

Finding Lists of People on the Web

Latanya Sweeney

July 2003
CMU-CS-03-168

Also appears as Institute for Software Research International Technical Report
CMU-ISRI-03-104

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Among the vast amounts of personal information published on the World Wide Web (“Web”) and
indexed by search engines are lists of names of people. Examples include employees at companies,
students enrolled in universities, officers in the military, law enforcement personnel, members of social
organizations, and lists of acquaintances. Knowing who works where, attends what, or affiliates with
whom provides strategic knowledge to competitors, marketers, and government surveillance efforts.
However, finding online rosters of people does not lend itself to keyword lookup on search engines
because the keywords tend to be common expressions such as “employees” or “students.” A typical
search often retrieves hundreds of Web pages requiring many hours of human inspection to locate a page
containing a list of names. As a result, people may falsely believe online rosters provide more privacy
than they do. This paper presents RosterFinder, a set of simple algorithms for locating Web pages that
consist predominately of a list of names. The specific names are not known beforehand. RosterFinder
works by identifying rosters from candidate Web pages based on the ratio of distinct known names to
distinct words appearing in the page. Accurate classification by RosterFinder depends on the set of
names used. Results are reported on real Web pages using: (1) dictionary lookup employing a limited set
of known names; and, (2) dictionary lookup on utilizing an extensive set of known names. Privacy
implications are discussed using the example of FERPA and online student rosters.

This research was supported in part by the School of Computer Science and the Laboratory for
International Data Privacy at Carnegie Mellon University.

1

Keywords: Information retrieval, data linkage, data mining, privacy, policy

2

1. Introduction
In July 2002, a representative from admissions at Yale University complained to the United States Federal
Bureau of Investigation that someone in admissions at rival Princeton University had illegally gained
access to Yale’s admissions system in order to snoop on students who had applied to both schools [1].
Such information may have provided strategic knowledge to Princeton about its admissions decisions in
comparison to Yale’s, but the price of acquiring the information illegally led to public embarrassment and
potential legal action against Princeton [2].
 The Yale online system reportedly allowed newly admitted students to access information using their
last names, birth dates and Social Security numbers as passwords. Some of these students had also
applied to Princeton, thereby providing Princeton officials access to the same personal information. By
electronically pretending to be one of the applicants, Princeton officials were able to compare Princeton’s
admission decisions to Yale’s. The incident was termed a “security breach” because password
authentication was compromised.
 Without minimizing the ethical issues this incident underscores, the very information Princeton
sought illegally online can be provided legally over the World Wide Web (“Web”), without any security
breach. By simply reviewing publicly available Web pages maintained at a school's Web domain,
students in attendance can be identified by name. Such information is often provided on the Web from the
school, through student organizations, or by the individual students themselves.
 The problem is not limited to students in academia. Large amounts of data about people appear on
the Web, and demand has emerged for finding person-specific information. For example, corporations
often seek the identities of employees within competing organizations. Government efforts have spawned
interest in locating lists of people for counter-terrorism surveillance. The ability to identify the names of
a class of people (“rosters”) translates into strategic information for many uses.
 A directory or list of names is a roster. Rosters are important because a roster is a classification of
people belonging to the same category. Identifying a roster provides knowledge about the people listed.
Rosters can be a formal or official register of names. Rosters can provide a written account or record that
serves as a memorial or authentic evidence of a fact, an event, a condition, an act, or an occurrence
involving people. Rosters can provide evidence that something takes place, a happening or an incident, or
give a written account of people involved in a set of circumstances, a situation or a final outcome.
 The irony of the Princeton example is that publicly available rosters of Yale undergraduates could
have been used. Protecting rosters is not a matter solved exclusively by authentication or authorization,
which are traditional areas of computer security; nor is the problem solved by encryption. Protecting the
identities of groups of people is often not a matter of “breaking in” but requires coordinating and
controlling that which is given freely. When public information is found and linked together, it can
provide strategic knowledge that can compromise the privacy of an individual or the confidentiality of an
organization. Data privacy is the study of computational solutions for solving privacy and confidentiality
problems in shared data.
 This paper is the first to formally present the retrieval problem of locating documents containing lists
of people. Simple algorithms for finding online rosters are provided, related data privacy problems are
discussed, and ideas for privacy solutions are proposed.

2. Manual Search For Lists
With so much personal information published on the Web and indexed by search engines, you might
incorrectly believe you can easily find lists of people that share a given characteristic. Ironically, this is
not the case. Finding rosters of people does not often lend itself to keyword lookup on search engines
because the keywords are often widely used and as a result, many extraneous pages are retrieved.
Another problem is the roster may not contain the searched keywords. Numerous search mechanisms do

3

exist to locate a named person, but few options are available to locate a list of people whose names are
not known beforehand. For example, to find a list of undergraduate computer science students at leading
schools, searches on keywords {“people”, “undergraduate”} at each school website could be performed.
Hundreds of Web pages containing these keywords are typically retrieved, requiring many hours of
human inspection to locate a page having a list of names, if one is found all. Some schools have a policy
prohibiting the publication of some kinds of rosters. Publicly available Web pages containing prohibited
rosters may still exist at these school websites, but they are often difficult to locate by keyword searching.
RosterFinder, presented herein, is a program that locates Web pages containing a list of names of a
targeted group of people. The names are not originally known, but the list of names matches a specific
criterion. RosterFinder works by automatically: (1) fetching candidate Web pages from search engines
using website locations and keywords appearing in the page; and then, (2) identifying rosters from
candidate Web pages based on the ratio of distinct known names to distinct words appearing in the page.
 Explicit knowledge is provided to RosterFinder as a set of known names. Results are reported on
real-world Web pages using: (1) dictionary look-up on a limited set of known names; and, (2) dictionary
lookup on an extremely large set of known names.

3. Name Extraction Background
Methods for extracting proper names and their associated information from Web pages has been widely
studied in the information extraction community [4, 5, 6]. Proper names of people reportedly represent
about 10% of English newspaper articles [7] and systems have been constructed that accurately identify
proper names in newspaper articles comparable to human performance (which is very good, 97% recall
and precision) [3, 8]. Most approaches tackle name extraction by assuming names are basically unknown
and not stored in dictionaries. These methods rely heavily on syntactic and semantic study of the
appearance of names in text and related statistical language modeling. The result is typically a set of rules
using trigger words and linguistic clues. Examples include taking advantage of “Mr.” and “Ms.” as well
as “PhD” and “MD” and ways of recognizing “Abraham” and not “Abraham Lincoln” as the only proper
name of a person in the sentence “a man named Abraham owned a Lincoln.”
 While prior work on name extraction has been heavily focused on newspaper articles, some attention
has been given to non-journalistic texts. Using HTML tags, spelling cues (such as ‘@’ in an e-mail
address), and layout cues, proper names have been reliably extracted from Web pages [3] and from email
messages [9] to produce lists of names of people.

Figure 1. Roster on a Web page listing undergraduate students at Brown University (formatted browser view). Source:
http://www.cs.brown.edu/people/ugrad/

4

Figure 2. Roster on a Web page listing undergraduate students at Brown University (HTML source view). Source:
http://www.cs.brown.edu/people/ugrad/

The task that is the subject of this paper, however, is not the extraction of names from text, but correctly
classifying whether a fetched Web page consists primarily of a list of names.
 Attempting to use name extraction methods to identify rosters does not produce reliable results. The
biggest problem stems from the fact that lists of names are typically void of the linguistic context
exploited by name extraction methods. In a roster, names are often just listed; See Figure 1. There is
typically little or no linguistic text. Another approach is needed. The work presented in this paper takes
advantage of explicit knowledge representation, i.e., the effective use of a stored dictionary of names. It
is in sharp contrast to name extraction methods in appropriateness and in its simplicity.

4. Methods
This is the first work to formally introduce the problem of locating rosters. It is imperative therefore to
precisely define terms from this vantage point, including common terms.

4.1 Definitions
The most primitive notion in this work is that of a “word.” Some words are recognized as constituting the
proper names of people. Identifying words in documents and determining which words are names are
important concepts in this work. Definition 4.1 describes a “word.” Sample words appear in Example
4.1.

Definition 4.1 (Word) A word is a string of two or more contiguous alphabetic characters.

Example 4.1 (Word) Shown in Figure 1 are 110 words. The initials “C.” and “J.” are not words.
Appearing in Figure 2 are 52 words. These include HTML tags, such as “td” and “tr,” as well as
directory names, such as “madesnik” and “kagrawal.”

 The full name of a person includes a given name (culturally known as a first name in the US) and a
surname (culturally known as a family or last name in the US). A “dictionary of names” is a distinct list
of words that are known to appear in the proper names of people. A dictionary of names does not respect
given or surname classifications. If a person bears the name “Martin Luther King,” for example, then all
three words may appear in a dictionary of names. Definition 4.2 describes a “dictionary of names” and a
“name.” Example 4.2 provides a sample.

5

Definition 4.2 (Dictionary of Names) A dictionary of names, N, is a finite set of words such that each
word wi∈N is known to be part of the proper name of a person. A name is a word listed in a dictionary of
names.

Example 4.2 (Dictionary of Names) {“Alex”, “Abramov”, “Moshe”, “Jed”, “Adesnik”, “Kalin”,
“Alak”, “Agrawal”, “June”, “Ahn”} is a dictionary of names containing names that appear in both Figure
1 and Figure 2.

 Some ways in which proper names may be written is not fully supported. For example, the surname
“O’Reilly” is recognized merely as “Reilly.” The preceding “O” is not recognized as a word or part of a
word. Similarly, “Malcom X” is recognized as “Malcom.” Surnames that include a space character, such
as “van Neumann,” appear as two distinct names. Hyphenated surnames, such as “Hayes-Roth,” also
appear as multiple names.
 Given a database of documents, this work is aimed at locating documents that contain rosters. The
Web provides a very large, publicly available database of documents. Each document is fetched using a
Web address. The combination of the Web address and its associated document is termed a “webpage.”
This is further described in Definition 4.3.

Definition 4.3 (Webpage) A webpage is a tuple (u, d) such that u is a string containing a full Uniform
Resource Location (URL Web address) and d , which is referred to as the document, is the sequence of
characters that comprise the content found at u.

 Most webpage documents are written in the Hypertext Markup Language (HTML). Such documents
have two appearances, depending on how they are viewed. The actual document has HTML tags
embedded in its content. In an unformatted view of an HTML document, the tags are visible. But when
an HTML document has its HTML tags removed, or is viewed through a browser, which interprets the
formatting tags, then the textual content of the document appears unencumbered. Example 4.3 describes
a sample webpage.

Example 4.3 (Webpage) Let d be the document located at URL u=
“http://www.cs.brown.edu/people/ugrad/”. Part of document d is displayed in the viewing areas of Figure
1 and Figure 2. (u,d) is a webpage. The browser view (or formatted display) of the first part of d appears
in Figure 1. The source view (or unformatted display) of part of d appears in Figure 2. The formatting
HTML codes are visible in Figure 2, but they are not visible in Figure 1.

 In a webpage document, the order in which words appear is maintained and multiple occurrences of a
word can occur. This is in contrast to a dictionary of names, in which names appear only once, and the
order is not considered relevant.
 This is the first work (and the first writing of this work) on locating documents that primarily consist
of a roster. While this writing focuses heavily on documents retrieved over the Web, the work
generalizes to other databases of documents with no loss of applicability. In such cases, references to the
URL is omitted or replaced with references to an index of the documents.
 A “roster” provides a collection of names of related people arranged for reference or comparison,
often in a vertical table or list format. Rosters appear as a list printed name by name. Definition 4.4
describes a roster; Example 4.4 provides a sample.

Definition 4.4 (Roster) Let N be a dictionary of names. A document d is a roster with respect to N if
the content of d primarily consists of one or more itemized series of names, appearing name by name,
where each name ni∈N. A webpage w=(u,d) is a roster if document d is a roster.

Example 4.4 (Roster) Figure 1 shows the first part of a roster of undergraduate computer science
students at Brown University.

Several features in the definition of a roster require special comment. The word “primarily” and the
phrase “name by name” in Definition 4.4 impose necessary conditions because not all documents in

6

http://www.cs.brown.edu/people/ugrad/

which names of people appear are rosters. For example, a document containing the title, authors, and
abstract of a published paper is not a roster because the list of authors is not the determining element of
the document’s content. Figure 3 shows a document containing names, but the document is not a roster
because the names are not catalogued.
 While the names in a roster are itemized in a series, additional related text may appear between
names. For example, a document containing a bibliographical listing of authors and titles is a roster. A
document consisting of acknowledgements written as sentences containing lists of names is also a roster.

Figure 3. Names (underlined) in a non-roster Web page. Source: http://www1.cs.columbia.edu/~noble/name-
change.html.

 If a document is a “roster,” then the document’s content may consist entirely of a single roster or may
contain multiple rosters. The document’s content may also include paragraphs of non-roster text. For
example, a document containing a full academic paper with several sections, including bibliographic and
acknowledgement sections as described above, is a roster.
 The definition of a roster places no fixed constraints on the proximity of names to one another within
the document; however, there is a relative measure of proximity imposed, because the list of names must
be written on a name-by-name basis. No requirement is made that a surname and given name must both
appear, and if they do both appear, the order is not specified.
 The use of “roster” in this writing is limited to listing the proper names of people. However, these
concepts generalize to “rosters” of other kinds of entities by simply specifying names appropriate to those
entities in the dictionary of names used for analysis. Examples include names of places, journals, and
companies.
 A roster is defined with respect to a dictionary of names. When attempting to classify a document as
a roster, the names comprising the roster are typically not known beforehand. Sometimes a superset of
the names contained in the roster is used. Other times a dictionary containing an approximation of names
is used, thereby introducing uncertainty.
 The goal of this work is to find an automated means to correctly identify a document as a roster, even
when the dictionary of names is approximated. This is the idea of a “roster detector” described in
Definition 4.5. Example 4.5 provides a sample.

Definition 4.5 (Roster detector) Let D be a set of documents; di∈D; N be a dictionary of names; ℜ be
the set of real numbers between 0 and 1 inclusive; and, f:D→ℜ be a function such that f(di) = r where 0 ≤
r ≤ 1. The function f provides a certainty measure that di is a document containing one or more rosters
with respect to N. A value of 0 means di has no roster according to f, whereas a value of 1 means f
considers di to most certainly contain at least one roster. It is said that f is a roster detector and r is called
the rank of the document. A binary roster detector returns either 0 or 1.

 A roster detector, f1, can be the basis for a binary roster detector, f2, by introducing a threshold t, such
that 0 ≤ t ≤ 1 and f1(di) ≥ t ⇒ f2(di) = 1 and f1(d1) < t ⇒ f2(di) = 0.

7

Example 4.5 (Roster detector) Figure 4 shows TwelveNames(), which returns 1 if there are 12 or more
distinct names in the dictionary of names that also appear in the document; otherwise, 0 is returned.
TwelveNames() is a binary roster detector. The document in Figure 3 has 7 distinct names;
TwelveNames() returns 0, correctly identifying its as a non-roster. The document in Figure 1 has 75
distinct names; TwelveNames() returns 1, correctly identifying it as a roster.

Algorithm: TwelveNames(d)
Input: document d
Output: 1, if d is a roster and 0 otherwise.
Uses: Dictionary of names N

Steps
 Let W be the set of distinct words in d 1
 if | N ∩ W| ≥ 12, return 1 else return 0 2

Figure 4. Roster detector TwelveNames() identifies a document as a roster if it contains at least 12 distinct names.

 Not all roster detectors are good at detecting rosters. Some roster detectors may be better than others.
To compare outcomes, terms used by the information retrieval community are useful. These are presented
in the next subsection. Following that, a more robust roster detector, RosterFinder(), is presented.
Results from experiments using RosterFinder() are then reported in terms of information retrieval
measures. This paper ends with a discussion of privacy implications.

4.2 Information Retrieval of Rosters
The study of information retrieval systems is an active area of computer science research [15].
Information retrieval systems attempt to find relevant documents to respond to a stated request. A good
system attempts to maximize the retrieval of relevant documents and minimize the retrieval of irrelevant
documents. This paper describes information retrieval systems that detect relevant rosters; such systems
are termed information roster retrieval (IRR) systems in this work. Operation of an IRR system may
occur in one or two phases. In an initial phase, if present, the IRR system operates as a traditional
information retrieval system. Based on a stated request, relevant roster and non-roster documents are
selected from a very large collection of documents. The result is a database of pertinent documents that
are candidate rosters. In a second phase, the IRR system uses a roster detector to determine which of the
candidate documents are rosters. The final result is a list of relevant rosters, typically provided in a
partial ordering based on the certainty the document is a roster. Alternatively, an IRR system can be
described as an information retrieval system having a roster finding utility. A model of an IRR system is
in Example 4.6.

Example 4.6 (Information roster retrieval system) Suppose an IRR system is to locate a roster of
undergraduate computer science students enrolled at Brown University. The Web provides the collection
of documents from which selections are made. A traditional search engine is used in the initial phase to
provide a database of documents from webpages, where each document contains the words of one of the
search strings in Figure 5 and has a URL that includes “cs.brown.edu”. The top 10 webpages for each
search string form a database of 124 distinct documents from which rosters are to be identified in the
second phase. Results of the top 12 selections by a roster detector appear in Figure 6.

 If there is no initial phase, the entire collection forms the database of documents from which rosters
are identified. If the desired roster is not among the documents fetched in the first phase, or if it is not
present in the collection at all, then the desired roster will not be found in the second phase. To avoid this
kind of error being introduced in the first phase, performance measures in this work focus on the second
phase. Unless otherwise noted, attention to an IRR system will be limited to the second phase, which
involves the use of a roster detector to identify which documents in a database are rosters.

 When searching for rosters among documents retrieved from a database, there are four possible
outcomes. These are denoted in Figure 6. Evaluating information retrieval systems traditionally involves

8

measures known as “precision” and “recall,” which are expressed using such outcomes [14]. These terms
are adapted to IRR systems in Definitions 4.6 and 4.7, and samples are provided in Examples 4.7 and 4.8,
respectively.

Search string Search string
A "academic advisor list" "list undergraduate students" O
B "computer science undergraduate name" "list undergraduates" P
C "computer science undergraduates" "listing undergraduates" Q
D "degrees granted" "people undergraduate" R
E "directory undergraduate" "people undergraduate students" S
F "directory undergraduate students" "personal home pages" T
G "index students name" "student web page index" U
H "index students name Z" "students home pages" V
I "index undergraduate student name" "undergraduate student listing" W
J "index undergraduate students" "undergraduate students" X
K "index undergraduates name" "undergraduate students advisor" Y
L "last name" "undergraduate students Z" Z
M "last name Z" "undergraduates" AA
N "list computer science undergraduates"

Figure 5. Set of search strings for identifying rosters of computer science undergraduates available on the Web.

 Number of rosters retrieved (rr)
Number of non-rosters retrieved (nr)
Number of rosters missed (rn)
Number of non-rosters not retrieved (nn)

 Rosters Non-rosters
 Retrieved 11 (rr) 1 (nr)
 Not retrieved 33 (rn) 79 (nn)

Figure 6. Retrieval outcomes of rosters and non-rosters in a database of 124 documents relating to undergraduate
computer science students at Brown University.

Definition 4.6 (Recall) Let D be a set of documents and f be a roster detector. Recall(f,D) is the
proportion of rosters retrieved by f from the set of total rosters in D. Based on the terms defined in Figure
5, Recall(f,D)= rr/(rr+ rn).

Example 4.7 (Recall) Figure 6 shows retrieval results from roster detector, f, applied to a 124 document
database, D, which has 44 rosters. When the roster detector was asked to retrieve its 12 most certain
rosters, it returned 11 actual rosters. Recall(f,D)=11/(11+ 33)=25%. Retrieving 12 documents provided
25% of all possible rosters. The best possible result is 12/44 or 27%.

Definition 4.7 (Precision) Let D be a set of documents and f be a roster detector. Precision(f,D) is the
proportion of rosters retrieved by f from the total number of documents retrieved. Based on the terms in
Figure 5, Precision(f,D)= rr/(rr+ nr).

Example 4.8 (Precision) Figure 6 shows retrieval results from a roster detector, f, which was asked to
retrieve its 12 most certain rosters from a set of documents, D. Of the 12 retrieved, 11 were actual rosters.
One was not. Precision(f,D)= 11/(11+ 1) = 92%. The best possible result is to retrieve 12 true rosters or
100%.

 Consider a typical database having lots of rosters and non-rosters. In this, the general case, the
following observations hold. A system having high recall and low precision requires a human to sift
through the retrieved documents and reject the irrelevant information. A system having higher precision
requires less sifting and therefore places less burden on the human. Results reported in Figure 6 achieve
both a high level of recall (25% of 27% maximum) and high precision (92%). Another measure of
burden on the human is the “false alarm rate,” described in Definition 4.8, with a sample provided in
Example 4.9. In the general case, a high false alarm rate accompanies low precision.

9

Definition 4.8 (False alarm rate) Let D be a set of documents and f be a roster detector. The false
alarm rate, FalseAlarm(f,D), is the proportion of non-rosters retrieved by f from the total number of
non-rosters in D. Based on the terms defined in Figure 5, FalseAlarm(f,D)= nr/(nr+ nn).

Example 4.9 (False alarm rate) Figure 6 shows retrieval results from a roster detector, f, operating on a
database having 80 non-rosters in a set of documents, D. When the roster detector was asked to retrieve
its 12 most certain rosters, it returned one non-roster. FalseAlarm(f,D)= 1/(1+ 79) = 1%. The best possible
result is to retrieve no non-rosters or 0%.

 Recall, precision, and false alarm measures of a roster detector, f, can be influenced by the
composition of the database, D. If D has very few rosters but lots of non-rosters, recall is a better
measure of the performance of f than precision. As the number of documents retrieved by f increases in
this setting, the false alarms increase. On the other hand, if D has lots of rosters but very few non-rosters,
precision is a better measure of the performance of f than recall. As the number of documents retrieved
by f increases in this setting, recall and precision increase.
 Performance measures are useful in comparing roster detectors. The best roster detector provides the
highest recall and precision and the lowest false alarm rate for a database. More generally, the best IRR
system provides the highest recall and precision and the lowest false alarms for roster requests.
Determining the best roster detector is the “roster retrieval problem,” described in Definition 4.9 with a
sample in Example 4.10.

Definition 4.9 (Roster retrieval problem) Let D be a set of documents; di∈D; N be a dictionary of
names; and, F = {fi} be a set of binary roster detectors where each fi:D→{0,1}. If for all fi∈F, there does
not exist fj∈F such that i≠j, recall(fj,D) ≥ recall(fi,D), precision(fj,D) ≥ precision(fi,D), falseAlarm(fj,D) ≤
falseAlarm(fi,D), and at least one of the following conditions is true: recall(fj,D) ≠ recall(fi,D),
precision(fj,D) ≠ precision(fi,D), falseAlarm(fj,D) ≠ falseAlarm(fi,D), then fi is the best roster retriever
with respect to D and F. The goal is to determine the most appropriate function f.

Example 4.10 (Roster retrieval problem) Let f be the roster detector providing the results on the set of
documents D reported in Figure 5. TwelveNames, defined in Figure 4, provides the following results
when retrieving 12 rosters from D: rr=2, nr=10, rn=42, and nn=70. Figure 7 provides comparative
results of f and TwelveNames, demonstrating that of {f, TwelveNames}, f is the best roster retriever.

 Care has been taken in this section to precisely define terms so others can build on this work, but this
precision does not forecast complication. In the next section, a simple roster detector, RosterFinder(), is
constructed to operate with modest computing resources. The real-world results provided in the section
after next demonstrates RosterFinder() to be an effective solution to the roster retrieval problem. Its
simplicity underscores privacy concerns, which are discussed at the end of this writing.

4.3 RosterFinder
 “RosterFinder” identifies rosters from documents in a database based on the ratio of distinct known
names to distinct words appearing in the document. A dictionary of names is used to explicitly recognize
names. Figure 8 shows the roster detector algorithm known as RosterFinder().
 Given a document d and a dictionary of names N, RosterFinder() reports the percentage of distinct
names to words appearing in d. This percentage is the rank of d.

 f TwelveNames Best Possible
Recall 25% 5% 27%

Precision 92% 17% 100%
FalseAlarm 1% 13% 0%

10

Figure 7. Comparison of the performance of two roster detectors, f, whose results are shown in Figure 6, and
TwelveNames, which is defined in Figure 4, on the database of documents described in Example 4.6.

Algorithm: RosterFinder(d)
Input: document d
Output: rank of d, which is a value r such that 0 ≤ r ≤ 1
Uses: dictionary of names N

Steps
 let W = {wi | wi is a word in d} 1
 r = |N ∩W| / |W| 2
 return r 3

Figure 8. RosterFinder() algorithm for determining the certainty a document is a roster.

Using a numeric constraint 0 ≤ threshold ≤ 1, RosterFinder() can be a binary roster detector by replacing
line 3 in Figure 8 with the line shown in Figure 9. When the rank of the d is ≥ threshold, d is a roster (1 is
returned) otherwise it is not (0 is returned).

 if r ≥ threshold return 1 else return 0 3

Figure 9. RosterFinder() algorithm modified to be a binary roster detector requires replacing line 3 in Figure 8.

RosterFinder() can be used within an information retrieval system to provide rosters relevant to a stated
request. An example is provided in Figure 10.

Algorithm: RosterFinder IRR System
Input: set of search strings Keys, set of websites Sites, and
 number of documents to retrieve per string k and overall m

Output: a partially ordered matrix of m rows and 2 columns.
 Each row has a document d and its rank; [1][r1] is
 most certain and [m][rm] is least certain, i.e., r1 ≥ rm
Uses: dictionary of names N, collection of webpages Web

Steps
 let W = ∅ 1
 for each s∈Keys and u∈Sites do: 2
 W = SearchEngine(s + u, k) ∪ W 3
 D = { di | (ui,di)∈ W } 4
 for each di∈D do 5
 results[i][1] = di 6
 results[i][2] = RosterFinder(di) 7
 sort rows of results based on values in results[I][2] 8
 return results[1][] … [m][] 9

Figure 10. A RosterFinder Information Roster Retrieval System using a search engine to fetch candidate documents and
RosterFinder() to identify rosters from among them.

The IRR system in Figure 10 has two phases. The first phase appears in steps 1 through 3. A traditional
search engine identifies webpages whose documents contain the words of one or more of the search
strings and whose URLs contain one or more of the sites. The k “best” matching webpages are returned.
Step 4 consolidates these documents into the database of candidate documents, D, which is used in the
second phase. The rank of each document is computed in steps 5, 6 and 7 using RosterFinder(). The
results are stored in a 2-dimensional matrix. Each row in the matrix contains a document in the first
column and its rank in the second column. In step 8 the rows of the matrix are sorted in decreasing order
based on rank. A document having the highest rank appears first and a document having the lowest rank
appears last. The top m rows of the matrix are returned, thereby providing the m most relevant rosters.
 Example 4.6 describes sample execution of the RosterFinder IRR system in Figure 10.
RosterFinder() results are shown in Figure 6, and performance measures are reported in Figure 7. The
roster detector denoted as f in those figures is RosterFinder().

11

4.3.1 Correctness of RosterFinder
Most algorithms in computer science have a right answer, and are considered incorrect if they do not have
a right answer. A heuristic guesses something close to the right answer. Heuristics are measured on
“how close” they come to the right answer. RosterFinder() uses the simple heuristic that a roster has a
higher ratio of distinct names to distinct words than does non-rosters.
Correctness is based on how close to the right answer proposed ranks come. Comparing recall, precision,
and false alarm results from RosterFinder() to their best possible values describes its performance of
RosterFinder(). The results reported for RosterFinder(), identified as f, in Example 4.6 are very good.
Results from real-world experiments in the next section also show RosterFinder() to be very effective at
identifying rosters.
 The RosterFinder() heuristic has biased rankings. High-ranking rosters are those consisting almost
entirely of a list of known names. Figure 1 provides an example of the kind of roster preferred by
RosterFinder(). Care must be taken that the dictionary of names is likely to include names appearing in
rosters. For example, if the dictionary of names consists only of the 7 names underlined in Figure 3, then
the roster in Figure 1 will incorrectly receive a poor rank, having 0 names found.
Correct classifications of documents as rosters by RosterFinder() relies on: (1) a significant number of
names in the roster appearing in the dictionary; and, (2) a much larger number of names appearing in the
document than non-names.
 Rosters incorrectly receiving poor rank by RosterFinder() typically have: (1) few numbers of roster
names appearing in the dictionary of names; or, (2) too many non-name words appearing in the document.
For example, a bibliography of technical writings is a roster that RosterFinder() tends to rank poorly
when using a dictionary of proper names of people.
 RosterFinder() can incorrectly award a high rank to a non-roster if: (1) the document text contains
references to lots of different names; or, (2) the document text contains lots of words that are also names.
Non-rosters correctly receiving low rank from RosterFinder() may have lots of occurrences of a recurring
name. For example, an article about the undergraduate program at Brown University may have many
occurrences of “Brown,” which is a common adjective and also a proper family name. The requirement
in RosterFinder() to only consider distinct names and words helps it correctly classify these kinds of non-
rosters.

4.3.2 Complexity of RosterFinder
Let D be a set of documents, d∈D be a document in D, and N be a dictionary of names. The complexity
of RosterFinder() is linear in the number of words in a document and log in the number of names in the
dictionary. This is computed as follows. The construction of W in line 1 of Figure 8 requires visiting
each word in d, which is performed in time linear in the number of words in d. Determining which words
in W are also in N (line 2 of Figure 8) requires looking up each word in d. This too executes in time
linear in the number of words in d. N can be stored as a binary tree, making the search for a word in N
execute in time log in the number of names stored in N. Overall, the complexity of RosterFinder() is O(
|d|• log|N|). Even for dictionaries having a large number of names, RosterFinder() operates in real-time.

5. Experiments
The performance of RosterFinder() is examined in this section through a series of experiments. The
overarching goal is to locate online rosters of computer science undergraduates at selected schools using
the system described in Figure 10. The first phase of the system uses the Google search engine to
construct databases of candidate documents and the second phase uses RosterFinder() to identify rosters
from among the candidates.

12

 Aspects of the system are tested. The first experiment lists the volume of webpages that relate to
relevant search strings. Using a set of search strings, databases of relevant documents are constructed,
one for each school. The second experiment reports on RosterFinder()’s classifications of rosters and
non-rosters in each school’s database. Recall, precision and false alarms are reported. The third
experiment compares RosterFinders()’s performance using different sized dictionaries. The fourth
experiment reports RosterFinders()’s ability to highly rank a targeted roster in each database. The target
is the one (or no) seemingly complete roster of undergraduate computer science students appearing on the
computer science department’s official website at a school. This section ends with observations about
other kinds of information gained from rosters found.

5.1 Materials
RosterFinder() requires a stored dictionary of names against which words are compared. Two
dictionaries were used in these experiments. One dictionary, termed the small dictionary, was inherited
from earlier work in which names were identified in the unrestricted text of clinical notes and physician
letters in order to de-identify the text [13]. This dictionary contains 23,729 words, originating from given
and surnames of patients and doctors. The other dictionary, termed the “big dictionary,” resulted from
extracting names of people from a very large death database and is further described below.
 In the United States, a Social Security number is required for employment and necessary for many
other purposes. The United States Social Security Administration maintains a death database, which
contains a listing of everyone who had a Social Security number and who is deceased, based on official
reporting to the Social Security Administration [10]. Social Security numbers were first issued in
November 1936. As of March 2003, more than 70 million people were listed in the death database. A
purchased copy of the death database was used as follows.
 A full name was listed for each of the 70 million people in the death database. Given names and
surnames were extracted to produce a list of distinct words, not respecting the original appearance of the
word as a given or surname. The result was a list of 1,587,078 words, which formed the big dictionary
of names used in experiments as noted.
 A modest programming environment was used in these experiments to demonstrate the ease at which
RosterFinder() can be deployed, thereby further underscoring privacy concerns. Components included:
access to the World Wide Web, the Google Web API [11], which is publicly available, and Microsoft
Access, a commonly available relational database program. All programs were written in Java. These
programs used the JDBC-ODBC Bridge to store and retrieve information in Microsoft Access and used
the Google API to perform automated web searches on the Google search engine. Processing was
performed on an IBM Thinkpad A22p laptop with Pentium III processor.

5.2 Test Design
The subjects were 30 schools selected as follows. Each year U.S. News surveys computer science
graduate programs and reports the top 70 ranked schools based on measures of quality and achievement
[12]. Schools ranked in the top 21 were selected as subjects for these experiments. Another group of 6
schools were randomly chosen from the schools ranking between 26 and 70. Three additional schools
were selected that were not in the top 70. Figure 11 contains an alphabetical list of the 30 subject schools.

5.3 Experiment: Search String Volume
The overall goal in these experiments is to locate rosters of computer science undergraduates at select
schools. The 27 search strings listed in Figure 5 were used to search computer science department
websites at the schools listed in Figure 11 in order to locate webpages that may contain rosters of
computer science undergraduate students. This is consistent with the first phase of the RosterFinder IRR

13

system. This experiment examines the search strings used and their role in constructing the database of
candidate documents for a school.
 Rebekah Siegel, who was a high school student at the time, provided the search strings. She was
asked to locate rosters manually for MIT, Stanford and Princeton and write down each search string she
tried and document the results. Figure 5 contains the list of search strings she used when attempting to
locate seemingly complete, official rosters of students. Future references to search strings and their labels
relate to those itemized in Figure 5, labeled, A through AA. Search string R is “people undergraduate,” for
example.

School Prec M R Pos Tot
1 Brigham Young University 67% 4 87
2 Brown University 92% 1 124
3 California Institute of Technology 67% 1 112
4 Carnegie Mellon University 100% 10 159
5 Columbia University 100% 1 113
6 Cornell University 100% 1 161
7 Duke University 100% 3 130
8 Georgia Institute of Technology 100% 4 148
9 Massachusetts Institute of Technology 100% 4 331

10 North Carolina State University 83% 2 47
11 Northeastern University 92% 2 133
12 Penn State University 75% 1 84
13 Princeton University 83% 1 119
14 Rice University 67% --- 101
15 Spelman College 58% 82 136
16 Stanford University 100% 1 29
17 University of Alabama 50% 6 59
18 University of California–Berkeley 92% 1 121
19 University of California–Los Angeles 92% --- 125
20 University of Illinois–Urbana-Champaign 83% 1 152
21 University of Maryland–College Park 67% --- 108
22 University of Michigan–Ann Arbor 92% 45 114
23 University of North Carolina–Chapel Hill 83% 1 119
24 University of Pennsylvania 75% 1 125
25 University of Pittsburgh 75% 1 68
26 University of Texas–Austin 100% 1 152
27 University of Virginia 58% 3 116
28 University of Washington 50% 3 110
29 University of Wisconsin–Madison 100% 1 137
30 Virginia Tech 92% ??? 3 127

Legend
complete
partial
none

Figure 11. Search for undergraduate computer science rosters at 30 schools, reporting precision of rosters found in top
12 RosterFinder results, and whether a roster of undergraduates was found manually (M) or by RosterFinder(R), and if
found by RosterFinder, its ranked position (Pos) in a database having a total number (Tot) of documents.

0

200

400

600

800

1000

1200

A B C D E F I J K N O P Q R S T U V W X Y Z AA

Search String

N
um

be
r W

eb
pa

ge
s

Figure 12. Statistics reporting results from web searches using search strings in Figure 5 on websites for schools in
Figure 11. Line endpoints report the maximum and minimum number of webpages found at a school website for the
search string, and the box outlines the middle two quartiles.

The search is limited to computer science website(s) at each school by restricting the URL of subject
webpages to include one or more substring(s) custom to the school’s computer science department
website. Examples of computer science department website substrings used are: “cs.brown.edu,”
“cc.gatech.edu,” “csc.ncsu.edu,” “cis.upenn.edu,” “ccs.neu.edu,” and “cse.psu.edu,” for Brown
University, Georgia Institute of Technology, North Carolina State University, University of Pennsylvania,
Northeastern University, and Pennsylvania State University, respectively. All future references to a
school’s website relates specifically to its computer science website(s) unless otherwise noted.
Restricting the search to these websites provided two advantages: (1) it limited the number of webpages

14

provided in response to a search; and, (2) it focused the search to the authoritative source of the rosters
being sought.
 The only exception was Spelman, which was the only college (no graduate students) included in the
subject schools. The school wide website was used. The search strings were modified such that
“undergraduate” was removed and as appropriate “computer science” was appended.
Figure 12 contains statistics that describe the number of webpages found by the Google search engine for
the search strings. Results from 17 of the subject schools, randomly selected, are reported. The top point
of each line is the maximum number of webpages retrieved for a school and the bottom point is the
minimum number. R had its maximum, 1240, at Brown University’s website, and its minimum, 17, at
Brigham Young University’ site. Searches K, Q, W, and Z provided very small numbers (maximum less
than 30) at all schools. Half of all reported values appear within the box, so the size of the box depicts the
spread of the distribution.
 G and L are not pictured because they had extremely large maximums, 3380 and 16,600, respectively.
Rosters were found in all search strings, but seemingly complete rosters of undergraduate computer
science students were not found in E, F, I, J, K, P, Q, and U. Search strings H and M were not included in
this experiment. Overall, the average number of webpages found for a search string at a school was 198,
the minimum was 0, the maximum was 16,600, and the standard deviation was 965.
Documents from the top 10 matches from each search string were added to the database of the school
from which the webpages were found, ignoring duplicates. These formed the databases of candidate
documents from which rosters were subsequently detected. The total number of documents in each
database for a school is reported in Figure 11 (Tot column). Overall, the average number of documents in
a school’s database was 122, the minimum was 29, the maximum was 331, and the standard deviation
was 51.

5.4 Experiment: Roster Classification
RosterFinder() assigns each document in a school’s database a rank. Documents are then sorted in
decreasing order of rank. As the topmost documents are revealed in rank order, more and more non-
rosters are expected to appear. RosterFinder() has done a perfect job if all rosters appear before non-
rosters. Figure 13 shows recall and precision measures for RosterFinder() results from the first 3 subject
schools. When the recall rate is low, the precision is near perfect (100%). As more documents are
revealed, the recall rate decreases and the precision does also as increasingly more non-rosters appear.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00

Recall

P
re

ci
si

on S1
S2
S3

Figure 13. Recall and precision measures for 3 schools: Brigham Young (S1), Brown University (S2), and California
Institute of Technology (S3).

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 0.20 0.40 0.60 0.80 1.00

False Alarms

Pr
ec

is
io

n S1
S2
S3

Figure 14. False alarm rate and precision measures for 3 schools: Brigham Young (S1), Brown University (S2), and
California Institute of Technology (S3).

Ideal results resemble a step-down function where precision is 100% until all rosters in the database are
retrieved and then, precision moves toward 0. Once all the documents have been retrieved, the final
precision value is the proportion of rosters in the database. The steepness of the decay and the percentage
of documents recalled before the decay begins is based on the number of rosters appearing in the
database, not on the performance of RosterFinder(). The correctness of RosterFinder() is exemplified by
the shape of the curve -- in particular, the high precision for the first documents retrieved.
 Precision measures for all 30 subject schools are reported in Figure 11 when the 12 highest ranked
documents are examined. Nine of the schools provided 12 rosters, thereby reporting 100% precision.
The sizes of the databases cannot be ignored, however. Consider school S1, Brigham Young University.
Its precision for the top 12 documents is only 67% in Figure 11, yet in Figure 13 its precision with low
recall rates is perfect (100%). There are 89 documents in S1’s database. When 12 of the 89 documents
are provided, the recall rate is 53%. The curve in Figure 11 for S1 shows at 53% recall, precision drops
significantly.
 The results shown in Figure 13 are characteristic of the subject schools even though only results for 3
schools are shown. The results demonstrate RosterFinder() to be quite reasonable at detecting rosters. A
human using the RosterFinder IRR system would have few non-rosters appearing in the top ranked
results. Figure 14 shows how precision decays as the number of false alarms increase.

5.5 Experiment: Dictionary Size
All experimental results reported so far were based on RosterFinder() using the small dictionary. The
previous experiment was repeated with each school’s database using the big dictionary instead.
Surprisingly, there was no substantive change in recall, precision or false alarms for any schools. The
rank values assigned to a document were much higher overall because more words were being recognized
as names. The ordering of documents changed, but not significantly.

5.6 Experiment: Targeted Roster Hunting
The overall goal of these experiments was not just to demonstrate the effectiveness of the RosterFinder
IRR system at locating rosters, but to also demonstrate its ability to find a specific, targeted roster. In this
case, “targeted students” are registered computer science undergraduates, by year or combination of
years, and my include alumnae. A “targeted rosters” is a seemingly complete list of targeted students at

16

each school. There may be one or no such targeted roster in a school’s database. Graduate students are
not included because there is much more information readily available on graduate students.
 Marshall Warfield (a Masters student in English) was hired to navigate through each school’s website
by hand, following links related to undergraduate students and visually inspecting the contents of the
webpages. He recorded whether a target was found, and if so, its URL was noted. All rosters reported by
RosterFinder for a school website were also examined and hand tagged. Figure 11 provides a summary of
comparative results, which is further discussed below.
 Two kinds of rosters were recognized. A “complete target” is a targeted roster in which nearly all
targeted students are included in the roster. A “partial target” is a targeted roster in which some targeted
students appear, but there is no expectation that the roster is almost complete. For example, a list of
students who gave their permission to be listed may comprise a partial target if few students appear to be
listed.
 Online phone directories provide a complete target if undergraduate students are included and the
directory is made available from a computer science website. Most online directories were school wide,
not computer science specific, and therefore not included in these experiments.
In all cases where a manual roster was found, RosterFinder located the roster. Figure 11 (column M)
shows more than half (16 of 30) of the schools had complete targets found manually. RosterFinder found
those same complete targets (see column R).
 In 4 of the 6 schools where a partial target was found manually, RosterFinder located the same partial
target, but, in the other 2 schools, the California Institute of Technology and the Massachusetts Institute
of Technology (MIT), RosterFinder found complete targets. It also found complete targets in 4 schools
where no manual target was found, and a partial target in a school where no manual target was found.
 RosterFinder found the names of more than 15,000 targeted students from the subject schools.
Student names are archived at http://privacy.cs.cmu.edu/dataprivacy/projects/icu/index.html.

5.7 Observations from Experiments
Here are some general observations. Several targeted rosters not only included the names of the students,
but also their photographs. Rosters of students enrolled in particular courses were commonly found.
Rosters of women and minority students were prevalent. A roster of Russian students studying in the
United States, complete with contact information, was found; it exemplifies the kind of information found
on foreign students.
 Rosters can also provide inferences on the race and religion of students. Spelman College is a
private, historically Black college for women located in Atlanta, Georgia. More than 97% of its students
are black [16]. Approximately 98.6 percent of the students Brigham Young University are members of
the Mormon Church [17].

6. Related Work
While this work is the first to examine the problem of locating lists of people, there has been prior work
on data linkage and on trail re-identification where sensitive information about people is learned from
fragments of seemingly innocent information left behind and given away freely.
 Direct linkage allows people whose data are contained in a given de-identified dataset to be reliably
re-identified by linking it to an explicitly identified dataset [18]. A de-identified dataset is void of any
explicit identifiers, such as name or address. An explicitly identified dataset, containing name and
address, is linked to the de-identified dataset using fields appearing in both datasets. For example, in the
United States, {ZIP code (5-digit postal code), gender, date of birth (month, day, year)} uniquely
identifies 87% of the population. A de-identified dataset containing these fields can be reliably re-
identified.

17

 Trails algorithms have been developed for learning a person’s identity from the uniqueness of the trail
of data fragments left behind [19]. For example, online consumers may visit websites and make
purchases at some of the sites visited. At each site visited, the IP address is left behind in the website’s
log. At locations where purchases were made, the consumer’s name and address are also left behind.
When weblogs (IP addresses) and customer lists (names and addresses) are shared across organizations,
trail algorithms can match people to their IP addresses (assuming static or persistent IP addresses).
 In both data linkage and in trail re-identification, the task is to re-identify the person who is the
subject of the data to the seemingly anonymous information given. In this work, however, a description
of the kind of information (or roster) sought is provided, and not initial data. Then, explicitly identified
information is directly uncovered.

7. Privacy Implications
This paper began by examining the Princeton-Yale incident, which underscores the confidentiality
problems realized by competition. Information about the identities of Yale’s students provided strategic
advantage to Princeton by allowing Princeton to compare and possibly adapt its admissions policies. This
paper ends by examining the nature of the changes enabled by today’s technology and at the challenge to
privacy that remains.

7.1 Technology’s Erosion of Privacy
The experiments provided in this paper underscore the role of technology in exasperating privacy
conflicts. Before 1996, resumes, school newspapers, class lists, and school phone directories had more
privacy protection because of their physical boundaries. There were natural limits to their availability.
Today, with so much of this information provided freely over the Web, physical boundaries are removed,
and the data can be searched, sorted, and processed in ways not feasible when the information appeared
only in print medium.
 In the United States, the Family Educational Rights and Privacy Act (FERPA) addresses rights
parents and students may have concerning school records. Section 5(a) and 5(b) of FERPA relate to this
paper:

(5) (A) For the purposes of this section the term "directory information" relating to a student
includes the following: the student's name, address, telephone listing, date and place of birth, major
field of study, participation in officially recognized activities and sports, weight and height of
members of athletic teams, dates of attendance, degrees and awards received, and the most recent
previous educational agency or institution attended by the student.
(B) Any educational agency or institution making public directory information shall give public
notice of the categories of information which it has designated as such information with respect to
each student attending the institution ..."

In an earlier experiment and reported in Figure 11, no seemingly complete roster of undergraduate
computer science students was found at MIT by manually navigating through the links at MIT’s official
site. However, RosterFinder did locate a seemingly complete roster of these students. This finding may
be significant to privacy policy enforcement. MIT's stated policy, located at
http://web.mit.edu/policies/11.3.html, states:

"7.2 School, department and lab web pages - Faculty, staff and students must exercise caution in
posting directory and other information to a web page that is accessible to MIT and/or to the
public. Students have the right to withhold directory and other information from public
distribution. Faculty and staff must receive permission from each student to post personal
information and identification photographs to web pages."

18

The webpage identified by RosterFinder at MIT was used to match advisors to advisees. It contained a
list of all enrolled undergraduates in computer science. This may be in violation of this policy. A list of
advisor – advisee assignments was also found at the University of Illinois.
 This example shows that even if a school policy restricts certain rosters from being publicly provided,
enforcement can be illusive in a large organization. RosterFinder can be used for policy enforcement by
insuring online lists at the organization’s website are not rosters the organization has deemed strategically
sensitive.
 This example also demonstrates that it was not policies alone that historically provided privacy
protection. It was privacy policies in the absence of today’s technology that was the effective guard. So,
how can technology allow the benefits technology currently allows society to enjoy, while also providing
protections enjoyed in the absence of the technology? This lies at the heart of the data privacy challenge.

7.2 Data Privacy Challenge
Privacy conflicts emerge between all kinds of combinations of entities – people, governments,
organizations, corporations and countries. Data privacy problems emerge because a lack of privacy
protection for an entity often leads to situations in which strategic information about the entity is revealed
to others. This can often cause the entity harm, distress or discomfort. Having the information about the
entity can often empower others.
 Privacy policy is one answer. Privacy policy is realized by personal actions, business practices, and
government regulations. Privacy policy is limited to concise unambiguous word description and cost
effective practices implemented with existing resources. Privacy policy is restricted to crude choices,
such as providing the information or not. Consider FERPA as an example.
 Data Privacy is the study of computational solutions for solving privacy and confidentiality problems
in data. Computational solutions provide the opportunity to monitor, coordinate, and alter shared
information in ways that provide scientific assurances about what can be inferred from the released
information. Data are shared, but the version of the values shared or the way in which the data are shared
has some assurances of protection. In comparison to computer security, data privacy controls inferences
about the content of what is shared, not merely access to explicit values. In comparison to privacy policy,
data privacy offers graduated solutions for sharing data, and is not limited to crude choices of either
explicitly sharing values “as is” or not.
 It is left as a challenge to computer scientists to develop and deploy data privacy technology to thwart
RosterFinder. Some obvious first attempts might include limiting web access, storing rosters as image
files rather than as text, or adding hidden words in the document making it difficult to search.
Advancements in computer technology generated these privacy concerns. Advancements in privacy
technology can solve them.

8. Acknowledgements
This work stems from the initial manual effort of Rebekah Siegel, who as a high school student
demonstrated the kind of patience, perseverance and methodical dogma found in researchers many times
her senior. James Morris, Janine Pischke and Walter Schearer in the School of Computer Science at
Carnegie Mellon University (CMU) sponsored this project. The work was conducted in the Data Privacy
Laboratory at CMU, and much gratitude goes to Marshall Warfield for manually detecting and classifying
rosters, to Bradley Malin, Elaine Newton, Benjamin Vernot, Yiheng Li, Aaron White and Ralph Gross for
numerous suggestions and comments, and to Sherice Livingston for administrative support.

References
[1] Ferdinand, P. and Barbaro, M. Yale Tells FBI of Rival's Breach of Web Site Princeton Suspends

Admissions Official Over Snooping Into Student Files. Washington Post. July 26, 2002; p A02.

19

http://www.washingtonpost.com/ac2/wp-dyn?pagename=article&node=&contentId=A2983-
2002Jul25¬Found=true

[2] Princeton Snoops on Yale. Wired. July 26, 2002.
http://www.wired.com/news/culture/0,1284,54140,00.html

[3] Chen, H. and Bian, G. White page construction from web pages for finding people on the Internet. In
Computational Linguistics and Chinese Language Processing, v.3 Feb 1998, pp. 75-100.

[4] Proceedings of the Fourth Message Understanding Conference, San Francisco, 1992. Morgan
Kaufman Publishers.

[5] Proceedings of the Fifth Message Understanding Conference, San Francisco, 1993. Morgan Kaufman
Publishers.

[6] Proceedings of the Sixth Message Understanding Conference, San Francisco, 1995. Morgan Kaufman
Publishers.

[7] Coates-Stephens, S. The Analysis and Acquisition of Proper Names for the Understanding of Free
Text, Kluwer Academic Publishers, Hingham, MA, 1993.

[8] Grisham, R. and Sundheim, B. Message Understanding: a brief history. In Proceedings of the Sixth
Message Understanding Conference, San Francisco, 1996.

[9] Poibeau, T. and Kosseim, L. Proper Name Extraction from Non-Journalistic Texts. In Computational
Linguistics in the Netherlands Meeting. W. Daelemans, K. Sima'an, J. Veenstra and J. Zavrel, 2001
(eds), Amsterdam/New York, 2001, p. 144-157.

[10] Social Security Online History, United States Social Security Administration. Available at
http://www.ssa.gov/. Washington: 2003.

[11] Google Web API for the Java Programming Environment. Available at http://www.google.com/apis/.
Mountain View: 2003.

[12] America’s Best Graduate Schools: Science Programs, Computer Science. U.S. News and World
Reports. 2003. At: http://www.usnews.com/usnews/edu/grad/rankings/rankindex.php

[13] Sweeney, L. Replacing Personally-Identifying Information in Medical Records, the Scrub System. In:
Proceedings of the American Medical Informatics Association. Cimino, JJ, (ed.) Washington, DC:
Hanley & Belfus, Inc., 1996, pp. 333-337.

[14] Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information Retrieval, Addison Wesley, Boston, MA,
1999.

[15] Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, Tampere, Finland, 2002. ACM.

[16] Spelman College Fact Book 2000-2001. Atlanta, GA 2001.
http://www.spelman.edu/factbook/factbook0001/#enrollstats, Spelman College Fact Book 2000 –
2001

[17] Brigham Young University Home Fact File Students, http://www.byu.edu/about/factfile/stud-
ff4.html#demo.

[18] Sweeney, L. k-anonymity: a model for protecting privacy. International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems, 10 (5), 2002; 557-570.

[19] Malin, B. and Sweeney, L. Compromising Online Anonymity with Trail Re-identification.. Carnegie
Mellon University, School of Computer Science, Data Privacy Laboratory Technical Report, LIDAP-
WP13. Pittsburgh: June 2003.

20

http://www.washingtonpost.com/ac2/wp-dyn?pagename=article&node=&contentId=A2983-2002Jul25¬Found=true
http://www.washingtonpost.com/ac2/wp-dyn?pagename=article&node=&contentId=A2983-2002Jul25¬Found=true
http://www.wired.com/news/culture/0,1284,54140,00.html
http://www.ssa.gov/
http://www.google.com/apis/
http://www.usnews.com/usnews/edu/grad/rankings/rankindex.php

	Introduction
	Manual Search For Lists
	Name Extraction Background
	Methods
	Definitions
	Information Retrieval of Rosters
	RosterFinder
	TwelveNames
	Recall

	Correctness of RosterFinder
	Complexity of RosterFinder

	Experiments
	Materials
	Test Design
	Experiment: Search String Volume
	Experiment: Roster Classification
	Experiment: Dictionary Size
	Experiment: Targeted Roster Hunting
	Observations from Experiments

	Related Work
	Privacy Implications
	Technology’s Erosion of Privacy
	Data Privacy Challenge

	Acknowledgements
	References

