
Convergence Testing in Term-Level Bounded Model

Checking

Randal E. Bryant Shuvendu K. Lahiri Sanjit A. Seshia

June 2003

CMU-CS-03-156

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A shorter version of this paper will appear at CHARME ’03.

Abstract

We consider the problem of bounded model checking of systems expressed in a decidable fragment
of first-order logic. While model checking is not guaranteed to terminate for an arbitrary system,
it converges for many practical examples, including pipelined processors. We give a new formal
definition of convergence that generalizes previously stated criteria. We also give a sound semi-
decision procedure to check this criterion based on a translation to quantified separation logic.
Preliminary results on simple pipeline processor models are presented.

This research was supported in part by the Semiconductor Research Corporation, Contract RID 1029 and by
ARO grant DAAD 19-01-1-0485.

The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. The views and conclusions contained in this document are those of
the authors, and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Department of Defense or the U.S. Government.

Keywords: Term-level verification — Convergence in Model Checking — Symbolic Simulation
— Uninterpreted functions — Second-order Logic — Decision procedures — Quantified Separation
Logic — Processor verification

1 Introduction

Systems with parameters of finite but arbitrary or large size are often modeled as infinite-state
systems. Such systems include superscalar processors, communication protocols with unbounded
channels, and networks of an arbitrary number of identical processes. While state elements can
still be of Boolean type, richer data types such as unbounded integers or unbounded arrays of
integers are also used. Employing this richer expressive power is one approach to tackling the state
explosion problem.

In the area of hardware verification, the logic of Equality with Uninterpreted Functions and Mem-
ories (EUFM) has been successfully used for the automated verification of pipelined processor
designs [7, 3]. The more general logic of Counter Arithmetic with Lambda Expressions and Unin-
terpreted Functions [4] (CLU) has been used for bounded model checking and inductive invariant
checking of out-of-order microprocessors with unbounded resources [14]. Bounded model checking
proceeds by symbolically simulating the system for a finite number of steps starting from an ini-
tial state, checking on each step that a state property holds. As the state elements can be terms
in a first-order logic, we will refer to this technique as term-level bounded model checking. Since
term-level models can express Turing machines [12], the symbolic simulation might never reach a
fixpoint in general. However, in many practical cases, the simulation does converge. It is therefore
necessary to check, after each simulation step, whether the simulation has converged. Term-level
bounded model checking is also useful in combination with other techniques such as Burch-Dill
style verification [7], since it provides a way to compute the most general reachable state in which
to initialize the system when using those techniques.

In this paper, we make two main contributions. First, we give a new formal definition of conver-
gence for term-level bounded model checking, where CLU logic is used as the modeling formalism.
The convergence criterion is formulated as a quantified second-order formula with one quantifier
alternation, and is undecidable in general. Second, we give two semi-decision procedures for this
class of second-order formulas, the first being sound and the second being complete. Our procedures
are based on a translation to a decidable fragment of first-order logic called quantified separation
logic (QSL). QSL formulas are quantified Boolean combinations of Boolean variables and predicates
of the form xi < xj + c or xi = xj + c, where xi and xj are real or integer variables, and c is a
constant. The QSL formulas are then decided by a translation to quantified Boolean logic [16].
Although we use the semi-decision procedures for convergence checking, our results are also more
generally applicable to automated theorem proving of second-order formulas.

Previous term-level model checkers vary in expressiveness of the underlying logic, and either use
syntactic convergence criteria or approximation techniques that guarantee convergence at the cost
of completeness. Hojati et al. [12] presented a modeling formalism called ICS which is similar
in expressiveness to EUFM. They showed that ICS models do not converge in general, except
under highly restrictive assumptions that are not of practical interest. Isles et al. [13] built on
this work, giving a conservative, syntactic definition of convergence of ICS models, and using it to
verify versions of the DLX pipeline. Our logic is more expressive than ICS. Also, as we show in
Section 5.2, their convergence criterion is a special case of the one we present in this paper. Corella
et al. [8] have used Multiway Decision Graphs (MDGs) for term-level model checking. MDGs are
BDD-like data structures used for representing formulas in quantifier-free logics such as EUFM and
CLU; the exact logic represented depends on the set of interpreted function symbols used in the
model. Thus, Corella et al. use MDGs to represent the characteristic function of the set of states of
a term-level model. Unlike our work, their models cannot have variables of function type, and hence

1

cannot verify systems with embedded memories. However, they address a more general class of
properties expressible in a first order temporal logic. With respect to convergence checking, Corella
et al. use syntactic rewriting techniques similar to those employed for ICS [13]. Bultan et al. [5]
have used Presburger arithmetic for verifying concurrent algorithms. Checking convergence for
systems expressed in Presburger arithmetic is decidable; however, since the model checking might
not converge in general, they conservatively approximate the fixpoint, allowing the possibility of
spurious counterexamples. In comparison, our use of CLU logic allows us to use uninterpreted
functions and also lets us model richer systems with memories. This expressive power, however,
results in convergence checking becoming undecidable.

The rest of the paper is organized as follows. Section 2 presents CLU logic and our system modeling
formalism. Section 3 defines the term-level bounded model checking problem. In Section 4, we
formally define the convergence criterion. Section 5 describes how we check this criterion. Finally,
we conclude in Section 6 with some preliminary results with pipelined processor models. Detailed
proofs of the theorems can be found in the appendix.

2 Preliminaries

2.1 CLU Logic

Syntax. The syntax includes four classes of expressions, representing computations of truth values
or integers, as well as functions over integers yielding truth values or integers. We use symbols to

bool-expr ::= true | false | bool-symbol | ¬bool-expr | (bool-expr ∧ bool-expr)

| (int-expr= int-expr) | (int-expr< int-expr)

| predicate-expr(int-expr, . . . , int-expr)

int-expr ::= lambda-var | int-symbol | ITE(bool-expr, int-expr, int-expr)

| int-expr + int-constant | function-expr(int-expr, . . . , int-expr)

predicate-expr ::= predicate-symbol | λ lambda-var, . . . , lambda-var . bool-expr

function-expr ::= function-symbol | λ lambda-var, . . . , lambda-var . int-expr

Figure 1: Expression Syntax. Expressions can denote computations of Boolean values, integers,
or functions yielding Boolean values or integers.

represent abstract values and functions. Symbols are written with a typewriter font, such as a or
f. Associated with each symbol is a type indicating what kind of value it represents (truth, integer,
function, or predicate). For function and predicate symbols, the type includes its arity indicating
the number of arguments it takes. For function symbol f, we write its arity as arity(f). For a set of
symbols A, we let E(A) denote the set of all expressions that can be formed using these symbols,
obeying the usual rules on type matching.

The syntax includes integer lambda variables. These only serve to represent the arguments to
lambda expressions. Note also that the lambda expression syntax is constrained so that they
cannot have functions as arguments, and they cannot express any form of looping or recursion.

Sets of Expressions. We use two ways to refer to sets of expressions in which we must identify
the different elements. The first is a vector notation, in which we index the elements with integer

2

subscripts. We use the notation en to denote a vector with elements e1, . . . , en. The second is a
named-element notation, in which we have a set of symbolic names A and write a set of expressions
e as having an element ea for each a ∈ A.

With both notations, we can indicate the syntactic substitution of elements for symbols or variables
in an expression. That is, the expression s [en/xn] denotes the expression where each instance of xi

in s is replaced by the expression ei for 1 ≤ i ≤ n. These substitutions are performed in parallel,
so there is no ambiguity of some expression ei contains the symbol xj . Similarly, s [e/A] indicates
the result of replacing each instance of a symbol a ∈ A with the expression ea.

Semantics. For a set of symbols A, we let σA indicate an interpretation of each of these symbols.
That is, σA maps each symbol to an integer, a truth value, or a function according to the symbol
type. For any expression e ∈ E(A), we define its evaluation under interpretation σA, denoted 〈e〉σA

as the value obtained by evaluating e when each symbol a is replaced by its interpretation σA(a).
We omit the detailed definition.

A truth expression e ∈ E(A) is said to be universally valid when it evaluates to true for all
interpretations of its symbols, i.e., when 〈e〉σA

= true for all σA.

As a final notation, for disjoint symbol sets A and B, each having interpretations σA and σB, we
let σA ·σB denote the interpretation over the symbols in A∪B obtained by applying the respective
interpretations to the symbols in A and B.

As noted earlier, our syntax for function applications requires all arguments to be integer expres-
sions. We can therefore transform any integer or truth expression containing lambda expressions
into an equivalent lambda-free one by performing Beta reduction, in which the actual parameter
expressions are syntactically substituted in parallel with the actual parameter expressions.

2.2 System Model

We model the system as having a number of state elements, where each state element may be a
truth or integer value, or a function or predicate. This latter class of state elements allows us
to describe various forms of memories. For example, a conventional random-access memory can
be modeled as a function that yields an integer data value given an integer address as argument.
We use symbolic names to represent the different state elements giving the set of state symbols S.
We also introduce a set of input symbols T , representing a set of input signals that can be set to
different values on each step of operation. That is, on each step i, we introduce a symbol ai for
each input symbol a. We refer to such signals as the indexed input symbols. We introduce two
more sets of symbols K and I to allow one run by the verifier to compute the behavior of systems
with different functionality operating with different initial state and input values. The symbols
in K parameterize system functionality. This could include, for example, function symbols for the
ALU, and the contents of the instruction memory. The symbols in I parameterize the initial state
and system input sequence. These could include a function symbol to encode the initial state of a
memory. They also include the indexed input symbols.

The overall system operation is characterized by an initial state s0 and a transition behavior δ. The
initial state contains an expression for each state element. The initial value of state element a is
given by an expression s0

a ∈ E(I). The transition behavior consists of an expression for each state
element. The behavior for state element a is given by an expression δa ∈ E(K ∪ S ∪ T). In this
expression, we use the state element symbols to represent the current system state, and the input
symbols to represent the current values of the inputs. The expression then gives the new state for

3

that state element.

From these expressions, we define the state sequence for the system s0, . . . , si, . . . , where the state
at step i consists of an expression for each state element si

a ∈ E(K ∪ I). This expression is given
by performing the double substitution

si
a = δa

[

si−1/S, ti/T
]

, (1)

where the input expression ti has tia = ai for each a ∈ T . As mentioned earlier, we always perform
Beta reduction following a substitution such as this. We use the shorthand si = δ(si−1, ti) to
indicate this process of generating the expressions for the state at step i.

3 Property Checking

A system property P is represented as a Boolean expression over the state elements P ∈ E(S).
Typically we want to determine whether P holds at some particular step k, or whether P holds at
every step. We can determine whether P holds at some particular step k by applying a decision
procedure for CLU logic. However, our interest here is to prove that P holds for every step i ≥ 0.
In general, this task is undecidable. The problem remains undecidable even if we restrict the class
of systems to ones with only integer state elements, and where the system behavior is described
using a logic of equality with uninterpreted functions [12].

Instead, we focus on a more restricted class of systems that satisfy a property we call k-convergence.
With these systems, every reachable state can be reached within k steps for some combination of
initial state and inputs, for some fixed bound k. If we can prove that a system is k-convergent,
then we can guarantee property P holds on every step by verifying that it holds on every step up
through sk.

Formally, we say that a system with initial state s0 and transition behavior δ converges in k steps,
when for every interpretation σI of the initial state and inputs and for every interpretation σK of
the system parameters, there exists a step i ≤ k and an alternate interpretation θI of the initial
state and inputs, such that for every state symbol a ∈ S

〈

si
a

〉

θI ·σK
=

〈

sk+1
a

〉

σI ·σK

. (2)

We use the shorthand
〈

si
〉

θI ·σK
=

〈

sk+1
〉

σI ·σK
to indicate this equality for every state element.

Property (2) states that by step k+1, the system will not reach any new states. That is, for every
possible interpretation of the system parameters θK, and for every possible operation of the system
for k+1 steps, as determined by the interpretation σI of the initial state and indexed input symbols
I, there is some alternate initial state and input sequence, given by interpretation θI that would
have led to the exact state in i steps for some 0 ≤ i ≤ k.

We show that this property guarantees that the system will not reach new states beyond step k.

Theorem 1 If a system converges in k steps, then for any j ≥ 0 and any interpretation σK of the
system parameters, there exists a step i ≤ k and an alternate interpretation θI of the initial state
and inputs, such that

〈

si
〉

θI ·σK
=

〈

sj
〉

σI ·σK
. (3)

4

Before we prove Theorem 1, we highlight a key property of our system model.

Proposition 1 For any interpretations σI and σK and any step i

〈

si+1
〉

σI ·σK
=

〈

δ
[

〈

si
〉

σI ·σK
/S,

〈

ti+1
〉

σI
/T

]〉

σK

(4)

By way of explanation, (4) combines a basic property of symbolic simulation with some specific
characteristics of our model. On the right hand side, we evaluate state si under an interpretation
of symbols in K ∪ I, yielding an integer or Boolean value, or an integer or Boolean function for
each state element. Similarly, we evaluate the indexed inputs at step i + 1, but these depend
only on the interpretation of symbols in I. Now we substitute these values for the state element
symbols and input symbols in the expressions for the transition behavior δ. Finally, we apply an
interpretation to each system parameter symbol in K and evaluate the results, giving a new value
for each state element. The left hand side gives a value for each state element by applying the
same interpretations to the expressions reached after i+ 1 steps of symbolic simulation. Our claim
is that either route leads to the same values.

The proposition follows from the definition of si+1, the property that the transition behavior is
independent of the values assigned to the symbols I, since these only encode the initial state
and the input values, and the values of inputs ti+1 are independent of the values of the system
parameterization symbols.

We now prove Theorem 1.

Proof: The proof proceeds by induction on j. For j ≤ k, the condition holds trivially by letting

i = j. Let us assume it holds for j. That is, there is some i′ ≤ k such that
〈

si′
〉

θI ·σK

=
〈

sj
〉

σI ·σK
.

We first show that state sj+1 must be equivalent to the state at step i′ + 1 under an alternate
interpretation of the initial state and indexed input symbols. First, we apply (4) and (3) to expand
state sj+1 and apply the induction hypothesis, giving

〈

sj+1
〉

σI ·σK
=

〈

δ
[

sj/S, tj+1/T
]〉

σI ·σK

=
〈

δ
[

〈

sj
〉

σI ·σK
/S,

〈

tj+1
〉

σI
/T

]〉

σK

=

〈

δ

[

〈

si′
〉

θI ·σK

/S,
〈

tj+1
〉

θI
/T

]〉

σK

Now let us define an interpretation θ ′I that is identical to θI , except that for each symbol ai′+1

representing the value of input a at step i′ + 1, let θ′I(ai′+1) = θI(aj+1). State expression si′ does
not have any indexed input symbols with step index i′ + 1, and hence it will evaluate to the same
set of values under interpretations θI and θ′I . We can therefore continue the derivation as follows:

〈

sj+1
〉

σI ·σK
=

〈

δ

[

〈

si′
〉

θI ·σK

/S,
〈

tj+1
〉

θI
/T

]〉

σK

=

〈

δ

[

〈

si′
〉

θ′
I
·σK

/S,
〈

ti
′+1

〉

θ′
I

/T

]〉

σK

=
〈

δ
[

si′/S, ti
′+1/T

]〉

θ′
I
·σK

=
〈

si′+1
〉

θ′
I
·σK

5

For i′ < k, we can let i = i′ + 1 ≤ k be the earlier step and θ′I be the alternate interpretation to
prove the induction hypothesis.

For i′ = k, we have shown that
〈

sj+1
〉

σI ·σK
=

〈

sk+1
〉

θ′
I
·σK

. Applying the convergence criterion,

there must be some step i ≤ k and some alternate interpretation ηI such that
〈

sj+1
〉

σI ·σK
=

〈

sk+1
〉

θ′
I
·σK

=
〈

si
〉

ηI ·σK
, to show that the state at step j+1 is identical to the state at step i under

alternate interpretation ηI .

Note how this proof relied on the structure of our model. We encode variations in the system
behavior and operation symbolically. On each step, the inputs can change arbitrarily (since we
introduce a new set of symbols on each step), but the system behavior remains fixed (since it is
parameterized by the fixed set of symbols K).

4 Formulation of the Convergence Criterion

We now reach the main topic of this paper: determining whether a system is k-convergent for some
value of k. We can express this as a problem in second-order logic as follows. Introduce a symbol
set J consisting of a symbol a′ for each initial state symbol a ∈ I, and a symbol a′i ∈ I for each
indexed input signal ai, for 1 ≤ i ≤ k. Rewrite each state expression si, for 0 ≤ i ≤ k to an
expression ri, by replacing each symbol in I with its counterpart in J .

Using the notation of predicate calculus, we consider the symbols in I, J , and K to be quanti-
fied variables, either first-order (for integer or Boolean symbols) or second-order (for function or
predicate symbols). We can then write the convergence criterion as:

∀K ∀I ∃J





∨

0≤i≤k

∧

a∈S

ri
a = sk+1

a



 (5)

With these quantifiers, we are really quantifying over the possible interpretations of the symbols.
Note that this formula cannot be expressed in first-order logic, because we have existentially quan-
tified function symbols.

Example 1: Consider a system with the integer state variables x, y and Boolean state variable
b. The operations are defined by:

init[x] = c0 init[y] = c0 init[b] = true

next[x] = f(x) next[y] = f(y) next[b] = (x = y)

where c0 is an integer symbol and f is an uninterpreted function symbol. Using our notation, the
sets of symbols are defined as follows — S = {x, y, b}, K = {f}, I = {c0} and J = {c′0}.

After simulating the system for one step, the convergence condition (given by equation 5, where
k = 0) becomes:

∀f ∀c0 ∃c
′
0

[

c′0 = f(c0) ∧ c′0 = f(c0) ∧ true = (f(c0) = f(c0))
]

which simplifies to ∀f ∀c0 ∃c
′
0 [c′0 = f(c0)], which is clearly valid, with c′0 taking the value f(c0).

Therefore the system converges after one step of simulation. As expected, the state variable b is
always true in the reachable set of states.

6

For a function or predicate state element F, the expression r i
F = sk+1

F is a second-order equation—it
states that two functions or predicates are identical for all possible arguments.

For systems without function or predicate state elements, our convergence criterion yields a formula
with the quantification structure shown in (5), with only first-order equations. Even for the simple
case of a system with one integer symbol in I, one function symbol of arity 2 in K, deciding the
truth of a formula with this structure is undecidable [2].

Again we find ourselves facing an undecidable property. We deal with this by 1) using syntactic
transformations to eliminate the second-order equations for function and predicate state elements,
and 2) using a sound, but incomplete decision procedure for second-order formulas of the form
shown in (5). Our procedure is quite simple, but it seems to work well for the formulas arising in
our convergence testing.

5 Checking Convergence

5.1 Function and Predicate State Elements

We can convert our convergence formula (5) to one containing only first-order equations by in-
troducing a set of argument symbols Z = z1, . . . , zn, where n is the maximum arity of any pred-
icate or function state element. Suppose state element F has arity arity(F) = m. Then define
r̃i
F

.
= ri

F(z1, . . . , zm), and similarly define s̃i
F

.
= si

F(z1, . . . , zm). Then we can rewrite the conver-
gence criterion as:

∀K ∀I ∃J ∀Z





∨

0≤i≤k

∧

a∈S

r̃i
a = s̃k

a



 (6)

Unfortunately, we have no general approach to handle formulas with this quantifier structure.
Instead, we use rewriting techniques to handle limited forms of function and predicate state ele-
ments. Our technique is sufficient to handle random-access memories, including the data memory
and register file of a microprocessor.

A random-access memory is modeled as a function state element Mem where the argument is an
address, and the function returns the value stored at that address. Consider a memory with address
input Adr, data input Dat and write-enable signal Wrt. We describe the memory operation in our
term-level modeling language as:

init[Mem] = m0

next[Mem] = λx . ITE(Wrt ∧ x = Adr, Dat, Mem(x))

where m0 is an uninterpreted function giving the initial memory contents. Note the restricted class
of expressions that will result when modeling the operation of this memory over time to generate the
expression r̃i

Mem. At the base is an uninterpreted function, which can be assigned an interpretation
that matches any desired functionality. There will then be a bounded number of updates due to
write operations, but these will each be to a single (symbolic) address.

7

Suppose we wish to determine whether the system has converged for some fixed time point i, so
that Equation 6 reduces to

∀K ∀I ∃J ∀Z

[

∧

a∈S

r̃i
a = s̃k

a

]

(7)

Then the convergence criterion for state element Mem will have the general form:

∀A ∃B ∀z F ′(z) = F (z) (8)

where expression F has only symbols in A, while expression F ′ has symbols from both B and A.

We apply a set of rewrites to the symbols in B and generate a set of verification conditions that
guarantees (8) holds, based on the structure of expression F ′. In general, our rules apply to
equations of the form P (z) =⇒ F ′(z) = F (z), where P is a predicate expression with symbols
from both B and A. At the top level, we start with P being an expression that always yields true.

1. For equations of the form P (z) =⇒ f′(z) = F (z), where f′ is a function symbol in B, rewrite
all occurrences of f′ in r̃i to be λx . ITE(P (x), F (x), f′(x)).

2. For equations of the form P (z) ∧ z = E =⇒ F ′(z) = F (z), where E is an expression
with symbols from both B and A, reduce the equation to P (E) =⇒ F ′(E) = F (E). This
eliminates any reference to z in the equation.

3. For equations of the form P (z) =⇒ [λx . ITE(Q(x), G′(x), H ′(x))] (z) = F (z), where Q,
G′, and H ′ are predicate and function expressions containing symbols in both A and B, we
generate two verification conditions: P (z)∧Q(z) =⇒ G′(z) = F (z), and P (z)∧¬Q(z) =⇒
H ′(z) = F (z), and solve these recursively.

4. For equations of the form P (z) =⇒ f(z) = F (z), where f is a function symbol in A, we
recursively analyze the structure of F .

• If F is of the form ITE(Q(x), G(x), H(x)), where Q, G, and H are predicate and
function expressions containing symbols in A, we generate two verification conditions:
P (z) ∧ Q(z) =⇒ f(z) = G(z), and P (z) ∧ ¬Q(z) =⇒ f(z) = H(z), and solve these
recursively.

• If F is of the form g(z), then the symbols f and g need to be the same. If the two
symbols are different, we return false which implies that no rewrite exists.

5. For equations of the form P (z) =⇒ F ′(z+ c) = F (z) with integer constant c, transform the
equation to be P (z− c) =⇒ F ′(z) = F (z− c), and solve it recursively.

Similar rules hold for equations of the form P =⇒ F ′(z) = F (z), i.e., P is a Boolean expression
independent of z.

Given the special form of the expressions describing the updating of a random-access memory, we
can see that by repeated application of these rules, we can eliminate all occurrences of symbol z in
(7). The first rule handles the uninterpreted function representing the initial memory state. The
second rule handles updates to individual memory addresses. The third rule lets us split based
on the case structure of the expression. The last two rules would be required for more complex
memory structures.

Note that CLU logic can be used to model memories in which multiple entries can be updated in
parallel [14]. The rewriting techniques proposed in this section do not work for such memories.

8

5.2 Convergence with First-Order Equations

Assume we have applied transformation rules to eliminate all second-order equations, and hence
the convergence criterion is expressed by an equation of the form shown in (5) with only first-order
equations. We would therefore like to decide the validity of a formula ψ of the form

ψ
.
= ∀A ∃B φ (9)

where φ does not contain any quantifiers. In fact, φ is a CLU formula, and we can assume that
transformations have been applied to eliminate all ITE operations1 and lambda applications.

Our system model is sufficiently general that we can generate any second-order formula having
the structure shown in (9) as part of a convergence test. To see this, let the variables in φ be
A = an and B = bm. Introduce a set of m + 1 state elements, consisting of an element qi for
each existentially quantified variable bi ∈ B, and a final truth-valued state element qm+1. For
each universally quantified variable ai ∈ A, introduce a system parameter ai. Let the system have
transition behavior δ such that δqn+1

.
= φ

[

qm/bm, an/an

]

, and δqi
= qi for 1 ≤ i ≤ m. Finally, let

the initial state s0
qi

of each state element qi for 1 ≤ i ≤ m be ai, and the initial state of qm+1 be
true. Then the system is 0-convergent if and only if the formula ∀A ∃B φ is valid.

This construction shows that we cannot assume any particular restrictions on the formulas we must
decide to prove convergence, other than the quantifier structure shown in (9).

5.2.1 Syntactic Approach.

Previous approaches to convergence have been based on finding syntactic similarities between the
earlier state ri and the current state sk+1. The convergence criterion given by Isles et al. [13] is a
more conservative check than the criterion we give in Equation 6, and hence is less general. We can
see that their syntactic substitution-based technique is simply a strategy for proving the validity
of a formula with the structure shown in (9) as follows.

Proposition 2 Let b denote a set containing an expression ba ∈ E(A) for each a ∈ B. If ∀A φ [b/B]
is valid, then so is ∀A ∃B φ.

The proof of this proposition follows by instantiating any symbol a ∈ B with the value 〈ba〉σA
.

With this approach, we can prove convergence by using a decision procedure for CLU logic to
prove the universal validity of φ [b/B]. The challenge, of course, is to find an appropriate set of
substitutions to the symbols in B.

5.2.2 Semantic Approach.

We describe two ways to transform formulas of the structure ψ
.
= ∀A ∃B φ into a formula in the

logic we call Quantified Separation Logic (QSL). QSL consists of quantified Boolean and integer
variables, Boolean connectives, and predicates of the form x=y + c and x<y + c, where x and y

are integer variables, and c is an integer constant. Our first translation Ts(ψ) (for “sound”) yields
a formula that is valid only if ψ is valid. Our second translation Tc(ψ) (for “complete”) yields a

1These can be eliminated by the “push to the leaves” transformation [17].

9

formula that is valid if ψ is valid. The two formulas are very similar to each other. They differ in
the ordering of quantifiers and an additional set of clauses in the antecedent of the second formula.
By deciding the validity of the first translation we can test for definite convergence, while we can
test for possible convergence by deciding the validity of the second translation.

bool-atom ::= bool-symbol

| predicate-symbol(int-atom + int-constant, . . . , int-atom + int-constant)

int-atom ::= int-symbol

| function-symbol(int-atom + int-constant, . . . , int-atom + int-constant)

bool-expr ::= bool-atom | true | false

| ¬bool-expr | (bool-expr ∧ bool-expr)

| (int-atom= int-atom + int-constant)

| (int-atom< int-atom + int-constant)

Figure 2: Normal Form Syntax. Any integer or Boolean expression in CLU can be rewritten
into this form.

1. Preserving Soundness. As shown in Figure 2, we can rewrite any Boolean or integer ex-
pression in CLU into a normal form, in which all ITE operations have been eliminated, and the
additions of integer constants are grouped together. Define an atomic expression as either an in-
teger expression following the rules for syntactic type int-atom shown in the figure, or a Boolean
expression following the rules for syntactic type bool-atom. We can see that an arbitrary Boolean
expression consists of Boolean atoms, equality and ordering predicates applied to integer atoms
(possibly with a constant offset), and Boolean connectives.

Without loss of generality, let us assume φ is in normal form. We start by enumerating all of the
atomic expressions occurring in φ as a sequence g1, . . . , gn. Let top(gi) denote the top-level symbol
in subexpression gi. We can see that each atomic expression gi must be of one of the following
forms:

1. Boolean symbol. gi
.
= b, giving top(gi) = b.

2. Predicate application. gi
.
= p(gi1 + ci,1, . . . , gik + ci,k), giving top(gi) = p.

3. Integer symbol. gi
.
= x, giving top(gi) = x.

4. Function application. gi
.
= f(gi1 + ci,1, . . . , gik + ci,k), giving top(gi) = f.

We require the sequence to be ordered according to subexpression containment. That is, for the
function and predicate application forms listed above, we require il < i for 1 ≤ l ≤ k. The
soundness property of translation Ts holds for any such ordering, but we get a tighter bound by
listing the subexpressions having top-level symbols in A as early as possible. That is, if top(g i) ∈ A
and top(gj) ∈ B, then i < j, unless gj is a subexpression of gi.

Now introduce a sequence of symbols vn
.
= v1, . . . , vn, where vi is an integer (respectively, Boolean)

symbol when top(gi) is an integer or function symbol (respectively., Boolean or predicate symbol).
We generate two formulas CA and CB, each of which is a conjunction of consistency constraints by

10

considering each pair of subexpressions gi and gj , with i < j and top(gi) = top(gj). These are the
same constraints used by Ackermann for removing function applications from a formula [1]. For
subexpression gi of the form f(gi1 +ci,1, . . . , gik +ci,k), and gj of the form f(gj1 +cj,1, . . . , gjk

+cj,k),
we include the constraint

vi1 =vj1 + (cj,1 − ci,1) ∧ · · · ∧ vik =vjk
+ (cj,k − ci,k) =⇒ vi =vj (10)

This constraint is included in either CA or CB according to whether f ∈ A or f ∈ B. Similar
constraints are generated when the top-level symbol in gi and gj is a predicate symbol p.

Let φ̂ be the formula generated by replacing each atomic expression gi in φ with the symbol vi.
We always replace maximal subexpressions, so that the resulting formula no longer contains any
symbols from φ.

Let quantifier Qi be ∀ when top(gi) ∈ A, and ∃ when top(gi) ∈ B.

The soundness-preserving translation of ψ is given by

Ts(ψ)
.
= Q1v1 Q2v2 · · · Qnvn

[

CA =⇒ (CB ∧ φ̂)
]

(11)

Theorem 2 For any formula ψ having the structure ψ
.
= ∀A ∃B φ, if Ts(ψ), as given by (11), is

valid, then so is ψ.

Proof: First, we use Skolemization to transform Ts(ψ) into a formula where the existential quan-
tifiers all come before the universal ones [10]. For 0 ≤ i ≤ n, define m(i) to be the number
of universal quantifiers in the sequence Q1, . . . , Qi. Letting u be the number of symbols in Va,
we have m(n) = u. Let m−1(i) be the position of the ith universal quantifier. (By convention,
m−1(0) = 0). For any i such that vi ∈ Va, we have m−1(m(i)) = i. For any i such that vi ∈ Ve, we
have m−1(m(i)) < i.

Let y1, . . . , yu be a set of integer and Boolean symbols, where symbol yi has the same type as
vm−1(i). For each i such that vi ∈ Ve, introduce Skolem function symbol (when vi is an integer
symbol) or predicate symbol (when vi is a Boolean symbol) fi having arity m(i).

Generate formulas C∗
A, C∗

B, and φ̂∗ from CA, CB, and φ̂ by replacing each symbol vi by ym(i) when
vi ∈ Va and by fi(y1, . . . , ym(i)) when vi ∈ Ve. Then the Skolemized form of ψ, which we call
Tsk(ψ), is defined as

Tsk(ψ)
.
= ∃F ∀Y

[

C∗
A =⇒ (C∗

B ∧ φ̂∗)
]

, (12)

where F is the set of all Skolem function and predicate symbols, and Y is the set of symbols
{y1, . . . , yu}. Formula Tsk(ψ) is valid iff Ts(ψ) is valid.

With this transformation, we shift the problem to one of showing that if Tsk(ψ), given by (12),
is valid, then so is formula ψ

.
= ∀A ∃B φ Assume (12) is valid, and that we are given some

interpretation σA of the symbols in A. We need to generate an interpretation σB of the symbols in
B, such that 〈φ〉σA·σB

= true. Let σF be an interpretation of the Skolem function and predicate
symbols in F that satisfies (12). We construct a sequence of integer and Boolean values an

.
=

a1, . . . , an as follows:

1. For vi ∈ Va, when subexpression gi is of the form x (either an integer or Boolean symbol), we
must have x ∈ A. Let ai = σA(x). When gi is of the form f(gi1 + ci,1, . . . , gik + ci,k), we have
f ∈ A (either a predicate or a function symbol). Let ai = σA(f)(ai1 + ci,1, . . . , aik + ci,k).

11

2. For vi ∈ Ve, let ai = σF (fi)(am−1(1), . . . , am−1(m(i))).

Let σY be the interpretation of the symbols in Y where σY(yi) = am−1(i). We can see that the
sequence a1, . . . , an consists of the values for the symbols in Y and the result of applying the Skolem

functions to these values. By (12), we are guaranteed that
〈

C∗
A =⇒ (C∗

B ∧ φ̂∗)
〉

σF ·σY

= true.

Given the close relation between formulas CA =⇒ (CB ∧ φ̂) and C∗
A =⇒ (C∗

B ∧ φ̂∗), and the way
we generated the sequence an, we can see that using the an as the values for the symbols vn will
satisfy our constraint formula. That is, if we perform the substitution

(

CA =⇒ [CB ∧ φ̂]
)

[an/vn]

and then evaluate this formula, the result will equal true.

We can also see that when we perform the substitution CA [an/vn], the resulting expression will
evaluate to true, since we generated the sequence a1, . . . , an based on a consistent interpretation
of the function and predicate symbols in A. From this, we can infer that the expressions CB [an/vn]
and φ̂ [an/vn] will evaluate to true as well.

Define interpretation σB such that for any gi of the form x, where x is an integer or Boolean symbol
in B, we let σB(x) = ai. For any gi of the form f(gi1 + ci,1, . . . , gik + ci,k), where f is a function or
predicate symbol in B, let σB(f)(ai1 + ci,1, . . . , aik + ci,k) = ai. No conflicts can arise in defining
this interpretation, since CB holds when the symbols vn are assigned the values an. Complete the
interpretation of f by defining for any argument values x1, . . . , xk not covered already, the value of
σB(f)(x1, . . . , xk) to be either 0 (when f is a function) or false (when f is a predicate.)

We can readily see that under the interpretation we have constructed, we will have 〈gi〉σA·σB
= ai,

for 1 ≤ i ≤ n. From this, we can infer that 〈φ〉σA·σB
= true, showing that ∀A ∃B φ is valid.

2. Preserving Completeness. To generate the completeness preserving transformation, let π be
the permutation of 1, . . . , n, that moves all of the universal quantifiers in the sequence Q1, . . . , Qn

to the left, while otherwise preserving the relative orderings of symbols. That is, when we write
the sequence Qπ(1), . . . , Qπ(n), we will have a sequence of the form ∀u ∃n−u, where u is the number
of universal quantifiers. In addition, for i and j with i < j and Qi = Qj , we have π(i) < π(j).

Divide the symbols vn into two sets: those that are universally quantified Va
.
= {vπ(1), . . . , vπ(u)},

and those that are existentially quantified Ve
.
= {vπ(u+1), . . . , vπ(n)}.

We generate an additional set of quantified antecedent clauses Ct to ensure completeness in the
presence of some argument consistency constraints. Suppose for i < j that subexpressions gi and
gj are of the form gi

.
= f(gi1 + ci,1, . . . , gik + ci,k), and gj

.
= f(gj1 + cj,1, . . . , gjk

+ cj,k), where f ∈ A.
Then, for this pair of subexpressions we add the constraint

vi 6=vj ∧
∧

1≤l≤k

vil
,vjl

∈Va

vil =vjl
+ (cjl

− cil)

=⇒ ∃vπ(u+1) · · · ∃vπ(n)

∧

1≤l≤k

vil =vjl
+ (cjl

− cil)

(13)

to the set of clauses Ct. Note that the quantifiers in the consequent of this constraint take precedent
over the quantifiers that are global to the overall formula.

12

We can now write the completeness preserving translation of ψ as

Tc(ψ)
.
= ∀vπ(1) · · · ∀vπ(u)∃vπ(u+1) · · · ∃vπ(n)

[

(CA ∧ Ct) =⇒ (CB ∧ φ̂)
]

(14)

Theorem 3 For any formula ψ having the structure ψ
.
= ∀A ∃B φ, if ψ is valid, then so is Tc(ψ),

as given by (14).

Proof: Suppose we are given values a′
π(1), . . . , a

′
π(u) for the universally quantified symbols vπ(1), . . . , vπ(u).

Let A denote the set of all assignments an to the symbols vn such that aπ(i) = a′
π(i), for 1 ≤ i ≤ u.

Then we must find a vector an ∈ A such that when we perform the substitution

(

[CA ∧ Ct] =⇒ [CB ∧ φ̂]
)

[an/vn] (15)

the resulting formula will evaluate to true.

Our first strategy is to try to find a vector that violates a consistency constraint in Ct or in
CA. This requires having two subexpressions of the form gi

.
= f(gi1 + ci,1, . . . , gik + ci,k) and

gj
.
= f(gj1 + cj,1, . . . , gjk

+ cj,k), where a′i 6=a
′
j, and f is either an integer or Boolean function in A.

It also requires that ail = ajl
+ (cj,l − ci,l) for all 1 ≤ l ≤ k such that vil , vjl

∈ Va.

Given that these conditions hold, then we can show that one of the two types of antecedent con-
straints will be violated. If there is some an ∈ A such that ail = ajl

+ (cj,l − ci,l) for all 1 ≤ l ≤ k,
then we can use this as an assignment to the symbols vn that violates the consistency constraint
(10) in CA. If no such an exists, then argument constraint (13) in Ct will be violated. In either
case, the antecedent will be false, and hence (15) will evaluate to true.

Otherwise, we can assume that for every pair of subexpressions of the form gi
.
= f(gi1 +ci,1, . . . , gik +

ci,k) and gj
.
= f(gj1+cj,1, . . . , gjk

+cj,k), where f is a Boolean or integer function in A, we have either
a′i =a′j or there is some argument position l, with vil , vjl

∈ Va and ail 6= ajl
+ (cj,l − ci,l). We can

therefore generate an interpretation σA of all of the symbols in A such that for every subexpression
gi

.
= f(gi1 + ci,1, . . . , gik + ci,k), where f ∈ A, we have 〈f〉σA

(ai1 + ci,1, . . . , aik + ci,k) = ai for all
an ∈ A.

More precisely, we define 〈f〉σA
(x1, . . . , xk) for arbitrary values of x1, . . . , xk by considering every

subexpression of the form gi
.
= f(gi1 + ci,1, . . . , gik + ci,k). If for some such subexpression, we have

xl = ail +cil for every argument position l such that vil ∈ Va, then we define 〈f〉σA
(x1, . . . , xk)

.
= ai.

If there is no such subexpression, then we define 〈f〉σA
(x1, . . . , xk) to either equal false, when f is

a Boolean function, or 0, when f is an integer function.

To complete the proof of Theorem 3, if we assume ψ
.
= ∀A ∃B φ is valid, then we can use our

interpretation σA as an assignment of values to the symbols in A. We are then guaranteed that
there is some assignment of values to the symbols in B such that φ holds. Use this assignment to
define an interpretation σB. Then we define ai for 1 ≤ i ≤ n as ai

.
= 〈gi〉σA·σB

. We can see that
an ∈ A, since we will have ai = a′i for each i such that vi ∈ A. Since this assignment was derived
from a consistent interpretation of the symbols in φ, all of the constraints in CB will be satisfied
for this assignment. Formula φ̂ will also evaluate to true under this assignment, since it is derived
from an interpretation of the symbols in φ that makes it evaluate to true. From this we can infer
that (15) will evaluate to true.

We therefore conclude that translation Tc preserves completeness.

13

We now give some examples to demonstrate the capabilities and limitations of our two translation
methods.

Example 1: Our first example is a case where we successfully prove soundness.

∀f, y [∀x x=f(x)] =⇒ y=f(f(y)) (16)

To get this into the required form, we rewrite it as

∀f, y ∃x [¬(x=f(x)) ∨ y=f(f(y))]

We write the subexpressions as follows. To make the resulting formulas more readable, we introduce
symbols with names based on the subexpressions, rather than the more generic v1, v2, . . . , vn:

Subexpression g1 g2 g3 g4 g5
y f(y) f(f(y)) x f(x)

Symbol y fy ffy x fx

For CA we then get

(x=y =⇒ fx=fy) ∧ (x=fy =⇒ fx=ffy) ∧ (y=fy =⇒ fy=ffy)

For formula CB we get true, while for φ̂ we get

¬(x=fx) ∨ y=ffy

and the overall quantifier structure is:

∀y ∀fy ∀ffy ∃x ∀fx

To see that the QSL formula is valid, consider a game played between opponents Bob and Alice.
Bob has control over the universally quantified symbols and is attempting to make the formula to
evaluate to false, while Alice has control over the existentially quantified symbols and is attempting
to make the formula evaluate to true. They take turns instantiating symbols according to the
quantifier structure. If Alice always has a winning strategy, then the formula is valid.

In this example, Bob must give values for y, fy, and ffy. He must choose values such that y 6=ffy to
avoid satisfying φ̂, and must have either y 6=fy or fy=ffy to avoid falsifying the third consistency
constraint. In the latter case, we also have y 6=fy.

Alice now sets x= y. This forces Bob to set fx= fy to avoid falsifying the first consistency con-
straint. Combining these we get x = y 6= fy = fx, implying that φ̂ is satisfied. Alice has a winning
strategy, showing that the quantified formula is valid.

Example 2: Our second example illustrates a case where the formula is valid, but the soundness-
preserving transformation fails to show this.

∀f [∀x f(x)<f(x + 1)] =⇒ [∀y f(y)<f(y + 2)] (17)

To get this into the required form, we rewrite it as

∀f ∀y ∃x ¬(f(x)<f(x+1)) ∨ f(y)<f(y + 2)

We write the subexpressions as follows.

14

Subexpression g1 g2 g3 g4 g5 g6
y f(y) f(y + 2) x f(x) f(x + 1)

Symbol y fy fy2 x fx fx1

For CA we then get

(x=y =⇒ fx=fy) ∧ (x=y− 1 =⇒ fx1=fy) ∧ (x=y + 2 =⇒ fx=fy2) ∧ (x=y + 1 =⇒ fx1=fy2)

For formula CB we get true, while for φ̂ we get

¬(fx<fx1) ∨ fy<fy2

and the overall quantifier structure is:

∀y ∀fy ∀fy2 ∃x ∀fx ∀fx1

This formula is not valid.

This example shows the limited capability of our translation Ts. It does not do the multiple
instantiations of x required to replace the quantified antecedent in (17) with f(y) < f(y + 1) ∧
f(y + 1)<f(y + 2).

The completeness-preserving translation of this formula is identical, except that it yields a quantifier
structure

∀y ∀fy ∀fy2 ∀fx ∀fx1 ∃x

This formula can be shown to be valid.

In this case, Bob must choose values for all of his symbols, and then Alice gets to pick a value for
x. She will be able to satisfy the antecedent of any of the four consistency constraints, so Bob must
attempt to satisfy all of the consequents, giving fx = fy = fx1 = fy2, but this would imply that
fx 6< fx1, satisfying φ̂. We conclude that Alice can always win.

Example 3: Our third example illustrates a case where the completeness-preserving transformation
is overly optimistic.

∀f ∀x ∃y f(x, y)=f(y, x + 1) (18)

This formula is clearly not valid.

We write the subexpressions as follows.

Subexpression g1 g2 g3 g4
x y f(x, y) f(y, x + 1)

Symbol x y f1 f2

For CA we then get

x=y ∧ y=x + 1 =⇒ f1=f2

The above antecedent is unsatisfiable, and hence CA reduces to true. Similarly, CB is true. For
the argument constraints we get

¬(f1=f2) =⇒ ∃y (x=y ∧ y=x + 1)

15

Since the consequent in this formula is unsatisfiable, this constraint reduces to f1=f2. Formula φ̂
is also f1=f2, and hence the translation Tc simply yields

∀f1 ∀f2 [f1=f2 =⇒ f1=f2]

which reduces to true.

This example shows how much the set of argument constraints weakens the precision of transla-
tion Tc when the arguments have a structure where any possible instantiation of the existentially
quantified symbols would yield conflicts.

To date, we have been unable to devise an example that illustrates the need for the argument
consistency constraints Ct. This requires a formula that is valid, but Tc would be false without Ct

in the antecedent.

6 Results & Discussion

We have implemented a prototype of the convergence testing framework within the UCLID [4]
verification tool. Currently, we have only implemented the soundness-preserving translation to
QSL. For deciding the resulting QSL formula, we used Difference Decision Diagrams [15] and a
BDD-based implementation of a QSL solver that translates a QSL formula to a quantified Boolean
formula (QBF) [16]. All the experiments are performed on a 2GHz Pentium-4 running Linux, with
1 GB of memory.

In this section, we describe our experience with the convergence testing framework for a three-
stage arithmetic pipeline given in figure 3. This example originated with the first work on symbolic
model checking [6], and has subsequently become a standard for verification research [9, 13]. In
our version, we make use of both stalling and forwarding to resolve read-after-write hazards in the
pipeline. Previous versions used only forwarding, with the result that a new result is written to
the register file on each step of operation.

pPC

newPC

src1

pRF

src2

op

dest

eOP

eARG1

eARG2

eSRC2

eDEST

alu

eWRT

FWD

wVAL

wDEST

wWRT

STALL

Figure 3: Pipelined Version of ALU Circuit. The three stages of the pipeline: fetch, execute
and write-back. Read-after-write hazards are resolved for the first operand by stalling and for the
second by forwarding. The dashed lines indicate Boolean control and the solid lines represent the
flow of integer values.

The state elements of the pipeline include a function state variable, an unbounded register file pRF .
The integer state elements include the different register identifiers, namely eSRC2 , eDEST and
wDEST , the data values eARG1 , eARG2 and wVAL, and the program counter pPC . The Boolean

16

state elements consist of the write enable registers eWRT and wWRT . The system functionality is
parameterized by uninterpreted function symbols for decoding an instruction, updating the program
counter and the ALU. The Boolean state elements are initialized to false and the rest of the state
elements take on arbitrary initial values.

The pipeline was symbolically simulated starting from the initial state. The QSL formula produced
by the soundness preserving translation was false after k = 1 and k = 2 steps of simulation. A look
at the Boolean state elements indicated that the system indeed does not converge within two steps.
However, after k = 3 steps of simulation, the QSL formula produced was too large to be solved
with a BDD-based implementation of our QSL solver [16] or with Difference Decision Diagrams [15].
The formula had 53 quantified integer variables, with 6 levels of quantifier alternations, 836 nodes
in a Directed Acyclic Graph (DAG) representation of the formula, and the BDD representing the
QBF formula exceeds 1 GB of memory. However, we have been able to prove the convergence of
two simplified versions of the pipeline processor.

1. For the first case, we removed the data-path components of the processor including the
register file, operand values and the write-back value. The remaining pipeline still contains
the entire control complexity of the original pipeline including the stalling and the forwarding
mechanisms. This model converges after k = 3 steps of simulation and our decision procedure
detects so within 2 seconds with less than 11 MB of memory. The QSL formula contains 27
quantified integer variables, with 4 levels of quantifier alternations and 249 nodes in the DAG
form. Notice that this example contains uninterpreted function symbols but does not contain
any function state elements.

2. For the second case, we combined the execute and the write-back stages of the pipeline into
a single stage (making the pipeline 2-stage), but retained the register file pRF and the data-
path. The pipeline was modified to accommodate both stalling and forwarding of data. This
example converges after k = 2 steps of simulation and our decision procedure takes 8 seconds
to prove it valid. The memory consumption was about 80 MB. The QSL formula contains
29 quantified integer variables, with 4 levels of quantifier alternations and 203 nodes in the
DAG form.

We are currently working on an alternate SAT-based implementation of our QSL solver and hope
to test the convergence of the pipeline with a few optimizations. We are also experimenting with
enumeration based QBF solvers including Quaffle [18]. The BDD-based implementation might also
benefit from early quantification heuristics.

Discussion. The notion of k-convergence is not useful for systems with unbounded buffers, since
many such systems do not converge. Moreover, our preliminary results indicate that the convergence
criterion we present is precise, but computationally difficult to check. Abstraction techniques, such
as predicate abstraction [11], allow for greater efficiency at the expense of using an approximate
notion of convergence, and are a promising area for future work.

References

[1] W. Ackermann. Solvable Cases of the Decision Problem. North-Holland, Amsterdam, 1954.

[2] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Springer-
Verlag, 1997.

17

[3] R. E. Bryant, S. German, and M. N. Velev. Processor verification using efficient reductions of
the logic of uninterpreted functions to propositional logic. ACM Transactions on Computa-
tional Logic, 2(1):1–41, January 2001.

[4] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems using a logic of
counter arithmetic with lambda expressions and uninterpreted functions. In E. Brinksma and
K. G. Larsen, editors, Computer-Aided Verification (CAV 2002), LNCS 2404, pages 78–92.
Springer-Verlag, 2002.

[5] T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite state systems using
Presburger arithmetic. In Orna Grumberg, editor, Computer-Aided Verification (CAV ’97),
LNCS 1254, pages 400–411. Springer-Verlag, 1997.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit verification using
symbolic model checking. In 27th Design Automation Conference (DAC ’90), pages 46–51,
1990.

[7] J. R. Burch and D. L. Dill. Automated verification of pipelined microprocessor control. In D. L.
Dill, editor, Computer-Aided Verification (CAV ’94), LNCS 818, pages 68–80. Springer-Verlag,
1994.

[8] Francisco Corella, Z. Zhou, Xiaoyu Song, Michel Langevin, and Eduard Cerny. Multiway deci-
sion graphs for automated hardware verification. Formal Methods in System Design, 10(1):7–
46, 1997.

[9] D. Cyrluk and P. Narendran. Ground temporal logic: a logic for hardware verification. In
D. Dill, editor, Computer-Aided Verification (CAV ’94), LNCS 818, pages 247–259. Springer-
Verlag, 1994.

[10] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

[11] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In O. Grumberg, editor,
Computer-Aided Verification (CAV ’97), LNCS 1254, pages 72–83. Springer-Verlag, 1997.

[12] R. Hojati, A. Isles, D. Kirkpatrick, and R. K. Brayton. Verification using finite instantia-
tions and uninterpreted functions. In M. Srivas and A. Camilleri, editors, Formal Methods in
Computer-Aided Design (FMCAD ’96), LNCS 1166, pages 218–232. Springer-Verlag, 1996.

[13] A. J. Isles, R. Hojati, and R. K. Brayton. Computing reachable control states of systems
modeled with uninterpreted functions and infinite memory. In A. J. Hu and M. Y. Vardi,
editors, Computer-Aided Verification (CAV ’98), LNCS 1427, pages 256–267. Springer-Verlag,
1998.

[14] Shuvendu K. Lahiri and Randal E. Bryant. Deductive verification of advanced out-of-order
microprocessors. In Computer-Aided Verification (CAV 2003), LNCS 2725, pages 341–354.
Springer-Verlag, 2003.

[15] Jesper B. Møller. DDDLIB: A library for solving quantified difference inequalities. In Andrei
Voronkov, editor, Conference on Automated Deduction (CADE 2002), LNCS 2392, pages 129–
133. Springer-Verlag, 2002.

18

[16] Sanjit A. Seshia and Randal E. Bryant. Unbounded, fully symbolic model checking of timed
automata using Boolean methods. In Computer-Aided Verification (CAV 2003), LNCS 2725,
pages 154–166. Springer-Verlag, 2003.

[17] M. N. Velev and R. E. Bryant. Effective use of Boolean satisfiability procedures in the formal
verification of superscalar and VLIW microprocessors. In 38th Design Automation Conference
(DAC ’01), pages 226–231, 2001.

[18] Lintao Zhang and Sharad Malik. Towards a symmetric treatment of satisfaction and conflicts
in quantified Boolean formula evaluation. In Pascal Van Hentenryck, editor, Principles and
Practice of Constraint Programming (CP ’02), LNCS 2470, pages 200–215. Springer-Verlag,
2002.

19

