otherwise.

Finally, if w;; = wj; and wj; = w;, then (assuming that the population size is infinite)
both strategies achieve identical payoffs in the combined population.? We denote these
interactions by s; <+ s;. In this case, under a payoff-monotone, deterministic selection
dynamics, the population shares of strategies s; and s; remain constant (i.e. the proportion

4Neill (2003) deals with the case of a large but finite population, which we do not discuss here.
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of invaders remains at its initial value as determined by the spread function). However, we
generally assume that drift occurs: the population shares of s; and s; are affected by shocks
which are vanishingly small compared to the selective pressures. These tiny perturbations
can usually be ignored, but must be considered in cases when there is no selective pressure.
As discussed below, we make certain assumptions on the type of drift which allow us to
simplify our calculations; see Binmore & Samuelson (1999) for a more detailed discussion of
the impact of drift on the short-term selection dynamics.

In all of these cases (except for dominance), the result of an evolutionary interaction
between two strategies may be a polymorphic population in which the two strategies co-
exist. The proportions of the two strategies in the population may be fixed (as in stable
equilibrium) or subject to drift and other model-dependent parameters. A further compli-
cation is introduced on the next time step of the long-term dynamics, when another mutant
strategy attempts to invade the polymorphic population. The evolutionary result of an in-
teraction between three or more strategies is much more complex to analyze: in addition to
stable (monomorphic or polymorphic) states, a variety of other phenomena can occur, in-
cluding neutral oscillations, heteroclinic cycles, and chaotic attractors (Nowak & Sigmund,
1989). Moreover, the result may be dependent on the initial proportions of each strategy,
and since the population shares may exhibit significant (cyclic or chaotic) fluctuations in
multi-strategy interactions, these conditions become impossible to predict or even approxi-
mate. Additionally, the number of possible “stable states” of the short-term dynamics grows
exponentially with the number of strategies considered, making the model intractable for all
but the simplest non-NSP games.

Thus, it is clear that some simplifying assumptions must be made if we wish to apply
this model to more general classes of games. In particular, we can imagine some process by
which a single strategy type is chosen from a polymorphic population, and assume that this
process is carried out whenever the short-term dynamics evolves to a polymorphic stable
state. To examine some reasonable processes of “single strategy selection,” we return to the
“imaginary play” scenario discussed above. We assume a boundedly rational player with very
limited resources, who can only maintain a single strategy (his current “favorite”) in memory.
Thus he changes strategies by a process of “discovery,” selecting a new strategy randomly
from the strategy space, and choosing between the new strategy and his current favorite.
As above, since switching is costless, the current favorite is given no bonus (or penalty) for
being established. In the case of a stable polymorphism, one simple solution would be for
the player to always choose the risk-dominant strategy. In this case, s; is selected when
W;j — Wjj > Wj — Wi, or in other words, s; & sj with p > % This deterministic choice of the
risk-dominant strategy has parallels in evolutionary and adaptive scenarios: it corresponds
to populations whose choices are determined by majority rule, whether by voting or by
any conflict where the majority is able to triumph. Alternatively, the boundedly rational
player can follow a stochastic decision rule, where he chooses the risk-dominant strategy
with probability equal to the level of risk-dominance: thus if s; & s;, strategy s; would be
chosen with probability p. The stochastic choice method also has parallels in evolutionary
and adaptive scenarios: it corresponds to picking a single individual out of the combined
population at random, and carrying his strategy on to the next time step. This may occur
when the choice of a population is determined by the rule of a dictator, or if the new
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population results from the offspring of a small number of migrant individuals (i.e. the
well-known “founder effect” in evolutionary biology). In either of these cases, we assume for
simplicity that a dominant or quasi-dominant strategy is always selected, and in the case of
s; <+ s;, that each of the two strategies is selected with probability % The first assumption
is equivalent to assuming that the random fluctuations due to drift will eventually wipe out
any small (measure zero) proportion of mutants. The second assumption is equivalent to
assuming that the drift has a directed component favoring one strategy or the other, and
that the direction of drift is determined randomly.

More generally, we can define a monotonically increasing function G(z) on the interval
[0,1], such that G(0) = 0, G(1) = 1, and G(1 — z) = 1 — G(z). This function gives the
probability that a strategy is selected (at the end of a time step) if it makes up proportion
x of a stable polymorphic population. Note that, since a two-strategy stable equilibrium
does not depend on the initial proportions of the two strategies, the function G(z) is always
“fair,” giving no advantage to the previously established strategy. The deterministic rule
above corresponds to a function G(x) which equals 0 for z < %, % for x = %, and 1 for
T > % The stochastic rule above corresponds to a function G(z) = . Under our simplifying
assumption of single strategy selection, we can extend many of the general results in Section
4. For example, a system with the ¢ (%) spread function and deterministic single strategy
selection will always strongly select the risk-dominant strategy if one exists. The notion of
maximum pathwise bistability can also be extended to non-NSP games: in this case, we
calculate shock thresholds for all paths, excluding paths that are “blocked” by having some
sy & s(i+1) such that G(p) = 1. Given the maximum pathwise bistability defined in this
way, Theorem 4.3 holds for all games; moreover, we still have mpth < %, and thus Corollary
4.5 holds for all games.

6.1 Games with stable polymorphisms: results

We now apply our model to examine various extensive-form games common in the literature
on forward and backward induction; typically these games do not satisfy the NSP property. A
great deal of work has been done on applying evolutionary and adaptive models to extensive-
form games: Fudenberg & Levine (1998, Ch. 6-7) present an excellent overview. We focus
here on the large-population models of Noldeke & Samuelson (1993), Gale et al (1995),
Cressman & Schlag (1998), and Hart (2002). These approaches tend to treat extensive-form
games differently than their strategic-form equivalents, assuming a distinct population of
players at each node of the extensive-form game. Moreover, Noldeke and Samuelson’s model,
as well as the fictitious play models discussed by Fudenberg and Levine, consider players
characterized both by actions and by conjectures about the composition of the population
at (reached and unreached) nodes. Interestingly, most of these models do not lend complete
support to the backward induction argument: except for special classes of games, we may
have evolutionarily stable equilibria other than the ones selected by backward induction.
For Hart’s model, on the other hand, the backward induction equilibrium is the unique
evolutionarily stable outcome, assuming large populations and a low mutation rate.

Rather than assuming a distinct population at each decision node, we take the approach
originated by Selten (1980), considering the “symmetrized normal form” in which players
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condition their strategy on their role (for example, “play A as player 1, or b as player 2”). In
this model, players’ expected payoffs are computed by assuming equal probabilities of being
assigned to either role. For example, consider the simple “2-legged centipede” game shown
in Figure 1; we compare the relative performance of the four role-dependent strategies Clc,
Cd, Dc, and Dd. The centipede game can be thought of as a “gift-giving” game similar to
the FRPD, except that players alternate turns rather than choosing simultaneously. The
(asymmetric) normal form is given in Table 9, and the symmetrized normal form in Table
10.

For this game, we compute D¢ — Cc¢ — Cd — Dd. We also have D¢ — Cd, D¢ <> Dd,

and Cc £ Dd. Assuming a uniform or 6(%) spread function, we obtain [Cc Cd Dc Dd] =
7 10 3 15

[35 35 35 32, and thus mutual defection is selected in the 2-legged centipede game. In this
case, our model agrees with the backward induction solution. For longer centipede games,
we would expect cooperative strategies to be more successful, as in the Finitely Repeated
Prisoner’s Dilemma. For a 4-legged centipede game, as given in Figure 2, we find that the
population is dominated 81% of the time by strategies which cooperate at least once in
both roles, assuming the uniform spread function. Assuming the ¢ (%) spread function, this
fraction increases to 87%. For a 40-legged centipede game, we find that the population is
dominated by cooperative strategies almost all of the time: for the 5(%) spread function,
strategies that cooperated at least 18 rounds (out of 20) dominated the population 97%
of the time. Similarly, for the uniform spread function, strategies that cooperated at least
18 rounds dominated the population 80% of the time. Thus our results for the centipede
game confirm our FRPD results: defection is dominant for very short game lengths, but
cooperation dominates for longer games.

Next we consider a simplified version of the “ultimatum” game (Gale et al, 1995). In
this game, the first player (the “proposer”) must choose whether to make the “fair” offer
A or the “unfair” offer B. Then the second player (the “responder”) must choose whether
or not to accept the offer; if the offer is accepted (choice y), both players profit, but if the
offer is rejected (choice m), neither player profits. We make the further assumption that
the second player always accepts a fair offer (and this is common knowledge), resulting in
the game in Figure 3. The unique backward induction equilibrium is By (proposer makes
the unfair offer, and responder accepts the offer); however, An (proposer makes the fair
offer, responder rejects unfair offers) is also a (weak) Nash equilibrium of the game. Gale et
al (1995) assume separate populations of proposers and responders; they show that which
equilibrium is selected depends on the relative rates at which these populations evolve. If
proposers learn sufficiently fast compared to responders, play can converge to the weak Nash
equilibrium. Though this equilibrium is not asymptotically stable, Binmore & Samuelson
(1999) have shown that it can become asymptotically stable in games with drift. We again
consider the symmetrized normal form, and compare the relative performance of the four
role-dependent strategies Ay, An, By, and Bn. For this game, we calculate Bn — An,
Bn — By, and Ay — By. We also have Ay <> An, Ay b Bn, and An ]é)g By. Based on
these relations, we would expect By to have a higher proportion of the probability mass than
An, since By dominates Ay, and An does not. For a fair spread function with stochastic
single strategy selection, we find the invariant distribution [Ay An By Bn| = [.1000 .3364
5545 .0091]. Similarly, for a fair spread function with deterministic single strategy selection,
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we find [Ay An By Bn] = [; 5 3 0]. Thus our model selects the backward induction
equilibrium in the ultimatum game, giving it approximately 55% of the probability mass;
the weak Nash equilibrium also dominates the population a significant fraction of the time,
while the other two strategies are rarely dominant.

Finally, we examine a more complicated game: the “Dalek” game of Kohlberg & Mertens
(1986). This game is given in Figure 4; we initially assume p = 3. In this game, if player
1 chooses T (the “outside option”), then both players receive 2 points; if he chooses M or
B then player 2 must guess which letter he has chosen, and both players receive 3 points or
1 point if he correctly guesses m or b respectively. Both Mm and 7'b are Nash equilibria,
but Kohlberg & Mertens use an argument of forward induction to conclude that Mm is the
only “strategically stable” equilibrium. This argument proceeds as follows: player 1 will
never choose B, since no matter what player 2 chooses, player 1 would have been better off
choosing T'. This implies that player 2 should always guess m, and thus player 1 should always
choose M rather than 7. We again consider the symmetrized normal form, and compare the
performance of the six role-dependent strategies. We do not list all of the 15 evolutionary
relations between these strategies, but we note that the forward induction equilibrium is risk-
dominant, and it thus receives all of the probability mass for the §(3) spread function with
deterministic single strategy selection. It also receives the majority (57%) of the probability
mass for the uniform spread function (with stochastic single strategy selection), while the
outside option receives 37%. On the other hand, consider the same game with p = %: player
2 receives only half a point for correctly guessing m. In this case, the forward induction

solution is no longer risk-dominant, since T'b g Mm. Thus we find that the outside option
receives 80% of the probability mass, and Mm only 20%, for the 6(%) spread function;
similarly, the outside option receives 54% of the probability mass, and Mm only 39%, for
the uniform spread function. This supports the observation of Binmore & Samuelson (1999)
that the forward induction criterion has little predictive power: in games where the forward
induction solution Mm is risk-dominated by the outside option 7', we would not expect
Mm to be selected.

6.2 More games with stable polymorphisms

At this point, we revisit the simplifying assumption of “single strategy selection.” To what
extent is this assumption necessary, or reasonable? As we have argued above, simplifications
are necessary in the general case, since multi-strategy interactions can be both extremely
complex and unpredictable. On the other hand, for some simple non-NSP games, the evo-

lutionary results can be easily computed without our assumption. For example, consider
the symmetric “hawk-dove” game given in Table 11. For this game, we calculate X U(—? Y.

Thus, given any mixture of strategies X and Y, the short-term selection dynamics always
converges to a stable state where the population consists of %X + %Y. Hence the interac-
tion is sufficiently simple that single strategy selection is unnecessary; moreover, through
the invariant converges to [X Y] = [5 1] in any case, it makes more sense to think of the
population as always being polymorphic rather than being dominated by each strategy half
the time, and thus our analysis is more accurate without the simplifying assumption.

This brings up the second half of our initial question: to what extent is single strategy
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selection reasonable? For cases of drift or quasi-dominance, it is very reasonable to assume
that (given sufficient time) a monomorphic population will result; this can be guaranteed
with some simple assumptions on the type of drift, as discussed above. For stable equilibria,
on the other hand, selective pressures prevent the population shares from varying significantly
from their equilibrium levels, and hence it is very unlikely that a monomorphic population
will result. Moreover, each strategy in the polymorphic population scores higher than if
it was the only strategy type present: in other words, single strategy selection weakens the
surviving type, making it more susceptible to future invasions. This may significantly reduce
the long-term success of the strategies with stable equilibrium relations, and hence benefit
other strategies which do not form stable equilibria. For an extreme example, consider the “2-

stable” game in Table 12: for this game, we calculate X 2@’ Z,Y 2@’ Z,and X 1/—3 Y. Thus
under the assumption of single strategy selection, it is clear that Z receives the majority
of the probability mass: for a uniform spread function, we calculate [X Y Z] = [} 1 1].
However, we find that the stable combination of X and Y is very resistant to invasion by
Z: since X and Y each score 500 against %X + %Y, we find %X + %Y 1@1 Z. Thus, for
a more accurate model of this game, we can consider a four-state Markov chain, where the
states are X, Y, Z, and (X 4+ Y). Whenever X is selected to invade Y or vice-versa, the
state transitions to (X +Y'). State Z cannot transition to (X +Y), since this would require
multiple mutations. Finally, the only transition from (X +Y) is to Z, but this occurs rarely
(with probability -:). Given this revised transition matrix, we calculate [X ¥ Z (X +Y')]
= [.0020 .0020 .0098 .9862] for the uniform spread function: thus the population is almost
always dominated by the polymorphic combination of X and Y, and not by strategy Z.
Thus the simplifying assumption of single strategy selection, when applied to certain
games containing stable equilibria, may dramatically alter the long run invariant distribu-
tion of strategies. Because of this, a better idea is to treat the stable equilibrium as a
separate population state and to include this in the transition matrix. For some games,
the complexities of multi-strategy interaction make this difficult or impossible, but for other
games this can be done relatively easily. For example, we consider the asymmetric version
of the hawk-dove game, comparing the four role-dependent choices Xz, Xy, Yz, and Yy.

For this game, we calculate Xz,Yy — Xy, Yzx. Also, we have Xz 1/—2 Yy and Xy ig Y.
Thus, with the simplifying assumption of single strategy selection, we obtain [Xz Xy Yz
Yyl =0 % % 0]. In other words, the two unconditional strategies “play X” and “play Y
are dominated by the two strategies which choose X or Y conditioned on their role. What
happens if we do not assume single strategy selection? In this case, we must consider the
stable equilibrium of Xz + 1Yy, and compute its evolutionary relations to Xy and Yz.
We find that Xy achieves a payoff of % against a 50/50 mixture of Xz and Yy, identical
to the payoffs of X2 and Yy against this mixture. However, Xy achieves a self-payoff of 1,
while Xz and Yy only score % against Xy. Thus Xy dominates the mixture of Xz and Yy;
using identical reasoning, Yz also dominates the mixture of Xz and Yy. Hence the role-
dependent strategies Xy and Yz still receive all of the probability mass, and the invariant
distribution is unchanged. In this case, we obtain identical results with or without single
strategy selection, and thus our assumption is both reasonable and useful.

Finally, we revisit the ultimatum game (Figure 3, above), without using the assumption
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of single strategy selection. From the above analysis, we know Bn — An, Bn — By, and

Ay — By. We also have Ay <> An, Ay % Bn, and An i@ By. Thus we have one stable
equilibrium to consider: the combination of 2 Ay + 1 Bn. We first consider an invasion of the
polymorphic population by the backward induction equilibrium strategy By. We find that
By has a self-payoff of 2, and also scores 2 against the mixture of Ay and Bn. Also, Ay and
Bn each score % against By, and % against the mixture of Ay and Bn. Thus it is clear that
Bn dominates the polymorphic population. Next, we consider an invasion of the polymorphic
population by the weak Nash equilibrium An. In this case, strategy Ay scores higher against
the An mutants than strategy Bn does, so the relative proportions of Ay and Bn will not
remain constant as they were in the previous case; we must consider each strategy’s payoff
against all three strategy types in the combined population. Strategy Ay scores 2, 2, and
1.5 points against strategies Ay, An, and Bn respectively; it weakly dominates An, which
scores 2, 2, and 1 against the three strategies, but does not weakly dominate Bn, which
scores 2.5, 1, and 0. For an initial population of (1 — k)Ay + (1 — k)Bn + (k)An, we
find that Ay outscores both Bn and An, increasing its population share toward 75%, while
Bn and/or An decrease toward zero. If An reaches zero first, the population shares of Ay
and Bn restabilize to % and i respectively, and the polymorphic population remains. If Bn
reaches zero first, we have a mixture of Ay and An; thus drift can occur, and we assume that
one strategy will die off, and one survive, with equal probabilities. However, whether An or
Bn reaches zero first is strongly dependent on the short-term selection dynamics; different
dynamics may give very different results from an identical starting population.

To see this, let z1, o and x3 be the population shares of Ay, An, and Bn respectively.
Then, assuming that the dynamics is payoff-monotone, we know that An has a higher growth
rate than Bn when z; < %, and a lower growth rate when z; > % Thus, in the best case
for Bn, zo and z3 decrease at approximately the same rate if z; < %, and otherwise, x»
decreases rapidly while x3 grows at approximately the same rate as z;. For this case, we
find that z, always reaches zero before x3, and thus the polymorphic population resists the
invasion by An. In the best case for An, x5 and x3 decrease at approximately the same
rate when x; > %, and otherwise, x5 decreases rapidly while z5 grows at approximately the
same rate as x;. For this case, x3 reaches zero first when the initial value of x5 is at least
half the initial value of x{, which will occur when the initial proportion of An is at least
%. Thus the probability that An successfully invades the polymorphic population ranges
from 0 to X 3 x (), depending on the short-term selection dynamics. For the replicator
dynamics, #; = z;(u; — @), and we have a system of three nonlinear differential equations for

the population shares:
3
.%.'1 =T (5 — 2.%'1) I3
.7.32 = T2 (1 — 2.’[)1) I3

1
ig = T3 (5331 — T9 — 2.’E1.T3>
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We can, without changing the paths for 3 > 0, rescale the time axis by 223", giving us:

il = $1(3 — 4.’L‘1)
.’1.32 = IQ(? - 4Z1)

i‘g =T — 2%2 — 4331$3

Then we can solve the first differential equation for z;, then substitute the result into the
second equation and solve for z5. Finally, we know 3 = 1 — x; — x5. Assuming that the
initial proportion of An mutants is k, this gives us:

3(1 —
T (t) = 4(1 )
ke=3 + (1 — k)
ke !
wl) = i n
(1) = T1—k)+ k(e —e?)
T T e T (1 - k)
Since the minimum value of ™3 — e~ is —%, we find that z3 remains positive when

1(1—k)— 2’“9#‘/5 > 0. This equation is satisfied when £ < W ~ .394. Thus An invades
the polymorphic population when k& > .394, and the probability of invasion is i X % x F(.394).
Given this result, we can compute transition probabilities for a five-state Markov chain with
states Ay, An, By, Bn, and (Ay + Bn). However, Bn is a transient state, so we can
exclude it from our computation. Assuming a uniform spread function and the replicator
dynamics, we obtain the transition matrix given in Table 13. From this, we calculate the
invariant distribution [Ay An By (Ay + Bn)| = [.0709 .3275 .5575 .0441]. We note that this
is very similar to the invariant distributions obtained under the assumption of single strategy
selection. The backward induction equilibrium By dominates the population approximately
g of the time, the weak Nash equilibrium An dominates the population approximately % of
the time, and the other % of the time, the population consists of Ay and/or Bn. Thus the
assumption of single strategy selection is reasonable for the ultimatum game, simplifying
our calculations without significantly affecting our results. If this assumption is not made,
the invariant distribution is both difficult to compute, and dependent on the short-term
dynamics. Nevertheless, the final result is unchanged: our model selects the backward
induction equilibrium in the ultimatum game.

7 Discussion

We now consider several other extensions of our evolutionary model. As discussed above, we
typically assume that the spread function f(z) is independent of the types of the common or
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entering strategies; however, the model can easily be extended to allow for state-dependent
spread functions. In the most general case, we can define N(N — 1) spread functions f;;(z),
© # j, corresponding to the proportion of s; mutants invading a population of strategy s;.
Then, assuming s; & s;, we calculate the invasion success probability ¢; = Fj;(1 —m) =
fll_m fij(x) dz. For any other evolutionary relation between the two strategies, the spread
function is not relevant. State-dependent spread functions can arise in a number of ways: for
example, strategies may differ in their degree of “attractiveness,” and thus the proportion of
individuals who choose to switch to them. Similarly, in models of imitation resulting from
dissatisfaction, different strategies may be more or less inherently “disagreeable,” affecting
the proportion of individuals who choose to switch from them. Dissatisfaction may be
negatively correlated with the self-payoff of the common strategy, while the attractiveness
of a new strategy might be positively correlated with its payoff in the current population or
(if players have sufficient foresight) its self-payoff. These correlations may not be perfect,
however: as discussed above, some behaviors (ex. use of a harmful but addictive substance)
may be attractive despite their low payoffs in the long term, while other behaviors (ex. strict
regimens of diet and exercise) may be unattractive despite high long-term payoffs. A variety
of other factors may influence spread of a strategy. For example, some strategies may be
easier to learn, and hence more likely to be adopted; additionally, individuals may be more
likely to adopt strategies that are more similar to the strategy that they are currently using.

In addition to this flexibility in defining how new strategies spread through a population,
we may also be more flexible in defining how new strategies arise. We typically assume that
mutations are random, and every strategy (including the current strategy) has a % chance
of being selected to invade. Alternatively, mutations may be “state-dependent” as in Bergin
& Lipman (1996): strategies may have different probabilities of being selected to invade, and
these probabilities may depend on the current strategy as well. In general, we can define N?
prior values 7;;, such that Z;v:1 ri; = 1 for all 7: then r;; is the probability that strategy s;
will be selected to invade strategy s; on a given time step. Thus our transition probabilities
pi; can be defined as p;; = 745¢;5, i.e. the probability that s; is selected to invade s;, and
that the invasion is successful. As in the case of spread functions, these priors r;; may be
based on payoffs (e.g. if individuals are more likely to “discover” strategies which are better
replies), complexity (e.g. if simpler strategies are more likely to arise via mutation), or may
be arbitrary (depending on the specifics of the evolutionary or adaptive model). We also
note that the rate of mutations from a particular strategy s; may be controlled by choosing
the value of r;, then scaling the other priors accordingly.

Though this flexibility in the model parameters can be useful, enabling the model to
generalize to a larger set of real-world interactions, it should also be noted that the choice
of priors and spread functions can have a significant impact on our evolutionary results.
Typically the spread functions have smaller impact, since they only affect transition proba-
bilities between strategies in bistable relationships. Nevertheless, it is clear that any strict
equilibrium can be made absorbing (and accessible) by some state-dependent spread func-
tion, and thus any equilibrium can be selected in an Nx/N coordination game. The choice
of prior invasion probabilities can affect all transitions, with the exception of those where
gi; = 0. Thus any state 7 can be made absorbing by setting r; = 1; however, if this state is
not accessible (for example, because s; is dominated by every other strategy) it will not be
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selected unless the system begins in that state. In general, we only recommend the use of
strategy-dependent priors or spread functions when specific aspects of the evolutionary or
adaptive model require them. For a general measure of the performance of a strategy in a
non-specific evolutionary model, a single spread function and uniform prior is sufficient; or if
we want to simulate a best-response-type dynamic, the prior probabilities can be dependent
on the payoffs of each potential mutant against the current population.

Another interesting extension of the model would be to allow the model parameters (ex.
spread functions and prior invasion probabilities) to evolve over time rather than being exoge-
neously specified. One possible application of this type would be to compare the performance
of subpopulations with high and low degrees of spread respectively. Imagine a population
with two distinct subpopulations, one which communicates new ideas rapidly through the
population (and thus evolves according to a spread function with large aggregate shocks) and
one which does not communicate (and thus evolves according to Maynard Smith’s invasion
criteria). Let the population shares of various strategies within a subpopulation evolve as in
our long-term model above, but also assume that the total size of a subpopulation varies as
an increasing function of the average payoff to members of that subpopulation. Based on our
results for the Finitely Repeated Prisoner’s Dilemma and centipede games, we conjecture
that communicating subpopulations are dominated more often by cooperative strategies, re-
sulting in higher average payoffs. In other words, the communicating subpopulation does not
get stuck in poor but evolutionarily stable strategies (“local maxima” of the evolutionary
space), resulting in better average performance in the long run. This may allow a commu-
nicating subpopulation to out-compete another subpopulation which does not communicate
among themselves: thus we conjecture that natural selection will select for the evolution of
communication.

Next we consider to what extent our evolutionary model can be applied as a rational
decision process, or a method which an individual rational player can use to decide which
strategy to play against an unknown (and not necessarily rational) opponent. First, we note
that there is no reason to expect a priori that a Nash equilibrium strategy will be played,
since neither player is assumed to know the other’s strategy choice. Thus the rational player
must decide what a “reasonable” distribution of opposing strategies would be, and make the
choice that maximizes expected utility given this distribution. Three possible alternatives
are to assume that the opponent has evolved via a process of selection and mutation, has
learned a strategy from previous interactions, or has decided on a strategy based on some
method of imaginary play. For the first two cases, we can assume that the opponent has been
picked (randomly) from a population resulting from some evolutionary or adaptive model
respectively; for the third case, we can assume that the opponent’s thought process (leading
to his selection of a strategy) simulates such a model. Thus one reasonable assumption would
be that the opposing strategy is sampled from the invariant distribution of some unknown
model.

Now we must consider what parameters are reasonable for this model: in particular,
whether mutations are random or directed, and whether mutations spread to a finite pro-
portion of the population. For evolutionary models, mutations result from errors in the
reproductive process, and thus are random. For learning models, mutations can be either di-
rected (resulting from a process of myopic optimization) or random (resulting from a process
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of “discovery” of new ideas). We prefer to assume that mutations are random: the relative
performance of a new mutant strategy determines not whether the new behavior is “discov-
ered” by some individual in the population, but whether it is adopted by the population as a
whole, or is abandoned and fades from the collective memory. In either case, the population
is likely to be finite, and thus the proportion of mutants will be finite; additionally, various
processes can facilitate rapid spread of a new behavior through a population, leading to a
substantial proportion of the new mutant strategy. Thus it is reasonable to assume that the
model satisfies the LASH property.

Similarly, for a model of decision-making via imaginary play, we note that the decision-
maker has complete control over the parameters of the model. In particular, he is not required
to always choose a best reply to his current “favorite” strategy, but can use randomization
to his benefit. If he treats the decision-making process as a problem of search over a large
strategy space, then including some degree of randomness in the search procedure allows him
to search over a larger region of the space, reducing the probability of being trapped in local
maxima that are not globally optimal. Additionally, if the decision-maker’s computational
resources are limited and the strategy space is large, it may be infeasible for him to compute
a best reply to the current favorite strategy, and thus a “generate and test” model of decision-
making is more applicable than a model of strict and myopic optimization.

Therefore, one reasonable method of decision-making (given no prior information about
the opponent) would be to choose a LASH model with some arbitrary but general parameters
(e.g. a uniform spread function and uniform prior), compute the invariant distribution, and
choose the best reply against this distribution. We note that this method will often result
in selection of a Nash equilibrium strategy, as was the case for almost all of the examples
we considered. However, our model does not choose a Nash equilibrium strategy in certain
cases, including long repeated games such as the Finitely Repeated Prisoner’s Dilemma
and the centipede game. In these games, the Nash equilibrium solutions (via arguments
of iterated dominance in the normal form, or backward induction in the extensive form)
are counterintuitive, and the validity of these arguments has been widely questioned in
the literature. Our model does not reject the backward induction argument for the FRPD
and centipede games, but for sufficiently long games, the effects of backward induction are
negligible compared to the effects of “forward progression” (where the current strategy is
replaced by one which cooperates much more often), and thus the system spends nearly all
of the time far from equilibrium.

More generally, our model differs from Nash equilibrium because it selects strategies
based on a measure of “average case” performance, rather than “worst case” performance,
against the strategy space. A strategy is not a Nash equilibrium if either player can improve
his performance by switching strategies: thus a strategy will not be an equilibrium if it is
evolutionarily dominated by even a single alternative strategy. In our model, on the other
hand, poor performance against a single strategy may be outweighed by high risk-dominance
against a large proportion of the strategy space. For example, if strategy s; evolutionarily
dominates strategy s;, we know that s; is not “evolutionarily stable” (and not a Nash
equilibrium) since it can be invaded by s; mutants. However, assuming a uniform prior and
a large strategy space, s; will rarely be selected to invade s;, and thus this transition will
occur infrequently. Moreover, even if s; is a strict Nash equilibrium (and hence evolutionarily
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stable), it may be invadable by a small proportion of mutants of many different types, and
assuming a LASH spread function, these small proportions may frequently occur. Thus the
“stable” strategy s; may have very low probability in the invariant distribution. On the
other hand, s; may strongly risk-dominate every strategy except s;, and thus have very high
probability in the invariant distribution, despite being “unstable.” Thus our model gives
results different from Nash equilibrium, not because it makes non-equilibrium strategies any
more stable, but because it weakens the stability of some equilibrium strategies; in certain
cases, this may result in equilibrium strategies being outperformed by strategies which are
not equilibria but do better in the “average case.”

8 Conclusions

We have presented a class of evolutionary models consisting of selection and mutation. These
models are similar to the prior models in the literature in their assumptions on the fype and
frequency of shocks. However, we assume that the impact of shocks is large: a new mutant
strategy can spread to a finite proportion of the population before the short-term selection
dynamics takes effect. We consider a variety of processes through which these “large ag-
gregate shocks” can occur, and present a very general model of evolutionary dynamics with
large shocks, which includes evolutionary stability and stochastic stability models as special
cases. The assumption of large aggregate shocks impacts the results of the model in three
main ways. First, it allows us to select between Nash equilibria in games with multiple equi-
libria, selecting the risk-dominant strategy in a wider class of games than stochastic stability
models. Second, large shocks result in much faster convergence to the invariant distribution
than in stochastic stability models, allowing this long-term distribution to be relevant on the
time scales under consideration. Finally, large shocks weaken the stability of certain poor
but “evolutionarily stable” equilibria. As a result of this, we find that cooperative strate-
gies prevail in the long run in games such as the Finitely Repeated Prisoner’s Dilemma, if
the game length is sufficiently long. Thus our evolutionary model gives results which more
closely correspond to solutions which are considered “reasonable” in real-world interactions,
even when this contradicts the backward induction solution.
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P2

X Y
Pl X [2/2]-1/3
Y [3/-1] 0/0

Table 1: Prisoner’s Dilemma game

P2

X Y

Pl X [2/2]0/0
Y [0/0[0/0

Table 2: Joint venture game

P2

X Y

Pl X [1/1]0/0
Y [0/0 | 4/4

Table 3: Simple coordination game

P2

X Y

P1 X [9/9]0/7
Y [7/0]8/8

Table 4: A coordination game where risk- and Pareto- dominant equilibria differ.

P2

X Y Z

Pl X [6/6]0/5]0/0
Y [5/0 | 7/75/5

Z [0/0]5/5|8/8

Table 5: Young’s 3x3 coordination game
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P1

= N

X

P2

Y

A

w

1/

172

0/0

2/-1

2/-1

1/1

172

0/0

0/0

2/-1

1/1

172

172

0/0

2/-1

1/1

Table 6: A 4x4 NSP game

X

P2

Y

A

w

1/1

1/2

2/-1

0/0

2/-1

1/1

1/2

0/0

172

2/-1

1/1

0/0

0/0

0/0

0/0

1/

Table 7: Another 4x4 NSP game

M | invariant distribution best s; | cooperative | uncooperative
1 [[10] 1 0 1

2 | [.6.2.2] 1 2 .6

3 | [32.23 .24 .20] 1 2 .32

4 | [18 .17 .21 .24 .20] 4 2 18

5 | [10 .11 .15 .21 .23 .20] 5 2 10

6 | [.06.07.10 .15 .20 .22 .19] 6 19 .06

8 | [.03.03.04.07 .10 .14 .19 .22 .19] 8 19 .03
10 | [.01 .02 .02 .03 .04 ... .14 .18 .21 .18] 10 .39 .03
20 | [.002.002.003 ....09 .13 .17 .19 .17] 20 .53 .007
30 | [.001 .001.001 ....09 .12 .16 .18 .17] 30 .63 .004
40 | [4x10°*....05.06 .09 .12 .16 .18 .16] 40 .71 .002
50 [ [3x10°*....05.06.09 .12 .15 .17 .16] 50 .76 .002
100 | [6 x 107° ... .05 .06 .09 .11 .14 .16 .15] | 100 .88 7x 1074
200 | [1 x 1075 ... .05 .06 .08 .11 .14 .15 .14] | 200 94 3x 107
400 | [3x 107 ....05.06 .08 .10 .13 .14 .14] | 400 97 2x 1074
800 | [8 x 1077 ... .05 .06 .08 .10 .12 .14 .13] | 800 .99 8 x107°°

Table 8: FRPD results for uniform spread function

20




P2

1 d
Pl C[2/2]-1/3
D [0/0] 0/0

Table 9: 2-legged centipede game, normal form

P2

Ce Cd Dc Dd

Pl Cc[ 2/2 | 05725 |1/1]-05/15
Ccd [ 25/05 | 1/1 [1/1]-05/15
De [ 171 1/1 _[0/0] 0/0

Dd |[15/-05 | 1.5/-050/0| 0/0

Table 10: 2-legged centipede game, symmetrized form

P2
X Y
Pl X [1/1] 0/2
Y [2/0[-1/-1

Table 11: Hawk-dove game

P2

X Y z

P1 X[ 1/T ]999/999 | 0/0
Y [999/999 [ 1/1 | 0/0

Z [ 0/0 0/0 |2/2

Table 12: 2-stable game

Ay An By (Ay+ Bn)

Ay 3751 .125] 25 25
An 125 75 | 125 0
By 0 |.125]| .875 0
(Ay+ Bn) [ .076 | .076 | .25 598

Table 13: Transition matrix for ultimatum game

o1



2/2

0/0 -1/3

Figure 1: 2-legged centipede game

414

0/0 -1/3 2/2 1/5

Figure 2: 4-legged centipede game

3/1

2/2 0/0

Figure 3: Ultimatum game

3/u 0/0 0/0 1/1

Figure 4: Dalek game
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