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Abstract

For multi-criteria problems and problems with poorly characterized objective functions, it is often desirable to
simultaneously approximate the optimum solution for a large class of objective functions. We consider two such
classes:

1. Maximizing all symmetric concave functions, and
2. Minimizing all symmetric convex functions.

The former corresponds to maximizing profit for a resource allocation problem (such as allocation of bandwidths
in a computer network). The concavity requirement corresponds to the law of diminishing returns in economics.
The latter corresponds to minimizing cost or congestion in a load balancing problem, where the congestion-cost
is some convex function of the loads.

Informally, a simultaneous a-approximation for either class is a feasible solution that is within a factor a of
the optimum for all functions in that class. Clearly, the structure of the feasible set and the constraints have a
significant impact on the best possible a and the computational complexity of finding a solution that achieves
(or nearly achieves) this a. We develop a framework and a set of techniques to do simultaneous optimization
for a wide variety of problems.

We first relate simultaneous a-approximation for both classes to a-approximate majorization in an “if and
only if” fashion. Then we prove that a-approximately majorized solutions exist for logarithmic values of a for
the concave profits case. For both classes, we present a polynomial time algorithm to find the best « if the
set of constraints is a polynomial-sized linear program. We illustrate how standard rounding techniques can
be leveraged to extend our framework to several integer programming problems. We also present a dynamic
programming algorithm to obtain a PTAS for the optimum « for the convex cost problem, where the constraints
correspond to allocating jobs to identical machines. Finally, we demonstrate some interesting connections
between distributional optimization and approximate majorization.

Keywords: algorithms, fairness, majorization, load balancing, routing, approximation, linear programming,
integer programming



1 Introduction

Simultaneous Optimization: Consider the problem of maximizing U(z) subject to > 0 and some addi-
tional constraints (such as Az < C), where x = (%1, 2, ...,%,) is an n-dimensional vector and U is an n-variate
symmetric concave function. This general scenario captures problems where we need to allocate resources to
users in order to maximize the overall profit /utility; here,  is the vector of resource allocations to different users.
Concavity of the objective function corresponds to the “law of diminishing returns” from economics. Symmetry
corresponds to saying that all users are equally important. Notice that the constraints are not required to
be symmetric, and hence, the optimum solution need not be symmetric even though the objective function is
symmetric. We will further assume that U(0) = 0 and that U is non-decreasing in each argument. These are
both natural restrictions for profit/utility functions. We will call such functions canonical utility functions. The
two simplest examples are ). x; and min{zy,zs,...,o,}.

Now consider the problem of minimizing C(x) subject to z > 0 and some additional constraints where C
is a symmetric convex function such that C(0) = 0 and C is non-decreasing in each argument. We will call
these functions canonical congestion functions. This general scenario captures several load balancing problems;
here z is the vector of loads on different machines. Convexity of C' is a natural assumption since most natural
measures of congestion are convex. Symmetry indicates that all machines are equally important; as before,
the constraints, and hence the optimum solution need not be symmetric. Some common canonical congestion

functions are Y, z;, max{z1, %2, ..., Zn}, 3_; «; (variance), and )_; $%<- (the M/M/1 queueing delay function).

K3

These problems can often be solved by using piece-wise linear approximations of the concave or convex
function, and then applying techniques for linear objective functions. For example, if the set of constraints are
linear, then these problems can often be solved using interior programming techniques [9]. However, we are
interested in finding a feasible solution which is a good approximation simultaneously for all canonical utility
functions or all canonical congestion functions — hence the term “simultaneous optimization”. Clearly, the
exact quality of the solution achievable depends on the set of constraints. In this paper, we develop a general
framework and a set of techniques that are applicable to a wide variety of constraints.

Before proceeding further, we define simultaneous optimization more precisely.

Definition 1 A feasible vector  is a simultaneous a-approzimation for a resource allocation problem if U(x) >
U(y)/a for all other feasible solutions y and all canonical utility functions U.

Since convex functions can be arbitrarily steep, an analogous definition would be too strict for resource allocation
problems. Instead we define:

Definition 2 A feasible vector x is a simultaneous a-approzimation for a load balancing problem if C(z/a) <
C(y) for all other feasible solutions y and all canonical congestion functions C.

In order to understand the motivation behind simultaneous optimization, it helps to think of specific in-
stances. For example, consider the integer multicommodity flow problem, where z; is the total amount shipped
of commodity i. Then a simultaneous a-approximation would be an a-approximation to the integer concurrent
flow problem, an a-approximation to the integer maximum flow problem, and an a-approximation to a whole
class of similarly interesting utility functions. Rather than list a host of such problems, we now point out the
connections between simultaneous optimization and fairness.

Simultaneous optimization and fairness: Consider the problem of designing an algorithm to fairly allocate
a fixed resource among n individuals given some constraints. This general scenario can be specialized to several
routing [14, 7], bandwidth allocation [7, 1], clustering [16], and load balancing [8] problems. To proceed further,
we must first decide on a good definition of fairness. This is quite non-trivial, as can be seen by the large number
of (often disparate) fairness measures proposed by both system builders [12, 3, 4, 1, 15] and theoreticians (see
chapter 13 of [19]). Some of the more widely discussed measures are max-min fairness [1, 2], variance related
measures [12], and average utility. Suppose there exists some function which measures the fairness of an
allocation. It seems natural that the allocation (z1,z2) should be deemed as fair as (z2, 1) and less fair than
(MT“, MT“) This assumption implies that maximizing fairness should be equivalent to maximizing some
symmetric concave function (for resource allocation problems) or minimizing some symmetric convex function



(for load balancing problems). Hence there is a concrete connection between simultaneous optimization and
fairness; this connection will influence much of the vocabulary we use in the rest of this paper.

Our results: We use the notion of approximate majorization as defined by Goel, Meyerson, and Plotkin [8].
For a resource allocation problem, the relevant notion of approximate majorization is global a-fairness: a vector
z is said to be globally a-fair if for all 1 < k < n, the sum of the k smallest components of z is at least 1/«
times the sum of the k smallest components for any other feasible solution y. For a load balancing problem,
the relevant notion is global a-balance: a vector z is said to be globally a-balanced if for all 1 < k < n, the
sum of the k largest components of x is at most a times the sum of the k largest components for any other
feasible solution y. Majorization, approximate majorization, and global a-fairness and global a-balance are
defined formally in section 2.

We first establish (section 2) that global a-fairness and global a-balance are exactly equivalent to simulta-
neous a-approximation for resource allocation and load balancing problems, respectively. This motivates the
following questions:

1. Existence: Can simultaneous a-approximation be achieved for small values of a? We prove (section 3)
that for any resource allocation problem where the set of feasible solutions is a convex set, there exists a
globally a-fair solution with o being logarithmic in some natural problem parameters. No such guarantee
can exist for resource allocation problems in general; we omit the details.

2. Algorithms: Do efficient algorithms exist for finding or approximating the smallest possible a (denoted
a*) for a given resource allocation or load balancing problem such that a simultaneous a-approximation
exists? In section 3, we present polynomial time algorithms for finding a*, as well as the corresponding
simultaneous a*-approximate solution for both resource allocation and load balancing problems, if the set
of constraints is a polynomial sized (in n) linear program. Our algorithm can be made particularly efficient
(using techniques from [23]) if the set of constraints form a packing or a covering problem. We illustrate
how our results can be extended to integer programming problems by considering two important examples.
For the integer multicommodity flow (or integer routing) problem, we argue that a* = O(logn) where n
is the number of nodes in the network, and present a polynomial time algorithm to achieve a = O(logn)
using randomized rounding. For the problem of allocating jobs to unrelated (1 — oco) machines, we combine
a rounding technique of Shmoys and Tardos [25] with our linear programming techniques to prove a* < 2
and to find a solution with a < 2. Our techniques are also applicable to the facility location and cost-
distance problems, but we omit these results for lack of space.

We also give a PTAS for finding the best « for scheduling on identical machines (section 3.4.3). This
algorithm uses dynamic programming techniques, unlike all the above algorithms which used linear pro-
gramming related techniques.

3. Connections to other problems: We then demonstrate a surprising relationship between majorization
and the problem of distributional load balancing. In this problem, we must assign jobs to machines in
order to minimize the expected total size of jobs on the most-loaded machine. Rather than having fixed,
known sizes, the size of each job will be determined independently by some probability distribution after
the allocation of jobs to machines is made. Several results are known for this problem [13, 6] under various
assumptions about the nature of the probability distribution. We show that if the job size distributions
are all Poisson or all Binomial, finding a globally a-balanced allocation of the mean size leads to an
a-approximation to the original problem. We can then apply our linear programming technique to find
such a-balanced solutions for the best possible a and apply rounding techniques where necessary. As
an intermediate step, we prove that a Poisson random variable with mean p(1 + €) is more majorized
(intuitively, more sharply concentrated) than (1 + €) times a Poisson random variable of mean py. We
also prove a similar theorem for binomial variables. These theorems may well be of independent interest.
Details are in section 4.

Related Work: A systematic study of approximate fairness for combinatorial optimization problems was
initiated by Kleinberg, Rabani, and Tardos [14]. They considered a fair allocation to be one which is max-min
fair, and an approximately fair allocation as one which is “close” to the max-min fair allocation. They presented
an algorithm to find the max-min fair allocation for the problem of allocating identical jobs to unrelated (1 —oo)



machines and also gave a 2-approximation to the max-min fair allocation for unsplittable routing using Megiddo’s
fractional solution [20] as a subroutine. Goel, Meyerson, and Plotkin [7] observed that max-min fairness can
result in very bad throughput for network routing and bandwidth allocation. They presented an online algorithm
that is globally polylogarithmic-fair for the problem of routing and bandwidth allocation without realizing the
connection between their definition of fairness and approximate majorization. Kleinberg and Kumar [16] studied
fair allocations for the problems of bandwidth allocation, completion-time scheduling, and facility location; we
allude to their results for specific problems in section 3. Goel, Meyerson, and Plotkin [8] were the first to define
the notion of approximate majorization. They proved that the greedy online algorithm for allocating identical
jobs to unrelated (1 — co) machines is globally logarithmic-fair.

2 Approximate Majorization and Simultaneous Optimization

For any vector ¥ =< x1,%2,...,Z, >, denote the i-th smallest component of z by z(;). We define P;(¥) =
Y.7_1%@)- This is the jth prefiz of vector #; the sum of the j smallest coordinates. We define S;(#) =

>, T(ny1—i)- This is the jth postfiz of vector Z, the sum of the j largest coordinates. We now define
majorization.

Definition 3 Given two n-dimensional vectors x and y, x is said to be majorized by y (y majorizes x) if each
of the following is true: (1) Vj <mn, P;(Z) > P;(¥), and (2) Vj <n, S;(£) < S;(§). We use the notation x <y
to denote the above relation.

In this paper we will only concern ourselves with vectors where each component is non-negative. Majorization
was first studied by Hardy, Littlewood, and Polya [10]. They also proved:

Theorem 2.1 z < y iff U(x) > U(y) for all symmetric concave functions U. Equivalently, x < y iff C(x) <
C(y) for all symmetric concave functions C

that Another interpretation of this relation is that z < y if and only if  is more profitable than y for all
canonical utility functions (for a resource allocation problem) or that z is less congested than y for all canonical
congestion functions (for a load balancing problem).

Definition 4 A globally fair solution is an assignment of resources which produces a vector of allocations to
users which is majorized by any other feasible resource allocation.

If a globally fair solution were to exist for a given problem, this would be the optimum for all canonical utility
or congestion functions, as the case may be. This, of course, is too good to be true for most problems. There
exist simple problems where a globally fair solution does not exist. For example, the constraints {z; + x> +z3 =
6; 221 + 22 < 3;21, 22,23 > 0} do not admit a globally fair solution. We now introduce a-supermajorization
which is a slight variation of the notion of supermajorization defined by Hardy, Littlewood, and Polya.

Definition 5 Given two n-dimensional vectors x and y,  is said to be a--supermagjorized by y if aP;(Z) > P;(¥)
for all j < mn. This is denoted by © <* y.

Definition 6 Given two n-dimensional vectors x and y, = is said to be a-submajorized by y if S;(Z) < aS;(¥)
for all j <mn. This is denoted by x <, y.

Definition 7 A wvector is said to be globally a-fair if it is a-supermagjorized by any other feasible vector. A
vector is said to be globally a-balanced if it is a-submajorized by any other feasible vector.

We will frequently omit the “global” for the sake of brevity. We now establish a concrete, “if and only if”
connection between approximate majorization and simultaneous optimization.

Theorem 2.2 A feasible solution x is a simultaneous a-approzimation for a resource allocation problem iff x
is globally a-fair.



Proof: If z is not globally a-fair, then there exists an integer j between 1 and n and a feasible solution y such
that Pj(z) < Pj(y)/a. But the function P; satisfies all the requirements for being a canonical utility function,
and hence z can not be a simultaneous a-approximation.

Now assume that zx is globally a-fair. Let y be any feasible vector and U be any canonical utility function.
Pj(azx) > Pj(y) for all 1 < j < n. Notice that the vector az may not be feasible, but we are not going to
need it to be feasible in our proof. There must exist another vector z such that z; < az; for all 1 < j <n
and z < y. By theorem 2.1, U(z) > U(y). Since U is non-decreasing, U(az) > U(z). Since U is concave,
U(z) > (1/a)U(az)+ (1—1/a)U(0). Finally, since U(0) = 0, we obtain U(z) > (1/a)U(az) which implies that
U(z) > (1/a)U(y) and completes the proof of the theorem.

Theorem 2.3 A feasible solution x is a simultaneous a-approximation for a load balancing problem iff x is
globally a-balanced.

The proof of theorem 2.3 is similar to that of 2.2 and is omitted from this version. We define P;" = max; P;(Z)
and S7 = ming S;() for feasible values of & throughout.

3 Majorized Linear Programs

3.1 Algorithm

Many optimization problems can be reduced to linear or integer programs. We present a technique for finding
an a-fair or a-balanced solution to any linear program, for the minimum possible value of a. The results of this
section are presented for finding a-fair vectors (thus maximizing the resources allocated to each user). Analogous
results hold for the case of a-balanced vectors (minimizing the assignment to each user) with appropriate changes
in the direction of inequalities.

We need to find a vector & such that aP;(Z) > P} for all j and the minimum possible a. This leads
to a simple two step process. We first determine the value of P} for each j, then impose the global fairness
constraints and minimize a. Each of these steps can be performed by solving modified linear programs.

Feasibility requires that AZ < b for some matrix A, constant vector b, and variable vector Z (which includes
the z; but may also include other additional variables). Consider the following linear program for finding P;:

Maximize ()., z5) — (n — j)U subject to:
AZ<b
zf <m;foralie{l,---,n}
z; <Uforalie{l,---,n}

The above linear program is polynomial-sized; in fact it adds only 2n constraints and n + 1 variables, so it’s
essentially the same size as the original linear program and can be solved efficiently.

Lemma 3.1 The above linear program produces P} .

Proof: Consider any Z. The vector 7 is feasible (with some choice of 2 and U) if and only if 2 was feasible
for the original linear program. In order to maximize the objective function, it is clear that we will have
x} = min(z;,U). Since we subtract n — j copies of U, it follows that the objective function is at most P;(%). On
the other hand, if we set U = z(;) then the objective function will be exactly P;(Z). It follows that the optimum
solution to the linear program is in fact P} as desired. ]

We still need to produce the optimum « and the vector #*. For that, we write the following linear program.

Maximize v subject to:
AZ<b

x; for all 4 and j

v} < UV for all ¢ and j

(L, 2)) — (n—j)U? > yP; for all j

J
T

<
<



This linear program adds n? + n new variables and 2n? + n constraints. This may make it larger than
the original LP, but it is still polynomial in size. The proof of the following lemma is similar to the proof of
lemma 3.1 and we omit it.

Lemma 3.2 The above linear program produces a globally a-fair solution for the minimum value of a = %

3.2 Fast fairness approximations for packing problems

Packing constraints are a set of linear constraints Az < b with the additional properties that matrix A has
nonnegative entries and vector 2’ is constrained to have nonnegative coordinates. Optimization problems on
packing constraints occur in a wide variety of settings and can be approximated very efficiently [23]. We would
like to be able to apply fast approximation techniques for packing problems to the problem of finding a globally
a-fair feasible solution on a set of packing constraints. Unfortunately, the linear programs described in the
previous sections are not packing programs. Even if the original matrix A is nonnegative, the constraints added
to compute fairness do not have the packing property. We can rewrite the linear program we need to solve in
order to find prefix P} as follows:

Minimize A; subject to:
AZ < A\;b
Yics®i > 1forall S C{l,---,n} with [S| =j

Here P} =1 /A;j. We will represent the set of equations which insures each subset of j variables sums to at
least one by the polytope P;. Provided we can, for any ¢ > 0, produce the £ € P; which minimizes e &, we can
run the algorithm of Plotkin, Shmoys, and Tardos [23] to produce a fast approximation to A;. The existence of
such a polynomial time minimization oracle is the subject of the following theorem.

Theorem 3.3 We can produce Z € P; to minimize e Z in time O(nlogn).

We omit a detailed proof of the theorem. The crucial step is to prove that there exists an optimum solution
such that, for some threshold value cr, all x; with ¢; > cr are zero and all other x; are identical. Then we
can sort the x; and check each of the n possible values of c¢r to find the optimum solution. This gives a fast
algorithm to produce approximately optimum prefixes for each j. We still need to explain how to produce an
approximately-fair vector. We can rewrite the linear program to find a* as follows:

Minimize « subject to:
AZ < ab
Yies®i > Pl forall S C {1,---,n}

We will need a minimization oracle which can, given a vector ¢, produce the vector £ € P which minimizes
ce Z. In this case our polytope is the set of vectors & which have prefix j at least equal to P} for every j.

Theorem 3.4 We can produce a polynomial time minimization oracle for the above linear program.

The minimizing vector Z has z(;) = P;* and z(;j;1) = P, — P;. This can be computed in O(nlogn) time by
observing that ¢; > ¢; = x; < x;. Thus if the original linear program constraints were packing constraints,
we can produce fast globally a-fair vector solutions while guaranteeing a < a*(1 + €). Similarly, if the original
linear program constraints are covering constraints, we can produce fast globally a-balanced vector solutions.

3.3 Existential upper bounds on o* for LP solutions

The previous section described methods for finding a globally a-fair vector for a linear program. Similar methods
(reversing the signs on certain inequalities) can be used to find a-balanced vectors. There is no guarantee that
a solution with @ = 1 exists, so we will present existential bounds indicating that the minimum « is not too
large for resource allocation problems. We assume that all feasible vectors & have nonnegative coordinates, and
that for any feasible %7, %5 the weighted average 821 + (1 — 3)%3 is feasible for 0 < 8 < 1. We will use the term
“nonnegative convex program” to apply to such a set of feasible points. Any linear program with non-negativity



constraints on F satisfies the above properties. Intuitively, the average of two vectors is only closer to being fair
than either of the original vectors. We formalize this idea in the next two lemmas. The convexity assumption
implies that the averaged vectors are in fact feasible.

Lemma 3.5 Given k solutions 21 through 2}, for any j we have Pj(%zle ;) > %Zle P;(@;) and also
koo k L
Sj(% Ei:1 xi) < % Ei:1 Sj(-z'i)-

Proof: In determining prefix j of the averaged vector, we will sum j coordinates. Consider these same coor-
dinates in vector &;. Since P;(#;) is the sum of the j smallest coordinates, it follows that the sum of these j
specific coordinates must be at least P;(<;). This holds for every i, and the actual value of the jth prefix in the
average is the average of the sum of these j coordinates in each of the #;. The same approach proves the lemma,
for the S;. |

Theorem 3.6 For any nonnegative convex program, there exists an n-fair solution.

Proof: We consider the vector which optimizes for each prefix. Take the average of those n vectors. By
1

convexity, this average is feasible. By lemma 3.5 and non-negativity it must have each prefix within :- of the
best possible. Thus it is n-fair. [ |
Py
nP}

Theorem 3.7 For any nonnegative convex program, there exists an O(log )-fair solution.

Proof: We will produce a set of vectors to average, such that there are at most log(P}/(nPy)) vectors in the
set, and for every prefix P; one of the vectors we have selected is within a factor of 2 of the optimum. Given
such a set, it will follow from lemma 3.5 that the theorem holds.

We construct our set of vectors as follows. We add the vector producing P;. We discard the vectors
producing optimum prefix 2, 3, and so forth until we find some ¢ with P;*/i > 2P;. We then add this vector
to our set, and continue until we find some j with P;/j > 2P} /i and so forth. We observe that as j increases,
P; /7 is nondecreasing. This enables us to bound the total number of vectors as required. ]

The quantity PZ/(nP;) may be thought of as the inherent imbalance of the problem since it measures the
ratio of the maximum utility that we can provide on the average to the maximum utility we can provide to the
“poorest” individual. Thus the above result indicates that a* is at most logarithmic in the inherent imbalance
of any non-negative convex program. It is possible to show that no analogue of the above theorem exists for
load balancing problems; we omit the details.

3.4 Applications to Integer Programming Problems
3.4.1 Multicommodity Flow and Offline Routing

We consider the problem of multicommodity flow. We are given a set of source-sink pairs {s;,¢;} and asked to
route flows from source to sink through a capacitated network. Each pair represents a communication request,
and our goal is to provide fair service to all our communicating customers. This problem has been studied in
detail and fast polynomial-time algorithms are known for the optimization version where we wish to maximize
the total communication or maximize the communication for the pair receiving least. The first is known as
maximum flow and the second is maximum concurrent flow [24, 17, 5].

We wish to produce the most majorized solution. This is a straightforward application of our techniques
for linear programs; we can write a linear program for each prefix and solve it. Since multicommodity flow is a
packing problem; we could alternately use the algorithm of [23] and produce a fast 1+ € approximation to each
prefix.

It is therefore possible to produce an a-fair solution for the minimum ¢, in polynomial time. But what is
this a? We need to show that it cannot be too large. Theorem 3.7 immediately gives us a bound, O(log %).
However, in some cases the maximum flow might be much more than n times the best flow which can be
allocated to the customer receiving least.

We observe that reducing the flow for some pair by one unit cannot enable us to increase the flow of other
pairs by more than n units (since each path has at most n edges). Intuitively, this means that flows of very



different values cannot have the same bottleneck edges. We formalize this intuition to prove the following
theorem, indicating that a* < O(logn). The proof of the theorem is deferred to appendix A

Theorem 3.8 For multicommodity flow, there exists an a-fair solution with oo = O(logn).

We consider the offline version of the routing problem discussed by [7]. We are again given pairs {s;,t;}
and we are asked to connect these pairs. We are constrained in that each pair must be connected by ezactly
one path. We would like to determine the paths and bandwidth allocations such that our solution is as fair
as possible. We can simply write a linear program for this problem and apply randomized rounding. We may
exceed capacities by O(logn) so we must scale back the flows and end up with an O(log? n)-fair solution.

We can improve this result by ezplicitly summing a subset of the fractional solutions as in the proof of
theorem 3.7. This gives a new solution which is O(1)-fair when compared to solutions of the original, but
exceeds capacity constraints by an O(logn) factor. We perform randomized rounding on this solution, choosing
a random path for each commodity. This selection exceeds the enhanced capacities by only O(1), with high
probability (by application of Chernoff bounds). We now scale back the capacities to produce an O(logn)-fair
solution for the original problem. This result improves the bandwidth allocation result of [16] and the offline
version of [7].

3.4.2 Balancing Non-Identical Jobs on Unrelated Machines

We consider the problem of allocating jobs to unrelated machines in the 1-00 model. Each job can execute
on a subset of the machines and requires the same amount of resources regardless of the machine where it is
allocated. We would like to minimize the load on each machine. Of course the total load is always fixed, and
algorithms for approximately minimizing the maximum load are known [11]. We approach this problem from
the viewpoint of fairness, trying to create an approximately-submajorizing vector of allocations. By reduction
from the knapsack problem, finding the smallest a* is NP-hard.

We can write the fractional relaxation for the integer program version of this problem by allowing a job to
be fractionally assigned to different machine. We apply the techniques presented in this section to produce the
most-balanced fractional solution. The proof of the following lemma is immediate from the work of [14] and we
will omit it.

Lemma 3.9 The fractional solution for this problem is 1-balanced.

It follows that P,SF) < Py for every prefix k. We employ the approach used by Shmoys and Tardos for the
Generalized Assignment Problem [25]. They show how to convert the fractional solution F' to a feasible integer
allocation A which satisfies L§A) < L§F) + r;, where r; is the size of the largest job allocated to machine j by
the allocation A. For 1 < k < m, let Ry be the sum of the k largest job-sizes in the problem instance. Now,
PISA) < P,SF) + Ry,. But Ry, < Py since in any feasible solution, the sum of the loads of the (at most k) machines

that contain the k largest jobs is at least Rj. It follows that P,SA) < 2P ie. the algorithm outlined above
yields a globally 2-balanced allocation. Further, in appendix C, we show that a 1-balanced allocation need not
exist for the integer version of the problem.

Besides being interesting in its own right, this result is also useful as a subroutine for the distributional load
balancing problem discussed later in this paper.

Our techniques are also applicable to the fair version of the facility location problem [16] and the cost-distance
problem [18, 21]. However, the results are quite technical, and we omit them from this version. Instead, we move
on to the problem of assigning non-identical jobs to identical machines, which requires a new and interesting
set of techniques.

3.4.3 Non-identical jobs on identical machines

We now consider the problem of allocating non-identical jobs to identical machines. It is easy to see that
Graham’s rule results in a globally 2-balanced solution for this problem. Our goal is to find a globally a-balanced
solution for the smallest possible a, given an instance of this problem. In this paper, we obtain a PTAS for



this problem. The PTAS uses several interesting combinatorial properties of global a-balanced solutions, but
for reasons of space, we defer the description of the PTAS to appendix D. We have not been able to find an
instance of this problem for which no globally 1-balanced solution exists. Finding such a counter-example or
proving that a globally 1-balanced solution always exists remains an interesting open problem.

4 Approximate Majorization and Distributional Load Balancing

In the Distributional Load Balancing! problem [13, 6], we are given n jobs such that the size of the i-th job is a
random variable X;. The {X;}s are independent but not necessarily identical. We are also given m machines.
Each job needs to be allocated to exactly one machine. Let the total load on machine j be L;. Now, L; is a
random variable and so is the maximum load L = max; L;. Our goal is to find the allocation that minimizes
E[L]. Kleinberg, Rabani, and Tardos [13] gave an O(1)-approximation for arbitrary distributions. Goel and
Indyk [6] gave a 2-approximation for the case when all job sizes are Poisson and a PTAS when the jobs sizes
are exponential. The central theme of this section is the following: Finding globally a-balanced allocations leads
to an a-approzimation for several interesting special cases of the distributional load balancing problem. We will
illustrate this theme by concentrating on two special cases:

1. Each X; is a Poisson random variable (mean ;).

2. Each X; is a binomial random variable with parameters (n;,q) i.e. X; is the sum of n; independent
Bernoulli variables, where each Bernoulli variable is 1 with probability ¢ and 0 with probability 1 — q.

First observe that the sum of two independent Poisson variables with means u; and p» is a Poisson variable
with mean py + pa, and the sum of two independent binomial variables with parameters (n1,q) and (nz,q) is a
binomial variable with parameter (n1 + na,q). The load L; on any machine is now a Poisson/binomial variable
parameterized by the sum of the parameters for the jobs allocated to that machine. Let )A; represent the mean
of the Poisson variable corresponding to the load on machine j (for the Poisson case) and let N; represent the
sum of the parameters n; for all jobs allocated to machine j (for the binomial case). We are going to find
globally a-balanced vectors using the parameters p; for the Poisson case and the parameters n; for the binomial
case.

Let ¢(L1, Lo, ...Ly) be any function which is symmetric and convex in its arguments. The function max
is symmetric and convex; so is the function }. f(L;) where f is any convex function. Before we discuss
approximate majorization and its relation to distributional load balancing, we state the key theorems that
relate distributional load balancing to exact majorization:

Theorem 4.1 [19] If Ly, Lo, ..., L,, are Poisson variables with means A1, Az,...,Am, and ¢(Li, Lo, ..., Ly)
is symmetric and convex, then E[¢(L1, La, ..., Ly)] is a symmetric and convez function of A, A2, ..., Am.

Theorem 4.2 [19] If Ly, Lo, ..., L, are binomial variables with parameters (N1,q), (Na,q),...,(Nm,q), and
¢(L1, La, ..., Ly) is symmetric and convez, then E[¢(L1, Lo, ...,Ly)] is a symmetric and convex function of
Ni,No,...,Np.

Recall (from section 2) that a most majorized solution Z minimizes ¢(%) for any symmetric and convex function
¢. Hence, if we could find a globally 1-balanced vector for the mean loads A, ..., Ay, (for the Poisson case) or
Ni,..., Ny, (for the binomial case), we would minimize E[¢(L1, La, . .., Ly,)] for all convex, symmetric functions
¢ simultaneously. This is important because any natural measure of fairness must correspond to minimizing a
convex function [19]. In particular, we would minimize E[max{L;}]. Combined with the result of Kleinberg,
Rabani, and Tardos [14] that a globally 1-balanced vector exists and can be found for the problem of allocating
identical sized jobs to unrelated (1-c0) machines, we have the following corollary:

Corollary 4.3 Given the problem of allocating i.i.d. Poisson or binomial jobs to unrelated (1-00) machines,
an allocation which simultaneously minimizes E[p(L)] for all symmetric convex function ¢ can be found in
polynomial time.

1 This problem was originally called the stochastic load balancing problem. We have decided to rename the problem to make it
explicit that we are performing allocation decisions on distributions and not on jobs drawn from given distributions as in most of
the textbook examples [22].



As observed earlier, there are several interesting problems where the most majorized vector need not exist. We
now relate global a-balance to distributional load balancing. First let us assume that ¢ is monotonic i.e. qﬁ(l_:)
does not, decrease if we increase any component of the vector L. Now, let P(p) denote a Poisson variable of
mean p and let B(n, q) denote a binomial variable with parameters (n,q). Further let us say that a real-valued
random variable X is majorized by another real-valued random variable Y iff

(1) E[X] = E[Y], and (2) For any convex function g, E[g(X)] < E[g[Y]].

Intuitively, if X is majorized by Y then X is less spread out or more sharply concentrated. We now establish
the following results:

Theorem 4.4 [Scaling theorem for Poisson variables] The random variable P((1 +€))/(1 + €) is magjorized by
P(p) for alle >0 and p >0

Theorem 4.5 [Scaling theorem for binomial variables] The random variable B(M,q) - (N/M) is majorized by
B(N,q) for all M > N.

The scaling theorems say that if we multiply p (for Poisson) or N (for binomial) by a factor «, the resulting
random variable has a distribution that is “better” or more concentrated than the original random variable
multiplied by a. Theorem 4.4 can be derived as a corollary from theorem 4.5 for all rational values of € by
viewing a Poisson random variable as a limiting case of a binomial variable; continuity then implies theorem 4.4
for all € > 0. The proof of theorem 4.5 is complex and may well be of independent mathematical interest.
Unfortunately, the proof is also quite long and is deferred to appendix B. It is also possible to prove theorem 4.4
directly without invoking theorem 4.5; this alternate proof is also presented in appendix B. Now assume that
#(al) < f(a)(L) for some monotonically increasing function f and all & > 1. If ¢ is chosen to be the max
function then f(a) = «; if ¢ is the sum of the squares of the components of L then f (a) = o?. The proof of
the following theorem is deferred to appendix B due to lack of space.

Theorem 4.6 A globally a-balanced allocation of the means of the given jobs (for the Poisson case) or the
parameters n; (for the binomial case) yields an f(«)-approzimation for the distributional load balancing problem.

The following results are now immediate for Poisson or binomial jobs:

1. A 2-approximation if the job sizes are not identical, and if each job may be executed only on a subset of
the machines (combined with section 3.4.2).

2. Graham'’s rule gives a 2-approximation if the machines are identical (extending the result in [6] to include
the binomial case).

3. PTAS for the case when each job can go to each machine, but the job sizes are not i.i.d. using ideas
from appendix D (but not the result directly since the result guarantees a 1 + e approximation to a*, not
a*=1+c¢€).

The excellent textbook by Marshall and Olkin [19] presents results such as theorem 4.1 and 4.2 for several other
distributions. It may be possible to capture those distributions as well, using the framework described here
along with appropriate parameterizations and scaling theorems.
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A Proof of theorem 3.8

Proof of theorem 3.8: We now prove the following theorem:
For multicommodity flow, there exists an a-fair solution with a = O(logn).

We can assume that the number of edges and the number of clients are both bounded by the square of the
number of nodes. Let n represent the number of nodes. We create many different graphs, with G; containing
those edges with capacity at least n’. The capacity of an edge in graph Gj is the minimum of its actual capacity
and n‘+8. Consider prefix P; with n® < P < nP+l. We will solve for this prefix in the graph G 5 (or G
if 8 < 5). The value of this prefix in graph Gg_s is very close to P?. The removed edges cannot account
for more than n®~! total units of flow, so they cannot significantly reduce the prefix. On the other hand, the
edges whose capacity was decreased have enough capacity to give every commodity flow n°t! so reducing their
capacity cannot reduce the value of the prefix. Since each G; considers only prefixes in a polynomial range, they
each produce O(logn)-fair solutions. We will sum these solutions, but we may exceed capacity. However we
observe that an edge has its full capacity in only 9 graphs, and the capacity decreases geometrically elsewhere.
Thus the capacities are exceeded by only O(1) and we can scale back to get an O(logn)-fair solution. [ |

B Proofs of theorems 4.5, 4.4, and 4.6

Proof of the scaling theorem for Binomial variables (theorem 4.5): We will now prove the following
theorem:

The random variable B(M,q) - (N/M) is majorized by B(N,q) for all M > N.

It is sufficient to prove the theorem for M = N + 1; applying this proof inductively will immediately result in
a proof for any M > N. Let Fx, Fy be the cumulative distribution functions of two real-valued, non-negative
random variables X and Y. Then, the necessary and sufficient condition [19] for X < Y is

(Vt, 0<t<1) /t FNU)AU > /t FyL(U)dU (1)
0 0

Intuitively, the above equation says that the integral over the space of mass ¢ which contains the smallest values
is larger for X than for Y; this is analogous to saying that the sum of the smallest ¢ components of a vector A
is larger than the same sum for B.

Let pf = (3)¢*(1 — )" represent the probability of B(n,q) being exactly k. Let P = Ef:o p? represent
the probability of B(n q) being at most k. For any 0 <t < 1, let I,(t) be the smallest number k such that
P} > t, and let E,( fo U)dU. Adapting equation 1 to our scenario, our goal is now to prove that
Eny1(t) > En(t) - (N +1)/N. It is sufficient to prove this result for values of ¢ in the set {P, PNT'} where
0 < k € N + 1 since the functions Ex and En41 are both linear in the intervals defined by these sets of points.
The proof will proceed in several steps.

Relating P! and PN: (V') = (7) + (;Y)). Therefore p} ™ = (V) gi(1 — )NV *11 = (1 - q) () qi(1 -

K2

OVt +q(N ) a1 = )N = (1 - g)pl + gplY ;. Summing up, we get

Pt =PY, +(1-qpy, (2)
which also implies P,i\i 1 < P,iv 1< P,ﬁv .
Evaluating Exy1 and Ey at P,iv +1,
N +1 -
Eni1(PYTY) ZZ< ) — Nt ig

=0
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= (1-q) Xk:@(JD 1-9)" ¢ + qgi(i J_Vl>q"‘1(1 — )V

k—1 N
= Zz( Z, )q’(l N+ k(1 - q)pp + 4¢P,
1=0

But Y1 i(Y)d' (1 — @)V~ + k(1 — q)pY is exactly Enx(PN*1) (using equation 2). Hence,
Enn(PYM) = En(BYH) +aRL 3)

We now inductively prove that EN(PéV =N qP}¥ ;. The base cases k = 0,1 are easy to verify. Assume the
above is true for all k < K. Now Ex(PR™) = Ex(PRT) + (K — 1)(PY_, — PR*h + K(PYT — PY ).
Using the inductive hypothesis and simplifying, Ex(PR ") = ¢PF , + (K — )gp¥ | + K(1 — q)p¥. For
our inductive hypothesis to continue to hold, we need to prove that (K — 1)gp¥ | + K(1 — q)p% = Ngp¥_,.
Now, (K —1)gpR _; +K(1 —@)p¥ = N((x75)a" (1 ="'~ + (FT1)d" (1 =)V 75) = Ng( ) g1 (1 -
q)Nt1=K = Ngp¥ | which completes the proof of Ex(P ") = ngP}¥ ;. Plugging this back into equation 3
gives En1(PN ') = Ex(PNY) - (N +1)/N.

Evaluating Ex,; and Ey at Pév :

Enii(BY) = Enai(PYH) + (k+ apy
= En(PNM™)+¢PN, + (k+1)gpy [Using equation 3]
= En(PY)+k(1—qpy + 4¢P, + (k+apy
= En(PBly) +kp + 4By,
But Ex (P} ) + kpY = Ex(PY) which gives
Eni1(PY) = En(PY) + ¢Fy. (4)
The quantity Ex(PY)/PY must increase with k. Since this quantity is exactly ng when k = n, we can conclude
that En(P}Y) < ngP)N. Plugging this inequality into equation 4 gives En11(P) > Ex(PY) - (N +1)/N.
This completes the proof of theorem 4.5. [ ]

Proof (alternate) of the scaling theorem for Poisson variables (theorem 4.4): We now present a
shorter, simpler proof of the following theorem, without invoking theorem 4.5 which has a more involved proof:

The random variable P(u(1 + €))/(1 + €) is majorized by P(u) for all e > 0 and p > 0.

Let X3, X5,..., Xy be ii.d. variables, with each X; being 1 with probability p and 0 with probability
1 — p. Further, let Y¥7,Y5,...,Yy be ii.d. random variables such that each Y; is 1 4+ € with probability 1%
and 0 otherwise. It is easy to establish that X; < Y;. Thus, for any symmetric, convex, N-variate function g,
E[g(X;1,...,XnN)] < E[g(Y1,...,Yn)]. For any convex univariate function f, f(3, X;) is a symmetric, convex,
N-variate function of X1, ..., Xn. Hence, for any convex function f, E[f(3", X;)] < E[f(}_,Yi)]. Equivalently,

SN Xi< YN Viforall N >1 and all p > 0.

A Poisson random variable with mean u(1 + €), denoted P(u(1 + €)), can be interpreted as Zfil X; with
p= (14 ¢e)u/N in the limit as N tends to infinity. Similarly, the scaled Poisson random variable (1 + €)P(u)
can be interpreted as Efil Y; under the same conditions. The theorem is now immediate. [ |

Proof of theorem 4.6:

A globally a-balanced allocation of the means of the given jobs (for the Poisson case) or the param-
eters n; (for the binomial case) yields an f(«)-approximation for the distributional load balancing
problem.
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We will present the proof for binomial variables. Let N = (N1, N3,...,Ny) be a globally a-balanced allocation
of the parameter n; to machines and let N* be the allocation that minimizes E[¢(L)]. Let N/« represent the
vector obtained by dividing each component? in {V by a._‘Since_,]\? is a-balanced, we can find another vector
N' such that N/a is coordinate-wise less than N’ and N' < N*. We will use B(N) to denote a vector of
independent random Bernoulli variables (B(Ny, q), B(Na, q),ldots, B(Ny,,q))-

E[¢(B(N))] < f(@)E[¢(B(N/a))] [By theorem 4.5 and convexity of ¢]
< f(a)E[¢(B(N"))] [By monotonicity of ¢]
< f(a)E[¢p(B(N*))] [Using N < N* and theorem 4.2]
which completes the proof. The proof for the Poisson case is similar and is omitted. [ |

C «o* > 1 for unrelated machine scheduling problem

For the problem of scheduling non-identical jobs on unrelated (1-co) machines, a globally 1-balanced solution
may not exist. Consider the problem where there are three machines and five jobs. Jobs 1, 2, and 3 have sizes
7, 6, and 5 respectively, and can only go to machines 1, 2, and 3, respectively. Job 4 has size 5 and can go to
either of machines 2 and 3. Job 5 has size 3 and can go to either of machines 1 and 3. In this case, P = 10
but the allocation that minimizes P; must result in P, > 20 (figure 1. Also, Py = 19, but the allocation that
minimizes P, must have P; > 11 (figure 1). Hence, there does not exist an allocation that can simultaneously
minimize P; and P,. Also, by reduction from 0 — 1 knapsack, finding the smallest possible « is NP-hard.

?x:—3 s x=5
1,3 S= 23 =
L } 53 - {23 [x=3
xX=7 xX=7 %‘1 3}
x=6 x=6 .
_ X=5 S x=5
S S= S S=
1 1
{1 12} 3} {1} 12} 3}
Mach.1 Mach.2 Mach.3 Mach.1 Mach.2 Mach. 3
(8) P= 10, but B,= 20 (D) P=19,butF=11

Figure 1: There does not exist an allocation that simultaneously optimizes P; and P; for this problem instance.

D A PTAS for o* for identical machine scheduling

We will study the problem of obtaining fair allocations when all machines are identical. We have not yet been
able to resolve the question of whether globally 1-balanced allocations exist for this problem. In this section,
we sketch a PTAS for approximating a* for this problem. We will use the term £(.A) to represent the vector of
loads on the m machines, given allocation 4. Further, define an allocation A to be locally unbalanced if there
exists a machine j which has more than one job and the load on this machine is more than twice the load on
the least loaded machine. The following lemma will help identify some structure in our candidate optimum
solution.

Lemma D.1 For any locally unbalanced allocation A, there exists another allocation A' such that L{(A") < L(A)
but it is not true that L(A) < L(A").

Proof: Let L,,;, refer to the load on the least loaded machine. Let j be a machine which has two or more
jobs and satisfies Lj > 2L Such a machine is guaranteed to exist since the allocation is locally unbalanced.

2The components may be fractional after this division; it is easy to take care of that by rounding components carefully.



We move the smallest job on machine j to the least loaded machine. Let x be the size of this job and let L;
and L!, ;. be the new loads on these two machines. Since j had two or more jobs, z < L;/2 and therefore

min
L: > Lj/2 > Lpin. Also, L,,;, = Lmin + & < Lmin + L;j/2 < Lj. We now have Lymin < Lj,;, < L; and

min
Loin < L;. < L;. Further, the sum of the load on the two machines did not change. This can only improve all
the prefixes (see [8] for a detailed explanation), and hence £(A') < £(A). It is easy to verify that at least one

prefix gets strictly reduced, and therefore, it is not true that £(A) < L(A'). [ |

The proof works by showing that a local exchange can result in a more majorized allocation; we omit the details.
We can now conclude that any solution which minimizes the prefix Py, or minimizes a has a nice structure: there
exists a number p,1 < p < m such that

1. The p most loaded machines have exactly one job each, and these p jobs are the largest jobs.

2. All the other machines have at most twice as much load as the least loaded machine.

Whether we are computing Py or o, we can guess each of the m possible values of p in turn and pick the
one that gave the best result. Given the number p we can immediately assign the p most loaded jobs to the
first p machines. We now concentrate on solving the remaining subproblem, for which we have the following
guarantee: the most loaded machine has at most twice the load of the least loaded machine. Thus, if L is the
average load on all the machines, we are guaranteed that 2L; > L > L;/2. An algorithm to compute P} and o
up to a 1 + € factor accuracy in time n©(/¢ for this problem is sketched below.

Given any § > 0 define a job to be small if its size is less than §L. Delete all the small jobs from the problem
instance. Then discretize the remaining “big” jobs by increasing the size z; of a job to the smallest number
z!; > x; such that z!, is of the form §(1+48)9L where ¢ > 0is an integer. This discretization can affect the optimum
prefix by at most a factor of 1 + §. Now assume that the load on each machine is also of the form §(1 + §)7L.
Since all loads lie in the range [L/2,2L], the number of possible load values is O(log4/log(1 + §)) = O(1/4).
Thus the number of possible load vectors is at most m©(1/9) . For each load vector, we say that the load vector
is achievable if all the big jobs can be packed with the resultant load vector being dominated by the desired
load vector. Whether a load vector is achievable or not can be computed using dynamic programming in time
n@(/9) (using the fact that due to discretization, the number of possible subsets of jobs is at most n?(1/9).
Then, for each achievable load vector for the big jobs, pack the small jobs starting from the least loaded machine
to make the loads as balanced as possible. Among all the resulting allocations, find the one with the best value
of P and then, when all the P} are known, the one with the best a.

The resulting values are a (1 + 6)¢ approximation for some small constant ¢ > 1. Setting (1 +6)° =1+¢
gives an algorithm that computes the values P; and a* to within an accuracy of a 1 + € factor and takes time
n©(/) Further this algorithm is effective in that it also finds the corresponding allocations which achieve the
optimum P and o*.
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