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Abstract

This paper describes a decentralized consistency protocol for survivable storage that exploits data versioning within
storage-nodes. Versioning enables the protocol to efficiently provide linearizability and wait-freedom of read and
write operations to erasure-coded data in asynchronous environments with Byzantine failures of clients and servers.
Exploiting versioning storage-nodes, the protocol shifts most work to clients. Reads occur in a single round-trip
unless clients observe concurrency or write failures. Measurements of a storage system using this protocol show
that the protocol scales well with the number of failures tolerated, and that it outperforms a highly-tuned instance of
Byzantine-tolerant state machine replication.
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1 Introduction

Survivable storage systems spread data redundantly across a set of decentralized storage-nodes
in an effort to ensure its availability despite the failure or compromise of storage-nodes. Such
systems require some protocol to maintain data consistency and liveness in the presence of failures
and concurrency.

This paper describes and evaluates a new consistency protocol that operates in an asynchronous
environment and tolerates Byzantine failures of clients and storage-nodes. The protocol supports
a hybrid failure model in which up to t storage-nodes may fail: b ≤ t of these failures can be
Byzantine the remainder can crash. The protocol requires at least 2t + 2b + 1 storage-nodes (i.e.,
4b+1 if t = b). The protocol supports m-of-n erasure codes (i.e., m-of-n fragments are needed to
reconstruct the data), which usually require less network bandwidth (and storage space) than full
replication [40, 41].

Briefly, the protocol works as follows. To perform a write, a client determines the current
logical time and then writes time-stamped fragments to at least a threshold quorum of storage-
nodes. Storage-nodes keep all versions of fragments they are sent until garbage collection frees
them. To perform a read, a client fetches the latest fragment versions from a threshold quorum
of storage-nodes and determines whether they comprise a completed write; usually, they do. If
they do not, additional and historical fragments are fetched, and repair may be performed, until a
completed write is observed.

The protocol gains efficiency from three features. First, the space-efficiency of m-of-n erasure
codes can be substantial. Second, most read operations complete in a single round trip: reads
that observe write concurrency or failures (of storage-nodes or a client write) may incur in addi-
tional work. Most studies of distributed storage systems (e.g., [3, 26]) indicate that concurrency
is uncommon (i.e., writer-writer and writer-reader sharing occurs in well under 1% of operations).
Failures, although tolerated, ought to be rare. Moreover, a subsequent write or read (with repair)
will replace a write that has not been completed, thus preventing future reads from incurring any
additional cost; when writes do the fixing, additional costs are never incurred. Third, most protocol
processing is performed by clients, increasing scalability via the well-known principle of shifting
work from servers to clients [17].

This paper describes the protocol in detail and provides a proof sketch of its safety and live-
ness. It also describes and evaluates a prototype storage system called PASIS [41], that uses the
protocol. Measurements of the prototype highlight the benefits of the three features. For example,
client response times are only 20% higher when tolerating four Byzantine storage-node failures
than when tolerating one. For comparison, a well-performing state machine replication imple-
mentation [5] has a higher single-fault response time for write operations and is 2× slower when
tolerating four faults. Additionally, the shifting of protocol processing to clients halves storage-
node CPU load and thereby doubles throughput as the number of clients scales upwards.

2 Background and related work

Figure 1 illustrates the abstract architecture of a fault-tolerant, or survivable, distributed storage
system. To write a data-item D, Client A issues write requests to multiple storage-nodes. To read
D, Client B issues read requests to an overlapping subset of storage-nodes. This scheme provides
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Figure 1: High-level architecture for survivable storage. Spreading data redundantly across
storage-nodes improves its fault-tolerance. Clients write and (usually) read data from multiple
storage-nodes.

access to data-items even when subsets of the storage-nodes have failed.
A common data distribution scheme used in such systems is replication, in which a writer

stores a replica of the new data-item value at each storage-node to which it sends a write request.
Alternately, more space-efficient erasure coding schemes can be used to reduce network load and
storage consumption.

To provide reasonable semantics, the system must guarantee that readers see consistent data-
item values. Specifically, the linearizability of operations is desirable for a shared storage system.
Our protocol tolerates Byzantine faults of any number of clients and a limited number of storage
nodes while implementing linearizable [16] and wait-free [14] read-write objects. Linearizability
is adapted appropriately for Byzantine clients, and wait-freedom is as in the model of [18].

Most prior systems implementing Byzantine fault-tolerant services adopt the state machine
approach [35], whereby all operations are processed by server replicas in the same order (atomic
broadcast). While this approach supports a linearizable, Byzantine fault-tolerant implementation
of any deterministic object, such an approach cannot be wait-free [12, 14, 18]. Instead, such
systems achieve liveness only under stronger timing assumptions, such as synchrony (e.g., [8, 29,
37]) or partial synchrony [11] (e.g., [6, 19, 33]), or probabilistically (e.g., [4]). An alternative
is Byzantine quorum systems [22], from which our protocols inherit techniques. Protocols for
supporting a linearizable implementation of any deterministic object using Byzantine quorums
have been developed (e.g., [23]), but also necessarily forsake wait-freedom to do so.

Byzantine fault-tolerant protocols for implementing read-write objects using quorums are de-
scribed in [15, 22, 24, 28]. Of these, only Martin et al. [24] achieve linearizability in our fault
model, and this work is also closest to ours in that it uses a type of versioning. In our protocol, a
reader may retrieve fragments for several versions of the data-item in the course of identifying the
return value of a read. Similarly, readers in [24] “listen” for updates (versions) from storage-nodes
until a complete write is observed. Conceptually, our approach differs by clients reading past ver-
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sions, versus listening for future versions broadcast by servers. In our fault model, especially in
consideration of faulty clients, our protocol has several advantages. First, our protocol works for
erasure-coded data, whereas extending [24] to erasure coded data appears nontrivial. Second, ours
provides better message efficiency: [24] involves a Θ(N2) message exchange among the N servers
per write (versus no server-to-server exchange in our case) over and above otherwise comparable
(and linear in N) message costs. Third, ours requires less computation, in that [24] requires digital
signatures by clients, which in practice is two orders of magnitude more costly than the crypto-
graphic transforms we employ. Advantages of [24] are that it tolerates a higher fraction of faulty
servers than our protocol, and does not require servers to store a potentially unbounded number of
data-item versions. Our prior analysis of versioning storage, however, suggests that the latter is a
non-issue in practice [39], and even under attack this can be managed using a garbage collection
mechanism we describe in Section 6.

We contrast our use of versioning to maintain consistency with systems in which each write
creates a new, immutable version of a data-item to which subsequent reads are directed (e.g., [25,
31, 32]). Such systems merely shift the consistency and liveness problems to the metadata mech-
anism that resolves data-item names to a version. So, systems that employ such an approach (e.g.,
Past [34], CFS [9], Farsite [2], and the archival portion of OceanStore [21]) require a separate
protocol mechanism to manage this metadata.

A goal of our work is to demonstrate that our protocol is sufficiently efficient to use in practice.
Castro and Liskov [6] have made available for experimentation a well-engineered implementation
of a Byzantine fault-tolerant replicated state machine. Their BFT library is used elsewhere in
the research community (e.g., Farsite [2]). As such, we use their implementation as a point of
comparison to demonstrate that our protocol is efficient and scalable in both network and storage-
node CPU utilization.

3 System model

We describe the system infrastructure in terms of clients and storage-nodes. There are N storage-
nodes and an arbitrary number of clients in the system.

A client or storage-node is correct in an execution if it satisfies its specification throughout the
execution. A client or storage-node that deviates from its specification fails. We assume a hybrid
failure model for storage-nodes. Up to t storage-nodes may fail, b ≤ t of which may be Byzantine
faults; the remainder are assumed to crash. We assume that Byzantine storage-nodes can collude
with each other and with any Byzantine clients. A client or storage-node that does not exhibit a
Byzantine failure (it is either correct or crashes) is benign.

The protocol tolerates crash and Byzantine clients. As in any practical storage system, an
authorized Byzantine client can write arbitrary values to storage, which affects the value of the data,
but not its consistency. We assume that Byzantine clients and storage-nodes are computationally
bounded so that we can employ cryptographic primitives.

We assume an asynchronous model of time (i.e., we make no assumptions about message
transmission delays or the execution rates of clients and storage-nodes). We assume that com-
munication between a client and a storage-node is point-to-point, reliable, and authenticated: a
correct storage-node (client) receives a message from a correct client (storage-node) if and only if
that client (storage-node) sent it to it.

3



There are two types of operations in the protocol — read operations and write operations
— both of which operate on data-items. Clients perform read/write operations that issue multiple
read/write requests to storage-nodes. A read/write request operates on a data-fragment. A data-
item is encoded into data-fragments. Clients may encode data-items in an erasure-tolerant manner;
thus the distinction between data-item and data-fragment. Requests are executed by storage-nodes;
a correct storage-node that executes a write request hosts that write operation.

Storage-nodes provide fine-grained versioning, meaning that a correct storage-node hosts a
version of the data-fragment for each write request it executes. There is a well known zero time,
0, and null value, ⊥, which storage-nodes can return in response to read requests. Implicitly, all
stored data is initialized to ⊥ at time 0.

4 Protocol

This section describes our Byzantine fault-tolerant consistency protocol that efficiently supports
erasure-coded data-items by taking advantage of versioning storage-nodes. It presents the mecha-
nisms employed to encode and decode data, and to protect data integrity from Byzantine storage-
nodes and clients. It then describes, in detail, the protocol in pseudo-code form. Finally, it develops
constraints on protocol parameters to ensure the safety and liveness of the protocol.

4.1 Overview

At a high level, the protocol proceeds as follows. Logical timestamps are used to totally order
all write operations and to identify data-fragments pertaining to the same write operation across
the set of storage-nodes. For each write, a logical timestamp is constructed by the client that is
guaranteed to be unique and greater than that of the latest complete write (the complete write with
the highest timestamp). This is accomplished by querying storage-nodes for the greatest timestamp
they host, and then incrementing the greatest response. In order to verify the integrity of the data,
a hash that can verify data-fragment correctness is appended to the logical timestamp.

To perform a read operation, clients issue read requests to a subset of storage-nodes. Once at
least a read quorum of storage-nodes reply, the client identifies the candidate—the response with
the greatest logical timestamp. The set of read responses that share the timestamp of the candidate
comprise the candidate set. The read operation classifies the candidate as complete, repairable,
or incomplete. If the candidate is classified as complete, the data-fragments, timestamp, and re-
turn value are validated. If validation is successful, the value of the candidate is returned and the
read operation is complete; otherwise, the candidate is reclassified as incomplete. If the candi-
date is classified as repairable it is repaired by writing data-fragments back to the original set of
storage-nodes. Prior to performing repair, data-fragments are validated in the same manner as for
a complete candidate. If the candidate is classified as incomplete, the candidate is discarded, pre-
vious data-fragment versions are requested, and classification begins anew. All candidates fall into
one of the three classifications, even those corresponding to concurrent or failed write operations.

4



4.2 Mechanisms

Several mechanisms are used in our protocol to achieve linearizability in the presence of Byzantine
faults.

4.2.1 Erasure codes

In an erasure coding scheme, N data-fragments are generated during a write (one for each storage-
node), and any m of those data-fragments can be used to decode the original data-item. Any
m of the data-fragments can deterministically generate the other N −m data-fragments. We use a
systematic information dispersal algorithm [30], which stripes the data-item across the first m data-
fragments and generates erasure-coded data-fragments for the remainder. Other threshold erasure
codes (e.g., Secret Sharing [36] and Short Secret Sharing [20]) work as well.

4.2.2 Data-fragment integrity

Byzantine storage-nodes can corrupt their data-fragments. As such, it must be possible to detect
and mask up to b storage-node integrity faults.
CROSS CHECKSUMS: Cross checksums [13] are used to detect corrupt data-fragments. A crypto-
graphic hash of each data-fragment is computed. The set of N hashes are concatenated to form the
cross checksum of the data-item. The cross checksum is stored with each data-fragment (i.e., it is
replicated N times). Cross checksums enable read operations to detect data-fragments that have
been modified by storage-nodes.

4.2.3 Write operation integrity

Mechanisms are required to prevent Byzantine clients from performing a write operation that lacks
integrity. If a Byzantine client generates random data-fragments (rather than erasure coding a
data-item correctly), then each of the

(N
m

)

permutations of data-fragments could “recover” a dis-
tinct data-item. Additionally, a Byzantine client could partition the set of N data-fragments into
subsets that each decode to a distinct data-item. These attacks are similar to poisonous writes for
replication as described by Martin et al. [24]. To protect against Byzantine clients, the protocol
must ensure that read operations only return values that are written correctly (i.e., that are single-
valued). To achieve this, the cross checksum mechanism is extended in three ways: validating
timestamps, storage-node verification, and validated cross checksums.
VALIDATING TIMESTAMPS: To ensure that only a single set of data-fragments can be written at
any logical time, the hash of the cross checksum is placed in the low order bits of the logical
timestamp. Note, the hash is used for space-efficiency; instead, the entire cross checksum could be
placed in the low bits of the timestamp.
STORAGE-NODE VERIFICATION: On a write, each storage-node verifies its data-fragment against
its hash in the cross checksum. The storage-node also verifies the cross checksum against the
hash in the timestamp. A correct storage-node only executes write requests for which both checks
pass. Thus, a Byzantine client cannot make a correct storage-node appear Byzantine. It follows,
that only Byzantine storage-nodes can return data-fragments that do not verify against the cross
checksum.

5



VALIDATED CROSS CHECKSUMS: Storage-node verification combined with a validating times-
tamp ensures that the data-fragments being considered by a read operation were written by the
client (as opposed to being fabricated by Byzantine storage-nodes). To ensure that the client that
performed the write operation acted correctly, the cross checksum must be validated by the reader.
To validate the cross checksum, all N data-fragments are required. Given any m data-fragments,
the full set of N data-fragments a correct client should have written can be generated. The “correct”
cross checksum can then be computed from the regenerated set of data-fragments. If the generated
cross checksum does not match the verified cross checksum, then a Byzantine client performed the
write operation. Only a single-valued write operation can generate a cross checksum that verifies
against the validating timestamp.

4.3 Pseudo-code

The pseudo-code for the protocol is shown in Figures 2 and 3. The symbol QW defines a complete
write threshold—the number of write responses a client must observe to know that the write opera-
tion is complete. Thus, a write is complete once QW−b benign storage-nodes have executed write
requests with timestamp ts. Note that QW is a threshold quorum; as such, it represents a scalar
value, not a set. The symbol LT denotes logical time and LTcandidate denotes the logical time of the
candidate. The set {D1, . . . ,DN} denotes the N data-fragments; likewise, {S1, . . . ,SN} denotes the
set of N storage-nodes. In the pseudo-code, the operator ‘|’ denotes string concatenation.

4.3.1 Storage-node interface

Storage-nodes offer interfaces to write a data-fragment at a specific logical time; to query the
greatest logical time of a hosted data-fragment; to read the hosted data-fragment with the greatest
logical time; and to read the hosted data-fragment with the greatest logical time at or before some
logical time. Given the simplicity of the storage-node interface, storage-node pseudo-code has
been omitted.

4.3.2 Write operation

The WRITE operation consists of determining the greatest logical timestamp, constructing write
requests, and issuing the requests to the storage-nodes. First, a timestamp greater than, or equal to,
that of the latest complete write must be determined. Collecting more than N +b−QW responses,
on line 8 of WRITE, is necessary to guarantee that the response set overlaps a complete write at
a minimum of b + 1 storage-nodes. Thus, the constraint ensures that the timestamp of the latest
complete write is observed.

Next, the ENCODE function, on line 10, encodes the data-item into N data-fragments. The
data-fragments are used to construct a cross checksum from the concatenation of the hash of each
data-fragment (line 11). The function MAKE TIMESTAMP, called on line 12, generates a logical
timestamp to be used for the current write operation. This is done by incrementing the high order
bits of the greatest observed logical timestamp from the ResponseSet (i.e., LT.TIME), appending
the client’s ID, and appending the Verifier. The Verifier is just the hash of the cross checksum.

Finally, write requests are issued to all storage-nodes. Each storage-node is sent a specific
data-fragment, the logical timestamp, and the cross checksum. A storage-node validates the cross
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WRITE(Data) :
1: /∗ Determine greatest existing logical timestamp ∗/
2: for all Si ∈ {S1, . . . ,SN} do
3: SEND(Si, TIME REQUEST)
4: end for
5: ResponseSet := /0
6: repeat
7: ResponseSet := ResponseSet ∪RECEIVE(S, TIME RESPONSE)
8: until (|ResponseSet| > N +b−QW)
9: /∗ Generate data-fragments, cross checksum and logical timestamp ∗/
10: {D1, . . . ,DN} := ENCODE(Data)
11: CC := MAKE CROSS CHECKSUM({D1, . . . ,DN})
12: LT := MAKE TIMESTAMP(MAX[ResponseSet.LT], CC)
13: /∗ Write out the data-fragments ∗/
14: DO WRITE({D1, . . . ,DN}, LT, CC)

MAKE CROSS CHECKSUM({D1, . . . ,DN}) :
1: for all Di ∈ {D1, . . . ,DN} do
2: Hi := HASH(Di)
3: end for
4: CC := H1| . . . |HN

5: RETURN(CC)

MAKE TIMESTAMP(LTmax, CC) :
1: LT.TIME := LTmax.TIME +1
2: LT.ID := ID
3: LT.Verifier := HASH(CC)
4: RETURN(LT)

DO WRITE({D1, . . . ,DN}, LT, CC) :
1: for all Si ∈ {S1, . . . ,SN} do
2: SEND(Si, WRITE REQUEST, LT, Di, CC)
3: end for
4: ResponseSet := /0
5: repeat
6: ResponseSet := ResponseSet ∪RECEIVE(S, WRITE RESPONSE)
7: until (|ResponseSet| = QW)

Figure 2: Write operation pseudo-code.

checksum with the verifier and validates the data-fragment with the cross checksum before exe-
cuting a write request (i.e., storage-nodes call VALIDATE listed in the read operation pseudo-code).
The write operation returns to the issuing client once at least QW WRITE RESPONSE messages are
received (line 7 of DO WRITE).

4.3.3 Read operation

The read operation iteratively identifies and classifies candidates, until a repairable or complete
candidate is found. Once a repairable or complete candidate is found, the read operation vali-
dates its correctness and returns the data. A client must observe at least QW data-fragments with
matching logical timestamps in order to classify a candidate as complete. To ensure that a can-
didate that corresponds to a complete write is classified as such as often as possible, N − t data-
fragments are considered for classification (line 10 of READ). Note that the read operation returns
a 〈timestamp, value〉 pair; in practice, a client only makes use of the value returned.

The read operation begins by issuing READ LATEST REQUEST commands to all storage-nodes
(via the DO READ function). Each storage-node responds with the data-fragment, logical timestamp,
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READ() :
1: ResponseSet := DO READ(READ LATEST REQUEST, ⊥)
2: loop
3: 〈CandidateSet, LTcandidate〉 := CHOOSE CANDIDATE(ResponseSet)
4: if (|CandidateSet| ≥ QW − t −b) then
5: /∗ Complete or repairable write found ∗/
6: {D1, . . . ,DN} := GENERATE FRAGMENTS(CandidateSet)
7: CCvalid := MAKE CROSS CHECKSUM({D1, . . . ,DN})
8: if (CCvalid = CandidateSet.CC) then
9: /∗ Validated cross checksums match */
10: if (|CandidateSet| < QW) then
11: /∗ Repair is necessary ∗/
12: DO WRITE({D1, . . . ,DN}, LTcandidate, CCvalid)
13: end if
14: Data := DECODE({D1, . . . ,DN})
15: RETURN(〈LTcandidate, Data〉)
16: end if
17: end if
18: /∗ Partial or data-item validation failed, loop again ∗/
19: ResponseSet := DO READ(READ PREVIOUS REQUEST, LTcandidate)
20: end loop

DO READ(READ COMMAND, LT) :
1: for all Si ∈ {S1, . . . ,SN} do
2: SEND(Si, READ COMMAND, LT)
3: end for
4: ResponseSet := /0
5: repeat
6: Resp := RECEIVE(S, READ RESPONSE)
7: if (VALIDATE(Resp.D, Resp.CC, Resp.LT, S) = TRUE) then
8: ResponseSet := ResponseSet ∪ Resp
9: end if
10: until (|ResponseSet| = N − t)
11: RETURN(ResponseSet)

VALIDATE(D, CC, LT, S) :
1: if ((HASH(CC) 6= LT.Verifier) OR (HASH(D) 6= CC[S])) then
2: RETURN(FALSE)
3: end if
4: RETURN(TRUE)

Figure 3: Read operation pseudo-code.

and cross checksum corresponding to the greatest timestamp it has executed.
The integrity of each response is individually validated through the VALIDATE function, called

on line 7 of DO READ. This function checks the cross checksum against the Verifier found in the
logical timestamp and the data-fragment against the appropriate hash in the cross checksum.

Since, in an asynchronous system, slow storage-nodes cannot be differentiated from crashed
storage-nodes, only N − t read responses can be collected (line 10 of DO READ). Since correct
storage-nodes perform the same validation before executing write requests, the only responses
that can fail the client’s validation are those from Byzantine storage-nodes. For every discarded
Byzantine storage-node response, an additional response can be awaited.

After sufficient responses have been received, a candidate for classification is chosen. The
function CHOOSE CANDIDATE, on line 3 of READ, determines the candidate timestamp, denoted
LTcandidate, which is the greatest timestamp found in the response set. All data-fragments that share
LTcandidate are identified and returned as the candidate set. At this point, the candidate set contains
a set of validated data-fragments that share a common cross checksum and logical timestamp.
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Once a candidate has been chosen, it is classified as either complete, repairable, or incomplete.
Given that only N − t read responses can be collected, a completed write at QW storage-nodes, b
of which may be Byzantine (and capable of “hiding” the write), may have as few as QW − t − b
data-fragments visible to a later read. Accounting for this lack of information, the classification
rules are:

• |CandidateSet| ≥ QW, the candidate is classified as complete;

• QW − t −b ≤ |CandidateSet| < QW, the candidate is classified as repairable;

• |CandidateSet| < QW − t −b, the candidate is classified as incomplete;

If the candidate is classified as incomplete, a READ PREVIOUS REQUEST message is sent to
each storage-node with the candidate timestamp. Candidate classification begins again with the
new response set.

If the candidate is classified as either complete or repairable, the candidate set contains suffi-
cient data-fragments written by the client to decode the original data-item. To validate the observed
write’s integrity, the candidate set is used to generate a new set of data-fragments (line 6 of READ).
A validated cross checksum, CCvalid, is computed from the newly generated data-fragments. The
validated cross checksum is compared to the cross checksum of the candidate set (line 8 of READ).
If the check fails, the candidate was written by a Byzantine client; the candidate is reclassified as
incomplete and the read operation continues. If the check succeeds, the candidate was written by
a correct client and the read enters its final phase. Note that this check either succeeds or fails for
all correct clients regardless of which storage-nodes are represented within the candidate set.

If necessary, repair is performed: write requests are issued with the generated data-fragments,
the validated cross checksum, and the logical timestamp (line 10 of READ). Storage-nodes not
currently hosting the write execute the write at the given logical time; those already hosting the
write are safe to ignore it. Finally, the function DECODE, on line 14 of READ, decodes m data-
fragments, returning the data-item.

It should be noted that, even after a write completes, it may be classified as repairable by a
subsequent read, but it will never be classified as incomplete. For example, this will occur if the
read set (of N − t storage-nodes) does not fully encompass the write set (of QW storage-nodes).

4.4 Protocol constraints

To ensure that linearizability and liveness are achieved, QW and N must be constrained with regard
to b, t, and each other. As well, the parameter m, used in DECODE, must be constrained. We sketch
the proof that the protocol under these constraints is safe and live in Appendix I.
WRITE TERMINATION: To ensure write operations are able to complete in an asynchronous envi-
ronment,

QW ≤ N − t. (1)

Since slow storage-nodes cannot be differentiated from crashed storage-nodes, only N − t re-
sponses can be awaited.
OVERLAP: To ensure linearizability, the function CHOOSE CANDIDATE must select the latest com-
plete write as the candidate. For this to occur, the response set of a read operation (or a get logical
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time operation) must intersect with at least one correct (non-Byzantine) storage-node that executed
a write request of a complete write. Let QR be the size of the read response set,

N +b < QW +QR,

N +b−QW < QR. (2)

This is the source of the constraint on line 8 of WRITE.
REAL REPAIRABLE CANDIDATES: If Byzantine storage-nodes, through collusion, can fabricate a
candidate that a client deems repairable, then the storage-nodes can “trick” a client into repairing
a value that was never entered into the system by an authorized client. To ensure that Byzantine
storage-nodes can never fabricate a repairable candidate, a candidate set of size b must be classifi-
able as incomplete. Since a candidate is repairable if QW − t − b or more responses are observed
(recall the classification rules), then

b < QW − t −b,

t +2b < QW. (3)

CONSTRAINT SUMMARY: Constraints (1) and (3) yield overall constraints on QW and N:

t +2b+1 ≤ QW ≤ N − t,

2t +2b+1 ≤ N.

REPAIRABLE CANDIDATES: For repair to be possible, a repairable candidate must be decodable.
The fewest responses a repairable candidate can have is QW − t −b, therefore,

1 ≤ m ≤ QW − t −b.

So, m can always be at least b + 1 (note: larger values of m yield more space-efficient erasure
coding). If a repairable candidate is decodable, then a complete candidate is clearly also decodable.

5 Evaluation

This section evaluates the consistency protocol’s performance in the context of a prototype storage
system called PASIS [41]. We also compare the PASIS implementation of our protocol with the
BFT library implementation [7], an efficient implementation of the BFT protocol for replicated
state machines [5].

5.1 Prototype implementation

PASIS consists of clients and storage-nodes. Storage-nodes store data-fragments and their ver-
sions. Clients execute the protocol to read and write data-items.
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5.1.1 Storage-node implementation

Our storage-nodes use the Comprehensive Versioning File System (CVFS) [38] to retain data-
fragments and their versions. CVFS uses a log-structured data organization to reduce the cost of
data versioning. Experience indicates that retaining every version and performing local garbage
collection comes with minimal performance cost (a few percent) and that it is feasible to retain
complete version histories for several days [38, 39].

We extended CVFS to provide an interface for retrieving the logical timestamp of a data-
fragment. Each write request contains a data-fragment, a logical timestamp, and a cross checksum.
In a normal read response, storage-nodes return all three. To improve performance, read responses
contain a limited version history containing logical timestamps of previously executed write re-
quests. The version history allows clients to identify and classify additional candidates without
issuing extra read requests. The storage-node can also return read responses that contain no data
other than version histories (this makes candidate classification more network efficient).

5.1.2 Client implementation

The client module provides a block-level interface to higher level software, and uses a simple
RPC interface to communicate with storage-nodes. The RPC mechanism uses TCP/IP. The client
module is responsible for the execution of the consistency protocol and for encoding and decoding
data-items.

Initially, read requests are issued to the first QW storage-nodes. Only m of these request the
data-fragment, while all request version histories; this makes the read operation more network
efficient. If the read responses do not yield a candidate that is classified as complete, read requests
are issued to the remaining storage-nodes (and a total of up to N − t responses are awaited). If
the initial candidate is classified as incomplete, subsequent rounds of read requests fetch only
version histories until a candidate is classified as either repairable or complete. If necessary, after
classification, extra data-fragments are fetched according to the candidate timestamp. Once the
data-item is successfully validated and decoded, it is returned to the client.

5.1.3 Mechanism implementation

We measure the space-efficiency of an erasure code in terms of blowup—the amount of data stored
over the size of the data-item. We use an information dispersal algorithm [30] which has a blowup
of N

m . Our information dispersal implementation stripes the data-item across the first m data-
fragments (i.e., each data-fragment is 1

m of the original data-item’s size). These stripe-fragments
are used to generate the code-fragments via polynomial interpolation within a Galois Field, which
treats the stripe-fragments and code-fragments as points on some m− 1 degree polynomial. Our
implementation of polynomial interpolation was originally based on publicly available code for
information dispersal [10]. We modified the source to make use of stripe-fragments and added an
implementation of Galois Fields of size 28 that use a lookup table for multiplication.

Our implementation of cross checksums closely follows Gong [13]. We use a publicly avail-
able implementation of MD5 for all hashes [1]. Each MD5 hash is 16 bytes long; thus, each cross
checksum is N ×16 bytes long.
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5.2 Experimental setup

We use a cluster of 20 machines to perform experiments. Each machine is a dual 1GHz Pentium
III machine with 384 MB of memory. Each storage-node uses a 9GB Quantum Atlas 10K as the
storage device. The machines are connected through a 100Mb switch. All machines run the Linux
2.4.20 SMP kernel.

In all experiments, clients keep a fixed number of read and write operations outstanding. Once
an operation completes, a new operation is issued (there is no think time). Unless otherwise speci-
fied, requests are for random 16 KB blocks. For all experiments, the working set fits into memory
and all caches are warmed up beforehand.

Most experiments focus on configurations where b = t and t = {1,2,3,4}. Thus, for our
protocol, N = 4b+1, QW = 3b+1, and m = b+1. For BFT, N = 3b+1 (i.e., N = {4,7,10,13}).

5.2.1 PASIS configuration

Each storage-node is configured with 128 MB of data cache, and no caching is done on the clients.
All experiments show results using write-back caching at the storage nodes, mimicking availability
of 16 MB of non-volatile RAM. This allows us to focus experiments on the overheads introduced
by the protocol and not those introduced by the disk subsystem. No authentication is currently
performed in the PASIS prototype (authentication is expected to have little performance impact).

5.2.2 BFT configuration

Operations in BFT [5] require agreement among the replicas (storage-nodes in PASIS). Agree-
ment is performed in four steps: (i) the client broadcasts requests to all replicas; (ii) the primary
broadcasts pre-prepare messages to all replicas; (iii) all replicas broadcast prepare messages to
all replicas; and, (iv) all replicas send replies back to the client and then broadcast commit mes-
sages to all other replicas. Commit messages are piggy-backed on the next pre-prepare or prepare
message to reduce the number of messages on the network. Authenticators, chains of MACs, are
used to ensure that broadcast messages from clients and replicas cannot be modified by a Byzan-
tine replica. All clients and replicas have public and private keys that enables them to exchange
symmetric cryptography keys used to create MACs. Logs of commit messages are checkpointed
(garbage collected) periodically. View changes, in which a new primary is selected, are performed
periodically.

A fast path for read operations is implemented in BFT. The client broadcasts its request to
all replicas. Each replica replies once all messages previous to the request are committed. Only
one replica sends the full reply (i.e., the data and digest), and the remainder just send digests that
can verify the correctness of the data returned. If the replies from replicas do not agree, the client
re-issues the read operation—for the replies to agree, the read-only request must arrive at 2b+1 of
the replicas in the same order (with regard to other write operations). The re-issued read operation
performs agreement before a single replica replies.

The BFT configuration does not store data to stable storage, instead it stores all data in mem-
ory and accesses it via memory offsets. For the experiments, checkpointing and view changes are
suppressed. BFT uses UDP connections rather than TCP. The BFT implementation defaults to us-
ing IP multicast; however, IP multicast was disabled for all experiments. The BFT implementation
authenticates broadcast messages via authenticators, and point to point messages with MACs.
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b=1 b=2 b=3 b=4

Erasure coding (ms) 1.25 1.50 1.73 1.99
Cross checksum (ms) 0.36 0.44 0.48 0.51
Verifier (µs) 1.64 2.31 3.61 4.28
Validate (µs) 81.5 58.0 48.3 40.1

Table 1: Computation costs in PASIS (1 GHz CPU)

5.3 Performance and scalability

5.3.1 Mechanism costs

Client and storage-node computation costs in PASIS are listed in Table 1. For every read and
write operation, clients perform erasure coding (i.e., they compute N −m data-fragments given m
data-fragments), generate a cross checksum, and generate a verifier. Recall that writes generate the
first m data-fragments by striping the data-item into m fragments. Similarly, reads must generate
N −m fragments, from the m they have, in order to verify the cross checksum. The cost of erasure
encoding, cross checksumming, and creating the verifier grow with m and N.

Storage-nodes validate each write request they receive. This validation requires a comparison
of the data-fragment’s hash to the hash within the cross checksum, and a comparison of the cross
checksum’s hash to the verifier within the timestamp. The cost of storage-node validation decreases
with data-fragment sizes ( 1

m); as such, it decreases with t.

5.3.2 Response time

Figure 4 shows the mean response time of a single request from a single client as a function of
tolerated number of storage-node failures. The focus in this plot is the slopes of the response
time lines: the flatter the line the more scalable the protocol is with regard to the number of faults
tolerated. A key contributor to response time is network cost, which is dictated by both the number
of nodes and the space-efficiency of the encoding. PASIS has better response times than BFT
for write operations due to the space-efficiency of erasure codes and the nominal amount of work
storage-nodes perform to execute write requests.

PASIS has longer response times than BFT for read operations. This can be attributed to three
main factors: First, for our protocol, the client computation cost grows as the number of failures
tolerated increases because the cost of generating data-fragments grows as m increases. Second,
the PASIS storage-nodes store data in a real file system; although the data is serviced from cache,
the expenses to fetch such data are larger than a single memory access. The BFT setup used does
not incur these costs, but would in an apples-to-apples comparison. Third, BFT’s implementation
of “fast path” read operations scale extremely well in terms of failures tolerated. Recall, one server
returns a replica plus digest, the remainder just return a digest, and no agreement is performed; the
operation completes in a single round-trip with little computation cost.

In addition to the b = t case, Figure 4 shows one instance of PASIS assuming a hybrid fault
model with b = 1. For space-efficiency, we set m = t +1, which is t −b greater than the minimum
allowed value of m. Consequently, QW and N must also be set above their minimum values. The
b = 1 line thus corresponds to a configuration with b = 1, m = t +1, N = 3t +2 and QW = 2t +2.
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Figure 4: Mean response time vs. total failures tolerated. Mean response times of read and
write operations of random 16 KB blocks in PASIS and BFT. For PASIS, lines corresponding to
both b=1 and b=t are shown.

At t = 1, this configuration is identical to the Byzantine-only configuration. As t increases, this
configuration is more space-efficient than the Byzantine-only configuration, since it requires t −1
fewer storage-nodes. As such, both read and write operations scale better.

Some read operations in PASIS can require repair. A repair operation must perform a “write”
operation to repair the value before it is returned by the read. Interestingly, the response time
of a read that performs repair is less than the sum of the response times of a normal read and a
write operation. This is because the “write” operation during repair does not need to read logical
timestamps before issuing write requests. Additionally, data-fragments need only be written to
storage-nodes that do not already host the write operation.

5.3.3 Scalability

Figure 5 breaks mean response times of read and write operations into the costs at the client, on
the network, and at the storage-node for b = 1 and b = 4. Since measurements are taken at the
user-level, kernel-level timings for host network protocol processing (including network system
calls) are attributed to the “network” cost of the breakdowns. To understand the scalability of these
protocols, it is important to understand these breakdowns.

Although write operations for both protocols have similar response times for b = 1, the re-
sponse times of BFT write operations scale poorly. The large network cost for BFT writes is due to
the space-inefficiency of replication. For b = 4, BFT has a blowup of 13× on the network, whereas
our protocol has a blowup of 17

5 = 3.4× on the network. Note that BFT can use IP multicast to
mitigate this effect on write operation response time, though the aggregate network bandwidth
utilization would still grow.

Regardless of whether or not IP multicast is employed, our protocol in PASIS requires much
less computation on storage-nodes than BFT requires on replicas. Server cost is broken down to
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Figure 5: Protocol cost breakdown. The bars illustrate the cost breakdown of read and write
operations for PASIS and BFT for b = 1 and b = 4. Each bar corresponds to a single point on the
mean response time graph in Figure 4

distinguish protocol costs from the cost of server storage (i.e., stable data storage). Figure 5 shows
that as b increases, protocol related server computation on write operations grows significantly for
BFT and barely changes for PASIS. In PASIS, the server protocol cost decreases from 90 µs for
b = 1 to 57 µs for b = 4, whereas in BFT it increases from 0.80 ms to 2.1 ms. The server cost in
PASIS decreases because m increases as b increases, reducing the size of the data-fragment that
is validated. Since the BFT library keeps all data in memory and accesses blocks via memory
offsets, it incurs almost no server storage costs. We expect that a BFT implementation with stable
data storage would incur server storage costs similar to PASIS (e.g., around 0.7 ms for a write
operation, as is shown for b = 1 in Figure 5).

By offloading work from the storage-nodes to the client, PASIS greatly increases its scalability
in terms of supported client load. Unfortunately, a direct throughput comparison to our BFT setup
was impossible due to its poor stability under heavy load. We have observed that the throughput in
PASIS scales according to network and server CPU utilization.

Under heavy load, the response time of read operations grows in PASIS due to resource con-
tention. The same is true of BFT. Moreover, we believe that under load, the “fast path” for read
operations in BFT becomes less effective: Replicas delay read replies until all previous requests
have committed, and the likelihood that read requests are similarly ordered at distinct replicas
diminishes.

5.3.4 Concurrency

In PASIS, both read-write concurrency and client crashes during write operations can lead to client
read operations observing repairable writes. To measure the effect of concurrency on the system,
we measure multi-client throughput when accessing overlapping block sets. The experiment makes
use of four clients, each with four operations outstanding. Each client accesses a range of eight
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data blocks, with no outstanding requests from the same client going to the same block.
At the highest concurrency level (all eight blocks in contention by all clients), we observed

neither significant drops in bandwidth nor significant increases in mean response time. Even at this
high concurrency level, the initial candidate was classified as complete 88.8% of the time, and that
repair was necessary only 3.3% of the time. Since repair occurs so seldom, the effect on response
time and throughput is minimal.

6 Discussion

GARBAGE COLLECTION: Pruning old versions, or garbage collection, is necessary to prevent
capacity exhaustion of the backend storage-nodes. A storage-node in isolation, by the nature of
the protocol, cannot determine which local data-fragment versions are safe to garbage-collect. An
individual storage-node can garbage collect a data-fragment version if there exists a later complete
write. Storage-nodes are able to classify writes by executing the consistency protocol in the same
manner as the client.
BYZANTINE CLIENTS: In a storage system, Byzantine clients can write arbitrary values. The
use of fine-grained versioning (i.e., self-securing storage [39]), facilitates detection, recovery, and
diagnosis from storage intrusions. Arbitrarily modified data can be rolled back to its pre-corruption
state.

Byzantine clients can also attempt to exhaust the resources available to the PASIS protocol.
Issuing an inordinate number of write operations could exhaust storage space. However, continu-
ous garbage collection frees storage space prior to the latest complete write. If a Byzantine client
were to intentionally issue incomplete write operations, then garbage collection may not be able
to free up space. In addition, incomplete writes require read operations to roll-back behind them,
thus consuming client computation and network resources. In practice, relying on storage-based
intrusion detection [27] is probably sufficient to detect clients that exhibit such behavior.

7 Summary

Storage-node versioning enables an efficient protocol that provides strong consistency and liveness
in the face of Byzantine failures and concurrency. The protocol achieves scalability by offloading
work to the client and using space-efficient erasure coding. Measurements of the PASIS prototype
demonstrate these benefits.
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8 Appendix I: Proofs

8.1 Proof of safety

This section sketches a proof that our protocol implements linearizability [16] as adapted appro-
priately for a fault model admitting operations by Byzantine clients. Intuitively, linearizability
requires that each read operation return a value consistent with some execution in which each read
and write is performed at a distinct point in time between when the client invokes the operation
and when the operation returns. The adaptations necessary to reasonably interpret linearizability in
our context arise from the fact that Byzantine clients need not follow the read and write protocols.
The first adaptation is necessary because return values of reads by Byzantine clients obviously
need not comply with any correctness criteria. As such, we disregard read operations by Byzantine
clients in reasoning about linearizability, and define the duration of reads only for those executed
by benign clients only.

DEFINITION 1 A read operation executed by a benign client begins when the client invokes READ
locally, and completes when this invocation returns 〈timestamp,value〉.

The second needed adaptation of linearizability arises from the fact that it is not well defined
when a write operation by a Byzantine client begins. Therefore, we settle for merely a definition
of when writes by Byzantine operations complete.

DEFINITION 2 Storage-node S, accepts a write request with data-fragment D, cross checksum CC,
and timestamp ts upon successful return of the function VALIDATE(D, CC, ts, S) at the storage-
node.

DEFINITION 3 A write operation with timestamp ts completes once QW −b benign storage-nodes
have accepted write requests with timestamp ts.

In fact, Definition 3 applies to write operations by benign clients as well as “write operations”
by Byzantine clients. In this section, we use the label wts as a shorthand for the write operation
with timestamp ts. In contrast to Definition 3, Definition 4 applies only to write operations by
benign clients.

DEFINITION 4 wts begins when a benign client invokes the WRITE operation locally that issues a
write request bearing timestamp ts.

LEMMA 1 Let c1 and c2 be benign clients. If c1 performs a read operation that returns 〈ts1,v1〉,
c2 performs a read operation that returns 〈ts2,v2〉, and ts1 = ts2, then v1 = v2.

Proof sketch: Since ts1 = ts2, each read operation considers the same verifier. Since each read
operation considers the same verifier, each read operation considers the same cross checksum. A
read operation does not return a value unless the cross checksum is valid and there are more than
b read responses with the timestamp (since only candidates classified as repairable or complete
are considered). Thus, only a set of data-fragments resulting from the erasure-coding of the same
data-item that are issued as write requests with the same timestamp can validate a cross checksum.
As such, v1 and v2 must be the same. 2
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Let vts denote the value written by wts which, by Lemma 1, is well-defined. We use rts to
denote a read operation by a benign client that returns 〈ts,vts〉.

DEFINITION 5 Let o1 denote an operation that completes (a read by a benign client, or a write),
and let o2 denote an operation that begins (a read or write by a benign client). o1 precedes o2 if o1

completes before o2 begins. The precedence relation is written as o1 → o2.

Operation o2 is said to follow, or to be subsequent to, operation o1. The notation o1 6→ o2 is
used to mean operation o1 does not precede operation o2.

LEMMA 2 If wts′ is a write operation by a benign client and if wts → wts′ , then ts < ts′.

Proof sketch: Constraint (2), the overlap constraint, ensures that the first phase of WRITE

achieves a higher timestamp than any preceding write operation. A complete write operation exe-
cutes at at least QW −b benign storage-nodes. Considering QR TIME RESPONSE messages ensures
at least one such response is from a correct storage-node that executed the preceding write opera-
tion (line 8 of WRITE). A Byzantine storage-node can return a logical timestamp greater than that
of the preceding write operation; however, this still advances logical time and Lemma 2 holds. 2

OBSERVATION 1 Timestamp order is a total order on write operations. The timestamps of write
operations by benign clients respect the precedence order among writes.

LEMMA 3 If some read operation by a benign client returns 〈ts,vts〉, and if wts → rts′ , then ts ≤ ts′.

Proof sketch: By Definition 3, since wts completes, there are QW−b benign storage-nodes that
accept write-requests with timestamp ts. Storage-node crashes and the asynchronous environment
can “hide” up to t of the QW − b accepted write requests from rts′ . As such, at least QW − t − b
responses with timestamp ts are observable by rts′ ; a read operation that observes a candidate with
at least QW− t −b responses performs repair (line 10 of READ). Since rts returns 〈ts,vts〉, vts can be
returned from a read operation performed by a benign client. Thus, rts′ either repairs vts, observes
vts as complete, or observes some value with a timestamp higher than ts. 2

OBSERVATION 2 It follows from Lemma 3 that if rts → rts′ , then ts ≤ ts′. As such, there is a partial
order ≺ on read operations by benign clients defined by the timestamps associated with the values
returned (i.e., of the write operations read). More formally, rts ≺ rts′ ⇐⇒ ts < ts′.

Ordering reads according to the timestamps of the write operations whose values they return
yields a partial order on read operations. Lemma 3 ensures that this partial order is consistent
with precedence among reads. Therefore, any way of extending this partial order to a total order
yields an ordering of reads that is consistent with precedence among reads. Lemmas 2 and 3
guarantee that this totally ordered set of operations is consistent with precedence. This implies the
natural extension of linearizability to our fault model (i.e., ignoring reads and durations of writes
by Byzantine clients); in particular, it implies linearizability as originally defined [16] if all clients
are benign.
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8.2 Proof of liveness

Our protocol provides a strong liveness property, namely wait-freedom [14, 18]. Informally, each
operation by a correct client completes with certainty, even if all other clients fail, provided that at
most b servers suffer Byzantine failures and t servers fail in total.

LEMMA 4 A write operation by a correct client completes.

Proof sketch: A write operation by a correct client waits for QW storage-nodes to execute write
requests before returning (line 7 of DO WRITE). Since, N−t storage-nodes are always available and
QW ≤ N − t, write operations always terminate. 2

LEMMA 5 A read operation by a correct client completes.

Proof sketch: Given N− t READ RESPONSE messages, a read operation classifies a candidate as
complete, repairable, or incomplete. The read completes if a candidate is classified as complete. As
well, the read completes if a candidate is repairable. Repair is initiated for repairable candidates—
repair performs a write operation, which by Lemma 4 completes—which lets the read operation
complete. In the case of an incomplete, the read operation traverses the version history backwards,
until a complete or repairable candidate is discovered. Traversal of the version history terminates
if ⊥ at logical time 0 is encountered at QW storage-nodes. 2
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