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Abstract

A logical framework is a general meta-language for specifying and implementing de-

ductive systems, given by axioms and inference rules. Based on a higher-order logic

programming interpretation, it supports executing logical systems and reasoning with

and about them, thereby reducing the effort required for each particular logical system.

In this thesis, we describe different techniques to improve the overall performance

and the expressive power of higher-order logic programming. First, we introduce tabled

higher-order logic programming, a novel execution model where some redundant infor-

mation is eliminated using selective memoization. This extends tabled computation

to the higher-order setting and forms the basis of the tabled higher-order logic pro-

gramming interpreter. Second, we present efficient data-structures and algorithms for

higher-order proof search. In particular, we describe a higher-order assignment algo-

rithm which eliminates many unnecessary occurs checks and develop higher-order term

indexing. These optimizations are crucial to make tabled higher-order logic program-

ming successful in practice. Finally, we use tabled proof search in the meta-theorem

prover to reason efficiently with and about deductive systems. It takes full advantage

of higher-order assignment and higher-order term indexing.

As experimental results demonstrate, these optimizations taken together constitute

a significant step toward exploring the full potential of logical frameworks in practice.
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Chapter 1

Introduction

A logical framework is a general meta-language for specifying and implementing de-

ductive systems, given by axioms and inference rules. Examples of deductive systems

are plentiful in computer science. In computer security, we find authentication and

security logics to describe access and security criteria. In programming languages, we

use deductive systems to specify the operational semantics, type-systems or other as-

pects of the run-time behavior of programs. Recently, one major application of logical

frameworks has been in the area of “certified code”. To provide guarantees about the

behavior of mobile code, safety properties are expressed as deductive systems. The

code producer then verifies the program according to some predetermined safety pol-

icy, and supplies a binary executable together with its safety proof (certificate). Before

executing the program, the host machine then quickly checks the code’s safety proof

against the binary. The safety policy and the safety proofs can be expressed in the

logical framework thereby providing a general safety infrastructure.

There are two main variants of logical frameworks which are specifically designed

to support the implementation of deductive systems. λProlog and Isabelle are based

on hereditary Harrop formulas, while the Twelf system [53] is an implementation of

the logical framework LF, a dependently typed lambda calculus. In this thesis, we

will mainly focus on the latter. By assigning a logic programming interpretation to

types [47], we obtain a higher-order logic programming language. Higher-order logic

programming in Twelf extends traditional first-order logic programming in three ways:

First, we have a rich type system based on dependent types, which allows the user to
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CHAPTER 1. INTRODUCTION

define her own higher-order data-types and supports higher-order abstract syntax [52].

Variables in the object language can be directly represented as variables in the meta-

language thereby directly inheriting capture-avoiding substitution and bound variable

renaming. Second, we not only have a static set of program clauses, but clauses may

be introduced dynamically and used within a certain scope during proof search. Third,

we have an explicit notion of proof, i.e., the logic programming interpreter does not

only return an answer substitution for the free variables in the query, but also the

actual proof of the query as a term in the dependently typed lambda-calculus. This

stands in sharp contrast to higher-order features supported in many traditional logic

programming languages (see for example [13]) where we can encapsulate predicate

expressions within terms to later retrieve and invoke such stored predicates. Twelf’s

higher-order logic programming interpreter is complemented by a meta-theorem prover,

which combines generic proof search based on higher-order logic programming with

inductive reasoning [53, 63].

The Twelf system has been successfully used to implement, execute and reason

about a wide variety of deductive systems. However, experience with real-world appli-

cations in different projects on certified code [4, 15, 3] have increasingly demonstrated

the limitations of Twelf’s higher-order logic programming proof search. To illustrate,

let us briefly consider the foundational proof-carrying code project at Princeton. As

part of this project, the researchers at Princeton have implemented between 70,000

and 100,000 lines of Twelf code, which includes data-type definitions and proofs. The

higher-order logic program, which is used to execute safety policies, consists of over

5,000 lines of code, and over 600 – 700 clauses. Such large specifications have put to

test implementations of logical frameworks and exposed several problems. First, per-

formance of the higher-order logic programming interpreter may be severely hampered

by redundant computation, leading to long response times and slow development of

formal specifications. Second, many straightforward specifications of formal systems,

for example recognizers and parsers for grammars, rewriting systems, type systems

with subtyping or polymorphism, are not executable, thus requiring more complex

and sometimes less efficient implementations. Thirdly, redundancy severely hampers

the reasoning with and about deductive systems in general, limiting the use of the

meta-theorem prover.

In applications to certified code, efficient proof search techniques not only play an

12



important role to execute safety polices and generate a certificate that a given program

fulfills a specified safety policy, but it also can be used to check the correctness of a

certificate [42]. Necula and Rahul [42] propose as a certificate a bit-string of the

non-deterministic choices in the proof. Hence, a proof can be checked by guiding the

higher-order logic programming interpreter with the bit-string and reconstructing the

actual proof. As pointed out by Necula and Lee, typical safety proof in the context

of certified code commonly have repeated sub-proofs that should be hoisted out and

proved only once. The replication of common sub-proofs leads to redundancy in the

bit-strings representing the safety proof and it may take longer to reconstruct the safety

proof using a guided higher-order logic programming interpreter.

In this thesis, we develop different techniques which improve the overall performance

and the expressive power of the higher-order logic programming interpreter. We also

apply these ideas in the meta-theorem prover to overcome existing limitations when

reasoning about deductive systems. These optimizations taken together constitute a

significant step toward exploring the full potential of logical frameworks in real-world

applications. Some of the work in this thesis has been previously published in different

forms [54, 55, 56, 57, 41]

Contributions

The contributions in this thesis are in three main areas: First, we introduce tabled

higher-order logic programming, a novel execution model where some redundant in-

formation is eliminated using selective memoization. This forms the basis of the

tabled higher-order logic programming interpreter. Second, we develop efficient data-

structures and algorithms for higher-order proof search. These optimizations are cru-

cial to make tabled higher-order logic programming successful in practice. Although

we develop these techniques in the context of tabled logic programming, they are

also independently useful and important to other areas such as higher-order rewrit-

ing, higher-order theorem proving and higher-order proof checking. Third, we use

memoization-based proof search in the meta-theorem prover, to reason efficiently with

and about deductive systems. This demonstrates the importance of memoization in

general. Next, we will discuss briefly each of these contributions.

13



CHAPTER 1. INTRODUCTION

Tabled higher-order logic programming

Tabled first-order logic programming has been successfully applied to solve complex

problems such as implementing recognizers and parsers for grammars [68], representing

transition systems CCS and writing model checkers [16]. The idea behind it is to elim-

inate redundant computation by memoizing sub-computation and re-using its results

later. The resulting search procedure is complete and terminates for programs with

the bounded-term size property. The XSB system [62], a tabled logic programming

system, demonstrates impressively that tabled together with non-tabled programs can

be executed efficiently in the first-order setting.

The success of memoization in first-order logic programming strongly suggests that

memoization may also be valuable in higher-order logic programming. In fact, Necula

and Lee point out in [44] that typical safety proofs in the context of certified code

commonly have repeated sub-proofs that should be hoisted out and proved only once.

Memoization has potentially three advantages. First, proof search is faster thereby

substantially reducing the response time to the programmer. Second, the proofs them-

selves are more compact and smaller. This is especially important in applications to

secure mobile code where a proof is attached to a program, as smaller proofs take up less

time to check and transmit to another host. Third, substantially more specifications,

for example recognizers and parser for grammars, evaluators based on rewriting or type

systems with subtyping, are executable under the new paradigm thereby extending the

power of the existing system.

Using memoization in higher-order logic programming poses several challenges,

since we have to handle type dependencies and may have dynamic assumptions which

are introduced during proof search. This is unlike tabling in XSB, where we have no

types and it suffices to memoize atomic goals. Moreover, most descriptions of tabling

in the first-order setting are closely oriented on the WAM (Warren Abstract Machine)

making it hard to transfer tabling techniques and design extensions to other logic

programming interpreters.

In this thesis, we introduce a novel execution model for logical frameworks based

on selective memoization.

Proof-theoretic characterization of uniform proofs and memoization We give

a proof-theoretic characterization of tabling based on uniform proofs, and show
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soundness of the resulting interpreter. This provides a high-level description of a

tabled logic programming interpreter and separates logical issues from procedural

ones leaving maximum freedom to choose particular control mechanisms.

Implementation of a tabled higher-order logic programming interpreter We

give a high-level description of a semi-functional implementation for adding tabling

to a higher-order logic programming interpreter. We give an operational interpre-

tation of the uniform proof system and discuss some of the implementation issues

such as suspending and resuming computation, retrieving answers, and trailing.

Unlike other description, it does not require an understanding or modifications,

and extensions to the WAM (Warren abstract machine). It is intended as a high-

level explanation and guide for adding tabling to an existing logic programming

interpreter. This is essential for rapidly prototyping tabled logic programming

interpreters, even for linear logic programming and other higher-order logic pro-

gramming systems.

Case studies We discuss two case studies to illustrate the use of memoization in the

higher-order setting. We consider a parser and recognizer for first-order formulas

into higher-order abstract syntax. To model left and right associativity of the

different connectives, we mix left and right recursion in the specification of the

parser. Although this closely models the grammar, it leads to an implementation

which is not executable with traditional logic programming interpreters which

are based on depth-first search.

The second case study is an implementation of a bi-directional type-checker by

Davies and Pfenning [17]. The type-checker is executable with the original logic

programming interpreter, which performs a depth-first search. However, redun-

dant computation may severely hamper its performance as there are several

derivations for proving that a program has a specified type.

Efficient data-structures and algorithms

Efficient data-structures and implementation techniques play a crucial role in utilizing

the full potential of a reasoning environment in large scale applications. Although
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CHAPTER 1. INTRODUCTION

this need has been widely recognized for first-order languages, efficient algorithms for

higher-order languages are still a central open problem.

Proof-theoretic foundation for existential variables based on modal logic

We give a dependent modal lambda calculus, which extends the theory of the

logical framework LF [29] conservatively with modal variables. Modal variables

can be interpreted as existential variables, thereby clearly distinguishing them

from ordinary bound variables. This is critical to achieve a simplified account of

higher-order unification and allows us to justify different optimizations such as

as lowering, raising, and linearization [57, 41]. It also serves as a foundation for

designing higher-order term indexing strategies.

Optimizing unification Unification lies at the heart of logic programming, theorem

proving, and rewriting systems. Thus, its performance affects in a crucial way

the global efficiency of each of these applications. Higher-order unification is

in general undecidable, but decidable fragments, such as higher-order patterns

unification, exist. Unfortunately, the complexity of this algorithm is still at best

linear, which is impractical for any useful programming language or practical

framework. In this thesis, we present an assignment algorithm for linear higher-

order patterns which factors out unnecessary occurs checks. Experiments show

that we get a speed-up by up to a factor 2 – 5 making the execution of some

examples feasible. This is a significant step toward efficient implementation of

higher-order reasoning systems in general [57].

Higher-order term indexing Proof search strategies, such as memoization, can only

be practical if we can access the memo-table efficiently. Otherwise, the rate of

drawing new conclusions may degrade sharply both with time and with an in-

crease of the size of the memo-table. Term indexing aims at overcoming pro-

gram degradation by sharing common structure and factoring common opera-

tions. Higher-order term indexing has been a central open problem, limiting

the application and the potential impact of higher-order reasoning systems. In

this thesis, we develop and implemented higher-order term indexing techniques.

They improve performance by up to a factor of 9, illustrating the importance of

indexing [56].
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Meta-theorem proving based on memoization

The traditional approach for supporting theorem proving in logical frameworks is to

guide proof search using tactics and tacticals. Tactics transform a proof structure

with some unproven leaves into another. Tacticals combine tactics to perform more

complex steps in the proof. Tactics and tacticals are written in ML or some other

strategy language. To reason efficiently about some specification, the user implements

specific tactics to guide the search. This means that tactics have to be rewritten for

different specifications. Moreover, the user has to understand how to guide the prover

to find the proof, which often requires expert knowledge about the systems. Proving

the correctness of the tactic is itself a complex theorem proving problem.

The approach taken in the Twelf system is to endow the framework with the oper-

ational semantics of logic programming and design general proof search strategies for

it. Twelf’s meta-theorem prover combines general proof search based on higher-order

logic programming with inductive reasoning. Using the proof-theoretic characteriza-

tion of tabling, we develop a general memoization-based proof search strategy which

is incorporated in Twelf’s meta-theorem prover. As experiments demonstrate, elimi-

nating redundancy in meta-theorem proving is critical to prove properties about larger

and more complex specifications. We discuss several examples including type preserva-

tion proofs for type-system with subtyping, several inversion lemmas about refinement

types, and reasoning in classical natural deduction. These examples include several

lemmas and theorems which were not previously provable. Moreover, we show that in

many cases no bound is needed on memoization-based search. As a consequence, if

a sub-case is not provable, the user knows, that in fact no proof exists. This in turn

helps the user to revise the formulation of the theorem or the specification. Overall

the benefits of memoization are an important step towards a more robust and more

efficient meta-theorem prover.
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Chapter 2

Dependently typed lambda calculus

based on modal type theory

In this chapter, we introduce a dependently typed lambda calculus based on modal

type theory. The underlying motivation for this work is to provide a logical founda-

tion for the implementation of logical frameworks and the design choices one has to

make in practice. One such choice is for example the treatment of existential variables.

Existential variables are usually implemented via mutation. However, previous formu-

lations of logical frameworks [28, 29] do not capture or explain this technique. The

framework presented in this chapter serves as a foundation for the subsequent chapters

on higher-order unification, higher-order proof search, and higher-order term indexing.

We present here an abstract view of existential variables based on modal type

theory. Existential variables u (or v) are treated as modal variables. This allows us

to reason about existential variables as first-class objects and directly explain many

optimizations done in implementations. In this chapter, we will conservatively extend

the theory of the logical framework LF given by Harper and Pfenning in [29] with

modal variables. Following Harper and Pfenning, we will introduce this language and

show that definitional equality remains decidable. In addition, normalization and type-

checking are decidable.

19



CHAPTER 2. DEPENDENTLY TYPED LAMBDA CALCULUS BASED ON MODAL TYPE THEORY

2.1 Motivation

Before presenting the foundation for dependently typed existential variables, we briefly

motivate our approach based on modal logic. Following the methodology of Pfenning

and Davies [51], we can assign constructive explanations to modal operators. A key

characteristic of this view is to distinguish between propositions that are true and

propositions that are valid. A proposition is valid if its truth does not depend on the

truth of any other propositions. This leads to the basic hypothetical judgment

A1 valid , . . . An valid ;B1 true, . . . , Bm true ` C true.

Under the multiple-world interpretation of modal logic, C valid corresponds to

C true in all reachable worlds. This means C true without any assumptions, except

those that are assumed to be true in all worlds. We can generalize this idea to also

capture truth relative to a set of specified assumptions by writing C valid Ψ, where Ψ

is the abbreviation for C1 true, . . . , Cn true. In terms of the multiple world semantics,

this means that C is true in any world where C1 through Cn are all true and we say C

is valid relative to the assumptions in Ψ. Hypotheses about relative validity are more

complex now, so our general judgment form is

A1 valid Ψ1, . . . , An valid Ψn;B1 true, . . . , Bm true ` C true

While it is interesting to investigate this modal logic above in its own right, it does

not come alive until we introduce proof terms. In this chapter, we investigate the

use of a modal proof term calculus as a foundation for existential variables. We will

view existential variables u as modal variables of type A in a context Ψ while bound

variables are treated as ordinary variables. This allows us to distinguish between

existential variables u::(Ψ`A) for relative validity assumptions A valid Ψ declared in a

modal context, and x:A for ordinary truth assumptions A true declared in an (ordinary)

context. If we have an assumption A valid Ψ we can only conclude A true if we can

verify all assumptions in Ψ.

∆, A valid Ψ,∆′; Γ ` Ψ

∆, A valid Ψ,∆′; Γ ` A true
(∗)

In other words, if we know A true in Ψ, and all elements in Ψ can be verified from

the assumptions in Γ, then we can conclude A true in Γ. As we will see in the next
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section, this transition from one context Ψ to another context Γ, can be achieved via

a substitutions from Ψ to Γ.

2.2 Syntax

We conservatively extend LF [28] with modal variables. Existential variables u (or v)

are treated as modal variables and x denotes ordinary variables. Existential variables

are declared in a modal context ∆, while bound variables x:A are declared in a context

Γ or Ψ. Note that the modal variables u declared in ∆ carry their own context of

bound variables Ψ and type A. The substitution σ is part of the syntax of existential

variables. c and a are constants, which are declared in a signature.

Substitutions σ, τ ::= · | σ,M/x

Objects M,N ::= c | x | u[σ] | λx:A. M |M1 M2

Families A,B,C ::= a | AM | Πx:A1. A2

Kinds K ::= type | Πx:A. K

Signatures Σ ::= · | Σ, a:K | Σ, c:A
Contexts Γ,Ψ ::= · | Γ, x:A

Modal Contexts ∆ ::= · | ∆, u::(Ψ`A)

We use K for kinds, and A, B, C for type families, M , N for object. Signatures,

contexts and modal contexts may declare each constant and variable at most once.

For example, when we write Γ, x:A we assume that x is not already declared in Γ. If

necessary, we tacitly rename x before adding it to the context Γ. Similarly, when we

write ∆, u::(Ψ ` A), we assume that u is not already declared in ∆. Terms that differ

only in the names of their bound and modal variables are considered identical.

2.3 Substitutions

We write the substitution operation as a defined operations in prefix notation [σ]P ,

for an object, family, or kind P . These operations are capture-avoiding as usual.

Moreover, we always assume that all free variables in P are declared in σ. Substitutions

that are part of the syntax are written in postfix notation, u[σ]. Note that such
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explicit substitutions occur only for variables u labeling relative validity assumptions.

Substitutions are defined in a standard manner.

Substitutions

[σ](·) = (·)
[σ](τ,N/y) = ([σ]τ, [σ]N/y) provided y not declared or free in σ

Objects

[σ]c = c

[σ1,M/x, σ2]x = M

[σ](u[τ ]) = u[[σ]τ ]

[σ](N1 N2) = ([σ]N1) ([σ]N2)

[σ](λy:A. N) = λy:[σ]A. [σ, y/y]N provided y not declared or free in σ

Families

[σ]a = a

[σ](AM) = ([σ]A) ([σ]M)

[σ](Πy:A1. A2) = Πy:[σ]A1. [σ, y/y]A2 provided y not declared or free in σ

Kinds

[σ]type = type

[σ](Πy:A. K) = Πy:[σ]A. [σ, y/y]K provided y not declared or free in σ

The side conditions can always be verified by (tacitly) renaming bound variables.

We do not need an operation of applying a substitution σ to a context. The last

principle makes it clear that [σ]τ corresponds to composition of substitutions, which is

sometimes written as τ ◦ σ.

Lemma 1 (Composition of substitution)

1. [σ]([τ ]τ ′) = [[σ]τ ]τ ′

2. [σ]([τ ]M) = [[σ]τ ]M

3. [σ]([τ ]A) = [[σ]τ ]A
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4. [σ]([τ ]K) = [[σ]τ ]K

Proof: By simultaneous induction on the definition of substitutions. 2

Note substitutions σ are defined only on ordinary variables x and not modal vari-

ables u. We write idΓ for the identity substitution (x1/x1, . . . , xn/xn) for a context

Γ = (·, x1:A1, . . . , xn:An). We will use π for a substitution which may permute the

variables, i.e π = (xΦ(1)/x1, . . . , xΦ(n)/xn) where Φ is a total permutation and π is

defined on the elements from a context Γ = (·, x1:A1, . . . , xn:An). We only consider

well-typed substitutions, so π must respect possible dependencies in its domain. We

also streamline the calculus slightly by always substituting simultaneously for all ordi-

nary variables. This is not essential, but saves some tedium in relating simultaneous

and iterated substitution. Moreover, it is also closer to the actual implementation

where we use de Bruijn indices and postpone explicit substitutions.

A new and interesting operation arises from the substitution principles for modal

variables. Modal substitutions are defined as follows.

Modal Substitutions θ ::= · | θ,M/u

We write θ for a simultanous substitution [[M1/u1, . . . ,Mn/un]] where u1, . . . , un are

distinct modal variables. The new operation of substitution is compositional, but two

interesting situations arise: when a variable u is encountered, and when we substitute

into a λ-abstraction (or a dependent type Π respectively).

Substitutions

[[θ]](·) = ·
[[θ]](σ,N/y) = ([[θ]]σ, [[θ]]N/y)

Objects

[[θ]]c = c

[[θ]]x = x

[[θ1,M/u, θ2]](u[σ]) = [[[θ1,M/u, θ2]]σ]M

[[θ]](N1 N2) = ([[θ]]N1) ([[θ]]N2)

[[θ]](λy:A. N) = λy:[[θ]]A. [[θ]]N
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Families

[[θ]]a = a

[[θ]]x = x

[[θ]](AM) = ([[θ]]A) ([[θ]]M)

[[θ]](Πy:A1. A2) = Πy:[[θ]]A1. [[θ]]A2

Kind

[[θ]]type = type

[[θ]](Πy:A. K) = Πy:[[θ]]A. [[θ]]K

Contexts

[[θ]](·) = ·
[[θ]](Γ, y:A) = ([[θ]]Γ, y:[[θ]]A)

We remark that the rule for substitution into a λ-abstraction and similarly the rule

for Π-abstraction does not require a side condition. This is because the object M is

defined in a different context, which is accounted for by the explicit substitution stored

at occurrences of u. This ultimately justifies implementing substitution for existential

variables by mutation.

Finally, consider the case of substituting into a closure, which is the critical case of

this definition.

[[θ1,M/u, θ2]](u[σ]) = [[[θ1,M/u, θ2]]σ]M

This is clearly well-founded, because σ is a subexpression (so [[M/u]]σ will terminate)

and application of an ordinary substitution has been defined previously without ref-

erence to the new form of substitution. We will continue the discussion of modal

variables in chapter 3 and focus here on type-checking and definitional equality of the

conservative extension of LF.

2.4 Judgments

We now give the principal judgments for typing and definitional equality. We presup-

pose a valid signature Σ, which will be omitted for sake of brevity. If J is a typing

or equality judgment, then we write [σ]J for the obvious substitution of J by σ. For

example. if J is M : A, then [σ]J stands for the judgment [σ]M : [σ]A.
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` ∆ mctx ∆ is a valid modal context

∆ ` Ψ ctx Ψ is a valid context

∆; Γ ` σ : Ψ Substitution σ matches context Ψ

∆; Γ ` M : A Object M has type A

∆; Γ ` A : K Family A has kind K

∆; Γ ` K : kind K is a valid kind

∆; Γ ` M ≡ N : A M is definitional equal to N

∆; Γ ` A ≡ B : K A is definitional equal to B

∆; Γ ` K ≡ L : kind K is definitional equal to L

We start by defining valid modal context and valid context.

Modal Context

` (·) mctx

` ∆ mctx ∆ ` Ψ ctx ∆; Ψ ` A : type

` (∆, u::(Ψ`A)) mctx

Context

∆ ` (·) ctx

∆ ` Ψ ctx ∆; Ψ ` A : type

∆ ` (Ψ, x:A) ctx

Note that there may be dependencies among the modal variables defined in ∆.

2.5 Typing rules

In the following, we will concentrate on the typing rules and definitional equality rules

for substitutions, objects, types families, and kinds. We will follow the formulation of

the typing rules given in [29]. We presuppose that all modal contexts ∆ and bound

variable context Γ in judgments are valid.
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Substitutions

∆; Γ ` (·) : (·)
∆; Γ ` σ : Ψ ∆; Γ `M : [σ]A

∆; Γ ` (σ,M/x) : (Ψ, x:A)

Object

∆; Γ, x:A,Γ′ ` x : A
var

∆, u::(Ψ`A),∆′; Γ ` σ : Ψ

∆;u::(Ψ`A),∆′; Γ ` u[σ] : [σ]A
mvar

∆; Γ, x:A1 `M : A2 ∆; Γ ` A1 : type
∆; Γ ` λx:A1. M : Πx:A1. A2

∆; Γ `M1 : Πx:A2. A1 ∆; Γ `M2 : A2

∆; Γ `M1 M2 : [idΓ,M2/x]A1

∆; Γ `M : B ∆; Γ ` A ≡ B : type
∆; Γ `M : A

conv

Families

a:K in Σ
∆; Γ ` a : K

∆; Γ ` A : Πx:B.K ∆; Γ `M : B

∆; Γ ` A M : [idΓ,M/x]K

∆; Γ ` A1 : type ∆; Γ, x:A1 ` A2 : type
∆; Γ ` Πx:A1.A2 : type

∆; Γ ` A : K ∆; Γ ` K ≡ L : kind
∆; Γ ` A : L

Kind

∆; Γ ` type : kind
∆; Γ ` A : type ∆; Γ, x:A ` K : kind

∆; Γ ` Πx:A.K : kind

Note that the rule for modal variables is the rule (*) presented earlier, annotated

with proof terms and slightly generalized, because of the dependent type theory we

are working in. This rule also justifies our implementation choice of using existential

variables only in the form u[σ].

2.6 Definitional equality

Next, we give some rules for definitional equality for objects, families and kinds in ∆.

Some of the typing premises marked as {. . .} are redundant, but we cannot prove this

until validity has been established. We do not include reflexivity, since it is admissi-
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ble. The interesting case is the one for modal variables. Two modal (or existential)

variables are considered definitional equal, if they actually are the same variable and

the associated substitutions are definitionally equal. This means that if we implement

existential variables via references, then two uninstantiated existential variables are

only definitional equal if they point to the same reference under the same substitution.

Substitutions

∆; Γ ` · ≡ · : ·
∆; Γ `M ≡ N : [σ]A ∆; Γ ` σ ≡ σ′ : Ψ

∆; Γ ` (σ, M/x) ≡ (σ′, N/x) : (Ψ, x:A)

Simultaneous Congruence

∆; Γ ` A ≡ A′ : type ∆; Γ ` A′′ ≡ A′ : type ∆; Γ, x:A `M ≡ N : B

∆; Γ ` λx:A′.M ≡ λx:A′′.N : Πx:A.B

∆; Γ `M1 ≡ N1 : Πx:A2. A1 ∆; Γ `M2 ≡ N2 : A2

∆Γ `M1 M2 ≡ N1 N2 : [idΓ,M2/x]A1

∆, u::(Ψ`A),∆′; Γ ` σ ≡ σ′ : Ψ

∆, u::(Ψ`A),∆′; Γ ` u[σ] ≡ u[σ′] : [σ]A

∆; Γ, x:A,Γ′ ` x ≡ x : A

c:A in signature Σ

∆; Γ ` c ≡ c : A

Parallel conversion

{∆; Γ ` A : type} ∆; Γ, x : A `M2 ≡ N2 : B ∆; Γ `M1 ≡ N1 : A

∆; Γ ` (λx:A.M2)M1 ≡ [idΓ, N1/x]N2 : [idΓ,M1/x]B

Extensionality

{∆; Γ ` N : Πx:A1.A2}
{∆; Γ `M : Πx:A1.A2} ∆; Γ ` A1 : type ∆; Γ, x:A1 `M x ≡ N x : A2

∆; Γ `M ≡ N : Πx:A1.A2
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Equivalence

∆; Γ ` N ≡M : A

∆; Γ `M ≡ N : A

∆; Γ `M ≡ N : A ∆; Γ ` N ≡ O : A

∆; Γ `M ≡ O : A

Type conversion

∆; Γ `M ≡ N : A ∆; Γ ` A ≡ B : type
∆; Γ `M ≡ N : B

Family congruence

a:K in Σ
∆; Γ ` a ≡ a : K

∆; Γ ` A ≡ B : Πx:C.K ∆; Γ `M ≡ N : C

∆; Γ ` AM ≡ BN : [idΓ,M/x]K

∆; Γ ` A1 ≡ B1 : type {∆; Γ ` A1 : type} ∆; Γ, x:A1 ` A2 ≡ B2 : type

∆; Γ ` Πx:A1.A2 ≡ Πx:B1.B2 : type

Family equivalence

∆; Γ ` A ≡ B : K

∆; Γ ` B ≡ A : K

∆; Γ ` A ≡ B : K ∆; Γ ` B ≡ C : K

∆; Γ ` A ≡ C : K

Kind conversion

∆; Γ ` A ≡ B : K ∆; Γ ` K ≡ L : kind
∆; Γ ` A ≡ B : L

Kind congruence

∆; Γ ` type ≡ type : kind

∆; Γ ` A ≡ B : type {∆; Γ ` A : type} ∆; Γ, x:A ` K ≡ L : kind

∆; Γ ` Πx:A.K ≡ Πx:B.L : kind

Kind equivalence

∆; Γ ` K ≡ L : kind
∆; Γ ` L ≡ K : kind

∆; Γ ` K ≡ L′ : kind ∆; Γ ` L′ ≡ L : kind
∆; Γ ` K ≡ L : kind
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2.7 Elementary properties

We will start by showing some elementary properties.

Lemma 2 (Weakening)

1. If ∆; Γ,Γ′ ` J then ∆; Γ, x:A,Γ′ ` J

2. If ∆, ∆′; Γ ` J then ∆, u::(Ψ`A),∆′; Γ ` J

Proof: Proof by induction over the structure of the given derivation. 2

Next, we show that reflexivity is admissible.

Lemma 3 (Reflexivity)

1. If ∆; Γ ` σ : Ψ then ∆; Γ ` σ ≡ σ : Ψ

2. If ∆; Γ `M : A then ∆; Γ `M ≡M : A

3. If ∆; Γ ` A : K then ∆; Γ ` A ≡ A : K

4. If ∆; Γ ` K : kind then ∆; Γ ` K ≡ K : kind

Proof: Proof by induction over the structure of the given derivation. 2

First, we show some simple properties about substitutions, which will simplify some

of the following proofs. We always assume that the contexts for bound variables Γ and

Ψ are valid. Similarly, the modal context ∆ is valid.

Lemma 4 Let ∆; Γ ` σ1 : Ψ1 and ∆; Γ ` (σ1, σ2) : (Ψ1,Ψ2).

1. If ∆; Ψ1 ` τ : Ψ′ then [σ1, σ2](τ) = [σ1](τ).

2. If ∆; Ψ1 `M : A then [σ1, σ2]M = [σ1](M) and [σ1, σ2]A = [σ1](A).

3. If ∆; Ψ1 ` A : K then [σ1, σ2]A = [σ1](A) and [σ1, σ2]K = [σ1](K).

4. If ∆; Ψ1 ` K : kind then [σ1, σ2]K = [σ1](K).
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5. If ∆; Γ ` idΓ : Γ and ∆; Γ ` σ : Ψ then [idΓ](σ) = σ

6. If ∆; Γ ` σ : Ψ and ∆; Ψ ` idΨ : Ψ then [σ](idΨ) = σ

Proof: The statement (1) to (4) are proven by induction on the first derivation. The

statement (5) by induction on the derivation ∆; Γ ` σ : Ψ and the last one by induction

on the size of idΨ using statement (1). 2

Lemma 5 (Inversion on substitutions)

If ∆; Γ ` (σ1, N/x, σ2) : (Ψ1, x : A,Ψ2) then ∆; Γ ` N : [σ1]A and ∆; Γ ` σ1 : Ψ1

Proof: Structural induction on σ2. 2

Lemma 6 (General substitution properties)

1. If ∆; Γ ` σ : Ψ and ∆; Ψ ` τ : Ψ′ then ∆; Γ ` [σ]τ : Ψ′.

2. If ∆; Γ ` σ : Ψ and ∆; Ψ ` τ1 ≡ τ2 : Ψ′ then ∆; Γ ` [σ]τ1 ≡ [σ]τ2 : Ψ′.

3. If ∆; Γ ` σ : Ψ and ∆; Ψ ` N : C then ∆; Γ ` [σ]N : [σ]C.

4. If ∆; Γ ` σ : Ψ and ∆; Ψ ` N ≡M : A then ∆; Γ ` [σ]N ≡ [σ]M : [σ]A.

5. If ∆; Γ ` σ : Ψ and ∆; Ψ ` A : K then ∆; Γ ` [σ]A : [σ]K.

6. If ∆; Γ ` σ : Ψ and ∆; Ψ ` A ≡ B : K then ∆; Γ ` [σ]A ≡ [σ]B : [σ]K.

7. If ∆; Γ ` σ : Ψ and ∆; Ψ ` K : kind then ∆; Γ ` [σ]K : kind.

8. If ∆; Γ ` σ : Ψ and ∆; Ψ ` K ≡ L : kind then ∆; Γ ` [σ]K ≡ [σ]L : kind.

Proof: By simultaneous induction over the structure of the second derivation. We

give some cases for (3).

Case D =
∆; (Ψ1, x:A,Ψ2) ` x : A

∆; Ψ1 ` A : type by validity of ctx Ψ

∆; Γ ` (σ1, N/x, σ2) : Ψ1, x:A,Ψ2 by assumption

∆; Γ ` N : [σ1]A and ∆; Γ ` σ1 : Ψ1 by lemma 5

∆; Γ ` N : [σ1, N/x, σ2]A by lemma 4
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Case D = ∆; Ψ, x:A1 `M : A2 ∆; Ψ ` A1 : type

∆; Ψ ` λx:A1.M : Πx:A1.A2

∆; Γ ` σ : Ψ by assumption

∆; Γ ` [σ]A1 : type by i.h.

∆ ` Γ ctx by asumption

∆ ` Γ, x:[σ]A1 ctx by rule

∆; Γ, x:[σ]A1 ` σ : Ψ by weakening

∆; Γ, x:[σ]A1 ` x : [σ]A1 by rule

∆; Γ, x:[σ]A1 ` (σ, x/x) : (Ψ, x:A1) by rule

∆; Γ, x:[σ]A1 ` [σ, x/x]M : [σ, x/x]A2 by i.h.

∆; Γ ` λx:[σ]A1.[σ, x/x]M : Πx:[σ]A1.[σ, x/x]A2 by rule

∆; Γ ` [σ](λx:A1.M) : [σ](Πx:A1.A2) by subst. definition

Case D = ∆; Ψ `M1 : Πx:A2.A1 ∆; Ψ `M2 : A2

∆; Ψ ` (M1 M2) : [idΨ,M2/x]A1

∆; Γ ` [σ]M1 : [σ]Πx:A2.A1 by i.h.

∆; Γ ` [σ]M1 : Πx:[σ]A2.[σ, x/x]A1 by subst. definition

∆; Γ ` [σ]M2 : [σ]A2 by i.h.

∆; Γ ` ([σ]M1) ([σ]M2) : [idΓ, [σ]M2/x]([σ, x/x]A1) by rule

[idΓ, [σ]M2/x](σ, x/x) = ([idΓ, [σ]M2/x]σ, [σ]M2/x) by subst. definition

= ([σ], [σ]M2/x) by lemma 4

= ([σ](idΨ), [σ]M2/x) by lemma 4

= [σ](idΨ,M2/x) by subst. definition

∆; Γ ` [σ](M1 M2) : [σ]([idΨ,M2/x]A1) by subst. definition

Case D =
∆, u::Ψ1`A1,∆

′; Ψ ` τ : Ψ1

∆, u::Ψ1`A1,∆
′; Ψ ` u[τ ] : [τ ]A1

∆, u::Ψ1`A1,∆
′; Γ ` ([σ]τ) : Ψ1 by i.h.

∆, u::Ψ1`A1,∆
′; Γ ` u[[σ]τ ] : [[σ]τ ]A1 by rule
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∆, u::Ψ1`A1,∆
′; Γ ` [σ](u[τ ]) : [σ]([τ ]A1) by lemma 1 and subst. definition

Case D = ∆; Ψ `M : B ∆; Ψ ` B ≡ A : type

∆; Ψ `M : A

∆; Γ ` [σ]M : [σ]B by i.h.

∆; Γ ` [σ]B ≡ [σ]A : type by i.h.

∆; Γ ` [σ]M : [σ]A by rule

2

Lemma 7 (Renaming substitution) ∆; Γ, y:A ` (idΓ, y/x) : (Γ, x:A).

Proof:

∆; Γ ` idΓ : Γ by definition

∆; Γ, y:A ` idΓ : Γ by weakening

∆; Γ, y:A ` y : A by rule

∆; Γ, y:A ` y : [idΓ]A by definition

∆; Γ, y:A ` (idΓ, y/x) : (Γ, x:A) by rule

2

Lemma 8 (Context Conversion)

Assume Γ, x:A is a valid context and Γ ` B : type.

If ∆; Γ, x:A ` J and ∆; Γ ` A ≡ B : type then ∆; Γx:B ` J .

Proof: direct using weakening and substitution property (lemma 6).

∆; Γ, x:B ` x : B by rule

∆; Γ ` B ≡ A : type by symmetry

∆; Γ, y:A ` (idΓ, y/x) : (Γ, x:A) renaming substitution

∆; Γ, y:A ` [idΓ, y/x]J renaming of assumption

∆; Γ, x:B, y:A ` [idΓ, y/x]J weakening

∆; Γ, x:B ` (idΓ, x/x) : (Γ, x:B) by definition

∆; Γ, x:B ` B ≡ A : type by weakening
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∆; Γ, x:B ` x : A by rule (conv)

∆; Γ, x:B ` x : [idΓ, x/x]A by subst. definition

∆; Γ, x:B ` (idΓ, x/x, x/y) : (Γ, x:B, y:A) by rule

∆; Γ, x:B ` [idΓ, x/x, x/y]([idΓ, y/x]J) by substitution property

∆; Γ, x:B ` [idΓ, x/x]J by subst. definition and lemma 4

∆; Γ, x:B ` J by subst. definition

2

Next, we prove a general functionality lemma which is suggested by the modal

interpretation.

Lemma 9 (Functionality of typing under substitution) Assume ∆; Γ ` σ : Ψ,

∆; Γ ` σ′ : Ψ and ∆; Γ ` σ ≡ σ′ : Ψ.

1. If ∆; Ψ ` τ : Ψ′ then ∆; Γ ` ([σ]τ) ≡ ([σ′]τ) : Ψ′

2. If ∆; Ψ `M : A then ∆; Γ ` [σ]M ≡ [σ′]M : [σ]A.

3. If ∆; Ψ ` A : K then ∆; Γ ` [σ]A ≡ [σ′]A : [σ]K.

4. If ∆; Ψ ` K : kind then ∆; Γ ` [σ]K ≡ [σ′]K : kind.

Proof: Simultaneous induction on the given derivation. First, the proof for (1).

Case D =
∆; Γ ` · : ·

∆; Γ ` · ≡ · : · by rule

∆; Γ ` [σ](·) ≡ [σ′](·) : · by subst. definition

Case D =

D1

∆; Ψ ` N : [τ ]A
D2

∆; Ψ ` τ : Ψ′

∆; Ψ ` (τ, N/x) : (Ψ′, x:A)

∆; Γ ` ([σ]τ) ≡ ([σ′]τ) : Ψ′ by i.h. on D2
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∆; Γ ` [σ]N ≡ [σ′]N : [σ]([τ ]A) by i.h. on D1

∆; Γ ` [σ]N ≡ [σ′]N : [[σ]τ ]A by lemma 1

∆; Γ ` ([σ]τ, [σ]N/x) ≡ ([σ′]τ, [σ′]N/x) : (Ψ′, x:A) by rule

∆; Γ ` [σ](τ,N/x) ≡ [σ′](τ,N/x) : (Ψ′, x:A) by subst. definition

Next, the proof for (2). We only show the case for modal variable u.

Case D =
∆1, u::Ψ′`A, ∆2; Ψ ` τ : Ψ′

∆1, u::Ψ′`A, ∆2; Ψ ` u[τ ] : [τ ]A

∆1, u::Ψ′`A, ∆2; Γ ` ([σ]τ) ≡ ([σ′]τ) : Ψ′ by i.h.

∆1, u::Ψ′`A, ∆2; Γ ` u[[σ]τ ] ≡ u[[σ′]τ ] : [[σ]τ ]A by rule

∆1, u::Ψ′`A, ∆2; Γ ` [σ](u[τ ]) ≡ [σ′](u[τ ]) : [σ]([τ ]A) by lemma 1

and subst. definition

2

Lemma 10 (Inversion on products)

1. If ∆; Γ ` Πx:A1.A2 : K then ∆; Γ ` A1 : type and ∆; Γ, x:A1 ` A2 : type

2. If ∆; Γ ` Πx:A.K : kind then ∆; Γ ` A : type and ∆; Γ, x:A1 ` K : kind

Proof: Part (1) follows by induction on the derivation. Part (2) is immediate by

inversion. 2

Lemma 11 (Validity)

1. If ∆; Γ `M : A then ∆; Γ ` A : type.

2. If ∆; Γ ` A : K then ∆; Γ ` K : kind.

3. If ∆; Γ ` σ ≡ σ′ : Ψ then ∆; Γ ` σ : Ψ and ∆; Γ ` σ′ : Ψ

4. If ∆; Γ `M ≡ N : A, then ∆; Γ `M : A, ∆; Γ ` N : A and ∆; Γ ` A : type.

5. If ∆; Γ ` A ≡ B : K, then∆; Γ ` A : K, ∆; Γ ` B : K and ∆; Γ ` K : kind.
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6. If ∆; Γ ` K ≡ L : kind, then ∆; Γ ` K : kind, ∆; Γ ` L : kind.

Proof: Simultaneous induction on derivations. The functionality lemma is needed for

application and modal variables. In addition, the cases for modal variables use the

validity of the modal context ∆. The typing premises on the rule of extensionality

ensure that strengthening is not required. First, we show the case for modal variables

in the proof for (1).

Case D =

D1

∆, u::Ψ`A,∆′; Γ ` σ : Ψ

∆, u::Ψ`A,∆′; Γ ` u[σ] : [σ]A

∆; Ψ ` A : type by validity of mctx

∆, u::Ψ`A,∆′; Ψ ` A : type by weakening

∆, u::Ψ`A,∆′; Γ ` [σ]A : type by lemma 6

Consider the proof for (4).

Case D =

D1

∆, u::Ψ`A,∆′; Γ ` σ ≡ σ′ : Ψ

∆, u::Ψ`A,∆′; Γ ` u[σ] ≡ u[σ′] : [σ]A

∆, u::Ψ`A,∆′; Γ ` σ : Ψ by i.h.

∆, u::Ψ`A,∆′; Γ ` u[σ] : [σ]A by rule

∆, u::Ψ`A,∆′; Γ ` σ′ : Ψ by i.h.

∆, u::Ψ`A,∆′; Γ ` u[σ′] : [σ′]A by rule

∆; Ψ ` A : type by validity of mctx

∆, u::Ψ`A,∆′; Ψ ` A : type by weakening

∆, u::Ψ`A,∆′; Ψ ` A ≡ A : type by reflexivity (lemma 3)

∆, u::Ψ`A,∆′; Γ ` σ′ ≡ σ : Ψ by symmetry

∆, u::Ψ`A,∆′; Γ ` [σ′]A ≡ [σ]A : type by functionality (lemma 9)

∆, u::Ψ`A,∆′; Γ ` u[σ′] : [σ]A by type conversion

Case D =

D1

∆; Γ ` A1 : type
D2

∆; Γ, x:A1 `M2 ≡ N2 : A2

D3

∆; Γ `M1 ≡ N1 : A1

∆; Γ ` (λx:A1.M2) M1 ≡ [idΓ, N1/x]N2 : [idΓ,M1/x]A2
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∆; Γ, x:A1 ` A2 : type by i.h.

∆; Γ, x:A1 `M2 : A2 by i.h.

∆; Γ ` λx:A1.M2 : Πx:A1.A2

by rule

∆; Γ `M1 : A1 by i.h.

∆; Γ ` (λx:A1.M2) M1 : [idΓ,M1/x]A2 by rule

∆; Γ, x:A1 ` N2 : A2 by i.h.

∆; Γ ` N1 : A1 by i.h.

∆; Γ ` idΓ : Γ by definition

∆; Γ ` N1 : [idΓ]A1 by definition

∆; Γ ` (idΓ, N1/x) : (Γ, x:A1) by rule

∆; Γ ` [idΓ, N1/x]N2 : [idΓ, N1/x]A2 by substitution (lemma 6)

∆; Γ, x:A1 ` A2 ≡ A2 : type by reflexivity (lemma 3)

∆; Γ ` idΓ ≡ idΓ : Γ by defintion

∆; Γ `M1 ≡ N1 : A1 by assumption D3

∆; Γ `M1 ≡ N1 : [idΓ]A1 by definition

∆; Γ ` (idΓ,M1/x) ≡ (idΓ, N1/x) :)Γ, x:A1 by defintion

∆; Γ ` [idΓ,M1/x]A2 ≡ [idΓ, N1/x]A2 : type by functionality lemma 9

∆; Γ ` [idΓ, N1/x]A2 ≡ [idΓ,M1/x]A2 : type by symmetry

∆; Γ ` [idΓ, N1/x]N2 : [idΓ,M1/x]A2 by type conversion

∆,Γ ` idΓ : Γ by definition

∆; Γ `M1 : A1 by i.h.

∆; Γ `M1 : [idΓ]A1 by definition

∆; Γ ` (idΓ,M1/x) : Γ, x:A1 by rule

∆; Γ ` [idΓ,M1/x]A2 : type by substitution lemma 6

2

Lemma 12 (Typing Inversion)

1. If ∆; Γ ` x : A then x:B in Γ and ∆; Γ ` A ≡ B : type for some B.

2. If ∆; Γ ` c : A then c:B in Σ and ∆; Γ ` A ≡ B : type for some B.
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3. If ∆; Γ `M1 M2 : A then ∆; Γ `M1 : Πx:A2.A1, ∆; Γ `M2 : A2 and

∆; Γ ` [idΓ,M2/x]A1 ≡ A : type for some A1 and A2.

4. If ∆; Γ ` λx:A.M : B then ∆; Γ ` B ≡ Πx:A.A′ : type and ∆; Γ, x:A ` M : A′

and ∆; Γ ` A : type for some A and A′.

5. If ∆; Γ ` u[σ] : B then (∆1, u::Ψ`A,∆2) = ∆ and ∆1, u::Ψ`A,∆2; Γ ` σ : Ψ and

∆1, u::Ψ`A,∆2; Γ ` B ≡ [σ]A : type for some Ψ, A, ∆1 and ∆2.

6. If ∆; Γ ` Πx:A1.A2 : K then ∆; Γ ` K ≡ type : kind, ∆; Γ ` A1 : type and

∆; Γ, x:A1 ` A2 : type.

7. If ∆; Γ ` a : K then a:L in Σ and ∆; Γ ` K ≡ L : kind for some L.

8. If ∆; Γ ` AM : K, then ∆; Γ ` A : Πx:A1.K2, ∆; Γ `M : A1 and

∆; Γ ` K ≡ [idΓ,M/x]K2 : kind for some A1 and K2.

Proof: By straightforward induction on typing derivations. Validity is needed in most

cases in order to apply reflexivity. 2

Lemma 13 (Redundancy of typing premises) The indicated typing premises in

the rules of parallel conversion and instantiation of modal variables are redundant.

Proof: By inspecting the rules and validity. 2

Lemma 14 (Equality inversion)

1. If ∆; Γ ` K ≡ type : kind or ∆; Γ ` type ≡ K : kind then K = type.

2. If ∆; Γ ` K ≡ Πx:B1.L2 : kind or ∆; Γ ` Πx:B1.L2 ≡ K : kind then

K = Πx:A1.K2 such that ∆; Γ ` A1 ≡ B1 : kind and ∆; Γ, x:A1 ` K2 ≡ L2 : kind.

3. If ∆; Γ ` A ≡ Πx:B1.B2 : type or ∆; Γ ` Πx:B1.B2 ≡ A : type then

A = Πx:A1.A2 for some A1 and A2 such that ∆; Γ ` A1 ≡ B1 : type and

∆; Γ, x:A1 ` A2 ≡ B : type.

Proof: By induction on the given equality derivations. 2
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Lemma 15 (Injectivity of Products)

1. If ∆; Γ ` Πx:A1.A2 ≡ Πx:B1.B2 : type then ∆; Γ ` A1 ≡ B1 : type and

∆; Γ, x:A1 ` A2 ≡ B2 : type.

2. If ∆; Γ ` Πx:A1.K2 ≡ Πx:B1.L2 : kind then ∆; Γ ` A1 ≡ B1 : type and

∆; Γ, x:A1 ` K2 ≡ L2 : kind.

Proof: Immediate by equality inversion (lemma 14). 2

2.8 Type-directed algorithmic equivalence

One important question in practice is whether it is still possible to effectively decide

whether two terms are definitionally equal. In [29], Harper and Pfenning present a

type-directed equivalence algorithm. We will extend this algorithm to allow modal

variables. Crucial in the correctness proof for the algorithmic equality in [29] is the

observation that we can erase all dependencies among types to obtain a simply typed

calculus and then show that algorithm for equality is correct in this simply typed

calculus. This idea carries over to the modal extension straightforwardly. Following

[29], we write α for simple base types and have a special type constants, type−.

Simple Kinds κ ::= type− | τ → κ

Simple Types τ ::= α | τ1 → τ2

Simple contexts Ω,Φ ::= · | Ω, x:τ

Simple modal contexts Λ ::= · | Λ, x:(Φ ` τ)

We write A− for the simple type that results from erasing dependencies in A, and

similarly K−.
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(a)− = a−

(A M)− = A−

(Πx:A1.A2)− = A−1 → A−2

type− = type−

(Πx:A.K)− = A− → K−

(·)− = ·
(Γ, x:A)− = Γ−, x:A−

(·)− = ·
(∆, x:(Ψ ` A)− = ∆−, x:(Ψ− ` A−)

(kind)− = kind−

Lemma 16 (Erasure preservation)

1. If ∆; Γ ` A ≡ B : K then A− = B−.

2. If ∆; Γ ` K ≡ L : kind then K− = L−.

3. If ∆; Γ ` B : K and ∆; Ψ ` σ : Γ then B− = [σ]B−.

4. If ∆; Γ ` K : kind and ∆; Ψ ` σ : Γ then K− = [σ]K−.

5. If ∆; Γ ` idΓ : Γ then idΓ = idΓ−.

Proof: By induction over the structure of the given derivation. 2

The following four judgments describe algorithmic equality:

Λ; Ω `M whr−→M ′ M weak head reduces to M ′

Λ; Ω `M ⇐⇒ N : τ M is equal to N

Λ; Ω `M ←→ N : τ M is structurally equal to N

Λ; Ω ` σ ←→ σ′ : Φ σ is structurally equal to σ′

For the weak head reduction, it is not strictly necessary to carry around Λ and Ω

explicitely, but it will make the weak head reduction rules more precise. Next, we give

the type-directed equality rules.
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Substitution equality

Λ; Ω ` · ←→ · : ·
Λ; Ω ` σ ←→ σ′ : Φ Λ; Ω `M ⇐⇒ N : τ

Λ; Ω ` (σ,M/x)←→ (σ′, N/x) : (Φ, x:τ)

Weak head reduction

Λ; Ω ` (λx:A1.M2)M1
whr−→ [idΩ,M1/x]M2

Λ; Ω `M1
whr−→M ′

1

Λ; Ω `M1 M2
whr−→M ′

1 M2

Type-directed object equality

Λ; Ω `M whr−→M ′ Λ; Ω `M ′ ⇐⇒ N : α

Λ; Ω `M ⇐⇒ N : α

Λ; Ω ` N whr−→ N ′ Λ; Ω `M ⇐⇒ N ′ : α

Λ; Ω `M ⇐⇒ N : α

Λ; Ω `M ←→ N : α

Λ; Ω `M ⇐⇒ N : α

Λ; Ω, x:τ1 `M x⇐⇒ N x : τ2

Λ; Ω `M ⇐⇒ N : τ1 → τ2

Structural object equality

x:τ in Ω
Λ; Ω ` x←→ x : τ

c:A in Σ
Λ; Ω ` c←→ c : A−

u::(Φ ` τ) in Λ Λ; Ω ` σ ←→ σ′ : Φ

Λ; Ω ` u[σ]←→ u[σ′] : τ
∗

Λ; Ω `M1 ←→ N1 : τ2 → τ1 Λ; Ω `M2 ⇐⇒ N2 : τ2

Λ; Ω `M1 M2 ←→ N1 N2 : τ1

Note that in the rule *, we do not apply σ to the type τ . Since all dependencies

have been erased, τ cannot depend on any variables in Ω. The algorithm is essentially

deterministic in the sense that when comparing terms at base type, we first weakly

head normalize both sides and then compare the results structurally. Two modal

variables are only structurally equal if they actually are the same modal variable. This

means that if we implement existential variables via references, then two uninstantiated

existential variables are only structurally equal if they point to the same reference. This

algorithm closely describes the actual implementation and the treatment of existential

variables in it. We mirror these equality judgements on the family and kind level.
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Kind-directed object equality

Λ; Ω ` A←→ B : type−

Λ; Ω ` A⇐⇒ B : type−
Λ; Ω, x:τ ` Ax⇐⇒ B x : κ

Λ; Ω ` A⇐⇒ B : τ → κ

Structural family equality

a:K in Σ
Λ; Ω ` a←→ a : K−

Λ; Ω ` A←→ B : τ → κ Λ; Ω `M ⇐⇒ N : τ

Λ; Ω ` AM ←→ BN : κ

Algorithmic kind equality

Λ; Ω ` type⇐⇒ type : kind−
Λ; Ω ` A⇐⇒ B : type− Λ; Ω ` K ⇐⇒ L : kind−

Λ; Ω ` Πx:A.K ⇐⇒ Πx:B.L : kind−

The algorithmic equality satisfies some straightforward structural properties, such

as exchange, contraction, strengthening, and weakening. Only weakening is required

in the proof of its correctness.

Lemma 17 (Weakening)

1. If Λ; Ω,Ω′ ` σ ←→ σ′ : Ω′′ then Λ; Ω, x:τ,Ω′ ` σ ←→ σ′ : Ω′′.

2. If Λ; Ω,Ω′ `M ⇐⇒ N : κ then Λ; Ω, x:τ,Ω′ `M ⇐⇒ N : κ.

3. If Λ; Ω,Ω′ `M ←→ N : κ then Λ; Ω, x:τ,Ω′ `M ←→ N : κ.

4. If Λ; Ω,Ω′ ` A⇐⇒ B : κ then Λ; Ω, x:τ,Ω′ ` A⇐⇒ B : κ

5. If Λ; Ω,Ω′ ` A←→ B : κ then Λ; Ω, x:τ,Ω′ ` A←→ B : κ

6. If Λ; Ω,Ω′ ` K ⇐⇒ L : kind− then Λ; Ω, x:τ,Ω′ ` K ⇐⇒ L : kind−

To show the above extension to the equality algorithm is correct, we can follow the

development in [29]. We first consider determinacy of algorithmic equality.

Theorem 18 (Determinacy of algorithmic equality)
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1. If Λ; Ω `M whr−→M1 and Λ; Ω `M whr−→M2 then M1 = M2.

2. If Λ; Ω `M ←→ N : τ then there is no M ′ such that Λ; Ω `M whr−→M ′.

3. If Λ; Ω `M ←→ N : τ then there is no N ′ such that Λ; Ω ` N whr−→ N ′.

4. If Λ; Ω `M ←→ N : τ and Λ; Ω `M ←→ N : τ ′ then τ = τ ′.

5. If Λ; Ω ` A←→ B : κ and Λ; Ω ` A←→ B : κ′ then κ = κ′.

Proof: The proofs follow [29]. Proof of (1) is a straightforward induction on the

derivation. For (2), we assume

S
Λ; Ω `M ←→ N : τ and

W

Λ; Ω `M whr−→M ′

for some M ′. We show by induction over S and W that these assumptions are con-

tradictory. Whenever, we have constructed a judgment such that there is no rule that

could conclude this judgment we say we obtain a contradiction by inversion.

Case S = x:τ in Ω

Λ; Ω ` x←→ x : τ

Λ; Ω ` x whr−→M ′ by assumption

Contradiction by inversion

Case S =
Λ, u::Φ`τ,Λ′; Ω ` u[σ]←→ u[σ] : τ

Λ, u::Φ`τ,Λ′; Ω ` u[σ]
whr−→M ′ by assumption

Contradiction by inversion

Case S =

S1

Λ; Ω `M1 ←→ N1 : τ2 → τ1 Λ; Ω `M2 ⇐⇒ N2 : τ2

Λ; Ω `M1 M2 ←→ N1 N2 : τ1

Λ; Ω `M1 M2
whr−→M ′ by assumption
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Sub-case W =
Λ; Ω ` (λx:A1.M

′
1)M2

whr−→ [idΩ,M2/x]M ′
1

M1 = λx:A1.M
′
1

Λ; Ω ` (λx:A1.M
′
1)←→ N2 : τ2 → τ1 by S1

contradiction by inversion

Sub-case W =

W1

Λ; Ω `M1
whr−→M ′

1

Λ; Ω `M1 M2
whr−→M ′

1 M2

contradiction by i.h. on S1 and W1

2

Using determinacy, we can then prove symmetry and transitivity of algorithmic

equality.

Theorem 19 (Symmetry of algorithmic equality)

1. If Λ; Ω ` σ ←→ σ′ : Φ then Λ; Ω ` σ′ ←→ σ : Φ.

2. If Λ; Ω `M ←→ N : τ then Λ; Ω ` N ←→M : τ .

3. If Λ; Ω `M ⇐⇒ N : τ then Λ; Ω ` N ⇐⇒M : τ .

4. If Λ; Ω ` A←→ B : κ then Λ; Ω ` B ←→ A : κ.

5. If Λ; Ω ` A⇐⇒ B : κ then Λ; Ω ` B ⇐⇒ A : κ.

6. If Λ; Ω ` K ←→ L : kind− then Λ; Ω ` L←→ K : kind−.

Proof: By simultaneous induction on the given derivation. 2

Theorem 20 (Transitivity of algorithmic equality)

1. If Λ; Ω ` σ1 ←→ σ2 : Φ and Λ; Ω ` σ2 ←→ σ3 : Φ then Λ; Ω ` σ1 ←→ σ3 : Φ.
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2. If Λ; Ω `M ⇐⇒ N : τ and Λ; Ω ` N ⇐⇒ O : τ then Λ; Ω `M ⇐⇒ O : τ .

3. If Λ; Ω `M ←→ N : τ and Λ; Ω ` N ←→ O : τ then Λ; Ω `M ←→ O : τ .

4. If Λ; Ω ` A⇐⇒ B : κ and Λ; Ω ` B ⇐⇒ C : κ then Λ; Ω ` A⇐⇒ C : κ.

5. If Λ; Ω ` A←→ B : κ and Λ; Ω ` B ←→ C : κ then Λ; Ω ` A←→ C : κ.

6. If Λ; Ω ` K ⇐⇒ L : kind− and Λ; Ω ` L⇐⇒ L′ : kind−

then Λ; Ω ` K ⇐⇒ L′ : kind−.

Proof: By simultaneous inductions on the structure of the given derivations. In each

case, one of the two derivations is strictly smaller, while the other derivation is either

smaller or the same. The proof requires determinacy and follows the proof in [29]. 2

2.9 Completeness of algorithmic equality

We now develop the completeness theorem for the type-directed equality algorithm by

an argument via logical relations. The logical relations are defined inductively on the

approximate type of an object.

The completeness theorem can be stated as follows for type-directed equality:

If ∆; Γ `M ≡ N : A then ∆−; Γ− `M ⇐⇒ N : A−.

Here we define a logical relation Λ; Ω ` M = N ∈ [[τ ]] that provides a stronger

induction hypothesis s.t.

1. if ∆; Γ `M ≡ N : A then ∆−; Γ− `M = N ∈ [[A−]]

2. if ∆; Γ `M = N ∈ [[A−]] then ∆−; Γ− `M ⇐⇒ N : A−

Following Harper and Pfenning, we define a Kripke logical relation inductively on

simple types. At base type we require the property we eventually want to prove. At

higher types we reduce the property to those for simpler types. We extend here the

logical relation given in [29] to allow modal contexts. Since we do not introduce any

new modal variables in the algorithm for type-directed equivalence, the modal context
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does not change and is essentially just carried along. In contrast, the context Ω for

bound variables may be extended. This is accounted for in the case for the function

type. We say Ω′ extends Ω (written Ω′ ≥ Ω) if Ω′ contains all declarations in Ω and

possibly more.

1. Λ; Ω ` σ = θ ∈ [[ · ]] iff σ = · and θ = ·.

2. Λ; Ω ` σ = θ ∈ [[Φ, x:τ ]] iff σ = (σ′,M/x) and θ = (θ′, N/x) where

Λ; Ω ` σ′ = θ′ ∈ [[Φ]] and Λ; Ω `M = N ∈ [[τ ]].

3. Λ; Ω `M = N ∈ [[α]] iff Λ; Ω `M ⇐⇒ N : α

4. Λ; Ω `M = N ∈ [[τ1 → τ2]] iff for every Ω′ extending Ω and for all M1 and N1

s. t. Λ; Ω′ `M1 = N1 ∈ [[τ1]] we have Λ; Ω′ `M M1 = N N1 ∈ [[τ2]].

5. Λ; Ω ` A = B ∈ [[type−]] iff Λ; Ω ` A⇐⇒ B : type−

6. Λ; Ω ` A = B ∈ [[τ → κ]] iff for every Ω′ extending Ω and for all M and N

s. t. Λ; Ω′ `M = N ∈ [[τ ]] we have Λ; Ω′ ` A M = B N ∈ [[κ]].

The general structural properties of logical relations that we can show directly by

induction are exchange, weakening, contraction and strengthening. We only prove and

use weakening.

Lemma 21 (Weakening)

For all logical relations R, if Λ; (Ω,Ω′) ` R then Λ; (Ω, x:τ,Ω′) ` R.

Proof: By induction on the structure of the definition of R. 2

It is straightforward to show that logically related terms are considered identical

by the algorithm.

Theorem 22 (Logically related terms are algorithmically equal)

1. If Λ; Ω ` σ = σ′ ∈ [[Φ]] then Λ; Ω ` σ ←→ σ′ : Φ.

2. If Λ; Ω `M = N ∈ [[τ ]] then Λ; Ω `M ⇐⇒ N : τ .

45



CHAPTER 2. DEPENDENTLY TYPED LAMBDA CALCULUS BASED ON MODAL TYPE THEORY

3. If Λ; Ω `M ←→ N : τ then Λ; Ω `M = N ∈ [[τ ]].

4. If Λ; Ω ` A = B ∈ [[κ]] then Λ; Ω ` A⇐⇒ B : κ.

5. If Λ; Ω ` A←→ B : κ then Λ; Ω ` A = B ∈ [[κ]].

Proof: The statements are proven by simultaneous induction on the structure of τ or

Φ respectively.

Proof of (1): Induction on Φ.

Case Φ = ·
Λ; Ω ` · = · ∈ [[ · ]] by assumption

Λ; Ω ` · = · : · by rule

Case Φ = Φ′, x:τ

Λ; Ω ` σ1 = σ2 ∈ [[Φ′, x:τ ]] by assumption

σ1 = (σ,M/x) and σ2 = (σ′, N/x) by definition

Λ; Ω ` σ = σ′ ∈ [[Φ′]]

Λ; Ω `M = N ∈ [[τ ]]

Λ; Ω `M ⇐⇒ N : τ by i.h. (2)

Λ; Ω ` σ ←→ σ′ : Φ′ by i.h. (1)

Λ; Ω ` (σ,M/x)←→ (σ′, N/x) : (Φ′, x:τ) by rule

Proof of (2) by induction on the structure of τ :

Case τ = α

Λ; Ω `M = N ∈ [[α]] by assumption

Λ; Ω `M ⇐⇒ N : α by definition

Case τ = τ1 → τ2

Λ; Ω `M = N ∈ [[τ1 → τ2]] by assumption

Λ; Ω, x:τ1 ` x←→ x : τ1 by rule

Λ; Ω, x:τ1 ` x = x ∈ [[τ1]] by i.h. (3)

Λ; Ω, x:τ1 `M x = N x ∈ [[τ2]] by definition

Λ; Ω, x:τ1 `M x⇐⇒ N x : τ2 by i.h. (2)

Λ; Ω `M ⇐⇒ N : τ1 → τ2 by rule
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Proof of (3):

Case τ = α

Λ; Ω `M ←→ N : α by assumption

Λ; Ω `M ⇐⇒ N : α by rule

Λ; Ω `M = N ∈ [[α]] by def.

Case τ = τ1 → τ2

Λ; Ω `M ←→ N : τ1 → τ2 by assumption

Λ; Ω+ `M1 = N1 ∈ [[τ1]] for any arbitrary Ω+ ≥ Ω by new assumption

Λ; Ω+ `M1 ⇐⇒ N1 : τ1 by i.h. (2)

Λ; Ω+ `M ←→ N : τ1 → τ2 by weakening

Λ; Ω+ `MM1 ←→ N N1 : τ2 by rule

Λ; Ω+ `MM1 = N N1 ∈ [[τ2]] by i.h. (3)

Λ; Ω `M = N ∈ [[τ1 → τ2]] by definition

2

Lemma 23 (Closure under head expansion)

1. If Λ; Ω `M whr−→M ′ and Λ; Ω `M ′ = N ∈ [[τ ]] then M = N ∈ [[τ ]].

2. If Λ; Ω ` N whr−→ N ′ and Λ; Ω `M = N ′ ∈ [[τ ]] then M = N ∈ [[τ ]].

Proof: By induction on the structure of τ .

Case τ = α

Λ; Ω `M whr−→M ′ by assumption

Λ; Ω `M ′ ⇐⇒ N : α by definition of [[α]]

Λ; Ω `M ⇐⇒ N : α by rule

Λ; Ω `M = N ∈ [[α]] by definition

Case τ = τ1 → τ2

Λ; Ω `M whr−→M ′ by assumption

Λ; Ω `M ′ = N ∈ [[τ1 → τ2]] by assumption

Λ; Ω+ `M1 = N1 ∈ [[τ1]] for Ω+ ≥ Ω by new assumption

Λ; Ω+ `M ′M1 = N N1 ∈ [[τ2]] definition
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Λ; Ω `MM1
whr−→M ′M1 by whr rule

Λ; Ω+ `MM1 = N N1 ∈ [[τ2]] by i.h.

Λ; Ω `M = N ∈ [[τ1 → τ2]] by definition [[τ1 → τ2]]

2

Note that the proof of this lemma only depends on the structure of τ and not on

the derivations of weak head reduction. This lemma is critical in order to prove that

definitional equal terms are logically related under substitutions.

Lemma 24 (Symmetry of logical relations)

1. If Λ; Ω ` σ = θ ∈ [[Φ]] then Λ; Ω ` θ = σ ∈ [[Φ]]

2. If Λ; Ω `M = N ∈ [[τ ]] then Λ; Ω ` N = M ∈ [[τ ]]

3. If Λ; Ω ` A = B ∈ [[κ]] then Λ; Ω ` B = A ∈ [[κ]]

Proof: By induction on the structure of τ and Φ, using lemma on symmetry of algo-

rithmic equality. 2

Lemma 25 (Transitivity of logical relations)

1. If Λ; Ω ` σ = θ ∈ [[Φ]] and Λ; Ω ` θ = ρ ∈ [[Φ]] then Λ; Ω ` σ = ρ ∈ [[Φ]]

2. If Λ; Ω `M = N ∈ [[τ ]] and Λ; Ω ` N = O ∈ [[τ ]] then Λ; Ω `M = O ∈ [[τ ]]

3. If Λ; Ω ` A = B ∈ [[κ]] and Λ; Ω ` B = C ∈ [[κ]] then Λ; Ω ` A = C ∈ [[κ]]

Proof: By induction on the structure of τ and Φ using lemma on transitivity of algo-

rithmic equality. 2

Lemma 26 (Definitionally equal terms are logically related under substitutions)

1. If ∆; Γ ` ρ ≡ ρ′ : Ψ and ∆−; Ω ` σ = θ ∈ [[Γ−]]

then ∆−; Ω ` ([σ]ρ) = ([θ]ρ′) ∈ [[Ψ−]].

2. If ∆; Γ `M ≡ N : A and ∆−; Ω ` σ = θ ∈ [[Γ−]]

then ∆−; Ω ` [σ]M = [θ]N ∈ [[A−]].
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3. If ∆; Γ ` A ≡ B : K and ∆−; Ω ` σ = θ ∈ [[Γ−]]

then ∆−; Ω ` [σ]A = [θ]B ∈ [[K−]].

Proof: By induction on the derivation of definitional equality. The proof follows the

development in [29]. We only give the case for modal variables.

Case D =

D1

∆1, u::Ψ`A,∆2; Γ ` ρ ≡ ρ′ : Ψ

∆1, u::Ψ`A,∆2; Γ ` u[ρ] ≡ u[ρ′] : [ρ]A

∆−1 , u::Ψ−`A−,∆−2 ; Ω ` σ = θ ∈ [[Γ−]] by assumption

∆−1 , u::Ψ−`A−,∆−2 ; Ω ` ([σ]ρ) = ([θ]ρ′) ∈ [[Ψ−]] by i.h.

∆−1 , u::Ψ−`A−,∆−2 ; Ω ` ([σ]ρ)←→ ([θ]ρ′) : Ψ− by lemma 22

∆−1 , u::Ψ−`A−,∆−2 ; Ω ` u[[σ]ρ]←→ u[[θ]ρ′] : A− by rule

∆−1 , u::Ψ−`A−,∆−2 ; Ω ` u[[σ]ρ] = u[[θ]ρ′] ∈ [[A−]] by lemma 22

∆−1 , u::Ψ−`A−,∆−2 ; Ω ` [σ](u[ρ]) = [θ](u[ρ′]) ∈ [[A−]] by subst. definition

∆−1 , u::Ψ−`A−,∆−2 ; Ω ` [σ](u[ρ]) = [θ](u[ρ′]) ∈ [[[ρ]A−]] by erasure lemma 16

2

Lemma 27 (Identity substitutions are logically related)

∆−; Γ− ` idΓ = idΓ ∈ [[Γ−]]

Proof: By structural induction on [[Γ−]] and theorem 22(3). 2

Theorem 28 (Definitionally equal terms are logically related)

1. If ∆; Γ `M ≡ N : A then ∆−; Γ− `M = N ∈ [[A−]].

2. If ∆; Γ ` A ≡ B : K then ∆−; Γ− ` A = B ∈ [[K−]].

Proof: Direct by lemma 27 and lemma 26. 2

Theorem 29 (Completeness of algorithmic equality)

1. If ∆; Γ `M ≡ N : A then ∆−; Γ− `M ⇐⇒ N : A−.

2. If ∆; Γ ` A ≡ B : K then ∆−; Γ− ` A⇐⇒ B : K−.

Proof: Direct by theorem 28 and theorem 22 2
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2.10 Soundness of algorithmic equality

We prove soundness of algorithmic equality via subject reduction. The algorithm for

type-directed equality is not sound in general. However, when applied to valid objects

of the same type, in a valid modal context ∆ it is sound and relates only equal terms.

Lemma 30 (Subject reduction)

If ∆−; Γ− `M whr−→M ′ and ∆; Γ `M : A then ∆; Γ `M ′ : A and ∆; Γ `M ≡M ′ : A.

Proof: By induction on the definition of weak head reduction. The two cases follow

the proof in [29].

Case W =
∆−; Γ− ` (λx:A1.M2) M1

whr−→ [idΓ− ,M1/x]M2

∆; Γ ` (λx:A1.M2) M1 : A by assumption

∆; Γ ` λx:A1.M2 : Πx:B1.B2 by inversion lemma 12

∆; Γ `M1 : B1 and ∆; Γ ` [idΓ,M1/x]B2 ≡ A : type

∆; Γ ` A1 : type and ∆; Γ, x:A1 `M2 : A2 by inversion lemma 12

∆; Γ ` Πx:A1.A2 ≡ Πx:B1.B2 : type

∆; Γ ` A1 ≡ B1 : type by injectivity of products (lemma 15)

∆; Γ, x:A1 ` A2 ≡ B2 : type

∆; Γ `M1 : A1 by type conversion

∆; Γ ` idΓ : Γ by definition

∆; Γ ` (idΓ,M1/x) : (Γ, x:A1) by substitution rule

∆; Γ ` [idΓ,M1/x]A2 ≡ [idΓ,M1/x]B2 : type by substitution lemma 6

∆; Γ ` [idΓ,M1/x]A2 ≡ A : type transitivity

∆; Γ, x:A1 `M2 ≡M2 : A2 by reflexivity

∆; Γ `M1 ≡M1 : A1 by reflexivity

∆; Γ ` (λx:A1.M2) M1 ≡ [idΓ,M1/x]M2 : [idΓ,M1/x]A2 by rule

∆; Γ ` (λx:A1.M2) M1 ≡ [idΓ,M1/x]M2 : A by type conversion

∆; Γ ` (λx:A1.M2) M1 ≡ [idΓ− ,M1/x]M2 : A by erase lemma 16

∆; Γ ` [idΓ,M1/x]M2 : [idΓ,M1/x]A2 by subst. property lemma 6

∆; Γ ` [idΓ,M1/x]M2 : A by type conversion

∆; Γ ` [idΓ− ,M1/x]M2 : A by erase lemma 16
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Case W =
∆−; Γ− `M whr−→ N

∆−; Γ− `M M2
whr−→ N M2

∆; Γ `M M2 : A by assumption

∆; Γ ` [idΓ,M2/x]A1 ≡ A : type by inversion lemma 12

∆; Γ `M : Πx:A2.A1 and ∆; Γ `M2 : A2

∆; Γ ` N : Πx:A2.A1 by i.h.

∆; Γ `M ≡ N : Πx:A2.A1 by i.h.

∆; Γ `M2 ≡M2 : A2 by reflexivity

∆; Γ `M M2 ≡ N M2 : [idΓ,M2/x]A1 by rule

∆; Γ `M M2 ≡ N M2 : A by type conversion

∆; Γ ` N M2 : [idΓ,M2/x]A1 by rule

∆; Γ ` N M2 : A by type conversion

2

Theorem 31 (Soundness of algorithmic equality)

1. If ∆; Γ ` σ : Ψ and ∆; Γ ` σ′ : Ψ and ∆−; Γ− ` σ ←→ σ′ : Ψ− then

∆; Γ ` σ ≡ σ′ : Ψ

2. If ∆; Γ `M : A and ∆; Γ ` N : A and ∆−; Γ− `M ⇐⇒ N : A− then

∆; Γ `M ≡ N : A.

3. If ∆; Γ `M : A and ∆; Γ ` N : B and ∆−; Γ− `M ←→ N : τ then

∆; Γ `M ≡ N : A and ∆; Γ ` A ≡ B : type and A− = B− = τ .

4. If ∆; Γ ` A : K and ∆; Γ ` B : K and ∆−; Γ− ` A⇐⇒ B : K− then

∆; Γ ` A ≡ B : K.

5. If ∆; Γ ` A : K and ∆; Γ ` B : L and ∆−; Γ− ` A←→ B : κ then

∆; Γ ` A ≡ B : K and ∆; Γ ` K ≡ L : kind and K− = L− = κ.

6. If ∆; Γ ` K : kind and ∆; Γ ` L : kind and ∆−; Γ− ` K ⇐⇒ L : kind− then

∆; Γ ` K ≡ L : kind.
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Proof: By induction on the structure of the given derivations for algorithmic equality.

Proof for (1).

Case T =
∆−; Γ− ` · ←→ · : ·

∆; Γ ` · ≡ · : · by rule

Case T =
∆−; Γ− `M ⇐⇒ N : A− ∆−; Γ− ` σ ←→ σ′ : Ψ−

∆−; Γ− ` (σ,M/x)←→ (σ′, N/x) : (Ψ−, x:A−)

∆; Γ ` (σ,M/x) : (Ψ, x:A) by assumption

∆; Γ ` σ : Ψ and ∆; Γ `M : [σ]A by inversion

∆; Γ ` (σ′, N/x) : (Ψ, x:A) by assumption

∆; Γ ` σ : Ψ and ∆; Γ ` N : [σ′]A by inversion

∆; Γ ` σ ≡ σ′ : Ψ by i.h.

∆; Γ ` A : type by validity of ctx Ψ

∆; Γ ` [σ]A ≡ [σ′]A : type by functionality lemma 9

∆; Γ ` [σ′]A ≡ [σ]A : type by symmetry

∆; Γ ` N : [σ]A by type conversion

∆−; Γ− `M ⇐⇒ N : ([σ]A)− by erase lemma 16

∆; Γ `M ≡ N : [σ]A by i.h.

∆; Γ ` (σ,M/x) ≡ (σ′, N/x) : (Ψ, x:A) by rule

Proof for (2)

Case T =

W1

∆−; Γ− ` N whr−→M ′
T2

∆−; Γ− `M ′ ⇐⇒M : A−

∆−; Γ− ` N ⇐⇒M : A−

∆; Γ ` N : A by assumption

∆; Γ `M : A by assumption

∆; Γ ` N ≡M ′ : A by subject reduction on W1

∆; Γ `M ′ : A by validity
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∆; Γ `M ′ ≡M : A by i.h. on T2

∆; Γ ` N ≡M : A by transitivity

Case T =

W1

∆−; Γ− `M whr−→M ′
T2

∆−; Γ− ` N ⇐⇒M ′ : A−

∆−; Γ− ` N ⇐⇒M : A−

similar to the one above (symmetric).

Case T =
∆−; Γ− `M ←→ N : A−

∆−; Γ− `M ⇐⇒ N : A−

∆; Γ `M : A by assumption

∆; Γ ` N : A by assumption

∆; Γ `M ≡ N : A by i.h.

Case T =

T1
∆−; Γ−, x:τ1 `M x⇐⇒ N x : τ2

∆−; Γ− `M ⇐⇒ N : τ1 → τ2

∆; Γ `M : Πx:A1.A2 by assumption

∆; Γ ` N : Πx:A1.A2 by assumption

(A1)− = τ1 and (A2)− = τ2 by erasure def.

∆; Γ ` Πx:A1.A2 : type by validity

∆; Γ ` A1 : type and ∆; Γ, x:A1 ` A2 : type by inversion lemma 12

∆; Γ, x:A1 ` x : A1 by var rule

∆; Γ, x:A1 `M : Πx:A1.A2 by weakening

∆; Γ, x:A1 `M x : A2 by rule (app)

∆; Γ, x:A1 ` N x : A2 by rule (app) and weakening

∆; Γ, x:A1 `M x ≡ N x : A2 by i.h. on T1

∆; Γ `M ≡ N : Πx:A1.A2 by rule (extensionality)

Proof (3), we only give the case for modal variable.

Case S =
u::(Ψ)− ` (A1)− ∈ ∆−

S1

(∆)−; Γ− ` σ ←→ σ′ : Ψ−

(∆)−; Γ− ` u[σ]←→ u[σ′] : τ
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∆; Γ ` u[σ] : A by assumption

∆; Γ ` u[σ′] : B by assumption

∆; Γ ` A ≡ [σ]A1 : type and ∆ = ∆1, u::Ψ`A1,∆2 by inversion lemma 12

∆; Γ ` σ : Ψ

∆1, u::Ψ`A1,∆2; Γ ` B ≡ [σ′]A1 : type by inversion lemma 12

∆; Γ ` σ′ : Ψ

∆1, u::Ψ`A1,∆2; Γ ` [σ′]A1 ≡ B : type by symmetry

∆1, u::Ψ`A1,∆2; Γ ` σ ≡ σ′ : Ψ by i.h. on S1

∆1, u::Ψ`A1,∆2; Ψ ` A1 : type by validity and weakening

∆1, u::Ψ`A1,∆2; Ψ ` A1 ≡ A1 : type by reflexivity

∆1, u::Ψ`A1,∆2; Γ ` [σ]A1 ≡ [σ′]A1 : type by functionality lemma 9

∆1, u::Ψ`A1,∆2; Γ ` A ≡ [σ′]A1 : type by transitivity

∆1, u::Ψ`A1,∆2; Γ ` A ≡ B : type by transitivity

∆1, u::Ψ`A1,∆2; Γ ` u[σ] ≡ u[σ′] : [σ]A1 by rule

∆1, u::Ψ`A1,∆2; Γ ` u[σ] ≡ u[σ′] : A by type conversion

(A)− = ([σ]A1)− = (A1)− = τ by erasure property

(B)− = ([σ′]A1)− = (A1)− = τ by erasure property

2

Corollary 32 (Logically related terms are definitionally equal)

1. If ∆; Γ `M : A, ∆; Γ ` N : A, and ∆−; Γ− `M = N ∈ [[A−]]

then ∆; Γ `M ≡ N : A.

2. If ∆; Γ ` A : K, ∆; Γ ` B : K, and ∆−; Γ− ` A = B ∈ [[K−]]

then ∆; Γ ` A ≡ B : K.

Proof: Direct from assumptions and prior theorems.

∆−; Γ− `M = N ∈ [[A−]] by assumption

∆−; Γ− `M ⇐⇒ N : A− by completeness theorem 22

∆; Γ `M ≡ N : A by soundness theorem 31

2
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We can now show that the inference rules for algorithmic equality constitute a

decision procedure. We say an object is normalizing iff it is related to some term by

the type-directed equivalence algorithm. More precisely, M is normalizing at simple

type τ iff Λ; Ω `M ⇐⇒M ′ : τ for some term M ′. By transitivity and symmetry, this

implies that Λ; Ω `M ⇐⇒M : τ . A term M is structurally normalizing iff it is related

to some term by the structural equivalence algorithm, i.e. Λ; Ω ` M ←→ M ′ : τ for

some M ′. Equality is decidable on normalizing terms.

Lemma 33 (Decidability for normalizing terms)

1. If Λ; Ω ` σ ←→ σ′ : Φ and Λ; Ω ` τ ←→ τ ′ : Φ

then it is decidable whether Λ; Ω ` σ ←→ τ : Φ.

2. If Λ; Ω `M ⇐⇒M ′ : τ and Λ; Ω ` N ⇐⇒ N ′ : τ

then it is decidable whether Λ; Ω `M ⇐⇒ N : τ .

3. If Λ; Ω `M ←→M ′ : τ1 and Λ; Ω ` N ←→ N ′ : τ2

then it is decidable whether Λ; Ω `M ←→ N : τ3 for some τ3.

4. If Λ; Ω ` A⇐⇒ A′ : κ and Λ; Ω ` B ⇐⇒ B′ : κ

then it is decidable whether Λ; Ω ` A⇐⇒ B : κ.

5. If Λ; Ω ` A←→ A′ : κ1 and Λ; Ω ` B ←→ B′ : κ2

then it is decidable whether Λ; Ω ` A←→ B : κ3 for some κ3.

6. If Λ; Ω ` K ⇐⇒ K ′ : kind− and Λ; Ω ` L⇐⇒ L′ : kind−

then it is decidable whether Λ; Ω ` K ⇐⇒ L : kind−.

Proof: By structural induction on the derivations 2

Theorem 34 (Decidability of algorithmic equality)

1. If ∆; Γ `M : A and ∆; Γ ` N : A

then it is decidable whether ∆−; Γ− `M ⇐⇒ N : A−.

2. If ∆; Γ ` A : K and ∆; Γ ` B : K

then it is decidable whether ∆−; Γ− ` A⇐⇒ B : K−.
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3. If ∆; Γ ` K : kind and ∆; Γ ` L : kind

then it is decidable whether ∆−; Γ− ` K ⇐⇒ L : kind−.

Proof: By reflexivity of definitional equality and completeness of algorithmic equality,

both M and N are normalizing. Therefore, by the previous lemma, the algorithmic

equivalence is decidable. 2

Theorem 35 (Decidability of definitional equality)

1. If ∆; Γ `M : A and ∆; Γ ` N : A then it is decidable whether ∆; Γ `M ≡ N : A.

2. If ∆; Γ ` A : K and ∆; Γ ` B : K then it is decidable whether ∆; Γ ` A ≡ B : K.

3. If ∆; Γ ` K : kind and ∆; Γ ` L : kind then it is decidable whether

∆; Γ ` K ≡ L : kind.

Proof: By soundness and completeness it suffices to check algorithmic equality which

is decidable by the previous lemma. 2

2.11 Decidability of type-checking

Next, we give a type-checking algorithm which uses algorithmic equality. It is bi-

directional and uses the following two judgments:

∆; Γ ` σ ⇐ Ψ Check σ against Ψ

∆; Γ `M ⇒ A Synthesize a type A for M

While we can synthesize a type A for an object M , we need to check the substitution

σ against a context Ψ. We assume that the modal context ∆ and the context Γ and

Ψ are valid.

Substitutions

∆; Γ ` · ⇐ ·
∆; Γ ` σ ⇐ Ψ ∆; Γ `M ⇒ A′ ∆; Γ ` A′ ⇐⇒ [σ]A

∆; Γ ` (σ,M/x)⇐ (Ψ, x:A)

Note that we synthesize a type A′ for M , and then check separately that A′ is

definitional equal to [σ]A.
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Objects

x:A in Γ
∆; Γ ` x⇒ A

c:A in Σ
∆; Γ ` c⇒ A

∆, u::(Ψ`A),∆′; Γ ` σ ⇐ Ψ

∆;u::(Ψ`A),∆′; Γ ` u[σ]⇒ [σ]A

∆; Γ ` A1 ⇒ type ∆; Γ, x:A1 `M ⇒ A2

∆; Γ ` λx:A1. M ⇒ Πx:A1. A2

∆; Γ `M1 ⇒ Πx:A2. A1 ∆; Γ `M2 ⇒ A′2 ∆; Γ ` A′2 ⇐⇒ A2 : type

∆; Γ `M1 M2 ⇒ [idΓ,M2/x]A1

Families

a⇒ K in signature

∆; Γ ` a⇒ K

∆; Γ ` A1 ⇒ type ∆; Γ, x:A1 ` A2 ⇒ type
∆; Γ ` Πx:A1. A2 ⇒ type

∆; Γ ` A⇒ Πx:B′. K ∆; Γ `M ⇒ B ∆; Γ ` B ⇐⇒ B′ : type

∆; Γ ` AM ⇒ [idΓ,M/x]K

Kinds

∆; Γ ` type⇒ kind
∆; Γ, x:A ` K ⇒ kind ∆; Γ ` A⇒ type

∆; Γ ` Πx:A. K ⇒ kind

Similar rules exist for checking validity of context and signatures.

Theorem 36 (Correctness of algorithmic type-checking)

1. If ∆; Γ ` σ ⇐ Ψ then ∆; Γ ` σ : Ψ.

2. If ∆; Γ `M ⇒ A then ∆; Γ `M : A.

3. If ∆; Γ ` σ : Ψ then ∆; Γ ` σ ⇐ Ψ.

4. If ∆; Γ `M : A then ∆; Γ `M ⇒ A′ for some A′ such that ∆; Γ ` A ≡ A′ : type.

Proof: Part (1) and (2) follows by simultanous induction on the first derivation using

validity, soundness of algorithmic equality and the rule of type conversion. Part (3) and

(4) follows by induction on the first derivation using transitivity of equality, inversion

on type equality and completeness of algorithmic equality. 2
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Since the algorithmic typing rules are syntax-directed and algorithmic equality is

decidable, there either exists a unique A′ s.t. ∆; Γ `M ⇒ A′ or there is no such A′. By

correctness of algorithmic type-checking, we have ∆; Γ `M : A iff ∆; Γ ` A′ ≡ A : type

which can be decided by checking ∆−; Γ− ` A′ ⇐⇒ A : type.

Theorem 37 (Decidability of type-checking)

1. It is decidable if ∆ is valid.

2. Given a valid ∆, it is decidable if Γ is valid.

3. Given a valid ∆, Γ, M and A, it is decidable whether ∆; Γ `M : A.

4. Given a valid ∆, Γ, A and K, it is decidable whether ∆; Γ ` A : K.

5. Given a valid ∆, Γ, and K, it is decidable whether ∆; Γ ` K : kind.

Proof: We note that the algorithmic typing rules are syntax-directed and algorithmic

equality is decidable (see theorem 34). Hence, there either exists a unique A′ s.t.

∆; Γ ` M ⇒ A′ or there is no such A′. By correctness of algorithmic type-checking,

we then have ∆; Γ ` M : A iff ∆; ΓA′ ≡ A : type, which can be decided by checking

∆−; Γ− ` A′ ⇐⇒ A : type. 2

The correctness of algorithmic type-checking allows us to show strengthening.

Lemma 38 (Strengthening)

1. If ∆; Γ, x:A,Γ′ ` J and x does not occur in the free ordinary variables of J and

does not occur in the free ordinary variables of Γ′, then ∆; Γ,Γ′ ` J .

2. If ∆, u::(Ψ`A),∆′; Γ ` J and u does not occur in the free modal variables of J

and u does not occur in the free modal variables of ∆′,

then ∆,∆′; Γ ` J .

Proof: Strengthening for the algorithmic version of type-checking follows by structural

induction over the structure of the given derivation, taking advantage of the obvious

strengthening for algorithmic equality. Strengthening for the original typing rules then

follows by soundness and completeness of algorithmic typing. Strengtheing for equal-

ity judgments follows from completeness (theorem 29, soundness (theorem 31), and

strengthening for the typing judgments. 2
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2.12 Canonical forms

In this section, we discuss canonical forms where canonical forms are η-long and β-

normal forms. We will start by instrumenting the algorithmic equality judgements to

produce the mediating object for two equal objects. These mediating objects will be

unique. Since algorithmic equality uses simplified types, no typing information is avail-

able on the bound variables in lambda-abstractions. Fortunately, we can reconstruct

the typing information and the type labels are uniquely determined.

We formalize this idea using quasi-canonical and quasi-atomic forms, in which type

labels have been deleted.

Quasi-canonical Objects U ::= λx. U | R
Quasi-atomic Objects R ::= c | x | u[η] | RU

Quasi-canonical Substitutions η ::= · | η, U/x

Now, we instrument the algorithmic equality relations to extract a common quasi-

canonical or quasi-atomic form for the terms being compared.

Instrumented type-directed object equality

Λ; Ω `M whr−→M ′ Λ; Ω `M ′ ⇐⇒ N : α ⇑ R
Λ; Ω `M ⇐⇒ N : α ⇑ R

Λ; Ω ` N whr−→ N ′ Λ; Ω `M ⇐⇒ N ′ : α ⇑ R
Λ; Ω `M ⇐⇒ N : α ⇑ R

Λ; Ω `M ←→ N : α ↓ R
Λ; Ω `M ⇐⇒ N : α ⇑ R

Λ; Ω, x:τ1 `M x⇐⇒ N x : τ2 ⇑ U
Λ; Ω `M ⇐⇒ N : τ1 → τ2 ⇑ λx.U

Instrumented structural object equality

x:τ in Ω
Λ; Ω ` x←→ x : τ ↓ x

c:τ in signatureΣ

Λ; Ω ` c←→ c : τ ↓ c

u::(Φ ` τ) in Λ Λ; Ω ` σ ←→ σ′ : Φ ⇑ η
Λ; Ω ` u[σ]←→ u[σ′] : τ ↓ u[η]
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Λ; Ω `M1 ←→ N1 : τ2 → τ1 ↓ R Λ; Ω `M2 ⇐⇒ N2 : τ2 ⇑ U
Λ; Ω `M1 M2 ←→ N1 N2 : τ1 ↓ RU

Instrumented substitution equality

Λ; Ω ` · ←→ · : · ⇑ ·
Λ; Ω ` σ ←→ σ′ : Φ ⇑ η Λ; Ω `M ⇐⇒ N : τ ⇑ U
Λ; Ω ` (σ,M/x)←→ (σ′, N/x) : (Φ, x:τ) ⇑ (η, U/x)

We say that a term M has a quasi-canonical form U if Λ; Ω ` M ⇐⇒ M : τ ⇑ U
for appropriate Λ, Ω and τ , and similarly for quasi-canonical forms. From the previous

development, it follows that every well-formed term has a unique quasi-canonical form.

Theorem 39 (Quasi-canonical and quasi-atomic forms)

1. If ∆; Γ ` M1 : A and ∆; Γ ` M2 : A and ∆−; Γ− ` M1 ⇐⇒ M2 : A− ⇑ U

then there is an N such that |N | = U , ∆; Γ ` N : A, ∆; Γ ` M1 ≡ N : A and

∆; Γ `M2 ≡ N : A.

2. If ∆; Γ ` M1 : A and ∆; Γ ` M2 : A and ∆−; Γ− ` M1 ←→ M2 : A− ↓ R then

∆; Γ ` A1 ≡ A2 : type, A− = B− = τ and there exists a N such that |N | = R,

∆; Γ ` N : A, ∆; Γ `M1 ≡ N : A and ∆; Γ `M2 ≡ N : A

3. If ∆; Γ ` σ1 : Ψ and ∆; Γ ` σ2 : Ψ and ∆−; Γ− ` σ1 ←→ σ2 : Ψ− ⇑ η then

there exists a τ such that |τ | = η, ∆; Γ ` τ : Ψ, ∆; Γ ` σ1 ≡ τ : Ψ and

∆; Γ ` σ2 ≡ τ : Ψ

Proof: By simultaneous induction on the instrumented equality derivations, using

validity of Γ, functionality lemma 9, type conversion and symmetry for the substitution

case (part 3). 2

In the implementation, we use a stronger normal form where existential variables

(represented here by modal variables) must also be of atomic type. This is accomplished

by a technique called lowering. Lowering replaces a variable u::(Ψ`Πx:A1.A2) by a new

variable u′:(Ψ, x:A1`A2). This process is repeated until all existential variables have

a type of the form Ψ ` bN1 . . . Nk. This operation has been proved correct for the

simply-typed case by Dowek et al. [22], but remains somewhat mysterious. Here, it is

justified by the modal substitution principle.
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Lemma 40

1. (Lowering) If ∆, u::(Ψ`Πx:A1. A2),∆′; Γ `M : A

then ∆, u′::(Ψ, x:A1`A2),∆′#; Γ# `M# : A#

where (P )# = [[(λx:A1.u
′[idΨ, x/x])/u]]P .

2. (Raising) If ∆, u′::(Ψ, x:A1`A2),∆′; Γ `M : A

then ∆, u::(Ψ`Πx:A1. A2),∆′+; Γ+ `M+ : A+

where (P )+ = [[(u[idΨ]x)/u′]]P .

3. ()+ and ()# are inverse substitutions (modulo definitional equality).

Proof: Direct, by weakening and the modal substitution principle. For part (1) we

observe that ∆, u′::(Ψ, x:A1`A2); Ψ ` λx:A1.u
′[idΨ, x/x] : Πx:A1. A2.

For part (2) we use instead that ∆, u::(Ψ`Πx:A1. A2); Ψ, x:A1 ` u[idΨ]x : A2. Part (3)

is direct by calculation. 2

Since we can lower all modal variables, we can change the syntax of canonical forms

so that terms u[η] are also canonical objects of base type, rather than atomic objects.

This is, in fact, what we chose in the implementation.

For deciding definitional equality between canonical objects, we can use syntactic

equality modulo renaming of bound variables, as usual. For syntactic equality between

two canonical objects U1 and U2, we write U1 = U2. The algorithm is similar to the

structural equality for objects given earlier, except we are now allowed to descend

into the body of λ-abstractions and compare the bodies directly. Since we know, the

objects are in canonical form, we eliminate the weak head reduction rules and the eta-

rule. In other words, type-directed equality can be replaced by syntactic equality for

λ-abstractions.

Finally, we would like to point out that for canonical forms we can refine the bi-

directional type checking rules given earlier on page 56 in such a way that we check

quasi-canonical (normal) terms agains a type A while we infer a type A for quasi-atomic

(neutral) terms.
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2.13 Implementation of existential variables

In the implementation the modal variables in ∆ are used to represent existential vari-

ables (also known as meta-variables), while the variables in Γ are universal variables

(also known as parameters).

Existential variables are created in an ambient context Ψ and then lowered. We do

not explicitly maintain a context ∆ of these existential variables, but it is important

that a proper order for them exists. Existential variables are created with a mutable

reference, which is updated with an assignment when we need to carry out a substitu-

tion [[M/u]].

In certain operations, and particularly after type reconstruction, we need to abstract

over the existential variables in a term. Since the LF type theory provides no means

to quantify over u::(Ψ`A) we raise such variables until they have the form u′::(·`A′).
It turns out that in the context of type reconstruction we can now quantify over them

as ordinary variables x′:A′. However, this is not satisfactory as it requires first raising

the type of existential variables for abstraction, and later again lowering the type of

existential variables during unification to undo the effect of raising. To efficiently treat

existential variables, we would like to directly quantify over modal variables u.

The judgmental reconstruction in terms of modal logic suggests two ways to incor-

porate modal variables. One way is via a new quantifier Π2u::(Ψ`A1). A2, the other is

via a general modal operator 2Ψ. Proof-theoretically, the former is slightly simpler, so

we will pursue this here. The new operator then has the form Π2u::(Ψ`A1). A2 and is

defined by the following rules.

∆; Ψ ` A : type ∆, u::(Ψ`A); Γ ` B : type

∆; Γ ` Π2u::(Ψ`A). B : type

∆, u::(Ψ`A); Γ `M : B

∆; Γ ` λ2u. M : Π2u::(Ψ`A). B

∆; Γ ` N : Π2u::(Ψ`A). B ∆; Ψ `M : A

∆; Γ ` N 2 M : [[M/u]]B

The main complication of this extension is that variables u can now be bound and

substitution must be capture avoiding. In the present implementation, this is handled

by de Bruijn indices. In this thesis, we do not develop a theory where lambda-box and

pi-box are first class abstractions.
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2.14 Conclusion and related work

In this chapter, we presented an abstract view of existential variables based on modal

type theory and showed that type-checking remains decidable and canonical forms

exist. Central to the development is the clear distinction between existential variables

declared in the modal context ∆ and bound variables declared in the context Γ. Unlike

calculi of explicit substitutions [1, 22], our system does not require de Bruijn indices nor

does it require closure M [σ] as first-class terms. Although the use of de Bruijn indices in

calculi of explicit substitutions leads to a simple formal system, the readability may be

obstructed and critical principles are obfuscated by the technical notation. In addition,

some techniques like pre-cooking of terms [22] and optimizations such as lowering and

grafting remain ad hoc. This makes it more difficult to transfer these optimizations to

other calculi.

Viewing existential variables as modal variables leads to a simple clean framework

which allows us to explain techniques such as lowering and raising logically by substitu-

tion principles. Surprisingly, the presented framework justifies with hindsight logically

many techniques and decisions in the Twelf implementation [53].
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Chapter 3

Toward efficient higher-order

pattern unification

Unification lies at the heart of automated reasoning systems, logic programming and

rewrite systems. Thus its performance affects in a crucial way the global efficiency

of each of these applications. This need for efficient unification algorithms has led to

many investigations in the first-order setting. However, the efficient implementation of

higher-order unification, especially for dependently typed λ-calculus, is still a central

open problem limiting the potential impact of higher-order reasoning systems such as

Twelf [53], Isabelle [45], or λProlog [39].

The most comprehensive study on efficient and robust implementation techniques

for higher-order unification so far has been carried out by Nadathur and colleagues

for the simply-typed λ-calculus in the programming language λProlog [37, 38]. The

Teyjus compiler [40] embodies many of the insights found, in particular an adequate

representation of lambda terms and mechanisms to delay and compose substitutions.

Higher-order unification is implemented via Huet’s algorithm [31] and special mecha-

nisms are incorporated into the WAM instruction set to support branching and post-

poning unification problems. To only perform an occurs-check when necessary, the

compiler distinguishes between the first occurrence and subsequent occurrences of a

variable and compiles them into different WAM instructions. While for the first oc-

currence of a variable the occurs-check may be omitted, full unification is used for all

subsequent variables. This approach seems to work well in the simply-typed setting,
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however it is not clear how to generalize it to dependent types.

In this chapter, we discuss the efficient implementation of higher-order pattern

unification for the dependently typed lambda-calculus. Unlike Huet’s general higher-

order unification algorithm which involves branching and backtracking, higher-order

pattern unification [34, 48] is deterministic and decidable. An important step toward

the efficient implementation of higher-order pattern unification was the development

based on explicit substitutions and de Bruijn indices [22] for the simply-typed lambda-

calculus. This allows a clear distinction between bound and existential variables and

reduces the problem to essentially first-order unification. Although the use of de Bruijn

indices leads to a simple formal system, the readability may be obstructed and critical

principles are obfuscated by the technical notation. In addition, as we have argued

in Chapter 2, some techniques like pre-cooking of terms and optimizations such as

lowering and grafting remain ad hoc.

In this chapter, we will particularly focus on one optimization called linearization,

which eliminates many unnecessary occurs-checks and delays any computationally ex-

pensive higher-order parts. Based on the modal dependently typed lambda calculus,

we present a higher-order unification algorithm for linear patterns. We will assume

that all terms are in canonical form and all existential variables must be of atomic

type. As pointed out previously, this can be achieved by lowering and raising (see

Chapter 2). We have implemented this optimization of higher-order unification as part

of the Twelf system. Experimental results which we discuss at the end of this chap-

ter demonstrate significant performance improvement, including those in the area of

proof-carrying code.

3.1 Higher-order pattern unification

In the following, we will consider the pattern fragment of the modal lambda-calculus.

Higher-order patterns are terms where existential variables must be applied to distinct

bound variables. This fragment was first identified by Miller [34] for the simply-typed

lambda-calculus, and later extended by Pfenning [48] to the dependently typed and

polymorphic case. We enforce that all terms are in canonical form, and the type of

existential variables has been lowered and is atomic. We call a normal term U an
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atomic pattern, if all the subterms of the form u[σ] are such that σ = y1/x1, . . . yk/xk

where y1, . . . , yk are distinct bound variables. This is already implicitly assumed for

x1, . . . , xk because all variables defined by a substitution must be distinct. Such a

substitution is called a pattern substitution. Moreover the type of any occurrence of

u[σ] is atomic, i.e., of the form a M1 . . .Mn. We will write Q for atomic types. As

a consequence, any instantiation of u must be a neutral object R, but can never be

a lambda-abstraction. We write θ for simultaneous substitutions [[R1/u1, . . . Rn/un]]

for existential variables. As a consequence, canonical forms are preserved even when

applying the modal substitution to instantiate modal variables.

We emphasize that throughout this chapter we only deal with canonical terms de-

noted by U for normal and R for neutral objects. Moreover, we only consider existential

variables of atomic type and consider them as neutral objects. If the distinction is not

important we may still use M and N to denote objects. Similarly, we will continue

to denote the declarations of modal variables in a modal context ∆ as u::Ψ`Q, where

Q = a M1 . . .Mn. Where the distinction is not important, we may still use A to

denote arbitrary types.

Before we describe higher-order pattern unification, we give some details on modal

substitutions. Recall the definition of modal substitutions from Chapter 2.

∆ ` θ : ∆′ Modal substitution θ matches context ∆′

Substitutions

[[θ]](·) = ·
[[θ]](σ, U/y) = ([[θ]]σ, [[θ]]U/y)

Objects

[[θ]]c = c

[[θ]]x = x

[[θ1, U/u, θ2]](u[σ]) = [[[θ1, U/u, θ2]]σ]U

[[θ]](RU) = ([[θ]]R) ([[θ]]U)

[[θ]](λy:A. U) = λy:[[θ]]A. [[θ]]U

Context

[[θ]]· = ·
[[θ]](Γ, x:A) = [[θ]]Γ, x:[[θ]]A
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Typing rules for modal substitutions are given next:

Modal substitutions

∆ ` (·) : (·)
∆ ` θ : ∆′ ∆; [[θ]]Ψ ` U : [[θ]]A

∆ ` (θ, U/u) : (∆′, u::Ψ`A)

We write id∆ for the identity modal substitution [[u1[idΨ1 ]/u1, . . . , un[idΨn ]/un]] for

a modal context ∆ = (·, u1::(Ψ1`A1), . . . , un::(Ψn`An)). By definition, we then have

∆ ` id∆ : ∆. In an implementation, where existential variables are realized via pointers,

this essentially means the store of pointers for existential variables does not change.

Next, we show some properties of modal substitutions.

Lemma 41 (Modal substitution properties)

If ∆′ ` θ : ∆ and ∆; Γ ` J then ∆′; [[θ]]Γ ` [[θ]]J .

Proof: By simultaneous structural induction on the second derivation. 2

Similar to composition of ordinary substitution, we prove some composition for

modal substitutions.

Lemma 42 (Composition of modal substitutions)

1. [[θ2]]([[θ1]][σ]) = [[[[θ2]]θ1]][σ]

2. [[θ2]]([[θ1]]U) = [[[[θ2]]θ1]]U

3. [[θ2]]([[θ1]]R) = [[[[θ2]]θ1]]R

4. [[θ2]]([[θ1]]A) = [[[[θ2]]θ1]]A

5. [[θ2]]([[θ1]]K) = [[[[θ2]]θ1]]K

6. [[θ2]]([[θ1]]Γ) = [[[[θ2]]θ1]]Γ

Proof: By simultaneous induction on the definition of modal substitutions. 2

In addition, we show the following property relating modal and ordinary substitu-

tions.
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Lemma 43 Assume ∆; Γ ` σ : Ψ and ∆′ ` θ : ∆.

1. [[θ]]([σ]τ) = [[[θ]]σ]([[θ]]τ)

2. [[θ]]([σ]U) = [[[θ]]σ]([[θ]]U)

3. [[θ]]([σ]R) = [[[θ]]σ]([[θ]]R)

4. [[θ]]([σ]A) = [[[θ]]σ]([[θ]]A)

5. [[θ]]([σ]K) = [[[θ]]σ]([[θ]]K)

Proof: By simultaneous induction on the definition of ordinary substitutions. 2

Finally, we note that applying a modal substitution θ to a pattern substitution σ

does not change σ itself, since the range of σ refers only to bound variables, while θ

refers to modal variables.

Lemma 44

If ∆′ ` θ : ∆ and σ is a pattern substitution, s.t. ∆; Γ ` σ : Ψ then [[θ]](σ) = σ

Proof: Induction on the structure of σ 2

Now, we give the judgments for describing higher-order pattern unification.

∆; Γ ` U1
.
= U2 / (∆′, θ) Unification of normal atomic patterns

∆; Γ 
 R1
.
= R2 / (∆′, θ) Unification of neutral atomic objects

We assume U1 (resp. R1) and U2 (resp. R2) are normal atomic patterns, are well-

typed in the context Γ and have the same type A. Since their type does not play a role

during unification, we omit it here. θ is a modal substitution for the modal variables

in ∆ s.t.

∆′ ` θ : ∆ and ∆′; [[θ]]Γ ` [[θ]]U1 ≡ [[θ]]U2 : [[θ]]A

Since we require that all existential variables have atomic type the modal context

∆ has the following form:

∆ = u1::Ψ1`Q1, . . . , un::Ψn`Qn
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Moreover, we will never instantiate an existential variable with a lambda-abstraction.

Hence, the modal substitution θ has the following form:

θ = (R1/u1, . . . , Rn/un)

where R denotes a neutral atomic object which can be a bound variable, a constant,

an application, or another existential variable which has atomic type. Moreover, since

we require that U1 (resp. R1) and U2 (resp. R2) are in canonical form, and all existential

variables are of atomic type, canonical forms are preserved when applying the modal

substitution θ and in fact we can check if [[θ]]U1 is definitionally equal to [[θ]]U2 by

checking syntactic equality between these two objects. Similar statments hold for

types, kinds, and the bound variable context Γ.

Theorem 45

1. If U is a normal term and all modal variables are of atomic type and ∆′ ` θ : ∆

and ∆; Γ ` U : A then [[θ]]U is a normal term.

2. If R is a neutral term and all modal variables are of atomic type and ∆′ ` θ : ∆

and ∆; Γ ` R : A then [[θ]]R is neutral.

Proof: Simultaneous structural induction on the structure of normal and neutral

terms. The key observation is that θ only substitutes neutral objects R for modal

variables. 2

Theorem 46 Let U and U ′ be normal terms and R and R′ be neutral terms and all

modal variables are of atomic type and ∆ ` θ : ∆′.

1. [[θ]]U = [[θ′]]U ′ iff ∆; [[θ]]Γ ` [[θ]]U ≡ [[θ]]U ′ : [[θ]]A.

2. [[θ]]R = [[θ′]]R′ iff ∆; [[θ]]Γ ` [[θ]]R ≡ [[θ]]R′ : [[θ]]A.

Proof: By the previous theorem, we know [[θ]]U and [[θ]]U ′ are canonical. As dis-

cussed in Chapter 2 on page 61, definitionally equality reduces to syntactic equality

for canonical forms. 2
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Higher-order pattern unification can be done in two phases (see [48, 22] for another

account). During the first phase, we decompose the terms until one of the two terms

we unify is an existential variable u[σ]. This decomposition phase is straightforward

and resembles first-order unification closely.

∆; Γ, x:A ` U1
.
= U2 / (∆′, θ)

∆; Γ ` λx:A.U1
.
= λx:A.U2 / (∆′, θ)

lam
∆; Γ 
 R1

.
= R2 / (∆′, θ)

∆; Γ ` R1
.
= R2 / (∆′, θ)

coerce

∆; Γ 
 x
.
= x / (∆, id∆)

var
∆; Γ 
 c

.
= c / (∆, id∆)

const

∆; Γ 
 R1
.
= R2 / (∆1, θ1) ∆1; [[θ1]]Γ ` [[θ1]]U1

.
= [[θ1]]U2 / (∆2, θ2)

∆; Γ 
 R1 U1
.
= R2 U2 / (∆2, [[θ1]](θ2))

app

Note that we do not need to worry about capture in the rule lam, since existential

variables and bound variables are defined in different contexts. During the second

phase, we need to find an actual instantiation for the existential variable u. There are

two main cases to distinguish: (1) when we unify two existential variables, u[σ]
.
= v[σ′],

and (2) when we unify an existential variable with another kind of term, u[σ]
.
= U .

In the following, we consider each of these two cases separately.

3.1.1 Unifying an existential variable with another term

The case for unifying an existential variable u[σ] with another term U can be trans-

formed into u
.
= [σ]−1 U assuming u does not occur in U and all variables v[τ ] are

pruned so that the free variables in τ all occur in the image of σ (see below or [34, 22]

for details). Before considering the pruning operation, we define the inverse substitu-

tion. Note that we view [σ]−1 U as a new meta-level operation such as substitution,

because it may be defined even if σ is not invertible in full generality. This meta-level

operation is defined as follows1.

1We do not omit the type label on the lambda-abstraction here, since it is sometimes convenient
to have access to the type of the bound variable x. This is not strictly necessary, since we require all
terms are canonical and type labels can be omitted.
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[σ]−1 c = c

[σ]−1 x = y if x/y ∈ σ, undefined otherwise

[σ]−1 (v[τ ]) = v[[σ]−1 τ ]

[σ]−1 (RU) = ([σ]−1 R) ([σ]−1 U)

[σ]−1 (λx:A. U) = λx:([σ]−1 A). [σ, x/x]−1 U if x not declared or free in σ

[σ]−1 (·) = (·)
[σ]−1 (τ, U/x) = ([σ]−1 τ, [σ]−1 U/x)

Note that the defined meta-level operation of inverting substitutions is only defined

for a variable x if x/y is in σ and undefined otherwise, thus enforcing that the resulting

term [σ]−1 U is total and exists. It is important to note that the meta-level operation of

inverting substitutions and applying the modal substitution commute. This property

only holds if the inverse substitution in fact exists.

Lemma 47 (Property of inverting substitutions) Let τ and σ be pattern substi-

tutions.

1. If [σ]−1 τ and [σ]−1 ([[θ]]τ) exist then [σ]−1 ([[θ]](τ)) = [[θ]]([σ]−1 τ).

2. If [σ]−1 U and [σ]−1 ([[θ]]U) exist then [σ]−1 ([[θ]]U) = [[θ]]([σ]−1 U).

3. If [σ]−1 R and [σ]−1 ([[θ]]R) exist then [σ]−1 ([[θ]]R) = [[θ]]([σ]−1 R).

Proof: By simultaneous induction on the structure of τ , U , and R. 2

Lemma 48

1. If [σ]−1 τ exists then [σ]([σ]−1 τ) = τ .

2. If [σ]−1 U exists then [σ]([σ]−1 U) = U .

3. If [σ]−1 R exists then [σ]([σ]−1 R) = R.

Proof: The lemmas are proven by simultaneous structural induction on τ , U , and R.

2

72



3.1. HIGHER-ORDER PATTERN UNIFICATION

Lemma 49

1. If σ is a pattern substitution and [σ]U = U ′ then U = [σ]−1 U ′

2. If σ is a pattern substitution and [σ]R = R′ then R = [σ]−1 R′

Proof: The statement is proven by a simultaneous induction on the structure of U

and R. 2

Lemma 50 Let τ and σ be pattern substitutions.

1. If [σ]−1 τ exists and ∆; Γ ` τ : Ψ1 and ∆; Γ ` σ : Ψ2, then ∆; Ψ2 ` [σ]−1 τ : Ψ1.

2. If [σ]−1 U exists and ∆; Γ ` U : [σ]Q and ∆; Γ ` σ : Ψ2, then ∆; Ψ2 ` [σ]−1 U : Q.

3. If [σ]−1 R exists and ∆; Γ ` R : [σ]Q and ∆; Γ ` σ : Ψ2, then ∆; Ψ2 ` [σ]−1 U : Q.

Proof: By simultaneous structural induction on the definition of inverse substitutions

for τ , U , R. 2

Next, we discuss pruning for normal and neutral objects.

∆; Γ ` U | [σ]−1 ⇒ (∆′, ρ) Prune U with respect to σ

∆; Γ 
 R | [σ]−1 ⇒ (∆′, ρ) Prune R with respect to σ

Let ∆ be the modal variables in U (and R resp). Then pruning with respect to

the substitution σ, will return a modal substitution ρ s.t. ∆′ ` ρ : ∆ and [σ]−1 ([[ρ]]U)

exists. The modal substitution ρ replaces modal variables ui in ∆, where ui[τ ] occurs

as a subterm in U (or R resp.) and [σ]−1 (ui[τ ]) is not defined, with new modal

variables v[τ ′], s.t. τ ′ prunes the substitution τ and [σ]−1 (v[[τ ]τ ′]) exists. In other

words, pruning ensures that all bound variables occurring in [[ρ]]U occur in the range

of σ which is achieved by applying the modal pruning substitution ρ to U .

∆; Γ, x:A ` U | [σ, x/x]−1 ⇒ (∆1, ρ1)

∆; Γ ` λx:A.U | [σ]−1 ⇒ (∆1, ρ1)

∆; Γ 
 R | [σ]−1 ⇒ (∆′, ρ)

∆; Γ ` R | [σ]−1 ⇒ (∆′, ρ)

(∆1, v::Ψ1`Q,∆2); Γ ` τ : Ψ1 | [σ]−1 ⇒ Ψ2 ∆′2 = [[id∆1 , v
′[idΨ2 ]/v]]∆2

(∆1, v::Ψ1`Q,∆2); Γ 
 v[τ ] | [σ]−1 ⇒ ((∆1, v
′::Ψ2`Q,∆

′
2), (id∆1 , v

′[idΨ2 ]/v, id∆2))
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∆; Γ 
 R | [σ]−1 ⇒ (∆1, ρ1) ∆1; [[ρ1]]Γ ` [[ρ1]]U1 | [σ]−1 ⇒ (∆2, ρ2)

∆; Γ 
 R U | [σ]−1 ⇒ (∆2, [[ρ2]](ρ1))

[σ]−1 x exists

∆; Γ1, x:A,Γ2 
 x | [σ]−1 ⇒ (∆, id∆) ∆; Γ 
 c | [σ]−1 ⇒ (∆, id∆)

Applying a modal substitution θ to a modal context ∆ is defined as follows:

[[θ]](·) = ·
[[θ]](u::Ψ`A,∆) = (u::[[θ]]Ψ`[[θ]]A, [[θ, u[idΨ]/u]]∆)

if u does not occur in [[θ]]Ψ and [[θ]]A

The application of θ to some modal context ∆ is only defined if we do not create

any circularities in the resulting context [[θ]]∆. This ensures that the resulting modal

context [[θ]]∆ is well-formed. In the previous rule for pruning a modal variable v[τ ] with

respect to [σ]−1 , we create a new context ∆′2 = [[id∆1 , v
′[idΨ2 ]/v]]∆2. Since the range

of [[id∆1 , v
′[idΨ2 ]/v]] is different from the modal variables declared in ∆2, we always will

obtain a well-formed ∆′2.

Note that pruning of an object U (resp. R) does not always succeed. In particular,

if U contains a bound variable x which does not occur in the image of the substitution σ

pruning will fail. When we prune an object U (resp. R), we assume that ∆; Γ ` U : A

and if pruning succeeds it will return a new context ∆′ and a modal substitution ρ

such that ∆′ ` ρ : ∆.

Note that τ is a pattern substitution and therefore we do not need to recursively

prune the substitutions. However, we may need to prune some bound variables because

[σ]−1 τ may not necessarily exist. Next, we describe the pruning of a substitution τ

with respect to a substitution [σ]−1 .

Given a substitution τ such that ∆; Γ ` τ : Ψ1, pruning τ with respect to [σ]−1 ,

where ∆; Γ ` σ : Ψ returns a context Ψ2 such that [σ]−1 ([τ ]idΨ2) exists. The following

judgment describes the pruning of a substitution τ .

∆; Γ ` τ : Ψ1 | [σ]−1 ⇒ Ψ2
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Ψ2 is well-formed context such that Ψ2 ≤ Ψ1 and ∆; Ψ1 ` idΨ2 : Ψ2. Pruning

the substitution τ with respect to [σ]−1 will always succeed and return a well-formed

context Ψ2.

∆; Γ ` · : · | [σ]−1 ⇒ ·
∆; Γ ` τ : Ψ1 | [σ]−1 ⇒ Ψ2 [σ]−1 (y) exists

∆; Γ ` (τ, y/x) : (Ψ1, x:A) | [σ]−1 ⇒ (Ψ2, x:A)

∆; Γ ` τ : Ψ1 | [σ]−1 ⇒ Ψ2 [σ]−1 (y) does not exists

∆; Γ ` (τ, y/x) : (Ψ1, x:A) | [σ]−1 ⇒ Ψ2

Before we show some properties about pruning, we summarize some of the consid-

erations in defining pruning judgments. Recall that we call pruning when unifying an

object u[σ] with another object U . Since we only unify terms of the same type, we

know that ∆; Γ ` u[σ] : Q′ and ∆; Γ ` U : Q′. We also know by typing invariant

that u::Ψ`Q in ∆ and in fact ∆; Γ ` u[σ] : [σ]Q and ∆; Γ ` σ : Ψ. By the previous

two assumptions, we know that in fact Q′ = [σ]Q. Moreover, ∆ = ∆1, u::Ψ`Q,∆2 and

∆1; Ψ ` Q : type. Since σ is a pattern substitution, we must have ∆1; Γ ` [σ]Q : type.

We first argue why we do not need to prune the types when pruning an existential

variable v[τ ] with respect to [σ]−1 and when pruning a substitution τ with respect

to [σ]−1 . Moreover, we show when pruning τ with respect to [σ]−1 the resulting

context Ψ2 must be well-formed. We say a variable y is shared between two pattern

substitutions τ and σ if y is in the image of both τ and σ. It is easy to see that if

∆; Γ ` τ : Ψ1 | [σ]−1 ⇒ Ψ2, then Ψ2 contains exactly those variables x in Ψ1 such that

[τ ]x is shared between τ and σ.

Lemma 51 (Well-formedness of pruned context)

If ∆; Γ ` τ : Ψ1 | [σ]−1 ⇒ Ψ2, ∆; Γ ` τ : Ψ1 and ∆; Γ ` σ : Ψ then ∆ ` Ψ2 ctx and

Ψ2 ≤ Ψ1.

Proof: Proof by structural induction on the first derivation.

Case D =
∆; Γ ` · : · | [σ]−1 ⇒ ·

∆ ` · ctx by rule

· ≤ ·
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Case D =
∆; Γ ` τ : Ψ1 | [σ]−1 ⇒ Ψ2 [σ]−1 (y) exists

∆; Γ ` (τ, y/x) : (Ψ1, x:A) | [σ]−1 ⇒ (Ψ2, x:A)

∆; Γ ` (τ, y/x) : (Ψ1, x:A) by assumption

∆; Γ ` τ : Ψ1 and ∆; Γ ` x:[τ ]A (*) by inversion

∆; Γ ` σ : Ψ by assumption

∆ ` Ψ2 ctx and Ψ2 ≤ Ψ1 by i.h.

Γ(y) = B = [τ ]A by inversion on (*)

σ = (σ1, y/z, σ2) and Ψ = (Ψ′, z:A′,Ψ′′) since [σ]−1 (y) exists

Γ(y) = B[σ1]A′ since ∆; Γ ` σ : Ψ

[τ ]A = [σ1]A′ transitivity of equality

[τ ]A can only depend on variables shared between τ and σ1

τ and σ1 are pattern substitutions

A can only depend on variables from Ψ2 see remark before this proof

∆; Ψ1 ` A : type from above

∆ ` Ψ2, x:A ctx by rule

(Ψ2, x:A) ≤ (Ψ1, x:A) by i.h.

Case D =
∆; Γ ` τ : Ψ1 | [σ]−1 ⇒ Ψ2 [σ]−1 (y) does not exist

∆; Γ ` (τ, y/x) : (Ψ1, x:A) | [σ]−1 ⇒ Ψ2

∆; Γ ` (τ, y/x) : (Ψ1, x:A) by assumption

∆; Γ ` τ : Ψ1 and ∆; Γ ` y:[τ ]A by inversion

∆; Γ ` σ : Ψ by assumption

∆ ` Ψ2 ctx and Ψ2 ≤ (Ψ1, x:A) by i.h.

2

Lemma 52 (Well-formed pruning substitution)

1. If ∆; Γ ` U | [σ]−1 ⇒ (∆′, ρ) and ∆; Γ ` U : [σ]A and ∆; Γ ` σ : Ψ

then ∆′ ` ρ : ∆.

2. If ∆; Γ 
 R | [σ]−1 ⇒ (∆′, ρ) and ∆; Γ ` R : [σ]A and ∆; Γ ` σ : Ψ

then ∆′ ` ρ : ∆.
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Proof: Simultaneous structural induction on the first derivation. We show a few cases

of the proof.

Case D =
∆; Γ, x:A ` U | [σ, x/x]−1 ⇒ (∆′, ρ)

∆; Γ ` λx:A.U | [σ]−1 ⇒ (∆′, ρ)

∆; Γ ` λx:A.U : [σ]B by assumption

B = Ψx:B1.B2 for some B1 and B2

∆; Γ ` [σ]B ≡ Πx:[σ]B1.[σ, x/x]B2 : type and

∆; Γ, x:A ` U : [σ, x/x]B2 by typing inversion lemma 12

∆; Γ ` [σ]B ≡ Πx:[σ]B1.[σ, x/x]B2 : type and by equality inversion 14

∆; Γ ` [σ]B1 ≡ A : type and ∆; Γ ` [σ, x/x]B2 ≡ [σ, x/x]B2 : type

∆; Γ ` σ : Ψ by assumption

∆; Γ, x:A ` σ : Ψ by weakening

∆; Γ, x:A ` x : A by rule

∆; Γ, x:A ` x : [σ]B1 by rule

∆; Γ, x:A ` (σ, x/x) : (Ψ, x:B1) by rule

∆′ ` ρ : ∆ by i.h.

Case D =
(∆1, v::Ψ1`Q,∆2); Γ ` τ : Ψ1 | [σ]−1 ⇒ Ψ2

(∆1, v::Ψ1`Q,∆2); Γ 
 v[τ ] | [σ]−1 ⇒ (∆′, ρ)

∆′ = (∆1, v
′::Ψ2`Q,∆

′
2) and ∆′2 = [[id∆1 , v

′[idΨ2 ]/v]]∆2 and ρ = (id∆1 , v
′[idΨ2 ]/v, id∆2)

(∆1, v::Ψ1`Q,∆2); Γ ` v[τ ] : A by assumption

(∆1, v::Ψ1`Q,∆2); Γ ` τ : Ψ1 and

(∆1, v::Ψ1`Q,∆2); Γ ` [σ]A ≡ [τ ]Q : type by typing inversion 12

(∆1, v::Ψ1`Q,∆2); Γ ` σ : Ψ by assumption

∆ ` Ψ2 ctx and Ψ2 ≤ Ψ1 by lemma 51

∆1 ` Ψ1 ctx by well-typedness of (∆1, v::Ψ1`Q,∆2)

∆1 ` Ψ2 ctx since Ψ2 ≤ Ψ1

A = [σ]−1 ([τ ]Q) and [σ]−1 ([τ ]Q) exists by lemma 49

so pruning τ with respect to [σ]−1 should not affect any variables in Q. Therefore,

∆1; Ψ2 ` Q : type. Moreover,
(∆1, v

′::Ψ2`Q,∆
′
2) ` (id∆1 , v

′[idΨ2 ]/v, id∆2) : (∆1, v::Ψ1`Q,∆2)
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Case D =
∆; Γ 
 R | [σ]−1 ⇒ (∆1, ρ1) ∆1; [[ρ1]]Γ ` [[ρ1]]U1 | [σ]−1 ⇒ (∆2, ρ2)

∆; Γ 
 R U | [σ]−1 ⇒ (∆2, [[ρ2]](ρ1))

∆; Γ ` R U : [σ]A by assumption

∆; Γ ` R : [σ](Πx:A1.A2) and ∆; Γ ` U : [σ]A1 and

∆; Γ ` [σ, U/x]A2 ≡ [σ]A : type by typing inversion 12

∆1 ` ρ1 : ∆ by i.h.

∆1; [[ρ1]]Γ ` [[ρ1]]U : [[ρ1]]([σ]A1) by substitution property

∆1; [[ρ1]]Γ ` [[ρ1]]U : [σ]([[ρ1]]A1) since ρ1 is a pattern substitution

∆2 ` ρ2 : ∆1 by i.h.

∆2 ` [[ρ2]]ρ1 : ∆ by composition of modal substitutions

2

Moreover, we show that if the modal variable u does not occur in R, then pruning

R with respect to some σ, results in the modal context ∆′ and the pruning substitution

ρ, where u will be mapped to itself.

Lemma 53

1. If the modal variable u does not occur in U and ∆; Γ ` U | [σ]−1 ⇒ (∆∗, ρ) and

∆ = (∆1, u::Ψ`Q,∆2), then ∆∗ = (∆∗1, u::[[ρ]]Ψ`[[ρ]]Q,∆∗2) and ρ = (ρ1, u[id[[ρ]]Ψ]/u, ρ1).

2. If the modal variable u does not occur in R and ∆; Γ 
 R | [σ]−1 ⇒ (∆∗, ρ) and

∆ = ∆1, u::Ψ`Q,∆2, then ∆∗ = (∆∗1, u::[[ρ]]Ψ`[[ρ]]Q,∆∗2) and ρ = (ρ1, u[id[[ρ]]Ψ]/u, ρ1).

Proof: Simultaneous structural induction on the pruning derivation. 2

Next, we show correctness of pruning.

Lemma 54 (Pruning – Soundness)

1. If ∆; Γ ` τ : Ψ1 | [σ]−1 ⇒ Ψ2 and ∆; Γ ` τ : Ψ1 and ∆; Γ ` σ : Ψ then

[σ]−1 ([τ ](idΨ2)) exists.

2. If ∆; Γ ` U | [σ]−1 ⇒ (∆′, ρ) and ∆; Γ ` U :A and ∆; Γ ` σ : Ψ then [σ]−1 ([[ρ]]U)

exists.
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3. If ∆; Γ 
 R | [σ]−1 ⇒ (∆′, ρ) and ∆; Γ ` R:A and ∆; Γ ` σ : Ψ then [σ]−1 ([[ρ]]R)

exists.

Proof: The lemmas are proven by simultaneous structural induction on the first

derivation.

Case ∆; Γ 
 R U | σ−1 ⇒ (∆2, [[ρ2]]ρ1)

∆; Γ 
 R | σ−1 ⇒ (∆1, ρ1) by premise

∆1; [[ρ1]]Γ ` [[ρ1]]U | σ−1 ⇒ (∆2, ρ2) by premise

∆; Γ ` R U : A by assumption

∆; Γ ` R : Πx:A1.A2

∆; Γ ` U : A1 and

∆; Γ ` [idΓ, U/x]A2 ≡ A : type by typing inversion lemma 12

∆1 ` ρ1 : ∆ by lemma 52

∆1; [[ρ1]]Γ ` [[ρ1]]U : [[ρ1]]A1 by substitution property

∆2 ` ρ2 : ∆1 by lemma 52

[σ]−1 ([[ρ1]]R) exists by i.h.

[σ]−1 ([[ρ2]]([[ρ1]]U)) exists by i.h.

[σ]−1 ([[[[ρ2]]ρ1]]U) exists by substitution property

[[ρ2]][σ]−1 ([[ρ1]]R) exists by substitution property

[σ]−1 ([[ρ2]][[ρ1]]R) exists by previous lines

[σ]−1 ([[[[ρ2]]ρ1]]R) exists by substitution definition

Case ∆; Γ ` v[τ ] | σ−1 ⇒ (∆′, ρ)

∆ = ∆1, v::Ψ`Q,∆2

∆′ = (∆1, v
′::Ψ2`Q,∆

′
2) where and ∆′2 = [[id∆1 , v

′[idΨ2 ]/v]]∆2

ρ = (id∆1 , v
′[idΨ2 ]/v, id∆2) by premise

∆; Γ ` τ | [σ]−1 ⇒ Ψ2 by premise

∆; Γ ` v[τ ] : A by assumption

∆; Γ ` τ : Ψ and

∆; Γ ` A ≡ [τ ]Q : type by typing inversion lemma 12

[σ]−1 ([τ ](idΨ2) exists by (1)
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v′[[σ]−1 ([τ ](idΨ2))] exists

[σ]−1 v′[[τ ](idΨ2)] exists by inverse substitution definition

[σ]−1 ([[ρ]]v[τ ]) exists by substitution definition

2

Lemma 55 (Pruning – Completeness)

1. If ∆; Γ ` τ : Ψ and ∆; Γ ` σ : Ψ′ then ∆; Γ ` τ : Ψ | [σ]−1 ⇒ Ψ2 for some Ψ2.

2. If ∆; Γ ` U : [σ]A and ∆; Γ ` σ : Ψ and ∆′ ` θ : ∆ and [σ]−1 ([[θ]]U) exists, then

∆; Γ ` U | [σ]−1 ⇒ (∆′′, ρ) for some ∆′′ and ρ and there exists a substitution ρ′

such that θ = [[ρ′]]ρ and ∆′ ` ρ′ : ∆′′.

3. If ∆; Γ ` R : [σ]A and ∆; Γ ` σ : Ψ and ∆′ ` θ : ∆ and [σ]−1 ([[θ]]R) exists, then

∆; Γ ` R | [σ]−1 ⇒ (∆′′, ρ) for some ∆′′ and ρ and there exists a substitution ρ′

such that θ = [[ρ′]]ρ and ∆′ ` ρ′ : ∆′′.

Proof: The statement is proven by simultaneous structural induction on the typing

derivation. We show a few cases.

Case ∆; Γ ` v[τ ] : [σ]A

∆; Γ ` τ : Ψ1 by typing inversion lemma 12

∆ = (∆1, v::Ψ1`Q1,∆2) and ∆; Γ ` [σ]A ≡ [τ ]Q1 : type

∆; Γ ` σ : Ψ by assumption

∆; Γ ` τ : Ψ1 | [σ]−1 ⇒ Ψ2 by (1)

∆; Γ ` v[τ ] | [σ]−1 ⇒ ((∆1, v
′::Ψ2`Q1,∆

′
2), (id∆1 , v

′[idΨ2 ]/v, id∆′2
)) by rule

∆1; Ψ2 ` Q1 : type since [σ]A = [τ ]Q1 and

Ψ2 contains exactly those variables shared between σ and τ

∆′ ` (θ1, U/v, θ2) : (∆1, v::Ψ1`Q1,∆2) by assumption

let ρ′ = (θ1, U/v
′, θ2) then we have θ = [[ρ′]]((id∆1 , v

′[idΨ2 ]/v, id∆′2
).

Case ∆; Γ ` λx:A.U : [σ]B

∆; Γ, x:A ` U : [σ, x/x]B2 and

∆; Γ ` [σ]B ≡ Πx:A.[σ, x/x]B2 : type by typing inversion 12
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∆; Γ ` [σ]B ≡ Πx:[σ]B1.[σ, x/x]B2 : type and

∆; Γ ` A ≡ [σ]B1 : type by equality inversion 14

∆; Γ ` σ : Ψ by assumption

∆; Γ, x:A ` x : A by rule

∆; Γ, x:A ` x : [σ]B1 by rule

∆; Γ, x:A ` (σ, x/x) : (Ψ, x:B1) by rule

[σ]−1 ([[θ]](λx:A.U)) exists by assumption

λx:[σ]−1 ([[θ]]A).([σ, x/x]−1 [[θ]]U) exists by definition of inverse substitution

([σ, x/x]−1 [[θ]]U) exists

∃ρ′.θ = [[ρ′]]ρ and ∆; Γ, x:A ` U | [σ, x/x]−1 ⇒ (∆′, ρ) by i.h.

∆; Γ ` λx:A.U | [σ]−1 ⇒ (∆′, ρ) by rule

2

Now, we can give the cases for unifying an existential variable with another kind of

term. Since we are requiring that all existential variables are of atomic type, this term

R can only be a modal variable v[τ ′], where v is different from u, an application, an

ordinary variable or a constant.

∆; Γ ` R | [σ]−1 ⇒ (∆∗, ρ) ∆∗ = (∆∗1, u::[[ρ]]Ψ`[[ρ]]Q,∆∗2)

u does not occur in R ∆′2 = [[id∆∗1
, [σ]−1 ([[ρ]]R)/u]]∆∗2

(∆1, u::Ψ`Q,∆2); Γ 
 u[σ]
.
= R / ((∆∗1,∆

′
2), [[id∆∗1

, [σ]−1 ([[ρ]]R)/u, id∆∗2
]]ρ)

ex1

∆; Γ ` R | [σ]−1 ⇒ (∆∗, ρ) ∆∗ = (∆∗1, u::[[ρ]]Ψ`[[ρ]]Q,∆∗2)

u does not occur in R ∆′2 = [[id∆∗1
, [σ]−1 ([[ρ]]R)/u]]∆∗2

(∆1, u::Ψ`Q,∆2); Γ 
 R
.
= u[σ] / ((∆∗1,∆

′
2), [[id∆∗1

, [σ]−1 ([[ρ]]R)/u, id∆∗2
]]ρ)

ex2

The side condition “u does not occur in R” ensures that we obey the occurs-

check. Note, that we do not need to ensure that u does not occur in the type of

R. Recall that by invariant, we know that ∆; Γ ` u[σ] : Q′ and ∆; Γ ` R : Q′.

We also know by typing invariant that u::Ψ`Q in ∆ and ∆; Γ ` u[σ] : [σ]Q and

∆; Γ ` σ : Ψ. By the previous two assumptions, we know that Q′ = [σ]Q. Moreover,

∆ = ∆1, u::Ψ`Q,∆2 and ∆1; Ψ ` Q : type. Since σ is a pattern substitution, we must
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have ∆1; Γ ` [σ]Q : type. Since [σ]Q = Q′, we know that u cannot occur in the type

Q′. Therefore we do not need to perform the occurs check on the type of R.

However, since there may be dependencies among the types and declarations in ∆2

may depend on u, it is not necessarily obvious why traversing R and checking whether u

occurs in R suffices in the higher-order dependently typed setting. Potentially we could

be in the following situation: a modal variable v[τ ′] occurs in R, but v::Ψ′`Q′ occurs in

∆2 and depends on u. When we construct the new ∆′2 = [id∆1 , [σ]−1 ([[ρ]]R)/u]∆2, we

will replace occurrences of u in Ψ′ and Q′ with [σ]−1 ([[ρ]]R). But since R itself refers to

v, we may be creating a circular new declaration for v and the resulting modal context

∆′2 may not be well-formed.

Lemma 56

1. If ∆; Γ ` U ⇐ A and ∆ = (∆1, u::Ψ`Q,∆2) and u does not occur in Γ, U , and

A, then for any modal variable v where v is different from u that occurs in U and

v::Ψ′`Q′ is declared in ∆, u does not occur in Ψ′ and Q′.

2. If ∆; Γ ` R ⇒ A and ∆ = (∆1, u::Ψ`Q,∆2) and u does not occur in Γ, R, then

u does not occur in A and for any modal variable v where v is different from u

that occurs in R and v::Ψ′`Q′ is declared in ∆, u does not occur in Ψ′ and Q′.

Proof: By simultaneous induction on the algorithmic typing derivation.

Case ∆; Γ ` R U ⇒ [idΓ, U/x]A2

∆; Γ ` R⇒ Πx:A′1.A2

∆; Γ ` U ⇐ A1 and ∆; Γ ` A1 ⇐⇒ A′1 : type by inversion

A1 = A′1 since A1, A′1 are canonical

u does not occur in R U by assumption

u does not occur in R

u does not occur in U

u does not occur in G by assumption

u does not occur in Πx:A′1.A2 and for any modal variable v::Ψ′`Q′ occurring in R,

u does not occur in Ψ′ and Q′ by i.h.

u does not occur in A′1
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u does not occur in A1 since A1 ⇐⇒ A′1
for any modal variable v::Ψ′`Q′ occurring in U ,

u does not occur in Ψ′ and Q′ by i.h.

for any modal variable v::Ψ′`Q′ occurring in R U ,

u does not occur in Ψ′ and Q′

Case (∆′, v::Ψ′`Q′,∆′′); Γ ` v[τ ]⇒ [τ ]Q′

∆ = (∆′, v::Ψ′`Q′,∆′′) and ∆; Γ ` τ ⇐ Ψ′ by inversion

u does not occur in Γ by assumption

u does not occur in Ψ′ since τ is a pattern substitution

u does not occur in [τ ]Q′ by assumption

u does not occur in Q′ since τ is a pattern substitution

Case ∆; Γ ` c⇒ A

c is defined in the signature Σ. Σ(c) = A. Moreover, A must be closed and cannot

refer to any modal variables. Therefore, u cannot occur in A.

Case ∆; Γ ` x⇒ A

Γ(x) = A by inversion

u does not occur in A since u does not occur in Γ

Case ∆; Γ ` λx:A1.U ⇐ Πx:A1.A2

∆; Γ, x:A1 ` U ⇐ A2 by inversion

u does not occur in Γ by assumption

u does not occur in Πx:A1.A2 by assumption

u does not occur in A1 and A2

u does not occur in Γ, x:A1

for any v::Ψ′`Q′ occuring in U

u does not occur in Ψ′ and Q′ by i.h.

for any v::Ψ′`Q′ occuring in λx:A1.U

u does not occur in Ψ′ and Q′
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2

The last lemma justifies why a simple occurs check also suffices in the higher-order

dependently typed setting. In an implementation, we may combine computing the

pruning substitution with the occurs check. Since we already traverse the term R to

check whether [σ]−1 R exists, we may simultaneously check whether u occurs in R.

However, the previous lemma shows that for higher-order patterns, we do not need to

prune types and the bound variable context. Moreover, we do not need to perform an

occurs check on the types of modal variables which may occur in R2 .

3.1.2 Unifying two identical existential variables

For unifying the two existential variables which are the same, we need an additional

auxiliary judgment, which computes the intersection of two substitutions.

∆; Γ ` σ ∩ τ : Ψ⇒ Ψ′

Given the substitution ∆; Γ ` σ : Ψ and ∆; Γ ` τ : Ψ, we construct a context Ψ′

which is well-formed and for the substitution idΨ′ such that ∆; Ψ ` idΨ′ : Ψ′ we have

[σ](idΨ′) = [τ ](idΨ′).

∆; Γ ` · ∩ · : · ⇒ ·

∆; Γ ` τ ∩ σ : Ψ⇒ Ψ′

∆; Γ ` (τ, y/x) ∩ (σ, y/x) : (Ψ, x:A)⇒ (Ψ′, x:A)

∆; Γ ` τ ∩ σ : Ψ⇒ Ψ′ z 6= y

∆; Γ ` (τ, z/x) ∩ (σ, y/x) : (Ψ, x:A)⇒ Ψ′

We say a variable y is strictly shared between two pattern substitutions τ and σ if

there is an x such that y = [τ ]x = [σ]x. It is easy to see that if ∆; Γ ` τ ∩ σ : Ψ⇒ Ψ′

then Ψ′ contains exactly those variables x in Ψ such that y = [τ ]x = [σ]x (in other

words, y is strictly shared between τ and σ). The resulting context Ψ′ will always be

well-formed. To illustrate the difference between the notion of ”shared” and ”strictly

2It seems possible that an extended occurs check would lead to incompleteness, no?
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shared” consider the substitution [y/x1, z/x2] and [z/x1, y/x2]. Here, y and z are

shared, but not strictly shared. y and z will be retained under inverse substitution,

but they are pruned under intersection.

Lemma 57 If ∆; Γ ` τ ∩ σ : Ψ⇒ Ψ′, ∆; Γ ` τ : Ψ and ∆; Γ ` σ : Ψ then ∆ ` Ψ′ ctx.

Proof: Structural induction on the first derivation. We consider the interesting case,

where

∆; Γ ` τ ∩ σ : Ψ⇒ Ψ′

∆; Γ ` (τ, y/x) ∩ (σ, y/x) : (Ψ, x:B)⇒ Ψ′, x:B

∆; Γ ` (τ, y/x) : (Ψ, x:B) by assumption

∆; Γ ` τ : Ψ by inversion

∆; Γ ` y : [τ ]B by inversion

Γ(y) = B′ = [τ ]B by inversion

∆; Γ ` (σ, y/x) : (Ψ, x:B) by assumption

∆; Γ ` σ : Ψ by inversion

∆; Γ ` y : [σ]B by inversion

Γ(y) = B′ = [σ]B by inversion

B′ = [τ ]B = [σ]B by previous lines

B can only depend on variables strictly shared between τ and σ

∆ ` Ψ′ ctx by i.h.

∆; Ψ′ ` B : type since Ψ′ contains exactly those variables strictly shared by τ and σ

∆ ` (Ψ′, x:B) ctx 2

Next, we show correctness of computing the intersection between two substitutions.

Lemma 58

1. If ∆; Γ ` τ : Ψ and ∆; Γ ` σ : Ψ and ∆ = ∆1, u::Ψ`Q,∆2 then

∆; Γ ` τ ∩ σ : Ψ⇒ Ψ′

2. If ∆; Γ ` τ ∩ σ : Ψ⇒ Ψ′ then

[σ](idΨ′) = [τ ](idΨ′) and ∆; Ψ ` idΨ′ : Ψ′.
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Proof: The first statement is proven by structural induction on the first derivation.

The second statement is proven by induction on the first derivation using lemma 4. 2

Now we can give the rule for unifying two modal variables which are the same.

(∆1, u::Ψ`Q,∆2); Γ ` τ ∩ σ : Ψ⇒ Ψ2 ∆′2 = [[id∆1 , v
′[idΨ2 ]/v]]∆2

(∆1, u::Ψ`Q,∆2); Γ 
 u[σ]
.
= u[τ ] / ((∆1, v::Ψ2`Q,∆

′
2), (id∆1 , v[idΨ2 ]/u, id∆2))

ex3

We have shown that the resulting Ψ2 of computing the intersection of τ and σ, is

indeed well-formed (lemma 57). We can also justify why in the unification rule itself

the type Q of two existential variables must be well-typed in the pruned context Ψ2.

Recall that by typing invariant, we know that ∆; Γ ` τ : Ψ and ∆; Γ ` σ : Ψ and

[σ]Q = [τ ]Q = Q′. But this mean that Q can only depend on the variables strictly

shared by τ and σ. Since Ψ2 is exactly the context, which captures the shared variables,

Q must also be well-typed in Ψ2.

During unification, we ensure that the resulting modal substitution θ maps all the

modal variables in ∆ to a new modal context ∆′.

Lemma 59

1. If ∆; Γ ` U1
.
= U2 / (∆′, θ) and ∆; Γ ` U1 : A and ∆; Γ ` U2 : A

then ∆′ ` θ : ∆.

2. If ∆; Γ 
 R1
.
= R2 / (∆′, θ) and ∆; Γ ` U1 : A and ∆; Γ ` U2 : A

then ∆′ ` θ : ∆.

Proof: Structural induction on the first derivation. We show the cases for unifying an

existential variable with another term and unifying two identical existential variables.

Case D = ∆; Γ ` u[σ]
.
= R / ((∆∗1,∆

′
2), [[id∆∗1

, [σ]−1 ([[ρ]]R)/u, id∆∗2
]]ρ)

∆ = (∆1, u::Ψ`Q,∆2)

∆; Γ ` R | [σ]−1 ⇒ (∆∗, ρ) and u does not occur in R by premises

∆; Γ ` u[σ] : A by assumption

∆; Γ ` σ : Ψ and ∆; Γ ` A ≡ [σ]Q : type by typing inversion lemma 12

u does not occur in Ψ and Q by well-formedness of ∆

∆; Γ ` R : [σ]Q by assumption
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∆∗ ` ρ : ∆ by lemma 52

[σ]−1 [[ρ]]R exists by lemma 54

∆∗ = (∆∗1, u::[[ρ]]Ψ`[[ρ]]Q,∆∗2) and ρ = (ρ∗1, u[id[[ρ]]Ψ]/u, ρ∗2) by lemma 53

∆∗; [[ρ]]Γ ` [[ρ]]R : [[ρ]]([σ]Q) by substitution property (lemma 41)

∆∗; [[ρ]]Γ ` [[ρ]]R : [σ]([[ρ]]Q) since σ is a pattern substitution

∆∗; [[ρ]]Γ ` σ : [[ρ]]Ψ by substitution property

∆∗; [[ρ]]Ψ ` [σ]−1 ([[ρ]]R) : [[ρ]]Q by lemma 50

u does not occur in [[ρ]]Ψ and [[ρ]]Q and [σ]−1 ([[ρ]]R because ρ only replaces modal

variables with new variables

for any modal variable v occuring in [σ]−1 ([[ρ]]R) where v::Ψ′`Q′,

u cannot occur in Ψ′ and Q′ by lemma 56

∆′2 = [[id∆∗1
, [σ]−1 ([[ρ]]R)/u]]∆∗2 and ` ∆′2 mctx by previous lines

i.e. no circularities are created in ∆′2
θ = [[id∆∗1

, [σ]−1 ([[ρ]]R)/u, id∆∗2
]]ρ = (ρ∗1, [σ]−1 ([[ρ]]R)/u, ρ∗2) by substitution definition

(∆∗1,∆
′
2); [[ρ]]Ψ ` [σ]−1 ([[ρ]]R) : [[ρ]]Q since u does not occur in Ψ, R or Q

(∆∗1,∆
′
2); [[ρ∗1]]Ψ ` [σ]−1 ([[ρ]]R) : [[ρ∗1]]Q since ∆1; Ψ ` Q : type

(∆∗1,∆
′
2) ` ρ∗1 : ∆1 since the pruning substitution ρ∗ only instantiates

modal variables from ∆ with new modal variables

(∆∗1,∆
′
2) ` (ρ∗1, [σ]−1 ([[ρ]]R)/u) : (∆1, u::Ψ`Q) by previous lines

(∆∗1,∆
′
2) ` (ρ∗1, [σ]−1 ([[ρ]]R)/u, ρ∗2) : ∆ by typing rules

Case D = ∆; Γ ` u[σ]
.
= u[τ ] / ((∆1, v::Ψ2`Q,∆

′
2), [[id∆1 , v[idΨ2 ]/u, id∆2 ]])

∆ = (∆1, u::Ψ`Q,∆2)

∆; Γ ` τ ∩ σ : Ψ⇒ Ψ2 by premise

∆; Γ ` u[τ ] : A by assumption

∆; Γ ` τ : Ψ and ∆; Γ ` A ≡ [τ ]Q : type by typing inversion 12

∆; Γ ` u[σ] : A by assumption

∆; Γ ` σ : Ψ and ∆; Γ ` A ≡ [σ]Q : type by typing inversion lemma 12

∆; Γ ` [σ]Q ≡ [τ ]Q : type by transitivity

Q can only depend on those bound variables which are strictly shared by τ and σ

Ψ2 exactly contains those shared variables

∆1; Ψ ` Q : type by well-typedness of ∆
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∆1; Ψ2 ` Q : type by previous lines

(∆1, v::Ψ2`Q,∆
′
2) ` (id∆1 , v[idΨ2 ]/u, id∆2) : ∆ by previous lines and typing rules

2

Recall, we assume that the two objects we unify are in canonical form, in particular

we may omit the type label on λ-abstractions.

For soundness, we show that if two objects U1 and U2 unify under the modal sub-

stitution θ, then [[θ]]U1 is definitional equal to [[θ]]U2. Since we concentrate on canonical

forms, definitional equality can be established by checking whether two objects are

syntactically equal. Now we show that if the object U1 and U2 unify under the modal

substitution θ, then [[θ]]U1 is syntactically equal to [[θ]]U2, thereby showing indirectly

that [[θ]]U1 and [[θ]]U2 must also be definitional equal.

Theorem 60 (Soundness of higher-order pattern unification)

1. If ∆; Γ ` U1
.
= U2 / (∆′, θ) and ∆; Γ ` U1 : A, and ∆; Γ ` U2 : A

then [[θ]]U1 = [[θ]]U2.

2. If ∆; Γ 
 R1
.
= R2 / (∆′, θ) and ∆; Γ ` R1 : A, and ∆; Γ ` R2 : A

then [[θ]]R1 = [[θ]]R2.

Proof: By simultaneous structural induction on the first derivation. Below, we give a

few cases.

Case D =
∆; Γ, x:A ` U1

.
= U2/(∆

′, θ)

∆; Γ ` λx:A.U1
.
= λx:A.U2/(∆

′, θ)

∆; Γ ` λx:A.U1 : A′ by assumption

∆; Γ, x:A ` U1 : B by inversion lemma 12

∆; Γ ` A : type and ∆; Γ ` A′ ≡ Πx:A.B : type

∆; Γ ` λx:A.U2 : A′ by assumption

∆; Γ, x:A ` U2 : B by inversion lemma 12

[[θ1]]U1 = [[θ]]U2 by i.h.
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∆′ ` θ : ∆ by lemma 52

[[θ]]A = [[θ]]A by reflexivity

λx:[[θ]]A.[[θ]]U1 = λx:[[θ]]A.[[θ]]U2 by syntactic equality

[[θ]](λx:A.U1) = [[θ]](λx:A.U2) by modal substitution definition

Case D =

D1

∆; Γ 
 R1
.
= R2/(∆1, θ1)

D2

∆1; [[θ1]]Γ ` [[θ1]]U1
.
= [[θ1]]U2/(∆2, θ2)

∆; Γ 
 R1 U1
.
= R2 U2/(∆2, [[θ2]](θ1))

∆; Γ ` R1 U1 : A by assumption

∆; Γ ` R2 U2 : A by assumption

∆; Γ ` R1 : Πx:A2.A1 by inversion lemma 12

∆; Γ ` U1 : A2 and ∆; Γ ` [idΓ, U1/x]A1 ≡ A : type

∆; Γ ` R2 : Πx:A2.A1 by inversion lemma 12

∆; Γ ` U2 : A2 and ∆; Γ ` [idΓ, U2/x]A1 ≡ A : type

[[θ1]]R1 = [[θ1]]R2 by i.h.

∆2 ` θ2 : ∆1 by lemma 52

[[θ2]]([[θ1]]R1) = [[θ2]]([[θ1]]R2) by modal substitution lemma 41

[[[[θ2]]θ1]](R1) = [[[[θ2]]θ1]](R2) by modal comp. lemma 42

∆1 ` θ1 : ∆ by lemma 52

∆1; [[θ1]]Γ ` [[θ1]]U1 : [[θ1]]A2 by modal substitution lemma 41

∆1; [[θ1]]Γ ` [[θ1]]U2 : [[θ1]]A2 by modal substitution lemma 41

[[θ2]]([[θ1]]U1) = [[θ2]]([[θ1]]U2) by i.h.

[[[[θ2]]θ1]]U1 = [[[[θ2]]θ1]]U2 by modal comp. lemma 42

[[[[θ2]]θ1]](R1 U1) = [[[[θ2]]θ1]](R2 U2) by rule and modal sub. def.

Case D = (∆1, u::Ψ`Q,∆2); Γ 
 u[σ]
.
= R / (∆′, θ)

∆′ = (∆∗1,∆
′
2) and θ = [[id∆∗1

, [σ]−1 ([[ρ]]R)/u, id∆∗2
]]ρ by premise

∆; Γ ` R | [σ]−1 ⇒ (∆∗, ρ) and by premise

∆∗ = (∆∗1, u::[[ρ]]Ψ`[[ρ]]Q,∆∗2) and u does not occur in R by inversion

∆∗ ` ρ : ∆ by lemma 51

ρ = (ρ1, u[id[[ρ]]Ψ]/u, ρ2) by lemma 53
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∆′ ` θ : (∆1, u::Ψ`Q,∆2) by lemma 59

([σ]−1 ([[ρ]]R)) exists by lemma 54

∆1, u::Ψ`Q,∆2; Γ ` u[σ] : Q′ by assumption

∆; Γ ` Q′ ≡ [σ]Q : type by typing inversion lemma 12

∆1, u::Ψ`Q,∆2; Γ ` R : Q′ by assumption

∆′; [[θ]]Γ ` [[θ]]R : [[θ]]Q′ by modal substitution lemma 41

[[θ]](u[σ]) = [σ]([σ]−1 [[ρ]]R) by substitution definition

= [[ρ]]R by lemma 48

= [[θ]]R because u does not occur in R

Case D = (∆1, u::Ψ`Q,∆2); Γ 
 u[σ]
.
= u[τ ] / (∆′, θ)

∆′ = (∆1, v::Ψ2`Q,∆
′
2) and θ = (id∆1 , v[idΨ2 ]/u, id∆2) by premise

(∆1, u::Ψ`Q,∆2); Γ ` τ ∩ σ : Ψ⇒ Ψ2 and ∆′2 = [[id∆1 , v[idΨ2 ]/u]]∆2 by premise

[σ]idΨ2 = [τ ]idΨ2 by lemma 58

v[[σ]idΨ2 ] = v[[τ ]idΨ2 ] by syntactic equality

[σ](v[idΨ2 ]) = [τ ](v[idΨ2 ]) by substitution definition

[[θ]](u[σ]) = [[θ]](u[τ ]) by substitution definition

2

For completeness, we again assume that the objects are in canonical form and

show that if two objects are syntactically equal under some modal substitution θ then

they are unifiable and the unification algorithm returns a modal substitution θ′ s.t.

θ = [[ρ]]θ′.

Theorem 61 (Completeness of higher-order pattern unification)

1. If ∆; Γ ` U1 : A and ∆; Γ ` U2 : A and ∆′ ` θ : ∆ and [[θ]]U1 = [[θ]]U2 then

for some ∆′′ and θ′, we have ∆; Γ ` U1
.
= U2 / (∆′′, θ′) and there exists a modal

substitution ρ, s.t. ∆′ ` ρ : ∆′′ and θ = [[ρ]](θ′).

2. If ∆; Γ ` R1 : A1 and ∆; Γ ` R2 : A2 and ∆′ ` θ : ∆ and [[θ]]R1 = [[θ]]R2 then

for some ∆′′ and θ′, we have ∆; Γ 
 R1
.
= R2 / (∆′′, θ′), [[θ]]A1 = [[θ]]A2 and

there exists a modal substitution ρ, s.t. ∆′ ` ρ : ∆′′ and θ = [[ρ]](θ′).
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Proof: Proof by simultaneous induction on the structure of U1 and U2 (and R1, R2

respectively). Most cases are straightforward and we give a few cases to illustrate.

Case U1 = λx.U ′ and U2 = λx.U ′′

[[θ]](λx.U ′) = [[θ]](λx.U ′′) by assumption

λx.[[θ]](U ′) = λx.[[θ]]U ′′ by substitution definition

[[θ]](U ′) = [[θ]](U ′′) by definition of syntactic equality

∆; Γ ` λx.U ′ : A by assumption

∆; Γ, x:A1 ` U ′ : A2 by inversion lemma 12

∆; Γ ` A1 : type and ∆; Γ ` A ≡ Πx:A1.A2 : type

∆; Γ ` λx.U ′′ : A by assumption

∆; Γ, x:A′1 ` U ′′ : A′2 by inversion lemma 12

∆; Γ ` A′1 : type and ∆; Γ ` A ≡ Πx:A′1.A
′
2 : type

∆; Γ ` Πx:A1.A2 ≡ Πx:A′1.A
′
2 : type by transitivity

∆; Γ ` A1 ≡ A′1 : type and ∆; Γ, x:A1 ` A2 ≡ A′2 : type by injectivity of products

(lemma 15)

∆; Γ, x:A1 ` U ′
.
= U ′′ / (∆′′, θ′) by i.h.

θ = [[ρ]](θ′) and ∆′′ ` θ′ : ∆ and θ = [[ρ]](θ′)

∆; Γ ` λx.U ′ .
= λx.U ′′ / (∆′′, θ′) by rule

Case U1 = R1 U
′
1 and U2 = R2 U

′
2

∆; Γ ` R1 U
′
1 : A by assumption

∆; Γ ` R1 : Πx:A1.A2 by typing inversion lemma 12

∆; Γ ` U ′1 : A1 and ∆; Γ ` A ≡ [idΓ, U1/x]A2 : type

∆; Γ ` R2 U
′
2 : A by assumption

∆; Γ ` R2 : Πx:A′1.A
′
2 by typing inversion lemma 12

∆; Γ ` U ′2 : A′1 and ∆; Γ ` A ≡ [idΓ, U2/x]A′2 : type

∆′ ` θ : ∆ by assumption

[[θ]](R1 U
′
1) = [[θ]](R2 U

′
2) by assumption

([[θ]]R1) ([[θ]]U ′1) = ([[θ]]R2) ([[θ]]U ′2) by substitution definition

([[θ]]R1) = ([[θ]]R2) and ([[θ]]U ′1) = ([[θ]]U ′2) by definition of syntactic equality
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∆; Γ 
 R1
.
= R2/(∆1, θ1) and [[θ]](Πx:A1.A2) = [[θ]](Πx:A′1.A

′
2) by i.h.

∃ρ.∆′ ` ρ : ∆1 and θ = [[ρ]]θ1

∆1 ` θ1 : ∆ by lemma 59

∆1; [[θ1]]Γ ` [[θ1]]U ′1 : [[θ1]]A1 by substitution property (lemma 41)

∆1; [[θ1]]Γ ` [[θ1]]U ′2 : [[θ1]]A′1 by substitution property (lemma 41)

Πx:[[θ]]A1.[[θ]]A2 = Πx:[[θ]]A′1.[[θ]]A
′
2 by substitution property

[[θ]]A1 = [[θ]]A′1 by syntactic equality

[[[[ρ]]θ1]]A1 = [[[[ρ]]θ1]]A′1 and [[θ1]]A1 = [[θ1]]A′1 by previous lines

[[[[ρ]]θ1]]U ′1 = [[[[ρ]]θ1]]U ′2 by previous lines

[[ρ]]([[θ1]]U ′1) = [[ρ]]([[θ1]]U ′2) by substitution definition

∆1; [[θ1]]Γ ` [[θ1]]U ′1
.
= [[θ1]]U ′2/(∆2, θ2) by i.h.

∃ρ′.ρ = [[ρ′]]θ2 and ∆′ ` ρ′ : ∆2

∆; Γ 
 (R1 U
′
1)

.
= (R2 U

′
2)/(∆2, [[θ2]]θ1) by rule

θ = [[[[ρ′]]θ2]]θ1 = [[ρ′]]([[θ2]]θ1) by substitution definition

Case U1 = u[σ] and u does not occur in U2 By assumption, the type of U2 must be

atomic, that is, U2 = R2.

[[θ]](u[σ]) = [[θ]]R2 by assumption

θ = (θ1, R/u, θ2) by assumption

∆ = ∆1, u::Ψ`Q,∆2 by assumption

[σ]R = [[θ]]R2 by substitution definition

R = [σ]−1 [[θ]]R2 by lemma 49

θ = (θ1, R/u, θ2) = (θ1, [σ]−1 [[θ]]R2/u, θ2) by previous assumptions

∆; Γ ` u[σ] : [σ]Q by assumption

∆; Γ ` σ : Ψ by typing inversion

∆′ ` (θ1, [σ]−1 [[θ]]R2/u, θ2) : ∆ by assumption

∆′; [[θ1]]Ψ ` [σ]−1 [[θ]]R2 : [[θ1]]Q by typing rules

∆′; [[θ]]Ψ ` [σ]−1 [[θ]]R2 : [[θ]]Q by weakening

∆′; [[θ]]Γ ` σ : [[θ]]Ψ by modal substitution property

∆′; [[θ]]Γ ` [σ][σ]−1 [[θ]]R2 : [σ][[θ]]Q by substitution property

∆′; [[θ]]Γ ` [[θ]]R2 : [[θ]][σ]Q by lemma 44 and 48

92



3.1. HIGHER-ORDER PATTERN UNIFICATION

∆; Γ ` R2 : [σ]Q by modal substitution property

∆; Γ ` R2 | [σ]−1 ⇒ (∆∗, ρ) and

∃ρ′. θ = [[ρ′]]ρ and ∆′ ` ρ′ : ∆∗ by lemma 55

∆∗ ` ρ : ∆ by lemma 52

ρ = (ρ1, u[id[[ρ]]Ψ]/u, ρ2) and ∆∗ = (∆∗1, u::[[ρ]]Ψ`[[ρ]]Q,∆∗2) by lemma 53

∆; Γ 
 u[σ]
.
= R2 / ((∆∗1,∆

′
2), [[id∆∗1

, [σ]−1 ([[ρ]]R2)/u, id∆∗2
]]ρ)

with ∆′2 = [[id∆∗1
, [σ]−1 ([[ρ]]R2)/u, id∆∗2

]]∆∗2 by rule

θ = (θ1, R/u, θ2) = (θ1, [σ]−1 ([[θ]]R2)/u, θ2) by previous lines

= (θ1, [σ]−1 ([[[[ρ′]]ρ]]R2)/u, θ2) by previous lines

= (θ1, [σ]−1 ([[ρ′]][[ρ]]R2)/u, θ2) by substitution definition

= (θ1, [[ρ
′]][σ]−1 ([[ρ]]R2)/u, θ2) since by lemma 54 [σ]−1 ([[ρ]]R2) exists

and by lemma 47, [σ]−1 ([[ρ′]][[ρ]]R2) = [[ρ′]][σ]−1 ([[ρ]]R2)

= [[ρ′]]ρ

= [[ρ′]](ρ1, u[id[[ρ]]Ψ]/u, ρ2)

= ([[ρ′]]ρ1, [[ρ
′]](u[id[[ρ]]Ψ])/u, [[ρ′]]ρ2) by substitution definition

Since (θ1, [[ρ
′]][σ]−1 ([[ρ]]R2)/u, θ2) = ([[ρ′]]ρ1, [[ρ

′]](u[id[[ρ]]Ψ])/u, [[ρ′]]ρ2),

we must have the following:

[[ρ′]](u[idΨ]) = [[ρ′]]([σ]−1 ([[ρ]]R2)) and by previous lines

ρ′ = (ρ′1, [[ρ
′]]([σ]−1 ([[ρ]]R2))/u, ρ′2) by previous lines

= [[ρ′1, ρ
′
2]](id∆∗1

, ([σ]−1 ([[ρ]]R2))/u, id∆∗2
) by substitution definition

and the fact that u does not occur in R itself

θ = [[[[ρ′1, ρ
′
2]](id∆∗1

, ([σ]−1 ([[ρ]]R2))/u, id∆∗2
)]]ρ by previous lines

= [[ρ′1, ρ
′
2]]([[id∆∗1

, ([σ]−1 ([[ρ]]R2))/u, id∆∗2
]]ρ) by substitution definition

Case U1 = u[σ] and U2 = u[τ ]

∆; Γ ` u[σ] : Q′ by assumption

∆; Γ ` σ : Ψ and ∆; Γ ` Q′ ≡ [σ]Q : type by typing inversion lemma 12

∆ = ∆1, u::Ψ`Q,∆2

∆; Γ ` u[τ ] : Q′ by assumption

∆; Γ ` τ : Ψ and

∆; Γ ` Q′ ≡ [τ ]Q : type by typing inversion lemma 12
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∆; Γ ` [σ]Q ≡ [τ ]Q : type by transitivity

∆; Γ ` τ ∩ σ : Ψ⇒ Ψ2 by lemma 58

(∆1, u::Ψ`Q,∆2); Γ 
 u[σ]
.
= u[τ ] / ((∆1, v::Ψ2`Q,∆

′
2), (id∆1 , v[idΨ2 ]/u, id∆2))

with ∆′2 = [[id∆1 , v
′[idΨ2 ]/v]]∆2 by rule

θ = (θ1, U/u, θ2) and ∆; Ψ ` U : Q by assumption

[[θ]](u[σ]) = [[θ]](u[τ ]) by assumption

[σ]U = [τ ]U by substitution definition

([idΨ2 ]U) = U by definition

let be ρ′ = (θ1, U/v, θ2)

θ = [[ρ′]](id∆1 , v[idΨ2 ]/u, id∆2)

2

The main efficiency problem in pattern unification lies in treating the case for

existential variables. In particular, we must traverse the term U . First of all, we must

perform the occurs-check to prevent cyclic terms. Second, we may need to prune the

substitutions associated with existential variables occurring in U . Third, we need to

ensure that all bound variables occurring in U do occur in the range of σ, otherwise

[σ]−1 U does not exist.

In the next section, we will show how linearization can be used to enforce the two

criteria which eliminates the need to traverse U . First, we will enforce that all ex-

istential variables occur only once, thereby eliminating the occurs-check. Second, we

will require that the substitution σ associated with existential variables is always a

permutation π, thereby restricting higher-order patterns further. This ensures that

the substitutions are always invertible and eliminates the need for pruning. Restrict-

ing higher-order patterns even further to patterns where existential variables must be

applied to all bound variables has also been used by Hanus and Prehofer [26] in the

context of simply-typed higher-order functional logic programming. While Hanus and

Prehofer syntactically disallow terms which are not fully applied, we translate any

term into a linear higher-order pattern thereby factoring out and delaying subterms

which are not applied to all bound variables. The resulting assignment algorithm is a

specialization of the presented higher-order pattern unification algorithm.
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3.2 Rules for higher-order pattern unification

∆; Γ, x:A ` U1
.
= U2 / (∆′, θ)

∆; Γ ` λx:A.U1
.
= λx:A.U2 / (∆′, θ)

lam
∆; Γ 
 R1

.
= R2 / (∆′, θ)

∆; Γ ` R1
.
= R2 / (∆′, θ)

coerce

∆; Γ ` R | [σ]−1 ⇒ (∆∗, ρ) ∆∗ = (∆∗1, u::[[ρ]]Ψ`[[ρ]]Q,∆∗2)

u does not occur in R ∆′2 = [[id∆∗1
, [σ]−1 ([[ρ]]R)/u, id∆∗2

]]∆∗2

(∆1, u::Ψ`Q,∆2); Γ 
 u[σ]
.
= R / ((∆∗1,∆

′
2), [[id∆∗1

, [σ]−1 ([[ρ]]R)/u, id∆∗2
]]ρ)

ex1

∆; Γ ` R | [σ]−1 ⇒ (∆∗, ρ) ∆∗ = (∆∗1, u::[[ρ]]Ψ`[[ρ]]Q,∆∗2)

u does not occur in R ∆′2 = [[id∆∗1
, [σ]−1 ([[ρ]]R)/u, id∆∗2

]]∆∗2

(∆1, u::Ψ`Q,∆2); Γ 
 R
.
= u[σ] / ((∆∗1,∆

′
2), [[id∆∗1

, [σ]−1 ([[ρ]]R)/u, id∆∗2
]]ρ)

ex2

(∆1, u::Ψ`Q,∆2); Γ ` τ ∩ σ : Ψ⇒ Ψ2 ∆′2 = [[id∆1 , v
′[idΨ2 ]/v]]∆2

(∆1, u::Ψ`Q,∆2); Γ 
 u[σ]
.
= u[τ ] / ((∆1, v::Ψ2`Q,∆

′
2), (id∆1 , v[idΨ2 ]/u, id∆2))

ex3

∆; Γ 
 R1
.
= R2 / (∆1, θ1) ∆1; [[θ1]]Γ ` [[θ1]]U1

.
= [[θ1]]U2 / (∆2, θ2)

∆; Γ 
 R1 U1
.
= R2 U2 / (∆2, [[θ1]](θ2))

app

∆; Γ 
 x
.
= x / (∆, id∆)

var
∆; Γ 
 c

.
= c / (∆, id∆)

const

3.3 Linearization

One critical optimization in unification is to perform the occurs-check only when nec-

essary. While unification with the occurs-check is at best linear in the sum of the sizes

of the terms being unified, unification without the occurs-check is linear in the smallest

term being unified. In fact the occurs-check can be omitted if the terms are linear, i.e.,

every existential variable occurs only once.

Let us consider a program which evaluates expressions from a small functional

language Mini-ML. First, we give the grammar for expressions.

expressions e ::= z | s e | lam x.e | (app e1 e2) | . . .
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To describe that expression e evaluates to some value v, we use the following judg-

ment: e ↪→ v.

z ↪→ z

e ↪→ v

(s e) ↪→ (s v) lam x.e ↪→ lam x.e

e1 ↪→ lam x.e′ e2 ↪→ v2 [v2/x]e′ ↪→ v

app e1 e2 ↪→ v

The grammar of expressions and the evaluation judgment are represented in pure

LF the following way. For a more detailed general introduction, we refer the reader to

[49].

exp : type.

z : exp.

s : exp→ exp.

app : exp→ exp→ exp.

lam : (exp→ exp)→ exp.

eval : exp→ exp→ type.

Next, we represent the evaluation inference rules in pure LF. We concentrate here

on the rule for functions.

ev lam : Πe:(exp→ exp).eval (lam (λx:exp.e x)) (lam (λx:exp.e x)).

The variable e is quantified outside with a Π. When executing this signature as

a logic program, we view the variable e as a logic (existential) variable, which will

be instantiated using unification during the execution of the logic program. A more

detailed description of the operational semantics and interpreting LF types as logic

programs is given later in Chapter 4. Here we just note that existential variables arise

during logic programming execution and need to be instantiated via unification. Note

that e has function type exp→ exp. The instantiation for e will be some λ-abstraction

where x needs to be applied to. β-reduction needs to be applied to reduce the resulting

expression.
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The modal term language introduced earlier in Chapter 2, allows a more compact

description.

ev lam : Π2e::(y:exp`exp).eval (lam (λx:exp.e[x/y])) (lam (λx:exp.e[x/y])).

The existential variable e in the clause ev lam is quantified by Π2e::(y:exp`exp).

Note that here the variable e is already lowered and has atomic type. We can now use

just first-order replacement (or grafting) to instantiate the variable e. To enforce that

every existential variable occurs only once, the clause head of ev lam can be translated

into the linear type

Π2e::(y:exp`exp).Π2e′::(z:exp`exp).eval (lam (λx:exp.e[x/y])) (lam (λx:exp.e′[x/z]))

together with the variable definition

∀x:exp.e′[x/z]
D
= e[x/y])

where e′ is a new existential variable. Variable definitions are defined as follows:

Residuals defining variables D ::= true | u[idΨ]
D
= U | D1 ∧ D2 | ∀x:A.D

Then we can use a constant time assignment algorithm for assigning a linear clause

head to a goal, and the residuating variable definitions are solved later by conventional

unification. As a result, the occurs-check is only performed if necessary. Note that the

Π2-quantifier will only appear at the outside, and we can view the clause in Π2-form

as the compiled form of the original pure LF clause.

In the dependently typed lambda-calculus, there are several difficulties in perform-

ing this optimization. First of all, all existential variables carry their context Ψ and

type A. If we introduce a new existential variable, then the question arises what type

should be assigned to it. As type inference is undecidable in the dependently typed

case, this may be expensive. In general, we may even obtain a term which is not

necessarily well-typed.

To illustrate, let us modify the previous example, and annotate the expressions

with their type thus enforcing that any evaluation of a Mini-ML expression will be
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well-typed. First, we give the grammar for Mini-ML types which includes the natural

numbers nat and the function type t1 → t2.

Mini-ML types t ::= nat | t1 → t2

Next, we give typing rules for Mini-ML expressions. The main typing judgment is

the following:

Γ ` e : t

which means the Mini-ML expression e has Mini-ML type t in the typing context

Γ. The typing rules are straightforward:

Γ ` z : nat

Γ ` e : nat

Γ ` (s e) : nat

Γ, x:t1 ` e : t2

Γ ` lam x.e : t1 → t2

Γ ` e1 : t2 → t Γ ` e2 : t2

Γ ` (app e1 e2) : t

To allow for Mini-ML types also in our LF specification, we declare a type family

tp for Mini-ML types, which has as elements the Mini-ML type nat and →.

tp : type.

nat : tp.

arr : tp→ tp→ tp.

Instead of implementing the typing rules for Mini-ML separately to the evaluation

rules, we annotate the expressions with their corresponding Mini-ML types by using the

dependent types available in LF. The dependent types then ensures that any evaluation

of Mini-ML expressions is well-typed. This has the advantage that a type-preservation

theorem does not need to be established separately. We proceed as follows. The type

family exp for Mini-ML expressions is indexed by Mini-ML types tp.

exp : tp→ type.

z : exp nat.

s : exp nat→ exp nat.

app : Πt1:tp.Πt2:tp.exp (arr t1 t2)→ exp t1 → exp t2.

lam : Πt1:tp.Πt2:tp.((exp t1)→ (exp t2))→ (exp (arr t1 t2)).
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The LF-types of the constants z, s , app , and lam directly encode the previous

Mini-ML typing rules and ensure that only expressions which are well-typed according

to the Mini-ML typing rules can be stated. In the modal LF calculus, the LF-types

for app and lam are written as follows.

app : Π2t1::(·`tp).Π2t2::(· ` tp).exp (arr t2 t)→ exp t2 → exp t.

lam : Π2t1::(·`tp).Π2t2::(·`tp).((exp t2)→ (exp t))→ (exp (arr t2 t)).

In the following discussion, we will directly write the LF signatures using the Π2-

notation. The evaluation judgment, now takes an expression of Mini-ML type t and

returns an expression of the same type. This can be enforced using dependent types

of LF as follows:

eval : Π2t::(·`tp).exp t → exp t → type.

Next, we reformulate the evaluation rule for lambda-expressions give it in fully

explicit form.

ev lam : Π2t1::(·`tp).Π2t2::(·`tp).Π2e::(y:exp t1`exp t2).

eval (arr t1 t2) (lam t1 t2 (λx:exp t1.e[x/y])) (lam t1 t2 (λx:exp t1.e[x/y])).

Note that the constructor lam is indexed by the Mini-ML types t1 and t2. Similarly

eval is indexed by the Mini-ML type (arr t1 t2). Due to these dependencies, we now

have multiple occurrences of t1 and t2, in addition to the duplicate occurrence of e.

During linearization, the clause head of ev lam will now be translated into

Π2t1::(·`tp).Π2t2::(·`tp).Π2e::(y:exp t1`exp t2).

Π2t3::(·`tp).Π2t4::(·`tp).Π2t5::(·`tp).Π2t6::(·`tp).Π2e′::(z:exp t1`exp t2).

eval (arr t1 t2)(lam t3 t4 (λx:exp t1.e[x/y])) (lam t5 t6 (λx:exp t1.e
′[x/z])).

and the following residuals for defining variables

t1
D
= t3 ∧ t1

D
= t5 ∧ t2

D
= t4 ∧ t2

D
= t6 ∧ ∀x:exp t1.e

′[x/z]
D
= e[x/y]

Note, that due to the linearization, the linear clause head is clearly not well-typed.

However, the clause head is well-typed after carrying out the substitution

[[t1/t3, t1/t5, t2/t4, t2/t6, e[z/y]/e′]]
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This relies on the fact, that we can find an appropriate ordering of the existen-

tial variables in ∆ such that dependencies among existential variables and variable

definitions are obeyed. It is worth pointing out that these complications are due to

dependent types in our framework and do not arise in the simply typed case. Note that

some of these variable definitions are in fact redundant, which is another orthogonal

optimization (see [43] for an analysis on a fragment of LF).

Another approach would be to interpret the new existential variables modulo vari-

able definitions, by introducing a new quantifier Π2u = U ::Ψ`A which corresponds to

the variable definition u[idΨ]
D
= U . This would allow us to type-check clauses which may

contain variable definitions directly, without applying the variable definitions. Using

this new notation the linear clause head becomes

Π2t1::(·`tp).Π2t2::(·`tp).Π2e::(y:exp t1`exp t2).

Π2t3 = t1::(·`tp).Π2t4 = t2::(·`tp).Π2t5 = t1::(·`tp).Π2t6 = t2::(·`tp).

Π2e′ = e[z/y]::(z:exp t1`exp t2).

eval (arr t1 t2)(lam t3 t4 (λx:exp t1.e[x/y])) (lam t5 t6 (λx:exp t1.e
′[x/z])).

Here, we do not pursue this idea further, since the variable definitions are treated

in a very special manner in the implementation.

The idea of factoring out duplicate existential variables can be generalized to replac-

ing arbitrary subterms by new existential variables and creating variable definitions. In

particular, the process of linearization also replaces any existential variables v[σ] where

σ is not a permutation by a new variable u[idΨ] and a variable definition u[idΨ]
D
= v[σ].

Thus, our linear term language can be characterized as follows:

Normal Linear Objects L ::= λx:A. L | u[πΓ]|P
Neutral Linear Objects P ::= c | x | P L

We assume that all normal linear objects are in canonical form and all existential

variables are of atomic type. As shown in Chapter 2, this can be achieved by lowering

and raising operations which are justified by lemma 40. The linearization itself is quite

straightforward and we will omit the details here. In the actual implementation, we

do not generate types A and contexts Ψ for the new, linearly occurring existential

variables, but ensure that all such variables are instantiated and disappear by the time

the variable definitions have been solved.
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3.4 Assignment for higher-order patterns

In this section, we give a refinement of the general higher-order pattern unification

which exploits the presented ideas. The algorithm proceeds in three phases. First we

will unify a linear atomic higher-order pattern L with a normal object U . Note that

U may not be linear and does not refer to any variable definitions. During the first

phase, we decompose the objects L and U and assign terms to the existential variables

occurring in L. The following judgments capture the assignment between a linear

atomic higher-order pattern L and a normal object U . We write θ for simultaneous

substitutions [[U1/u1, . . . Un/un]] for existential variables.

∆; Γ ` L .
= U/(θ,∆′, E) assignment for normal objects

∆; Γ 
 P
.
= R/(θ,∆′, E) assignment for atomic objects

where P is a linear neutral object and L is a normal linear object. In contrast,

U is a normal object and R is a neutral object, both of which are not necessarily

linear. Similar to higher-order pattern unification, the assignment algorithm returns

a substitution θ and a modal context ∆′. In addition, we may generate some residual

equations E. As discussed earlier, linearization of a term may in general lead to

linear term which is not necessarily dependently typed. However, the term is still

approximately well-typed when all the dependencies among types are erased (for more

on erasing types see 2). Here, we assume that both L (resp. P) and U (resp. R) are

approximately well-typed in context ∆ and Γ, i.e. when we erase the type-dependencies

then L− (resp. P−)is approximately well-typed in the erased modal context ∆− and

erased context Γ−. Moreover, approximate typing invariants are preserved during linear

higher-order pattern unification.

There are two possible kinds of residual equations we need to solve after assignment

succeeds, residuals due to variable definitions and residuals due to the fact that one of

the terms in the unification is non-linear. So in addition to the residuals for defining

variables, we define the residuals E as follows:

Residual Equation E := true | U1
.
= U2 | E1 ∧ E2 | ∀x:A.E

The assignment algorithm itself is given below is a specialization of the previous

higher-order pattern unification algorithm.
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∆; Γ, x:A ` L .
= U / (θ,∆′, E)

∆; Γ ` λx:A.L
.
= λx:A.U / (θ,∆′,∀x:A.E)

lam

∆; Γ 
 P
.
= R / (θ,∆, E)

∆; Γ ` P .
= R / (θ,∆, E)

coerce

∆ = (∆1, u::Ψ`Q,∆2) ∆′2 = [[id∆1 , [π]−1 R/u]]∆2

∆; Γ ` u[π]
.
= R / ((id∆1 , [π]−1 R/u, id∆2), (∆1,∆

′
2), true)

existsL

∆ = (∆1, u::Ψ`Q,∆2)

∆; Γ ` L .
= u[σ] / (id∆,∆, L

.
= u[σ])

existsR

∆; Γ 
 x
.
= x / (id∆,∆, true)

const
∆; Γ 
 c

.
= c / (id∆,∆, true)

var

∆; Γ 
 P
.
= R / (θ1,∆1, E1) ∆1; [[θ1]]Γ ` [[θ1]]L

.
= [[θ1]]U / (θ2,∆2, E2)

∆; Γ 
 P L
.
= R U / ([[θ2]]θ1, ∆2, E1 ∧ E2)

app

Note again that we do not need to worry about capture in the rule lam, since ex-

istential variables and bound variables are defined in different contexts. In the rule

app, we give the same rule as previously. Applying θ1 to the second premise is only

necessary to maintain the invariant that the resulting substitution θ1 maps all exis-

tential variables from ∆ to some new context ∆1. Since all modal variables in the

linear term occur uniquely, θ1 only instantiates modal variables from P and has no

“effect” on the object L. Note that the case for unifying an existential variable u[π]

with another term R is now simpler and more efficient than in the general higher-order

pattern case. In particular, it does not require a traversal of R (see rule existsL). Since

the inverse of the substitution π can be computed directly and will be total, we know

[π]−1 R exists and can simply generate a substitution [π]−1 R/u. Finally, we may need

to postpone solving some unification problems and generate some residual equations if

the non-linear term is an existential variable (see existsR).

The rules for solving the residual equations are straightforward. First, the rules to

solve the remaining variable definitions.

∆; Γ ` D/(∆′, θ)

The variable definitions D are well-typed in the context Γ and modal context ∆.
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If the variable definitions can be solved, then a modal substitution θ is returned, s.t.

∆′ ` θ : ∆. Note, that we assume that the modal substitution θ1, which is the result of

the previous assignment algorithm, has been already applied, when we use the following

rules to solve the residual variable definitions.

∆; Γ, x:A 
 D/(∆′, θ)
∆; Γ 
 ∀x:A.D/(∆′, θ)

∆; Γ 
 D1/(∆1, θ1) ∆1; [[θ1]]Γ 
 [[θ1]]D2/(∆2, θ2)

∆; Γ 
 D1 ∧ D2/(∆2, [[θ2]](θ1)

∆′2 = [[id∆1 , U/u]]∆2

∆1, u::(Γ`A),∆2; Γ 
 u[idΓ]
D
= U/(∆1,∆

′
2), (id∆1 , U/u, id∆2))

(∗)

∆; Γ ` U ′ .
= U/(∆′, θ)

∆; Γ 
 U ′
D
= U/(∆′, θ)

∆; Γ 
 true/(∆, id∆)

Solving variable definitions is then straightforward. The only case we need to pay

attention is the rule (*). This case may arise if u[idΓ] is a modal variable which has not

been instantiated yet during assignment. In this case, we simply assign u the object U .

This ensures that after the variable definitions are solved, no modal variables which are

used in variable definitions are left uninstantiated. In other words, all the intermediate

modal variables which have been introduced during linearization are now instantiated.

Next, we show the rules for solving the residual equations, which have been gener-

ated during assignment. The algorithm is straightforward and very similar to solving

variable definitions, except that no special provisions have to be made.

∆; Γ `e E / (∆′, θ)

The residual equations E are well-typed in the context Γ and modal context ∆.

If the residual equations can be solved, then a modal substitution θ is returned, s.t.
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∆′ ` θ : ∆.

∆; Γ, x:A `e E/(∆′, θ)
∆; Γ `e ∀x:A.E/(∆′, θ)

∆; Γ `e E1/(∆1, θ1) ∆1; [[θ1]]Γ `e [[θ1]]E2/(∆2, θ2)

∆; Γ `e E1 ∧ E2/(∆2, [[θ2]](θ1))

∆; Γ ` L .
= U/(∆′, θ)

∆; Γ `e L .
= U/(∆′, θ) ∆; Γ `e true/(∆, id∆)

The overall algorithm can be summarized as follows:

1. Higher-order assignment: ∆; Γ ` L .
= U/(θ1,∆1, E)

2. Solving variable definitions: ∆1; · ` [[θ1]]D/(θ2,∆2)

3. Solving residual equations: ∆2; · ` [[[[θ2]]θ1]]E/(∆3, θ3)

The final result of the overall algorithm is the modal substitution [[θ3]]([[[[θ2]]θ1]]).

For the higher-order pattern fragment, we can now show that assignment algorithm

is sound and complete for linear higher-order patterns. In principle, it is possible to

generalize these statements further to include variable definitions and residual equations

E and show that linearization together with linear higher-order pattern unification is

sound and complete. This would requires a more precise description of the linearization

process and how variable definitions can be eliminated. In particular the completeness

theorem would be more complicated

3.5 Experiments

We have implemented the presented algorithm as part of the Twelf system. The instan-

tiation is applied eagerly by using destructive updates. As mentioned before, lowering

and grafting are also done eagerly using destructive updates. In this section, we discuss

some experimental results with different programs written in Twelf. All experiments

are done on a machine with the following specifications: 1.60GHz Intel Pentium Pro-

cessor, 256 MB cache. We are using SML of New Jersey 110.0.3 under Linux Red Hat

7.1. Times are measured in seconds. In the tables below, the column “opt” refers

to the optimized version with linearization and assignment, while the column “stand”

refers to the standard implementation using general higher-order pattern unification.
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The column “trivial” indicates the percentage of problems which are already linear and

have no residuating variable definitions. The column “fail” indicates how many vari-

able definitions were not solvable, if there were any. The last column gives the overall

success rate with respect to the total number of calls to assignment made. The col-

umn “time reduction” refers to how much time is saved. This is calculated as follows:

(timeold− timenew)/timeold. In addition, we give the factor of improvement, which can

be calculated timeold/timenew
3.

3.5.1 Higher-order logic programming

In this section, we present two experiments with higher-order logic programming. The

first one uses an implementation of a meta-interpreter for ordered linear logic by Po-

lakow and Pfenning [58]. In the second experiment we evaluate our unification al-

gorithm using an implementation of foundational proof-carrying code developed at

Princeton University [2].

Meta-interpreter for ordered linear logic

example opt stand reduction improve variable def assign
in time trivial fail succeed

sqnt (bf) 0.84 2.09 60% 2.49 44% 46% 23%
sqnt (dfs) 0.93 2.35 60% 2.52 44% 47% 22%
sqnt (perm) 4.44 7.11 38% 1.60 44% 52% 20%
sqnt (rev) 1.21 1.70 29% 1.40 45% 48% 21%
sqnt (mergesort) 2.26 3.39 33% 1.50 46% 53% 20%

As the results for the meta-interpreter demonstrate, performance is improved by

to a factor of 2.5. Roughly, 45% of the time there were no variable definitions at all.

From the non-trivial equations roughly 45% were not unifiable. This means overall, in

approx. 20% - 30% of the cases the assignment algorithm succeeded and the failure of

unification was delayed. It is worth noting that 77% to 80% of the calls to assignment

presented in Section 3.4 fail immediately.

3Note that from the factor of improvement one can compute the time-reduction automatically.
If the factor of improvement is k then this results in 1 − (1/k) reduction in time, since (timeold −
timenew)/timeold = 1− (timenew/timeold) = 1− (1/k).
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Recently, Twelf has been applied to mobile code security in the foundational proof-

carrying code project at Princeton [3]. To provide guarantees about the behavior of

mobile code, programs are equipped with a certificate (proof) that asserts certain safety

properties. These safety properties are represented as higher-order logic programs.

Twelf’s logic programming interpreter then executes the specification and generates a

certificate (proof) that a given program fulfills a specified safety policy. We have had

the opportunity to evaluate the presented assignment algorithm using programs from

the proof-carrying code benchmark provided by Andrew Appel’s group at Princeton

University.

Foundational proof-carrying code

example opt stand reduction improve variable def assign
in time trivial fail succeed

inc 5.8 9.19 36.7% 1.58 64% 46% 18%
switch 36.00 49.69 27.54% 1.38 64% 48% 19%
mul2 5.51 9.520 42.86% 1.72 64% 46% 18%
div2 121.96 153.610 20.63% 1.26 63% 48% 20%
divx 333.69 1133.150 70.50% 3.39 63% 50% 21%
listsum 1073.33 ∞ ∞ ∞ 65% 45% 18%
polyc 2417.85 ∞ ∞ ∞ 65% 41% 17%
pack 197.07 1075.610 81.65% 5.45 66% 45% 19%

In the table above we show the performance on programs from the proof-carrying

code benchmark. Performance is improved by up to a factor of 5.45 and some ex-

amples are not executable without linearization and assignment. The results clearly

demonstrate that an efficient unification algorithm is critical in large-scale examples.

There are several reasons for this substantial performance improvement. 1) We

reduced the need for trailing instantiations of meta-variables in the implementation.

As all meta-variables in the clause head have been created since the last choice point,

no trailing should be necessary. As a consequence, less space is needed for storing

instantiation of variables. However, to enforce this trailing policy in a high-level imple-

mentation this may require additional bookkeeping mechanism. The presented simple

assignment algorithm opened another possibility to reduce the need for trailing with-

out modifying the actual trailing mechanism. 2) We not only factor out duplicate

106



3.5. EXPERIMENTS

meta-variables, but also expressions which call external constraint solvers. Calling the

external constraint solvers may be expensive, especially if unification fails at a later

point anyway. Factoring out constraint expressions and delaying their solution, allows

us to fail quickly and disregard a clause as not applicable. As over 80% of the clauses

tried fail, this is particularly important.

Remark: There are several other standard optimizations possible such as for ex-

ample first-argument indexing. Maybe surprisingly, first-argument indexing did not

improve performance. Although the number of calls to assignment were reduced by

roughly 10%, this did not seem to influence the overall performance. One reason we

found was that unification and weak head normal form dominate the run-time dramat-

ically.

3.5.2 Higher-order theorem proving

Besides a logic programming engine, the Twelf system also provides a theorem prover

which is based on iterative deepening search. In this section, we consider two exam-

ples, theorem proving in an intuitionistic sequent calculus and theorem proving in the

classical natural deduction calculus.

As the results demonstrate, the performance of the theorem prover is not greatly

influenced by the optimized unification algorithm. The main reason is that we have

many dynamic assumptions, which need to be unified with the current goal. However,

we use the standard higher-order pattern unification algorithm for this operation and

use the optimized algorithm only for selecting a clause. For dynamic assumptions we

cannot maintain the linearity requirement and linearizing the dynamic assumptions at

run-time seems too expensive.

Proof search in the intuitionistic sequent calculus

example opt stand reduction improve variable def assign
in time trivial fail success

dist-1 53.00 57.11 7% 1.08 100% 0% 52%
distImp 0.40 0.44 9% 1.10 100% 0% 53%
pierce 1520.77 1563.35 3% 1.03 100% 0% 52%
trans 0.13 0.13 0% 1.00 100% 0% 53%
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Proof search in NK (and, impl, neg)

example opt stand reduction improve variable def assign

in time trivial fail success

andEff1-nk 7.67 13.14 42% 1.71 100% 0% 80%

andEff2-nk 3.86 6.58 41% 1.70 100% 0% 81%

assocAnd-nk 2.24 3.74 40% 1.67 100% 0% 81%

combS-nk 3.85 6.64 42% 1.72 100% 0% 81%

The second example is theorem proving in the natural deduction calculus. In con-

trast to the previous experiments with the sequent calculus, there is a substantial

performance improvement by factor 1.7. It is worth pointing out that in both ex-

amples, all clause heads can be solved by the optimized unification algorithm and no

non-trivial variable definitions arise. Moreover, most of the time unification succeeds.

This is not surprising when considering the formulation of the natural deduction sys-

tem as any elimination rule will be applicable at any given time. Although linear head

compilation substantially improves performance, more optimizations, such as tabling

and indexing, are needed to solve more complex theorems.

3.5.3 Constraint solvers

Finally, we consider problems using constraint solvers.

Examples using constraint solvers

example opt stand reduction improve variable def assign

in time trivial fail success

solve 1.73 1.11 -56% 0.36 7.8% 42% 82%

represent 0.16 0.16 0% 1.00 85% 33% 93%

cont fraction 0.61 0.64 33% 1.50 79% 12% 82%

mortgage 4.88 6.84 29% 1.40 66% 0% 100%

sieve 500 2.61 4.88 46% 1.86 50% 47% 79%

In our implementation, we delay solving any sub-terms which call constraint solvers.

As the results below demonstrate this may be beneficial as in the sieve 500 problem,
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but it may also degrade performance in rare case as the first problem demonstrates. We

left out the reduction of time, since there is none – in fact time increases. This has been

the only time we found that performance deteriorated. The reason for performance

degradation in this example is that most unification problems were outside the fragment

of linear higher-order patterns.

3.6 Related work and conclusion

The language most closely related to our work is λProlog. Two main different imple-

mentations of λProlog exist, Prolog/Mali and Teyjus. In Prolog/Mali implementation,

the occurs-check is left out entirely [6]. While Teyjus [38, 37] also eliminates some

unnecessary occurs-checks statically during compilation. However, in addition to the

presence of dependencies in Twelf, there are several other differences between our

implementation and Teyjus. 1) Teyjus compiles first and subsequent occurrences of

existential variables into different instructions. Therefore, assignment and unification

are freely mixed during the execution. This may lead to expensive failure in some cases,

since unification is still called. In our approach, we perform a simple fast assignment

check and delay unification entirely. As the experimental results demonstrate, only

a small percentage of the cases fails after it already passed the assignment test and

most cases benefit from a fast simple assignment check. 2) We always assume that

the types of existential variables are lowered. This can be done at compile time and

incurs no run-time overhead. In Huet’s unification algorithm, projection and imitation

rules are applied at run-time to construct the correct prefixes of λ-abstractions. 3) Our

approach can easily incorporate definitions and constraint domains. This is important

since unifying definitions and constraint expressions may potentially be expensive. In

fact, we generalize and extend the idea of linearization in the implementation and fac-

tor out not only duplicate existential variables but also any difficult sub-expressions

such as definitions and constraint expressions. Therefore, our approach seems more

general than the one adopted in Teyjus.

As experiments show, performance is improved substantially. This is especially

important in large-scale applications such as proof-carrying code and allows us explore

the full potential of logical frameworks in real-world applications. This may however
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only be considered as a first step towards reducing the performance gap between higher-

order and first-order system. Another optimization which is particularly important to

sustain performance in large-scale examples is term indexing. We will present a higher-

order term indexing technique based on the ideas of linearization and assignment later

in chapter 5,
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Chapter 4

Tabled higher-order logic

programming

Tabled first-order logic programming has been successfully applied to solve complex

problems such as implementing recognizers and parsers for grammars [68], representing

transition systems CCS and writing model checkers [16]. The idea behind it is to

eliminate redundant computation by memoizing sub-computations and re-using their

results later. The resulting search procedure is complete and terminates for programs

with the bounded-term size property. The XSB system [62], a tabled logic programming

system, demonstrates impressively that tabled together with non-tabled programs can

be executed efficiently.

Higher-order logic programming languages such as Elf [47] extend first-order logic

programming in three ways: first, they allow the programmer to define his or her

own higher-order data-types together with constructors. In particular, constructors

may take functions as arguments to denote the scope of bound variables. Dependent

types allows us to model dependencies among the constructor arguments. Second,

we may generate and use dynamic assumptions during proof search. Third, Elf’s logic

programming engine not only succeeds or fails, but also returns a proof giving evidence

why it succeeded.

In this chapter, we give a motivating example and explained the basic idea behind

tabled higher-order logic programming where some redundant computation is eliminated

by memoizing sub-computations and re-using their result later. In particular, we will
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focus on some of the higher-order issues. As we may have dynamic assumptions in

higher-order logic programming, goals might depend on a context of dynamic assump-

tions. We also have dependencies among terms, as the term language is derived from the

dependently typed λ-calculus. Finally, in contrast to tabled first-order logic program-

ming, where the result of a computation is an answer substitution for the existential

variables in the query, tabled higher-order logic programming needs to also supply the

actual proof as an object in the dependently typed lambda calculus. This means we

need to store in the memo-table not only answer substitutions to memoized goals, but

also the actual proof. The combination of these three features requires careful design

of the table and table operations and poses several challenges in implementing a tabled

higher-order logic programming interpreter.

4.1 A motivating example: subtyping

As a running example we consider a type system for a restricted functional language

Mini-ML, which includes subtyping. We include an example datatype bits, along with

two subtypes nat for natural numbers (bit-strings without leading zeroes), pos for

positive numbers, and zero for the number zero.

types A :: = zero | pos | nat | bits | A1 ⇒ A2 | . . .
expressions M ::= ε |M 0 |M 1 | lam x.M | app M1 M2

We represent natural numbers as bit-strings in standard form, with the least signif-

icant bit rightmost and no leading zeroes. We view 0 and 1 as constructors written in

postfix form and ε stands for the empty string. For example 6 is represented as ε 1 1 0.

Next, we give the subtyping relation for types, including reflexivity and transitivity.

zn
zero � nat

pn
pos � nat

nb
nat � bits

refl
A � A

A � B B � C
tr

A � C

The typing rules our Mini-ML language are described as follows:
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Γ ` ε : bits

Γ `M : pos
tp z1

Γ `M 0 : pos

Γ `M : bits
tp z2

Γ `M 0 : bits

Γ `M : nat
tp o1

Γ `M 1 : pos

Γ `M : bits
tp o2

Γ `M 1 : bits

Γ `M : A′ A′ � A
tp sub

Γ `M : A

Γ, x:A1 `M : A2
tp lam

Γ ` lam x.M : A1 ⇒ A2

The subtyping relation is directly translated into Elf using logic programming no-

tation. We first declare a type family tp for Mini-ML types with constants bit, zero,

pos, and nat represent the basic types and the function type is denoted by T1 => T2.

Similarly, we declare a type family exp for Mini-ML expressions.

tp : type. exp : type.

zero : tp. e : exp.

pos : tp. 0 : exp -> exp.

bits : tp. 1 : exp -> exp.

=> : tp -> tp -> tp. lam : (exp -> exp) -> exp.

app : exp -> exp -> exp.

To ease readability, we assume the function type => is declared as an infix operator,

and the constructors 0 and 1 are declared as postfix operators.

Next, we give an implementation of the subtyping relation and the typing rules as

higher-order logic programs. Throughout this example, we reverse the arrow A1 → A2

writing instead A2 ← A1. From a logic programming point of view, it might be more

intuitive to think of the clause H ← A1 ← . . .← An as H ← A1 , . . . , An.

sub : tp -> tp -> type.

refl : sub A A. zn : sub zero nat.

nb : sub nat bits. pn : sub pos nat.

tr : sub A C arr : sub (A1 => A2) (B1 => B2)

<- sub A B <- sub B1 A1

<- sub B C. <- sub A2 B2.
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of : exp -> tp -> type.

tp sub : of M A tp lam : of (lam ([x] M x)) (A1 => A2)

<- of M A’ <- ({x:exp} of x A1 -> of (M x) A2).

<- sub A’ A.

tp app : of (app M1 M2) T

<- of M1 (T2 => T)

<- of M2 T2.

Note that the capital variables A, B, C etc. are implicitly quantified at the outside.

Twelf internally reconstructs the types of the logic variables A, B, etc. In LF, the

transitivity clause is written as follows:

tr : Πa:tp.Πb:tp.Πc:tp.sub b c→ sub a b→ sub a c.

Under the type-theoretic view, Πa:tp.Πb:tp.Πc:tp.sub b c → sub a b → sub a c is the

type of the constant tr. Under the logic programming interpretation, we interpret types

as formulas and we refer to Πa:tp.Πb:tp.Πc:tp.sub b c → sub a b → sub a c as a clause

and tr as the name of the clause. and In the following presentation, we often use types

and formulas interchangeably.

The proof for zero � bits which is given by the following derivation

zero � nat
zn

nat � bits
nb

zero � bits
tr

is represented as a proof term (tr zero nat bits nb zn) in LF. The constant tr is a

function where the existential variables a, b, c are instantiated to zero, nat, bits. In

addition we pass in as arguments the proof term nb for nat � bits and the proof term zn

for zero � nat. Note that we usually omit the implicit arguments zero and nat, which

denote the instantiation of transitivity rule and just write (tr nb zn) for the proof of

zero � bits. In Twelf notation, this corresponds to the proof term (tr bn zn) for the

proof of the query (sub zero bit).

Although the specification and implementation of the typing rules including sub-

typing is straightforward, the implementation is not directly executable. Computation

may be trapped in infinite paths and performance may be hampered by redundant

computation. For example, the execution of the query sub zero T will end in an

infinite branch trying to apply the transitivity rule. Similarly, the execution of the
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query of (lam [x] x) T will not terminate and fail to enumerate all possible types.

In addition, we repeatedly type-check sub-expressions, which occur more than once.

To eliminate redundancy, some sophisticated type checkers for example for refinement

types memoize the result of sub-computations to obtain more efficient implementa-

tions. In this chapter, we extend higher-order logic programming languages such as

Elf with generic memoization techniques, called tabled higher-order logic programming.

This has several advantages. Although it is possible to derive an algorithmic subtyping

relation for the given example, this might not be trivial in general. One could argue

that the user can refine the implementation further and add an extra argument to the

type family of, which can be used to store intermediate results, thereby developing a

customized type-checker with explicit support for memoization. However, this com-

plicates the type checker substantially and proving the correctness of the type-checker

with special memoization support will be hard, because we need to reason explicitly

about the structure of memoization. Moreover, the certificates, which are produced as

a result of the execution, are larger and contain references to the explicit memoization

data-structure. This is especially undesirable in the context of certified code where

certificates are transmitted to and checked by a consumer, as sending larger certifi-

cates takes up more bandwidth and checking them takes more time. Finally, tabled

logic programming provides a complete proof search strategy. For programs with the

bounded-term size property, tabled logic programming terminates and we are able to

disprove certain statements1. This in turn helps the user to debug the specification

and implementations.

4.2 Tabled logic programming: a quick review

Tabling methods evaluate programs by maintaining tables of subgoals and their an-

swers and by resolving repeated occurrences of subgoals against answers from the table.

1The size of a term is defined recursively where the size of a bound or modal variable or constant is
1 and the size of R U is the size of R plus the size of U . In the higher-order setting, we can in addition
define the size of λx:A.U , as 1 plus the size of U and assume that all terms must be eta-expanded. A
finite program P has the bounded-term size property if an atomic query Q has no arguments whose
size exceeds n and there is a function f(n), then there is no atomic subgoal in the derivation whose
an argument size exceeds f(n). (see [12], section 5.4).
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We review briefly Tamaki and Sato’s multi-stage strategy [65], which differs only in-

significantly from SLG resolution [12] for programs without negation. To demonstrate

tabled computation, we consider the evaluation of the query sub zero T in more detail.

The search proceeds in multiple stages. The table serves two purposes: 1) We

record all sub-goals encountered during search. If the current goal is not in the table or

more precisely there is no entry A s.t. A is an alpha-variant of the current goal, then

we add it to the table and proceed with the computation. We consider a goal A an

alpha-variant of another goal A′ if there exists a bijection between the modal variables

and ordinary variables.

Computation at a node is suspended, if the current goal is a variant of a table entry.

2) In addition to the sub-goals we are trying to solve, we also store the result of the

computation in the table as a list of answers to the sub-goals. An answer is a pair of

a substitution θ for the existential variables in the current goal A together with the

actual proof P .

In each stage we apply program clauses and answers from the table. Figure 4.1

illustrates the search process.

The root of the search tree is labeled with the goal sub zero A. Each node is labeled

with a goal statement and each child node is the result of applying a program clause

or an answer from the table to the leftmost atom of the parent node. Applying a

clause H ← A1 ← A2 . . . ← An results in the subgoals A1, A2, . . . , An where all of

these subgoals need to be satisfied. We will then expand the first subgoal A1 carrying

the rest of the subgoals A2, . . . , An along. If a branch is successfully solved, we show

the obtained answer. To distinguish between program clause resolution and re-using

of answers, we have two different kinds of edges in the tree. The edges obtained by

program clause resolution are solid annotated with the clause name used to derive

the child node. Edges obtained by reusing answers from the table are dashed and

annotated with the answer used to derived the child node. Using the labels at the

edges, we can reconstruct the proof term for a given query. In general, we will omit

the actual substitution under that the parent node unifies with the program clause to

avoid cluttering the example. To ensure we generate all possible answers for the query,

we restrict the re-use of answers from the table. In each stage, we are only allowed to

re-use answers that were generated in previous stages. Answers from previous stages

(available for answer resolution) are marked gray, while current answers (not available

116



4.3. TABLED HIGHER-ORDER LOGIC PROGRAMMING

sub zero A

A = zero

A = nat

sub zero R ,

sub R  A.

sub nat A

sub zero A

A = zero

A = nat

A = nat

A = bits

A = bits

A = bits

sub bits R ,

sub R  A.

refl

tr

sub nat A

sub bits A

sub bits A

sub bits A

A = nat

A = bits

A = bits

A = bits

A = bitssub bits A

: refl
: zn
: (tr bn zn)
: refl
: nb

: refl

(1)
(2)
(3)
(4)
(5)

sub nat A

A = zero
nat
bits
nat
bits

: refl
: zn
: (tr bn zn)
: refl
: nb

(1)
(2)A = nat

sub zero A A = zero

refl

tr

zn

Stage 1

refl

tr

nb

sub R  A.

sub nat R ,

(1)
(2)

(3)

(4)

(5)

(1)

(2)

Stage 2

(4)

(5)

(3)

Stage 3

(6)

(6) (6)

Stage 4

Entry Answers

A A = zero
A = nat

sub zero 

A = bits
sub nat A A = nat

A = bits

Entry Answers

A A = zero
A = nat

sub zero 

A = bits
sub nat A A = nat

A = bits

bitssub bits A A = 

: refl
: zn
: (tr bn zn)
: refl
: nb

: refl

Entry Answers

A
A = 

sub zero 

A = 
A = 
A = 

(1)
(2)
(3)
(4)
(5)

(1)
(2)
(3)
(4)
(5)

(6) (6)

: refl

AnswersEntry

: zn

Figure 4.1: Staged computation

yet) are black. In the first stage no answers are available yet. In the second stage, we

are only allowed to use answers (1) and (2). In the third stage, we may use all answers

from (1) up to (5). In the final stage, we are allowed to use all answers.

4.3 Tabled higher-order logic programming

In tabled higher-order logic programming, we extend tabling to handle sub-goals that

may contain implications and universal quantification and our term language is the

dependently typed λ-calculus. The table entries are no longer atomic goals, but atomic

goals A together with a context Γ of assumptions. In addition, terms might depend

on assumptions on Γ. To highlight some of the challenges we present the evaluation of
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tp_sub

tp_lam u:of x A1     of x A2

u:of x T      sub T A2

sub B1 T.
sub T B2

A = T => A

sub B A
sub (T => T) B,

. . .

refl

tr

arr

u:of x A1     of x A2 u:of x A1     of x A2

of (lam [x] x) A

of (lam [x] x) B,

sub B A

Stage 1 Stage 2

(1)

(2)

sub (T => T) A

Entry Answers

A = T => T

A = T => T

B1 = S, T = S

Entry Answers

u

tp_sub

sub B A2

A1 = T, A2 = T, A = T => T

(1)

(2)

(3)

B1 = nat, T = bits
B1 = pos, T = nat
B1 = zero, T = nat

A = T => T

A1 = T, A2= T

: (tp_lam [u] u) (1)

: u (2)

u:of x A1     of x B, 

A1 = T, A2= T

of (lam [x] x) A

sub (T => T) A

sub B1 T.

of (lam [x] x) A : (tp_lam [u] u)

: u

: refl

(4): refl
: zn
: pn
: nb (7)

(6)
(5)

Figure 4.2: Staged computation for identity function

the query of (lam [x] x) T in Figure 4.2.

The possibility of nested implications and universal quantifiers adds a new degree

of complexity to memoization-based computation. Retrieval operations on the table

need to be redesigned. One central question is how to look up whether a goal Γ ` P is

already in the table. There are two options: In the first option we only retrieve answers

for a goal P given a context Γ, if the goal together with the context matches an entry

Γ′ ` P ′ in the table. In the second option we match the subgoal P against the goal

P ′ of the table entry Γ′ ` P ′, and treat the assumptions in Γ′ as additional subgoals,

thereby delaying satisfying these assumptions. We choose the first option of retrieving

goals together with their dynamic context Γ′. One reason is that it restricts the number

of possible retrievals early on in the search. For example, to solve subgoal u:of x A1 `
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of x B, sub B A2, we concentrate on solving the left-most goal u:of x A1 ` of x B

keeping in mind that we still need to solve u:of x A1 ` sub B A2
2. As there exists

a table entry u:of x A1 ` of x A2, which is a variant of the current goal u:of x A1 `
of x B, computation is suspended. Note, we adopted a common convention in logic,

where we omitted the explicit declaration of the parameter x in the context. To be

more precise, we write in the following development x:exp, u:of x A1 for the context of

ordinary variables instead of just u:of x A1.

4.4 Subordination

Due to the higher-order setting, the predicates and terms might depend on assumptions

in the context Γ. Virga [67] developed in his PhD thesis techniques, called subordi-

nation, to analyze dependencies in Elf programs statically before execution. In the

Mini-ML example, the terms of type exp and tp are independent of each other. On

the level of predicates, the type checker of depends on the subtyping relation sub, but

not vice versa. When checking whether a subgoal Γ ` P is already in the table, we ex-

ploit the subordination information in two ways. First, we use it to analyze the context

Γ and determine which assumptions might contribute to the proof of P . For example

the proof for x:exp, u:of x A1 ` of x A2 depends on the assumption u. However, the

predicate sub does not refer to the predicate of. Similarly, the predicate sub does not

refer to expressions exp. Therefore the proof for x:exp, u:of x T ` sub A A2 cannot de-

pend on the assumption u or x. When checking whether u:of x T ` sub T A2 is already

in the table, it suffices to look for a variant of sub T A2. In the given example, compu-

tation at subgoal x:exp, u:of x T ` sub T A2 is suspended during stage 2 as the table

already contains sub B1 T . If we for example first discover x:exp, u:of x T ` sub T A2,

then we store the strengthened goal sub T A2 in the table with an empty context.

Second, subordination provides information about terms. As we are working in a

higher-order setting, solutions to new existential variables, which are introduced during

execution, might depend on assumptions from Γ. For example, applying the subtyping

2Note that u in the declaration u:of x A1 denotes an ordinary bound variable, not a modal variable.
Recall that to denote the declaration of the modal variable u we write u::Ψ`A
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rule to x:exp, u:of x A1 ` of x A2 yields the following new goal

x:exp, u:of x A1 ` of x (B x u) , sub (B x u) A2

where the solution for the new variable B might depend on the new variable x:exp

and the assumptions u:of x A1. However, we know that the solution must be an object

of type tp and that objects of type tp are independent of Mini-ML expressions exp and

the Mini-ML typing rules of. Hence, we can omit x and u and write x:exp, u:of x A1 `
of x B, sub B A2. Before comparing goals with table entries and adding new table

entries, we eliminate unnecessary dependencies from the subgoal Γ ` P . This allows

us to detect more loops in the search tree and eliminate more redundant computation.

We come back to this issue of subordination and other optimizations to detect more

loops in the higher-order setting later in the chapter on implementation of a tabled

higher-order logic programming interpreter.

4.5 A foundation for tabled higher-order logic pro-

gramming

In this section, we give a proof-theoretic characterization of tabled higher-order logic

programming based on uniform proofs [36] and show soundness of the resulting in-

terpreter. This work forms the basis of the implemented tabled interpreter for the

language Elf. Although we concentrate on the logical framework LF, which is the basis

of Elf, it seems possible to apply the presented approach to λProlog [39] or Isabelle [45],

which are based on hereditary Harrop formulas and simply typed terms.

4.5.1 Uniform proofs

Computation in logic programming is achieved through proof search. Given a goal

(or query) A and a program Γ, we derive A by successive application of clauses of

the program Γ. Miller et al [36] propose to interpret the connectives in a goal A
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as search instructions and the clauses in Γ as specifications of how to continue the

search when the goal is atomic. A proof is goal-oriented if every compound goal is

immediately decomposed and the program is accessed only after the goal has been

reduced to an atomic formula. A proof is focused if every time a program formula is

considered, it is processed up to the atoms it defines without need to access any other

program formula. A proof having both these properties is uniform and a formalism such

that every provable goal has a uniform proof is called an abstract logic programming

language.

Elf is one example of an abstract logic programming language, which is based on

the LF type theory. Πx:A1.A2 denotes the dependent function type where the type

A2 may depend on an object x of type A1. Whenever x does not occur free in A2 we

may abbreviate Πx:A1.A2 as A1 → A2. Using the types as formulas interpretation,

we refer to Πx:A1.A2 as the universal quantifier and treat A1 → A2 as an implication.

Moreover, the typing context Γ is viewed as a context of formulas which represents

the program. We will use types and formulas interchangeably in the presentation. We

give the fragment used for logic programming in LF below. Types and programs are

defined as follows:

Types A ::= P | A1 → A2 | Πx : A1.A2

Programs Γ ::= · | Γ, x:A

P ranges over atomic formulas i.e. a M1 . . . Mn. The clause

tr:sub A C <- sub A B <- sub B C.

is interpreted as

tr:Πt:tp.Πs:tp.Πr:tp.sub r s→ (sub t r → sub t s)

Every type (or formula) has a corresponding proof term U . We assume that all

proof terms are in canonical form. Recall that applications which are in canonical form

are of the following form: (((H U1) U2) . . . Un) where head H is either a constant c or a

variable x. To allow direct head access, we flatten the representation of applications and

decompose the previous application into its head c and the arguments U1, U2, . . . Un.

The spine-notation as introduced in [11] essentially achieves this idea.
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Terms U ::= H · S | λx:A.U

Spines S ::= nil | U ;S

Heads H ::= c | x

In the example from Sec. 4.1, the proof term corresponding to sub zero bits is

given as tr zn refl. Note that we actually omitted the implicit arguments zero and nat,

which denote the instantiation of transitivity rule. In the following discussion, we will

include implicit arguments in the proof term representation. To give an intuition for

this notation we give a few examples.

(((((tr zero) nat) bits) nb) zn)

is denoted using spine notation by

tr · (zero ; nat ; bits ; nb ; zn ; nil).

The proof term

((((tp lam T ) (λx:exp.x)) T ) (λx:exp.λu:of x T. u))

is denoted by

tp lam · (T ; (λx:exp.x · nil) ; T ; (λx:exp.λu:of x T. u · nil) ; nil).

where T denotes a term of type tp for example the term (nat · nil). We can charac-

terize uniform proofs by two main judgments:

Γ
u−→ U : A U is a uniform proof for A from Γ

Γ� A
f−→ S : P S is a focused proof for the atom P by focusing on clause A

Taking a type-theoretic view, we can interpret the first judgment as U has type A

in the context Γ and the later as S has type P in context Γ. Note that we assume

all operations are capture-avoiding and we can rename bound variables if necessary.

Inference rules describing uniform and focused proofs are given in Figure 4.3.

In the rule f∀, we instantiate the bound variable x with a term U . As x has type A1,

we check that U has type A1 in Γ. The proof term represents the witness of the proof.

When searching for a uniform proof, the proof term is constructed simultaneously. In

the following discussion, we will often ignore proof terms, but keep in mind that they

are silently generated as a result of the proof.
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Γ, x : A,Γ′ � A
f−→ S : P

u atom
Γ, x : A,Γ′

u−→ x · S : P
f atom

Γ� P
f−→ nil : P

Γ, x : A1
u−→ U : A2

u∀
Γ

u−→ λx : A1.U : Πx : A1.A2

Γ� [idΓ, U/x]A2
f−→ S : P Γ ` U : A1

f∀
Γ� Πx : A1.A2

f−→ U ;S : P

Γ, c : A1
u−→ U : A2

u→c

Γ
u−→ λc : A1.U : A1 → A2

Γ� A1
f−→ S : P Γ

u−→ U : A2
f→

Γ� A2 → A1
f−→ U ;S : P

Figure 4.3: Uniform deduction system for L

4.5.2 Uniform proofs with answer substitutions

The result of a computation in logic programming is generally an answer substitution

θ for the existentially quantified variables in a goal A. To obtain an algorithm that

computes answer substitutions, we substitute existential variables u for the bound

variable x in the f∀ rule. We will interpret the existential variables as modal variables

again and generalize the previous judgment to include a context ∆ of modal variables.

Existential variables are later instantiated later during unification yielding a sub-

stitution θ. We will concentrate here on the case of higher-order pattern unification.

There are different alternative approaches to treat existential variables. One we

have explored in [55] relies on the following fact: If U is a solution for x in the con-

text Γ then there exists a solution U ′ of type ΠΓ.A1 such that U ′ · Γ is also a solu-

tion for x and U ′ is well-typed in the empty context. We write ΠΓ.A1 for the type

Πx1:B1. . . .Πxn:Bn.A1 where Γ is a context x1:B1, . . . , xn:Bn and U ′ · Γ as an abbre-

viation for U ′ · x1; . . . ;xn; nil. Moreover, there is a one-to-one correspondence between

these two solutions, as U ′ · Γ reduces to U . This has been shown by Miller [35] for the

simply-typed case and by Pfenning in the dependently typed and polymorphic case

[48]. Following Miller’s terminology, we say U ′ is the result of raising U . Intuitively, U

depends globally on the assumptions in Γ. Raising allows us to localize dependencies

by replacing U with U ′ · Γ. Then we can translate the f∀ rule to
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Γ� [idΓ, U
′ · Γ/x]A2

f−→ S : P · u−→ U ′ : ΠΓ.A1
f∀

Γ� Πx : A1.A2
f−→ (U ′ · Γ);S : P

To obtain a calculus with existential variables, we then replace U ′ with a new

existential variable which is annotated with its type. Another alternative would be

to use mixed-prefixes [35] to model dependencies. However this would complicate

the presentation further. Here, we use the modal context and modal substitution as

previously introduced in chapter 2. This eliminates the need of first translating the

f∀-rule. The two main judgments for computing answer substitutions are

∆; Γ
u−→ A/(∆′, θ) Uniform proof with answer substitution ∆′ ` θ : ∆

∆; Γ� A
f−→ P/(∆′, θ) Focused proof with answer substitution ∆′ ` θ : ∆

We assume that A is well-typed in the modal context ∆ and bound variable context

Γ. The inference rules are given in Figure 4.4.

To obtain an algorithm, we impose left-to-right order on the solution of the fs →
rule. This matches our intuitive understanding of computation in logic programming.

In the fs→ rule for example we first decompose the focused clause until we reach the

head of the clause. After we unified the head of the clause with our goal A on the right-

hand side of the sequent and completed this branch, we proceed proving the subgoals.

This left-to-right evaluation strategy only fixes a don’t care non-deterministic choice in

the inference system. In the fs∀ rule we delay the instantiation of x by introducing a

new modal variable u[idΓ]. Note that this variable is created with type A and context Γ.

There is no condition needed to ensure that θ does not leave its scope in the conclusion

of the rule fs∀ since θ only depends on modal variables in ∆ and is independent of the

bound variables in Γ. In the fs atom rule the instantiation for existentially quantified

variables is obtained by unifying P with P ′ in the context Γ. θ is a solution to the

unification problem ∆; Γ ` P .
= P ′ where P and P ′ are higher-order patterns.

There is still some non-determinism left in Lθ, which needs to be resolved in an

actual implementation. In the us atom rule, we do not specify which clause from Γ we

pick and focus on. Moreover, usually the order of clauses in Γ is determined by the order

of the clauses in the program. Logic programming interpreters then usually try the

clauses in Γ in order and do not backtrack over different choices since this is considered
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Uniform Proof:

∆; Γ, x:A,Γ′ � A
f−→ P/(∆′, θ)

us atom
∆; Γ, x:A,Γ′ u−→ P/(∆′, θ)

∆; Γ, x:A1
u−→ A2/(∆, θ)

us∀
∆; Γ u−→ Πx : A1.A2/(∆, θ)

∆; Γ, x : A1
u−→ A2/(∆, θ)

us→x

∆; Γ u−→ A1 → A2/(∆, θ)

Focused Proof

∆; Γ ` P ′ .= P/(∆′, θ)
fs atom

∆; Γ� P ′
f−→ P/(∆′, θ)

∆, u::(Γ`A1); Γ� [idΓ, u[idΓ]/x]A2
f−→ P/(∆′, (θ, U/u)) u is a new modal variable

fs∀
∆; Γ� Πx : A1.A2

f−→ P/(∆′, θ)

∆; Γ� A1
f−→ P/(∆1, θ1) ∆1; [[θ1]]Γ u−→ [[θ1]]A2/(∆2, θ2)

fs→
∆; Γ� A2 → A1

f−→ P/(∆2, [[θ2]]θ1)

Figure 4.4: Uniform deduction system for Lθ with substitutions

too expensive. This choice renders the search strategy incomplete in practice. However,

the presented deductive system Lθ, which generates answer substitutions, is sound and

complete, as expressed by the following two theorems.

Theorem 62 (Soundness)

1. If ∆; Γ
u−→ A/(∆′, θ) then for any modal substitution · ` ρ : ∆′ we have

·; [[[[ρ]]θ]]Γ
u−→ [[[[ρ]]θ]]A.

2. If ∆; Γ � A
f−→ P/(∆′, θ) then for any modal substitution · ` ρ : ∆′ we have

·; [[[[ρ]]θ]]Γ� [[[[ρ]]θ]]A
f−→ [[[[ρ]]θ]]P .

Proof: Structural simultaneous induction on the derivation D.
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Case D =
∆; Γ, x:A1

u−→ A2/(∆, θ)
us∀

∆; Γ
u−→ Πx : A1.A2/(∆, θ)

[[[[ρ]]θ]](Γ, x:A1)
u−→ [[[[ρ]]θ]]A2 by i.h.

[[[[ρ]]θ]](Γ), x:[[[[ρ]]θ]](A1)
u−→ [[[[ρ]]θ]]A2 by substitution definition

[[[[ρ]]θ]](Γ)
u−→ Πx:[[[[ρ]]θ]](A1).[[[[ρ]]θ]]A2 by rule

[[[[ρ]]θ]](Γ)
u−→ [[[[ρ]]θ]]Πx:A1.A2 by substitution definition

Case D =
∆; Γ, c : A1

u−→ A2/(∆, θ)
us→c

∆; Γ
u−→ A1 → A2/(∆, θ)

[[[[ρ]]θ]](Γ, c : A1)
u−→ [[[[ρ]]θ]]A2 by i.h.

[[[[ρ]]θ]](Γ), c : [[[[ρ]]θ]](A1)
u−→ [[[[ρ]]θ]]A2 by substitution definition

[[[[ρ]]θ]](Γ)
u−→ [[[[ρ]]θ]](A1)→ [[[[ρ]]θ]]A2 by rule

[[[[ρ]]θ]](Γ)
u−→ [[[[ρ]]θ]](A1 → A2) by substitution definition

Case D =
∆; Γ� A1

f−→ P/(∆1, θ1) ∆1; [[θ1]]Γ
u−→ [[θ1]]A2/(∆2, θ2)

fs→
∆; Γ� A2 → A1

f−→ P/(∆2, [[θ2]]θ1)

[[[[ρ]]θ1]]Γ� [[[[ρ]]θ1]]A1
f−→ [[[[ρ]]θ1]]P by i.h.

let ρ = [[ρ′]]θ2

[[[[ρ′]]θ2]][[θ1]]Γ
u−→ [[[[ρ′]]θ2]][[θ1]]A2 by i.h.

[[[[ρ′]]θ2]][[θ1]]Γ� [[[[ρ′]]θ2]][[θ1]]A1 → [[[[ρ′]]θ2]][[θ1]]A2
f−→ [[[[ρ′]]θ2]][[θ1]]P by rule

[[[[ρ′]]θ2]][[θ1]]Γ� [[[[ρ′]]θ2]][[θ1]](A1 → A2)
f−→ P by substitution definition

Case D =
∆, u::(Γ`A1); Γ� [idΓ, u[idΓ]/x]A2

f−→ P/(∆′, (θ, U/u))
fs∀

∆; Γ� Πx : A1.A2
f−→ P/(∆′, θ)

u is a new modal variable by assumption

[[[[ρ]](θ, U/u)]]Γ� [[[[ρ]](θ, U/u)]]([idΓ, u[idΓ]/x]A2)
f−→ [[[[ρ]](θ, U/u)]]P by i.h.

· ` ρ : ∆′
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[[[[ρ]](θ, U/u)]]Γ = [[[[ρ]]θ]]Γ by strengthening

[[[[ρ]](θ, U/u)]]P = [[[[ρ]]θ]]P by strengthening

[[[[ρ]](θ, U/u)]] = [[[[ρ]]θ, [[ρ]]U/u]]

[[[[ρ]](θ)]]Γ� ([id[[[[ρ]]θ]]Γ, [[ρ]]U/x]A2)
f−→ [[[[ρ]](θ)]]P by substitution definition

∆′ ` (θ, U/u) : (∆, u::Γ`A1) by invariant

∆′ ` θ : ∆ by inversion

∆′; [[θ]]Γ ` U : [[θ]]A1 by inversion

·; [[ρ]][[θ]]Γ ` [[ρ]]U : [[ρ]][[θ]]A1 by substitution property (lemma 41)

·; [[[[ρ]]θ]]Γ ` [[ρ]]U : [[[[ρ]]θ]]A1 by composition lemma 42

·; [[[[ρ]]θ]]Γ� Πx:[[[[ρ]]θ]]A1.[[[[ρ]]θ]]A2
f−→ [[[[ρ]]θ]]P by rule

·; [[[[ρ]]θ]]Γ� [[[[ρ]]θ]](Πx:A1.A2)
f−→ [[[[ρ]]θ]]P by substitution definition

Case D =
∆; Γ ` P ′ .

= P/(∆′, θ)
fs atom

∆; Γ� P ′
f−→ P/(∆′, θ)

[[θ]]P ′ = [[θ]]P by soundness of pattern unification 60

∆′ ` θ : ∆ by lemma 59

for any modal substitution ρ such that · ` ρ : ∆′

[[ρ]][[θ]]P ′ = [[ρ]][[θ]]P by substitution property (lemma 41)

[[[[ρ]]θ]]P ′ = [[[[ρ]]θ]]P by substitution property (lemma 41)

Γ� [[[[ρ]]θ]]P ′
f−→ [[[[rho]]θ]]P by rule

2

Theorem 63 (Completeness)

1. If ·; [[ρ]]Γ
u−→ [[ρ]]A for a modal substitution ρ, s.t. · ` ρ : ∆

then ∆; Γ
u−→ A/(∆′, θ) for some θ and ρ = [[ρ′]]θ for some ρ′ s.t. · ` ρ′ : ∆′.

2. If ·; [[ρ]]Γ� [[ρ]]A
f−→ [[ρ]]P for a modal substitution ρ s.t. · ` ρ : ∆

then ∆; Γ� A
f−→ P/(∆′, θ) for some θ and ρ = [[ρ′]]θ for some ρ′, s.t. · ` ρ′ : ∆′.

Proof: Simultaneous structural induction on the first derivation.
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Case D = Γ
u−→ Πx : A1.A2

[[ρ]]Γ
u−→ [[ρ]](Πx : A1.A2) by assumption

[[ρ]]Γ
u−→ Πx : [[ρ]]A1.[[ρ]]A2 by substitution definition

[[ρ]]Γ, x : [[ρ]]A1
u−→ [[ρ]]A2 by inversion

[[ρ]](Γ, x : A1)
u−→ [[ρ]]A2 by substitution definition

∆; Γ, x : A1
u−→ A2/(∆

′, θ) and ρ = [[ρ′]]θ by i.h.

∆; Γ
u−→ Πx : A1.A2/(∆

′, θ) by rule

Case D = Γ
u−→ A1 → A2

[[ρ]]Γ
u−→ [[ρ]](A1 → A2) by assumption

[[ρ]]Γ
u−→ [[ρ]](A1)→ [[ρ]](A2) by substitution definition

[[ρ]]Γ, c:[[ρ]]A1
u−→ [[ρ]]A2 by inversion

[[ρ]](Γ, c:A1)
u−→ [[ρ]]A2 by substitution definition

∆; Γ, c:A1
u−→ A2/(∆

′, θ′) and ρ = [[ρ′]]θ by i.h.

∆; Γ
u−→ A1 → A2/(∆

′, θ′) by rule

Case D = Γ� A2 → A1
f−→ P

[[ρ]]Γ� [[ρ]](A2 → A1)
f−→ [[ρ]]P by assumption

[[ρ]]Γ� [[ρ]](A2)→ [[ρ]](A1)
f−→ [[ρ]]P by substitution definition

[[ρ]]Γ� [[ρ]]A1
f−→ [[ρ]]P by inversion

[[ρ]]Γ
u−→ [[ρ]]A2 by inversion

∆; Γ� A1
f−→ P/(∆1, θ1) and ρ = [[ρ′]]θ1 by i.h.

[[[[ρ′]]θ1]]Γ
u−→ [[[[ρ′]]θ1]]A2

[[ρ′]]([[θ1]]Γ)
u−→ [[ρ′]]([[θ1]]A2) by composition lemma 42

∆1; [[θ1]]Γ
u−→ [[θ1]]A2/(∆1, θ2) and ρ′ = [[ρ′′]](θ2) by i.h.

∆; Γ� (A2 → A1)
f−→ P/(∆2, [[θ2]]θ1) by rule

ρ = [[ρ′′]][[θ2]]θ1

Case D = Γ� Πx:A1.A2
f−→ P

·; [[ρ]]Γ� [[ρ]](Πx:A1.A2)
f−→ [[ρ]]P by assumption

·; [[ρ]]Γ� Πx:[[ρ]]A1.[[ρ]]A2
f−→ [[ρ]]P by substitution definition
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·; [[ρ]]Γ� [id[[ρ]]Γ, U/x]([[ρ]]A2)
f−→ [[ρ]]P for some U by inversion

·; [[ρ]]Γ ` U : [[ρ]]A1 by inversion

· ` ρ : ∆ by assumption

· ` (ρ, U/u) : (∆, u::Γ`A1 by rule

[id[[ρ]]Γ, U/x][[ρ]]A2 = [[ρ]]([idΓ, U/x]A2) = [[ρ, U/u]]([idΓ, u[idΓ]/x]A2) where u is new

by substitution property

·; [[ρ, U/u]]Γ� [[ρ, U/u]]([idΓ, u[idΓ]/x]A2)
f−→ [[ρ, U/u]]P by substitution definition

∆, u::Γ`A1; Γ� [idΓ, u[idΓ]/x]A2
f−→ P/(∆′, θ′) and

(ρ, U/u) = [[ρ′]]θ′ for some θ′ and ρ′ by i.h.

let θ′ = (θ, U ′/u).

(ρ, U/u) = [[ρ′]](θ, U ′/u) = ([[ρ′]]θ, [[ρ]]U ′/u) by substitution definition

ρ = [[ρ′]]θ and U = [[ρ]]U ′ by syntactic equaltiy

∆; Γ� Πx:A1.A2
f−→ P/(∆′, θ) by rule

Case D = Γ� P
f−→ P

·; [[ρ]]Γ� [[ρ]]P
f−→ [[ρ]]P by assumption

[[ρ]]P = [[ρ]]P and · ` ρ : ∆

∆; Γ ` P .
= P / (∆′, θ) and there exists a ρ′ s.t. · ` ρ′ : ∆′ and ρ = [[ρ′]]θ

by completeness of higher-order pattern unification (lemma 61)

∆; Γ� P
f−→ P / (∆′, θ) by rule

2

In the next section, we extend this system Lθ to include memoization.

4.5.3 Tabled uniform proofs

The idea behind tabled uniform proofs is to extend our two basic judgments with a

table T in which we record atomic sub-goals and the corresponding answer substitutions

and proof terms. A subgoal is a sequent ∆; Γ
u−→ P where ∆ describes the existential

variables, Γ is a program context and P is an atomic goal, which we need to derive

from Γ. When we discover the sub-goal ∆; Γ
u−→ P for the first time, we memoize

this goal in the table. Note that the sequent ∆; Γ
u−→ P might potentially contain

existential variables. Once we have proven the sub-goal ∆; Γ
u−→ P , we add the answer
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substitution ∆′ ` θ : ∆ to the table. We keep in mind that we are silently generating

proof terms together with answer substitutions. We assume that some predicates are

designated as tabled predicates where we record subgoals and corresponding answers.

For predicates not designated as tabled the us atom rule still applies.

Definition 64 (Table) A table entry consists of two parts: a goal ∆; Γ
u−→ P and

a list A of pairs, answer substitutions ∆′ ` θ : ∆ and proof terms U , such that

∆′; [[θ]]Γ
u−→ [[θ]]U : [[θ]]P is a solution. A table T is a collection of table entries.

The table is a store of proven and still open conjectures. The open conjectures are

the table entries that have an empty list of answers. The proven conjectures (lemmas)

are the table entries that have a list of answer substitutions associated with them. As

proof terms are generated and stored together with answer substitutions, we also have

the actual proof for the given conjecture. We will design the inference rules in such a

way that for any solution in the table ∆′; [[θ]]Γ
u−→ [[θ]]U : [[θ]]P there exists a derivation

∆; Γ
u−→ U : P/(∆′, θ). We will keep all the previous inference rules, but keep in mind

that we are silently passing around a table T . Any substitution we apply to Γ and

P (see for example the fs→ rule) will not effect the table. This is important because

we do want to have explicit control over the table. The application of inference rules

should not have any undesired effects on the table. The main judgments are

T ; ∆; Γ
u−→ U : A/(∆′, θ, T ′)

T ; ∆; Γ� A
f−→ S : P/(∆′, θ, T ′)

In addition to the us atom inference rule, we will have the rules extend and retrieve.

The extend rule adds a subgoal and its answer to the table. When we encounter a new

subgoal, we add a new entry with an empty answer list to the table. Once we have

proven this subgoal, we add the answer substitution and proof term to its answer list,

and we can later use it as a lemma. retrieve allows us to close a branch by applying

a lemma from the table. If we are proving ∆; Γ
u−→ P , where Γ and P may contain

existential variables and we have a proof for ∆′; [[θ]]Γ
u−→ [[θ]]U : [[θ]]P in the table then

we can just re-use it by applying the answer substitution θ and substituting the proof

term [[θ]]U for it. Applying the retrieve rule corresponds to introducing an analytic cut

in the proof using a lemma from the table.
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Before we present these two rules, we define when a goal is α-variant to a table

entries. We consider ∆; Γ
u−→ P a variant of ∆′; Γ′

u−→ P ′ if there exists a renaming

of the ordinary variables in Γ and the modal variables in ∆ such that ∆; Γ
u−→ P is

equal to ∆′; Γ′
u−→ P ′.

Definition 65 (Variant) The goal ∆; Γ
u−→ P is a variant of ∆′; Γ′

u−→ P ′ if

• there exists a bijection ρ between the modal variables in ∆ and ∆′ such that

∆′ ` ρ : ∆.

• there exists a bijection σ between the ordinary variables in [[ρ]]Γ and Γ′ such that

∆′; Γ′ ` σ : [[ρ]]Γ

• and [σ][[ρ]]P = P ′.

This definition of variant can be extended to terms. We say a term ∆; Γ ` U is a

variant of term ∆′; Γ′ ` U ′ if there exists a bijection between the modal variables in

∆ and ∆′ and a bijection between the ordinary variables in Γ and Γ′. Next, we define

when two modal substitutions are variants of each other.

Definition 66 The modal substitution ∆′1 ` θ1 : ∆1 is a variant of ∆′2 ` θ2 : ∆2

• ∆1 ` · : · is a variant of ∆2 ` · : ·.

• ∆′1 ` (θ1, U/u) : (∆1, u::(Ψ`A)) is a variant of ∆′2 ` (θ2, N/u) : (∆2, u::(Ψ′`A′)

iff

1. ∆′1 ` θ1 : ∆1 is a variant of ∆′2 ` θ2 : ∆2

2. ∆′1; Ψ ` U is a variant of ∆′2; Ψ′ ` N

Now we can define the three main operations on the table, extending the table,

inserting an answer in the table and retrieving an answer from the table.

Definition 67 (extend) extend(T ,∆; Γ
u−→ P ) = T ′

Let T be a table, ∆; Γ
u−→ P be a goal.

• If there exists a table entry (∆′; Γ′
u−→ P ′,A) in T and A is non-empty such that

∆′; Γ′
u−→ P ′ is a variant of ∆; Γ

u−→ P then return T .
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• If there exists no table entry (∆′; Γ′
u−→ P ′,A) in T such that ∆′; Γ′

u−→ P ′ is a

variant of ∆; Γ
u−→ P , then we obtain the extended table T ′ by adding ∆; Γ

u−→ P

to the table T with an empty solution list.

Definition 68 (insert) insert(T ,∆; Γ
u−→ P,U, θ) = T ′

Let T be a table, ∆; Γ
u−→ P be a goal and ∆′ ` θ : ∆ be a corresponding answer

substitution and U a proof term such that ∆; Γ ` U : P . Let (∆i; Γi
u−→ Pi,A) be in

the table T and Γi
u−→ Pi is a variant of ∆; Γ

u−→ P . If there exists no ∆′i ` θi : ∆i

in the answer substitution list A, such θi is a variant of θ, then we add ∆′ ` θ : ∆

together with the proof term U to the the answer list A.

If we generate and try to insert an answer substitution θ which already exists in

the answer list, then we fail.

Definition 69 (retrieve) retrieve(T ,∆; Γ
u−→ P ) = (∆′, θ, U)

Let T be a table and ∆; Γ
u−→ P be a goal. If there exists a table entry (∆i; Γi

u−→
Pi,Ai) such that ∆i; Γi

u−→ Pi is variant of ∆; Γ
u−→ P and there exists an answer

substitution ∆′i ` θi : ∆ together with a proof term U in Ai then return (∆′i, θi, U).

Now we can give the additional rules extend and retrieve.

extend(T , ∆; (Γ, x:A,Γ′)
u−→ P ) = T1

T1; ∆; (Γ, x:A,Γ′) � A
f−→ S : P/(∆′, θ, T2)

insert(T2,∆; (Γ, x:A,Γ′)
u−→ P,U,∆′, θ) = T3

T ; ∆; (Γ, x:A,Γ′)
u−→ x · S : P/(∆′, θ, T3)

extend

retrieve(T ; ∆; Γ
u−→ P ) = (∆′, θ, U)

retrieve
T ; ∆; Γ

u−→ U : P/(∆′, θ, T )

The rule extend is applicable, even if a table entry already exists. In this case, the

goal ∆; Γ
u−→ P will not be added to the table, but we will still try to find a solution

for the modal variables in ∆. This is correct, since we may need to generate more than

one answer substitution θ which needs to be added to the the table.

If we discover a sub-goal P in a context Γ, which is already in the table T but with

an empty answer substitution list, then we have discovered a loop in the computation.
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No inference rule is applicable, and therefore computation fails. The extend rule is not

applicable, since we extend will only succeed if the subgoal P in the context Γ is not

already in the table or it is in the table, but it must have a non-empty answerlist. The

retrieve rule is also not applicable, since we have an empty answer list. The definitions

of insert prevents us from inferring the same solution twice. If a sub-goal P is already

in the table, but has some answers in the answer list A, then we retrieve the answers.

As we might need additional answers for P which are not already in the table yet, we

need to still be able to apply extend rule.

The presented inference rules leave several choices undetermined. For example, we

do not specify the order in which we use program clauses. This choice was already

present in the non-tabled system. Similarly, the rules to allow memoization leave

open in what order we retrieve answers, when to retrieve answers and when to apply

the extend rule. In an implementation, we need to resolve these choices. We have

chosen a high-level declarative description of the memoization based proof search. An

advantage is that is is abstract and clearly illustrates the use of memoization as analytic

cut. On the other hand, failure in such a proof system is implicit, i.e. if no inference

rule is applicable, then we fail, “backtrack”, and try another rule. Upon failure, we

backtrack and reset the state of the table. In an implementation, the table T is

usually implemented via a global variable, and persists, even if proof search fails.

Unfortunately, there is no way to express the persistence of the table in the proof

system without making failure explicit in the deductive system.This is beyond the

scope of this thesis. We are still able to prove soundness of memoization-based search,

however completeness and termination are harder to establish.

Theorem 70 (Soundness)

1. If D : T ; ∆; Γ
u−→ A/(∆′, θ, T ′) then we have E : ∆; Γ

u−→ A/(∆′, θ).

2. If D : T ; ∆; Γ� A
f−→ P/(∆′, θ, T ′) then we have E : ∆; Γ� A

f−→ P/(∆′, θ).

Proof: Structural simultaneous induction on the derivation D. The proof is straight-

forward using the fact that for every answer in the table we have a proof term. this

proof term can be expanded into a proof. 2

133



CHAPTER 4. TABLED HIGHER-ORDER LOGIC PROGRAMMING

As we mentioned earlier, there are several choices left undetermined in the given

proof system which we need to resolve in an actual implementation. The multi-stage

strategy discussed earlier is one possible solution. In this strategy we proceed in lock-

steps. First, we apply the extend rule until all clauses from Γ have been tried, and then

allow the application of the retrieve rule. The strategy also restricts the retrieve rule,

i.e. only answers from previous stages can be retrieved. Alternatively, we could use

SCC scheduling (strongly connected components), which allows us to consume answers

as soon as they are available [62]. As mentioned earlier, the proof system does not

give us an explicit notion of failure and the table is not persistent across branches.

In a real implementation, we make the table globally available. Moreover, we do not

want to retract all our steps, when we discover a loop. Instead, we want to freeze

the current proof state, suspend solving the goal and later resume computation. After

some answers have been generated for the sequent Γ
u−→ P , we awaken the suspended

goal and resume computation of the pending sub-goals. Finally, we want to point out

that although we used variant checking in the definitions, it is possible to extend and

modify them to allow subsumption checking.

4.5.4 Related work and conclusion

This proof-theoretic view on computation based on memoization provides a high-level

description of a tabled logic programming interpreter and separates logical issues from

procedural ones leaving maximum freedom to choose particular control mechanisms.

In fact, it is very close to our prototype implementation for Elf. So far all descriptions

of tabling are highly procedural, either designed as an extension of SLD resolution [65]

or to the WAM abstract machine[62]. Certificates, which provide evidence for the ex-

istence of a proof, have been added to tabled logic programming by Roychoudhury [61]

and are called justifiers. The relationship between the certificate and SLD resolution

is extrinsic rather then intrinsic and needs to be established separately. The proof-

theoretical characterization offers a uniform framework for describing and reasoning

about program clauses, goals and certificates (proof terms). It seems possible to ap-

ply the techniques described to other logic programming languages such as λProlog.

Linear logic programming [30, 8] has been proposed as an extension of higher-order

logic programming to model imperative state changes in a declarative (logical) way.
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We believe our techniques can be extended to cover this case, but it requires some new

considerations. In particular, we plan to investigate the interaction between resource

management strategies [10] or constraints [27] with tabling.

With tabled uniform proof search we will find fewer proofs than with uniform proofs.

For example in the subtyping example given in Sec. 4.1 the query sub zero zero has

infinitely many proofs under the traditional logic programming interpretation while we

find only one proof under the tabled logic programming interpretation. However, we

often do not want and need to distinguish between different proofs for a formula A,

but only care about the existence of a proof for A together with a proof term. In [50]

Pfenning develops a dependent type theory for proof irrelevance and discusses potential

applications in the logical framework. This allows us to treat all proofs for A as equal

if they produce the same answer substitution. In this setting, it seems possible to show

that search based on tabled uniform proofs is also non-deterministically complete, i.e.

if computation fails, then there exists no proof.

4.6 Case studies

In this section, we discuss experiments with tabled higher-order logic programming.

We compare the performance of proof search based memoization, depth-first search,

iterative deepening using two applications: 1) bi-directional type checking using sub-

typing and intersection types and 2) parsing into higher-order abstract syntax. As the

experiments demonstrate proof search based on memoization can lead to substantial

performance improvements, making the execution of some queries feasible.

While computation using memoization yields better performance for programs with

transitive closure or left-recursion, Prolog-style evaluation is more efficient for right

recursion. For example, Prolog has linear complexity for a simple right recursive gram-

mar, but with memoization the evaluation could be quadratic as calls need to be

recorded in the tables using explicit copying. Therefore it is important to allow tabled

and non-tabled predicates to be freely intermixed and be able to choose the strategy

that is most efficient for the situation at hand. Hence in the current prototype, the

user declares predicates to be tabled, if he/she wishes to use memoization for it. Mix-

ing tabled and non-tabled predicates is essential, in order to obtain an efficient proof
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search engine.

4.6.1 Bidirectional typing (depth-first vs memoization)

In this section, we discuss experiments with a bi-directional type-checking algorithm

for a small functional language with intersection types which has been developed by

Davies and Pfenning [17]. Type inference in a functional language with subtyping and

intersection types is usually considered impractical, as no principal types exist. The

idea behind bi-directional type-checking is to distinguish expressions for which a type

can be synthesized from expressions which can be checked against a given type. The

programmer specifies some types to guide inferring a type for certain expressions.

Inferable I ::= x | ε | I 0 | I 1 | app IC | C : A

Checkable C :: = I | lam x.C | let u = I in C |
case I of ε ⇒ C1|x 0⇒ C2|x1⇒ C3

The intention is that given a context Γ and an expression I, we use type-inference

to show expression I has type A and type-checking for verifying that expression C has

type A. In an implementation of the bi-directional type checking algorithm, there may

be many ways to derive that I has a type A and similarly there are more than one way

to check that C has a given type A. To discuss the full bi-directional type-checking

algorithm is beyond the scope of this paper and the interested reader is referred to the

original paper by Davies and Pfenning [17].

We use an implementation of the bi-directional type-checker in Elf by Pfenning.

The type-checker is executable with the original logic programming interpreter, which

performs a depth-first search. However, redundant computation may severely hamper

its performance as there are several derivations for proving that a program has a

specified type. For example, there are approximately 20,000 ways to show that the

program plus has the intersection type (nat → nat → nat) ∧ (nat → pos → pos) ∧
(pos → nat → pos) ∧ (pos → pos → pos). It might be argued that we are only

interested in one proof for showing that plus has the specified type and not in all of them.

However, it indicates that already fairly small programs involve a lot of redundant

computation. More importantly than succeeding quickly may be to fail quickly, if

plus has not the specified type. Failing quickly is essential in debugging programs
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and response times of several minutes are unacceptable. In the experiments, we are

measuring the time it takes to explore the whole proof tree. This gives us an indication

how much redundancy is in the search space. When checking a term C against a type A,

we use memoization. The proof search based on memoization uses strengthening and

variant checking. Using the refinement type-checker, we check programs for addition,

subtraction, and multiplication. Note that in order to for type-check, for example, the

multiplication program, we need to also type-check any auxiliary programs used such

as addition and shift. Table 4.1 summarizes the results for finding all solutions to a

type-checking problem. The number associated with each program name denotes the

depth of the intersection type associated with it. For example, plus4 means we assigned

4 types by using intersections to plus. mult1a indicates we associated one possible type

to the multiplication program. If a program label is marked with (np), it means this

query does not have a solution and the type-checker should reject the query.

Program Depth-First Memoization #Entries #SuspGoals

plus’4 483.070 sec 2.330 sec 151 48

plus4 696.730 sec 3.150 sec 171 74

plus4(np) 22.770 sec 1.95 sec 143 56

sub’1a 0.070 sec 0.240 sec 58 11

sub’3a 0.130 sec 0.490 sec 92 20

sub1a 3.52 sec 7.430 sec 251 135

sub1b 3.88 sec 7.560 sec 252 138

sub3a 10.950 sec 9.970 sec 277 167

sub3b 10.440 sec 11.200 sec 278 170

mult1(np) 1133.490 sec 4.690 sec 217 83

mult1a 807.730 sec 4.730 sec 211 78

mult1b 2315.690 sec 6.050 sec 226 101

mult1c 2963.370 sec 5.310 sec 226 107

mult4 ∞ 17.900 sec 298 270

mult4(np) ∞ 13.140 sec 275 194

Table 4.1: Finding all solutions: depth-first vs memoization-based search
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For type-checking programs plus and multiplication proofs search based on memo-

ization outperforms depth-first search. This is surprising, as no sophisticated indexing

is used for accessing the table. It indicates that already simple memoization mechanism

can substantially improve performance. In the case of multiplication, it makes type-

checking possible. We stopped the depth-first search procedure after 10h. Of course

proof search based on memoization has some overhead in storing and accessing goals

in the table. As indicated with subtraction programs, this overhead might degrade

the performance of memoization based proof search. When type-checking subtraction

program depth-first search performs better than memoization-based search for the first

5 sample programs. In the last example sub3b however memoization-based search wins

over depth-first search.

Program Depth-First Memoization #Entries #SuspGoals

plus’4 0.08 sec 0.180 sec 54 0

plus4 0.1 sec 0.430 sec 72 0

plus4(np) 22.770 sec 1.95 sec 143 56

sub’1a 0.050 sec 0.240 sec 64 11

sub’3a 0.110 sec 0.410 sec 92 20

sub1a 0.250 sec 6.210 sec 251 135

sub1b 0.250 sec 5.020 sec 242 121

sub3a 0.280 sec 7.80 sec 277 161

sub3b 0.350 sec 8.160 sec 278 164

mult1(np) 1133.490 sec 4.690 sec 217 83

mult1a 0.160 sec 2.900 sec 201 60

mult1b 0.180 sec 4.090 sec 222 90

mult1c 0.170 sec 2.930 sec 211 60

mult4 0.250 sec 7.150 sec 272 181

mult4(np) ∞ 13.020 sec 275 194

Table 4.2: Finding the first solution: depth-first vs memoization-based search

We include also a comparison between the two search strategies, when we stop

after the first answer has been found (see table 4.2). It is apparent that currently
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finding the first solution to a solvable type-checking problem (i.e., it is provable that

the program has the specified type) always takes longer with proof search based on

memoization – in some cases considerably longer (see subtraction and multiplication).

This is an indication that accessing the table is still quite expensive in the current

implementation. This comes as no real surprise, because no sophisticated techniques

such as term indexing are used. This problem will be addressed in Chapter 5. The other

reason for the poor performance of memoization-based search is due the multi-stage

search strategy. Although this strategy is relatively easy to implement and understand,

it restricts retrieval of answers present in the table to answers generated in previous

stages. This causes subgoals to be suspended, although answers might be available,

and solving those subgoals is delayed. For this reason, XSB uses the SCC (strongly

connected component) scheduling strategy, which allows to re-use answers from the

table as soon as they are available. But the benefits of memoization-based search are

apparent when comparing the time it takes to reject a program by the type-checker

as the examples plus4(np) and mult1(np) indicate. Overall, the performance of the

memoization based search is much more consistent, i.e., it takes approximately the

same time to accept or reject a program.

To make bi-directional type-checking reasonably efficient in practice, Davies and

Pfenning currently investigate an algorithm which synthesizes all types of an inferable

term and tracks applicable ones through the use of boolean constraints. This is however

far from trivial and refining the Elf implementation by adding an extra argument

to the type-checker to memoize solutions, complicates the type checker substantially.

As a consequence, the certificates, which are produced as a result of the execution,

are larger and contain references to the explicit memoization data-structure. This is

especially undesirable in the context of certified code where certificates are transmitted

to and checked by a consumer, as sending larger certificates takes up more bandwidth

and checking them takes more time. Moreover, proving the correctness of the type-

checker with special memoization support will be hard, because we need to reason

explicitly about the structure of memoization. The experiments demonstrate that

proof search based on memoization has the potential to turn the bi-directional type-

checking algorithm into a quite efficient type-checker without any extra effort on behalf

of the user.
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4.6.2 Parsing (iterative deepening vs memoization)

Recognition algorithms and parsers for grammars are an excellent way to illustrate the

benefits of tabled evaluation. Warren [68] notes that implementations of context-free

grammars in Prolog result in a recursive descent recognizer, while tabled logic pro-

gramming turns the same grammar into a variant of Early’s algorithm (also known as

active chart recognition algorithm) whose complexity is polynomial. Moreover, tabled

logic programming allows us to execute left and right recursive grammars that would

otherwise loop under Prolog-style execution (e.g. left recursive ones). We illustrate

tabled computation with parsing of first-order formulas into higher-order abstract syn-

tax. First-order formulas are defined as usual.
Propositions A ::= atom P | ¬A | A & A | A v A | A⇒ A | true | false |

forall x.A | exists x.A | (A)
Terms are either constants or variables or functions with arguments. Atomic propo-

sitions are either propositional constant or a predicate with terms as arguments. In

addition to the given grammar, we impose the following precedence ordering: ¬ >

& > v > ⇒. Conjunction and disjunction are left associative, while implication is

right associative.

fall: fq C (’forall’ ; I ; F) F’ (forall P)}

<- ({x:id} fq ((bvar I x) # C) F F’ (P x)).

fex: fq C (’exist’ ; I ; F) F’ (exist P)}

<- ({x:id} fq ((bvar I x) # C) F F’ (P x)).

cq : fq C F F’ P

<- fi C F F’ P.

% implication -- right associative

fimp: fi C F F’ (P1 => P2)

<- fo C F (’imp’ ; F1) P1

<- fi C F1 F’ P2.

ci: fi C F F’ P

<- fo C F F’ P.

% disjunction -- left associative

for: fo C F F’ (P1 v P2)

<- fo C F (’or’ ; F1) P1

<- fa C F1 F’ P2.
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The parser takes a context for the bound variables, a lists of tokens and returns a

list of tokens and a valid formula represented in higher-order abstract syntax [52]. For

example, in the predicate fi C F F’ P, C represents the context for bound variables,

F denotes the input stream, F’ is a sub-list of the input stream s.t. (F1 ; F’) = F and

F1 is translated into the formula P. The other predicates work similarly. The complete

implementation of the parser is given in the appendix. Initially the context of bound

variables is empty, the first list of tokens represents the input stream, the second

list is empty and P will eventually contain the result. Using higher-order abstract

syntax, variables bound in constructors such as forall and exists will be bound with

λ in Elf. The simplest way to implement left and right associativity properties of

implications, conjunction and disjunction is to mix right and left recursive program

clauses. Clauses for conjunction and disjunction are left recursive, while the program

clause for implication is right recursive.

Such an implementation of the grammar is straightforward mirroring the defined

properties such as left and right associativity and precedence ordering. However, the

execution of the grammar will loop infinitely when executed with a traditional logic

programming interpreter. Hence we compare execution of some sample programs using

proof search based on memoization and with proof search based on iterative deepening,

as performed by the current theorem prover Twelf [64]. Iterative deepening search

requires the user to provide a depth-bound. It is worth pointing out that iterative

deepening search will stop after it found its first solution or it hits a depth-bound,

while search based on memoization will stop after it found a solution (and showed that

no other solution exists) or proved no other solution exists. This means, we cannot

use iterative deepening search to decide whether a given stream of tokens should be

accepted or not, while the memoization-based search yields a decision procedure.

The experiments indicate that proof search based on memoization provides a more

efficient way to decide whether a given stream of tokens belongs to the language of

formulas. In fact for input streams whose length is greater than 50 tokens, we stopped

the iterative deepening procedure after several hours.

Remark 1: It is worth noting that in general the straightforward approach of adding

an extra argument to the non-terminals of the input grammar – representing the por-

tion of the parse tree that each rule generates – and naturally to also add the necessary

code that constructs the parse tree can be extremely unsatisfactory from a complex-
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Length of input Iter. deepening Memoization #Entries #SuspGoals

5 0.020 sec 0.010 sec 15 11

20 1.610 sec 0.260 sec 60 54

32 208.010 sec 2.020 sec 176 197

56 ∞ 7.980 sec 371 439

107 ∞ 86.320 sec 929 1185

Table 4.3: Comparison between iterative deepening and memoization based search

ity standpoint. Polynomial recognition algorithms might be turned into exponential

algorithm since there may be exponentially many parse trees for a given input string.

However in this example, there is exactly one parse trace associated to each formula,

therefore adding an extra argument to the recognizer only adds a constant factor.

Remark 2: Instead of representing the input string as a list, we can store it in

the database as a set of facts. We can think of each token in the input stream being

numbered starting from 1. Then we will store the string as a set of facts of the form

word 1 ’forall’. word 2 ’x’. etc. where word i tok i represents the ith token

of the input stream.

4.7 Related work and conclusion

A number of different frameworks similar to Elf have been proposed such as λProlog [39,

24] or Isabelle [45, 46]. While Elf is based on the LF type theory, λProlog and Isabelle

are based on hereditary Harrop formulas. The traditional approach for supporting

theorem proving in these frameworks is to guide proof search using tactics and tacticals.

Tactics transform a proof structure with some unproven leaves into another. Tacticals

combine tactics to perform more complex steps in the proof. Tactics and tacticals

are written in ML or some other strategy language. To reason efficiently about some

specification, the user implements specific tactics to guide the search. This means

that tactics have to be rewritten for different specifications. Moreover, the user has

to understand how to guide the prover to find the proof, which often requires expert

knowledge about the systems. Proving the correctness of the tactic is itself a complex
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theorem proving problem. The approach taken in Elf is to endow the framework

with the operational semantics of logic programming and design general proof search

strategies for it. The user can concentrate on developing the high-level specification

rather than getting the proof search to work. The correctness of the implementation is

enforced by type-checking alone. The preliminary experiments demonstrate that proof

search based on memoization offers a powerful search engine.
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Chapter 5

Higher-order term indexing

Efficient term indexing techniques have resulted in dramatic speed improvements in

all major first-order logic programming and theorem proving systems and have been

crucial to their success. Broadly speaking, term indexing techniques facilitate the rapid

retrieval of a set of candidate terms satisfying some property (e.g. unifiability, instance,

variant etc.) from a large collection of terms. In logic programming, for example, we

need to select all clauses from the program which unify with the current goal. In tabled

logic programming we memoize intermediate goals in a table and reuse their results

later in order to eliminate redundant and infinite computation. Here we need to find

all entries in the table such that the current goal is a variant or an instance of a table

entry and re-use the associated answers. If there is no such table entry, we need to

add the current goal to the table. Since rapid retrieval and efficient storage of large

collection of terms plays a central role in logic programming and in proof search in

general, a variety of indexing techniques have been proposed for first-order terms (see

[60] for a survey). However, indexing techniques for higher-order terms are missing

thereby severely hampering the performance of higher-order systems such as Twelf

[53], λProlog [39] or Isabelle [45].

In this chapter, we present a higher-order term indexing technique based on sub-

stitution trees. Substitution tree indexing [25] is a highly successful first-order term

indexing strategy which allows the sharing of common sub-expressions via substitu-

tions. Given the following two terms:

pred (h (g a)) (g b) a and pred (h (g b)) (g b) a
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we can compute the most specific linear generalization (mslg) of both terms, which

is

pred (h (g *)) (g b) a

where ∗ is a placeholder. Then we obtain the first term by substituting a for the

placeholder and the second term by substituting b for it.

In this chapter we present an indexing technique for terms of the dependently typed

lambda-calculus. on computing the most specific linear generalization of two terms.

However in the higher-order setting, the most specific linear generalization of two terms

does not exist in general. Second, retrieving all terms, which unify or match, needs to be

efficient – but higher-order unification is undecidable in general. As discovered by Miller

[34], there exists a decidable fragment, called higher-order patterns. For this fragment,

unification and computing the most specific linear generalization is decidable even in

rich type theories with dependent types and polymorphism as shown by Pfenning [48].

However, these algorithms may not be efficient in practice [57] and hence it is not

obvious that they are suitable for higher-order term indexing techniques.

In this chapter, we present substitution tree indexing for higher-order terms based

on linear higher-order patterns (see Chapter 3). Linear higher-order patterns refine the

notion of higher-order patterns further and factor out any computationally expensive

parts. As we have shown in Chapter 3, many terms encountered fall into this fragment

and linear higher-order pattern unification performs well in practice. In this chapter,

we give algorithms for computing the most specific linear generalization of two linear

higher-order patterns, for inserting terms in the index and for retrieving a set of terms

from the index such that the query is an instance of the term in the index. This

indexing structure is implemented as part of the Twelf system [53] to speed-up the

execution of the tabled logic programming interpreter [55]. Experimental results show

substantial performance improvements, between 100% and over 800%.

The chapter is organized as follows: In Section 5.1, we present the general idea of

higher-order substitution trees. In Section 5.2, we give algorithms for computing the

most specific linear generalization of two terms and inserting terms into the index. Re-

trieval is discussed in Section 5.3. In Section 5.4, we present some experimental results

comparing the tabled higher-order logic programming interpreter with and without

indexing.
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5.1 Higher-order substitution trees

The general indexing problem can be described as follows: Given a large set S of

indexed terms and a single term U called the query term, we have to retrieve quickly

each term V ∈ S such that a retrieval condition R holds between U and V . In

general the retrieval condition can be unifiability, instance or variant checking, or

finding generalizations. The term indexing problem consists of finding a data-structure,

called the index, which allows one to perform efficiently the following operations: 1)

index maintenance, i.e. changing the index when terms are inserted (or deleted) from

the set of indexed terms. 2) term retrieval i.e. finding some (or all) terms V ∈ S s.t.

V and the query term U are in relation to each other.

To illustrate the notation, we give a sample signature together with a set of terms

we want to index. We define a type family exp for expressions. In addition, we give

constants a, b, c and constructors f, g, h for building expressions of this small language.

exp: type.

a: exp. h: exp -> exp.

b: exp. g: exp -> exp.

c: exp. f: (exp -> exp) -> exp.

Finally, we define a predicate pred which takes in three arguments, where each

argument is an expression

pred: exp -> exp -> exp -> type.

Next, we give four examples of the predicate pred:

pred (h (g b)) (g b) a (1)

pred (h (g b)) (g b) b (2)

Π2v:: · `exp. pred (h (h b)) (g b) (f λx.v[·]) (3)

Π2u::x:exp`exp. pred (h (h c)) (g b) (f λx.u[id]) (4)

The first two predicates are closed, while predicate (3) and (4) contain existential

variables v and u respectively which are bound by Π2. Using these examples, we

will briefly highlight some of the subtle issues concerning the interplay of bound and

existential variables. The third predicate (3) refers to the existential variable v. Note
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that v is associated with the empty substitution, although it occurs in the context of

a bound variable x. This means that any instantiation we find for v is not allowed

to depend on the bound variable x. In contrast, predicate (4) refers to an existential

variable u, which is associated with the identity substitution. This means that any

instantiation we find for u may depend on the bound variable x. We come back to

this point in Section 5.1.1. All these terms share some structural information. For

example, the third argument is same in all the terms. When storing these terms, we

would like to store the subterm (g b) only once. Similarly, when looking up if a query

U is already in the index, we only want to check once if the third argument of U is

(g b). In other words, an indexing data-structure should allow us to share common

structure and common operation.

In this chapter, we will focus on substitution tree indexing. We start by giving

the general idea higher-order substitution tree. To build a higher-order substitution

tree, we proceed in two steps: First, we standardize the terms and convert terms into

linear higher-order patterns. Second, we represent terms as a sequence of substitutions,

which are stored in a tree.

5.1.1 Standardization: linear higher-order patterns

To get the maximum structure sharing across different indexed terms it is important to

use variables in a consistent manner. In first-order term indexing we therefore standard-

ize the term before inserting a term into an index. In addition, first-order term indexing

strategies often employ linearization. When converting the term into standard form

every occurrence of an existential variable is represented as a distinct standardized ex-

istential variable. Together with the linear term, we then also store variable definitions,

which establish the equality between these two variables. One of the reasons for using

linearization is efficiency. Nonlinear terms may have multiple occurrences of the same

existential variable and therefore requiring to check whether different substitutions for

the same variable are consistent. Since such consistency checks can be potentially ex-

pensive and may lead to performance degradation, most first-order indexing techniques

rely on a post-processing step to carry out the consistency checks.

To design a higher-order indexing technique, we will extend this notion of lineariza-

tion and standardization. We will require that terms are linear higher-order patterns.
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Higher-order patterns [34, 48] are terms where every existential variable must be applied

to some distinct bound variables. Linear higher-order patterns (see Chapter 3) impose

some further restrictions on the structure of terms: First, all existential variables must

occur only once. This allows us to delay any expensive consistency checks. Second, all

existential variables must be applied to all distinct bound variables. This eliminates

any computationally expensive checks involving bound variables. This observation to

restrict higher-order patterns even further to patterns where existential variables must

be applied to all bound variables has also been made by Hanus and Prehofer [26] in

the context of higher-order functional logic programming. While Hanus and Prehofer

syntactically disallow terms which are not fully applied, we translate any term into a

linear higher-order pattern together with some variable definitions. As we have shown

in Chapter 3, performance of unification is improved substantially by this technique.

To illustrate, let us consider the previous term pred (h (g b)) (g b) (f λx.v[·]).
The existential variable v[·] occurs only once, but is not applied to all distinct bound

variables, since v is not allowed to depend on the bound variable x. Therefore v[·] is a

higher-order pattern, but it is not linear. We can enforce that every existential variable

occurs only once and is applied to all bound variables, by translating it into a linear

higher-order pattern:

pred (h (g b)) (g b) (f λx.u[x/x])

together with a variable definition,

∀x:exp.u[x/x]
D
= v[·]

where u is a new existential variable which is applied to the bound variable x. Similarly

to first-order standardization and linearization, linearization in the higher-order case

remains quite straightforward and can be done by traversing the term once. The main

difference is that the postponed variable definitions may be more complex, as we have

discussed earlier in Chapter 3.

5.1.2 Example

In this section, we show the substitution tree for the set of terms given earlier. In

each node, we store a set of substitutions, which we write here as U = i where i is
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an internal modal variable and i will always be applied to all bound variables it may

depend on. Therefore it will always be associated with the identity substitution id.

i1
i2 = (f lax x. E x) 

i1(g b) = 

i2 i2

true true

a = b = 

(1) (2)

i2i2id

 = i0pred (h          ) (g b) 

i3 i3

i1id

(h          ) = i3id
 = 

i2id

(3)

b = 

E1unif true
(4)

c = 

Note that variable definitions are stored at the leafs. By composing the substitutions

in the right-most branch for example we get

[[c/i3]][[f λx. u[id]/i2, (h i3[id])/i1]][[pred (h i1[id]) (g b) i2[id]/i0]]i0[id]

which represents the term (4) pred (h (h c)) (g b) (f λx. u[id]). Note that in

the implementation we can omit the identity substitution i2[id]/i2 and maintain as an

invariant that the substitutions in each node can be extended appropriately.

Higher-order substitution trees are designed for linear higher-order patterns. As

discussed in Chapter 3, linearization of a term may lead to a linear term which is not

necessarily dependently typed. However, the term is approximately well-typed when

all the dependencies among types are erased. In Chapter 2, we have used erasure of
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type dependencies to describe a definitional equality algorithm. Here, we apply this

idea of approximate types to define higher-order substitution trees. The algorithms

for insertion and retrieval in substitution trees are based on mslg and unifiability, but

types itself do not play a role when computing the mslg and unifiers. We know the term

is well-typed before it is inserted into the substitution tree, and it will be well-typed,

once all the linear substitutions on one path are composed to obtain the original term.

We may think of linear terms as a representation which is only used internally within

substitution trees, but not externally during proof search. It suffices to show that

approximate types are preserved in substitution trees, and all intermediate variables

introduced are only used within this data-structure, but do not leak outside. We will

write Λ for the modal context ∆ where all the type dependencies have been erased.

Similarly, we write Ω for the ordinary context Γ where all the dependencies have been

erased.

In the definition of higher-order substitution trees we will distinguish between a

modal context Λ which denotes the original modal variables and a modal context Σ

for the internal modal variables. Similarly to Λ, Σ denotes a modal context where

all the dependencies have been erased. Note that the modal variables in Σ have no

dependencies among each other and can be arbitrarily re-ordered. Moreover, every

internal modal variable i will be created in such a way that it is applied to all bound

variables, i.e. it will be associated with the identity substitution id. A higher-order

substitution tree is a node with substitution ρ such that (Λ,Σ) ` ρ : (Λ,Σ′) and every

child node has a substitution ρi such that (Λ,Σi) ` (idΛ, ρi) : (Λ,Σ). At the leaf, we

have a substitution ρ such that Λ ` (idΛ, ρ) : (Λ,Σ).

Moreover, for every path from the top node ρ0 where (Λ,Σ1) ` ρ0 : (Λ,Σ0) to

the leaf node ρn, we have Λ ` [[ρn]]([[ρn−1]] . . . ρ0) : (Λ,Σ0). In other words, there are

no internal modal variables left after we compose all the substitutions ρn up to ρ0.

Moreover, let δ be the modal substitution corresponding to the variable definitions,

then the term, which we obtain after composing the modal substitution δ with all the

substitutions ρn up to ρ0, will be well-typed.

Inserting a new term U into the substitution tree corresponds to inserting the sub-

stitution U = i0. Before presenting the algorithms for building substitution trees, we

discuss our reasons for adapting substitution tree indexing to the higher-order setting.

First, we note that the order of term traversal is not fixed in advance. For example, in
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the substitution tree given earlier we compare the substitution for the third argument

before the substitutions for the first argument when looking up the term (3) and term

(4). While we traverse the term (1) and (2) from left to right. This feature leads to very

compact substitution trees and better memory usage and retrieval times. However, in

general there may be multiple ways to insert a term and no optimal substitution trees

exist. In contrast to other indexing techniques such as discrimination tries, substitution

trees allows the sharing of common sub-expressions rather than common prefixes.

This is especially important for indexing dependently typed terms. To illustrate

this point, we define a data-structure for lists consisting of characters and we keep

track of the size of the list by using dependent types.

char : type. list : char→ type.

a : char. nil : list 0.

b : char. cons : Π2n::int .char→ list n→ list (n+ 1).

test : Π2n::int .list n→ type.

The size of lists is an explicit argument to the predicate test. Hence test takes in

two arguments, the first one is the size of the list and the second one is the actual list.

The list constructor cons takes in three arguments. The first one denotes the size of

the list, the second argument denotes the head and the third one denotes the tail. To

illustrate, we give a few examples. We use gray color for the explicit arguments.

test 4 (cons 4 a (cons 3 a (cons 2 a (cons 1 b nil))))

test 5 (cons 5 a (cons 4 a (cons 3 a (cons 2 a (cons 1 b nil)))))

test 6 (cons 6 a (cons 5 a (cons 4 a (cons 3 b (cons 2 a (cons 1 b nil))))))

If we use non-adaptive indexing techniques such as discrimination tries, we process

the term from left to right and we will be able to share common prefixes. In the given

example, such a technique discriminates on the first argument, which denotes the size

of the list and leads to no sharing between the second argument. The substitution tree

on the other hand allows us to share the structure of the second argument. The most

specific linear generalization in this example is

test i1[id] (cons i2[id] a (cons i3[id] a (cons i4[id] a (cons i5[id] i6[id] nil)))).
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This allows us to skip over the implicit first argument denoting the size and indexing

on the second argument, the actual list. It has been sometimes argued that it is

possible to retain the flexibility in non-adaptive indexing techniques by reordering

the arguments to test. However, this only works easily in an untyped setting and it

is not clear how to maintain typing invariants in a dependently typed setting if we

allow arbitrary reordering of arguments. Hence higher-order substitution trees offer a

adaptive compact indexing data-structure while maintaining typing invariants.

5.2 Insertion

Insertion of a term U into the index is viewed as insertion of the substitution U/i0.

Assuming that U has type α in a modal context Λ and a bound variable context Ω,

U/i0 is a modal substitution such that Λ ` U/i0 : i0::(Ω`α). We will call the modal

substitution which is going to be inserted into the index ρ. It is often convenient to

consider the extended modal substitution Λ ` idΛ, U/i0 : (Λ, i0::(Ω`α)). This will sim-

plify the following theoretical development. Again we note that in an implementation,

we do not need to carry around explicitely the modal substitution idΛ, but can always

assume that any substitution can be extended appropriately.

The insertion process works by following down a path in the tree that is compatible

with the modal substitution ρ. To formally define insertion, we show how to compute

the most specific linear generalization (mslg) of two modal substitutions and describe

the most specific linear generalization of two terms. We start by giving the judgments

for computing the most specific linear generalization of two modal substitutions.

(Λ,Σ1) ` ρ1 t ρ2 : Σ2 =⇒ ρ/(Σ, θ1, θ2) ρ is the mslg of ρ1 and ρ2

If (Λ,Σ1) ` (idΛ, ρ1) : (Λ,Σ2) and (Λ,Σ1) ` (idΛ, ρ2) : (Λ,Σ2) then ρ is the mslg of

ρ1 and ρ2. Moreover, ρ is a modal substitution such that [[idΛ, θ1]]ρ is structurally equal

to ρ1 and [[idΛ, θ2]]ρ is structurally equal to ρ2 and (Λ,Σ) ` ρ : Σ2. We think of ρ1 as

the modal substitution which is already in the index, while the modal substitution ρ2

is to be inserted. As a consequence, only ρ1 will refer to the internal modal variables

in Σ1, while ρ2 only depends on the modal variables in Λ. The result of the mslg are

the modal substitution θ1 and θ2, where Λ,Σ1 ` θ1 : Σ and Λ,Σ1 ` θ2 : Σ. In other

words, θ1 (resp. θ2) only replaces internal modal variables in Σ. Note that any modal
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substitution ρ or θ with domain Σ, can be extended to a modal substitution (idΛ, ρ)

(or (idΛ, θ) resp.) with domain (Λ,Σ).

First, we give the rules for computing the most specific linear generalization of two

modal substitutions.

(Λ,Σ) ` · t · : · =⇒ ·/(·, ·, ·)

(Λ,Σ1) ` ρ1 t ρ2 : Σ2 =⇒ ρ/(Σ, θ1, θ2) (Λ,Σ1); Ω ` L1 t L2 : τ =⇒ L/(Σ′, θ′1, θ
′
2)

(Λ,Σ1) ` (ρ1, L1/i) t (ρ2, L2/i) : (Σ2, i::(Ω`τ)) =⇒ (ρ, L/i)/((Σ,Σ′), (θ1, θ
′
1), (θ2, θ

′
2))

Note, that we are allowed to just combine the modal substitutions θ1 (θ2 resp.)

and θ′1 (θ′2 resp.) since we require that they refer to distinct modal variables and all

the modal variables occur uniquely. Computing the most specific linear generalization

of two modal substitutions relies on finding the most specific linear generalization of

two objects. Note that we require that all objects are linear higher-order patterns

and are in quasi-canonical form (see Chapter 2). Quasi-canonical forms are βη-normal

forms where the type information on the bound variables in lambda-abstraction may

be omitted. Moreover, we assume that all modal variables are lowered and have atomic

type. We will use the spine notation introduced earlier in Chapter 4.

(Λ,Σ); Ω ` L1 t L2 : τ =⇒ L/(Σ′, θ1, θ2) L is the mslg of L1 and L2

(Λ,Σ); Ω ` S1 t S2 : τ > α =⇒ S/(Σ′, θ1, θ2) S is the mslg of S1 and S2

If the terms L1 and L2 have type τ in modal context (Λ,Σ) and bound variable

context Ω, then L is the most specific linear generalization of L1 and L2 such that

[[idΛ, θ1]]L is structurally equal to L1 and [[idΛ, θ2]]L is structurally equal to L2. Moreover,

θ1 and θ2 are modal substitutions which map modal variables from Σ′ to the modal

context (Λ,Σ). Finally, (Λ,Σ′); Ω ` L : τ . For spines a similiar invariant holds. If S1

and S2 are spines from heads of type τ to terms of type α, then S is the mslg of S1 and

S2 such that [[idΛ, θ1]]S is structurally equal to S1 and [[idΛ, θ2]]S is structurally equal

to S2. θ1 and θ2 are modal substitutions which map modal variables from Σ′ to the

modal context (Λ,Σ).

We think of L1 (or S1) as an object which is already in the index and L2 (or S2) is

the object to be inserted. As a consequence, only L1 (and S1) may refer to the internal
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variables in Σ, while L2 (and S2) only depends on Λ. The inference rules for computing

the mslg are given next.

Normal linear objects

(Λ,Σ); Ω, x:τ1 ` L1 t L2 : τ2 =⇒ L/(Σ′, θ1, θ2)

(Λ,Σ); Ω ` λx.L1 t λx.L2 : τ1 → τ2 =⇒ λx.L/(Σ′, θ1, θ2)

u::(Φ`α) ∈ Λ

(Λ,Σ); Ω ` u[π] t u[π] : α =⇒ u[π]/(·, ·, ·) (∗)

u::Φ`α ∈ Λ i must be new L 6= u[π]

(Λ,Σ); Ω ` u[π] t L : α =⇒ i[idΩ]/(i::Ω`α, u[π]/i, L/i)
(1a)

i::Ω`α ∈ Σ
(Λ,Σ); Ω ` i[idΩ] t L : α =⇒ i[idΩ]/(i::Ω`α, i[idΩ]/i, L/i)

(1b)

u::(Φ`α) ∈ Λ L 6= i[id] L 6= u[π]

(Λ,Σ); Ω ` L t u[π] : α =⇒ i[idΩ]/(i::Ω`α, L/i, u[π]/i)
(2)

(Λ,Σ); Ω ` S1 t S2 : τ > α =⇒ S/(Σ′, θ1, θ2)

(Λ,Σ); Ω ` H · S1 tH · S2 : α =⇒ H · S/(Σ′, θ1, θ2)
(3a)

H1 6= H2 i must be new

(Λ,Σ); Ω ` H1 · S1 tH2 · S2 : α =⇒ i[idΩ]/((i::Ω`α), (H1 · S1/i), (H2 · S2/i))
(3b)

Normal linear spines

(Λ,Σ); Ω ` nil t nil : α > α =⇒ nil/(·, ·, ·)

(Λ,Σ); Ω ` L1 t L2 : τ1 =⇒ L/(Σ1, θ1, θ
′
1)

(Λ,Σ); Ω ` S1 t S2 : τ2 > α =⇒ S/(Σ2, θ2, θ
′
2)

(Λ,Σ); Ω ` (L1;S1) t (L2;S2) : τ1 → τ2 > α =⇒ (L;S)/((Σ1,Σ2), (θ1, θ2), (θ′1, θ
′
2))

(4)

Note in the rule for lambda, we do not need to worry about capture, since modal

variables and bound variables are defined in different context. Rule (*) treats the case

where both terms are existential variables. Note that we require that both existential

variables must be the same and their associated substitutions must also be equal. In

rule (1) and (2), we just create the substitution u[π]/i. In general, we would need

to create [idΩ]−1 (u[π]), but since we know that π is a permutation substitution, we
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know that [idΩ]−1 (π) exists. In addition, the inverse substitution of the identity is

the identity. Note that we distinguish between the internal modal variables i and the

“global” modal variables u in the rules (1a) and (1b). The key distinction is that we

pick a new internal modal variable i in rule (1a) while we re-use the internal modal

variable i in rule (1b). This is important for maintaining the invariant that any child

of (Λ,Σ2) ` (idΛ, ρ) : (Λ,Σ1) has the form (Λ,Σ3) ` (idΛ, ρ
′) : (Λ,Σ2) during insertion

(see the insertion algorithm later on).

In rule (3a) and (3b) we distinguish on the head symbol H and compute the most

specific linear generalization of two objects H1 · S1 and H1 · S1. If H1 and H2 are

not equal, then we generate a new internal modal variable i[idΩ] together with the

substitutions H1 · S1/i and H2 · S2/i. Otherwise, we traverse the spines S1 and S2 and

compute the most specific linear generalization of them. In rule (4), we can just combine

the substitution θ1 and θ2, as we require that all modal variables occur uniquely, and

hence there are no dependencies among Σ1 and Σ2.

Definition 71 (Compatibility of normal objects) Two normal objects L1 and L2

are incompatible, if (Λ,Σ); Ω ` L1 t L2 : τ =⇒ i[idΩ]/(i::Ω`τ, L1/i, L2/i). Otherwise,

we call L1 and L2 compatible.

In other words, we call two terms compatible, if they share at least the head symbol

or a λ-prefix. Moreover, if two terms are incompatible then they must be syntactially

different. Similarly, we can define the compatibility of two substitutions.

Definition 72 (Compatibility of modal substitutions)

Two modal substitutions (Λ,Σ1) ` ρ1 : Σ2 and (Λ,Σ1) ` ρ2 : Σ2 are incompatible, if

(Λ,Σ1) ` ρ1 t ρ2 : Σ2 =⇒ idΣ/(Σ, ρ1, ρ2). Otherwise, we call ρ1 and ρ2 compatible.

As a consequence, if ρ1 and ρ2 are incompatible, then for any L1/i ∈ ρ1 and

L2/i ∈ ρ2, we know that L1 and L2 are incompatible. Next, we prove that we can

always extend modal substitutions.

Lemma 73

1. Let Σ ` σ : Σ′. If Λ ` θ : Σ, and Λ ` (θ1, θ) : (Σ1,Σ) and Λ ` (θ, θ2) : (Σ,Σ2)

then [[θ]]σ = [[θ1, θ]]σ = [[θ, θ2]]σ.
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2. If Λ ` θ : Σ, and Λ ` (θ1, θ) : (Σ1,Σ) and Λ ` (θ, θ2) : (Σ,Σ2)

then [[θ]]L = [[θ1, θ]]L = [[θ, θ2]]L.

3. If Λ ` θ : Σ and Λ ` (θ1, θ) : (Σ1,Σ) and Λ ` (θ, θ2) : (Σ,Σ2)

then [[θ]]S = [[θ1, θ]]S = [[θ, θ2]]S.

Proof: Induction on the structure of σ, L and S. 2

Theorem 74 (Soundness of mslg for objects)

1. If (Λ,Σ); Ω ` L1 t L2 : τ =⇒ L/(Σ′, θ1, θ2) and

(Λ,Σ); Ω ` L1 : τ and (Λ,Σ); Ω ` L2 : τ

then (Λ,Σ) ` θ1 : Σ′ and (Λ,Σ) ` θ2 : Σ′ and

L1 = [[idΛ, θ1]]L and L2 = [[idΛ, θ2]]L and (Λ,Σ′); Ω ` L : τ .

2. If (Λ,Σ); Ω ` S1 t S2 : τ > α =⇒ S/(Σ′, θ1, θ2) and

(Λ,Σ); Ω ` S1 : τ > α and (Λ,Σ); Ω ` S2 : τ > α

then (Λ,Σ) ` θ1 : Σ′ and (Λ,Σ) ` θ2 : Σ′ and

S1 = [[idΛ, θ1]]S and S2 = [[idΛ, θ2]]S and and (Λ,Σ′); Ω ` S : τ > α .

Proof: Simultanous induction on the structure of the first derivation. We give here a

few cases.

Case D = (Λ,Σ); Ω ` λx.L1 t λx.L2 : τ1 → τ2 =⇒ λx.L/(Σ′, θ1, θ2)

(Λ,Σ); Ω, x:τ1 ` L1 t L2 : τ2 =⇒ L/(Σ′, θ1, θ2) by premise

(Λ,Σ); Ω ` λx.L1 : τ1 → τ2 by assumption

(Λ,Σ); Ω, x:τ1 ` L1 : τ2 by inversion

(Λ,Σ); Ω ` λx.L2 : τ1 → τ2 by assumption

(Λ,Σ); Ω, x:τ1 ` L2 : τ2 by inversion

(Λ,Σ) ` θ1 : Σ′ by i.h.

(Λ,Σ) ` θ2 : Σ′ by i.h.

L1 = [[idΛ, θ1]]L by i.h.

λx.L1 = λx.[[idΛ, θ1]]L by rule

λx.L1 = [[idΛ, θ1]](λx.L) by modal substitution definition

L2 = [[idΛ, θ2]]L by i.h.
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λx.L2 = λx.[[idΛ, θ2]]L by rule

λx.L2 = [[idΛ, θ2]](λx.L) by modal substitution definition

(Λ; Σ′); Ω, x:τ1 ` L : τ2 by i.h.

(Λ; Σ′); Ω ` λx.L : τ1 → τ2 by rule

Case D = (Λ,Σ); Ω ` u[π] t u[π] : α =⇒ u[π]/(·, ·, ·)

u::(Φ`α) ∈ Λ by premise

(Λ,Σ); Ω ` u[π] : α by assumption

u[π] = u[π] by reflexivity

(Λ,Σ) ` · : · by rule

Λ; Ω ` u[π] : α by strengthening

Case D = (Λ,Σ); Ω ` u[π] t L : α =⇒ i[idΩ]/(i::Ω`α, u[π]/i, L/i)

u::(Φ`α) ∈ Λ by premise

(Λ,Σ); Ω ` u[π] : α by assumption

(Λ,Σ); Ω ` L : α by assumption

u[π] = [[idΛ, u[π]/i]]i[idΩ]

u[π] = u[π] by reflexivity

L = [[idΛ, L/i]]i[idΩ]

L = L by reflexivity

(Λ,Σ) ` L/i : i::Ω`α by rule using assumption

(Λ,Σ) ` u[π]/i : i::Ω`α by rule using assumption

(Λ, i::Ω`α); Ω ` idΩ : Ω by definition

(Λ, i::Ω`α); Ω ` i[idΩ] : α by rule

Case D = (Λ,Σ); Ω ` H · S1 tH · S2 : α =⇒ H · S/(Σ′, θ1, θ2)

(Λ,Σ); Ω ` S1 t S2 : τ > α =⇒ S/(Σ′, θ1, θ2) by premise

(Λ,Σ); Ω ` H · S1 : α by assumption

(Λ,Σ); Ω ` S1 : τ > α by inversion

(Λ,Σ); Ω ` H · S2 : α by assumption

(Λ,Σ); Ω ` S2 : τ > α by inversion

S1 = [[idΛ, θ1]]S by i.h.
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S2 = [[idΛ, θ2]]S by i.h.

(Λ,Σ) ` θ1 : Σ1 by i.h.

(Λ,Σ) ` θ2 : Σ1 by i.h.

H · S1 = H · [[idΛ, θ1]]S by rule

H · S1 = [[idΛ, θ1]](H · S) by modal substitution definition

H · S2 = H · [[idΛ, θ2]]S by rule

H · S2 = [[idΛ, θ2]](H · S) by modal substitution definition

(Λ,Σ′); Ω ` S : τ > α by i.h.

(Λ,Σ′); Ω ` H · S : α by rule

Case D = (Λ,Σ); Ω ` H1 · S1 tH2 · S2 : α =⇒ i[idΩ]/(i::Ω ` α, H1 · S1/i, H2 · S2/i)

(Λ,Σ); Ω ` H1 · S1 : α by assumption

(Λ,Σ); Ω ` H2 · S2 : α by assumption

H1 · S1 = [[(H1 · S1)/i]](i[idΩ]) by modal substitution definition

H1 · S1 = H1 · S1 by reflexivity

H2 · S2 = [[H2 · S2/i]](i[idΩ]) by modal substitution definition

H2 · S2 = H2 · S2 by reflexivity

(Λ, i::(Ω`α)); Ω ` idΩ : Ω by definition

(Λ, i::(Ω`α)); Ω ` i[idΩ] : α by rule

Case D = (Λ,Σ); Ω ` (L1;S1) t (L2;S2) : (τ1 → τ2) > α

=⇒ (L;S)/((Σ1,Σ2), (θ1, θ
′
1), (θ2, θ

′
2))

(Λ,Σ); Ω ` L1 t L2 : τ1 =⇒ L/(Σ1, θ1, θ2) by premise

(Λ,Σ); Ω ` S1 t S2 : τ2 > α =⇒ S/(Σ2, θ
′
1, θ

′
2)

(Λ,Σ); Ω ` (L1;S1) : τ1 → τ2 > α by assumption

(Λ,Σ); Ω ` L1 : τ1 by inversion

(Λ,Σ); Ω ` S1 : τ2 > α

(Λ,Σ); Ω ` (L2;S2) : τ1 → τ2 > α by assumption

(Λ,Σ); Ω ` L2 : τ1 by inversion

(Λ,Σ); Ω ` S2 : τ2 > α

L1 = [[idΛ, θ1]]L by i.h.
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L2 = [[idΛ, θ2]]L by i.h.

S1 = [[idΛ, θ
′
1]]S by i.h.

S2 = [[idΛ, θ
′
2]]S by i.h.

L1 = [[idΛ, θ1, θ
′
1]]L by lemma 73

L2 = [[idΛ, θ2, θ
′
2]]L by lemma 73

S1 = [[idΛ, θ1, θ
′
1]]S by lemma 73

S2 = [[idΛ, θ2, θ
′
2]]S by lemma 73

(L1;S1) = ([[idΛ, θ1, θ
′
1]]L; [[idΛ, θ1, θ

′
1]]S) by rule

(L1;S1) = [[idΛ, θ1, θ
′
1]](L;S) by modal substitution definition

(L2;S2) = ([[idΛ, θ2, θ
′
2]]L; [[idΛ, θ2, θ

′
2]]S) by rule

(L2;S2) = [[idΛ, θ2, θ
′
2]](L;S) by modal substitution definition

(Λ,Σ) ` (θ1, θ
′
1) : (Σ1,Σ2) θ1 and θ′1 refer to distinct modal variables (lemma 73)

(Λ,Σ) ` (θ2, θ
′
2) : (Σ1,Σ2) θ2 and θ′2 refer to distinct modal variables (lemma 73)

(Λ,Σ1); Ω ` L : τ1 by i.h.

(Λ,Σ2); Ω ` S : τ2 > α by i.h.

(Λ,Σ1,Σ2); Ω ` L : τ1 by weakening

(Λ,Σ1,Σ2); Ω ` S : τ2 > α by weakening

(Λ,Σ1,Σ2); Ω ` (L ; S) : α by rule

2

Theorem 75 (Completeness of mslg of terms)

1. If Λ,Σ ` θ1 : Σ′ and Λ,Σ ` θ2 : Σ′ and θ1 and θ2 are incompatible and

L1 = [[idΛ, θ1]]L and L2 = [[idΛ, θ2]]L then there exists a modal substitution θ∗1, θ∗2,

and a modal context Σ∗, such that (Λ,Σ); Ω ` L1 t L2 : A =⇒ L/(Σ∗, θ∗1, θ
∗
2) and

θ∗1 ⊆ θ1, θ∗2 ⊆ θ2 and Σ∗ ⊆ Σ′

2. If Λ,Σ ` θ1 : Σ′ and Λ,Σ ` θ2 : Σ′ and θ1 and θ2 are incompatible and

S1 = [[idΛ, θ1]]S and S2 = [[idΛ, θ2]]S then there exists a modal substitution θ∗1, θ∗2,

and a modal context Σ∗, such that (Λ,Σ); Ω ` S1 t S2 : A =⇒ S/(Σ∗, θ∗1, θ
∗
2) and

θ∗1 ⊆ θ1, θ∗2 ⊆ θ2 and Σ∗ ⊆ Σ′.

Proof: Simultanous induction on the structure of L and S.
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Case L = u[π] and u::Φ`α ∈ Λ

L1 = [[idΛ, θ1]](u[π]) by assumption

L1 = u[π] by modal substitution definition

u[π] = u[π] by inversion

and L1 = u[π]

(Λ,Σ); Ω ` u[π] t u[π] : α =⇒ u[π]/(·, ·, ·) by rule

· ⊆ Σ′, · ⊆ θ1, · ⊆ θ2

Case L = λx.L′.

L1 = [[idΛ, θ1]](λx.L′) by assumption

L1 = λx.[[idΛ, θ1]]L′ by modal substitution definition

L′1 = [[idΛ, θ1]]L′ by inversion

and L1 = λx.L′1
L2 = [[idΛ, θ2]](λx.L′) by assumption

L2 = λx.[[idΛ, θ2]]L′ by modal substitution definition

L′2 = [[idΛ, θ2]]L′ by inversion

and L2 = λx.L′2
(Λ,Σ); Ω, x:τ1 ` L′1 t L′2 : τ2 =⇒ L′/(Σ∗, θ∗1, θ

∗
2) by i.h.

Σ∗ ⊆ Σ′, θ∗1 ⊆ θ1, θ∗2 ⊆ θ2

(Λ,Σ); Ω ` λx.L′1 t λx.L′2 : τ1 → τ2 =⇒ λx.L′/(Σ∗, θ∗1, θ
∗
2) by rule

Case L = i[idΩ]

L1 = [[idΛ, θ1]](i[idΩ]) by assumption

L2 = [[idΛ, θ2]](i[idΩ]) by assumption

L′/i ∈ θ1 and L′′/i ∈ θ2 by assumption

L′ and L′′ are incompatible by assumption

L1 = L′ by modal substitution definition

L2 = L′′ by modal substitution definition

Case: L1 = u[π] and L2 = L′′

(Λ,Σ); Ω ` u[π] t L′′ : α =⇒ i[idΩ]/(i::Ω ` α, u[π]/i, L′′/i) by rule

i::(Ω ` α) ⊆ Σ′, (u[π]/i) ⊆ θ1, (L′′/i) ⊆ θ2

Case: L1 = L′ and L2 = u[π]

(Λ,Σ); Ω ` L′ t u[π] : α =⇒ i[idΩ]/(i::Ω ` α, L′/i, u[π]/i) by rule
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(i::(Ω ` α)) ⊆ Σ′, (u[π]/i) ⊆ θ2, (L′/i) ⊆ θ1

Case: L1 = H · S1 and L2 = H2 · S2

H1 · S1 is incompatible with H2 · S2 and H1 6= H2 by assumption

(Λ,Σ); Ω ` H1 · S1 tH2 · S2 : α =⇒ i[idΩ]/(i::Ω ` α,H1 · S1/i,H2 · S2/i) by rule

(i::(Ω ` α)) ⊆ Σ′, (H1 · S1/i) ⊆ θ1, (H2 · S2/i) ⊆ θ2

2

Theorem 76 (Soundness for mslg of substitutions)

If (Λ,Σ1) ` ρ1 t ρ2 : Σ2 =⇒ ρ/(Σ, θ1, θ2) and

(Λ,Σ1) ` ρ1 : Σ2 and (Λ,Σ1) ` ρ2 : Σ2 then [[θ1]]ρ = ρ1 and [[θ2]]ρ = ρ2

Proof: Induction on the first derivation.

Case D =
(Λ,Σ1) ` · : · =⇒ ·/(·, ·, ·)

· = · by syntactic equality

· = [[ · ]](·) modal substitution definition

Case D = (Λ,Σ1) ` (ρ1, L1/i) t (ρ2, L2/i) : (Σ2, i::(Φ ` α))

=⇒ (ρ, L/i)/((Σ,Σ′), (θ1, θ
′
1), (θ2, θ

′
2))

(Λ,Σ1) ` ρ1 t ρ2 : Σ2 =⇒ ρ/(Σ, θ1, θ2) by premise

(Λ,Σ1); Φ ` L1 t L2 : α =⇒ L/(Σ′, θ′1, θ
′
2) by premise

(Λ,Σ1) ` (ρ1, L1/i) : (Σ2, i::(Φ ` α)) by assumption

(Λ,Σ1) ` ρ1 : Σ2 by inversion

(Λ,Σ1); Φ ` L1 : α

(Λ,Σ1) ` (ρ2, L2/i) : (Σ2, i::(Φ ` α)) by assumption

(Λ,Σ1) ` ρ2 : Σ2 by inversion

(Λ,Σ1); Φ ` L2 : α

L1 = [[idΛ, θ
′
1]]L by lemma 74

L2 = [[idΛ, θ
′
2]]L by lemma 74

L1 = [[idΛ, θ1, θ
′
1]]L by lemma 73

L2 = [[idΛ, θ2, θ
′
2]]L by lemma 73

ρ1 = [[idΛ, θ1]]ρ by i.h.

ρ2 = [[idΛ, θ2]]ρ by i.h.

162



5.2. INSERTION

ρ1 = [[idΛ, θ1, θ
′
1]]ρ by lemma 73

ρ2 = [[idΛ, θ2, θ
′
2]]ρ by lemma 73

(ρ1, L1/i) = ([[idΛ, θ1, θ
′
1]]ρ, [[idΛ, θ1, θ

′
1]]L/i) by rule

(ρ2, L2/i) = ([[idΛ, θ2, θ
′
2]]ρ, [[idΛ, θ2, θ

′
2]]L/i) by rule

(ρ1, L1/i) = [[idΛ, θ1, θ
′
1]](ρ, L/i) by modal substitution definition

(ρ2, L2/i) = [[idΛ, θ2, θ
′
2]](ρ, L/i) by modal substitution definition

(Λ,Σ′) ` ρ : Σ2 by i.h.

(Λ,Σ′′); Ω ` L : α by i.h.

(Λ,Σ′,Σ′′) ` ρ : Σ2 by weakening

(Λ,Σ′,Σ′′); Ω ` L : α by weakening

(Λ,Σ′,Σ′′) ` (ρ, L/i) : (Σ2, i::Ω`α) by rule

2

Theorem 77 (Completeness for mslg of modal substitutions)

If (Λ,Σ) ` θ1 : Σ′ and (Λ,Σ) ` θ2 : Σ′ and θ1 and θ2 are incompatible and

ρ1 = [[idΛ, θ1]]ρ and ρ2 = [[idΛ, θ2]]ρ then (Λ,Σ) ` ρ1 t ρ2 : Σ1 =⇒ ρ/(Σ∗, θ∗1, θ
∗
2) such

that Σ∗ ⊆ Σ′, θ∗1 ⊆ θ1, θ∗2 ⊆ θ2.

Proof: Induction on the structure of ρ.

Case ρ = ·

ρ1 = [[idΛ, θ1]](·) by assumption

ρ1 = · and Σ1 = · by inversion

ρ2 = [[idΛ, θ2]](·) by assumption

ρ2 = · and Σ1 = · by inversion

(Λ,Σ) ` · t · : · =⇒ ·/(·, ·, ·) by rule

· ⊆ Σ1, · ⊆ θ1, · ⊆ θ2

Case ρ = (ρ′, L/i)

ρ′1 = [[idΛ, θ1]](ρ′, L/i)

ρ′1 = ([[idΛ, θ1]](ρ′), [[idΛ, θ1]]L/i) by modal substitution definition

ρ′1 = (ρ1, L1/i)

ρ1 = [[idΛ, θ1]]ρ′
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L1 = [[idΛ, θ1]]L

ρ′2 = [[idΛ, θ2]](ρ′, L/i)

ρ′2 = ([[idΛ, θ2]](ρ′), [[idΛ, θ2]]L/i) by modal substitution definition

ρ′2 = (ρ2, L2/i)

ρ2 = [[idΛ, θ2]]ρ′

L2 = [[idΛ, θ2]]L

(Λ,Σ); Φ ` L1 t L2 : α =⇒ L/(Σ∗, θ∗1, θ
∗
2) by completeness lemma 75

Σ∗ ⊆ Σ′, θ∗1 ⊆ θ1, θ∗2 ⊆ θ2

(Λ,Σ) ` ρ1 t ρ2 : Σ1 =⇒ ρ′/(Σ∗∗, θ∗∗1 , θ
∗∗
2 ) by i.h.

Σ∗∗ ⊆ Σ′, θ∗∗1 ⊆ θ1, θ∗∗2 ⊆ θ2(Λ,Σ) ` (ρ1, L1/i) t (ρ2, L2/i) : (Σ1, i::Φ`α)

=⇒ (ρ′, L/i)/((Σ∗∗,Σ∗), (θ∗∗1 , θ
∗
1), (θ∗∗2 , θ

∗
2)) by rule

(Σ∗∗,Σ∗) ⊆ Σ′, (θ∗∗1 , θ
∗
1) ⊆ θ1, (θ∗∗2 , θ

∗
2) ⊆ θ2

2

When inserting a substitution ρ2 into a substitution tree, we need to traverse the

index tree and compute at each node N with substitution ρ the mslg between ρ and

ρ2. Before we describe the traversal more formally, we give a more formal definition of

substitution trees.

Node N ::= (Σ`ρ� C)

Children C ::= [N,C] | nil

A tree is a node N with a modal substitution ρ and a list of children C. In general,

we will write Λ ` N : Σ′ where N = (Σ`ρ� C) which means that (Λ,Σ) ` ρ : Σ′ and

all the children Ni in C, Λ ` Ni : Σ.

To insert a new substitution ρ2 in to the substitution tree N where Λ ` N : Σ, we

proceed in two steps. First, we inspect all the children Ni of a parent node N , where

Ni = Σi`ρi � Ci and check if ρ1 is compatible with ρ2. This compatibility check has

three possible results:

1. (Λ,Σi) ` ρi t ρ2 : Σ =⇒ idΣ/(Σ, ρi, ρ2) :

This means ρi and ρ2 are not compatible

2. (Λ,Σi) ` ρi t ρ2 : Σ =⇒ ρ1/(Σi, idΣi , θ2)

This means ρ2 is an instance of ρi and we will continue to insert θ2 into the
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children Ci. In this case [[idΛ, θ2]]ρ2 is structurally equivalent to ρi and we will

call ρ2 fully compatible with ρi.

3. (Λ,Σi) ` ρi t ρ2 : Σ =⇒ ρ′/(Σ′′, θ1, θ2)

ρi and ρ2 are compatible, but we need to replace node Ni with a new node

Σ′′`ρ′ � C ′ where C ′ contains two children, the child node Σi`θ1 � Ci and the

child node Σi`θ2 � nil. In this case we will call ρ2 partially compatible with ρi.

This idea can be formalized by using the following judgment to filter out all children

from C which are compatible with ρ2. Moreover, we will distinguish between the fully

compatible children, which we collect in V , and the partially compatible children, which

we collect in S.

Λ ` C t ρ2 : Σ =⇒ (V, S)

Fully compatible children V ::= · | V, (N, θ)
Partially compatible children S ::= · | S, (N,Σ`ρ, θ1, θ2)

δ is a modal substitution such that Λ ` δ : Σ, and for all the children Ci = (Σi`ρi �

C ′) in C, we have Λ,Σi ` ρi : Σ. Then V and S describe all the children from C which

are compatible with δ. We distinguish three cases.

Λ ` nil t δ : Σ =⇒ (nil, nil)

Λ ` C t δ : Σ =⇒ (V, S) Λ,Σ1 ` ρ1 t δ : Σ =⇒ idΣ/(Σ, ρ1, δ)

Λ ` [(Σ1`ρ1 � C1), C] t δ : Σ =⇒ (V, S)
NC

Λ ` C t δ : Σ =⇒ (V, S) Λ,Σ1 ` ρ1 t δ : Σ =⇒ ρ1/(Σ1, idΣ1 , θ2) ρ1 6= idΣ1

Λ ` [(Σ1`ρ1 � C1), C] t δ : Σ =⇒ ((V, ((Σ1`ρ1 � C1), θ2)), S)
FC

Λ ` C t δ : Σ =⇒ (V, S) Λ,Σ1 ` ρ1 t δ : Σ =⇒ ρ/(Σ2, θ1, θ2) ρ 6= ρ1 6= idΣ2

Λ ` [(Σ1`ρ1 � C1), C] t δ : Σ =⇒ (V, (S , ((Σ1`ρ1 � C1),Σ2`ρ, θ1, θ2))
PC

The NC rule describes the case where the child Ci is not compatible with δ. Rule

FC describes the case where δ is fully compatible with the child Ci and the rule

PC describes the case where δ is partially compatible with Ci. Before we describe

the traversal of the substitution tree, we prove some straightforward properties about

these rules
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Lemma 78

If Λ ` C t δ : Σ =⇒ (V, S) and Λ ` δ : Σ and for any (Σi`ρi � C ′) ∈ C with

Λ,Σi ` ρi : Σ then

1. for any (Ni, θ2) ∈ V where Ni = (Σi ` ρi � Ci), we have [[θ2]]ρi = δ.

2. for any (Ni,Σ
′ ` ρ′, θ1, θ2) ∈ S where Ni = (Σi ` ρi � Ci), we have [[θ2]]ρ′ = δ

and [[θ1]]ρ′ = ρi.

Proof: By structural induction on the first derivation and by using the previous sound-

ness lemma for mslg of substitutions (lemma 76).

Case D =
Λ ` nil t δ : Σ =⇒ (nil, nil)

.

Trivially true.

Case D =
Λ ` C t δ : Σ =⇒ (V, S) Λ,Σ1 ` ρ1 t δ : Σ =⇒ idΣ/(Σ, ρ1, δ)

NC
Λ ` [(Σ1`ρ1 � C1), C] t δ : Σ =⇒ (V, S)

By i.h., for any (Ni, θ2) ∈ V , Ni = (Σi ` ρi � Ci), we have [[θ2]]ρi = δ and for

any (Ni,Σ
′ ` ρ′, θ′1, θ′2) ∈ S where Ni = (Σi ` ρi � Ci), we have [[θ′2]]ρ′ = δ and

[[θ′1]]ρ′ = ρi.

Case D =
Λ ` C t δ : Σ =⇒ (V, S) Λ,Σ1 ` ρ1 t δ : Σ =⇒ ρ1/(Σ1, idΣ1 , θ2)

FC
Λ ` [(Σ1`ρ1 � C1), C] t δ : Σ =⇒ ((V , (Σ1`ρ1 � C1)), S)

By i.h., for any (Ni, θ2) ∈ V , Ni = (Σi ` ρi � Ci), we have [[θ2]]ρi = δ and for

any (Ni, (Σ
′ ` ρ′, θ′1, θ′2)) ∈ S where Ni = (Σi ` ρi � Ci), we have [[θ′2]]ρ′ = δ

and [[θ′1]]ρ′ = ρi. By soundness lemma 76, [[θ2]]ρ1 = δ, therefore for any (Ni, θ
′) ∈

(V, ((Σ1`ρ1 � C1), θ2)), where Ni = (Σi ` ρi � Ci) we have [[θ′]]ρi = δ.

Case D =
Λ ` C t δ : Σ =⇒ (V, S) Λ,Σ1 ` ρ1 t δ : Σ =⇒ ρ∗/(Σ2, θ1, θ2)

PC
Λ ` [(Σ1`ρ1 � C1), C] t δ : Σ =⇒ (V, (S , ((Σ1`ρ1 � C1),Σ2`ρ

∗, θ1, θ2))

By i.h., for any (Ni, θ
′
2) ∈ V , Ni = (Σi ` ρi � Ci), we have [[θ′2]]ρi = δ and for

any (Ni, (Σ
′ ` ρ′, θ′1, θ′2)) ∈ S where Ni = (Σi ` ρi � Ci), we have [[θ′2]]ρ′ = δ and

[[θ′1]]ρ′ = ρi. By soundness lemma 76, [[θ2]]ρ∗ = δ and [[θ1]]ρ∗ = ρ1, therefore for

any (Ni,Σ
′ ` ρ′, θ′1, θ′2) ∈ (S , ((Σ1`ρ1 � C1),Σ2`ρ

∗, θ1, θ2)), where Ni = (Σi `
ρi � Ci) we have [[θ′1]]ρ′ = ρi and [[θ′2]]ρ′ = δ.
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2

Next, we show insertion of a substitution δ into a substitution tree N . The main

judgment is the following:

Λ ` N t δ : Σ =⇒ N ′ Insert δ into the substitution tree N

If N is a substitution tree and δ is not already in the tree, then N ′ will be the

new substitution tree after inserting δ into N . We write [N ′/Ni]C to indicate that

the i-th node Ni in the children C is replaced by the new node N ′. Recall that the

substitution δ which is inserted into the substitution tree N does only refer to modal

variables in Λ and does not contain any internal modal variables. Therefore, a new leaf

with substitution δ must have the following form: ·`δ � nil. Similarly, if we split the

current node and create a new leaf ·`θ2 � nil (see rule “Split current node”).

Create new leaf

Λ ` C t δ : Σ′ =⇒ (·, ·)
Λ ` (Σ`ρ� C) t δ : Σ′ =⇒ (Σ`ρ� (C, (·`δ � nil))

Recurse

Λ ` C t δ : Σ′ =⇒ (V, S) Ni ∈ C (Ni, θ2) ∈ V Λ ` N t θ2 =⇒ N ′

Λ ` (Σ′`ρ� C) t δ : Σ =⇒ (Σ′`ρ� [N ′/Ni]C

Split current node

Λ ` C t δ : Σ =⇒ (·, S) Ni ∈ C Ni = (Σi`ρi � Ci) (Ni,Σ
∗`ρ, θ1, θ2) ∈ S

Λ ` (Σ′`ρ� C) t δ : Σ =⇒ (Σ′`ρ� [(Σ∗`ρ� ((Σi`θ1 � Ci), (·`θ2 � nil)))/Ni]C)

The above rules always insert a substitution δ into the children C of a node Σ`ρ�

C. We start inserting a substitution L/i0 into the empty substitution tree which

contains the identity substitution i0[id]/i0 and has an empty list of children. After the

first insertion, we obtain the substitution tree which contains the identity substitution

i0[id]/i0 and the child of this node contains the substitution L/i0. In other words,

we require that the top node of a substitution tree contains a redundant identity

substitution which allows us to treat insertion of a substitution δ into a substiution tree

uniformly. This leads us to the following soundness statement where we show that if we

inserte a substiutition δ into the children C, then there exists a child Ci = Σi`ρi � C ′i
in C and a path from ρi to ρn, where ρn is at a leaf such that [[ρn]][[ρn−1]] . . . ρi = δ.
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Theorem 79 (Soundness of insertion)

If Λ ` (Σ′`ρ′ � C)tδ : Σ =⇒ (Σ′`ρ′ � C ′) then there exists a child Ci = (Σi`ρi � C ′)

and a path from ρi to ρn such that [[ρn]][[ρn−1]] . . . ρi = δ.

Proof: By induction on the first derivation using the previous lemma 78. 2

We illustrate this process by an example. Assume we have the following two modal

substitutions:

ρ1 = [[(g a)/i1, f (λx.u[id])/i2, (h c)/i3]]

δ = [[(g b)/i1, c/i2, (h a)/i3]]

Then, the most specific linear common generalization of the substitution is com-

puted as follows. We compute the most specific linear generalization for each ele-

ment. Hence the resulting most specific linear common substitution ρ of ρ1 and δ is

[[(g i4[id])/i1, i2[id]/i2, (h i5[id])/i3]]. In addition, ρ1 will be split into the most specific

linear common substitution ρ and the substitution θ1 = [[a/i4, f (λx.u[id])/i2, c/i5]],

s.t. [[θ1]]ρ = ρ1. Similarly δ will be split into ρ and the substitution θ2 = [[b/i4, c/i2, a/i5]],

s.t. [[θ2]]ρ = δ. Next, we illustrate the process of inserting the terms (1) to (4) from

page 147 into a higher-order substitution tree.
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i2 = 

i2i2

i1

 = i0

i0 = 

i1

i2 i2

true true

a = b = 

(1) (2)

i2 = 
(g b) = 
i2id

i3

insert
pred (h (h a)) (g b) (f lax x. E x)s 

pred (h (g b)) (g b) b

insert

 = i0

true
(1)

i1
i2 = 

i0 = pred (h          ) (g b) 

i1

i2 i2

true true

a = b = 

(1) (2)

i2 = 
(g b) = 
i2id

 = i0

i3

and E1unifs

true

a = b = 

(2)

i1id

i3id

pred (h (g  b)) (g b)

(f lax x. E x) 

i2id

(h          ) = 

pred (h          ) (g b) 

i2id

true
(1)

b = 

insert

pred (h (h b)) (g b) (f lax x. E x)s 

pred (h (g b)) (g b) a

(h b) = 
(f lax x. E x) 

i2idi1id

(3)
E1unif

(3)
E1unif

a = 

(4)
true

In the second step, we can see why it is important to re-use the name of internal

modal variables when computing the mslg of two terms. Here we need to compute the

mslg of pred (h (g b)) (g b) i2[id] and pred (h (h b)) (g b) (f λx.u[id]). The result is

the substitution θ1 = [[(g b)/i1, i2[id]/i2]] and θ2 = [[(h b)/i1, (f λx.u[id])/i2]]. Since we

chose to re-use the variable i2 and created a substitution i2[id]/i2, we can add a new

node with the substitution θ2 and children a = i2 and b = i2 into the tree without

violating the stated invariant or renaming the children.

Finally, we note that we may need to apply weakening before inserting a substitu-

tion δ into the substitution tree N . Consider the first two insertions into the empty

substitution tree in the previous example. Since the first two terms inserted, do not

refer to any modal variables Λ = ·. In other words, if the top node in the substitution

tree is well-defined in the empty modal context and Λ = ·. In the third step, we are

inserting the object pred (h (h b)) (g b) (f λx.u[id]) which refers to the modal variable

u. Hence before inserting the third term, we need to weaken the modal context Λ such
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that such that Λ ` N : Σ and Λ ` δ : Σ.

5.3 Retrieval

In general, we can retrieve all terms from the index which satisfy some property. This

property may be finding all terms from the index which unify with a given term U or

finding all terms V from the index, s.t. a given term U is an instance or variant of

V . One advantage of substitution trees is that all these retrieval operations can be

implemented with only small changes. A key challenge in the higher-order setting is

to design efficient retrieval algorithms which will perform well in practice. In Chapter

3 we presented a unification algorithm for linear higher-order patterns. We specialize

this algorithm to check whether the term L2 is an instance of the term L1. We treat

again internal modal variables differently than global modal variables. In addition,

both terms must be linear unlike the algorithm in Chapter 3 where only one of them

has to be. The principal judgement are as follows:

(Λ,Σ); Ω ` L1
.
= L2 : τ/(θ, ρ) L2 is an instance of L1

(Λ,Σ); Ω ` S1
.
= S2 : τ > α/(θ, ρ) S2 is an instance of S2

Again we assume that L1 and L2 must be well-typed in the modal context Λ,Σ and the

bound variable context Ω. We assume that only L1 contains internal modal variables

and is stored in the index, while L2 is given, and that the modal variables occurring in

L1 are distinct from the modal variables occuring in L2. This implies that (Λ1,Σ); Ω `
L1 : τ and Λ2; Ω ` L2 : τ and Λ = (Lambda1,Λ2). ρ is the substitution for some

internal modal variables in Σ while θ is the substitution for some modal variables in

Λ1. Both substitutions can always be extended with identity substitutions such that

the extension of θ (e.g. ρ) covers all the variables in Λ (e.g. Σ). Moreover, [[idΛ2 , θ, ρ]]L1

is syntactically equal to L2.
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i::Ω`α ∈ Σ
(Λ,Σ); Ω ` i[idΩ]

.
= L : α / (·, (L/i)) existsL− 1

u::Φ`α ∈ Λ

(Λ,Σ); Ω ` u[π]
.
= L : α / (([π]−1 L/u), ·)

existsL− 2

(Λ,Σ); Ω, x:τ1 ` L1
.
= L2 : τ2 / (θ, ρ)

(Λ,Σ); Ω ` λx.L1
.
= λx.L2 : τ1 → τ2 / (θ, ρ)

lam

(Λ,Σ); Ω 
 S1
.
= S2 : τ > α / (θ, ρ)

(Λ,Σ); Ω ` H · S1
.
= H · S2 : a / (θ, ρ)

(Λ,Σ); Ω 
 nil
.
= nil : α > α / (·, ·)

(Λ,Σ); Ω ` L1
.
= L2 : τ1 / (θ1, ρ1) (Λ,Σ); Ω 
 S1

.
= S2 : τ2 > α / (θ2, ρ2)

(Λ,Σ); Ω 
 (L1;S1)
.
= (L2;S2) : τ1 → τ2 > α / ((θ1, θ2), (ρ1, ρ2))

Note that we need not worry about capture in the rule for lambda expressions

since existential variables and bound variables are defined in different contexts. In

the rule app, we are allowed to union the two substitutions θ1 and θ2, as the linearity

requirement ensures that the domains of both substitutions are disjoint. Note that the

case for matching an existential variable u[π] with another term L is simpler and more

efficient than in the general higher-order pattern case. In particular, it does not require

a traversal of L (see rules existsL-1 and existsL-2). Since the inverse of the substitution

π can be computed directly and will be total, we know [π]−1 L exists and can simply

generate a substitution [π]−1 L/u. The algorithm can be easily specialized to retrieve

variances by requiring in the existsL-2 rule that L must be u[π]. To check unifiability

we need to add the dual rule to existsL-2 where we unify L with an existential variable

u[π]. The only complication is that L may contain internal modal variables which are

defined later on the path in the substitution tree.

The instance algorithm for terms can be straightforwardly extended to instances of

substitutions. We define the following judgment for it:

Λ,Σ ` ρ1
.
= ρ2 : Σ′/(θ, ρ) ρ2 is an instance of ρ1

We assume that ρ1 and ρ2 are modal substitutions from a modal context Σ′ to a

modal context Λ,Σ. ρ is a modal substitution for the modal variables in Σ, while θ is
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the modal substitution for the modal variables in Λ such that [[θ, σ]]ρ1 is syntactically

equal to ρ2.

(Λ,Σ) ` · .
= · : ·/(·, ·)

(Λ,Σ1) ` ρ1
.
= ρ2 : Σ2/(θ, ρ) (Λ,Σ1); Ω ` L1

.
= L2 : τ/(θ′, ρ′)

(Λ,Σ1) ` (ρ1, L1/i)
.
= (ρ2, L2/i) : (Σ2, i::(Ω`τ))/((θ, θ′), (ρ, ρ′)

Now we show soundness and completeness of the retrieval algorithm. We first show

soundness and completeness of the instance algorithm for terms.

Theorem 80 (Soundness)

1. If (Λ,Σ); Ω ` L1
.
= L2 : τ/(θ, ρ) for some Λ1 and Λ2 where Λ = (Lambda1,Λ2)

and (Λ1,Σ); Ω ` L1 : τ and Λ2; Ω ` L2 : τ then [[idΛ2 , θ, ρ]]L1 = L2.

2. If (Λ,Σ); Ω ` S1
.
= S2 : τ > α/(θ, ρ) for some Λ1 and Λ2 where Λ =

(Lambda1,Λ2) and (Λ1,Σ); Ω ` S1 : τ > α and Λ2; Ω ` S2 : τ > α then

[[idΛ2 , θ, ρ]]S1 = S2.

Proof: Simultanous structural induction on the first derivation. The proof is straigh-

forward, and we give a few cases here.

Case D = i::Ω`α
existsL− 1

(Λ,Σ); Ω ` i[idΩ]
.
= L : α / (·, (L/i))

i::Ω`α; Ω ` i[idΩ] : α by assumption

Λ2; Ω ` L : α and Λ = Λ2 by assumption

L = L by reflexivity

[[idΛ2 , L/i]](i[idΩ]) = L by substitution definition

Case D = u::Φ`α ∈ Λ
existsL− 2

(Λ,Σ); Ω ` u[π]
.
= L : α / (([π]−1 L/u), ·)

u::Φ`α; Ω ` u[π] : α by assumption

Λ2; Ω ` L : α and Λ = Λ2, u::Φ`α by assumption

[π]([π]−1 L) = L by property of inversion

[[idΛ2 , [π]−1 L/u]](u[π]) = L by substitution definition
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Case D =
(Λ,Σ); Ω, x:τ1 ` L1

.
= L2 : τ2 / (θ, ρ)

lam
(Λ,Σ); Ω ` λx.L1

.
= λx.L2 : τ1 → τ2 / (θ, ρ)

(Λ1,Σ); Ω ` λx.L1 : τ1 → τ2 by assumption

(Λ1,Σ); Ω, x:τ1 ` L1 : τ2 by inversion

Λ2; Ω ` λx.L2 : τ1 → τ2 by assumption

Λ2, ; Ω, x:τ1 ` L2 : τ2 by inversion

[[idΛ2 , θ, ρ]]L1 = L2 by i.h.

Case D =
(Λ,Σ); Ω ` L1

.
= L2 : τ1 / (θ1, ρ1) (Λ,Σ); Ω 
 S1

.
= S2 : τ2 > α / (θ2, ρ2)

(Λ,Σ); Ω 
 (L1;S1)
.
= (L2;S2) : τ1 → τ2 > α / ((θ1, θ2), (ρ1, ρ2))

(Λ1; Σ); Ω ` (L1;S1) : τ > α by assumption

(Λ1; Σ); Ω ` L1 : τ1 by inversion

(Λ1; Σ); Ω ` S1 : τ1 → τ2 > α

Λ2; Ω ` L2 : τ1 by inversion

Λ2; Ω ` S2 : τ1 → τ2 > α

[[idΛ2 , θ1, ρ1]]L1 = L2 by i.h.

[[idΛ2 , θ2, ρ2]]S1 = S2 by i.h.

[[idΛ2 , θ1, θ2, ρ1, ρ2]]L1 = L2 by weakening

[[idΛ2 , θ1, θ2, ρ1, ρ2]]S1 = S2 by weakening

[[idΛ2 , θ1, θ2, ρ1, ρ2]](L1 S1) = [[idΛ2θ1, θ2, ρ1, ρ2]](L2 S2) by rule

and substitution definition

2

Next, we show soundness of retrieval for substitions.

Theorem 81 (Soundness of retrieval for substitutions)

If (Λ,Σ) ` ρ1
.
= ρ2 : Σ′/(θ, ρ) and (Λ1,Σ) ` ρ1 : Σ′ and Λ2 ` ρ2 : Σ′ and (Λ1,Λ2) = Λ

and all the variables in Σ, Λ1 and Λ2 are distinct then [[idΛ2 , θ, ρ]]ρ1 = ρ2.

Proof: Structural induction on the first derivation and using previous lemma 80. 2

For completeness we show that if the term L2 is an instance of a linear term L then

the given algorithm will succeed and return substitution θ∗ for the modal variables
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and a substitution ρ∗ for the internal modal variables ocurring in L. This establishes a

form of local completeness of the given retrieval algorithm. We will show later a global

completeness theorem, which states that any time we compute the msgl of a term L1

and L2 to be L, then we can show that L2 is in fact an instance of L. More generally,

we show that any time we insert a substiution L2/i0 we can also retrieve it.

Theorem 82 (Completeness of instance algorithm for terms)

1. If (Λ1,Σ); Ω ` L : τ and Λ2; Ω ` L2 : τ and Λ = (Λ1,Λ2) and Λ ` θ : Λ1 and

Λ ` ρ : Σ and [[idΛ2 , θ, ρ]]L = L1 then (Λ,Σ); Ω ` L .
= L2 : τ/(θ∗, ρ∗) where θ∗ ⊆ θ

and ρ∗ ⊆ ρ.

2. If (Λ1,Σ); Ω ` S : τ > α and Λ2; Ω ` S2 : τ > α and Λ = (Λ1,Λ2) and Λ ` θ : Λ1

and Λ ` ρ : Σ and [[idΛ2 , θ, ρ]]S = S2 then (Λ,Σ); Ω ` S .
= S2 : τ > α/(θ∗, ρ∗)

where θ∗ ⊆ θ and ρ∗ ⊆ ρ.

Proof: Simultanous structural induction on the first typing derivation.

Case D =
(Λ1,Σ); Ω, x:τ1 ` L : τ2

(Λ1,Σ); Ω ` λx.L : τ1 → τ2

Λ2; Ω ` λx.L2 : τ1 → τ2 by assumption

Λ2; Ω, x:τ1 ` L2 : τ2 by inversion

[[idΛ2 , θ, ρ]](λx.L) = λx.L2 by assumption

λx.[[idΛ2 , θ, ρ]](L) = λx.L2 by substitution definition

[[idΛ2 , θ, ρ]](L) = L2 by syntactic equality

(Λ,Σ); Ω, x:τ1 ` L
.
= L2 : τ2/(θ

∗, ρ∗) by i.h.

θ∗ ⊆ θ and ρ∗ ⊆ ρ

(Λ,Σ); Ω ` λx.L .
= λx.L2 : τ1 → τ2/(θ

∗, ρ∗) by rule

Case D = i::Ω`α ∈ Σ

(Λ1,Σ); Ω ` i[idΩ] : α

i::Ω`α; Ω ` i[idΩ] : α by rule

Σ = Σ1, i::Ω`α,Σ2

Λ2; Ω ` L2 : α by assumption
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[[idΛ2 , θ, ρ]](i[idΩ]) = L2 by assumption

L′/i ∈ ρ by assumption

L′ = L2 and L2/i ∈ ρ by substitution definition

(Λ, i::Ω`α); Ω ` i[idΩ]
.
= L2 : α/(·, L2/i) by rule

· ⊆ idΛ and (L2/i) ⊂ ρ

Case D = u::Φ`α ∈ Λ1

(Λ1,Σ); Ω ` u[π] : α

u::Φ`α; Ω ` u[π] : α by rule

Λ1 = Λ′1, u::Φ`α,Λ′′1
Λ2; Ω ` L2 : α by assumption

θ = (θ1, L/u, θ2) by assumption

[[idΛ2 , θ, ρ]](u[π]) = L2 by assumption

[π]L = L2 by substitution definition

L = [π]−1 L2 and [π]([π]−1 L2) = L2 by inverse substitution property

Λ2, u::Φ`α; Ω ` u[π]
.
= L2 : α/([π]−1 L2/u, ·) by rule

([π]−1 L2/u) ⊆ θ and · ⊆ ρ

Case D =
(Λ1,Σ); Ω ` L1 : τ1 (Λ1,Σ); Ω 
 S1 : τ1 → τ > α

(Λ1,Σ); Ω 
 (L1;S1) : τ > α

[[idΛ2 , θ, ρ]](L1;S1) = S ′ by assumption

[[idΛ2 , θ, ρ]](L1) ; [[idΛ2 , θ, ρ]](S1) = S ′ by substitution definition

S ′ = (L2;S2) by inversion

[[idΛ2 , θ, ρ]](L1) = L2 by inversion

[[idΛ2 , θ, ρ]](S1) = S2 by inversion

Λ2; Ω ` (L2;S2) : τ > α by assumption

Λ2; Ω ` L2 : τ1 by inversion

Λ2; Ω ` S2 : τ1 → τ > α

(Λ,Σ); Ω ` L1
.
= L2 : τ1/(θ

∗
1, ρ
∗
1) and θ∗1 ⊆ θ and ρ∗1 ⊆ ρ by i.h.

(Λ,Σ); Ω ` S1
.
= S2 : τ1 → τ > α/(θ∗2, ρ

∗
2) and θ∗2 ⊆ θ and ρ∗2 ⊆ ρ by i.h.
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(Λ,Σ); Ω ` L1
.
= L2 : τ1/(θ

∗
1, ρ
∗
1) by weakening

(Λ,Σ); Ω ` S1
.
= S2 : τ1 → τ > α/(θ∗2, ρ

∗
2) by weakening

(Λ,Σ); Ω ` (L1;S1)
.
= (L2;S2) : τ > α/((θ∗1, θ

∗
2), (ρ∗1, ρ

∗
2)) by rule

(θ∗1, θ
∗
2) ⊆ θ and (ρ∗1, ρ

∗
2) ⊆ ρ by subset property

2

Next, we show the global completeness of the mslg and instance algorithm. We

show that if the mslg of object L1 and L2 returns the modal substitutions θ1 and θ2

together with the mslg L, then in fact the retrieval algorithm shows that L1 is an

instance of L under θ1 and L2 is an instance of L under θ2. This guarantees that any

time we insert a term L2 we can in fact retrieve it.

Theorem 83 (Interaction between mslg and instance algorithm)

1. If for some Λ1 and Λ2 where (Λ1,Σ); Ω ` L1 : τ and Λ2; Ω ` L2 : τ and Λ =

(Λ1,Λ2) and (Λ,Σ); Ω ` L1 t L2 : τ =⇒ L/(Σ′, θ1, θ2) then

((Λ,Σ),Σ′); Ω ` L .
= L1 : τ/(θ′, θ1) and

((Λ,Σ),Σ′); Ω ` L .
= L2 : τ/(θ′′, θ2) and θ′ ⊆ id(Λ,Σ) and θ′′ ⊆ id(Λ,Σ).

2. If for some Λ1 and Λ2 where (Λ1,Σ); Ω ` S1 > α : τ and Λ2; Ω ` S2 : τ > α and

Λ = (Λ1,Λ2) and (Λ,Σ); Ω ` S1 t S2 : τ > α =⇒ S/(Σ′, θ1, θ2) then

((Λ,Σ),Σ′); Ω ` S .
= S1 : τ > α/(θ′, θ1) and

((Λ,Σ),Σ′); Ω ` S .
= S2 : τ > α/(θ′′, θ2) and θ′ ⊆ id(Λ,Σ) and θ′′ ⊆ id(Λ,Σ).

Proof: Simultanous structural induction on the first derivation.

Case D =
(Λ,Σ); Ω, x:τ1 ` L1 t L2 : τ2 =⇒ L/(Σ′, θ1, θ2)

(Λ,Σ); Ω ` λx.L1 t λx.L2 : τ1 → τ2 =⇒ λx.L/(Σ′, θ1, θ2)

(Λ,Σ); Ω, x:τ1 ` L
.
= L1 : τ2/(θ

′, θ1) and θ′ ⊆ id(Λ,Σ) by i.h.

(Λ,Σ); Ω ` λx.L .
= λx.L1 : τ1 → τ2/(θ

′, θ1) by rule

(Λ,Σ); Ω, x:τ1 ` L
.
= L2 : τ2/(θ

′′, θ2) and θ′′ ⊆ id(Λ,Σ) by i.h.

(Λ,Σ); Ω ` λx.L .
= λx.L2 : τ1 → τ2/(θ

′′, θ2) by rule
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Case D =
u::(Φ`α) ∈ Λ

(Λ,Σ); Ω ` u[π] t u[π] : α =⇒ u[π]/(·, ·, ·)

[π]−1 (u[π])/u) = (u[idΦ]/u) = idΛ1 where Λ1 = u::Φ`α

Λ,Σ; Ω ` u[π]
.
= u[π] : α/(u[idΦ]/u, ·) and u[idΦ/u] ⊆ id(Λ,Σ) by rule existsL− 2

Case D =
u::Φ`α ∈ (Λ,Σ) i must be new

1a
(Λ,Σ); Ω ` u[π] t L : α =⇒ i[idΩ]/(i::Ω`α, u[π]/i, L/i)

Λ,Σ; Ω ` i[idΩ]
.
= u[π] : α/(·, u[π]/i) and · ⊆ id(Λ,Σ) by rule

Λ,Σ; Ω ` i[idΩ]
.
= L : α/(·, L/i) and · ⊆ id(Λ,Σ) by rule

Case Cases for rules (1b) and (2) follow the same pattern.

Case D = H1 6= H2 i must be new

(Λ,Σ); Ω ` H1 · S1 tH2 · S2 : α =⇒ i[idΩ]/((i::Ω`α), (H1 · S1/i), (H2 · S2/i))

Λ,Σ; Ω ` i[idΩ]
.
= H1 · S1 : α/(·, H1 · S1/i) and · ⊆ id(Λ,Σ) by rule

Λ,Σ; Ω ` i[idΩ]
.
= H2 · S2 : α/(·, H2 · S2/i) and · ⊆ id(Λ,Σ) by rule

Case D = (Λ,Σ); Ω ` (L1;S1) t (L2;S2) : τ1 → τ2 > α =⇒
(L;S)/((Σ1,Σ2), (θ1, θ2), (θ′1, θ

′
2))

(Λ,Σ); Ω ` L1 t L2 : τ1 =⇒ U/(Σ1, θ1, θ
′
1) by inversion

(Λ,Σ); Ω ` S1 t S2 : τ2 > α =⇒ S/(Σ2, θ2, θ
′
2)

(Λ,Σ); Ω ` L t L1 : τ1/(θ
∗
1, θ1) and θ∗1 ⊆ id(Λ,Σ) by i.h.

(Λ,Σ); Ω ` L t L2 : τ1/(θ
∗
2, θ2) and θ∗2 ⊆ id(Λ,Σ) by i.h.

(Λ,Σ); Ω ` S t S1 : τ2 > α/(θ∗∗1 , θ
′
1) and θ∗∗1 ⊆ id(Λ,Σ) by i.h.

(Λ,Σ); Ω ` S t S2 : τ2 > α/(θ∗∗2 , θ
′
2) and θ∗∗2 ⊆ id(Λ,Σ) by i.h.

(Λ,Σ); Ω ` (L;S) t (L1;S1) : τ1/((θ
∗
1, θ
∗∗
1 ), (θ1, θ

′
1)) by rule

(Λ,Σ); Ω ` (L;S) t (L2;S2) : τ1/((θ
∗
2, θ
∗∗
2 ), (θ2, θ

′
2)) by rule

(θ∗2, θ
∗∗
2 ) ⊆ id(Λ,Σ) and (θ∗1, θ

∗∗
1 ) ⊆ id(Λ,Σ)

2
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Theorem 84 (Interaction of insertion and retrieval for substitutions)

If (Λ,Σ) ` ρ1 t ρ2 : Σ′ =⇒ ρ/(Σ′′, θ1, θ2) then (Λ,Σ),Σ′′ ` ρ .
= ρ1 : Σ′/(θ′, θ1) and

(Λ,Σ),Σ′′ ` ρ .
= ρ2 : Σ′/(θ′′, θ2) and θ′ ⊆ id(Λ,Σ) and and θ′′ ⊆ id(Λ,Σ).

Proof: Structural induction on the first derivation and use of lemma 83. 2

Next, we show how to traverse the tree, find a path [[ρn]][[ρn−1]] . . . ρ1 such that ρ2 is

an instance of it and return a modal substitution θ such that [[θ]][[ρn]][[ρn−1]] . . . ρ1 = ρ2.

Traversal of the tree is straightforward.

Λ,Σ ` ρ .
= ρ2 : Σ′/(θ′, ρ′) Λ ` C .

= ρ′ : Σ/θ

Λ ` [(Σ`ρ� C), C ′]
.
= ρ2 : Σ′/(θ′, θ)

there is no derivation such thatΛ,Σ ` ρ .
= ρ2 : Σ′/(θ′, ρ′)

Λ ` C ′ .
= ρ : Σ/θ

Λ ` [(Σ`ρ� C), C ′]
.
= ρ2 : Σ′/θ

Theorem 85 (Soundness of retrieval)

If Λ ` C .
= ρ′ : Σ′/θ then there exists a child Ci with substitution ρi in C such that the

path [[θ]][[ρn]][[ρn−1]] . . . [[ρi]] = ρ′.

Proof: By structrural induction on the first derivation and use of lemma 81. 2

Finally, we show that if we insert ρ into a substitution tree and obtain a new tree,

then we are able to retrieve ρ from it.

Theorem 86 (Interaction between insertion and retrieval)

If Λ ` (Σ ` ρ� C) t ρ2 : Σ =⇒ (Σ ` ρ� C ′) then Λ ` C .
= ρ2/id∆.

Proof: Structural induction on the derivation using lemma 84. 2

5.4 Experimental results

In this section, we discuss examples from three different applications which use the

tabled logic programming engine in Twelf. Here we focus on an evaluation of the
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indexing technique. For a more in depth-discussion of tabling and these examples we

refer the reader to the previous chapter 4. All experiments are done on a machine with

the following specifications: 1.60GHz Intel Pentium Processor, 256 MB RAM. We are

using SML of New Jersey 110.0.3 under Linux Red Hat 7.1. Times are measured in

seconds. All the examples use variant checking as a retrieval mechanism. Although we

have implemented subsumption checking, we did not observe substantial performance

improvements using subsumption. A similar observation has been made for tabling in

the first-order logic programming engine XSB [59]. Potentially subsumption checking

becomes more important in theorem proving, as the experience in the first-order setting

shows.

5.4.1 Parsing of first-order formulae

Parsing and recognition algorithms for grammars are excellent examples for tabled

evaluation, since we often want to mix right and left recursion (see also [68]). In

this example, we adapted ideas from Warren [68] to implement a parser for first-order

formulas using higher-order abstract syntax (see also Chapter 4).

#tok noindex index reduction improvement

in time factor

20 0.13 0.07 46% 1.85

58 2.61 1.25 52% 2.08

117 10.44 5.12 51% 2.03

178 32.20 13.56 58% 2.37

235 75.57 26.08 66% 2.90

The first column denotes the number of tokens which are parsed. This example

illustrates that indexing can lead to improvements by over a factor of 2.90. In fact, the

more tokens need to be parsed and the longer the tabled logic programming engine runs,

the larger the benefits of indexing. The table grows up to over 4000 elements in this

example. This indicates that indexing prevents to some extent program degradation

due to large tables and longer run-times.
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5.4.2 Refinement type-checker

In this section, we discuss experiments with a bi-directional type-checking algorithm

for a small functional language with intersection types which has been developed by

Davies and Pfenning [17]. We use an implementation of the bi-directional type-checker

in Elf by Pfenning. The type-checker is executable with the original logic programming

interpreter, which performs a depth-first search. However, redundant computation may

severely hamper its performance as there are several derivations for proving that a

program has a specified type (see also Chapter 4).

We give several examples which are grouped in three categories. In the first cat-

egory, we are interested in finding the first answer to a type checking problem and

once we have found the answer execution stops. The second category contains exam-

ple programs which are not well-typed and the implemented type-checker rejects these

programs as not well-typed. The third category are examples where we are interested

in finding all answer to the type-checking problem.

First answer

example noindex index reduction improvement
time factor

sub1 3.19 0.46 86% 6.93
sub2 4.22 0.55 87% 7.63
sub3 5.87 0.63 89% 9.32
mult 7.78 0.89 89% 8.74
square1 9.08 0.99 89% 9.17
square2 9.02 0.98 89% 9.20

Not provable

example noindex index reduction improvement
time factor

multNP1 2.38 0.38 84% 6.26
multNP2 2.66 0.51 81% 5.22
plusNP1 1.02 0.24 76% 4.25
plusNP2 6.48 0.85 87% 7.62
squareNP1 9.29 1.09 88% 8.52
squareNP2 9.26 1.18 87% 7.85
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All answers
example noindex index reduction improvement

time factor

sub1 6.88 0.71 90% 9.69
sub2 3.72 0.48 87% 7.75
sub3 4.99 0.59 88% 8.46
mult 9.06 0.98 89% 9.24
square1 10.37 1.11 89% 9.34
square2 10.30 1.08 90% 9.54

As the results demonstrate indexing leads to substantial improvements by over a

factor of 9. Table sizes are around 500 entries.

5.4.3 Evaluating Mini-ML expression via reduction

In the third experiment we use an implementation which evaluates expressions of a

small functional language via reduction. The reduction rules are highly non-deterministic

containing reflexivity and transitivity rules.

example noindex index reduction improvement

time factor

mult1 10.86 6.26 57% 1.73

mult2 39.13 18.31 47% 2.14

addminus1 54.31 14.42 73% 3.77

addminus2 57.34 15.66 73% 3.66

addminus3 55.23 25.45 54% 2.17

addminus4 144.73 56.63 61% 2.55

minusadd1 1339.16 462.83 65% 2.89

As the results demonstrate, performance is improved by up to 3.77. Table size was

around 500 entries in the table. The limiting factor in this example is not necessarily

the table size but the large number of suspended goals which is over 6000. This may be

the reason why the speed-up is not as large as in the refinement type-checking example.
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5.5 Related work and conclusion

We have presented a higher-order term indexing technique, called higher-order substitu-

tion trees. We only know of two other attempts to design and implement a higher-order

term indexing technique. L. Klein [32] developed in his master’s thesis a higher-order

term indexing technique for simply typed terms where algorithms are based on a frag-

ment of Huet’s higher-order unification algorithm, the simplification rules. Since the

most specific linear generalization of two higher-order terms does not exist in general,

he suggests to maximally decompose a term into its atomic subterms. This approach

result in larger substitution trees and stores redundant substitutions. In addition, he

does not use explicit substitutions leading to further redundancy in the representa-

tion of terms. As no linearity criteria is exploited, the consistency checks need to be

performed eagerly, potentially degrading the performance.

Necula and Rahul briefly discuss the use of automata driven indexing for higher-

order terms in [42]. Their approach is to ignore all higher-order features when main-

taining the index, and return an imperfect set of candidates. Then full higher-order

unification on the original terms is used to filter out the ones which are in fact unifi-

able in a post-processing step. They also implemented Huet’s unification algorithm,

which is highly nondeterministic. Although they have achieved substantial speed-up

for their application in proof-carrying code, it is not as general as the technique we

have presented here. The presented indexing technique is designed as a perfect filter

for linear higher-order patterns. For objects which are not linear higher-order patterns,

we solve variable definitions via higher-order unification, but avoid calling higher-order

unification on the original term.

So far, we have implemented and successfully used higher-order substitution trees

in the context of higher-order tabled logic programming. The table is a dynamically

built index, i.e. when evaluating a query we store intermediate goals encountered dur-

ing proof search. One interesting use of indexing is in indexing the actual higher-order

logic program. For this we can build the index statically. Although the general idea

of substitution trees is also applicable in this setting there are several important opti-

mizations. For example, we can compute an optimal substitution tree via unification

factoring [18] for a static set of terms to get the best sharing among clause heads.

In the future, we plan to adopt and optimize substitution tree indexing for indexing
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higher-order logic programming clauses.
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Chapter 6

An implementation of tabling

Tabled logic programming has been successfully applied in a wide variety of applica-

tions, such as parsing, deductive databases, program analysis and more recently in

verification through model checking. In previous chapters, we have shown that tabling

techniques are also very useful and effective in the higher-order setting. Although the

overall idea of tabling is easy to understand on an informal level, there is surprisingly

little work on how to implement a tabled logic programming interpreter efficiently and

describing its essential features.

The most successful implementation of tabling is found in XSB. It is also the only

general Prolog system that offers tabling implemented at the level of the underlying

abstract machine. XSB is based on the SLG-WAM, an extension of the WAM (Warren

Abstract Machine) with special tabling support [62]. Techniques like suspending and

resuming computation, require a fair amount of modifications to some of the WAM’s

instructions. Although this approach seems to work efficiently, it is difficult to under-

stand and to re-implement. The WAM itself already “resembles an intricate puzzle,

whose many pieces fit tightly together in a miraculous way” [5]. The SLG-Wam is

a carefully engineered extension where special support for tabling is woven into the

WAM instruction set. This results in a small run-time overhead (roughly 10%), even

if no tabled predicate is executed. To remedy this situation and provide a simpler

explanation to implementing tabling, Demoen and Sagonas [20, 21] propose a different

approach. Execution environments of the WAM are preserved by copying the state to

a separate memory area. In theory, this approach can be arbitrarily worse, but it is
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competitive and often faster than SLG-WAM in practice. Although this approach does

not require modifications to the WAM instructions, it is still very closely tied into the

WAM.

In this chapter, we describe the implementation of a tabled higher-order logic pro-

gramming interpreter in a functional language like SML. The implementation follows

closely the previous semi-functional implementation of the higher-order logic program-

ming interpreter [23]. We describe a true tabled interpreter, rather than how to imple-

ment tabling within logic programming or within the WAM. We give an operational

interpretation of the uniform proof system presented in Chapter 4. In particular, we

will focus on some of the implementation issues such as suspending and resuming com-

putation, retrieving answers, and trailing. It is intended as a high-level explanation of

adding tabling to an existing logic programming interpreter. This hopefully enables

rapid prototype implementations of tabled logic programming interpreters, even for lin-

ear logic programming and other higher-order logic programming systems. In addition,

it facilitates the comparisons and experiments with different implementations.

6.1 Background

We first describe on a high-level how the higher-order logic programming interpreter

works operationally. We omit a discussion on compilation, but rather focus on the

uniform proof system given in Chapter 4. The interested reader can find a first step

on compiling uniform proofs into an intermediate language in [9]. Here we give an

operational view of the overall search and discuss some of the implementation issues.

Computation starts by decomposing the goal A, which we are trying to prove, until

it is atomic.

1. Given an atomic goal P , look through the program Γ to establish a proof for P .

2. Given goal A1 → A2, add the dynamic assumption A1 to the programs in Γ and

attempt to solve the goal A2 from the extended program Γ, c:A1.

3. Given a universally quantified goal Πx:A1.A2, we generate a new parameter c,

and attempt to solve [c/x]A2 in the extended program context Γ, c:A1.
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Once the goal is atomic, we need to select a clause from the program context Γ to

establish a proof for P . In a logic program interpreter, we consider all the clauses in

Γ in order. First, we will consider the dynamic assumptions, and then we will try the

static program clauses one after the other. Let us assume, we picked a clause A from

the program context Γ and we now need to establish a proof for P .

1. Given the atomic clause P ′, we establish a proof for the atomic goal P by checking

if P ′ unifies with P . If yes then succeed. Otherwise fail and backtrack.

2. Given the clause A2 → A1, we attempt to establish a proof of the atomic goal P ,

by trying to use the clause A1 to establish a proof for P . If it succeeds attempt

to solve the goal A2. If it fails, backtrack.

3. Given the clause Πx:A1.A2, we establish a proof for the atomic goal P by gen-

erating a new logic (existential) variable u, and use the clause [[u[id]/x]]A2 to

establish a proof for the atomic goal P .

There are several issues which come up when implementing this operational view.

The first question is how to implement backtracking. The fundamental idea underlying

our implementation is the concept of continuations. When solving a goal A2 → A1, we

continue decomposing the clause A1 to establish a proof for a goal P and delay the task

of solving the sub-goal A2 into the success continuation. So we can think of the success

continuation as a stack of open proof obligations. Once we succeed in using the clause

A1 to establish a proof for the goal P , we call the success continuation. Backtracking

is achieved by using the internal failure continuation of the ML interpreter. The failure

continuation is triggered by simply returning from solving the goal A1 with an unin-

teresting value. This is a technique which goes back to Carlson [7] and is described in

more detail in [23].

The second implementation choice concerns the representation of variables. We use

de Bruijn indices and explicit substitutions to implement bound variables. De Bruijn

indices allow a standard representation without introducing names for bound variables.

As a consequence, we need not re-name bound variables. Explicit substitutions [1] allow

us to delay applying substitutions. In other words, substitutions are handled lazily in

the implementation and only applied when needed. A similar idea has been employed
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in the Teyjus compiler [40] for λProlog seems crucial to efficient implementations of

higher-order systems. The third choice concerns the handling of existential (logic)

variables. We implement existential variables via references and destructive updates.

This has several consequences. First, the existential variables occur free in objects. This

is unlike the modal variables used in the theoretical development which are declared

in a modal context ∆. We can translate an object U with free existential variables

into a closed object U ′ where existential variables are interpreted as modal variables

and declared in a modal context ∆ by abstracting over the free existential variables in

U . The second consequence is that whenever we instantiate an existential variable to

a term, any occurrence of this existential variable is immediately updated. Since these

updates continue to exist until we undo them, we need to make provisions to roll back

the instantiation of existential variables upon backtracking. We use a global trail to

keep track of instantiations of existential variables. The trail is implemented as a stack

of references. At a choice point, we set a marker on the trail. Upon backtracking to

this choice point, we uninstantiate all variables, which have been pushed onto the trail

and simultaneously unwind the trail (that is pop the stack). Therefore, we proceed as

follows: when selecting a clause A from the program context Γ to solve an atomic goal

P , we set a choice-point on the trail. If we cannot establish a proof for the goal P

using clause A, we come back to this choice-point, unwind the trail, and try the next

clause from Γ.

Finally, we are not only interested in establishing that there exists a proof for a goal

P , but in addition to the answer substitution, we return the actual proof as a proof

term. During proof search, we simultaneously construct a proof term M . This is done

in the success continuation.

A more detailed description of a semi-functional implementation of a higher-order

logic programming interpreter together with ML-code can be found in [23].

6.2 Support for tabling

Next, we consider the implementation of a tabled higher-order logic interpreter. In

Chapter 4, we described the underlying idea and presented an abstract view of a tabled

higher-order logic programming interpreter. Here we discuss the implementation of the
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tabled higher-order logic programming interpreter in a semi-functional language.

Tabling eliminates redundant and infinite computation by memoizing subcomputa-

tions and re-using their results later. When attempting to solve an atomic goal P in

the program context Γ, we first check if the type family that P belongs to is marked

tabled. If it is not, then we proceed as previously. If it is marked as tabled, then we

proceed as follows: We check if we have seen the atomic goal P in context Γ before.

If the current atomic goal P in context Γ is not in the table, we add it and proceed.

Once we have established a proof for it, we will add the answer to it in the table.

If the atomic goal P in context Γ is already in the table, then there are two choices:

If there are answers available, we would like to re-use them and continue. If no answers

are available, then we need to suspend the execution and resume computation later

on. In this case, we copy the trail together with the atomic goal P and the program

context Γ and execution just fails. The overall search backtracks to the last choice

point.

To illustrate the search process, recall the example given in Chapter 4. We first

repeat the two clauses of the implementation of the type system including subtyping.

tp sub : of E T’ tp lam : of (lam ([x] E x)) (T1 => T2)

<- of E R <- ({x:exp} of x T1 -> of (E x) T2).

<- sub R T’.

Next, recall the proof tree for computing the types of the identity function.
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tp_sub

tp_lam u:of x T1     of x T2

u:of x T1     of x R, 

u

tp_sub

sub R T2

T1 = T3, T2 = T3, T = T3 => T3

3
5

1

2

4

of (lam [x] x) T

of (lam [x] x) R,

sub R T

Stage 1

Suspend

Suspend

We start with the goal of (lam [x] x) T marked with number (1). Before we apply

the program clause tp sub, we put a choice-point marker on the trail. Once the head of

E T’ of the clause tp sub unifies with the current goal, we add to the trail T’ := T. Since

the goal of (lam [x] x) R is a variant of the original goal, computation is suspended, and

the overall search fails and backtracks to the last choice point. Then we try the next

clause tp lam. When we unify the head of (lam [x] E x) (T1 => T2) with the current

goal, we add two more entries to the trail. The evolution of the trail up to subgoal (4)

is depicted below. Each column is labelled with the subgoal it belongs to.
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mark

(1)

T’ := T

mark

(2)

mark

(1)

T := T1 ⇒ T2

E := [x] x

mark

(3)

T2 := T3

T1 := T3

mark

T := T1 ⇒ T2

E := [x] x

mark

(4)

T := T1 ⇒ T2

E := [x] x

mark

(3)

Next, we will discuss the table, answers and suspended goals.

6.2.1 Table

The table plays a central role in the overall design of the tabled logic programming

interpreter. Recall the definition of a table given earlier in Chapter 4. A table T is

a collection of table entries. A table entry consists of two parts: a goal ∆; Γ
u−→ a

and a list A of pairs, answer substitutions ∆′ ` θ : ∆ and proof terms M , such that

∆′; [[θ]]Γ
u−→ [[θ]]M : [[θ]]a is a solution.

A central question is then how to implement the table, store the table entries and

answers, and define the right interface for accessing the table. We start with some

general remark about the table and its entries. First of all, we implement for each

tabled predicate a separate table and each table will be stored in a reference cell. So

we have an array where the element i of the array contains the pointer (or reference)

to the table of predicate i.

Second, we need to ensure quick table access. As we have shown in Chapter 3,

higher-order pattern unification may not be efficient in general, but we can obtain an

efficient algorithm for linear higher-order patterns. To ensure quick table access we

therefore linearize the atomic goal P and the context Γ. As a result, we obtain a linear

atomic goal al and a linear context Γl together with some variable definitions e.

Third, table entries must be closed in the sense that they are not allowed to con-

tain any references to existential variables. References to existential variables may be

instantiated during proof search which pollutes the table and would change the table

entries destructively. To avoid this problem, we de-reference and abstract over all the

existential variables in a term before inserting it into the table. We translate a term

where existential variables may occur free into a term which is closed and existential
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variables are translated into modal variables which are bound in the modal context ∆.

Abstraction of the atomic goal P in program context Γ returns four parts:

• ∆: is the context for the modal variables

• Γ′: is the abstraction of the context Γ

• P ′: is the abstraction of the atomic goal P .

• e′: is the abstraction of the variable definitions e.

By invariant the abstracted atomic goal P ′ is well-typed in the ordinary context Γ′

and the modal context ∆ modulo the variable definitions e′. A table entry consists of

this abstraction together with a reference to the corresponding answer list.

modal context dynamic context atomic goal variable definitions Answer Ptr

∆ Γ′ P ′ e answRef

Table Entry

Now we can check if the abstracted linear atomic goal P ′ together with the context

Γ, the modal context ∆ and the variable definitions e is already in the table. To be

more precise, if there is a table entry which is a variant of the abstracted goal. Since

we use de Bruijn indices for representing bound variables, and all entries are in normal

form, this can be done by checking syntactic equality. If the result is yes, we will return

a pointer to the answer list. If the result is no, we add it to the table together with a

pointer to an empty answer list and also return a pointer answRef to the still empty

answer list. The intention is that once the goal P in context Γ has been solved, we add

the answer substitution to the answer list answRef is pointing to. This is done in the

success continuation.

This task will be just added to the success continuation. In other words the success

continuation is not only a stack of open proof obligations (subgoals), but also of other

obligations such as adding answers to the table. We illustrate this idea again by

considering the previous example. At node (5), the success continuation looks as

follows.
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solve (sub R T2) using the program clauses and the dynamic assumption of x T

add answers for T1 and T2 to the answRef corresponding to of x T1 ` of x T2

add answer for T to answRef corresponding to of (lam [x] x) T

initial success continuation

It not only contains the open subgoal sub R T2, but also the tasks of adding answers.

It is important to note that adding answers to a table entry does not require another

table lookup, since we have direct access to the reference of the corresponding answer

list.

To facilitate adding answer substitutions, we extend the abstraction process slightly.

Given a linear atomic goal al in a context Γl and the variable definitions e let X1, . . . , Xn

be the free existential variables occurring in it. We not only compute the abstraction

∆; Γ′ ` a′ together with the variable definitions e′, but also return a substitution θ from

the context ∆ to the existential variables X1, . . . , Xn. In other words, the substitution

θ, maps every abstracted existential variable in ∆ to its reference such that [[θ]]Γ′ ` [[θ]]a′

modulo the variable definitions [[θ]]e′ is a variant of the original the original goal Γ ` a.

Creating such a substitution θ for the existential variables is important for mainly

two reasons: (1) As we will establish a proof for the goal Γ ` a, its existential variables

will be instantiated. As a side-effect, θ will exactly contain these instantiations. Once

we have found a proof for Γ ` a, θ will contain the answer substitution, and we can

directly add θ to the answer list, without another additional table lookup. (2) Any

retrieval operations will require no additional table lookup up. Since the substitution

θ captures the free variables in the goal, and we have direct access to the answer list,

subsequent retrieval operations do not again traverse the index together with the term,

but can work solely on the substitutions. Therefore, we do exactly one lookup in the

table for each tabled goal.

6.2.2 Indexing for table entries

The table itself is implemented via substitution tree indexing. We index on the ab-

stracted linear atomic goal. At the leafs of the substitution tree we not only store the

variable definitions e′, but also the context Γ and the modal context ∆. In addition,

we keep a pointer to the corresponding answer list at the leaf (see Figure 6.2.2).
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There have been several reasons for this design, which we briefly discuss. First,

indexing on the goal, rather than on the context ∆ and Γ, allows for more structure

sharing, since often the goals are similar, but the context Γ and ∆ may differ. In

addition it allows direct access to the goal of the table entry and allows to implement

a table for each type family. Finally, the design is suitable for other optimization such

as strengthening or context subsumption.

6.2.3 Answers

Next, we will describe adding answers and the answer list itself in more detail. Once we

have solved a tabled goal, we need to add the answer substitution θ to the answer list.

Recall that checking whether the table entry (∆; Γ′; a′; e) is already in the table, returns

a reference answRef to an answer list. Once we have established a proof for this entry,

we need to add the corresponding answer substitutions θ to answRef . When adding

the answer substitution to the answer list, there are two important observations to take

into account. First, answer substitutions θ may contain free existential variables, as the

previous example illustrates. Again we need to ensure that any answer substitutions

in the table are ”closed” to avoid pollution of the table. Therefore we abstract over

the answer substitution. Let θ′ together with the modal context ∆ be the abstraction

of the answer substitution θ.

The second observation is that we not only generate answer substitutions, but also

proof terms. One way to handle this issue is to store not only the abstracted answer

substitution θ′ together with the modal context ∆, but also the proof term. In the

previous example, the corresponding proof term to node (3) is (tp lam [u:of x P ] u)1.

In practice however the corresponding proof terms may be large and may lead to severe

performance penalties. Since the size of the actual proof term may be large, it would

not be very space efficient to store them. Second, we also would need to compute

proof terms simultaneously during proof search. This also may be expensive. In the

implementation, we therefore choose to only carry around a skeleton of the proof term,

from which the actual proof can be reconstructed. The skeleton keeps track of clauses

have been applied to establish a proof, without keeping track of typing dependencies.

For static clauses we take the identifier of the clause name and for dynamic clauses we

1We omitted here the implicit argument x. The explicit form is (tp lam [x:exp] [u:of x P ] u).
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take their position in the dynamic context Γ. So in the previous example, we store the

identifier of tp lam and a 1, denoting we used the first dynamic assumption. This is

a simplified version of Necula and Rahul’s proposal of oracles [42]. Necula and Rahul

are even more minimalistic since they only encode the non-deterministic choices in the

proof. In our setting, the answer list is set up as follows:

modal context answer substitution skeleton

∆′ θ′ sk

Answer List

Finally, we need to have some more control on what answer substitutions are allowed

to be re-used. As described previously, we enforce a multi-stage strategy, where we are

only allowed to use answers from previous stages. Hence we also add a lookup counter

n, which indicates any element greater then n is not allowed to be used.

The access cost for answers is proportional to the size of the answer substitution,

rather than to the size of the answer itself. This idea is also known as substitution

factoring [59]. As we see, this idea can be adopted to the higher-order setting in a

straightforward way and modal substitutions inherently support substitution factoring.

Every answer is essentially a reference to the actual answer record which allows direct

access to answer substitutions.

To achieve a more efficient representation of the solutions, it is possible to replace

the list of pairs, answer substitutions and proof skeletons with a trie. This would

allow sharing of prefixes of substitutions. However, since in most example we did not

encounter large lists of answer substitutions, we have not pursued this optimization.

6.2.4 Suspended goals

If we detect a a goal which is a variant of a table entry, we need to suspend the

computation. We only need to store enough information to recover and retrieve answers

once they become available. In fact, we only need to store a substitution θ, which

contains the free existential variables, such that · ` θ : ∆. In addition, we store

the success continuation sc and the pointer answRef to the answer list. The idea is

that once answers become available, we instantiate the substitution θ with the answer
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substitution from answRef . As we have direct access to answRef and we need no

additional table lookup, we do not need to store the complete goal. We also do not

store the stack of failure continuations. When resuming the suspended goals, we will

not backtrack past them, since any earlier choice points have already been explored.

A similar observation has been made by Demoen and Sagonas [19]. This also justifies

our choice to re-use the ML internal continuation as a failure continuation, even if we

add tabling to the interpreter.

This is however still not quite sufficient. The problem stems again from the existen-

tial variables which are implemented via references. Once we come back and resume

the computation, the free existential variables in the substitution θ and in the success

continuation may not be in the same state anymore. Therefore, we need to be able to

capture the state of the existential variables and reconstruct it. We do this by copying

the trail and storing a copy of the trail together with the substitution θ, the success

continuation and the pointer to the answer list.

When copying the trail, we can remove all the marks from the trail, since we do not

need to keep the choice points. In other words, we only need to store pairs of references

and terms.

T’ := T1

mark

T := T1 ⇒ T2

mark

ref

Trail

⇒
T’ T1

T T1 ⇒ T2

E [x] x

ref. inst.

Copied Trail

Copying the trail may be quite expensive and it may be possible to share common

prefixes of the trails in suspended goals or even with the current trail. However, we

have not investigated this idea further.

Finally, we need some more control on which answers from the answer list have been

already used. Therefore, we associate with every suspended goal a lookup pointer k to

which answers have already been used. So the suspended goals consist of the following

5 parts.
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substitution success cont. copied trail lookup ptr reference to answer

θ sc ctrail k answRef

Suspended Goal

All the suspended goals are stored in a global queue, and resumed in the order they

were suspended.

6.2.5 Resuming computation

To resume suspended goals, we set a choice-point and reset the existential variables on

the copied trail to their previous state when we suspended the computation. Then we

resume the computation by retrieving answers from the answer list answRef.

Recall that we use a multi-stage strategy, which restricts the the re-use of answers

to the ones which have been derived in previous stages. Consider the following answer

list to illustrate.

(∆1, θ1), sk1 (∆2, θ2), sk2 (∆3, θ3), sk3 (∆4, θ4), sk4 . . .

k n

n marks the answers generated in previous stages and any answers smaller than n

are allowed to be re-used. The index k associated with every suspended goal, indicates

that all answers smaller than k have already been re-used. Hence, we only retrieve

answers between k and n.

Retrieval of an answer substitution is done in two steps: First, we create new

existential variables for each element in ∆i, s.t. ρ is a substitution with these fresh

existential variables from modal context ∆i to the empty context. The composition

[[ρ]]θi then re-introduces fresh existential variables to the closed answer substitution

θi. Second, we unify [[ρ]]θi with the substitution θ. If this succeeds, we return the

corresponding proof skeleton ski to the success continuation and proceed to solve the

success continuation.

If re-using the answer substitution θi failed, we backtrack the the last choice-point,

and reuse the next answer substitution θi+1. If all answer substitutions have been

re-used, we backtrack and try another suspended goal.
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6.2.6 Multi-staged tabled search

Tabled search proceeds in stages. A stage terminates if all the nodes in the proof search

tree are either success nodes or failure nodes. Once a stage terminates, we check if the

table has changed, i.e. new answers have been added. If this is the case, then we revive

the suspended goals and resume computation with the newly derived answers. If no

new answers and no new table entries have been added, i.e. the table did not change,

we are done and the search space has been saturated.

At the end of each stage, we update the answer pointer n, which indicates which

answers were generated in previous stages and are therefore allowed to be reused.

6.3 Variant and subsumption checking

So far we have described tabled higher-order logic programming based on variant check-

ing. The implementation is carefully designed and makes use of some important invari-

ants to achieve efficient execution. For example, for each tabled goal we do exactly one

lookup in the table. By returning the pointer to the answer list, subsequent retrieval

operations only access the answer list, but do not again traverse the index together

with the term. Moreover, no overhead is imposed for non-tabled evaluation, except one

check whether the predicate is declared tabled or not. Any changes needed for tabling

do not affect the execution of non-tabled predicates.

Subsumption checking allows us to check whether there is a more general entry

already in the table such that the current goal is an instance of it. A clear advantage

of subsumption checking is that it can potentially detect more loops and leads to

smaller table sizes. Unfortunately, we cannot maintain all the invariants we exploit

for variant-based lookups. In particular, there may be more than one entry which is

more general than the current goal. Therefore a complete subsumption-based strategy

needs to return all answer lists of these entries. This means that for each tabled goal,

we may need more than one table lookup. When we encounter a tabled goal, we need

to check whether it is already in the table. Later, any time when we retrieve answers

for it, we need to perform another table-look up.

Experience in XSB has shown that although the table size may be smaller, the

additional overhead required for subsumption often does not lead to performance im-
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provements in tabled logic programming.

In the current implementation of the tabled higher-order logic programming in-

terpreter, we have tried to minimize the changes and preserve the design for variant-

checking. In particular, when a goal is added to the table, we still return a pointer to

its answer list, and we will retrieve answers only from this list. This may possibly delay

the reuse of answers and lead to incompleteness, but it avoids the effort of maintaining

two different implementations.

The design previously discussed is then extended to allow subsumption checking

in the following way: Look-up in the table is subsumption based, i.e. we check if the

current abstracted linear atomic goal P ′ in context Γ′ and modal context ∆′ is an

instance of a table entry ∆; Γ ` P . Recall that all table entries are in canonical form.

Therefore, ∆′; Γ′ ` P ′ is an instance of ∆; Γ ` P , if there exists a substitution ρ such

that ∆′ ` ρ : ∆ and ∆; [[ρ]]Γ ` [[ρ]]P
c⇐⇒ P ′. In this case, we return the substitution

ρ together with a reference answRef to the associated answer list. If ∆′; Γ; ` P ′ is a

variant of the table entry ∆; Γ ` P then ρ will be a renaming substitution.

For retrieval, we then unify the composition of ρ and σ with the re-instantiated

answer substitution θi. This is a conservative approach, which ties each goal to a unique

table entry and avoids another table lookup, once we retrieve answers. Alternatively,

we could do another table lookup when retrieving answers. We retrieve all answer lists

of table entries such that the current goal is an instance of the entry. Note that in

general there may be more than one such table entry. This may allow us to retrieve

answers earlier, because we are not tied to one table entry. However, it requires an

additional lookup every time we retrieve answers.

Although subsumption-checking allows many more optimizations and may lead to

smaller tables, we have not found a substantial performance improvement. This is in

fact consistent with observations made in the XSB system with subsumption-based

tabling. On the other hand, theorem provers always rely on subsumption rather than

variant checking to eliminate redundancy. As we will discuss in the next Chapter,

subsumption-based checking may be more useful in higher-order theorem proving.
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Chapter 7

Higher-order theorem proving with

tabling

In this chapter, we concentrate on automating proof search in Twelf. Twelf not only

provides a higher-order logic programming interpreter, but also a meta-theorem prover

for reasoning with the inference rules of a deductive system and also about deduc-

tive systems using induction. The meta-theorem prover supports three key operations,

splitting a proof into different cases, generating instances of the induction hypothe-

sis and deriving a conjecture from a given set of assumptions and rules of inference.

Using these three key operations, Twelf can prove many theorems and lemmas about

specifications automatically.

Currently, the general proof search strategy used in Twelf is based on iterative

deepening proof search. Although this works in many examples, it also has clear

limitations. First, as the user has to specify a bound, failure of proof search becomes

meaningless. The user does not know whether the bound was too low or whether

there exists no proof for the conjecture. Moreover, often the performance of the search

procedure highly depends on choosing the minimal bound. Although in theory it

should not matter, if we give the minimal bound, in practice this may often be crucial

for finding the proof.

Second, redundant computation may severely hamper the performance of proof

search in Twelf in larger and more complex specifications. To prove properties about

deductive systems often requires several lemmas and their application may lead to an
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explosion in the search space. Iterative deepening search does not scale well to larger

examples and often fails to prove key lemmas and theorems due the large search space.

The experience with memoization in logic programming in the other hand suggests that

memoization in theorem proving may be useful to eliminate redundancy and artificial

depth bounds on the proof search in many cases. In this chapter, we present a generic

meta-theorem prover based on memoization and discuss several examples including

type preservation proofs for type-system with subtyping, decomposition lemmas for

a reduction semantics using evaluation context, several inversion lemmas about re-

finement types, and reasoning in classical natural deduction calculus. These examples

include several lemmas and theorems which were not provable with iterative deepening,

but can be proven with memoization-based search. Moreover, we show that in some

cases no bound is needed on memoization-based search. This allows us to disprove

some sub-cases in inductive proofs and show that no proof exists to the theorem. This

is an important step towards a more robust and more efficient meta-theorem prover.

7.1 Example: type system with subtyping

As a motivating example, we discuss a type system with subtyping which we is a

variant of the system already introduced in Chapter 4. In particular, we will present

some proofs relating the declarative subtyping relation to a deterministic subtyping

algorithm and show that the deterministic subtyping algorithm is sound and complete.

Finally we show that type preservation holds.

To make the chapter self-contained, we start with defining the types. Included are

the base types nat for natural numbers which includes the positive numbers and zero.

zero denotes the number zero and pos contains all positive numbers. Numbers are

constructed by z and the successor function s .

Expressions M ::= z | s M | lam x.M | app M1 M2 | pair M1 M2 |
fst M | snd M | case M of z⇒M0 | (s x)⇒M1

Types A ::= nat | zero | pos | A1 → A2

The subtyping judgment for this language has the form :

A ≤ B Type A is a subtype of B

The subtyping relation is defined straightforwardly using reflexivity and transitivity
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by the following rules

A ≤ A
A1 ≤ A2 A2 ≤ A3

A1 ≤ A3

pos ≤ nat zero ≤ nat

A1 ≤ B1 A2 ≤ B2

A1 ∗ A2 ≤ B1 ∗B2

B1 ≤ A1 A2 ≤ B2

A1 → A2 ≤ B1 → B2

Next, we give the typing judgment and the evaluation judgment:

Γ `M : A Term M has type A in context Γ

M ↪→ V Term M evaluates to value V

Typing rules

Γ `M : A′ A′ ≤ A
Γ `M : A

Γ ` z : nat Γ ` z : zero
Γ `M : nat

Γ ` s M : nat
Γ `M : nat

Γ ` s M : pos

Γ `M : nat Γ `M1 : A Γ, x:nat `M2 : A

Γ ` case M of z⇒M1 | (s x)⇒M2 : A

Γ `M : zero Γ `M1 : A

Γ ` case M of z⇒M1 | (s x)⇒M2 : A

Γ `M : pos Γ, x:nat `M2 : A

Γ ` case M of z⇒M1 | (s x)⇒M2 : A

Γ `M1 : A1 Γ `M2 : A2

Γ ` pair M1 M2 : (A1 ∗ A2)

Γ `M : (A1 ∗ A2)

Γ ` fst M : A1

Γ `M : (A1 ∗ A2)

Γ ` snd M : A2

Γ, x:A1 `M : A2

Γ ` lam x.M : (A1 → A2)

Γ `M1 : (A2 → A) Γ `M2 : A2

Γ ` app M1 M2 : A

z ↪→ z
M ↪→ V

s M ↪→ s V

Evaluation rules

M ↪→M ′ N ↪→ N ′

pair M N ↪→ pair M ′ N ′
M ↪→ pair V1V2

fst M ↪→ V1

M ↪→ pair V1V2

snd M ↪→ V2

205



CHAPTER 7. HIGHER-ORDER THEOREM PROVING WITH TABLING

M ↪→ z M1 ↪→ V1

case M of z⇒M1 | (s x)⇒M2 ↪→ V1

M ↪→ (s V2) [V2/x]M2 ↪→ V2

case M of z⇒M1 | (s x)⇒M2 ↪→ V2

lam x.M ↪→ lam x.M

M1 ↪→ lam x.M ′ M2 ↪→ V2 [V2/x]M ′

app M1 M2 ↪→ V

The following substitution principle holds:

Lemma 87 (Substitution principle)

If Γ, x:A `M : B and Γ ` N : A then Γ ` [N/x]M : B.

Proof: Induction on the first derivation. 2

The subtyping rules above do not immediately yield an algorithm for deciding

subtyping. Thus we will present an algorithmic subtyping judgment and show that it

is equivalent to the one above.

A�B Type A is a subtype of B

nat � nat pos � pos zero � zero

zero � nat pos � nat

A1 �B1 A2 �B2

(A1 ∗ A2) � (B1 ∗B2)

B1 � A1 A2 �B2

(A1 → A2) � (B1 → B2)

Theorem 88 (Admissibility of reflexivity)

For any type A, there exists a derivation A� A.

Proof: Structural induction on A. 2

Theorem 89 (Admissibility of transitivity)

If D1 : A�B and D2 : B � C then E : A� C.
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Proof: The size of a judgment A � B is determined by the size of A plus the size of

B. Induction on the size of the judgment1. 2

Theorem 90 (Soundness and completeness of algorithmic subtyping)

1. If E : A1 � A2 then D : A1 ≤ A2

2. If D : A1 ≤ A2 then E : A1 � A2

Proof: Soundness: Proof by structural induction on E .

Completeness: Proof by structural induction on D referring to reflexivity and transi-

tivity lemma. 2

To prove type preservation, we need a couple of inversion lemmas.

Theorem 91 (Inversion)

1. If Γ ` z : A and A� pos then this is a contradiction.

2. If Γ ` s M : A and A� pos then Γ `M : nat.

3. If Γ ` s M : A and A� nat then Γ `M : nat.

4. If Γ ` s M : A and A� zero then this is a contradiction.

5. If Γ ` lam x.M : A and A� (A1 → A2) then Γ, x:A1 `M : A2.

6. If Γ ` pair M1 M2 : A and A� (A1 ∗ A2) then Γ `M1 : A2 and Γ `M2 : A2.

Proof: All the proofs follow by structural induction on the first derivation. 2

Theorem 92 (Type preservation)

If D : Γ `M : A and E : M ↪→ V then Γ ` V : A.

1Because of the contra-variance of types in the subtyping rule for function types, the induction
ordering is a little tricky. In Twelf, we use a trick to handle this induction. We use simultaneous
induction on D1 and D2 and define a second copy of the transitivity relation to handle the contra-
variance case, by a structural nested induction on D1 and D2.
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Proof: Structural lexicographic induction on D and E using the previously proven

lemmas. We only show a few cases here to illustrate the overall structure of the proof.

Case D =

D1

Γ `M : B
D2

Γ ` B ≤ A

Γ `M : A

M ↪→ V by assumption

Γ ` V : B by induction hypothesis

Γ ` V : A by tp sub

Case D =

D1

Γ `M1 : (A→ B)
D2

Γ `M2 : A

Γ ` (app M1 M2) : B

app M1 M2 ↪→ V by assumption

M1 ↪→ (λx.M ′) and M2 ↪→ V2 and [V2/x]M ′ ↪→ V by inversion

Γ ` V2 : A by induction hypothesis

Γ ` λx.M ′ : (A→ B) by induction hypothesis

Γ, x:A `M ′ : B by inversion lemma

Γ ` [V2/x]M ′ : B by substitution lemma

Γ ` V : B by induction hypothesis

Case D =

D1

Γ `M : (A ∗B)

Γ ` (fst M) : A

fst M ↪→ V1 by assumption

M ↪→ (pair V1 V2) by inversion

Γ ` (pair V1 V2) : (A ∗B) by induction hypothesis

Γ ` V1 : A by inversion lemma

2

The proofs are straightforward by hand. We distinguish cases on the derivations (or

on the type), reason by induction hypothesis, and apply lemmas or rules of inference

to deduce the correct conclusion. On the other hand, these proofs, in particular the

final type preservation theorem, are quite challenging for an automated meta-theorem

prover.
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7.2 Twelf: meta-theorem prover

In previous chapters, we outlined how to implement the previous type-system in Twelf

as a higher-order logic program and discussed how to execute. In this chapter, we are

interested in automating the reasoning with and about deductive systems. Examples of

such meta-reasoning are the admissibility lemmas and the equivalence theorem about

the refinement type systems in the previous section. We also refer to these properties

as meta-theorems.

Schürmann showed in his Ph.D. thesis [63] that it is possible to reconcile higher-

order abstract syntax and inductive reasoning in theory and even automate the induc-

tive reasoning in practice. The theoretical development is complex, and we refer the

interested reader to [63, 64]. In this section, we review the design and implementation

of the inductive meta-theorem prover. Closely following the informal proof above, the

meta-theorem prover has three main operations it iterates over. Case analysis (reason-

ing by inversion), computing instances of the induction hypothesis, proof search where

we directly prove the current conclusion from the current proof assumptions and the

rules of inference. Proof assumptions are either instances of the induction hypothe-

sis or other assumptions generated applying case analysis, and assumptions from the

statement of the theorem. Note that generating instances of the induction hypothesis

is separated from proof search itself and added to the set of proof assumptions. During

proof search, induction hypotheses are treated as any other proof assumptions.

The design reflects the three key operations in the informal proof: analyzing cases,

generating instances of the induction hypothesis, and deriving a proof for using infer-

ence rules and proof assumptions. The overall meta-theorem prover simply iterates

over all the three operations, until a proof for all open cases has been found. It is

important to point out, that the meta-theorem prover can only make progress in the

proof, once proof search has failed to show that the conclusion is derivable from the cur-

rent proof assumptions. This is the pre-requisite to splitting a conjecture into different

cases. Hence quick failure is essential to the overall performance of the meta-theorem

prover.

Consider the proof for type preservation given earlier. First the meta-theorem

prover will try to show that F : Γ ` v : a is derivable from the rules of inference, the

lemmas and the assumptions D : Γ ` m : a and E : m ↪→ v. We write small letters v, m,
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Induction hypothesis generation

program clauses
lemmas
proof assumptions
induction hypotheses

induction hypothesis

proof assumptions

Case Splitting

Proof search based on logic programming

depth

Figure 7.1: Design of the induction meta-theorem prover

a to indicate these variables are universal and are treated like constants. If direct proof

search fails, then we split the conjecture into different cases. There are two possibilities:

case analysis on E : m ↪→ v and D : Γ ` m : a. Using heuristics, the meta-theorem

prover chooses to split on the typing derivation D : Γ ` m : a. Applying inversion on

the subtyping rule, this leads to the new proof assumptions Γ ` m : a′ and a′ ≤ a.

Next, we generate Γ ` v : a′ which is an instance of the induction hypothesis. Finally,

using all these assumptions, we search for a proof of Γ ` v : a. We can establish a

proof for it, but using the proof assumption a′ ≤ a, the induction hypothesis Γ ` v : a′

and the subtyping rule.

To complete the proof, we need to consider the remaining 12 cases for typing rules.

As the example illustrate, generic proof search plays an important role in establish-

ing a proof for type preservation automatically. It is first used to show that no proof
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exists for the original statement F : Γ ` v : a, which is a prerequisite for applying

case-analysis. Second, it is used to close the proof in each of the cases after induction

hypotheses are generated.

Schürmann adopted in his Ph.D. thesis the simplest solution possible for searching

for a proof given a set of assumptions. In principle, we can just use the proof search pro-

cedure of the logic programming interpreter to search for a proof. The main drawback

of the depth-first search strategy used in the logic programming is that it is incomplete

and may get stuck in a branch, and never consider other more fruitful branches in

the proof tree. Therefore, the approach taken in [63] is to replace the incomplete and

unfair depth-first proof search strategy of the logic programming interpreter with the

fair bounded iterative deepening proof search. This means proof search will still be

incomplete, but at least we can switch to other potentially more fruitful branches in

the proof tree, once we have reached the bound. Although this seems to work well

in many examples, it has several shortcomings: First, the user has to specify a depth

bound. This has two consequences. If a proof does not exist within the given bound,

then the user does not know whether the stated conjecture is unprovable or the bound

was set to low. As a result, failure is not meaningful in this setting making the task of

developing formal systems and proofs about them frustrating. Second, there may be

redundancy in the proof search hampering the overall performance. Note that quick

failure is essential in the overall design of the meta-theorem prover, to make progress

and split the conjecture in different cases. Let us briefly consider the previous example

for type preservation proof again. Before we can split the conjecture into different

cases, we need to show that F : Γ ` v : a is not derivable from the current proof

assumptions D : Γ ` m : a and E : m ↪→ v, inference rules and lemmas. One of the

inversion lemmas and the subtyping rule are applicable and can be used in the first

step. This can quickly lead to an explosion in the search space. In practice this means

iterative deepening gets bogged down in the very first step and cannot make progress,

thereby failing to establish an inductive proof for type preservation.

Third, iterative deepening search can be quite fragile. The order in which the

inference rules are implemented matters a lot and proving lemmas and adding them to

the database of known facts may have drastic effects on how well proof search performs.

While it is reasonable to ask the user to carefully implement the typing rules, the user

has little control over the use of lemmas and other proof assumptions.
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In this chapter we propose memoization-based search as an alternative to iterative

deepening. Memoization-based search terminates for programs over a finite domain.

For those programs where memoization-based search may not terminate, the user still

has to give a bound, within which the memoization-based search procedure will try

to find a proof or establish that no proof exists. Experiments show that handling

redundancy is critical to prove meta-theorems like the ones above leading to a more

efficient and more powerful meta-theorem prover.

7.3 Generic proof search based on memoization

Memoization-based proof search is based on the tabled uniform proof system given

in Chapter 4. Although the underlying ideas and large parts of the implementation

are shared between tabled higher-order logic interpreter and the memoization-based

higher-order proof search, there are a few key difference: 1) In logic programming,

it is important to maintain an easy to understand and clearly defined operational

semantics. The programmer can then exploit this semantics when writing programs.

For this reason, the programmer may find an unfair but easy to understand strategy

preferable in logic programming. In theorem proving, we want to know if a proof exists

and an unfair search strategy is unacceptable, since it may prevent us from finding

a proof. Since memoization-based proof search does not terminate in all cases, we

cannot eliminate bounds completely. The search procedure will let the user know, if

the search was not completed within this bound. However, as we will show in many

cases the search is complete thereby providing valuable feedback for the user and quick

failure. 2) In logic programming we have a fixed set of program clauses, over which

the programmer has control. On the other hand in meta-theorem proving, we have

additional proof assumptions such as induction hypotheses and lemmas, which are

generated during proof search, and over which the programmer has no control. This

makes the problem of search for a proof harder.

Overall, we have taken a very conservative approach of adding memoization to the

meta-theorem prover. We only replace iterative deepening search procedure with the

new memoization-based search. However after the memoization-based search fails or

succeeds, we clear the memo-table. A more aggressive approach could be to have the
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memo-table survive across iterations. We mainly focus on using variance checking in

the memoization-based search. The main reason has been to minimize the overhead of

maintaining two very different implementations, one for the interpreter and one for the

meta-theorem prover. However, we will show using proofs about refinement types that

unlike higher-order logic programming the use of subsumption can be very valuable in

meta-theorem proving.

We also discuss some of differences of iterative deepening search and memoization-

based search. (1) Iterative deepening means, we first try to find a proof for depth 1

with depth-first search, then we try to find a proof of depth 2 with depth-first search

etc. If the branch is deeper than k, then we fail and backtrack. This means if there

exists a proof with depth k, we may have explored the left-most branches in the search

tree up to depth k. Obviously, if proof search fails, then we have to explore the whole

search space. (2) Memoization-based search bounded by n: we traverse the search

space using depth-first search and memoization. if we explore a branch with depth

greater than n we fail and backtrack. This means although we only needed depth k,

where k is smaller than n, we explored fruitless branches up to depth n. As a result,

it potentially may take longer to find solutions to some problems.

7.4 Experiments

We have carried out several experiments so far, including a refinement type system

(soundness and completeness of algorithmic subtyping algorithm), type-system with

subtyping (soundness and completeness of algorithmic subtyping and type preserva-

tion) and theorem proving in classical natural deduction. The meta-theorems were not

previously provable with the iterative deepening proof search, thereby demonstrating

that memoization-based search leads to a more powerful meta-theorem prover. In ad-

dition, we give some examples which were provable with iterative deepening with a

bound, and can be proven without a bound using memoization-based search.

7.4.1 Type preservation for type system with subtyping

First, we consider the proofs about the type-system with subtyping given earlier. The

proofs themselves are not hard, but the number of applicable lemmas increases the
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search space as we continue. Lemmas are turned into logic programming clauses which

can be used during proof search. For example, the lemma

If Γ ` s M : A and A� pos then Γ `M : nat.

will be turned into the clause
invNat : of M nat

<- of (s M) A

<- A <| pos

From a logic programming view, this clause may lead to an explosion in search space.

Therefore we see that iterative deepening proof search deteriorates if we continue and

prove more lemmas about the type-system. Figure 7.2 gives the run-time for proving

all the lemmas and theorems needed in the type preservation proof. We did not include

any speed-ups in this table since many numbers are very small and for those the speed-

up is not very meaningful.

theorem tabled iterative deep

refl 0.18 0.00

trans 0.29 0.02

sound 0.19 0.01

comp 0.21 0.02

imposAll 0.04 0.00

inv+z+pos 0.08 0.00

inv+suc+pos 0.08 0.00

inv+suc+nat 0.09 0.23

inv+suc+zero 0.10 0.93

inv+lam 0.21 7.27

inv+pair 0.18 ∞
tps 2.89 –

Figure 7.2: Type preservation for system with subtyping

The memoization-based meta-theorem prover has some overhead in managing the

table which leads to slight deterioration in the first few examples. However, in the inver-

sion lemma for functions memoization starts paying off and the proof for the inversion
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lemma for pairs cannot be found by iterative deepening search within a reasonable

amount of time. The main benefits of memoization are not in quickly finding a proof

for a sub-case in the proof, but rather in quickly failing, i.e. in showing no proof exists

from the current proof assumptions, and therefore triggering a case split. The proof of

the inversion lemma for functions for example has between 37 and 67 suspended goals.

The proof of type preservation has between 31 and over 70 suspended goals. All these

loops were detected when proving that it is not possible to derive the conclusion from

the current set of assumptions. Hence, the overall performance improvement is mainly

due to quick failure which allows the theorem prover to make progress. As a result, we

succeed in proving all the lemmas including the final type preservation theorem using

the memoization-based prover. The iterative deepening prover gets stuck during the

proof for the inversion lemma for pairs. Even if we add the inversion lemma for pairs

without a proof to the set of lemmas, the iterative deepening prover does not succeed

in proving type preservation.

7.4.2 Derived rules of inference in classical natural deduction

Next, we show some experiments using classical natural deduction. Proof search in

natural deduction calculi is considered hard. Memoization can lead to quicker proofs

in some examples, while imposing a some performance penalty in others. In Table 7.3,

we give the run-times for proving several derived rules. These examples do not require

induction.

theorem tabled search depth-first-bounded iterative deepening

split’ 9.20 0.19 0.29

join’ 9.18 1.68 1.69

assoc 20.14 450.53 451.49

uncurry 33.45 450.97 452.42

Figure 7.3: Derived rules of inference in NK (classical natural deduction with not, imp,

and, double negation rule)
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7.4.3 Refinement types

In this sections we used the memoization-based prover to proof all the lemmas leading

up to the type preservation theorem. We use an implementation of the type system for

refinement types by Pfenning [17]. For proving these statements, we used subsumption-

based memoization. It is important to note, that this example clearly demonstrates the

use of subsumption, since with variant-based memoization we still cannot find some

proofs. Subsumption is critical to detect quickly that no proof exists and we need

to split the conjecture into different cases. It also is critical to complete some of the

sub-proofs2.

Iterative deepening works fine for the first few proofs. In fact, its performance is

better than memoization-based proof search. However, it cannot prove the inversion

lemmas. Attempting the proof for the inversion lemma for functions, iterative deep-

ening cannot find a proof within a reasonable amount of time. When skipping the

inversion lemma for functions, we are able to make some more progress by proving the

two impossibility lemma, but we get again stuck when proving the lemma imp+1+zero.

Some of the lemmas, we are able to prove individually. However, this is unsatisfactory

for developing the meta-proofs about the refinement types.

Using subsumption-based memoization, we detected over 100 loops when proving

inversion lemmas. Similar to the subtyping example, memoization was most valuable

for detecting that the current proof assumptions do not suffice to derive the conclusion.

7.4.4 Rewriting semantics

Next, we give two examples which were provable before but did require a bound. In

fact, the user has to choose the minimal bound in order to get the meta-theorem

prover to prove these theorems. With memoization, no bounds are required. This is

especially important if we want to disprove conjectures and debug implementations

and proofs about them. We first consider a rewriting semantic with weak congruence

closure and show that any big-step evaluation has a sequence of rewriting steps in

the reduction semantic (evalRed theorem). Next, we try to prove that any rewriting

sequence has a corresponding big-step evaluation (RedEval theorem). However, this

2run-times for variant-based memoization to be added
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theorem tabled search (subsumption) iterative deepening

lemma1 3.72 0.08

refl 0.21 0.00

trans 1.63 0.02

comp¡— 1.81 0.01

sound¡— 0.41 0.01

inv+lam 0.36 –

impossAll 0.020 –

impRV 0.140 –

imp+e+pos 0.220 –

imp+1+zero 0.260 –

imp+0+zero 0.28 –

inv+e+bits 0.080 –

inv+e+nat 0.08 –

inv+1+bits 0.450 –

inv+0+bits 0.500 –

inv+0+nat 0.520 –

inv+1+nat 0.510 –

inv+0+pos 0.510 –

inv+1+pos 0.490 –

conjLemma 0.110 –

Figure 7.4: Refinement type checking [17]
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is in fact not true the way the rewrite rules are stated, since we not always will get

back a value. Memoization-based search will return and say that no proof is possible.

This in turn is valuable to analyze the specification and potentially change it. Finally,

we include a type preservation theorem about the reduction semantics. Run-times for

the memoization-based prover are slightly worse than the iterative deepening prover.

However, we get a more expressive prover which doesn’t require bounds.

theorem tabled search iterative deepening

evalRed (sound) 0.37sec 0.01sec

RedEval (complete) 9.88sec –

typeRed 0.93sec 0.01sec

Figure 7.5: Proofs about the rewrite semantics vs big-step evaluation semantics

Similarly, for the proofs about Mini-ml we observe that the theorems fall into the

complete fragment, and the theorem prover does not require any bounds. Again we

include the proofs about the original specification and contrast it with slightly modified

specification where the proofs about type preservation and value soundness fail.

theorem tabled search iterative deepening

val-sound 0.33sec 0.32sec

tp-preseve 0.53sec 0.01sec

tp-preserve (mod) 1.18sec –

Figure 7.6: Proofs about big-step evaluation semantics, type preservation, value sound-

ness, mini-ml

7.5 Conclusion

Redundancy elimination is critical to reason with and about non-trivial deductive sys-

tems. We have shown that memoization-based search can be smoothly integrated into

the meta-theorem prover. This allows us to prove more complicated theorems which
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rely on several lemmas. From our experience, the better failure behavior is particularly

useful in developing and debugging specifications and theorems. In addition, it leads

to a substantial improvement of the overall performance of the meta-theorem prover.

As we are able to fail quicker, we are able to make progress faster.

However, the conservative memoization-based search also has some limitations,

which we plan to address in the future. In particular the proofs about refinement

types illustrate that subsumption based memoization is useful in theorem proving. As

we mentioned earlier, we have only an incomplete subsumption-based memoization

strategy in the current implementation, to minimize the effort required to maintain

different implementations for variant- and subsumption-based memoization. In the

long run, it seems interesting to develop a complete subsumption-based memoization

proof search procedure for the meta-theorem prover.
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Chapter 8

Conclusion

In this thesis, we develop different techniques to efficiently execute and reason with and

about deductive systems. We have shown that memoization as a form of redundancy

elimination is a useful extension to the higher-order logic programing interpreter. It

allows us to execute more examples and have better and more meaningful failure. It

also plays an important role in the meta-theorem prover. To achieve good performance

of memoization-based search, we have developed higher-order term indexing techniques

and an optimized higher-order pattern unification algorithm, which eliminates many

unnecessary occurs checks. Taken together the presented techniques constitute a sig-

nificant step toward exploring the full potential of logical frameworks in real-world

applications where deductive systems and proofs about them may be more complex.

Future Work

Applications: Typed Assembly Language

Recently, Twelf has been used in developing a foundational approach for typed as-

sembly language [14, 15]. This approach is similar to the foundational proof-carrying

code project [2] in the sense that we try to minimize the trusted computing base. In

particular, we do not need to trust the safety policy, but the safety policy is proven

sound. While in the foundational proof-carrying code approach higher-order logic to-

gether with some axioms about arithmetic is used as a foundation to define safety
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policies, the logical framework LF itself serves as the foundation for implementing dif-

ferent safety policies. In addition to the safety policy, described by a type system,

all the meta-proofs required to prove soundness are implemented in Twelf. However,

so far Twelf has been mainly used as a specification framework and not fully uti-

lized the expressiveness and power of execution and reasoning strategies. There are

many applications of the described work to the foundational typed assembly language

project. First, it seems interesting to experiment and generate safety certificates for

sample programs using Twelf’s logic programming interpreter. Second, it would be

interesting to investigate if some of the meta-theorems about the safety policy can be

proven automatically using the memoization-based meta-theorem prover. Third, we

can instrument Twelf’s higher-order logic programming interpreter to produce a bit-

string that encodes the non-deterministic choices in a proof and use memoization to

factor out common subproofs. This extends prior work by Necula and Rahul [42] to

full LF. Moreover, preliminary experiments demonstrate that memoization can lead to

bit-string which are up to 40% smaller in size than their counterparts produced without

memoization.

Eliminating further redundant typing information

There is still some redundancy in proof search which is due to dependent types. De-

pendent type information needs to be carried around during proof search imposing a

substantial overhead [33]. Necula and Lee [43] have investigated the problem of redun-

dant type information in the context of type-checking. They propose a more efficient

term representation for a fragment of LF which eliminates a lot of the redundant typing

information thereby minimizing the amount of information we need to keep for type-

checking. One direction is to extend Necula and Lee’s work to full LF type theory,

thereby eliminating further redundancy. Moreover, it may be used to not only improve

the performance of type-checking in Twelf, but also of proof search itself.

Completeness of memoization-based proof search

In this thesis, we have mainly focused on proving soundness of memoization-based proof

search. Completeness of memoization-based proof search is harder to establish. The
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main reason is that we will find fewer proofs than with uniform proofs. For example

in the subtyping example given in Sec. 4.1 the query sub zero zero has infinitely many

proofs under the traditional logic programming interpretation while we find only one

proof under the tabled logic programming interpretation. However, we often do not

want or need to distinguish between different proofs for a formulaA, but only care about

the existence of a proof for A together with a proof term. In [50] Pfenning develops

a dependent type theory for proof irrelevance and discusses potential applications in

the logical framework. This could allow us to treat all proofs for A as equal if they

produce the same answer substitution. In this setting, it seems possible to show that

search based on tabled uniform proofs is complete, i.e. if there is a (canonical) proof

M : A then we can find A.

Optimizations for memoization-based search

Re-use of answers

Memoization-based search is critically influenced by when we retrieve answers and when

we suspend goals and when and in what order we awaken suspended goals. Currently,

we have implemented multi-stage depth-first strategy. As we have discussed in Chapter

4, this strategy might delay the re-use of answers, since we are not allowed to retrieve

answers from the current stage. The XSB system therefore uses a strategy based on

strongly connected components, which allows us to consume answers as soon as they are

available. We build a dependency graph of the predicates and identify different inde-

pendent sub-graphs, called strongly connected components. This dependency analysis

separates subgoals that can and cannot influence each other. If computation for all

the subgoals within a sub-graph is saturated, then we can dispose all the suspended

sub-goal belonging to this component. As we are able to delete suspended nodes that

cannot contribute to new solutions anymore, this leads to fewer suspended nodes and

has the potential to be more space and time efficient. This might be advantageous es-

pecially in theorem proving, where we only care about one answer to the query and are

not interested in mimicking Prolog execution. In LF, subordination analysis provides

information about dependencies of predicates and constructs a subordination graph.

Analyzing and exploiting the subordination information, it seems possible to design
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similar strategies as in XSB which allow the re-use of answers as soon as they are

available and detect when all answers have been generated.

Subsumption

As some of the experiments in Chapter 7 suggest, the use of subsumption-based mem-

oization in proof search is useful in meta-theorem proving. As we have also mentioned

in Chapter 7, so far the implementation of subsumption is a conservative extension of

the variant-based memoization proof search and may be incomplete. In the future, it

seems fruitful to develop a complete subsumption-based proof search procedure for the

meta-theorem prover.

High-level optimizations to proof search

Although memoization-based computation aims to make reasoning within logical speci-

fication efficient, it cannot rival the performance of a theorem prover that is specifically

built for a given logic. One reason is that specialized state-of-the-art theorem provers

exploit properties of the theory they are built for. For example, inverse method theorem

provers for first-order logic like Gandalf [66] exploit the subformula property. Other

theorem provers like Spass [69], which are very successful in equational reasoning, rely

on orderings to restrict the search. These meta-level optimizations can improve per-

formance of higher-order logic programming dramatically. Therefore, one interesting

path to explore is to verify such properties about logical specifications in advance and

exploit them during search.

Modal dependent type theory

In Chapter 2, we have conservatively extended the LF type theory with modal variables

and shown that canonical forms exist and type-checking remains decidable. As we

have briefly discussed in Chapter 2, there are two simple and clean ways to incorporate

such variables. One is via a general modal operator 2Ψ, and the other is via a new

quantifier Π2u::(Ψ`A1). A2. The main complication with the general modal operator

is that canonical forms do not exist. In this thesis, we suggested the use of Π2 to

quantify over modal variables explicitely, but we have not fully extended the LF type
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theory. In the future, it seems interesting to develop the theory further towards a modal

dependent type theory. The Π2-abstraction and the 2-application is less powerful than

the general box-operator. We conjecture that canonical forms exist for this fragment

and type-checking remains decidable.

In Chapter 3, we have briefly mentioned an extension which allows us to quantify

directly over variable definitions using Π2u = M ::(Ψ`A). This would have two main

advantages: First, we would be able to type-check linearized objects L directly. This

avoids translating variable definitions into a modal substitution θ and the type-checking

[[θ]]L. Second, it would allow us to describe proof terms as directed-acyclic graph and

type-check them directly.

Linear logic programming

Linear logic programming [30, 8] has been proposed as an extension of higher-order

logic programming to model imperative state changes in a declarative (logical) way. We

believe that the some of the techniques presented in this thesis can be extended to linear

logic programming, but it requires some new considerations. In particular, we plan to

investigate the use of memoization in linear higher-order logic programming. This

requires new consdiderations concerning the interaction between resource management

strategies [10] or constraints [27] with tabling. However, the approach presented seems

general and amenable also to the linear case.
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ness. In C. Beierle and L. Plümer, editors, Logic Programming: Formal Methods

and Proactical Applications, pages 1–71. Elsevier Science Publishers B.V., 1994.

[6] Pascal Brisset and Olivier Ridoux. Naive reverse can be linear. In Koichi Furukawa,

editor, International Conference on Logic Programming, pages 857–870, Paris,

France, June 1991. MIT Press.

[7] M. Carlson. On implementing Prolog in functional programming. New Generation

Computin, 2(4):347–357, 1984.

227



BIBLIOGRAPHY

[8] Iliano Cervesato. A Linear Logical Framework. PhD thesis, Dipartimento di

Informatica, Università di Torino, February 1996.

[9] Iliano Cervesato. Proof-theoretic foundation of compilation in logic programming

languages. In J. Jaffar, editor, Proceedings of the 1998 Joint International Con-

ference and Symposium on Logic Programming — JICSLP’98, pages 115–129,

Manchester, UK, 16–19 June 1998. MIT Press.

[10] Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource man-

agement for linear logic proof search. Theoretical Computer Science, 232(1–2):133–

163, February 2000.

[11] Iliano Cervesato and Frank Pfenning. A linear spine calculus. Technical Report

CMU-CS-97-125, Department of Computer Science, Carnegie Mellon University,

April 1997.

[12] W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic

programs. Journal of the ACM, 43(1):20–74, January 1996.

[13] Weidong Chen, Michael Kifer, and David Scott Warren. HILOG: A foundation for

higher-order logic programming. Journal of Logic Programming, 15(3):187–230,

1993.

[14] Karl Crary. Toward a foundational typed assembly language. In 30th ACM Sym-

posiumn on Principles of Programming Languages (POPL), pages 198–212, New

Orleans, Louisisana, January 2003. ACM-Press.

[15] Karl Crary and Susmit Sarkar. Foundational certified code in a metalogical frame-

work. In 19th International Conference on Automated Deduction, Miami, Florida,

USA, 2003. Extended version published as CMU technical report CMU-CS-03-108.

[16] B. Cui, Y. Dong, X. Du, K. N. Kumar, C.R. Ramakrishnan, I.V. Ramakrish-

nan, A. Roychoudhury, S.A. Smolka, and D.S. Warren. Logic programming and

model checking. In Catuscia Palamidessi, Hugh Glaser, and Karl Meinke, editors,

International Symposium on Programming Language Implementation and Logic

Programming (PLILP’98), volume 1490 of Lecture Notes in Computer Science,

pages 1–20. Springer-Verlag, 1998.

228



BIBLIOGRAPHY

[17] Rowan Davies and Frank Pfenning. Intersection types and computational effects.

In Proceedings of the International Conference on Functional Programming (ICFP

2000), Montreal, Canada, pages 198–208. ACM Press, 2000.

[18] Steve Dawson, C. R. Ramakrishnan, Steve Skiena, and Terrance Swift. Princi-

ples and practice of unification factoring. ACM Transactions on Programming

Languages and Systems, 18(6):528–563, 1995.

[19] Bart Demoen and Konstantinos Sagonas. CAT: The copying approach to tabling.

In Catuscia Palamidessi, Hugh Glaser, and Karl Meinke, editors, International

Symposium on Programming Language Implementation and Logic Programming

(PLILP’98), Lecture Notes in Computer Science (LNCS), vol. 1490, pages 21–36,

1998.

[20] Bart Demoen and Konstantinos Sagonas. CAT: The copying approach to tabling.

Journal of Functional and Logic Programming, 2:1–38, 1999.

[21] Bart Demoen and Konstantinos Sagonas. CHAT: The copy-hybrid approach to

tabling. In The First International Workshop on Practical Aspects of Declarative

Languages, Lecture Notes in Computer Science (LNCS), vol. 1551, pages 106–121,

San Antonio, January 1999. Springer.
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