Uniquely Decodable n-gram Embeddings

Leonid Kontorovich
April 28, 2003
CMU-CS-03-134

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We define the family of n-gram embeddings from strings over a finite alphabet into the semimodule
NK . We classify all ¢ € N¥ that are valid images of strings under such embeddings, as well as all ¢
whose inverse image consists of exactly 1 string (we call such ¢ uniquely decodable). We prove that
for a fixed alphabet, the set of all strings whose image is uniquely decodable is a regular language.

Part of this research was done at the Hebrew University of Jerusalem. The work at CMU was supported by NSF
grant EIA-0205456.

Keywords: n-gram, embedding, finite state automata, strings

1 Introduction

Consider the problem of learning string transformations from examples. We have two alphabets,
¥, and X9, and a mapping f : £} — 5. A teacher has provided us with numerous examples of
the form (u,v) where u € ¥F and v = f(u). The objective is to learn the mapping f.

Among the simplest types of string transformations are those realized by finite state transducers.
Yet learning even these is computationally quite hard. There are hardness results for learning FSAs
due to Angluin [1], and for approximately learning FSAs due to Pitt and Warmuth [3]. Since FSAs
are degenerate cases of FSTs, the hardness carries over to learning FSTs.

We propose the following approach to this problem. Embed the strings {u;} in a vector space
X via ¢x : 7 — X and {v;} in a vector space) via ¢y : X5 — Y (or, more generally, take X
and Y to be semimodules over semirings) and look for “nice” operators T' (for example linear ones)
such that T'(px(u;)) = ¢y (vi)-

We point out two specific aspects of this problem. The first is that the mapping f might only
make sense on a subset L; of X7 and map it into a subset Ly of ¥3; if L; and Lo are well-behaved,
this could ease our search of good embeddings ¢x(-), ¢y(-) and operators T'. The other aspect is
that since the ultimate goal is to obtain a mapping on strings, the embedding ¢ should have good
invertibility properties.

In this work we study a particular kind of embedding ¢ : ©* — NX_ namely the bigram one,
which generalizes immediately to n-grams. We characterize all ¢ € NX which are in the image of
¥* under ¢, as well as all ¢ € NK such that ¢~1(¢) consists of a single string.

2 The embedding

Let X be a finite alphabet. We will use an additional special character $ not in X, and define
Y =%U{8} = {01 =8,09,03,...,05}

We are interested in embedding strings in $2*$ (that is, arbitrary strings in ¥* padded on the left
and right with §) into a semimodule. We define the bigram embedding ¢ : $3*$ — N**¢ (where
N=1{0,1,2,...}) by

[¢(w)];; = [the number of times o; occurs immediately before o; in w] (1)

and refer to £ = ¢(w) as the (bigram) encoding of w.
For example, let ¥ = {a,b} and consider w = $abbbab$. Then

$lal|b
$(Sabbbab$) — f e
b|1]|1]2

Now suppose we are given a bigram encoding ¢ and want to recover the original string w. In
other words, we are given a ¢ € N°*¢ and are asked to compute ¢ 1(£). First there is the question
of whether ¢~1(¢) = 0, that is, whether ¢ is the encoding of any w € $£*$; when the answer is af-
firmative we call ¢ a valid encoding. Then there is the question of whether ¢~!(¢p(w)) = {w}. Note
that this is not the case in the above example, where ¢! (¢(w)) = {$abbbab$, $abbabb$, $ababbb$}.
When the condition does hold, we say that w (and equivalently, its encoding & = ¢(w)) is uniquely
decodable.

We will give necessary and sufficient conditions for resolving both of these questions, and prove
that the set of all uniquely decodable w is a regular language L C $3*8.

3 Some results

3.1 Basic definitions

Before we can state and prove the main theorems, we need to define some terms and constructs.
First we observe that there is a one-to-one correspondence between N**$ and the set G of directed
graphs on up to s nodes with positive integer weights on the edges. We denote such graphs by
G(¢) (or sometimes, abusing notation, G(w)), and set G(w) = G = (V,E), with V = X’ and
E = {e(i,j)} where e(i,j) = &; is the weight of the edge from o; to o; (see Fig. 1). It will
occasionally be convenient to interpret G as an unweighted directed multigraph G, where the
number of multi-edges from o; to o; is e(4, 7). We will freely switch between the weighted-edge and
multigraph interpretations, indicating the latter by a tilde. When a graph consists of the single
node $, we will call it the trivial graph Gg = G($9).

A traversal w of G is a chain of nodes w = [vg = $,v1,...,v7 = $];' w is a valid traversal of
G if each edge is traversed a number of times equal to its weight. Define the self-flow of a node
v to be e(v,v). The inflow of v is the sum of the weights of all the edges pointing into v minus
v’s self-flow; the outflow of v is the analogous sum for the edges pointing out of v. We denote the

relation e(u,v) =k > 0 by u L (or u — v if we wish to leave the nonzero k unspecified); if u — v
and u # v we say that u is a parent of v and v is a child of u.

If w is a valid traversal of G, we will call it a decoding of G. We will abuse notation slightly
and use ¢~ (@) and ¢! (w) to denote the set of strings ¢~ (¢(w)); we will use f¢~1(-) to denote
the cardinality of this set. We say that G is uniquely decodable if it has a single decoding,
ie., i¢~1(G) = 1. Call a transformation T : G — G traversal preserving on G if ¢~ 1(G) =

e~ (T(G))-

Figure 1: The bigram graph for w = $abbbab$

3.2 Valid encodings

Theorem 3.1. Let £ € N°*° and let G = G(§). Then & is a valid encoding if and only if the
following conditions hold:

(a) G is a connected graph

(b) for all v € G, inflow(v) = outflow(v)
(we call graphs with this property flow-conserving)

(c) for nontrivial G, inflow($) = outflow($) =1 and self-flow($) =0

! As the notation suggests, we blur the distinction between chains of nodes and strings of letters.

Proof. 1t is clear that for any w € $3*8$, G(w) satisfies (a)-(c). What remains to be shown is that
any & that satisfies (a)-(c) is a valid encoding.

First observe that £ is a valid encoding iff G has a valid traversal w (one simply reads off the
nodes in w to obtain a w € ¢ 1(£)). Call a chain of t > 1 nodes 7 = [v1, ..., ;] valid if the number
of transitions from o; to o; does not exceed e(%, j); we denote this relatlonshlp by v1 =T .

We claim that for any node v € G there is a valid chain from $ to v. We proceed by induction.
If $ is a parent of v, there is nothing to prove. If u is a parent of v and $ —T u then clearly $ -1 v
(since e(u,v) > 1). So if there is no valid chain from $ to v, v must have no parents, which violates
(a) or (b).

Thus G must admit a valid chain 7 starting and ending with $. Let us translate G into the
multigraph G. Then only way that 7 is not a valid traversal is if it fails to traverse some multi-
edges of G; define the deficit of 7 to be the number of untraversed multi-edges in G. Let € be an
untraversed multi-edge of G pointing out of a node ¢;. We can assume without loss of generality
that all the self-flow multi-edges of o; have been traversed (it is trivial to obtain such a valid
chain from 7). Consider the subgraph of G induced by the nodes that have untraversed multi-
edges pointing to/from them; let G' be the connected component of this subgraph that contains
0, with the traversed multi-edges deleted from G'. By construction, G’ is connected; since G is
flow-conserving and 7, being a valid chain from $ to $§, traverses an incoming multi-edge of each
node as many times as an outgoing multi-edge, when we delete the traversed edges we still have a
flow-conserving graph. Now let o; play the role of § in G' and apply the argument above to obtain
a valid chain 7’ on G’, starting and ending with ¢;. The chain 7’ can now be “spliced” into « (by
replacing the first occurrence of o; in m by 7’) to obtain a new valid chain 7" on G of strictly lower
deficit. This process can be iterated until the deficit becomes zero, at which point we will have a
valid traversal of G. O

Corollary 3.2. A string w is uniquely decodable iff G(w) has a single valid traversal.

Let us henceforth call a graph G valid if it satisfies (a)-(c) in 3.1.

3.3 Unique decodings

The task of characterizing the uniquely decodable {G(w)} is going to involve a somewhat detailed
analysis, but the following simple intuition may be helpful. If every node v of G has only 1 child
then clearly G will only have 1 traversal (which will have to be valid since G is connected and flow-
conserving). Potential ambiguities in decoding G can only arise when a node of G branches into
two or more children. Thus one might conjecture that multiple children lead to multiple decodings.
But that is not necessarily the case; consider the example of w = $acab$ in Fig. 2. Here, the node
a has 2 children (b and c), yet G(w) admits only one decoding. The node c is “obligatory” in the
sense that the valid traversal must visit it immediately after a, for if we go to b first, we have no
way of ever visiting c. The idea of the proof is rather simple: we prune such obligatory nodes;
if eventually we are left only with the $ node (which we never prune), G is uniquely decodable,
otherwise, it is not.

In all subsequent discussion, the graphs are assumed to have a valid traversal (that is, to satisfy
(a)-(c) in 3.1).

In order to characterize the “obligatory
nitions.

Let us define the pruning procedure for nodes in G with only 1 child. Consider the multigraph
G, draw a multi-edge from every parent of x to the child of z, then delete x and all the multi-edges

” nodes described above, we will need some more defi-

Figure 2: The bigram graph for w = $acab$

pointing to/from it. Call the weighted-edge interpretation of the resulting graph z-pruned. Let
P, denote the operator that prunes the node z. Define the action of P, on strings w € $3*$ as
deleting all occurrences of the letter z from w.

Lemma 3.3. Suppose $ # = in G only has 1 child and let G' = P,(G). If G is a valid graph, in
the sense of satisfying (a)-(c) of thm. 3.1, then so is G'.

Proof. (a) Connectedness. Suppose there is a chain (directed path) in G from y # z to z # =,
passing through z. Then there is a chain (possibly of length 0) from y to a parent of z. Likewise,
there is a chain from the child of z to z. Since by construction, in G’ every former parent of x
points to the former child of z, there is a chain from y to z in G'.

(b) Conservation of flow. Every parent of z loses a multi-edge pointing to but gains one pointing
to the child of z. Suppose there were k such multi-edges. This means that the inflow and outflow of
z in G is k, so there are k multi-edges pointing from z to its only child (since G is flow-conserving).
The child of z loses these k edges from x but gains them from the parents of z. It follows that for
z # x, the inflow and outflow of z do not change after z is pruned (the self-flow of z will increase
if it is both a parent and a child of z in G).

(¢c) Boundary conditions on $. $ has exactly 1 parent a L $and1childb S §in G, and no
self-flow. It now follows from (b) that after z # $ is pruned, a nontrivial G’ will also satisfy these
conditions. O

Definition 1. We call a node z # § in G removable (with child b) if:
1. z has a single child b

2. none of the parents of x point to b

3. ifz — z then z = b
(if z points to itself, its outflow must be 1)

Let us call such z type-I removable if z outflow(z) = 1 and type-II removable otherwise.

Let us introduce another bit of notation: ¥z = '\ {z}; if L C ¥*, then L = ¥* \ L. Our first
result is that pruning a type-I removable node does not alter the unique-decodability of a graph:

Theorem 3.4. Let x € G be type-I removable with child b and let G' = P,(G). Then ¢~ (G) =
o 1(G") (i-e., Py is traversal-preserving).

Proof. Since x has a outflow of 1, it can only have one parent, say a.
Let w be a valid traversal on G. We view w as a string in $3*$. Note that since z € G is
type-1 removable, w is contained in the regular language

LY, = L(Staz %) N L(S*abs*) N L(ST*S). (2)

(1)

Informally, L, , is the set of strings in which x occurs as a single contiguous stretch between a

and b, and the substring ab does not occur. So we can write w = aaz®b3. When we z-prune G we
obtain a valid traversal w' = aab8 on G'.

To prove the theorem we must show that P, : w — w' is bijective. But this is clear: P, consists
of removing the single contiguous stretch of z’s from w, while P, ! consists of inserting the sequence
z* inside the single occurrence of ab in w' (which is a well-defined operation since G’ encodes strings
that do not contain z and contain exactly one occurrence of ab).

We have established a one-to-one correspondence between the valid traversals on such G and
on G'; this proves the theorem. O

We now state a similar result for type-I1I removable nodes:

Theorem 3.5. Let x € G be type-II removable with child b and let G' = Py(G). Then ¢~ (G) =
i~ (G").

Proof. As in the proof of Thm. 3.4, we use the existence of the type-II removable node = with child
b and parents A = {a1,as,...,a,} to describe the set of all valid traversals w on G by the regular
language

LY, = L(Z:Azb53)") N L(Z%a1b5™) N LT azbS") N ... N L(Z"a,bs™) N L(SZ*$). (3)
2 Informally, L(j) b is the set of strings where x occurs in stretches of 1, only when preceded by
a member of A and followed by b, and no a € A can precede b. If w is a valid traversal on G,
w' = Py(w) is a valid traversal on G'. The bijectivity of P, : w + w' is easily seen: P, replaces
every occurrence of a;zb in w by a;b; P, ! replaces every occurrence of a;b in w' by a;zb. Thus
type-II pruning is a traversal-preserving operation, so the theorem is proved. U

Remark 3.6. Note that in general, P, is not invertible; e.g., we can compute P.($abcacb$) = $abab$
but P !($abab$) is not unique (it is not clear where to insert the c’s, and how many). However,

when restricted to the domain gfj;, kb of graphs where z is type-I removable with parent a, child

b, and self-flow k, P, is invertible, both as an operator on graphs G € gfj;kb and strings w €
¢ 1(G). A similar remark holds for type-IT removable nodes. In the sequel, when we talk about the
invertibility of P, for removable = and write P, !, we shall always have in mind the appropriately
restricted domain.

Lemma 3.7. Let G be a valid graph such that every x # $ in G has 2 children and self-flow(z) = 0.
Then G has multiple valid traversals.

*Here, A denotes both an unordered set and the regular expression A = (a1 + a2 + ...+ a,). Note that (3) does
not adequately handle the case where z’s child b is a member of A. This is fixed by letting

LY., = L((S3Azb(e + (2b)")S5)) N L& a1b%™) N L(Eazb2) N... N L(Za,pbS'™) N L($Z"$)

when b € A.

Proof. Let G be as stated and assume (to get a contradiction) that G is uniquely decodable. Let
z be the child of $ in G. Let by and ¢ be the two children of z. Then the valid traversal w of G
must be of the form

(1) w = $xboPrcy$

or

(#) w = $zeyrby S,

where § = b1by ... bk and «y are strings over 3. Now (i) and (i7) cannot both be possible, for then
G would have more than one decoding. So suppose (i) is the only type of decoding possible for G.
Since (4) is not a possible decoding of G, there must be no way to return to z after the x — c edge
is traversed; this means that vy cannot contain any of {bi}ilio- But each node in G has two children,
so each letter in w must appear at least twice. This means that there is a smallest kg, 0 < ky < K
such that by, = by, so we can write w = $zbyb1bs . .. bry—1bobky+1 - - . b Brey$.

Now we can apply the same argument to the two children of by to conclude that w must be
of the form w = $zboby ... bk, —1b1bg,+1 - - - bg—1b0bkg+1 - - - bx Brey$. We can repeat this process ¢
times, obtaining w = $zbobibe ... bs ... bg,—1bk,bg,+1 - - - bkg—1bkPko+1 - - - Dk Bzey$ and noting that
for each t, we have

1.t < ky
2. ky <kgfort' >t
3. by = by,

This process assigns to each b; that occurs in w for the first time a location k; where it occurs for

the second time, and distinct ¢’s are assigned distinct k;’s. Suppose there are T' distinct letters

{b:}. By §1 we cannot have k7 < T. But k7 > T is also impossible: since there are only 7' distinct

b:’s, we have that by~ has already occurred as by for t' < T, and so ky = T' is already “taken”.
We have reached a contradiction, so G must have more than 1 decoding.

O

Theorem 3.8. If a nontrivial graph G has a single valid traversal then there is a removable zg € G.

Proof. Suppose a nontrivial G has no removable nodes. A node z # $ in G is not removable if it
violates any item of def. 1:

1. z has multiple children
2. a parent of x points to a child of x
3. self-flow(z) > 0 and outflow(z) > 1

We observe immediately that if a — x — b and a — b then any decoding w of G must contain the
substrings axzb and ab, but there are at least two orders in which the two substrings can occur, so
G is not uniquely decodable.

Likewise, outflow(z) > 1 means that x appears in at least two distinct locations of a decoding
w, and self-flow(z) > 0 means that at any of these locations two or more consecutive z’s may occur;
this also precludes G from being uniquely decodable.

We claim that if 2 has 3 or more children, G cannot be uniquely decodable. Let z have children
a, b, and c. It may be that after the x — a edge is traversed, there is no way back to x, but this
still leaves at least two decodings of G: w = $azbfBrcyrac’$ and w = $azcyzbBrac’$.

The only scenario we have left to deal with is one where every z # $ in G has two children and
no self-loops, and this is handled by lemma 3.7.
This shows that if a nontrivial G has no removable nodes, it cannot be uniquely decodable, and
proves the theorem.
O

Corollary 3.9. If G is uniquely decodable then there is a sequence of nodes xg,x1,...,xT and a
sequence of graphs G = GO G ... GT+) = Gy such that x; is removable in GO and GU+1) =
P,,(GW).

Proof. If G = GO is uniquely decodable, then thm. 3.8 furnishes a removable zg in G(9). Theo-
rems 3.4 and 3.5 show that pruning a removable node is a traversal-preserving operation, ensuring

the unique decodability of G = P, (G (0)). This process may now be continued until 7 is pruned
and G(T*t1) = G4 is what remains. O

Theorem 3.10. If, for a graph G, there is a sequence of nodes xg,21,...,ZT and a sequence of
graphs G = GO GV ... GT+Y) = Gy such that z; is removable in GO and GV = Pwt(G(t))
then G has a single valid traversal.

Proof. Let wriq = $$ and let wy = P, (wyyq) for t =T, T —1,...,0 (with the qualification made
in remark 3.6). It is straightforward to verify that for 0 <t < T+ 1, w; is a decoding of G®. Since

G+ = Gg obviously only has 1 valid traversal and each P, is traversal-preserving, wy is the
unique decoding of G = G(©). O

The preceding results give a simple algorithm for determining whether G is uniquely decodable:
iteratively prune the removable nodes of G' until we are left with Gg or a non-trivial graph with
no removable nodes. In the former case, the answer is affirmative; in the latter, it is negative.
Thm. 3.10 gives a simple way to construct the decoding of G.

3.4 Characterization as a regular language

The last section characterizes the uniquely decodable w € $¥*$: G = G(w) is uniquely de-
codable iff there is a “pruning” sequence of nodes zg,z1,...,zr and a sequence of graphs G =
GO,GM,...,GT+) = Gg such that z; is removable in G® and GV = P, (G®). Let Lypiq C
$2X*$ denote the set of uniquely decodable strings. The next result shows that Lyniq is a rather
well-behaved set:

Theorem 3.11. Lyuiq is a regular language.

Proof. It follows from (2) and (3) that L, the set of all w € $£*$ with a removable node z, is a
regular language:

_ (1) (2)
Lw - U La,m,b U U LA,Z‘,IJ ?
a,beXz ACEgbeY

since it is a finite union of regular languages. Therefore there is a deterministic finite state automa-
ton M, that accepts L. Now M, is trivially converted into a finite state transducer 7T,, which
deletes the letter z from w: every state transition (g,a # x) — ¢’ in M, becomes (¢,a) — (¢’,a) in
Ty, and (¢,z) — ¢’ in M, becomes (¢, z) — (¢',¢) in T,

Suppose G = G(w) is uniquely decodable and let a given z¢, z1,...,Zx be a pruning sequence
for G, with w*®) as the unique decoding of G*). Let T, be the concatenation of the transducers
T;,:

T{wk}(w) = Tl-KTxK71 . Txo (w) = $$,
which is well defined on w since the application of each T, produces a string with a removable
node zg1. It is now straightforward to convert 77, into the FSA My, , which accepts precisely
the strings w with a pruning sequence zg, z1,...,Zx. Observe that since the alphabet size s = |3
is finite, so is the number of possible pruning sequences (it is bounded by N = Zf:o (Sf—'t)') Letting
M be the finite union over all the My, y’s, we obtain an FSA which accepts Luniq-
O

3.5 Extension to higher n-grams

All of our discussion up to now has dealt with the bigram embedding. Now we show that the results
readily generalize to higher n-grams.
Define the n-gram embedding ¢, : $""12*$ — N*" by

[¢n(w)]iyiy...i, = [the number of times the substring oy, 0y, . .., occurs in w). (4)

Let X! = (X')™ be the set of all ordered n-tuples of letters in X'. It is clear that any string
w € $" 13*$ can be written as a string Q over (3!)*, by sliding a window of length n left-to-right
across w and letting the contents of the window at time ¢ be the tth “character” of (2. However, not
every string Q over (3/,)* can be interpreted as a string w € $" 13*$: we need adjacent “characters”

to overlap by (n—1) letters. Formally, if Q@ = wiws . ..wr, adjacent characters wy = (04,045, ---,0i,)
and wy1 = (05,04,,...,0j,) must satisfy
Oj, = 04y, for 1<k <n—1 (5)
(2 must also satisfy the obvious boundary conditions: w; = ($,$,...,$,0) and w; = (04,,04,,...,0i, ;,9$)).

We call such 2 valid strings over (X,)*. Now all questions about n-gram embeddings of w € $"~1%*$
have been reduced to questions about bigram embeddings of valid Q € (X!)*, and all of our previous
results apply.

Perhaps one of them is worth stating as a theorem:

Theorem 3.12. Let L. be the set of all uniquely decodable strings w € $" 1X*$ under the

uniq
(n)

n-gram embedding ¢,. Then Ly s a regular language.

Proof. Theorem 3.11 shows that Auniq, the set of all valid, uniquely decodable @ € (¥)* is a
regular language. Let M, be a deterministic finite state automaton which accepts Ayniq- But

now it is a simple matter to convert M, into M’', an automaton which accepts Ll(l?iq. Let M’
be a deterministic FSA with the same state space as My (plus an extra state to consume all the
leading $’s). For every deterministic transition (¢,w) — ¢’ in My, with w = (04,0iy,--.,05,), let
M’ have the deterministic transition (g,0;,) — ¢'. The requirement that Q be valid, expressed by

(5), ensures that M and M’ perform identical tasks. O

4 Conclusion

We have characterized those strings that are uniquely decodable under the n-gram embedding,
showing in particular that for a fixed n and alphabet ¥, they form a regular language. This may
be viewed as a step in the direction of tackling the problems outlined in the Introduction.

Several immediate questions are left unanswered:
1(171l1)iq invariant? That is, for which FSTs M, does

M (L(n)) C L™ hold? What about M (L) C L for some general fixed regular language
L?

1. Which finite state transducers leave L

uniq uniq

) C Lfgl)iq — i.e., the transducers that leave

2. Let Myniq be the set of FSTs M such that M(L(n)

uniq
Lgfl)iq invatiant. Each such M induces an operator T, on the embedded n-grams & = ¢, (w),

defined in (4). What interesting connections can we make between the transducer M and
the semimodule operator 13,7 We might tentatively conjecture that for a fixed alphabet
¥ = {o1,...,05} and a given transducer there exists an n-gram embedding such that the
transduction corresponds to a “nice” (e.g., linear) operator on the embedded elements £ € N°"

3. Given a regular language L in some description (regular expression, an automaton), what
does ¢(L) = Z C NX look like? Can a result similar in spirit to Parikh’s Theorem ([2], p.
127) be obtained? In particular, what does ¢(Luniq) look like?? If ¢(L) = Z C NX, then
which families of (linear) operators on NX leave Z invariant?

We intend to investigate these in the near future.

Acknowledgements

I would like to thank Anupam Gupta, Alex Kontorovich, John Lafferty, and Yoram Singer for
helpful and insightful discussions.

References

[1] D. Angluin. On the complexity of minimum inference of regular sets. Information and Control,
39:337-350, 1978.

[2] H. Lewis and C. Papadimitriou. Elements of the Theory of Computation. Prentice Hall, Inc.,
1981.

[3] L. Pitt and M. Warmuth. The minimum consistent dfa problem cannot be approximated within
any polynomial. JACM, 40(1), 1993.

31t seems we have found a simple answer to this question and intend to address it in future work.

