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Abstract

In their purest formulation, monads are used in functional programming for two
purposes: (1) to hygienically propagate effects, and (2) to globalize the effect
scope – once an effect occurs, the purity of the surrounding computation cannot
be restored. As a consequence, monadic typing does not provide very naturally
for the practically important ability to handle effects, and there is a number of
previous works directed toward remedying this deficiency. It is mostly based
on extending the monadic framework with further extra-logical constructs to
support handling.
In this paper we adopt a different approach, founded on the observation of
Pfenning and Davies that an abstract monad can be decomposed in terms of
modal operators for possibility 3 and necessity

�
. Our idea is to use the

�

modality (which is a comonad) for hygienic propagation of effects, and leave
the globalization of effect scope to 3. Then the effects which admit a natural
notion of handling can be encoded using

�
; since they are not global, there is

no need to push them under 3.
Based on this idea, we develop a general framework for effect handling sys-
tems, and obtain novel calculi for exceptions, catch-and-throw and composable
continuations as specific instantiations.
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1 Introduction

It is a well-established correspondence in functional programming that monads
are a type-theoretic equivalent to effects and effect systems [38]. A monad,
as described by Moggi [19, 20] and Wadler [35, 37], serves two purposes: (1)
it marks the impure code segments of a program, supporting in this way a
disciplined propagation of effects, and (2) because there is no canonical map to
leave the scope of a monad, effects represented by monads become global (i.e.,
once introduced, the effect “holds” till the end of the program).

Therefore, neither monads nor the effect systems, in their purest formulation,
can express the important, and in programming practice ubiquitous ability of
handling effects; that is, restoring purity to an impure computation by means
of some action. In fact, this very definition of handling effects is in direct
contradiction to the above property (2) that effects should have global scope.
The expressiveness of effect handling, when required, has to be endowed upon
the monadic framework by means of additional extra-logical constructs [7, 8, 9,
15, 26].

In this paper we present a novel effect system, based on modal logic, which
is capable of representing effect handling. It is founded on the observation of
Pfenning and Davies in [28] that an abstract monad can be deconstructed as
a composition 3

�
of modalities for possibility 3 and necessity

�
of a variant

of modal logic S4. We build on this result by recognizing that, informally:
(1)

�
takes the duty of marking impure code segments and enforcing effect

propagation discipline, and (2) 3 takes the duty of single-threading the program
and globalizing the scope of effects.

We can use the two independent modal type constructors to ascribe typings
that are more precise than those of a monadic calculus. Those effects which
admit a natural notion of handling may be encoded using only the

�
modality;

since the scope of such effects is not global, they need not be forced under a 3.
The necessitation operator

�
is in fact a comonad, and recently several

authors have made an argument that comonads too, in addition to monads,
can be used to represent certain kinds of effects. For example, [16] argues that
comonads are more appropriate than monads to represent effects which arise
from the environment. Also, [25] identifies comonads as encoding computations
which expect additional arguments from the environment.

In this paper, we focus on the necessitation operator
�

, and leave the issues
related to global effects (e.g. destructive state update) and the possibility op-
erator 3, for a related paper [24]. With this development, we hope to further
strengthen the case for comonads. The idea is to extend the modal λ

�

-calculus
from [28] with a new semantic category of names [23] that would be used to
label and track specific effects. Thus, similar to indexed monads in [38], we will
have a type

�
CA classifying suspended computations of type A which may, in

the course of eventual execution, raise effects listed in the (possibly ordered)
set of names C. Unlike with monads, canonical coercions from

�
CA to A are

possible, and they represent handlers which are equipped to deal with names in
C.
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In this sense, the comonad of modal necessity, when endowed with names,
not only represents effects arising from the environment, but in fact marks effects
whose scope is not global – effects which can be handled. Also, the interaction of
the environment with the comonad and the aforementioned passing of additional
arguments, can be very diverse – different effects will have different notions of
handling.

This approach in formulating effects follows the introduction/elimination
pattern of natural deduction; effects are introduced by their introduction forms,
and are eliminated by their handling forms. This is particularly appealing be-
cause it may uncover the logical content of the effects in question (although we
do not explore this further). To illustrate the idea we develop as an example a
novel calculus of exceptions [5, 26], in which each exception is associated with
a name, raising exceptions is the introduction form and handling exceptions is
the elimination form. We also present novel calculi for catch-and-throw [22, 14]
and composable continuations [6, 2, 3, 21, 36, 11, 12, 13]. All these calculi are
derived as simple and uniform extensions of our comonadic core framework.

2 Modal λ
�

-calculus

The starting point for the development of our language of effects is the λ
�

-
calculus of [28, 4]. The λ

�

is the proof-term system for the necessitation frag-
ment of modal logic S4, and it was first considered in functional programming in
the context of specialization for purposes of run-time code generation [4, 39, 40].
The syntax of λ

�

is summarized below, where we use b to stand for a predeter-
mined set of base types.

Types A ::= b | A1 → A2 |
�

A
Terms e ::= x | u | λx:A. e | e1 e2 |

box e | let box u = e1 in e2

Value variable

contexts
Γ ::= · | Γ, x:A

Expression variable

contexts
∆ ::= · | ∆, u:A

The most important feature of the calculus is the type constructor
�

which
is referred to as modal necessity, as in the S4 modal logic it is a necessitation
modifier on propositions [28]. For the purposes of this paper, a useful operational
intuition is to consider the type

�
A as a type of suspended expressions of type

A. In contrast, the non-modal type A would be populated with only executable

expressions. In this sense, rather than suspending expressions by enclosing them
under a λ-binder, as it is customarily done in functional programming, we use
a separate language construct for that. This gives us an orthogonal and more
appropriate abstraction mechanism that we will build on in subsequent sections.
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The type system of λ
�

is presented below.

∆; (Γ, x:A) ` x : A (∆, u:A); Γ ` u : A

∆; (Γ, x:A) ` e : B

∆; Γ ` λx:A. e : A → B

∆; Γ ` e1 : A → B ∆; Γ ` e2 : A

∆; Γ ` e1 e2 : B

∆; · ` e : A

∆; Γ ` box e :
�

A

∆; Γ ` e1 :
�

A (∆, u:A); Γ ` e2 : B

∆; Γ ` let box u = e1 in e2 : B

It distinguishes between two variable contexts: Γ for variables bound to exe-
cutable expressions, and ∆ for variables bound to suspended expressions. The
introduction and elimination forms of the type constructor

�
are the term con-

structors box and let box, respectively. Operationally, the term constructor
box suspends the evaluation of its argument expression e, and wraps it into a
thunk box e which can be then be further manipulated by the rest of the pro-
gram. Note that the typing rule for box prohibits e to refer to variables from
Γ; it is not possible to coerce values into suspensions. This is counter-intuitive
to our interpretation of the modal calculus and we will remedy it in subsequent
sections. The elimination form let box u = e1 in e2 takes the suspended ex-
pression boxed by e1 and binds it to the expression variable u to be used in
e2.

Example 1 The function exp2 below takes an integer argument n and builds
a suspension for computing 2n.

fun exp2 (n : int) :
�
int =

if n = 0 then box 1

else

let box u = exp (n - 1)

in

box (2 * u)

end

- e5 = exp2 5;

val e5 = box (2 * 2 * 2 * 2 * 2 * 1) :
�
int

In the elimination form let box u = e1 in e2, the bound variable u belongs
to the context ∆ of expression variables, but it can be used in e2 in both
suspended positions (i.e., under a box) and executable positions. This way we
can compose suspended programs, but also explicitly force their evaluation. In
the above example, we can force the evaluation of e5 in the following way.

- let box u = e5 in u;

val it = 32 : int
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To formalize the above operational intuition about the calculus, we employ
an evaluation context operational semantics in the style of Wright and Felleisen
[41]. We have decided on a call-by-value evaluation strategy which, in line with
our interpretation of boxed expressions as suspended code, prohibits reductions
under box; boxed expressions are considered values. This choice is by no means
canonical, but is necessary for the purposes of this paper. The formalization
relies on the definitions of redex and evaluation context introduced below.

Values v ::= x | λx:A. e | box e
Redexes r ::= v1 v2 | let box u = v in e

Evaluation

contexts
E ::= [ ] | E e1 | v1 E | let box u = E in e

Each expression e can be decomposed uniquely as e = E[r] where E is an
evaluation context and r is a redex. To define a small-step operational semantics
of the calculus, it is enough to define primitive reduction relation for redexes
(which we denote by −→), and let the evaluation of expressions (which we denote
by 7−→) always first reduce the redex identified by the unique decomposition.
The primitive reduction and the evaluation relation for call-by-value λ

�

are
defined as follows.

(λx:A. e) v −→ [v/x]e

let box u = box e1 in e2 −→ [e1/u]e2

r −→ e

E[r] 7−→ E[e]

3 Names as markers for effects

In this section, we extend the λ
�

-calculus with the notion of names. Names
are labels which provide a formal abstraction for tracking effects. Each effect
will be assigned a name, and if an effect appears in a suspended term, then the
corresponding

�
-type will be indexed by that name. For example, if we have an

exception X , then a suspended term of type A which may raise this exception,
will be given a type

�
XA, and we also provide coercions from

�
XA to A which

would represent exception handlers for X .
The described indexing of the modal operator with names is similar to the

one found in the monadic language from [38], where labels are used to identify
the effects that may occur under a monad. In our setup, however, we will also
allow dynamic introduction of fresh names into the computation (and hence,
generation of new effects), and establish a typing discipline for it. Having men-
tioned this idea to provide some intuition toward our overall goal, we proceed
to introduce our calculus in stages. Rather than formally tying names to ef-
fects immediately, we now present a limited fragment that is intended only to
account for dynamic introduction of names and for name propagation. This
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fragment will be a common part of all the effect calculi we develop next. How
names relate to effects, and how various effects are raised and handled will be
discussed in the subsequent sections.

We start by explaining the syntax and various syntactic conventions of our
language.

Names X ∈ N
Supports C, D ::= · | C, X
Types A ::= b | A1 → A2 | A1 � A2 |

�
CA

Terms e ::= u | λx:A. e | e1 e2 |
box e | let box u = e1 in e2 |
νX :A. e | choose e

Variable contexts ∆ ::= · | ∆, u:A[C]
Name contexts Σ ::= · | Σ, X :A

Just like λ
�

, our calculus makes a distinction between levels of suspended
and executable expressions. The two are separated by a modal type constructor

�
, except that now we have a whole family of modal type constructors – one for

each finite sequence of names C, where the names are drawn from a countably
infinite universe of names N . As already hinted before, the type

�
CA classifies

suspended expressions which may raise any of the effects whose names are in
C. The sequence C is referred to as a support of such expressions. We will also
consider a partial ordering v on supports. If a term has support C than it can
safely appear in the scope of a handler capable of dealing with the names in any
D w C. If a term is pure (i.e., it has empty support), it need not be restricted
to any particular set of handlers. Therefore, we require that the empty support
is the smallest element of v.

Because now suspended expressions can contain effects, we extend the typing
assignments in the context ∆ to keep track not only of the typing, but also of
the support of a variable. So, for example, the typing u:A[C] declares a variable
u which can be bound to an expression of type A and support C. Furthermore,
as already commented in the previous section, we would like to enable coercion
of values into suspended expressions, so we join the two contexts of the λ

�

calculus into one. The context Γ is now considered part of ∆ declaring variables
with explicitly empty support. Correspondingly, we will frequently abbreviate
x:A[ ] as x:A. This decision logically corresponds to identifying the types A
and

�
A, where the index support in the later type is empty. Equivalently, it

can be viewed as imposing monotonicity on the Kripke frame in the possible
worlds semantics for the S4 modal logic [28]. Of course, because now we have
a multitude of modal operators corresponding to various supports that can be
used as indices, this move does not collapse the whole hierarchy of modal types.

A further change from λ
�

is an addition of the context Σ which declares
the names (and their types) which are currently active in the program. Because
the types of our calculus depend on names, we must impose some conditions on
well-formedness of contexts. A context Σ is well-formed if every type in Σ uses
only names declared to the left of it. The variable context ∆ is well-formed with
respect to Σ, if all the names that appear in the types of ∆ are declared in Σ.
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The types of the new calculus now include the family A � B whose intro-
duction and elimination forms are νx:A. e and choose e. These constructs are
used to dynamically introduce fresh names into the calculus. For example, the
term νX :A. e binds a name X of type A that can subsequently be used in e.
Because names stand for effects, this construct really declares a new effect, and
enables e to raise it and handle it. Whatever e does with X , though, we will
ensure through the type system that the result of the evaluation of e does not
depend on X ; we must prevent X to escape the scope of its introduction form.
The ν-abstraction will be a value in our calculus. In particular, it will suspend
the evaluation of e. If we want to evaluate it, we must choose it. The term
constructor choose picks a fresh name of type A, substitutes it for the name
bound in the argument ν-abstraction of type A � B, and proceeds to evaluate
the body of the abstraction.

Finally, enlarging an appropriate context by a new variable or a name is
subject to the usual variable conventions: the new variables and names are
assumed distinct, or are renamed in order not to clash with already existing
ones. Terms that differ only in the syntactic representation of their bound
variables and names are considered equal. The binding forms in the language
are λx:A. e, let box u = e1 in e2 and νX :A. e. Capture-avoiding substitution
[e1/x]e2 of expression e1 for the variable x in the expression e2 is defined to
rename bound variables and names when descending into their scope. Given
a term e, we denote by fv(e) the set of free variables of e. The set of names
appearing in the type A is denoted by fn(A).

The typing judgment of the core fragment is

Σ; ∆ ` e : A [C]

The judgment is hypothetical and works with two contexts: context of names Σ
and context of variables ∆. Given an expression e, the judgment checks whether
e has type A, and whether its effects are in the support C. The core fragment
of the typing rules is presented in Figure 1, and we explained it next.

A pervasive characteristic of the type system is the support weakening prin-

ciple; that is

if Σ; ∆ ` e : A [C] and C v D, then Σ; ∆ ` e : A [D]

Support of the expression e determines which effects e can raise, and therefore,
which handlers can restore its purity. Consequently, the support weakening
principle formally models a very intuitive property that if the effects of e can
be handled by some handler, then they can be handled by a stronger handler
as well. In particular, if e is effect-free, then it can be handled by any and all
handlers; the empty support is the smallest element of the partial ordering v.

A further property that we formally represent is that values of the language
are effect free. Indeed, values obviously cannot raise any effects, simply because
their evaluation is already finished. Therefore, the support of the values of
our system will be empty, and according to the support weakening principle, it
can then be weakened arbitrarily. This explains the explicit weakening in the
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C v D

Σ; (∆, u:A[C]) ` u : A [D]

Σ; (∆, x:A) ` e : B [ ]

Σ; ∆ ` λx:A. e : A → B [C]

Σ; ∆ ` e1 : A → B [C] Σ; ∆ ` e2 : A [C]

Σ; ∆ ` e1 e2 : B [C]

Σ; ∆ ` e : A [D]

Σ; ∆ ` box e :
�

DA [C]

Σ; ∆ ` e1 :
�

DA [C] Σ; (∆, u:A[D]) ` e2 : B [C]

Σ; ∆ ` let box u = e1 in e2 : B [C]

(Σ, X :A); ∆ ` e : B [ ] X 6∈ fn(A, B, ∆)

Σ; ∆ ` νX :A. e : A � B [C]

Σ; ∆ ` e : A � B [C]

Σ; ∆ ` choose e : B [C]

Figure 1: Type system of the core fragment.

hypothesis rule and the arbitrary support in the conclusions of the typing rules
for λ- and ν-abstractions and for box.

λ-calculus fragment. The rule for λ-abstraction requires that the body e of the
abstraction be pure; that is e has to match the empty support. This is not to say
that e cannot contain any effects; it can, but only if they are suspended under a
box (and correspondingly accounted for in the type of e). This parallels exactly
the monadic type systems where function bodies must be pure, and effects can
be raised only under a monad. On the other hand, because λ-terms are values,
the support of the whole abstraction can be arbitrarily weakened, as explained
before.

It is implicitly assumed that the argument type A is well-formed in name
context Σ before it is introduced into the variable context ∆. Note further that
the bound variable x is introduced into ∆ with empty support, according to
our decision to allow coercion of values into suspensions. Thus, x must always
be bound to an effect-free expression. This will force us to commit to call-by-
value evaluation strategy for the calculus; we must reduce function arguments to
values (which are effect-free) before passing them on. A formulation of the type
system which does not favor any particular evaluation strategy is possible; it
retains the two contexts from Section 2, and achieves the discussed monotonicity
by means of a separate rule. Therefore, it is a bit more verbose, so we leave it
for future work.

Modal fragment. To type a suspended code box e, we must check if e is well-
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typed and matching the support that is supplied as an index to the
�

construc-
tor. Boxed expressions are values, so their support can be arbitrarily weakened
to any well-formed support set C. The

�
-elimination rule is a straightforward

extension of the corresponding λ
�

rule. The only difference is that the bound
expression variable u from the context ∆ now has to be stored with its support
annotation.

Names fragment. The rule for νX :A. e must check e for well-typedness in a
context Σ extended with the new name X :A. Similar to the λ rule, we require
that e has empty support; all the eventual effects that e may raise must be boxed.
The characteristics of the ν constructor, however, is the further requirement that
X does not appear in the type B. This ensures that X remains local to e; it can
never escape the scope of its introducing ν in any observable way. The effect
corresponding to X will either never be raised in the course of evaluation of e
(i.e., it never appears in e or appears in some dead-code part of e), or all the
occurrences of X are handled by an appropriate notion of handler.

The term constructor choose is the elimination form for A � B. It picks a
fresh name and substitutes it for the bound name in the ν-abstraction.

Example 2 We can introduce the construct let val x = e1 in e2 into the
calculus, using the rule

Σ; ∆ ` e1 : A [C] Σ; (∆, x:A) ` e2 : B [C]

Σ; ∆ ` let val x = e1 in e2 : B [C]

This is syntactic sugar for let box u = (λx. box e2) e1 in u, rather than the
usual (λx. e2) e1. The complication arises because we have to box e2 and make
it pure, before we can put it under a λ-abstraction.

Example 3 Assume that C1, C2 and D are arbitrary support sets. Then the
following terms are well-typed of empty support.

f1 :
�

C1
A →

�
C2

A = (where C1 v C2)

λx. let box u = x in box u

f2 :
�

A → A =

λx. let box u = x in u

f3 : A →
�

DA =

λx. box x

f4 :
�

C1
A →

�
D

�
C2

A = (where C1 v C2)

λx. let box u = x in box (box u)

f5 :
�

C1
(A → B) →

�
C2

A →
�

DB = (where C1, C2 v D)

λx. λy. let box u = x in let box v = y in box (u v)

The function f1 simply eta-expands its argument. It shows that support weak-
ening in boxed types is derivable. The function f2 illustrates that we can “un-
box” and evaluate suspended expressions which do not raise any effects; notice
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that the argument type of f2 has empty index support. The function f3 shows
that, as a consequence of the imposed monotonicity, it is possible to coerce val-
ues into suspended computation, by simply boxing them. Because values are
name-free, their support can be weakened to an arbitrary support set D. The
other two functions generalize the characteristic comonadic axioms of S4 modal
necessity without names [4, 28].

Example 4 Anticipating Section 6, suppose that our language contains the
term constructor raise, such that raiseX e raises an exception X passing an
argument e along (assuming that both X and e have the same type). If X is a
name of type A, then the following term is well-typed.

λx. let box u = x in box (raiseX u) :
�

A →
�

XA

Assume further that e1:B is a closed and exception-free term, and e2:A is a
closed term which may raise the exception X . Then the expression

choose (νY :A. (λx:
�

X,Y A. e1) (box raiseY e2))

declares a new exception Y and then raises it within a suspension (box raiseY e2):
�

X,Y A.
In fact, because neither x nor Y appear in e1, the type of the application will
not depend on Y either. Actually, even more is true: the argument suspension
will never even be forced; it is dead code. The ν-clause is well-typed, of type
A � B, and the whole expression is of type B. In Section 6 where we intro-
duce exception handling, we would be able to present a more meaningful use of
choose and ν.

4 Operational semantics

The operational semantics of this basic fragment of our calculus is defined
through the judgment

Σ, e 7−→ Σ′, e′

which relates an expression e with its one-step reduct e′. The relation is defined
on expressions with no free variables. An expression e can contain effects, whose
names must be declared in Σ, but it must have empty support. In other words, we
only consider for evaluation those expressions whose effects are either suspended,
or appear in a dead-code part, or are handled. The reduct e′ can introduce new
names into the computation, which will be accounted in the extended name
context Σ′. However, the new names too, will mark effects which are either
suspended, never raised or otherwise handled. The definition of the judgment
relies on the notion of redexes and evaluation contexts below.

Values v ::= x | λx:A. e | box e | νX :A. e
Redexes r ::= v1 v2 | let box u = v in e | choose v
Evaluation E ::= [ ] | E e1 | v1 E | let box u = E in e |
contexts choose E

9



The primitive reduction rules and the evaluation rules of the operational se-
mantics are presented below. They are identical to the rules for λ

�

, except for
the new reduction rule for choose (νX :A. e), which extends the run-time name
context Σ with a fresh name X before proceeding with the evaluation of e.

Σ, (λx. e) v −→ Σ, [v/x]e

Σ, let box u = box e1 in e2 −→ Σ, [e1/u]e2

Σ, choose (νX :A. e) −→ (Σ, Y :A), [Y/X ]e, Y 6∈ dom(Σ)

Σ, r −→ Σ′, e′

Σ, E[r] 7−→ Σ′, E[e′]

Example 5 As an illustration of the operational semantics of the calculus, we
present the first couple of steps from the evaluation of the term from Example 4.

(X :A), choose (νY :A. (λx:
�

X,Y A. e1) (box raiseY e2)) 7−→
(X :A, Z:A), (λx:

�
X,ZA. e1) (box raiseZ e2) 7−→

where Z is a fresh name
(X :A, Z:A), e1 7−→
· · ·

5 Structural properties and type soundness

The rest of this section develops the basic properties of the calculus. We present
them here, because the future extensions will all rely on the basic structure of
these results.

Proposition 1 (Expression substitution principle) If Σ; ∆ ` e1 : A [C]
and Σ; (∆, u:A[C]) ` e2 : B [D], then Σ; ∆ ` [e1/u]e2 : B [D].

Lemma 2 (Replacement) If Σ; ∆ ` E[e] : A [C], then there exist a type B
such that

1. Σ; ∆ ` e : B [C], and

2. if Σ′, ∆′ extend Σ, ∆, and Σ′; ∆′ ` e′ : B [C], then Σ; ∆ ` E[e′] : A [C]

Lemma 3 (Canonical forms) Let v be a closed value such that Σ; · ` v :
A [C]. Then the following holds:

1. if A = A1 → A2, then v = λx:A1. e and Σ; x:A1 ` e : A2 [ ]
2. if A =

�
DB, then v = box e and Σ; · ` e : B [D]

3. if A = A1 � A2, then v = νX :A1. e and (Σ, X :A1); · ` e : A2 [ ]
As a consequence, the support of v can be arbitrarily weakened, i.e. Σ; · ` v :
A [D], for any support D.

Lemma 4 (Subject reduction) If Σ; · ` e : A [C] and Σ, e −→ Σ′, e′, then

Σ′ extends Σ and Σ′; · ` e′ : A [C].
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Theorem 5 (Preservation) If Σ; · ` e : A [C] and Σ, e 7−→ Σ′, e′, then Σ′

extends Σ, and Σ′; · ` e′ : A [C].

Lemma 6 (Progress for −→) If Σ; · ` r : A [C], then there exists a term e′

and a context Σ′, such that Σ, r −→ Σ′, e′.

Lemma 7 (Unique decomposition) For every expression e, either:

1. e is a value, or

2. e = E[r] for a unique evaluation context E and a redex r.

Theorem 8 (Progress) If Σ; · ` e : A [ ], then either

1. e is a value, or

2. there exists a term e′ and a context Σ′, such that Σ, e 7−→ Σ′, e′.

Proposition 9 (Determinacy) If Σ, e 7−→n Σ1, e1 and Σ, e 7−→n Σ2, e2, then

there exists a permutation of names π : N → N , fixing the domain of Σ, such

that Σ2 = π(Σ1) and e2 = π(e1).

6 Exceptions

The calculus presented thus far did not involve any concrete notions of effects.
It was only capable of dynamic introduction and of propagation of effects, but
not, in fact, of raising or handling them. In this section we extend our code
fragment into a calculus of exceptions. The idea is to assign a name to each
exception, which could then be propagated and tracked, by means of the core
fragment. To be able to raise and handle exceptions, we need further constructs
specific only to exceptions. Thus, we extend the syntax of our language in the
following way.

Exception handlers Θ ::= · | Xz → e, Θ
Terms e ::= . . . | raiseX e | e handle 〈Θ〉

Informally, the role of raiseX e is to evaluate e and than raise an exception
X , passing the value of e along. On the other hand, e handle 〈Θ〉 evaluates e
(which may raise exceptions), and all the raised exceptions are handled by the
exception handler Θ.

An exception handler Θ is syntactically defined as a list of exception pat-
terns, each of which refers to a different exception. More conceptually, we can
regard the exception handler as a mapping from the set of names to the set of
functions over terms

Θ : N → Terms → Terms

We will treat our handlers as being able to take action on all the exceptions; it
is just that on some of them the action will be a specifically prescribed term,
while on others the action will just involve propagation of the exception. For
example, the empty handler 〈 〉 handles all the exceptions by propagating them
further.
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Given a handler Θ, its domain dom(Θ) is defined as the set

dom(Θ) = {X ∈ N | Θ(X)(z) 6= raiseX z}

We only consider handlers with finite domains. A handler Θ with a finite domain
has a finitary syntactical representation as a set of patterns Xz → e relating
a name X from dom(Θ) with the function Θ(X) : z 7→ e. We will frequently
equate a handler and the set that represents it when it does not result in ambi-
guities. The operations that e can perform on the term z in the above mapping
are limited to only ordinary compositions with the term constructors from our
language. Thus, it will be the case that the value of the function Θ(X) at a
term e′ is equal to [e′/z]e.

Example 6 Assuming X and Y are integer names, the following are well-
formed expressions of the exception calculus.

(1 − raiseX raiseY 10) handle 〈Xx → x + 2, Y y → y + 3〉
(1 − raiseX 0) handle 〈Xx → (2 − raiseY x)〉 handle 〈Y y → y〉
(1 − raiseX 0) handle 〈Y y → (2 − raiseX y)〉 handle 〈Xx → x + 1〉

The terms evaluate to 13, 0, and 1, respectively. The first term raises the
exception Y and then handles it. The second raises X with value 0, which is
then handled by the first handler, but this handler itself raises the exception Y
with value 0, ultimately handled by the second handler. The third term raises
X with value 0, which is propagated by the first handler, and then handled by
the second handler.

The type system of the calculus of exceptions consists of two judgments:
one for typing expressions, and another one for typing exception handlers. The
judgment for expressions has the form

Σ; ∆ ` e : A [C]

and it simply extends the judgment from the core fragment presented in Sec-
tion 3 with the new rules for raise and handle. The specific of the calculus is
that the support C represents sets, collecting the exceptions that e is allowed to
raise. Thus, C v D is defined as C ⊆ D when C and D are viewed as sets (i.e.,
when the ordering and repetition of elements in these supports are ignored). By
support weakening, e need not raise all the exceptions from its support C, but
if an exception can be raised, then it must be in C. The judgment for exception
handlers has the form

Σ; ∆ ` 〈Θ〉 : A[C] ⇒ A[D]

and the handler Θ will be given the type A[C] ⇒ A[D] if: (1) Θ can handle
exceptions from the support set C arising in a term of type A, and (2) during
the handling, Θ is allowed to itself raise exceptions only from the support set
D. The typing rules of both judgments are presented in Figure 2, and we briefly
comment on them below.

An exception X can be raised only if it is accounted for in the support.
Thus the rule for raise requires X ∈ C. The term raiseX e changes the flow of
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C v D

Σ; ∆ ` 〈 〉 : A[C] ⇒ A[D]

Σ; (∆, z:A) ` e : B [D] Σ; ∆ ` 〈Θ〉 : B[C \ X] ⇒ B[D] X :A ∈ Σ

Σ; ∆ ` 〈Xz → e, Θ〉 : B[C] ⇒ B[D]

Σ; ∆ ` e : A [C] X ∈ C X :A ∈ Σ

Σ; ∆ ` raiseX e : B [C]

Σ; ∆ ` e : A [C] Σ; ∆ ` 〈Θ〉 : A[C] ⇒ A[D]

Σ; ∆ ` e handle 〈Θ〉 : A [D]

Figure 2: Typing rules for exceptions.

control, by passing e to the nearest handler. Because of that, the environment
in which this term is encountered does not matter; we can type raiseX e by
any arbitrary type B. In the rule for handle, the type and the support of the
expression e must match the type and the domain support of the handler Θ.
The exception handler 〈 〉 only propagates whichever exceptions it encounters.
Thus, if it is supplied an expression of support C it will produce an expression
of the same support. To maintain the support weakening property, we allow
the range support D of an empty handler to be a superset of C. Notice that
the empty support handler may be assigned an arbitrary type A. The rule for
nonempty exception handlers simply prescribes inductively checking each of the
exception patterns in the handler. The type of each pattern variable z must
match the type of the corresponding exception; this is the type of the value that
the exception will be raised with. The handling terms e must all have the same
type B, which would also be the type assigned to the handler itself.

Example 7 The function tail below computes a tail of the argument integer
list, raising an exception EMPTY:unit if the argument list is empty. The function
length uses tail to compute the length of a list. Note that the range type of
tail is

�
EMPTYintlist. This is required because the body of tail may raise an

exception, and, as explained in the previous section, all the effects in function
bodies must be boxed. To reduce clutter, in this and in subsequent examples
we abbreviate let box u = (−) in u simply as unbox u.

13



- choose (νEMPTY: unit.

let fun tail (xs : intlist) :
�

EMPTYintlist =

(case xs

of nil => box (raise EMPTY ())

| x::xs => box xs)

fun length (xs : intlist) : int =

(1 + length (unbox (tail xs)))

handle <EMPTY z -> 0>

in

length [1,2,3,4]

end);

val it = 4;

There are several points worth emphasizing about our calculus. First of all,
exceptions in our calculus are not values and cannot be bound to variables.
Correspondingly, they must be explicitly raised; raising a variable exception is
not possible. Aside from this fact, when local exceptions are concerned (i.e.,
exceptions which do not originate from a function call, but are raised and han-
dled in the body of the one and the same function), our calculus very much
resembles Standard ML [18]. In particular, exceptions can be raised, and then
handled, without forcing any changes to the type of the function. It is only
when we want the function to propagate an exception so that it is handled by
the caller, that we need to specifically mark the range type of that function with
a

�
-type. This is in contrast to the general mechanism of monads [37] where

effects are global, and therefore adding an effect to the body of a pure function
invariably requires that the range type of the function be changed to a monadic
type. This in turn may require serious restructuring of the programs that use
such a function.

Finally, our calculus presents really only a bare-bone theoretical foundation
for the treatment of exceptions. As is probably the case with other effect cal-
culi too, it is not very practical when compared to, say, Standard ML, exactly
because the types are decorated with exception names. But, we believe that
such a hurdle can be overcome; it is easier to hide the excess information, than
to recover from the lack thereof, and we comment on this in the future work
section.

The operational semantics of the exception calculus is a simple extension of
the semantics of the core fragment. The evaluation judgment has the same form

Σ, e 7−→ Σ′, e′

We only need to extend the syntactic categories of evaluation contexts and

14



redexes, and define primitive reductions for the new redexes.

Evaluation

contexts
E ::= . . . | raiseX E | E handle 〈Θ〉

Pure P ::= [ ] | P e | v P | let box u = P in e |
contexts choose P | raiseX P
Redexes r ::= . . . | v handle 〈Θ〉 | P [raiseX v] handle 〈Θ〉

We have already explained that each exception handler can handle all excep-
tions. It is only that some exceptions are handled in a specified way, while
others are handled by simple propagation. This will simplify the operational
semantics somewhat, because in order to find the handler capable of handling a
particular raise we only need to find the nearest handler preceding this raise.
For that purpose, we select a special subclass of pure evaluation contexts, which
are pure in the sense that they do not contain any exception handlers acting on
the hole of the context. It can easily be shown that each evaluation context E
is either pure, or there exist unique evaluation context E ′ and pure context P ′,
such that E = E′[P ′ handle 〈Θ〉].

The primitive reduction on the new redexes follows.

Σ, v handle 〈Θ〉 −→ Σ, v

Σ, P [raiseX v] handle 〈Θ〉 −→ Σ, Θ(X)(v)

The first reduction exploits the fact that values are exception free, and there-
fore simply fall through any handler. The second reduction chooses the closest
handler for any particular raise. It also requires that only values be passed
along with the exceptions; the operational semantics demands that before an
exception is raised, its argument must be evaluated. If it so happens that the
evaluation of the argument raises another exception, this later one will take
precedence and actually be raised. This is already illustrated in the first term
from Example 6, where it is the exception Y which is raised and eventually
handled.

The structural properties and the type soundness of the core fragment readily
extend to the exception calculus. Here we only list some specific additional
lemmas.

Lemma 10 (Handler substitution principle) If Σ; ∆ ` e1 : A [C] and Σ; (∆, u:A[C]) `
〈Θ〉 : B[D′] ⇒ B[D], then Σ; ∆ ` 〈[e1/u]Θ〉 : B[D′] ⇒ B[D]

Lemma 11 (Unique decomposition) For every expression e, either:

1. e is a value, or

2. e = P [raiseX v], for a unique pure context P , or

3. e = E[r] for a unique evaluation context E and a redex r.

Theorem 12 The calculus satisfies progress and preservation.
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Σ; ∆ ` e : A [C] X ∈ C X :A ∈ Σ

Σ; ∆ ` throwX e : B [C]

Σ; ∆ ` e : A [C, X ] X :A ∈ Σ

Σ; ∆ ` catchX e : A [C]

Figure 3: Typing rules for catch and throw.

7 Catch-and-throw calculus

The catch-and-throw calculus is a simplification of the calculus of exceptions.
We consider it here in its own right, however, in order to illustrate a different
notion of handling. It will also provide some intuition for the calculus of com-
posable continuation in Section 8. In the catch-and-throw calculus, names are
associated with labels to which the program can jump. Informally, catch estab-
lishes a destination point for a jump and assigns a name to it, and throw jumps
to the established point. The exact syntax of the two constructs is defined as
follows.

Terms e ::= . . . | throwX e | catchX e

The throw and catch can be viewed as restrictions of raise and handle; catch
handles a throw by immediately returning the value associated with the throw.

The typing judgment Σ; ∆ ` e : A [C] establishes that e has type A and
may throw to destination points whose names are listed in the support C. The
supports are sets, rather than sequences, just like in the calculus of exceptions.
The typing rules of the calculus are presented in Figure 3.

A throw to a destination point is allowed only if the destination point is
present in the support set. A catch establishes a destination point by placing
it in the support set against which the argument expression is checked.

Example 8 The following terms (adopted from [12]) are well-typed in our
catch-and-throw calculus.

choose (νX:int.
(λf:int->

�
Xint.

let box u = f 0

in

catchX (1 + u)

end) (λy:int. box (throwX y)))
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choose (νX:int.
(λf:int->

�
Xint.

let box u = f (box 0)

in

1 + catchX u

end) (λy:int. box (throwX y)))

The first term evaluates to 0, because the addition with 1 is skipped over by
a throw. In the second term, the catch is pushed further inside, to preserve
this addition, and so the term evaluates to 1.

Example 9 The program segment below defines a recursive function for mul-
tiplying elements of an integer list. If an element is found to be equal to 0, then
the whole product will be 0, so rather than uselessly performing the remain-
ing computation, we terminate by an explicit throw outside of the recursive
function.

- choose (νEXIT:int.
let fun mult (xs : intlist) :

�
EXITintlist =

case xs

of nil => box 1

| x::xs =>

if x = 0 then box (throw EXIT 0)

else

let box u = mult xs in box(x * u)

in

catch EXIT (unbox (mult [2, 1, 0, 3]))

end);

val it = 0 : int

The evaluation judgment of the catch-and-throw calculus is again a straight-
forward extension of the evaluation judgment Σ, e 7−→ Σ′, e′ of the core fragment
from Section 3. We first need to define the new redexes, corresponding to the
new catch and throw constructs, and extend the syntactic category of evalu-
ation contexts.

Redexes r ::= . . . | catchX v | catchX E[throwX v]
Evaluation

contexts
E ::= . . . | catchX E | throwX E

In the redex catchX E[throwX v] it is assumed that the context E does not
contain a catchX phrase acting on the hole of E. The primitive reductions on
the new redexes are defined as follows.

Σ, catchX v −→ Σ, v

Σ, (catchX E[throwX v]) −→ Σ, v
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Similar to the exception calculus, values simply fall through the catch, and
every throw is caught by the closes surrounding catch with the appropriate
name. The operational semantics of catch-and-throw requires that only values
be passed along a throw. Thus, of possibly nested throws, only the last one
will actually be subject to catching.

The structural properties lemmas of the core fragment only require a minor
modification for Unique decomposition.

Lemma 13 (Unique decomposition) For every expression e, either:

1. e is a value, or

2. e = E[throwX v], for a unique context E which does not catch X, or

3. e = E[r] for a unique evaluation context E and a redex r.

Theorem 14 The calculus satisfies progress and preservation.

8 Composable continuations

Similar to the catch-and-throw calculus, composable continuations use names
to label destination points to which a program can jump. A destination point
for a jump is established with the construct reset which also assigns a name
to it; thus, it is similar to catch from the previous section. The jump is itself
is performed by shift, which in a sense corresponds to throw from the catch-
and-throw calculus. The exact syntax of the calculus is defined as follows.

Terms e ::= . . . | shiftX k. e | resetX e

The differences from the catch-and-throw calculus, however, arise from the fol-
lowing property, which is characteristic for continuation calculi: unlike throw,
when the construct shiftX k. e is evaluated, it captures into the variable k
the part of the surrounding term between this shift and corresponding reset
which precedes it; k may then be used to compute the value of e that is passed
along with the jump. It is important that the evaluation of e is undertaken in
the changed environment from which the part captured in k has been removed.
More specifically, e itself will not be able to shift to destination points which
were defined in the captured and removed part.

Example 10 This example is adopted from [2, 36]. The terms below are
well-typed examples in our calculus of composable continuations.
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e1 = 1 + resetX (10 + shiftX f:
�

Xint->
�

Xint.

let box u = f (f (box 100))

in

resetX u

end) 7−→∗ 121

e2 = 1 + resetX (10 + shiftX f. 100) 7−→∗ 101

e3 = 1 + resetX (10 + shiftX f.

let box u1 = f (box 100)

box u2 = f (box 1000)

in

resetX (u1 + u2)

end) 7−→∗ 1121

In each of these examples, the continuation variable f :
�

X int →
�

X int is
bound to λx. let box v = x in box (10 + v), which represents the environment
delimited by the shift and the corresponding reset. Notice that upon capturing
of the continuation, the delimiting reset is removed from the reduct.

It is the expressions bound to k that is actually referred to as a compos-

able continuation (and other names in use are: partial continuation, delimited
continuation and subcontinuation). Ordinary calculus of continuations can be
viewed as a calculus of composable continuations in which all the jumps have
a unique destination point, predefined to be at the beginning of the program.
In both calculi, continuations are functions whose range type is equal to the
type of the destination point. But, in the special case of ordinary continuations,
this type is necessarily ⊥, and that is why ordinary continuations cannot be
composed in any non-trivial way.

The typing judgment of our calculus for composable continuations is again
Σ; ∆ ` e : A [C]. It establishes that the expression e has type A and may shift
to destination points whose names are listed in the support C. The typing rules
for composable continuations are presented in Figure 4.

In the case of composable continuations, it is the shifting to a name that
is the notion of effect, and establishing a destination point is the notion of
handling. Therefore, the type system should enable a shift to a destination
point X only if X is accounted at the support C, placed there by a corresponding
reset. The situation, however, is a bit more involved. As already mentioned,
shiftX k. e evaluates e in a changed environment from which the destination
points between X and the shift have been removed; thus e has to be typechecked
against a support that is changed correspondingly.

The above argument indicates that in the calculus of composable continua-
tions, the ordering of names in the support of a term is important. Unlike in the
previous effect calculi where supports were simply sets, here we actually must
exploit their list-like structure. To simplify matters, we allow a shift to a cer-
tain name only if that name is at the end of the support. This is accounted for
in the typing rule for shiftX k. e which demands that X is the rightmost name
in the support (C, X). After the environment delimited by X has been captured
and removed, the destination point X is removed as well, and e is evaluated in
the changed environment. Correspondingly, e is typechecked against support
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from which the rightmost X has been removed. If a shift is required to a name
which is deeper down in C, it can still be done by performing a sequence of
nested shifts in a last-in-first-out manner to all the names above. In that sense,
we can actually view the supports of our calculus of continuations as stacks.

There are yet further important aspects of the typing rule for shift that need
to be explained. The expression e computes the value to be passed along with
the jump, so it must have the same type as the destination point X . Because
the jump changes the flow of control, the immediate environment of the shift
does not matter; we can type shift by an arbitrary type B. The domain and the
range of the continuation k must match the source and the destination points
of the shift, which in this rule have types B and A, respectively. The shift
appears in the context of a support stack (C, X) and that is why k is placed
into the context with the domain type

�
C,XB. The range type of k is

�
C,XA,

meaning that the captured continuation will not include the delimiting resetX

(otherwise, this resetX would have been a handler for X , making the range type
�

CA). This is in contrast to most other calculi for composable continuations
[6, 2, 3, 21, 36, 11, 12, 13] which either capture the delimiting reset into the
continuation, or leave it in the environment, or both. Our decision to do neither,
actually adds further expressiveness to the calculus, and we illustrate this point
at the end of the section.

The typing rule for reset is much simpler. The construct resetX e estab-
lishes a destination point X and allows the expression e to shift to X by placing
X into the support. If e is a value, it immediately falls through to the desti-
nation point X , and thus e and X must have same types. We further allow an
arbitrary weakening of supports in the conclusion of this rule, in order to satisfy
the support weakening principle.

The partial ordering imposed on the family of supports is the trivial partial
ordering with the empty stack as the smallest element: C v D holds iff C = (·)
or C = D as sequences.

Example 11 The program below is a particularly convoluted way of reversing
a list, adopted from [2].

fun reverse (l : intlist) : intlist =

choose (νX: intlist.

let fun rev’ (l : intlist) :
�

Xintlist =

case l

of nil => box nil

| (x::xs) =>

let val y = rev’ xs

in

box (shiftX c:
�

Xintlint ->
�

Xintlist.

resetX x :: unbox (c y))

end

box v = rev’ l

in

resetX v

end)
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Σ; (∆, k:
�

C,XB →
�

C,XA) ` e : A [C] X :A ∈ Σ

Σ; ∆ ` shiftX k. e : B [C, X ]

Σ; ∆ ` e : A [C, X ] C v D X :A ∈ Σ

Σ; ∆ ` resetX e : A [D]

Figure 4: Typing rules for composable continuations.

To understand reverse, it is instructive to view a particular evaluation of
the helper function rev’. For example, rev’ [2, 1, 0] produces

box (shiftX c3.

resetX 2 :: unbox c3 (box shiftX c2.

resetX 1 :: unbox c2 (box shiftX c1.

resetX 0 :: unbox c1 (box nil)))

When prepended by a resetX , unboxed and evaluated, this code uses the
continuations ci to accumulate the reversed prefix of the list. For example, c3

is bound to λx. let box u = x in box u corresponding to the initial empty
prefix; c2 is bound to λx. let box u = x in box (2 :: u); c1 is bound to
λx. let box u = x in box (1 :: 2 :: u), until finally the reversed list [0,1,2] is
produced.

As in the development of operational semantics for the previous effect calculi,
here too we start by extending the notion of evaluation contexts from the core
language, and defining the new redexes.

Evaluation

contexts
E ::= . . . | resetX E

Pure

contexts
P ::= [ ] | P e1 | v1 P | let box u = P in e | choose P

Redexes r ::= . . . | resetX v | resetX P [shiftY k. e]

Because each shift is handled by the nearest reset (and the typing rules ensure
that these are labeled by the same name), we need to identify within each
evaluation context E that reset (if any) which is closest to the hole of E.
Thus, similar to the calculus of exceptions, we identify the specific subclass
of evaluation contexts which are pure, in the sense that they do not contain
any resets. Then, it is easy to prove that each evaluation context E is either
pure, or there exist unique evaluation context E ′ and pure context P ′ such that
E = E′[resetX P ′]. The primitive reduction rules for the new redexes are
defined below.

Σ, resetX v −→ Σ, v

Σ, (resetX P [shiftX k. e]) −→ Σ, [K/k]e,

where K = λx. let box u = x in box P [u]
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The first reduction rule is simple; it just serves to let the values pass through
a reset. Indeed, values are effect free (in this case, shift-free), so no resets are
really relevant for them. The second primitive reduction deserves more com-
ment. It prescribes that the evaluation context P be captured and substituted
for a continuation variable k in e. But notice that the reset which delimits the
context P is discarded altogether from the further evaluation. It does not sur-
vive the capturing as part of the reduct, and it does not survive in the captured
continuation either (which only includes P ). We have already pointed this fact
out in our discussion of the type system, and this reduction rule makes it formal.

There are merits to both of these choices. The more obvious one is that be-
cause the reset is removed from the environment, we can shift to names which
are further down in the support stack. It is a bit more difficult to explain the
benefits of the decision that the delimiting reset be discarded from the captured
continuation as well. From a purely technical aspect, it certainly seems more
flexible to discard the reset than to include it in the continuation. After all, if
the reset is missing, we can always put it back; if it is retained, we can never
eliminate it. But the important point is that it also improves the expressiveness
of the calculus. A particular example we have in mind concerns the applica-
tion of composable continuations to neatly encode bounded nondeterministic
computation [2, 3] where depth-first search is employed to explore the space of
solutions. What we would be able to do in our system, thanks to this particular
design decision, is to express in the same manner the breadth-first search as well.
We illustrate this argument in the following two examples.

Example 12 [Depth-first search] Composable continuations have been used
to conveniently express “nondeterministic computation”; that is, computation
which can return many results [2, 3]. We paraphrase from these papers the
following program for finding all the triples (i, j, k) of distinct positive integers
smaller than n that sum up to s, which is very effectively phrased in terms of a
primitive function choice.

(* choice : int->
�

Xint *)
fun choice n =

box (shiftX c:
�

Xint->
�

Xunit.
let fun loop (s:int):unit =

if s = 0 then ()
else

let box u = c (box s)
in

(resetX u);
loop (s - 1)

end
in

loop (n)
end)

(* triple : int*int->unit *)
fun triple (n, s) =
resetX

let val i =
unbox (choice n)

val j =
unbox (choice (i-1))

val k =
unbox (choice (j-1))

in
if (i+j+k = s) then
print (i, j, k)

else ()
end

When run with n = 9 and s = 15, the function triple should print out the

22



triples (9, 5, 1), (9, 4, 2), (8, 6, 1), (8, 5, 2), (8, 4, 3), (7, 6, 2), (7, 5, 3) and (6, 5, 4)
before returning () : unit. The program works by maintaining a list of compos-
able continuations, which is represented at run-time as a sequentially composed
sequence of expressions of unit type. Each call to choice picks the top element

of the list and stores this top element into the composable continuation c, delim-
ited by a name X : unit, while at the same time removing it from the list. This
element is then expanded into: (resetX c n; resetX c (n-1);...;resetX

c 1; resetX ()) which is placed back at the top of the list. In this sense, the
strategy that the above program uses for exploring the search space is depth-

first. The depth of the search tree must be bounded (and it is in this particular
example) if the program is to enumerate all the solutions. This is the relation
of composable continuations in the style of [2, 3] to bounded non-determinism.

Example 13 [Breadth-first search] In our calculus of composable continua-
tions we are not limited to the depth-first-search strategy. We can, for example,
employ breadth-first-search to enumerate the solutions even if the search space
is of unbounded depth. As outlined before, our continuations capture the en-
vironment up to, but not including the resets, and this provides the needed
expressiveness. In particular, when expanding the top element from the list of
computations, we do not need to push the newly expanded cases on the top of
the list (as in the previous example); we can place them at the bottom. How
does this work? First, we capture the whole list of computations into a contin-
uation function of its own. The argument of this function abstracts the top of
the list, and therefore, adding new elements at the top of the list represented by
the continuation (i.e. doing depth-first-search) is not influenced by whether the
continuation is delimited by a reset of not. But, the continuations must not be
delimited if elements are to be added at the bottom, as otherwise the delimiter
gets in the way. Because we do not capture the delimiting reset into the con-
tinuation, we can first extend the represented list at the bottom (thus encoding
breadth-first-search strategy), and only then place a reset back, to delimit the
new list. The scope of this reset will then include the newly expanded search
cases.

To paraphrase, even though our continuations are not delimited at the time
of capturing, the type system will force us to delimit them before they are
invoked, but not before we had a chance to modify them first to suit our needs.

As an example, we present a version of triple that uses breadth-first-search
strategy. We now need two names to delimit the continuations: the name X :unit
which delimits individual entries in the list, and the name Y :unit for the whole
list. The new function bfchoice picks the top element c1 expands it into:
(resetX c1(n); resetX c1(n-1);...; resetX c1(1); resetX ()). Then
this whole expanded segment is attached to the bottom of the list, which itself
has been captured into the continuation c2.
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(* bfchoice:int->
�

Y,Xint *)
fun bfchoice n =
box (shiftX

c1:
�

Y,Xint->
�

Y,Xunit.
shiftY

c2:
�

Y unit->
�

Y unit.
resetY

let fun loop (s:int):unit =
if s = 0 then ()
else
let box u = c1(box s)
in
(resetX u);
loop (s - 1)

end
box v =
c2(box resetX ())

in

v; loop (n)
end)

(* triple:int*int->unit *)
fun triple (n, s) =
resetY

resetX

let val i =
unbox (bfchoice n)

val j =
unbox (bfchoice(i-1))

val k =
unbox (bfchoice(j-1))

in
if (i+j+k = s) then
print (i, j, k)

else ()
end

The structural properties from the core fragment readily extend with the
new cases characteristic to the calculus of composable continuations.

Lemma 15 (Unique decomposition) For every expression e, either:

1. e is a value, or

2. e = P [shiftX k. e′], for a unique pure context P , or

3. e = E[r] for a unique evaluation context E and a redex r.

Theorem 16 The calculus satisfies progress and preservation.

9 Related work

Integrating effects into functional calculi has quite a long history, and this sec-
tion is bound to be very incomplete. Numerous systems have been proposed,
treating various effects and with various levels of precision and verbosity of
typing. As an example, we only list [17, 32, 33, 34].

A treatment of exceptions in Haskell is given by Peyton Jones et al. in
[26]. This paper associates exceptions with values, so that a value of any type is
either “normal” or “exceptional”. This is similar with our calculus where expres-
sions, rather than function calls, are marked by the type system as exceptional.
The paper further introduces handling of exceptions by means of a primitive
map getException which must be enclosed within the IO monad, to preserve
soundness. Another exception calculi is presented by de Groote in [5]. It is
a call-by-value calculus which uses separate binding mechanisms to introduce
exceptions into the computation. The calculus lacks modal or monadic types,
so it has to specifically require that values of the language are effect-free; in this
case it implements the Standard ML exception mechanism. This paper also
discuses the logical content of exceptions, and relationship with classical logic.
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Exception mechanism of Java relates to our calculus as well, as the Java meth-
ods must be labeled by the exceptions they can raise [10]. Catch-and-throw
calculus is a specific simplifications of exceptions, and theoretical analysis of
catch and throw can be found in [22, 12, 14].

Composable continuations were probably first considered by Felleisen in [6],
in an untyped setting and with shifting only to the nearest reset (or prompt).
Sitaram and Felleisen in [31] generalized this to a whole family of control oper-
ators for shifting, each of which is indexed by a numeral prescribing how many
closest resets should be jumped over. Also in untyped setting, Hieb, Dybvig
and Anderson in [11] introduce labels instead of numerals to describe the desti-
nation points for a hierarchy of shifts. Danvy and Filinski in [2] develop a type
system for composable continuations with a single shift operator. The resets
are not labeled. In the Appendix C, they also briefly discuss the idea which we
have employed here: upon capturing, remove the resets from the environment,
so that jumps can be made to the resets further down in the context stack.
Logical content of composable continuations is studied by Murthy in [21]. This
paper develops a type system for composable continuation with a hierarchy of
shifting operators, which is based on monads indexed by lists of types, but has
to restrict the resets to only implication-free types in order to preserve sound-
ness. Wadler in [36] further analyses the above type systems for composable
continuations with a single shift operator, and with a hierarchy of shift opera-
tors, and presents them in terms of indexed monads. Most recently, Kameyama
in [12, 13] works with labels instead of numerals to provide a hierarchy of shift-
ing operators. These calculi lack modal or monadic types and must (like the
above-mentioned system of exceptions [5]) limit the calculus in order to avoid
scope extrusion for labels and preserve soundness.

Coming from the side of logic and type theory, effect calculi are directly
representable by monads. Monads were first used in denotational semantics
by Moggi [19, 20], and were adopted for functional programming by Wadler
[35, 37, 38] to represent effectful computations. We further point to the work
of Filinski [7, 8, 9] which develops the concepts of monadic reflection and reifi-
cation, with intentions similar to ours: to increase the flexibility of monadic
programming and delimit the scope of effects. Similar motivation lies behind
Kieburtz’s introduction of lexical scoping for effects in [15].

On the other hand, our paper was specifically motivated by the work of
Pfenning and Davies [28] which formulates natural deduction for a variant of
S4 modal logic and a proof-term calculus for it. It also shows how a monadic
system can be embedded using modalities. The modal necessity, as defined in
this paper, is a comonad, and the fact that comonads may represent effects
have already been noticed by Kieburtz [16] and Pardo [25], but the relation to
handling was not established.

That modal necessity can be very naturally extended with the notion of
names was argued in [23]. The calculus from that paper is a direct precursor to
the effect system we presented here. It is motivated by the work on Nominal
Logic and FreshML by Pitts and Gabbay [30, 29] which introduce names as
urelements of Fraenkel-Mostowski set theory.
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10 Conclusions and future work

This paper introduced a logically motivated effect system, based on modal logic
S4, which is designed to naturally and uniformly support the process of effect
handling. It is founded on the observation by Pfenning and Davies in [28] that
a monad can be decomposed in terms of operators for necessity and possibility
of a variant of modal logic S4. In our calculus, the necessity operator

�
serves

to mark impure program segments and accounts for a hygienic propagation of
effects; it is used to represent effects which can be handled. We also give a call-
by-value operational semantics for the language, but a purely logical formulation
which does not favor any particular evaluation strategy, should be possible; we
hope to explore such a system and its equational theory in a future work.

The presented system extends the modal calculus from [28] with names,
which are labels that can be dynamically introduced into the computation and
serve to identify effects. The (possibly ordered) collection of effects that may
appear in a certain term is refered to as support of the term. The typing judg-
ment relates terms to their supports, and only terms of empty support (which
are, hence, guaranteed to be effect-free) will be considered for evaluation. The
notion of support in the calculus is rather flexible; depending on the particular
effect being modeled, different definitions of support may be used. For example,
in case of exceptions and catch-and-throw, the supports are simply sets of names
listing the exceptions and jump destinations, respectively. In case of compos-
able continuations, supports are stacks of names depicting the environments of
nested continuation-delimiting points. It is an interesting future work to inves-
tigate how different definitions of support may interact in a system combining
several effects that are heterogeneous in this respect.

In our system, the modalities are indexed by supports. For example, the
type

�
CA classifies computations of type A capable of raising effects whose

names are listed in the support C. It is possible to project a value of type A
out of a computation of type

�
CA if the effects in C can be handled (in a way

specified by the particular effects in question). In the special case when C is the
empty support, the computation is effect-free, and the value can be projected
out trivially; this is the behavior of the propositional S4 necessity, recovered.
We further impose monotonicity on the new logic with multiple modalities,
resulting in the identification of the types A and

�
A, where the later type has

empty index support. Operationally, this allow us to coerce values into effectful
computations, much like a monadic system would do.

The presented system consists of a core effect calculus which can easily be
extended to account for various effects, simply by providing the introduction
and elimination (i.e., handling) forms and specifying the particular notions of
support suitable for that effect. We demonstrate this by extending the core
fragment into new calculi for exceptions, catch-and-throw and composable con-
tinuations. We should mention, however, that the obtained systems are probably
not very practical as the verbosity of support annotations on types may signif-
icantly complicate any serious programming effort. It may be of some comfort
that a similar criticism is in fact applicable to most other effect calculi as well.
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At any rate, it is a very important future work to investigate the questions of
type and support inference in this calculus (possibly in the style of [32]), and
develop new abstraction mechanism which can hide the unwanted support and
result in a more practical language (perhaps combining support polymorphism
[23] and proof irrelevance [27, 1]). The system presented here is logically moti-
vated and fully explicit about the supports of its terms, and is therefore a solid
theoretical basis for such investigations.
Acknowledgments The author would like to thank Frank Pfenning for his
numerous suggestions regarding this paper.
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