General k-Anonymization is Hard

Adam Meyerson ! Ryan Williams?

March 2003
CMU-CS-03-113

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

The strategy of k-anonymization, proposed by Sweeney [7] is a technique for protecting the
privacy of individuals while allowing large-scale data mining. An optimum anonymization is
one which obtains the required privacy protection (insuring that every individual is a member
of a group of k identical individuals) while minimizing the amount of data hidden from the
data miner. We prove that finding such an optimum anonymization is NP-Hard.

! Aladdin Project, Carnegie-Mellon University. Research supported by NSF grant CCR-0122581. Email:
adam@cs.cmu.edu
2Computer Science Department, Carnegie Mellon University. Email: ryanw@cs . cmu.edu

Keywords: privacy, anonymization, NP-Hardness, complexity, data mining

1 Introduction

Data privacy and data mining, two long-studied and celebrated areas, are quite often at odds
with each other. A data miner wishes to have access to large amounts of personal data, in
the hopes that he/she may spot unusual trends or correlations. For example, in bioterrorism
surveillance, one would like to mine recent medical records of local hospitals, attempting to find
patterns in unusual symptoms, locations of patients with these symptoms, and temporal trends
(e.g. increases in such patients). [7]. However the direct release and study of such data clearly
violates the privacy of individuals. Ideally, we’d like the best of both worlds: to infer overall
trends without inferring vital information about particulars. Recently, myriad approaches have
been suggested and implemented (cf. [1, 2]), with few complexity-theoretic results specifically
geared towards this cause. One example is Kleinberg, Papadimitriou, and Raghavan [3], who
show that the problem of auditing Boolean attributes is NP-hard in general.

Here we focus on the strategy of k-anonymization, first proposed by Sweeney [7]. Let
k > 1 be a constant integer. Suppose we want to release a table of private data to the public,
and we have the capability to suppress or “generalize” various entries in the table. If this
suppression /generalization is done in such a way that every record is now indistinguishable
from k — 1 other records that appear, we say that the new modified table is k-anonymized. For
example, take the following short relation, given as a possible response to the query “who had
an x-ray at this hospital yesterday?”

first last | age | race
Harry Stone | 34 | Afr-Am
John Reyser | 36 Cauc
Beatrice | Stone | 47 | Afr-Am
John | Ramos | 22 Hisp

Suppose our task is to 2-anonymize this data before its release. If our database has been
augmented to permit the proper values for attributes, then one possible 2-anonymization of the
table would be:

first | last | age race
* Stone | 30-50 | Afr-Am
John | Rx | 20-40 | Person
* Stone | 30-50 | Afr-Am
John | Rx | 20-40 | Person

Performing k-anonymization provides a way to protect the privacy of individuals while
maintaining data integrity. We consider the complexity of rendering relations of private records
k-anonymous, while still maximizing the amount of information released to the public.

We will prove that two variations on the decision version of this problem are N P-hard when
degree of the relation, m, is independent of the number of tuples, n. When m < log(n) (the
situation usually observed in practice), an exact polynomial time algorithm has been proposed
by Sweeney [4].

2 Notation

We will consider degree m tuples in the database to be m-dimensional vectors v; drawn from ¥,
where ¥ is an alphabet of possible values for the attributes. In general, 3 could vary for each
attribute; for simplicity, we consider it to be universal. So the databases under consideration

are formally represented as a set V' C 3™. Throughout the paper, we use the notation n = |V/|,
and define v[j] to be the jth coordinate of v € V.

We now define the kind of anonymity considered in this paper. Let ¢t : V — [E [J{*}]™. If
forallv € V and j = 1,...,m it is the case that t(v)[j] € {v[j], *}, we call t an suppressor.
Intuitively speaking, a suppressor defines an anonymization: every vector v € V has a corre-
sponding anonymized vector t(v) = v’ in an anonymized set V' C [(J{*}]™. The coordinates
of this corresponding vector are always identical to the coordinates of v;, except that some
coordinates may be replaced by the new “anonymous” character *.

The resulting ¢(V') from a suppressor ¢ is defined to be k-anonymous if and only if for all
v; € V there exist at least k distinct coordinates iy, ig, ...i;, such that t(v;,) = t(vi,) = ... =
t(v;,) = t(v;) for each of these coordinates. In other words, any anonymized vector is a member
of a set of k identical anonymized vectors. We will call such a set of vectors a k-group.

3 Anonymizing entire attributes is hard

Consider a relation with personal attributes such as first name, d.o.b., and diagnosis. We’d
like to make public as many of these attributes as possible for the purpose of queries, but
still provide k-anonymity in the database by preventing key identifying attributes from being
accessed. We will show that achieving this is N P-hard to do. The following is a formalization
of the anonymizing attribute problem. We will say that attribute i is suppressed by t if for all
veV,v[j] = =*.

k-ANONYMITY ON ATTRIBUTES: Given V and an non-negative integer L, does there exist
a suppressor ¢ such that ¢(V') is k-anonymous, and at most L attributes are suppressed by ¢7?

Theorem 1 For k > 2, k-ANONYMITY ON ATTRIBUTES s NP-hard, for any ¥ such that
5| > 2.

The proof is a reduction from k-dimensional perfect matching, a famous N P-hard problem.
We include its definition here for completeness. Recall that a k-hypergraph is a hypergraph
where each edge contains exactly k£ vertices.

k-DIMENSIONAL MATCHING: Given a k-hypergraph with n vertices and m hyperedges, does
there exist a subset of 7 hyperedges such that each vertex is contained in exactly one hyperedge?

We will just give a proof sketch, as it quite similar to the proof in the following section,
except we do not need a large alphabet. Let H be an k-hypergraph with vertices vy,... , v,
and edges e, ... ,e,. We will build a database of n vectors Vi,...,V,, € ¥™ where each v;
represents a vertex in H, such that there exists a suppressor that k-anonymizes the database
(suppressing m — n/k attributes) if and only if H has a perfect matching.

Since |X| > 2, there are two symbols by # by in X. We set V;[j] = by if v; € e;, otherwise
Vilj] = bo. Thus the suppression of an attribute is equivalent to the removal of a hyperedge
in H. Observing that for every j there are exactly k vectors V; such that V[j] = by, it follows
that if attribute j is not suppressed in a k-anonymization, then one k-group consists exactly of
these k vectors with Vj[j] = b;. Two attributes ¢ and j are not suppressed in a k-anonymization
if and only if e; N e; = @ (this is shown carefully in the next section). This implies at least
m — n/k attributes must be suppressed in any k-anonymization, otherwise two edges share an
vertex. If exactly m —n/k attributes are suppressed in a k-anonymization, then n/k attributes
remain, each representing a hyperedge disjoint from the others that reamin- i.e. H has a

perfect matching. If H has a perfect matching, then by suppressing those m — n/k attributes
not in this matching, each remaining attribute j has k vectors (with *’s) that share exactly the
same components (they have a by exactly in component j, and by or * elsewhere). This is a
k-anonymization.

4 Anonymizing entries is hard

We shift to a slightly less restrictive version of the above problem, where it is possible to
suppress individual entries, without having to suppress entire attributes. This problem has
been explored extensively by Sweeney et al. [5, 6, 7].

In this version of k-anonymity, the quality of our solution will be measured by the total
number of coordinates in all vectors of V' which contain the character *. This measure will
be between 0 (best) and nm (worst). Our goal is to minimize the number of * coordinates.
Unfortunately, this is difficult:

Theorem 2 For k > 3, k-ANONYMITY ON ENTRIES is NP-hard, when |X| > n.

The proof is again by reduction from k-dimensional perfect matching. Suppose we could
solve the 3-anonymity problem in polynomial time in the size of the inputs. We will describe
a polynomial-time algorithm for 3-dimensional perfect matching. The argument for arbitrary
k > 3 holds via a straightforward generalization.

We define the alphabet g = {0,1,...,n} (which may be thought of as choosing n distinct
symbols from the original ¥ and relabeling them). For each node 7 in the hypergraph, we will
define an m-dimensional vector v; (here m is once again the number of edges in the hypergraph).
Coordinate j of vector 7 has value v;[j| = i if node i is not on edge j, and value v;[j] = 0 if node
i is on edge j. We have now constructed a set V drawn from the alphabet X7, with |V| = n.

Suppose we optimally solve 3-anonymity on these vectors V. We have produced a set of
vectors V'. We claim that the number of *’s used to produce V' is at most n(m — 1) if there
exists a perfect 3-dimensional matching in the original graph, and otherwise larger.

First, suppose there exists a perfect 3-dimensional matching. Let M (7) represent the unique
edge from this matching which contains node i. We define v{[M ()] = 0 and v.[j] = * for each
J # M(7). Since i is on edge M (i), v;[M ()] = 0 must have held. Now consider any anonymized
vector vj. There are three nodes on edge M (i) and each of these nodes has identical anomyized
vectors. Thus there exists a set of 3 vectors which are identical to v} (including v} itself).
This shows that our solution is feasible. Since every anonymized vector has exactly one non-*
coordinate, the value of our solution is exactly n(m — 1). The optimum 3-anonymized solution
will have at most this many * terms (actually the above construction is optimum).

Now suppose that no perfect 3-dimensional matching exists. Consider any 3-anonymous
solution to the vector problem. Can there exist a vector with two non-* coordinates in its
anonymized form? Consider some such vector v;. There must exist two other identical vectors.
Since the non-* coordinates have the same values as in the original v; vectors, we must have
three v; vectors which are identical in two coordinates. Any two v; vectors can match only in
coordinates which are 0. The coordinate j is zero only if node 7 is on edge j. It follows that
we have three nodes which are on each of two edges. But this means two edges are identical,
which could not occur in the original graph. Thus we have a contradiction and every vector
has at most one non-* coordinate in its anonymized form.

If we are to obtain a solution with at most n(m — 1) terms that are * we must have
every vector with exactly one non-* coordinate. If this is the case, we will construct a perfect
matching. For each i we consider the non-* coordinate in v]. This coordinate must have value
zero (otherwise there can be no identical vectors). If this is coordinate j, we will add edge j to
our matching. Clearly we produce a set of edges such that each node is on at least one edge.
How many edges are in our set? Since there are 3 identical vectors for every solution vector,
at least three vectors produce any given edge in our set. It follows that there are at most 3
edges. Since we need 7 edges at minimum to cover every node, there must be exactly 3 edges,
which comprise a perfect matching. This is a contradiction, so it follows that there exists a
3-dimensional perfect matching if and only if the optimum 3-anonymous solution has at most
n(m — 1) *’s. This completes the proof of reduction. O

5 Acknowledgements

Thanks to Manuel Blum, Latanya Sweeney, and Maverick Woo for discussions on the problem.

References

[1] R. Agrawal and S. Ramakrishnan. Privacy-preserving data mining. Proc. of ACM Interna-
tional Conference on Management of Data, pp. 439-450, 2000. R. Agrawal and R. Srikant.
Privacy Preserving Data Mining.

[2] D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy preserving
data mining algorithms. Proc. of ACM Symposium on Principles of Database Systems,
2001. http://citeseer.nj.nec.com/agrawalOldesign.html

[3] J. Kleinberg, C. Papadimitriou, P. Raghavan. Auditing Boolean Attributes.
Proc. of ACM Symposium on Principles of Database Systems, 86-91, 2000.
http://citeseer.nj.nec.com/445207 .html.

[4] L. Sweeney. Optimal anonymity using k-similar, a new clustering algorithm. Under review
for publication, 2003.

[6] L. Sweeney. k-anonymity: a model for protecting privacy. International Journal on Uncer-
tainty, Fuzziness and Knowledge-based Systems, 10 (5), 557-570, 2002.

[6] L. Sweeney. Achieving k-anonymity privacy protection using generalization and suppres-
ston. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10
(5), 571-588, 2002.

[7] L. Sweeney. Guaranteeing anonymity when sharing medical data, the datafly system. Pro-
ceedings of Journal of the American Medical Informatics Association. Hanley and Belfus,
Inc., 1997.

