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Abstract

Hybrid dynamic systems include both continuous and discrete state variables. Prop-
erties of hybrid systems, which have an infinite state space, can often be verified us-
ing ordinary model checking together with a finite-state abstraction. Model checking
can be inconclusive, however, in which case the abstraction must be refined. This
paper presents a new procedure to perform this refinement operation for abstractions
of hybrid systems. Following an approach originally developed for finite-state sys-
tems [1, 2], the refinement procedure constructs a new abstraction that eliminates a
counterexample generated by the model checker. For hybrid systems, analysis of the
counterexample requires the computation of sets of reachable states in the continuous
state space. We show how such reachability computations with varying degrees of com-
plexity can be used to refine hybrid system abstractions efficiently. Examples illustrate
our counterexample-guided refinement procedure and experimental results for a pro-
totype implementation of the procedure indicate significant advantages over existing
methods.

Keywords: Formal Verification, Abstraction, Model Checking, Hybrid Systems,
Refinement, Counterexamples



1 Introduction

Hybrid systems are formal models that include both continuous and discrete state vari-
ables. With the increasing use of hybrid systems to design embedded controllers
for complex systems such as manufacturing processes, automobiles, and transporta-
tion networks, there is an urgent need for more powerful analysis tools, especially
for safety critical applications. Tools developed so far for the automated analysis of
hybrid systems are restricted to low-dimensional continuous dynamics [3]. The rea-
son for this limitation is the difficulty of representing and computing sets of reachable
states for continuous dynamic systems. Recent publications have proposed two gen-
eral approaches to deal with the complexity of hybrid system analysis, namely modular
analysis (e.g., [4, 5]) and abstraction (e.g., [6, 7, 8]). This paper focuses on the latter
approach.

Abstraction maps a given model into a less complex model that retains the behav-
iors of interest [6]. In the context of hybrid system verification, abstraction transforms
the inherently infinite state system into a finite-state model [7, 8]. Existing tools of-
ten do not take into account the specification itself when building an abstract model.
Rather, an abstract representation is constructed for the entire hybrid system using a
degree of detail which seems to be appropriate. If the abstraction is not suitable to
analyze the property, then the abstract model is globally refined [9].

As an alternative, we suggest a procedure that (a) starts from a coarse abstract
model and a safety property, (b) identifies parts of the hybrid system which potentially
violate the property, and (c) iteratively refines the abstract model until verification re-
veals whether or not the property in question is satisfied. A framework that follows
this general scheme of abstraction, refinement, and analysis, iscounterexample-guided
abstraction refinement (CEGAR)[1, 10, 2]: For a given system the initial abstraction
leads to a conservative model that is guaranteed to include all behaviors of the orig-
inal system. Model checking is then applied to the abstract model. If the property
is violated, the model checker produces acounterexampleas anexecution pathof the
abstract model for which the property is not true. If this counterexample corresponds
to a genuine behavior of the original system, then the property does not hold for the
original system. Otherwise, the information provided by the counterexample is then
used torefinethe abstract model, i.e., some detail is added to the abstract model in or-
der to obtain a more accurate, yet conservative, representation of the original model. In
particular, the refined model is constructed so as to exclude thespuriouscounterexam-
ple. The procedure of alternating between model checking and refinement is continued
until the property is confirmed or refuted.

This procedure has recently been applied successfully to finite-state systems in a
variety of areas, and in particular in the verification of digital circuits [1, 10]. Earlier
work based on the use of counterexamples includes the localization reduction in the
context of concurrent systems [2], and recent work has seen the application of the
technique to the verification of C programs [11, 12].

This paper extends counterexample-guided model refinement to hybrid systems,
which include both continuous and discrete state variables and thus have an infinite
state space. We provide effective means of coping with the difficulties of computing
reachable sets for hybrid systems. In particular, we employ reachable set computations
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with varying degrees of accuracy to refine hybrid system abstractions efficiently. This
flexibility cannot easily be achieved with other verification tools for hybrid systems.

The paper is structured as follows. Section 2 presents preliminaries on abstraction
and counterexample-guided refinement. In Section 3 we describe the CEGAR verifi-
cation approach that refines abstract models based on counterexamples. We introduce
hybrid systems in Section 4, and apply CEGAR to hybrid systems in Section 5. Section
6 summarizes the contributions of this paper.

2 Preliminaries

We introduce the notions of abstraction and counterexample-guided refinement for gen-
eral transition systems, defined as follows:

Definition 1 Transition System.A transition systemis a tripleTS = (S, S0, E) with a
(possibly infinite) state setS, an initial setS0 ⊆ S, and a set of transitionsE ⊆ S×S. �

A path of a transition system is a finite sequence(s0, s1, . . . , sm) with s0 ∈ S0,
eachsi ∈ S, and each pair of successive states(si, si+1) ∈ E.

Given two transition systemsA andC,A is said to be anabstract modelof C if the
following relation can be established.

Definition 2 Abstraction.A transition systemA = (Ŝ, Ŝ0, Ê) with a finite set of states
Ŝ is anabstract modelof a transition systemC = (S, S0, E), denotedA � C, if there
exists anabstraction functionα : S → Ŝ such that:

• the initial set isŜ0 = α(S0) = {ŝ0 | ∃s0 ∈ S0 : ŝ0 = α(s0)}, and

• Ê ⊇ α(E) = {(ŝ1, ŝ2) | ∃s1, s2 ∈ S : (s1, s2) ∈ E, ŝ1 = α(s1), ŝ2 = α(s2)}.�

Note: In general, it is possible—and sometimes desirable—to consider an abstraction
relationα rather than a mere abstraction function. The work presented here can easily
be adapted to this more general case, however for simplicity we shall stick to the above
definition.

Sometimes the termsimulationis used in the literature to describe the abstraction
relation. In contrast to the definitions of abstraction in [1, 10], Defn. 2 allowsA to
includespurious transitions, i.e., the set̂E may contain elements that do not correspond
to transitions inC. Spurious transitions arise in the construction of abstractions of
hybrid systems because in most cases sets of reachable states for continuous systems
cannot be represented and computed exactly [9].

Abstract models will be used to analyze properties of a given transition system.
Throughout the paper, we will the given systemC theconcrete system.

In order to construct a more detailed model from a given abstract model, we define
the following concept ofmodel refinement.

Definition 3 Refinement of Abstract Models.Given a concrete systemC = (S, S0, E)
and an abstract modelA = (Ŝ, Ŝ0, Ê) such thatC � A, with abstraction function
α : S → Ŝ, a modelA′ = (Ŝ′, Ŝ′0, Ê

′) is called arefined abstract model ofC with
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respect toA if there are two abstraction functionsα′ : S → Ŝ′ andα′′ : Ŝ′ → Ŝ, i.e.,
if C � A′ � A. �

Properties (or specifications) are verified for the concrete modelC using an abstract
modelA. In this paper we consider the verification of safety properties, defined as
follows.

Definition 4 Safety.Given a transition systemTS = (S, S0, E), let the setB ⊆ S\S0

specify a set ofbad states. We say thatTS is safe with respect toB, denoted by
TS |= AG¬B iff there is no path in the transition system from an initial state inS0 to
a bad state inB. Otherwise we sayTS is unsafe, denoted byTS |6= AG¬B. �

Definition 5 Counterexamples.A pathσ = (s0, s1, . . . , sm) of TS = (S, S0, E) with
sm ∈ B is called acounterexampleof TS with respect to the safety propertyTS |=
AG¬B. Given a concrete transition systemC, an abstract transition systemA, and
a counterexampleσ in C, we say that̂σ = (ŝ0, ŝ1, ŝ2, . . . , ŝm) is thecorresponding
abstract counterexampleof the abstract systemA, if ŝi = α(si) holds for all i ∈
{0, . . . ,m}. Given a counterexamplêσ of A, σ is called acorresponding concrete
counterexampleif for all i, ŝi = α(si) and (si, si+1) ∈ E. If a counterexample
σ̂ of A has no corresponding concrete counterexample forC, σ̂ is called aspurious
counterexample. �

Lemma 1 Given a concrete modelC = (S, S0, E), and an abstract modelA =
(Ŝ, Ŝ0, Ê) of C with an abstraction functionα, letB ⊆ S \ S0, and choosêB ⊂ Ŝ

such thatB̂ ⊇ α(B) = {b̂ | ∃ b ∈ B : b̂ = α(b)}. If A |= AG¬B̂, thenC |= AG¬B.
�

If A |= AG¬B̂ can be verified, it can immediately be concluded from Lemma 1
(i.e., without applying verification to the concrete systemC) thatC |= AG¬B. On the
other hand, the converse of Lemma 1 with respect to theAG-property does not hold.
If the verification ofA revealsA |6= AG¬B̂, then we cannot conclude thatC is not
safe with respect toB, since the counterexample forA may be spurious. We call a
method that checks whether or not a counterexample is spurious avalidation method.
If the validation method discovers that the counterexample is spurious, then the coun-
terexample is used to refineA. We now introduce a scheme forcounterexample-guided
abstraction refinement (CEGAR)to verify safety properties for a given concrete model.
The basic principle is to repeat the following sequence of steps until the property is
verified or refuted [1]. The starting point is a concrete modelC and an abstract model
A (we propose in Sec. 5.1 a specific way to obtain an initial abstract model for hybrid
systems). The first step is then to analyzeA |= AG¬B̂ by model checking. If this
property holds it can immediately be concluded from Lemma 1 thatC is safe, too.
Otherwise a counterexample is obtained, and we must verify whether it has a corre-
sponding real counterexample inC. If so, then the safety property does not hold for
C. Otherwise, i.e., when the counterexample is spurious, the counterexample is used
to refine the modelA. That is, a new and more detailed modelA′ with C � A′ � A is
produced, which excludes the spurious counterexample.
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The procedure of model checking, validation of the counterexample, and refine-
ment of the abstract model is repeated until the safety property is proved or refuted for
C. The pseudo-code in Fig. 1 summarizes this procedure:

ALGORITHM: Counterexample-Guided Abstraction Refinement: CEGAR

INPUT: Concrete modelC and a set of bad statesB
OUTPUT: B is (or is not) reachable

Generate initial abstract modelA (bad states are called̂B)
Generate counterexampleσ̂ (if one exists) by model checkingA wrt B̂
WHILE σ̂ existsDO

Validation ofσ̂
IF σ̂ validatedTHENterminate with “B reachable”
ELSE

Generate refined modelA′ using counterexamplêσ
A := A′

Generate next̂σ by model checkingA wrt B̂
ENDIF

ENDDO
Terminate with “B not reachable”

Figure 1: CEGAR: Scheme for verifying/falsifyingC |= AG¬B based on
counterexample-guided abstraction refinement

The crucial steps in the CEGAR procedure aremodel checking, validation, and
refinement. With respect to model checking, standard algorithms forAG-properties
can be used [13].

For validating a counterexample, the important ingredient is the computation of
successors of states. We define an operatorsucc that determines the successor states
from a given set̃S ⊆ S by succ(S̃) = {s ∈ S | ∃s̃ ∈ S̃ : (s̃, s) ∈ E}. This set may
not be exactly computable for a given concrete modelC, i.e. only over-approximations
succ(S̃) ⊃ succ(S̃) may be available. We first assume thatsucc(S̃) is computable.

A counterexamplêσ = (ŝ0, . . . , ŝm) of A is then validated as follows: LetSk =
α−1(ŝk), k ∈ {0, . . . ,m} denote the sets of concrete states corresponding to an ele-
ment ofσ̂. The reachable parts of these sets are recursively defined bySreach

0 := S0,
Sreach
k := succ(Sreach

k−1 ) ∩ Sk, k ∈ {1, . . . ,m}. The counterexample is spurious iff
Sreach
k = ∅ for at least onek, and we saythe counterexample is refuted. Otherwise, the

counterexample isvalidated, andB is reachable.
If the counterexample is refuted withSreach

k = ∅, the modelA is refined into a
new finite abstract modelA′ = (Ŝ′, Ŝ′0, Ê

′) (cf. Defn. 3). The refined model should
take into account that there are no concrete transitions from states inSreach

k−1 to states

in Sk. We therefore require that the setÊ′ of A′ not contain transitions in the set
{(α′(s1), α′(s2)) | ∃ s1 ∈ Sreach

k−1 , s2 ∈ Sk}. Thus, successive refined models will
exclude previously explored counterexamples. A method for the refinement of abstract
models for infinite-state systems will be presented in the next section.
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3 Refinement of Abstract Models

This section presents a specific method for refining an abstract modelA. The main
idea is to directly use the information obtained from the validation procedure to refine
certain abstract states. Assume that the abstract model includes a transition betweenŝ1

and ŝ2, while the validation of the counterexample has revealed that only a subset of
concrete states inS2 := α−1(ŝ2) is reachable from concrete states inS1 := α−1(ŝ1).
In this case we refineA by splitting ŝ2 into two new states. The first one, denoted by
ŝreach

2 , represents the reachable subset ofS2, given bySreach
2 := succ(S1) ∩ S2. The

second one, denoted bŷscomp
2 , represents the complement of the reachable part, given

by Scomp
2 := S2 \ Sreach

2 . In addition, the abstraction function that maps concrete
states to abstract ones also has to be refined.

Definition 6 State Splitting.Consider a concrete modelC = (S, S0, E) and an ab-
stract modelA = (Ŝ, Ŝ0, Ê) with an abstraction functionα : S → Ŝ. Let (ŝ1, ŝ2) ∈ Ê
be a transition of a counterexampleσ̂. Then, we defineρsplit to be a function that
mapsA, α, and(ŝ1, ŝ2) ∈ Ê onto both an abstract modelA′ = (Ŝ′, Ŝ′0, Ê

′) and an
abstraction functionα′ : S → Ŝ′, i.e., (A′, α′) = ρsplit(A,α, (ŝ1, ŝ2)), defined as
follows:

• Ŝ′ = (Ŝ \ {ŝ2}) ∪ {ŝreach
2 , ŝcomp

2 }

• α′(s) =

 α(s) if s 6∈ S2

ŝreach
2 if s ∈ Sreach

2

ŝcomp
2 if s ∈ Scomp

2

• Ŝ′0 = {ŝ′ ∈ Ŝ′|α′′(ŝ′) ∈ Ŝ0}

• Ê′ = {(ŝ′1, ŝ′2) ∈ Ŝ′ × Ŝ′|∃ŝ1, ŝ2 ∈ Ŝ : (ŝ1, ŝ2) ∈ Ê ∧ ŝ1 = α′′(ŝ′1) ∧ ŝ2 =
α′′(ŝ′2)} \ {(ŝ1, ŝ

comp
2 )}

whereα′′ : Ŝ′ → Ŝ maps ŝ′ to itself if ŝ′ 6∈ {ŝreach
2 , ŝcomp

2 }, and to ŝ2

otherwise. �

Lemma 2 Let A = (Ŝ, Ŝ0, Ê) be an abstract model ofC = (S, S0, E) with abstrac-
tion functionα : S → Ŝ. For a given transition(ŝ1, ŝ2) ∈ Ê, assume thatSreach

2 6= ∅.
Then(A′, α′) := ρsplit(A,α, (ŝ1, ŝ2)) is a refinement ofA, i.e.,A � A′ � C. �

As a next step, we consider the case where the set of successors ofS1 and the set
S2 are disjoint. In this case, we can simply omit the corresponding abstract transition.

Definition 7 Transition Purging. The functionρpurge maps an abstract modelA =
(Ŝ, Ŝ0, Ê), an abstraction functionα : S → Ŝ and a transition(ŝ1, ŝ2) ∈ Ê to A′ =
(Ŝ, Ŝ0, Ê

′) with Ê′ = Ê \ {(ŝ1, ŝ2)}. �
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Lemma 3 Let A = (Ŝ, Ŝ0, Ê) be an abstract model ofC = (S, S0, E) with the ab-
straction functionα : S → Ŝ. For a given transition(ŝ1, ŝ2) ∈ Ê, assume that
Sreach

2 = ∅. ThenA′ := ρpurge(A,α, (ŝ1, ŝ2)) is a refinement ofA, i.e.,A � A′ �
C. �

Based on these results, we now present a more specific formulation of the CEGAR

algorithm in Fig. 2, called INFINITE-STATE-CEGAR, which uses the functionsρsplit

andρpurge for refinement.

ALGORITHM: INFINITE-STATE-CEGAR

INPUT: Concrete modelC and a set of bad statesB
OUTPUT: B is (or is not) reachable

Generate initial abstract modelA and abstraction functionα
B̂ := α(B)
Generate counterexampleσ̂ = (ŝ0, . . . , ŝm) by model checking ofA wrt B̂
Sreach

0 := α−1(ŝ0)
WHILEσ̂ existsDO

// validation of counterexample
k := 0
WHILESreach

k 6= ∅ ANDk < m DO
k := k + 1
Sreach
k := succ(Sreach

k−1 ) ∩ α−1(ŝk)
ENDDO
// if counterexample is validated, then terminate, else refine
IF Sreach

k ∩B 6= ∅ THENterminate with “B reachable”
ELSE

FORl = 1, . . . , k
// split abstract statêsl into two: one that corresponds
// to Sreach

l and one that corresponds toα−1(ŝl) \ Sreach
l

IF Sreach
l 6= α−1(ŝl)

THEN(A,α) := ρsplit(A,α, (ŝl−1, ŝl))
ENDIF

ENDFOR
// remove spurious transition betweenŝk−1 andŝk
A := ρpurge(A,α, (ŝk−1, ŝk))
Generatêσ by model checking ofA wrt B̂

ENDIF
ENDDO
Terminate with “B not reachable”

Figure 2: INFINITE-STATE-CEGAR.

Correctness of the algorithm is implied by the following lemma.1 Note that termi-
nation of the algorithm cannot be guaranteed as the number of states in the concrete

1The proofs of all lemmas in the paper can be found in the appendix.
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model may be infinite, and a finite abstract model to verify (or disprove) the given
property may not exist [14].

Lemma 4 If the algorithm terminates with “B reachable”, thenC |6= AG¬B, and if
the algorithm terminates with “B not reachable”, thenC |= AG¬B. �

The proposed procedure of validating counterexamples and refining abstract mod-
els is based on the computation of successor states. Alternatively, one could formulate
a similar algorithm that uses sets of predecessors, or even a combination of both as
presented in [1] and [10].

The INFINITE-STATE-CEGAR algorithm in Fig. 2 is based on the assumption that
sets of successor states are exactly computable. Unfortunately, this rarely occurs in
practice for hybrid systems, and one must settle for anover-approximationsucc to the
successor functionsucc. In this case, the counterexample validation step may become
overly conservative, in that the algorithm may fail to refute a spurious counterexample.2

On the other hand, we have:

Lemma 5 If the INFINITE-STATE-CEGARalgorithm using over-approximations in com-
puting successor states terminates with “B not reachable”, thenC |= AG¬B. �

3.1 Example

Let us borrow Hofstadter’s “MU-puzzle”[15] to illustrate the salient issues at hand.
The MIU-system is a simple rewrite system over alphabetΣ = {M, I,U}, with

initial string MI, and production rules

1. xI −→ xIU

2. Mx −→ Mxx

3. xIIIy −→ xUy

4. xUUy −→ xy

wherex, y ∈ Σ∗ are arbitrary finite strings, and string concatenation is denoted as
simple juxtaposition. For example, from the initial stringMI, one can derive the new
stringMIU through an application of Rule 1.

The MU-puzzle asks whether this rewrite system can ever derive the stringMU.
We model this as a safety property over an infinite transition systemC = (S, S0, E),

as follows. LetS = Σ∗, S0 = {MI}, and

E = {(xI, xIU), (Mx,Mxx), (xIIIy, xUy), (xUUy, xy) | x, y ∈ Σ∗} .

Let B = {MU}. It is clear thatC � AG¬B if and only if the MU-puzzle cannot be
solved, in other words if the stringMU cannot be derived in the MIU-system.

The abstract models ofC that we shall consider ‘lump together’ states (i.e.,Σ-
strings) ofS. The first step is to choose an initial abstract model. The only obligatory

2We discuss this point in greater detail in the next section.
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requirement is that this model should separate the initial state(s) from the bad state(s).
An additional desirable property of the initial partition is that it should also be reason-
ably coarse, so as to minimize the number of abstract states and correspondingly allow
for efficient model checking.

Let us first introduce some auxiliary definitions. Forx ∈ Σ∗, let ]Ix represent the
number of times the symbolI appears inx, modulo 3. Next, forj = 0, 1, 2, letS≡j =
{s ∈ S | ]Is = j}. Our initial abstract model isA1 = ({S≡1, S≡0,2}, {S≡1}, E1),
whereS≡0,2 = S≡0 ∪ S≡2 and the transition relationE1 is depicted below:

//
�� ���� ��S≡1

,,�� �� ���� ��S≡0,2
��

kk .

The abstraction functionα1 : S → {S≡1, S≡0,2} satisfiesα1(s) = S≡1 if ]Is = 1,
andα1(s) = S≡0,2 otherwise. Our set of abstract bad states isB1 = α1(B) =
α1({MU}) = {S≡0,2}.

We now observe thatA1 2 AG¬B1 since there is a path (consisting of a single
transition) from the initial stateS≡1 to the bad stateS≡0,2 ∈ B1. However, upon vali-
dation over the concrete systemC, we find that this counterexample is in fact spurious,
since the only one-step transitions from the single initial stateMI ∈ S0 areMI −→ MIU
(as per Rule 1) andMI −→ MII (Rule 2). In other words,MU ∈ B is not reachable in
one step.

We must now refine our initial abstraction in such a way as to exclude this coun-
terexample. As discussed above, we would normally base our next refinement on the
successor functionsucc. Unfortunately, not only issucc(S≡1) difficult to compute,
but in fact it turns out that iterating the refinement-counterexample-validation cycle
with succ would never terminate, and thus would never allow us to decide whether
C � AG¬B or not.

Fortunately, we are able to rely on an over-approximationsucc of the successor
states:succ(s) = {u ∈ S | ]Iu = ]Is ∨ ]Iu ≡ 2]Is}. Glancing at the production Rules
1–4, it is clear thatsucc is indeed an over-approximation ofsucc; for example, Rule 3
removes threeI’s from one term to the next (and therefore leaves the same number of
I’s modulo 3), whereas Rule 2 doubles the number ofI’s of a term.

Applying INFINITE-STATE-CEGAR leads to the second abstraction

A2 = ({S≡0, S≡1, S≡2}, {S≡1}, E2),

whereE2 is depicted below:

//
�� ���� ��S≡1

++�� �� ���� ��S≡2
��

kk

�� ���� ��S≡0
��

.

The abstraction functionα2 : S → {S≡0, S≡1, S≡2} takess ∈ S to S≡]Is.
We have split the previous abstract stateS≡0,2 into the two statesS≡0 and S≡2,
and updated our transition relation accordingly. Our set of abstract bad states is now
B2 = α2(B) = α2({MU}) = {S≡0}.

We observe straightaway thatA2 � AG¬B2. Lemma 5 then implies thatA �
AG¬B, and hence that the MIU-system cannot derive the stringMU.
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In general, there are no hard and fast rules to decide on an initial abstraction or a
suitable over-approximation to the successor function. As this example demonstrates,
these choices may require a good deal of insight. However, we show in Section 5 that
for hybrid systems one can find effective heuristics to derive candidate initial abstrac-
tions and successor functions.

4 Hybrid Systems

Hybrid systems are a class of infinite state systems that include both continuous and
discrete state variables. This section presents the syntax and semantics of hybrid au-
tomata, which are used to model hybrid systems. We will illustrate these definitions
with an example that models a simple car controller. The same example will be used in
later sections to illustrate the CEGAR approach to the verification of hybrid systems.

4.1 Definition of Hybrid Automata

Definition 8 Syntax of the Hybrid AutomatonHA. A hybrid automatonis a tuple
HA = (Z, z0, X, inv , X0, T, g, j, f) where

• Z is a finite set oflocationswith an initial location z0 ∈ Z.

• X ⊆ Rn is the continuous state space.

• inv : Z → 2X assigns to each locationz ∈ Z an invariant of the forminv(z) ⊆
X.

• X0 ⊆ X is the set of initial continuous states. The set of initial hybrid states of
HA is thus given by the set of states{z0} ×X0.

• T ⊆ Z × Z is the set ofdiscrete transitionsbetween locations.

• g : T → 2X assigns aguardsetg((z1, z2)) ⊆ X to (z1, z2) ∈ T .

• j : T ×X → 2X assigns to each pair(z1, z2) ∈ T andx ∈ g((z1, z2)) a jump
setj((z1, z2), x) ⊆ X.

• f : Z → (X → R
n) assigns to each locationz ∈ Z a continuous vector

field f(z). We use the notationfz for f(z). The evolution of the continuous
behavior in locationz is governed by the differential equationχ̇(t) = fz(χ(t)).
We assume that the differential equation has a unique solution for each initial
valueχ(0) ∈ inv(z). �

The semantics ofHA is defined by means of a trace transition system. Each state(z, x)
in the trace transition system corresponds to a continuous statexwithin locationz. Two
such states,(z1, x1) and(z2, x2), are connected by a transition in the trace transition
system if and only if state(z2, x2) can be reached from state(z1, x1) by a continuous
evolution within locationz1 followed by a discrete transition to locationz2.
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Definition 9 Semantics of the Hybrid AutomatonHA. The semantics of a hybrid au-
tomatonHA is atransition systemTTS = (S, S0, E) with:

• the set of allhybrid states(z, x) of HA,

S =
⋃
z∈Z

⋃
x∈inv(z)

{(z, x)} (1)

• the set ofinitial hybrid statesS0 = {z0} ×X0,

• transitions(s1, s2) ∈ E with s1 = (z1, x1), s2 = (z2, x2), iff there exists
(z1, z2) ∈ T and a trajectoryχ : [0, τ ]→ X for someτ ∈ R>0 such that:

– χ(0) = x1, χ(τ) ∈ g((z1, z2)),

– x2 ∈ j((z1, z2), χ(τ)),

– χ̇(t) = fz1(χ(t)) for t ∈ [0, τ ],

– χ(t) ∈ inv(z1) for t ∈ [0, τ ],

– x2 ∈ inv(z2).

A pathσ = (s0, s1, s2, . . . , sm) of TTS is called atraceof HA, and we refer toTTS
as thetrace transition systemof HA. �

Definition 10 Safety of a Hybrid Automaton.For a hybrid automatonHA with a se-
mantics as in Defn. 9, letzb ∈ Z \ {z0} denote anunsafelocation. HA is said to be
safewith respect tozb, denoted byTTS |= AG¬zb iff for all tracesσ there is nos ∈ σ
with s = (zb, x) for somex ∈ X. We writeTTS |6= AG¬zb otherwise. �

The extension of the analysis task to multiple initial locations and/or multiple un-
safe locations is straightforward but is omitted here for simplicity.

4.2 Example

As a motivating example, we consider a simple controller that steers a car along a
straight road. The car is assumed to drive at a constant speedr = 2, and its motion
is modeled by the distancex from the middle of the road (x = 0 corresponds to the
middle) and the heading angleγ (γ = 0 corresponds to moving straight ahead). Fig. 3
shows a scenario in which the car is initially on the road. The controller is able to
detect whether the car is on the left or right border (i.e.x ≤ −1, x ≥ 1). Whenever the
car enters the left border, the controller forces it to turn right until the car is back on
the road again. Then a left turn is initiated, and continued until the car is again going
straight ahead in the direction of the road, i.e. when the heading is aligned with the
road (γ = 0). A similar strategy is employed when the car enters the right border.

Fig. 4 shows a hybrid automaton model for this example. Besides the positionx and
the heading angleγ, the description includes an internal timerc, that the controller uses
to time the steering manoeuvres. The differential equations for these three continous
variables depend on the location: we haveẋ = −r · sin(γ) in all locations except
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Figure 3:i) Initially, the car drives on the road with heading angleγ. ii) If the controller
detects that the car has left the road, it corrects the heading by turning right to avoid the
canal. iii) Once the car is back on the road, a left turn is initiated until the car moves
straight again.

in canal . The derivative ofγ varies when a border is reached. On the border the
motion of the car describes an arc with the angular velocityγ̇ = −ω = −π/4 (or
ω = π/4 respectively), i.e., the arc is part of a circle with radiusr/ω. The timerc
measures the time period which the car spends on the border. In the correction modes
the timer decreases with double rate, i.e., the correction takes half the time as that
spent previously by the car on the border. Since the sign ofγ̇ is reversed when the
car moves back on the road, the angle has the value zero when the correction mode is
left (c = 0), i.e., the car then moves along the road. During this correction it might,
however, happen that the other border is reached, which means that the controller then
switches to the strategy of the corresponding location.

The three continuous variables are initialized to−1 ≤ x ≤ 1 (the car is on the
road),−π/4 ≤ γ ≤ π/4, and c = 0. It has to be verified for this set of initial
states whether the given control strategy guarantees that the unsafe locationin canal

(zb) is never reached. The following sections explain how this task can be solved by
abstraction-based and counterexample-guided verification.

left border

ẋ = −r sin(γ)

γ̇ = −ω
ċ = 1

−2 ≤ x ≤ 1

right border

ẋ = −r sin(γ)

γ̇ = ω

ċ = 1

x = −1

c := 0

x = −2
ẋ = 0

in canal

γ̇ = 0

ċ = 0

x = 1

c := 0

go ahead

γ̇ = 0

ẋ = −r sin(γ)

ċ = 0

−1 ≤ x ≤ 1

x = −1 x = 1

−1 ≤ x ≤ 1

γ ∈ [−π/4, π/4]

c = 0

x ≥ 1

correct left

ẋ = −r sin(γ)

γ̇ = ω

ċ = −2

−1 ≤ x ≤ 1

c ≥ 0

ẋ = −r sin(γ)

γ̇ = 0

ċ = 0

correct right

straight ahead ẋ = −r sin(γ)

γ̇ = −ω
ċ = −2

−1 ≤ x ≤ 1

c ≥ 0

x = −1
x = 1

c := 0 c := 0

c = 0 c = 0

Figure 4: Hybrid automaton that models the car steering example.
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5 Refinement of Abstractions for Hybrid Systems

This section applies the general concepts of Section 3 to hybrid systems. We present
specific solutions for the two crucial steps in INFINITE-STATE-CEGAR, validationand
refinement. The key to the validation step is the computation of successor states for
a given set of states in the trace transition system. Starting from the initial set, the
validation procedure computes the successors along the counterexample until either
the unsafe locationzb is reached or a transition is determined to be spurious. The
computation of sets of successor states is usually the most expensive step in hybrid
system verification. Successor sets can be computed and representedexactlyonly
for certain sub-classes of hybrid systems [16, 17]. However, several approaches to
over-approximate successor sets have been published, as e.g., successor set approxi-
mations by hyper-rectangles [18], general polyhedra [19], projections to lower dimen-
sional polyhedra [20], or ellipsoids [21]. Most of these approaches aim at providing an
efficient way to obtain conservative but tight approximations to sets of reachable states
for hybrid systems.

We note that the main difficulties introduced by hybrid systems—as opposed to
finite-state or discrete infinite-state systems such as the MIU-system—originate from
the fact that the transition relation for hybrid systems isimplicit, derived from differ-
ential equations which in general do not even have analytical solutions. Even when
analytical solutions are available, the representation and computation of successor sets
is non-trivial, making it difficult to manufacture reasonably tight over-approximations
to the successor function. Consequently, given an abstraction function, one has to
construct the transition relation by focusing on one transition at a time in the abstract
system. By contrast, in the finite-state and discrete infinite-state cases, one can usually
define the transition relation for an abstraction function globally—many transitions can
be constructed simultaneously.

The verification framework presented here can include different techniques to over-
approximate the set of successors. The idea of using different methods is motivated
by the trade-off between the accuracy and the computational complexity of different
methods. If, e.g., a faster but maybe less accurate technique is sufficient to refute a
counterexample, then there is no need to use a more computationally expensive method.

In the following, we first describe how an initial abstraction for a hybrid automaton
can be obtained, and then focus on the validation of counterexamples and refinement of
abstract models based on the use of different methods for computing successor states.

5.1 Abstraction of Hybrid Systems

For the first step of the INFINITE-STATE-CEGAR algorithm, the construction of an
initial abstraction, we introduce one abstract state for each location ofHA. This means
that two hybrid states(zi, xi) and(zj , xj) of TTS are mapped to the same abstract
state if and only ifzi = zj . This rule applies for all but the initial location, for which
we introduce one abstract stateŝ0 to represent all initial hybrid states ofTTS , and
another one (̂s′0) to represent the remaining hybrid states corresponding to the location
z0:

12



Definition 11 Initial Abstraction of Hybrid Systems.Given a hybrid automatonHA
with Z = {z0, z1, . . . , znz}, letS denote the set of hybrid states as defined in (1). For
i ∈ {0, 1, . . . , nz}, we define the abstraction functionα : S → Ŝ by:

α(zi, x) =

 ŝ0 if i = 0 ∧ x ∈ X0

ŝ′0 if i = 0 ∧ x /∈ X0

ŝi otherwise
(2)

and the initial abstract modelA = (Ŝ, Ŝ0, Ê) is defined by (i ∈ {0, 1, . . . , n}, j ∈
{0, 1, . . . , nz}):

• Ŝ = {ŝ′0, ŝ0, ŝ1, . . . , ŝn}

• Ŝ0 = {ŝ0}

• Ê = {(ŝi, ŝj)|(zi, zj) ∈ T} ∪ {(ŝ′0, ŝj)|(z0, zj) ∈ T} ∪ {(ŝi, ŝ′0)|(zi, z0) ∈ T}
�

The initial abstract model represents the discrete structure of the hybrid system
without regard to the continuous dynamics and guards. Given this definition, it has to
be shown thatA is indeed an abstract model of the underlying trace transition system,
i.e., that it fulfills Defn. 2:

Lemma 6 ForHA with trace transition systemTTS = (S, S0, E), letA = (Ŝ, Ŝ0, Ê)
denote the initial abstract model forTTS . Then,A � TTS . �

Example (cont.) Fig. 5 depicts the initial ab-
stract model of the hybrid system in Fig. 4. It is
a copy of the discrete part of the hybrid system,
except that the initial location is divided into
two parts: ŝ0 represents the states in location
go ahead with x ∈ [−1, 1], γ ∈ [−π/4, π/4]
andc = 0, andŝ′0 all other states ingo ahead .
The abstract stateŝs1 to ŝ6 represent the hy-
brid states of the other locations (left border ,
right border , correct left , correct right ,
straight ahead andin canal , respectively).�

^
0s

^
1ŝ

^
3s

ŝ
^

4s

ŝ
^

0s’
s 2

5

6

Fig 5. Initial abstract model of the
hybrid system depicted in Fig. 4

5.2 Over-approximation of the Sets of Successors

We now turn to the question of computing sets of successor states, as required in the
validation and refinement steps. The goal is to use different over-approximations with
different precisions and different computational requirements. For technical reasons it
is convenient to definesucc in terms of pairsS1, S2 ⊆ S, whereS1 is a set ofsource
statesandS2 is a set ofpotential successor states. succ(S1, S2) is a conservative
approximation of those sucessors of states inS1 that lie inS2.
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Definition 12 Over-approximation of successor states.Let HA be a hybrid automaton
with the trace transition systemTTS = (S, S0, E), and letA andα be defined as in
Defn. 11. For a transition(ŝ1, ŝ2) ∈ Ê of A, we callS1 := α−1(ŝ1) the set ofhybrid
source statesandS2 := α−1(ŝ2) the set ofpotential hybrid successor states. Then
succ : (2S × 2S) → 2S is anover-approximationof the hybrid successor states inS2

iff the following holds:

• succ(S1, S2) ⊆ S2,

• succ(S1, S2) ⊇ succ(S1) ∩ S2. �

A possible explicit realization of the operatorsucc with respect to a given setS2

combines the following steps: (a) By approximating the continuous evolution for all
states inS1, the reachable subset of the guard setg(t) is determined, wheret =
(z1, z2) ∈ T is the transition ofHA that corresponds to the transition(ŝ1, ŝ2) ∈ Ê
of A. Usually, this step is the most costly of the whole verification procedure; (b) the
jump functionj(t, x) is applied to all hybrid states(z1, x) which are in the reachable
subset ofg(t); (c) the image ofj(t, x) is intersected with the setS2 of potential hybrid
successor states.

i) ii)

Figure 6: All trajectories that originate inS1 leave the invariant whenc = 0, and none
of them comes close toS2. Figure (i) shows the result of the optimization method.
Figure (ii ) the result of the method that enclose the trajectories by polyhedra.

Example (cont.) Our prototype implementation uses two different methods,succcoarse

andsucctight , to over-approximate the set of successor states. Fig. 6 illustrates these
two methods for the discrete transition fromcorrect right to left border . For loca-
tion correct right we chooseS1 as subset of the planex = 1, andS2 as all states of
location left border that satisfy the invariant−2 ≤ x ≤ −1. Fig. 6 depictsS1 and
the face ofS2 that coincides with the guardx = −1. The transition is not spurious if
there exists a trajectory that starts inS1 and ends inS2 without leaving the invariant of
correct right (−1 ≤ x ≤ 1 ∧ c ≥ 0). Fig. 6 (i) depicts a number of trajectories that
start inS1, none of which reachS2.

The first methodsucccoarse poses the existence question for a trajectory between
S1 andS2 as an optimization problem. The distance between a trajectory andS2 is
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defined as the minimum distance between all points on the trajectory andS2. If the
global minimum over all trajectories that start inS1 is strictly greater than zero, then
no successor state ofS1 exists inS2. In this casesucccoarse(S1, S2) returns an empty
set. If the minimum distance is zero, at least one corresponding concrete path exists,
andsucccoarse(S1, S2) returns the entire setS2 as an over-approximation of the set of
successor states. The bold trajectory in Fig. 6 (i) is the optimal trajectory. Its distance
to S2 is greater than zero, and there is hence no trajectory fromS1 to S2.

The second methodsucctight computes polyhedra that enclose all trajectories that
originate inS1. This over-approximation with polyhedra is based on work presented
in [19]. The set of successor statessucctight(S1, S2) is then obtained by intersecting
the polyhedra withS2. Fig. 6 (ii) shows that this intersection is empty, i.e. there are no
successors ofS1 in S2. �

5.3 Validation and Refinement

The INFINITE-STATE-CEGAR algorithm makes a clear distinction between the val-
idation of a counterexample, and the refinement of the abstract model. For hybrid
systems, we propose a slightly different approach, in which the steps of validation and
refinement are interleaved. We assume to have a set of over-approximation techniques
succ1, . . . , succn that can (but not necessarily need to) establish a hierarchy of coarse
to tight approximations.

The proposed algorithm for the combined validation and refinement steps of a coun-
terexample is shown in Fig. 7. Letσ = (ŝ0, . . . , ŝm) denote a counterexample of the
abstract modelA. The algorithm consists of two nested loops. The outer loop corre-
sponds to checking each transition of the counterexample. The inner loop applies each
of the over-approximation techniques to the current transition of the counterexample,
and, depending on the result, one of the two refinement operations is executed: If an
over-approximation techniquesuccl reveals that the current transition is spurious, i.e.
Sreach
k = ∅, then the transition is removed from the abstract model byρpurge . When

a transition is removed, the set of behaviors ofA does not include the current coun-
terexample anymore, and thus the combined validation and refinement of the current
counterexample is completed.

If on the other hand,succl returns a non-empty setSkreach and this set is a true subset
of the states corresponding tôsk, the functionρsplit divides ŝk into two stateŝsreach

k

and ŝcomp
k (cf. Defn. 6). In this caseσ = (ŝ0, . . . , . . . , ŝk−1, ŝ

reach
k , ŝk+1 . . . , ŝm)

remains a counterexample of the refined model. Thus the algorithm continues with
the next transition(k + 1) until eitherSreach

k = ∅ or until the last transition of the
counterexample is validated.

There is some freedom in combining the steps of validation and refinement, i.e., the
scheme in Fig. 7 is just one possible implementation. One interesting alternative is to
apply the coarsest method for validation first to all transitions in the abstract counterex-
ample, or to apply state splitting (ρsplit ) only based on the result of the most accurate
approximation methodsuccn.

The algorithm as proposed in Fig. 7 has two possible outcomes: either it is proved
that a forbidden state cannot be reached or that there exists a counterexample that can-
not be refuted. Since the validation procedure relies on over-approximations, it can-
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FORk = 1, . . . ,m

FORl = 1, . . . , n

Sreach
k := succl(Sreach

k−1 , α−1(ŝk))
IF Sreach

k = ∅
A := ρpurge(A,α, (ŝk−1, ŝk))
RETURN//jump out of both loops

ELSEIF Sreach
k ( α−1(ŝk)

(A,α) := ρsplit(A,α, (ŝk−1, ŝk))
ENDIF

ENDFOR

ENDFOR

Figure 7: Refinement and validation steps for hybrid systems.

not be guaranteed that this abstract counterexample corresponds to a concrete one.
In this case, under-approximations of sets of successor states can possibly be used
to prove that a counterexample exists: Assume that the procedure terminates with a
counterexampleσ = (ŝ0, ŝ1, . . . , ŝk, . . . , sm), no transition of which could be re-
futed. Similarly to Defn. 12, we can define anunder-approximationof successor states
Sreach
k = succ(Sreach

k−1 , α−1(ŝk)) which returns a setSreach
k ⊆ α−1(ŝk) guaranteed to

contain only true successors ofSreach
k−1 . If this operator is applied along the counterex-

ample (fromk = 1 to k = m) andSreach
n 6= ∅, there exists at least one path for the

hybrid system which violates the safety property.
As noted earlier, when using over-approximations, there is no guarantee that a spu-

rious counterexample can be refuted. The likelihood of refuting spurious counterex-
amples can be increased, however, by using tighter polyhedral approximations. When
the over-approximations are tight, the presence of an unrefuted yet spurious counterex-
ample is indicative of a very slim error margin separating the reachable states from
the bad ones. We would argue that when an unrefuted spurious counterexample is en-
countered, it may be better to redesign the implementation of our hybrid system so as
to increase the error margin, rather than risk facing an actual failure in a real-world
implementation of this system.

If we compare the verification algorithm for hybrid systems presented here to sim-
ilar approaches in the literature such as [9], we note that the main advantage of our
method is that, in relying on spurious counterexamples to refine our successive ab-
stract models, we are focusing on thelocal properties of our system that are relevant
to establish or invalidate aparticular specification. This leaves us free, for instance, to
employ cheap gross over-approximations of successor states in irrelevant areas of the
hybrid system.
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1ŝ

^
3s

ŝ ^
4s’

^
4s

^
2s’

ŝ
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ŝ ^
4s’

^
4s

^
2s’

ŝ
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Figure 8: Counterexample-guided abstraction illustrated for the car steering problem.

Example (cont.) The requirement that the hybrid model in Fig. 4 should never en-
ter the locationin canal translates into the reachability question for stateŝ6 of the
abstract model in Fig. 5. The first counterexample for the initial abstract model is
σ1 = (ŝ0, ŝ1, ŝ6) (see Fig. 8 (i)). The validation procedure considers first the transition
(ŝ0, ŝ1) which corresponds to the transition betweengo ahead andleft border in the
hybrid automaton. As a first step,succcoarse(S0, α

−1(ŝ1)) is computed with the result
that the minimum distance over all initial states is zero. This is obvious from the fact
that those states of the initial set for whichx = −1 enable the transition guard im-
mediately. Thus,succcoarse returns the entire invariant of locationleft border as set
S2. The next step is to computeSreach

2 = succtight(S0, α
−1(ŝ1)). The algorithm then

splits ŝ1 so thatŝ1 represents the setSreach
2 , and the new abstract stateŝ′1 represents

S2 \ Sreach
2 (Fig. 8 (ii)).

Since the counterexample has not been eliminated yet, the transition(ŝ1, ŝ6) is
considered next. Methodsucccoarse finds that the minimal distance between the trajec-
tories that start inSreach

2 and the guardx = −2 is greater than zero. This means that no
trajectory reaches the guard, and the corresponding transition is removed (Fig. 8 (iii)).

The procedure continues with the next counterexampleσ2 = (ŝ0, ŝ2, ŝ4, ŝ
′
1, ŝ6), as

depicted in Fig. 8 (iv). As for the first counterexample, the abstract stateŝ2 is split into
the states that are reachable from the initial setS0, and the remainder (Fig. 8 (v)). Then,
the procedure moves forward one transition and splits stateŝ4 as a result of applying
succtight . The reachable part is represented byŝ4 in Fig. 8 (vi). Methodsucccoarse

then finds that one cannot reach any state that is represented byŝ′1 from this set, and
the transition(ŝ4, ŝ

′
1) can be deleted fromA (Fig. 8 (vii)).

The final counterexample isσ3 = (ŝ0, ŝ1, ŝ3, ŝ
′
2, ŝ
′
4, ŝ
′
1, ŝ6). The statês1 was al-

ready split for the first counterexample. Similarly to the procedure for the counterex-
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(i) (ii) (iii)

Figure 9: Validation an refinement of fragments illustrated for a counterexample of the
car steering problem.

ampleσ2, abstract statês3 is split as depicted in Fig. 8 (viii). It can then be shown that
transition(ŝ3, ŝ

′
2) is spurious, which eliminates the last counterexample (Fig. 8 (ix)).

Consequently, the abstract stateŝ6 is not reachable, and thus the same applies for the
locationin canal of the hybrid automaton. �

5.4 Validation and Refinement of Fragments of Counterexamples

The initial abstraction of the example in Fig. 5 contains onlytwo counterexamples
without cycles,(ŝ0, ŝ1, ŝ6) and(ŝ0, ŝ2, ŝ4, ŝ1, ŝ6). However, to show that no bad state
is reachable,threecounterexamples in the series of abstractions were considered and
refuted (cf. Fig. 8). Hence, refining an abstract model, to eliminate a particular coun-
terexample, may introduce new counterexamples. In this subsection we show that con-
sidering fragments of counterexamples, rather than complete counterexamples, can re-
duce the total number of counterexample that have to be considered. This often results
in a significant speed-up of the verification process.

The main reason for considering fragments is as follows. The validation and re-
finement routine that we presented in the previous subsection typically refutes a coun-
terexample (indeed, when a counterexample is not refuted, the algorithm stops). The
counterexample refutation case can be made more efficient by the following observa-
tion. In the previous subsection, a (spurious) counterexample(ŝ0, . . . , ŝm) is refuted
by showing that no corresponding concrete path(s0, . . . , sm) exists. Interestingly,
showing that any one of the transitions(ŝi, ŝi+1) in the counterexample is spurious is
a sufficient condition for the non-existence of a corresponding concrete path.

Alternatively, we can also conclude that a counterexample is spurious if one of
the fragments(ŝi, ŝi+1, ŝi+2) is spurious, in other words if there is no corresponding
concrete path(si, si+1, si+2) in the concrete model. In general, one can define spurious
fragments of lengthn. Validation and refinement of such fragments of counterexamples
can be done in a similar way as for complete counterexamples.

We now illustrate that validation and refinement of short fragments can increase
the efficiency of the verification process. Clearly, if one can refute a fragment of a
counterexample, e.g., a single transition, then the entire counterexample is spurious. If
a counterexample can be refuted by considering a fragment of lengthn, it can surely be
refuted by considering fragments of lengthn+ 1. However, using a fragment of length
n + 1 may have the undesirable side-effect of introducing new counterexamples, or at
least more counterexamples than the method based on fragments of lengthn.
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Example (cont.) Consider as an example Fig. 9 (i), which depicts part of the abstract
model in Fig. 8 (iv) and contains the counterexample. Note that there is a loop that
enters the counterexample atŝ2 and leaves it at̂s4. For this car steering example it can
be shown that the fragment(ŝ2, ŝ4, ŝ

′
1) is spurious, even though neither of the transi-

tions is spurious on its own. This means that validation and refinement of fragments of
length 2 removes the counterexample as depicted in Fig. 9 (ii).

If we consider the complete counterexample instead, we also find that the coun-
terexample is spurious. But in this case we would also splitŝ2, which introduces an
additional counterexample that exploits the loop, as shown in Fig. 9(iii). In general,
whenever we split all abstract states between the entry and exit points of a loop, it will
‘open’ the loop, and inevitably create an additional counterexample.

There is little choice if these states have to be split to refute the counterexample.
Consider for instance the first counterexample in Fig. 8 (i). This counterexample can
only be eliminated by splittinĝs1. But if it is possible to refute a short fragment,
rather than a long one, this should be preferred. If we apply validation and refinement
to fragments of length 2 of the counterexample in Fig. 8 (iv), we are guaranteed that
it will not introduce new counterexamples. If it then succeeds, we can be sure that
the number of counterexamples decreases. In this particular case, refuting fragment
(ŝ2, ŝ4, ŝ

′
1) eliminates all other counterexamples, as they also include this fragment.

5.5 Experimental Results

Experimental results for a prototype implementation of the procedure indicate its ad-
vantages over existing methods. We apply the prototype first to the car steering example
that was discussed throughout this paper. Then a larger and more challenging example
on an adaptive cruise control system that was put forward in the MoBIES project [22]
is discussed.

5.5.1 Car Steering Example

For the car steering example we take as baseline INFINITE-STATE-CEGAR as described
in Subsection 5.3 with the only successor operatorsucctight . We refer to this method
as INFINITE-STATE-CEGAR-I. For the car steering example this method computes the
same number ofsucctight operations as a breadth–first application of the successor op-
erator. Breadth-first application is the most prevalent method used for model checking
hybrid systems.

We compare this method with two other instances of INFINITE-STATE-CEGAR.
INFINITE-STATE-CEGAR-II refines and validates complete counterexamples using the
two different methods, as described in Subsection 5.3. The third instance INFINITE-
STATE-CEGAR-III first validates single transitions usingsucccoarse . Next, it considers
fragments of length 2, usingsucccoarse . Finally, the third validation and refinement
scheme considers fragments of length 2, but usessucctight for the first transition, and
succcoarse for the second. If these three schemes fail to refute the counterexample, the
complete counterexample is considered, using the same routine as the second instance
of INFINITE-STATE-CEGAR.
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For the car steering example the following results are obtained when run on a Pen-
tium 4, 1.4GHz. INFINITE-STATE-CEGAR-I considers three counterexamples, com-
putessucctight five times, and takes 117 seconds to verify that the car steering example
is safe. INFINITE-STATE-CEGAR-II considers the same counterexamples but computes
succtight only three times, and finishes in 70 seconds. INFINITE-STATE-CEGAR-III
considers only two counterexamples, and computessucctight only once. Since, this
particular successor was easy to compute, the overall time drops to 10 seconds.

5.5.2 MoBIES Adaptive Cruise Control System

The model that we use for the adaptive control experiments is based on a Simulink/
Stateflow model [23]. The adaptive cruise control is part of a vehicle-to-vehicle coor-
dination system. The part of this system that we consider comprises two modes: the
cruise control mode (cc-mode) in which a car tries to keep a constant speed, and an
adaptive cruise control mode (acc-mode), in which the car tries to stay a safe distance
behind a vehicle ahead of it. The acc-controller switches into acc-mode whenever the
distance between the car and a vehicle ahead falls below a certain threshold. This
threshold depends linearly on car speed.

The system also includes an automatic transmission system with four gears. De-
pending on the speed of the car it will switch between the different gears. The hybrid
automaton that models both the acc-controller and the automatic transmission has 8
locations for the normal operation and one additional state that is entered on collisions,
when the distance between the cars is zero. Obviously, this is the location that should
not be reachable. The model takes into account the distance between two cars, their
relative velocity and the velocity of the following car. The differential equations that
describe the continuous behavior are non-linear, mainly due to saturation; for each gear
there are upper and lower bounds on the possible acceleration.

For the adaptive cruise control example the hybrid model checker CheckMate[3] is
used as a baseline, since it is possible for this case study to generate a CheckMate model
that exhibits the exact same behavior as our model. CheckMate takes 770 seconds to
verify that the system is safe. We compare this result to our two approaches INFINITE-
STATE-CEGAR-II and INFINITE-STATE-CEGAR-III. I NFINITE-STATE-CEGAR-II con-
siders 46 counterexamples, and computes 11 timessucctight , in 450 seconds. The
resulting safe abstraction has 29 states. INFINITE-STATE-CEGAR-III only considers
10 potential counterexamples, computessucctight just once, and takes only 39 sec-
onds. The resulting abstraction has just 15 states. Five of the counterexamples have
been refuted by considering single transitions; for example, when the following car
is in first gear and in acc-mode, then it cannot collide with the leading car. All other
counterexamples were refuted by considering segments of length 2. For example, one
such refuted counterexample corresponds to the case when the car is in third gear and
switches to acc-mode—this cannot lead to a collision.
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6 Conclusions

This paper presents a new method for using counterexamples to refine abstractions of
hybrid systems. The principal alternative for verifying the safety properties considered
in this paper is to compute the reachable states for the hybrid system using a breadth-
first application of the successor operatorsucc. It is apparent that the INFINITE-STATE-
CEGAR procedure can be faster than breadth-first reachability when the safety property
does not hold for the concrete system, since in this case it is possible for the model
checker to quickly find a true counterexample. On the other hand, if the safety prop-
erty holds, refuting one counterexample may implicitly refute others. However, the
INFINITE-STATE-CEGAR procedure continues until all possible counterexamples have
been explored (and indeed, may not terminate), which is in some cases equivalent
to the breadth-first reachability computation. Nevertheless, we have shown here that
INFINITE-STATE-CEGAR offers the possibility of using multiple methods for comput-
ing approximations to the successor states.
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Appendix

Proof of Lemma 1.
Proof. By contradiction: IfC |6= AG¬B, then at least one pathσ = (s0, s1, . . . , b)

with b ∈ B must exist forC. From Defn. 2, it follows that the corresponding abstract
counterexamplêσ = (ŝ0, ŝ1, . . . , b̂) of A is a counterexample which contradicts the
premiseA |= AG¬B̂. �

Proof of Lemma 2.
Proof. (i) A � A′. It follows straightforwardly thatA is an abstract model ofA′ with
abstraction functionα′′ as defined in Defn. 6.
(ii) A′ � C. From the above definitions ofA′ = (Ŝ′, Ŝ′0, Ê

′) andα′, it follows thatA′

would be an abstract model ofC, if Ê′ also included the transition(ŝ1, ŝ
comp
2 ). How-

ever, sinceSreach
2 andScomp

2 are disjoint, this abstract transition does not correspond
to any concrete transition and can therefore be omitted. �

Proof of Lemma 3.
Proof. (i) A � A′. The corresponding abstraction function is the identity. SinceA

has just an additional transition it is an abstract model ofA′.
(ii) A′ � C. The abstraction function for this abstraction isα. We can then omit the
abstract transition(ŝ1, ŝ2), since it does not correspond to any concrete transition.�

Proof of Lemma 4.
Proof. (i) If the algorithm terminates with “B reachable”, then the set of reachable

states in the concrete model is non-empty along the path of the last checked counterex-
ample. Formally,Sreach

k 6= ∅, k = 0, . . . ,m due to the conditions in the IF statement
(Sreach
k ∩B 6= ∅) and the WHILE statement (Sreach

k 6= ∅ ANDk < m).
We can now show that the last checked counterexample in the algorithm is not

spurious. To do so, we first show that for eachk, all sk ∈ Sreach
k can be reached by

paths in the concrete model. The proof is done by induction onk. For k = 0, each
s0 ∈ Sreach

0 can be reached by a path of length zero. Fork > 0, for eachsk ∈ Sreach
k

there exists ansk−1 ∈ Sreach
k−1 such that(sk−1, sk) ∈ E (by definition of thesucc

operator). By induction,sk−1 is reachable by some concrete path(s0, . . . , sk−1),
hencesk is reachable via the concrete path(s0, . . . , sk).

Since for eachk, all sk ∈ Sreach
k can be reached by paths in the concrete model,

there are paths(s0, s1, . . . , sm) with sm ∈ Sreach
m ∩B. Each such path corresponds to

a counterexample in the concrete model. Thus,C |= AG¬B.
(ii) If the algorithm terminates with “B not reachable”, then it was not possible to find
any counterexample for the current abstract modelA. But sinceA is in each step an
abstraction ofC we can conclude by Lemma 1 thatC |= AG¬B holds. �

Proof of Lemma 5.
Proof. The proof follows the same lines as the corresponding case of Lemma 4 and is
therefore omitted.
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Proof of Lemma 6.
Proof. We show thatα as defined in Defn. 11 is an abstraction function. The first

condition in Defn. 2 follows directly from the definition ofα. To show the second
condition, it must be proved that

Ê = {(ŝi, ŝj)|(zi, zj) ∈ T} ∪ {(ŝ′0, ŝj)|(z0, zj) ∈ T} ∪ {(ŝi, ŝ′0)|(zi, z0) ∈ T} ⊇
{(ŝi, ŝj)| ∃si, sj ∈ S : (si, sj) ∈ E, ŝi = α(si), ŝj = α(sj)}.

Assume(si, sj) ∈ E, andsi = (zi, xi) andsj = (zj , xj) with xi, xj ∈ X and
i, j 6= 0. Then, it follows from the definition ofE in Defn. 9 that(zi, zj) ∈ T . Thus,
(ŝi, ŝj) ∈ Ê. The other cases (i = 0 or j = 0) can be shown in a similar way. �
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