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Abstract

Shape similarity is one of the most elusive and intriguing questions of nature and
mathematics. Proteins provide a rich domain in which to test theories of shape similarity.
Proteins can match at different scales and in different arrangements. Sometimes the detection
of common local structure is sufficient to infer global alignment of two proteins; at other
times it provides false information. Proteins with very low sequence identity may share large
substructures, or perhaps just a central core. There are even examples of proteins with
nearly identical primary sequence in which a-helices have become (-sheets.

Shape similarity can be formulated (i) in terms of global metrics, such as RMSD or
Hausdorff distance, (ii) in terms of subgraph isomorphisms, such as the detection of shared
substructures with similar relative locations, or (iii) purely topologically, in terms of the
cohomology of structure-preserving transformations. Existing protein structure detection
programs are built on the first two types of similarity. The third forms the foundations of
knot theory.

The thesis of this paper is: Protein similarity detection leads naturally to an algorithm
operating at the metric, relational, and homotopic scales. The paper introduces a
definition of similarity based on atomic motions that preserve local backbone topology
without incurring significant distance errors. Such motions are motivated by the physical
requirements for rearranging subsequences of a protein. Similarity detection then seeks rigid
body motions able to overlay pairs of substructures, each related by a substructure-preserving
motion, without necessarily requiring global structure preservation. This definition is general
enough to span a wide range of questions: One can ask for full rearrangement of one
protein into another while preserving global topology, as in drug design; or one can ask
for rearrangements of sets of smaller substructures, each of which preserves local but not
global topology, as in protein evolution.

In the appendix, we exhibit an algorithm for answering the general question. That
algorithm has the complexity of robot motion planning. In the text, we consider a more
common case in which one seeks protein similarity by rearrangements of relatively short
peptide segments. We exhibit an algorithm based on writhing numbers that runs in O(n?)
time in practice. We define and use a new datastructure, called geometric self-convolution,
within this algorithm.

Contributions: We believe that this is the first paper to consider carefully the need
for combining metric and homotopic qualities in seeking protein similarity. We provide
a parameterized definition of similarity that leads naturally to a metric in protein space.
We exhibit algorithms for computing the metric and detecting similarity. We report results
obtained with three pairs of proteins, each pair exhibiting different typical characteristics.
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1 Introduction

Determining structural similarity between proteins is one of the most central and common
problems within proteomics, yet there exist no simple universally accepted algorithms for
solving this problem. Indeed, the most widely used existing 3D structural alignment tools
(e.g., DALI [15], VAsT [12], CE [35], and 3DSEARCH [37]) are likely to disagree in their
specific atomic alignments and sometimes even in their top-scoring secondary structure
alignments when presented with proteins that have low sequence similarity and low structural
similarity.

As of late August 2003 the Protein Data Bank (PDB) [31, 5] contained in excess of
22,000 protein structures, up approximately 1,000 since early June. Many of these proteins
are highly similar structures. There are only approximately 4,000 different folds represented
in the PDB, roughly a ratio of 1:5 (fold:structure). Given a new protein, the probability is
high that it is similar to an existing protein. Detecting such similarity quickly is essential
for classifying a protein and understanding its biological function.

More importantly, as the growth in new structures outpaces the growth in new folds, it
is likely that the role of structural similarity will need to become much more fine-grained
than it is today. Biological discoveries will lie in unusual, possibly very sparse, structural
similarities, rather than in rough fold-level classifications. For instance, in looking at the
backbone CA atoms of a (-sheet, one can easily detect two roughly orthogonal families of
curves in the sheet, one family parallel to the constituent -strands, the other perpendicular
to the strands. This observation raises at least the geometric question whether there are
two proteins that place their G-sheets, viewed as two-dimensional sheets, in the same spatial
locations, even though the underlying makeup of the one-dimensional strands is orthogonal.
Such proteins would hint at some very interesting biochemical /genetic rearrangements. It is
unclear whether any existing structural alignment tool today could detect such similarities
automatically. It is easy to construct less exotic but equally interesting questions. As X-Ray
and NMR methodologies enter high-throughput capability, the questions arise easily, yet
many go unanswered.

Lacking is a good definition of “similarity”, even for today’s alignment tools. The
Structural Classification of Proteins (SCOP) website [25] offers the following: “Proteins
are defined as having a common fold if they have the same major secondary structures in
the same arrangement and with the same topological connections.” This sounds good, it
is intuitive, and it is applied every day to classify proteins. But what really does it mean?
When is a secondary structure “major”, when is a collection of secondary structures in the
“same arrangement”, and which “topological connections” are really relevant?

This paper focuses on topological incidence and polygonal writhing as a gauge of
geometric similarity. We take our inspiration from a recent fundamental paper [32] that
classifies protein structures in terms of Gauss integrals, motivated by ongoing work on knot
invariants [4]. In this paper we explore the connection further, leading naturally to a metric
in protein space and a datastructure for representing geometric self-convolutions of polygonal
curves. We comment on connections with methods from Robot Motion Planning. Finally, we
implement an algorithm for detecting substructural similarities between proteins and report
results on three pairs of proteins.



2 Structural Alignment (Related Work)

There are three major structural alignment tools in use today: DALI, VAST, and CE. All
three are accessible off the PDB webpage. Since the appearance of these methods in the late
1990s, a host of other methods have appeared, which generally compare themselves to these
three. One we have found useful is 3DSEARCH. We review these four methods here briefly.

DarL1 [15, 17, 16] aligns protein substructures using distance matrices. Distances are
invariant to rigid body transformations, thereby avoiding the need for spatial alignment.
DALI considers distances between alpha carbons; the distance matrices are indexed in residue
order. Substructures that appear in similar relative spatial locations in the two proteins give
rise to similar patterns between blocks of the distance matrices. DALI uses a clever Monte
Carlo method to detect these patterns. It begins with small hexapeptides then repeatedly
merges similarly related protein fragments into larger common substructures. One important
aspect of DALI is an elastic similarity score; the significance of errors in distance alignments
decreases with increasing distance. Consequently, substructures separated by larger distances
can tolerate greater relative global motion, while residues nearer to each other must better
preserve local shape. DALI is probably the gold standard for protein structure comparisons.
Its main disadvantage is its relatively ad-hoc Monte Carlo structure and complexity.

CE [35, 36] searches for protein fragments in one protein that are locally similar to protein
fragments in another protein. It then extends these local alignments by a sequential scan
down the protein backbones. This scan is reminiscent of dynamic programming in sequence
alignment, but CE actually employs a clever greedy algorithm. CE uses distances between
alpha carbons and rigid body superposition to define similarity and to guide the extension
scan. A limitation of CE is its requirement that matching substructures occur in sequential
backbone order.

VAST [12, 13] and 3DSEARCH [37, 38] focus on elements of secondary structure to align
proteins. Both methods begin with building blocks that are pairs of secondary structure
elements, one pair in each protein. VAST matches pairs of secondary structural elements
that have a similar type, relative orientation, and connectivity, then builds larger structures
by considering substructure similarities that are statistically surprising. This probabilistic
similarity function is both a strong advantage and a potential limitation of VAST; a class of
“similar” structures is significant, but not necessarily easily circumscribed.

3DSEARCH first finds a pair of secondary structure vectors in one protein that best
matches a pair of vectors in the other protein. This initial alignment seeds a loop whose
basic step is a dynamic programming algorithm for aligning the two proteins’ secondary
structure vectors with each other. Atom-level alignment occurs subsequently. 3DSEARCH is
limited by its initial best-pairing decision.

3 Protein Similarity from Knot Theory

3.1 Writhing and Knot Invariants

One of the difficulties with the previous alignment methods is the vagueness of their global
similarity measures. Locally, these methods often measure similarity by the root-mean-



square-deviation (RMSD) between aligned atoms, or some related variation. As Rggen and
Fain [32] point out, RMSD of aligned atom coordinates is a wonderful measure of similarity
for two shapes that are nearly identical. However, RMSD is a poor measure when the two
shapes being compared differ significantly, particular when the two shapes contain some
matching and some nonmatching subshapes. Existing alignment methods address this issue
by seeding their routines with small matching subshapes, then repeatedly merging these into
larger shapes. This process often succeeds well, but it is purely procedural. As a result,
automatic classification of proteins remains brittle.

One possible alternative is to compare proteins using more general shape metrics, such
as Hausdorff metrics [18]. More appropriate for proteins may be invariants derived from
knot theory. Rggen and Fain [32] offer such a new perspective. Given a protein, they
compute 30 different curve invariants, thereby mapping the protein to a point in R*°. They
argue that this 30-dimensional measure satisfies the triangle inequality, and thus is a good
method for grouping protein shapes into similarity classes at multiple levels of granularity.
They demonstrate this claim empirically by classifying 20,937 protein domains into multiple
levels, achieving 96% agreement with the CATH2.4 classification [27, 26] (both SCOP and
CATH are widely accepted protein classification databases, created by a combination of
automatic and human judgments).

The primary invariant in [32] is the writhing number of a curve; the others are built
from this. The writhing number of a curve essentially measures self-linking of a curve. It is
connected to the linking number of two curves by the following famous Calugareanu-Fuller-
White formula [9, 11, 44]:

Lk =Wr+Tw

The formula applies to a narrow closed orientable ribbon in three-dimensional space. Lk
is the linking number of the two boundary curves of the ribbon, Wr is the writhing number of
the central spine, and T'w is the twisting number of the two boundary curves. Lk is a purely
topological number. Purely topological means that it is invariant to any smooth
deformation that avoids self-intersections. The other two numbers are not topological
invariants; they depend on the embedding of the ribbon. However, they are invariant to a
large class of transformations, such as rigid body motions, even conformal (angle-preserving)
mappings.

To gain intuition, suppose we orient the ribbon by orienting its spine. For proteins, the
backbone plays the role of the spine, and it is naturally oriented by residue order. Now
imagine projecting the ribbon onto a 2D plane orthogonal to a randomly chosen direction.
The curves defining the ribbon will seem to cross each other at some locations in the plane

top curve / & top curve
bottom curve bottom curve

/ N\
e=—1 €e=+1

Figure 1: The two types of crossings and their crossing numbers.

of projection. At each crossing we keep track of which curve lies above the other, then assign
the crossing a number, called €, with value —1 or +1. The value depends on the orientation of



the two curve segments at the crossing as well as on the over-under relationship. Specifically,
imagine rotating the top curve locally so that its forward tangent at the crossing is parallel
to the forward tangent of the bottom curve. Then € is the sign of the smallest angle required.
See Figure 1.

Keeping this geometric picture in mind, the linking number Lk counts the sum of signed
crossings between the ribbon’s two boundary curves, divided by two. This sum is independent
of projection direction. The writhing number Wr counts the sum of signed self-crossings of
the ribbon’s spine, now averaged over all projection directions. Finally, the twist Tw is a
torsion-dependent term that measures how much one boundary curves intertwines with the
other. We will not have any need for it, and will not discuss it further. Instead, our focus
will be on matching subsegments of proteins by comparing writhings.

The intuition that linking and writhing numbers count crossings is very important from
the perspective of knot theory. From our perspective, we need an additional, related, piece
of intuition. Consider two closed curves in space (see also Figure 2 and imagine that each of
the edges is tangent to a curve). Place a finger on each curve and consider the unit direction
vector pointing from one fingertip to the other. This is a point on the unit sphere. Sum
up the signed area covered on the sphere for all possible finger placements, with sign given
locally by the crossing number € as a function of finger placements. With some effort one
sees that the net area covered is the linking number Lk of the two curves. Amazingly, this
number turns out always to be an integer. If the two curves are not linked, the net area
covered will be zero, if the two curves are linked once (such as two magician’s rings), the
sphere will be covered once, and so forth. Intuitively, for proteins, the extent to which the
sphere is covered locally will provide us with a measure of the relative location
and orientation of pairs of peptide segments.

Linking: Formally, suppose c¢; and ¢y are two closed non-intersecting curves in three
space, specifically disjoint embeddings of S! into 3. Let G be the Gauss map applied
to the difference between the curves, i.e., the function G : S' x S1 — 52 given by
G(s,t) = (ca(t) — c1(s))/||ca(t) — c1(s)|]. Then the linking number of the two curves can
be written in terms of the Gauss integral:

i ) —a®) gogr )
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Here w is the differential 2-form measuring area on S? and G*w is its pullback by G to
Stx St

Writhing: It turns out that the writhing number of a curve has the same algebraic form; if
c:S' — N3 is a closed curve in space, then its writhing number is simply Wr(c) = Lk(c, ¢).
In other words, “writhing is self-linking”. Of course, in this case the function G is not well-
defined on the diagonal (when ¢ = s). A priori the integral Lk(c, c) need not exist. Dealing
with this issue leads to the twist 7w mentioned earlier [24]. The writhing number is almost
never an integer.
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Figure 2: Two edges, e; and e;, generate a parallelogram Pj; of directions, with vertices
dy, dy, ds, dy, whose e-signed spherically projected area A;; is their edge-edge writhing. (In
this figure the edges are configured so that e = +1.)

Protein Fragments: The definitions continue to make sense for open curves, i.e., 3D
embeddings of intervals rather than circles. In particular, we will find the component
writhing numbers Lk(cy, cz) of short protein backbone fragments, ¢; and ¢y, to be useful
shape indicators.

3.2 Writhing of Polygonal Curves

We will represent protein backbones as open polygonal curves', connecting sequential
residues via their CA atoms (alpha carbons).? For a very nice exposition on writhing numbers
of polygonal curves see [1]. That paper developed a clever O(n!?) algorithm and a sweepline
algorithm for computing the writhing of a polygonal curve, then applied the second algorithm
to various proteins. Considerable work has used knot theory to understand the supercoiling
and knotting behaviors observed in DNA, another polygonal curve (see [33] for a sample).
Also, see [19, 29] for some very interesting applications of robot motion planning to polygonal
knot theory.

Polygonal curves simplify calculation of Equation (1). The integral becomes a finite sum:

ka(Cl, Cg) = Z Z Aij
(]

where A;; is the e-signed area on the sphere covered by vectors pointing from edge e; on the
first curve to edge e; on the second curve.

L“open” means that the start and endpoints are distinct; “polygonal” means that the curve is piecewise
linear.
2In other contexts, e.g., NMR structure determination, amide protons (*HY) are more natural [8, 3].



Definition 1: We will refer to A;; as the edge-edge writhing of the two edges e; and e;.

Computing A;; is straightforward. Figure 2 illustrates the process. Algebraically, suppose
the start and end points of the oriented edge e; are p; and ps, and suppose the start and end
points of edge e; are ¢; and g». Consider the four extremal cross directions between the two
edges:

dy = q — p1, dy = q2 — p1, ds = g2 — D2, dy = q1 — po.

For skew edges e, and e;, the four directions di,ds,ds,ds define the vertices of a
parallelogram F;; in three-dimensional space whose supporting plane does not intersect the
origin. Projecting the parallelogram onto the unit sphere creates a spherical parallelogram.
Its vertices are the unit direction vectors obtained from dy, ds, ds, dy4, its edges are arcs of great
circles connecting these vertices, and its absolute area multiplied by the crossing number of
the two edges is the desired signed area A;;. Computing the area of a spherical quadrilateral
is also straightforward; one simply sums the interior angles of the quadrilateral and subtracts
27. Observe that A;; = Aj;.

3.3 Arrangements of Lines

Closely related to knot theory and potentially to protein structure similarity is the theory
of line arrangements. For an introduction to this area see [42, 43]. Two arrangements of
skew lines in three-dimensional space are said to be topologically equivalent if there is an
isotopy that transforms one arrangement into the other. By an isotopy one means motions
of the lines in which the lines remain skew. There is exactly 1 topological equivalence class
consisting of 2 skew lines, 2 classes of 3-lines, 3 classes of 4-lines, 7 classes of 5-lines, 19
classes of 6-lines, and 74 classes of 7-lines. The classification of general collections of skew
lines is an open research question. One approach is to transform line arrangements into
elements of braid groups, construct the links induced by the braids, and apply methods from
knot theory [28].

The potential application to protein structure comparison arises in three contexts. First,
structural alignment programs often represent proteins by their secondary structure vectors
[12, 37, 40]. Classifying such vector arrangements might provide simple invariants by which
to label protein folds. Second, the peptide plane bond vectors (such as N-CA, N-H, and N-
C(0O)) fully determine a protein’s shape. Again, a classification of the possible arrangements
of these vectors might provide simple means for recognizing the shapes of unknown proteins.
For instance, the orientations of these vectors relative to a global axis can be discerned
using NMR [41, 2, 20, 10]. This may provide an efficient method for distinguishing proteins
experimentally. Third, the techniques from line classifications may carry over to more general
structures. The key idea is to consider the space of transformations that preserve certain
topological properties, such as non-intersection, then to discover invariants that distinguish
the connected components of this space of transformations.



4 Polygonal Curve Homotopies and the
Structure Problem

As suggested by the SCOP definition, detecting protein similarity entails finding collections
of paired substructures which are located roughly in the same relative locations in space.

Let us make this idea more precise. Recall that a polygonal curve is a piecewise linear
embedding of the unit interval I into 3D space, ¢ : I — R2. In particular, the curve is not self-
intersecting. We can represent the curve as a sequence of representative points {p1,...,pn},
namely the endpoints of the linear segments. In our case the points are the coordinates of a
protein’s alpha carbons. Any consecutive subsequence of a polygonal curve’s representative
points also defines a polygonal curve.

Definition 2: Suppose that p = {p1,...,p.} and ¢ = {q1,...,qn} are two polygonal
curves. Suppose that F is a Euclidean rigid body motion on R? (a rotation and translation).
Let 6 > 0 be some positive number. We will say that curve p is (£, §)-homotopic to curve q
if the following two conditions are satisfied:

(i) n=m.

(ii) There is a polygonal-curve homotopy h mapping F(p) to ¢ such that no representative
point moves further than ¢ from its initial or final location. More precisely, we require
a continuous function h : I — (R*)", written as h(t) = (hi(t),..., ha(t)), such that:

(a) h;(0) = E(p;), foralli=1,... ,n.
(b) hi(1) =¢q;, foralli=1,... n.

(¢) The sequence {hy(t),...,h,(t)} is a polygonal curve for all ¢, meaning that the
points hi(t), ..., h,(t) define a curve that is not self-intersecting for all times ¢ € I.

(d) [|E(p;) — ha(8)|] < 6 and ||gi — hy(t)]]| < S forallt € [ and i =1,...,n.

We will presently use this definition to compare subsegments of curves. The motivating
intuition is to regard two proteins as structurally similar if there is some
rigid body transformation that places one on top of the other well enough
that J-perturbations of local coordinates permit atom alignment. The homotopy
requirement is phrased in a way that mimics the definition of isotopic lines we saw in Section
3.3, that is, via classes of motions that preserve structure. Thus, for instance, two helices
might match if and only if one can be transformed into the other without backbone self-
collisions. Observe that the transformation could be quite large, depending on §, but at all
times preserves the backbone topology. (We note in passing a generalization: it might be
interesting to restrict the class of homotopies further by requiring that the polygonal curve
h(t) not intersect the rest of the protein at any time t.)

For large n and medium-sized 0, condition (ii) can be complicated to check. It basically
entails solving a high-degree-of-freedom motion planning problem. Fortunately, for many
short protein fragments and small §, the condition is similar to enforcing low RMSDs of
the final alignments. The definition therefore addresses a wide tunable range of possible
structural similarity questions.



Definition 3: Define functions dg and d on pairs of polygonal curves as follows:
dp(p,q) = inf{é | pis (E,d)-homotopic to ¢} d(p,q) = nf dp(p, q)

Thus d(p, q) = oo iff p and ¢ are not homotopic for any (£, J), e.g., if the number of points
differs.

Theorem 1: d is a metric and d is effectively computable. Proof: See Appendix B.1.

Monotonic Curve Homotopies Given a point p; and a line ¢ in 3D space we can project
the point orthogonally onto the line. We can do the same for all representative points of
some polygonal curve. The curve is said to be monotonic with respect to line ¢ if the order
of the projected points is the same as the order of the points in the curve. This order orients
the line. Short protein segments, such as §-strands and a-helices, are often monotonic with
respect to their best-approximating lines.

Lemma 1: Suppose p = pi1,...,p, is a polygonal curve monotonic with respect to line
(. Let m = m,...,m, be the polygonal curve obtained by projecting p onto ¢. Then
d(p,m) < max; ||p; — |-

Proof: Imagine drawing a line between p; and 7; for each ¢. Define a homotopy that moves
each p; to m; along these lines. The homotopy preserves the polygonal curve since the curve
is monotonic.

Lemma 2: Suppose p and ¢ are two polygonal curves with equal numbers of points,
each monotonic with respect to some line. Let 7 = 7y,...,m, and 0 = 04,...,0, be the
projections of the two curves onto their respective lines. Then d(p,q) < d(p,7) + d(q,0) +
infp max; ||o; — E(m;)||, where E' is taken from the set of rigid body motions that align the
two oriented lines.

See Appendix B.2 for a proof. The bound is often generous. The lemma tells us that
two monotonic curves whose line-projections are similar in 1D are also readily
homotopic in 3D.

For polygonal curves with equal numbers of points, d measures the spatial difficulty of
transforming one curve into the other. It provides no such information for curves with
different numbers of points. Instead, we now define structural similarity as the detection of
local homotopies. We need one piece of additional notation. Suppose p = pq,...,p, is a
polygonal curve; let us define p¥ as the polygonal subcurve p; g, ..., ps,. .., pisr Whenever
k+1 <i < n—k. In other words, p¥ is the curve segment centered at p;, extending backwards
and forwards by k points.

Definition 4: Suppose that p = {p1,...,p,} and ¢ = {q1,...,qn} are two polygonal
curves. Let 0 > 0 be a positive number, k£ a nonnegative integer, and Z some set of index
pairs {(i,7)}. We say that p is d-structurally similar with k-strength alignment Z if there

exists some rigid body transformation E such that dg(pF, qf) < 6 for all pairs (i,7) € Z.
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In English, this definition requires one curve to move rigidly over the other curve such
that two paired collections of subcurves are nearly identical to each other, as measured by
subsequent homotopy deformations. For & = 0, this definition is similar to aligning pointsets.
For large k, the definition amounts to detecting overall curve similarity. In between, the
definition captures the notion of structural alignment with rearrangements. In particular,
the order of indices in the index set Z need not be sequential. This leads to the following:

Structure Problem: For given curves p and ¢, for § positive and k£ a nonnegative integer,
compute all index sets Z and their associated rigid body transformations FE satisfying
Definition 4.

Theorem 2: The Structure Problem is effectively computable.
Proof: Follows from Theorem 1.

Although computable, the algorithm derived from our proof of Theorem 1 is horrendously
exponential [6, 7, 21, 34]. One possibility is to use a motion planner specialized for knots,
such as the untangling planner of [19]. Alternatively, for our purposes, Lemmas 1 and
2 suggest a simplification: In the next two sections we will examine an approach based
on edge-edge writhings that attacks the Structure Problem by aligning line projections of
peptide segments.

5 Understanding Protein Similarity by Geometric
Convolution

In this section we examine more closely the construction of Figure 2. Our observations will
motivate us to define a self-convolution datastructure for detecting structural similarity in
proteins.

5.1 Writhing and Convolution

Definition 5: Suppose X and Y are two sets of points in R3. Then the
geometric convolution of Y with X is the set of points Y O X ={y—z |z € X andy € Y }.
(Sometimes this is defined by saying that the geometric convolution of Y with X is the
Minkowski sum of Y and —X. There are again strong connections to robot motion planning
22, 23]).

Lemma 3: Assume e¢;, ¢;, and P;; are as defined at the end of Section 3.2. Then
-Pz'j =€y e (S

Proof: Definitional: P;; is the set of all vectors pointing from a point on e; to a point on e;.

Corollary 1: The edge-edge writhing A;; of two edges e; and e; is the area of the
convolution e; & e; projected onto the sphere S? times the crossing number € of the edges’
supporting lines.




Corollary 2: Suppose edges e; and e; are given. The following four possibilities exist:

(a) The edges are skew. In this case P;; is a 2D polygon whose plane of support does not include
the origin. The writhing A;; is therefore well-defined and nonzero.

(b) The edges are coplanar but not parallel. In this case P;; is again a 2D polygon, but now its
plane of support does include the origin. The polygon P;; may or may not touch the origin.
P;;\{0} projects to a great-circle arc on the sphere, and the writhing A;; is therefore zero.

(c) The edges are parallel but not colinear. In this case the polygon Pj; degenerates to colinear
line segments lying on a line that does not pass through the origin. The writhing A;; is zero.

(d) The edges are colinear. In this case the polygon P;; degenerates to colinear line segments lying
on a line that passes through the origin. The polygon F;; may or may not touch the origin.
It projects to one or two points on the sphere and the writhing A;; is again zero.

Corollary 3: The edges e; and e; intersect if and only if polygon P;; touches the origin.

Corollary 3 tells us that we can count edge incidence by counting polygons touching the
origin. Suitably generalized, that hints at a method for determining structural similarity.

5.2 Self-Convolution

Earlier we observed that many successful structural alignment programs compare
arrangements of pairs of lines. We now extend that idea to writhing polygons. In reading
Lemma 4 imagine that we are comparing a pair of peptide segments in one protein with
another pair in another protein.

Lemma 4: Consider four edges: ej, e, fi, fo. There is a rigid body transformation E
mapping the edges (e, e2) to the edges (f1, f2) if and only if there is a rotation R about the
origin such that R(ey © e1) = fo © fi while preserving vertex correspondence.

Proof: See Appendix B.3.

Corollary 4: If R is a rotation such that the maximum distance between corresponding
vertices of the two polygons R(es © e;) and fo © f; is §, then there is a rigid body
transformation E such that e; and ey are (F, §)-homotopic to fi and fy, respectively.

Proof: See Appendix B.4.
When Corollary 4 applies we say that the polygons are d-homotopic.

Definition 6: If p is a polygonal curve, we define the geometric self-convolution of p,
written ®(p), to be the generating polygons of p © p:

®(p) ={P; | P;j = e; © e;, with ¢; and e; edges in the curve p}.

Given two curves p and ¢, we will seek structural similarity by comparing the curves’
self-convolutions. Lemma 4 suggests that we mod out by rotations and translations, and
focus instead on comparing the configurations of the polygons {P;;}. Corollary 4 relates
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configuration similarity to homotopy distance. A writhing polygon has six configuration
parameters: the two edge lengths, the angle between the edges, the distance from the
origin, and two orientation parameters describing the polygon normal. We have found it
useful to cluster using two characteristics: edge-edge writhing and distance from the origin.
Writhing provides a mixed measure of all six degrees of configuration freedom; retaining
distance mitigates the roughly inverse-square effect of distance on writhing. Similarity is
easily checked, using for instance a best-aligning rotation in Corollary 4.

6 Structure Detection

We now combine the homotopy and self-convolution ideas to implement an algorithm for
detecting common protein structure. There is one additional wrinkle, needed to deal with
the segment length parameter k£ in Definition 4. When constructing the self-convolution
®(p), we replace the polygon P;; with a polygon formed from the best-line projections of
the peptide segments p¥ and p? , as motivated by Lemmas 1 and 2. Denote this polygon by
PE. For the writhing number we use the true writhing of the two peptide segments, that is,

wf]j(p) = Lk(p,ph). Let dij(p) = ||p: — pjl||. Denote the resulting combinatorial structure
consisting of all {(P};(p), w};(p),di;(p))} by the symbol @*(p).

» g

Algorithm: Given polygonal curves p and ¢, distance § > 0, and integer £ > 1, detect
structural similarity as follows:

1. Compute ®"(p) and ®@*(q).
2. Hash the polygons {P};(p)} and {P}(¢)} based on wf; and d;;, ignoring near zeros.

3. For each nonempty (or sufficiently full) hash bucket B4 of polygons do the following:

e For each pair of §-homotopic polygons P € ®*(p) and Q € ®*(q) in B,qg, compute
the rigid map F implied by Corollary 4. Hash the rigid map with its generating
polygons.

The generating polygons and rigid maps associated with a hash bucket in Step 3 e offer
an approximate solution (Z, F) to the Structure Problem. The entire hash table describes
all nontrivial alignments at the given hash table resolutions. We ignore polygons with near
zero writhing or distance to avoid degeneracies. The solutions are approximate in the sense
that the polygons PZ’; are based on best-approximating edges and the maps F are clustered,
potentially dilating 9.

6.1 Analysis

The Algorithm runs in time O(k*n?+k*m?+s?/€5+1/€%,) and space O(n*+m?+1/e5+1/€%)
where n and m are the number of points in p and ¢, k is the half-length of a peptide segment,
s is the maximum number of pairwise similar polygons appearing in a polygon hash bucket,
and ep and eg are the resolutions of the polygon and rigid body hash tables, respectively.
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In practice, k and eg are constants. We took k = 5 and ex = 0.1. 1/¢% is the size
of the hash table for Euclidean transformations. We represented each transformation as a
4D quaternion and a 3D translation, projected the quaternion into 3D, then hashed the
resulting 6 numbers. Although s could be ©(n?), it depends on e¢p. Choosing this carefully,
the ratio s/ep becomes O(n). Thus, the algorithm has O(n?) behavior, with n the maximum
protein length. The hash tables could be replaced by k-D trees, Voronoi diagrams, or other
clustering methods [30], but we did not do so.

6.2 Results

We implemented the algorithm in Lisp on a 1GHz PC running Windows. Running times for
proteins with 300 residues were typically 1 minute or less, half of that garbage collection.
Here are three interesting pairs of proteins (see Appendix A for larger figures):

5atl A vs. 8atc_A: These are two different conformations of the catalytic chain A in As-
partate Carbamoyltransferase (ATC), a famous allosteric pro-
tein involved in the synthesis of pyrimidine nucleotides [39].
Chain A has two domains, that rotate with respect to each
other as part of the process. Two loops change conformation
drastically. Our algorithm detects both the similarities and the
differences. The rigid map with the greatest number of aligned
segments lies within 2° in rotation and 0.6A in translation of
the correct alignment. Our subsequent atom-alignment code
assigns 289 of the 310 residues with RMSD 1.0A; the remain-
ing residues constitute the two non-alignable loops. See figure
to left (large view in Figure 3).

3adk vs. 1gky: These two proteins have mere 19% sequence identity, are different
lengths (194 wvs. 186 residues), and include both matching and
nonmatching secondary structures. Our code finds the alignment shown in
the figure to the left (large view in Figure 4). The rigid map lies within 5°
and 0.5A of the CE-alignment. Our subsequent atom-alignment assigns
165 atoms with RMSD 2.9A, closely matching CE.

1xis vs. 1nar: These are two TIM barrels, with 7% sequence identity. We considered the

' 321 residues of 1xis without its tail versus the 289 residues of 1nar.
There are several possible alignments, related by rotation around the
central barrel (Figure 5 shows two). This pair of proteins is inter-
esting because even in optimal alignment there are significant angular
differences between aligned helices. Such comparisons motivated our
homotopy definitions. Our code finds an alignment with RMSD 3.3A,
differing by 14° and 1.5A from the optimal DALI-alignment. See figure
to left (large view in Figure 6).
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7 Summary

This paper introduced the notion of homotopy deformations into structural alignment. The
paper explored the relationship between writhing and self-convolution. Self-convolution is a
compact way of registering edge-edge interactions, and extends naturally to interactions of
curve segments. Writhing and separation are useful shape descriptors for clustering pairs of
curve segments. The paper presented an algorithm for matching substructures by clustering
similar segment pairs, then clustering among the induced rigid maps.
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Appendix A: Large Alignment Figures

Figure 3: Alignment of 5at1_A (blue) and SATC_A (red) found by our writhing-convolution-
based Algorithm. The backbones match nearly perfectly, except where they shouldn’t,
namely two loops that undergo significant conformational change. These loops appear near
the top left and top right in the figure.

Figure 4: Alignment of 3ADK (blue) and 1GKY (red). The proteins have mere 19% sequence
identity and include both matching and nonmatching secondary structures. Roughly 80% of
the two proteins should align. One can see this in the figure, with the left parts matching
well and some of the right clearly not.
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Correct Alignment Rotated Alignment

Figure 5: Two possible structural alignments of 1xis (blue) with 1nar (red). The left one
is the best-scoring choice in DALL. (Only some of the strands and helices are depicted.)
Note the large angular differences between some aligned helices. The two proteins have 7%
sequence identity.

Figure 6: Maximal alignment of 1xis (blue) and Inar (red) obtained by the Algorithm
reported in this paper, closely matching the “correct alignment” in Figure 5.
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Appendix B: Proofs

Appendix B.1 [Theorem 1, p. 8]

Theorem 1: d is a metric and d is effectively computable.

Proof: Throughout, let p=py,...,p, and ¢ = ¢, ... ¢, be two polygonal curves.

Part 1 (metricity): We will show that d is a metric on the quotient space of polygonal curves
moded out by SE(3), the special Euclidean group of 3D rigid body motions. Observe that

d(p,q) > 0.

(i) Reflexivity: Clearly d(p,p) = 0 for all p. Now suppose d(p,q) = 0. Then n = m and,
since d is defined as an inf of an inf, for every 0 > 0 there is some Euclidean motion Ej
such that p is (Ejs, d)-homotopic to ¢, implying that ||Es(p;) — ¢;|| < §, foralli =1,... n.
Intuitively, it is now clear that p and ¢ must have the same shape, but let’s walk through
a detailed argument: The set {Ejs} sits inside a compact subspace of SE(3), so has a
limit point £ € SE(3). This means that for any positive €, we can pick a J. such that
0 <6 <¢€/2and ||E(p;) — Es(pi)|| < e/2foralli=1,....,nand all 6 with 0 < ¢ < J..
Therefore ||E(pi) — ¢l| < ||E(pi) — Es(pi)|| + || Es(pi) — || < €/2+ 0 < e. It follows that
E(p;) = ¢, for all i = 1,...,n. In short, if d(p,q) = 0 then p and ¢ are the same curve,
differing by at most a Euclidean rigid body transformation.

(ii) Symmetry: We need to show that d(p, q¢) = d(q,p). We will do so by showing that if p
is (E, §)-homotopic to ¢ then ¢ is (E~!, §)-homotopic to p. Suppose h is a homotopy satisfying
Definition 2 (see p. 7) establishing that p is (E, d)-homotopic to ¢. Define g : I — (R*)" by
the rules g(t) = (g1(t), ..., gn(t)) with g;(t) = E~'(h;(1 —t)) forallt € [ and i = 1,...,n.
We claim that g is a homotopy establishing that ¢ is (£, §)-homotopic to p. Let us verify
the properties of Definition 2 explicitly. Observe that g is continuous since E~! and h are.
Then:

(a) ¢:(0) = E~Y(h;(1)) = E"Yg), foralli=1,...,n.
(b) ¢;(1) = E71(h;(0)) = E7Y(E(p;)) = p; for alli =1,... n.

(c) The sequence {gi(t),...,gn(t)} is the sequence {E~1(hi(1 —1t)),..., B (h,(1 —t))}
which is just the sequence {hy(1 —t),..., h,(1 —t)} rigidly moved in space by E~'.
Hence {gi1(¢),...,gn(t)} is a polygonal curve for all t € I.

(d) 1B~ (q:) — )|l = [|1E= (@) — B~ (ha(1 = t))]| = |lgi — ha(1 = t)]| < 6 and

i — i@l = llpi = E7H(ha(1 = )| = [|E(p:) — hi(1 — t)|| < 4, for all t € I and
1=1,...,n.
(iii) Triangle Inequality: Suppose r = r1q,..., 7y is another polygonal curve. We need to

show that d(p, q) < d(p,r)+d(r,q). First we observe that if k differs from either n or m, then
the inequality is trivially true, so we can assume without loss of generality that m =n = k.
Now let € be an arbitrary positive number. Then there are Euclidean motions F, F' € SE(3)
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and homotopies e, f establishing that p is (F,d(p,r) + €/2)-homotopic to r and that r is
(F,d(r,q) + €/2)-homotopic to q. Now let H = F o E and define h : I — (R3)" by the rules
h(t) = F(e(2t)) for t € [0,3] and h(t) = f(2t — 1) for t € [3,1]. h is continuous since e, f,

and F' are continuous and since h(3)=F(e(1)) = F(r) = f(0)=h(3).

Let’s look at the conditions (ii) of Definition 2 with data H and h:
(a) 1i(0) = F(ei(0)) = F(E(p:)) = H(pi)-

(b) hi(1) = fi(1) = g

) h
(c) h(t) is either F'(e(2t)) or f(2t — 1), both of which define polygonal curves.
)

(
(d) First, suppose that ¢ € [0, %] In that case:

o [[H(pi) = hi()|| = [[H(p:) — F(e:(20))|| = | E(pi) — ei(20)]| < d(p,7) +€/2.
o llgi = hi(DIl < llgi = F(r)ll + [Iri — ei(20)|] < d(r, q) + d(p,7) + €

Similarly, if ¢ € [3, 1]:

o [[H(pi) = hi(O)| < |[E(pi) —ril| + |[F(ri) — fi(2t = D] < d(p,7) + d(r,q) + €
o llgi = hi(D)ll = lla: — fi(2t = V|| < d(r, q) +€/2.

Thus h establishes that p is (H, ¢)-homotopic to ¢ with § = d(p,r) + d(r,q) + €. Since € is
arbitrary this shows that d(p,q) < d(p,r) + d(r,q).

Part 2 (computability): The relevant decision question is:
If p and ¢ are polygonal curves and s is a rational number, is d(p,q) < s?

This question can be formulated as a sentence in the first order theory of the reals, hence is
decidable. Here is a sketch of the proof:

We can assume again that the two curves each have n points. Suppose that E € SE(3)
and 6 > 0 are given. We then have a robot motion planning for n point robots moving in
three dimensions. The start configuration for robot #i is F(p;), the goal configuration is
q;- Robot #i is constrained to move within the intersection of two balls of radius J, one
centered at its start, the other at its goal. Moreover, edges drawn between two different
pairs of successively indexed points may not move so as to intersect. More precisely, let h;(t)
be the location of robot #i at time ¢, and let e;(t) be the line segment [h;(t), hi11(t)], for
i=1,...,n—1. Then for all times ¢, we require that e;(t)(e;(t) =0if 1 <i<j—2<n-3
and e;(t) () eir1(t) = {hixa1(t)} if 1 < i < n — 2. This problem is effectively decidable as a
question within the first order theory of the reals, in fact it lies within PSPACE. See, for
instance, [6, 7, 21, 14]. We thus have a procedure for deciding whether p is (F, §)-homotopic
to gq. Let P(p,q, E,J) be the corresponding predicate, then formulate the following sentence:

30, IE : (0<5) AN (0<s) A P(p,q,E,0)

For suitable parameterization of SF(3), this sentence is a rewording of the original decision
problem as a problem within the first order theory of the reals and thus is decidable. If we
want, we can further quantify over s to isolate the value d(p, q) as accurately as we desire.
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Appendix B.2 [Lemma 2, p. 8]

Lemma 2: Suppose p and ¢ are two polygonal curves with equal numbers of points,
each monotonic with respect to some line. Let # = m,...,7, and ¢ = o4,...,0, be the
projections of the two curves onto their respective lines. Then d(p,q) < d(p,7) + d(q,0) +
infp max; ||o; — E(m;)||, where E' is taken from the set of rigid body motions that align the
two oriented lines.

Proof Sketch: Suppose E € SE(3) aligns the two oriented lines. We decompose the
homotopy from FE(p) to ¢ into three motions: The first moves E(p) to E(w), the second
moves F(7) to o, and the third moves o to ¢q. The first and third motions are simple linear
interpolations between start and end configurations. In fact, as in Lemma 1, all points move
orthogonally to the lines of projection, so the first and third motions are curve-preserving.
The second motion can also be taken as a curve-preserving linear interpolation, as we will see
shortly. Thus the distance between any point and its start or end configuration is bounded
by the sum of the lengths of the three linear motions. This gives the desired bound.

We need to verify that a linear interpolation moving E(7) to o is curve-preserving. This
is easy: simply project into 2D, with time along the z-axis and the location of the points
along the y-axis. The spacetime curves of the points are straight lines; the lines do not cross
since the original curves were monotonic and since E is orientation-preserving.
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Appendix B.3 [Lemma 4, p. 10]

Lemma 4: Consider four edges: ey, ey, fi, fo. There is a rigid body transformation F
mapping the edges (eq, e2) to the edges (fi, f2) if and only if there is a rotation R about the
origin such that R(es © €1) = fo © fi while preserving vertex correspondence.

Proof: Write E(z) = Rz +t where R is a rotation matrix and ¢ is a translation vector.
We will prove the lemma for this choice of R. First, write the four edges in terms of their
endpoints:

€1 = [p11>p12] €2 = [p21,p22] fi= [CI11>Q12] fo= [CJ21,Q22]
And now write each convolution in terms of its four corners:

ea © e1 = {pa1 — P11, P22 — P11, P22 — P12, P21 — D12}

f20 fi={q — @1, @22 — qui, 922 — Q12, Qo1 — Qu2}
Consider the following two statements:
(1) E maps (e1,ez) to (f1, f2). (This means that E(p;;) = ¢;;, for i,j =1,2.)
(2) R(es © e1) = fo © f1 while preserving vertex correspondence. (This means that
R(pai — p1j) = @i — quj, for 1,5 =1,2.)
We need to show that (1) is true if and only if (2) is true:

Suppose (1) is true. Then gy — qi; = E(px) — E(p1;) = R(p2i — p1j), so (2) is true as
well.

Suppose (2) is true. We need to construct a rigid motion E establishing (1). Let R be
the rotational part of it and define the translation vector as t = ¢;; — Rpi1. Now observe:

E(p11) = Rpu+aq1—Rpn = qn
E(pn) = Rpa+q1—Rpn = R(par —pn) +¢1 = (@21 — q11) + ¢11 = ¢
E(p22) = Rpao+qu—Rpu = R(pe2 —pu1) + 11 = (22 — qu1) + 11 = Ga2

Finally, observe that FE(p12) = Rpi2+ ¢ — Rpn
= R(pa —p11) — R(p21 — p12) + qu
= (o1 — q11) — (q21 — q12) + qu1
= 12

So (1) is true as well.
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Appendix B.4 [Corollary 4, p. 10]

Corollary 4: If R is a rotation such that the maximum distance between corresponding
vertices of the two polygons R(es © e;) and fo © f; is §, then there is a rigid body
transformation £ such that e; and ey are (F, §)-homotopic to f; and fy, respectively.

Proof: We will use similar notation, algebra, and techniques as in the proof of Lemma 4.
First, define F(x) = Rz +t with t = % (11 + 12 — Rp11 — Rp1a).
Then write R(pa; — p1j) = g2 — q1; + Ay, with Ay a vector, for i,j = 1,2.
By assumption
max ||Ag|| = 6.
We see that: "

E(pn) = Rpu+ % (qu1 + @2 — Rpui — Rp1a)
= % (R(p21 — p12) — R(pa1 — pu1) + qu1 + qi2)
= % (21 — 12 + D12 — @1 + g11 — A1 + @11 + q12)
= qu+ % (A — App)
E(pn) = Rpa+ % (qu1 + @2 — Rpu — Rp1a)
= 3 (R(p2r — p11) + R(pa1 — p12) + qu1 + q12)
= % (g21 — g1 + D11+ @21 — 12+ Ao+ qui1 + qi2)
= (a1 + % (A + Ap)
E(p2) = Rpa+ % (qu1 + @12 — Rpu — Rp1a)
= % (R(p22 — p11) + R(p22 — p12) + qu1 + q12)

= % (g22 — qu1 + Do1 + qo2 — q12 + Do + qu1 + q12)
= Qa2+ % (Agp + Agy)

E(p12) = Rpia+3(qui+q2— Rpi — Rpio)
= % (R(p21 — p11) — R(pa1 — p12) + @1 + q12)
= % (21 — 11 + D11 — g1 + q12 — Diz + i1 + qi2)
= qi2 + % (A1 — Ago)

It follows that:

1E(p1i1) —aull < 3 ([[Aw|l+[]Aul)) <6
1E(pr) — gl < 5 (1Aull+[[Aw]]) < 8
|E(pa2) — goal| < %(||A21||+||A22H) <90
|E(p12) — qial| < %(HAHH"‘HAHH) <0

It is always possible to construct a homotopy between two directed edges that morphs
one into the other. The previous inequalities show that we can in fact construct (E,J)
homotopies between e; and f;, for i =1, 2.
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