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Abstract 
 

This paper is concerned with the privacy of person-specific data collected over multiple institutions.  In 
particular, we focus on an example of person-specific DNA sequences collected and stored at various 
hospitals in a defined geographic region.  The applications of human genetics and genomic analysis have 
generated much discussion with respect to privacy and confidentiality in ethical, legal, and social issues.  
For the most part, the previous analysis has concentrated on direct application and disclosure of the 
genetic information of an individual, however, there has been much less attention devoted to the question 
of computational challenges to privacy in the secondary sharing of de-identified databases (i.e. released in 
a format devoid of directly identifying information, such as name, address, or phone number).  We 
introduce methods for determining the re-identifiability of such DNA data and, in the process of doing so, 
prove that the removal of identifying information from DNA does not sufficiently protect the privacy of 
the entities to which the data was derived from.  We demonstrate, through several novel re-identification 
algorithms, that despite a lack of personal demographic information, such database entries can be re-
identified through linkage to other publicly available databases, such as hospital discharge information 
through the use of hospital visit and data collection patterns, which we refer to as data trails, which are 
iteratively discovered from released data collections.  Using real-world data, we are able to determine 
when identifiable linkages can occur for a substantial number of individuals with particular gene-based 
disorders.  Furthermore, we provide empirical analysis of the re-identification algorithms with respect to 
population-institution visit distributions and data trails. 
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1 Introduction 
 
The dramatic increase in the quantity of knowledge corresponding to the relationships between genome 
sequence and an entity’s phenotype or potential phenotype has useful applications in genetic and 
molecular biology basic research, clinical medical research, biopharmaceutical research and development 
[1], public health analysis [2], and occupational safety [3].  Current statistics compiled by the National 
Center for Biotechnology Information (NCBI) demonstrate, that as of the end of 2002, almost 140001 
human genetic loci have been documented and established, over a thousand of which have been 
characterized as influencing genetic disease [4].  The discovery and physical mapping of human genetic 
components have greatly benefited by recent developments in bioinformatics, automated sequencing, and 
digital storage technologies, thus allowing for an exponential increase in the discovery and analysis of 
genetic loci [5].  Yet despite the considerable research benefit that will be produced from collections of 
such data, society must consider the consequences to privacy that can emerge when large quantities of 
person-specific data are stockpiled. 
 The genetic information of an individual is understood to be as, or more, personally revealing than a 
fingerprint [6].  In recognition of this fact, the privacy of an individual’s genetic information has been 
discussed at length in several communities, including those pertaining to law, public policy, molecular 
medicine, the biopharmaceutical industry, and public health [7].  Discussions within and between such 
communities have, for the most part, focused on issues of 1) ownership of information, 2) the ethical duty 
of physicians and counselors to protect their patients’ rights, and 3) genetic discrimination.  The previous 
arguments address the direct release and application of genetic information, however, genetic data is 
useful in realms beyond the locale of an initial collection.  Many groups harboring collections of genetic 
information share, or hope to do so in the future, entity-specific data for various endeavors, such as 
licenses to private or academic research groups, public use datasets, and public health research.  The issue 
of secondary use and sharing of collected genetic data has been discussed by several of the information 
collecting communities, but the question “How do you ensure the privacy of an individual in a released 
dataset?” has led to insufficient response and solutions.  It is recognized that anonymity is necessary for 
patients, but initial attempts to protect privacy were based on the removal of direct identifying attributes, 
such as name, address, and phone number.  This technique is known as de-identification and subsequent 
released datasets are referred to as de-identified.  With respect to DNA sequence data, a de-identified 
database of mere DNA entries, with no additional explicit demographic information or identifiers 
included, can appear sufficiently anonymous, since associating collected DNA information to named 
persons seems impossible. One might make argue that there exists no master registry against which the 
DNA data could be directly compared to reveal the associated person’s identity and, therefore, the 
identity of the DNA is protected.  So how then, can individuals be re-identified, or in other words, how 
can an adversary learn the explicit identity (i.e. name, address, phone number) of an individual? 
 This work demonstrates that inferences drawn from de-identified DNA information, and other 
publicly available sources of medical information, can be used to divulge the exact identities of the 
persons from whom the DNA originated.  Our methods are based on determining unique features from the 
set of locations (e.g. hospitals) that both data for an identified entity and the corresponding de-identified 
data are stored at.  The constructed unique features allow for seemingly anonymous data to be re-
identified, or have a known identity label a previously de-identified piece of data.  The basic outline of the 
attack proceeds as follows.  We consider a set of institutions, such as hospitals, that collect data on a 
patient population.  Each institution collects two types of data.  The first is identifiable heath information, 
such as demographics of age, gender, local zip code and a representation of the diagnoses made. The 
second consists of DNA sequence data on particular individuals. Each hospital keeps a record of which 
DNA relates to which identified patient, yet when the data is released all identifiers are removed from the 
DNA.  The attack method is based on the fact that an adversary can collect releases from multiple 
institutions and reconstruct the locations that a particular entity visited, and likewise for the DNA data.  
                                                           
1 See http://www.ncbi.nlm.nih.gov/entrez/Omim/mimstats.html for current statistics 
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We refer to such reconstructions as trails, and it is through unique features in such trails that a linkage is 
established between identities and their DNA data. 
 The work is divided into five sections, including the current introduction.  In the second section, 
relevant background of DNA information systems, genotype-phenotype relationships, and previous 
attempts to protect data are presented.  In this section, we also map the growth of DNA information and 
its change from single representative sequences to population-based, or many distinct individuals, 
collections.  The third section provides the details to our methods for re-identification.  Results of re-
identifiability are demonstrated in the fourth section with publicly available hospital discharge 
information.  In the fifth section, we attempt to provide an intuitive statistical model for why re-
identification occurs.  In the final section, we discuss the implications of this research and explore 
limitations of and extensions to the methodology. 
 

2 Background  
 
We begin with an introduction to the current relationships between human genetics and digitally stored 
information.  This issue is addressed to demonstrate the increasing simplicity of access and scope of 
information that are available for a novice to learn the relationships between genes and disease.  Thus, 
any detailed descriptions of the history of the rise of computers and molecular biology are withheld, so 
that we may concentrate on several key features of the current status of information storage and 
dissemination.  For a historical account of the relationships between online information and molecular 
biology, we refer the reader to [8]. 
 To cope with the ever-increasing quantities of genetic research data and facilitate scientific discovery, 
the NCBI established the Online Mendelian Inheritance in Man (OMIM) database in 1987 [9].  This 
database has been subdivided into several search mechanisms, one for specific searches corresponding to 
the keywords about genetic traits and the other corresponding to the location of known disease genes.  
The OMIM database is a catalogue of human genes and disorders containing textual information on data 
pertinent to a certain gene, as well as cytogenetic maps and reference information.  Moreover, the OMIM 
database lists the current resolution level of the chromosomal mapping of each gene or genetic locus 
entry, as well as important allelic variants that are known causes of clinical phenotypic abnormalities. 
 Other major central databases are specific to published mutations by gene and mutation type, such as 
the Human Gene Mutation Database [10] or by annotated sequence, such as the Database of Single 
Nucleotide Polymorphisms [11].  In addition to such databases, online websites, such as GeneClinics at 
the University of Washington, have been implemented to facilitate the flow of information between the 
public and the medical genetics community. GeneClinics goals are to provide “disease-specific 
information on molecular genetic testing and its role in diagnosis, genetic counseling, and when 
appropriate, surveillance of at-risk relatives” [12].  Access to such information databases is critical to the 
progress of human mutation research [13].  
 

2.1. First Generation DNA Databases 
 
A recent survey of the World Wide Web [14] finds that there are currently more than 500 molecular 
biology and genomic databases online.  While OMIM and other NCBI-curated databases are organized as 
collective references, they do not exhaust all non-disease causing allelic variants of every known gene.  
Yet, many additional genomic information databases do exist that compile all known allelic variants for 
particular genes and are publicly available.  Many of the databases are online and provide gene specific 
information corresponding to known mutations or polymorphisms.  Some WWW based sites construct a 
physical map displaying the mutations.  While most online genetic databases are publicly available, the 
data that such systems include generally fall into one of two groups.  The first type of site lists standard 
genomic information consisting of the raw consensus sequences (the most common non-mutated DNA 
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sequence) and polymorphic sequences.  The other type of site is more specific and detailed for a particular 
genetic locus.  Such sites catalogue the known characterized mutations in the genetic locus.  They also 
record specific mutation’s and polymorphism’s respective relationships to molecular and clinical 
phenotypes.  Information in these databases appears to be sufficiently anonymous, for they aim to provide 
the first examples of particular mutations and their dissemination for continuing research. The individual 
supplying the mutation may be geographically located anywhere in the world.  We term such databases as 
first generation publicly available genetic databases. 
 First generation databases, including locus specific and central mutation databases, convey the 
impression of being harmless collections with a research orientation.  In fact, such are the intentions of 
the providers, however, the same sites may directly compromise the privacy of the data contributing 
subjects.  One instance of this type of database is exemplified in the Cystic Fibrosis Mutation Database 
maintained by the Cystic Fibrosis Genetic Analysis Consortium [15].  The database provides a mutation 
table of all published mutations in the CFTR gene, polymorphisms in the coding and non-coding regions 
of the gene, and references from which the mutations were submitted.  The listed mutations have origins 
located in the United States, France, Italy, Soviet Union, and other places around the world, and totaling 
over 900 mutations.  The value of such databases has been paramount in helping researchers determine 
hotspots for mutation and understand clinical phenotypes associated with specific mutations.  
Nonetheless, it should be noted that first-generation genetic collection databases are not necessarily 
anonymous.  While they do not harbor explicit identifying data about individuals, such databases may be 
discredited in the realm of anonymity.  If it was the objective of an unwanted intruder to compromise 
anonymity in the collection, one could possibly perform at least one re-identification based on the 
publication and references associated with each reported piece of genetic information.  The research we 
present below does not elaborate on this hypothesis; rather, the previous is introduced to demonstrate the 
general false belief of privacy that de-identification, or systematic removal of explicit identifying features 
of information offers for DNA data. 
 

2.2. Second Generation DNA Databases 
 
The ability to conduct diagnostic DNA sequence analysis has fuelled the collection of population-based 
DNA, which we term second generation DNA databases.  In such cases, submissions of well-
characterized genomic data corresponding to multiple individuals appear in the database.  The 
submissions, which are partitioned into entries analogous to each individual, include sequences from 
individuals within a specific population, such as a particular hospital, biopharmaceutical company, or 
government clinical trial.  As DNA diagnostic sequencing speed continues to increase and the economic 
cost of such tests decrease, so too will the quantity of entries and completeness of records in genomic 
databases grow.  We have already seen the rise of the aforementioned databases in certain university 
hospitals and private companies, such as Incyte Genomics, deCode Genetics [16], and the PharmGKB 
project [17]. 
 Collecting and sharing such information is useful to researchers and clinicians, yet, due to 
geographical specification and additional inferences that can be extracted from the sequences, which we 
present a general algorithm for below, the privacy concerns for second generation databases are far more 
grievous than those touched upon above for the first generation.  The techniques in which an attack could 
be launched on second generation DNA databases are more extensive and would have more effect on the 
personal life of a larger number of patients.  There are a multitude of reasons why one may desire to keep 
their genetic information private, such as to prevent discrimination in employment, or insurance, or avoid 
social stigma [18].  In addition, the heredity of genetic features shifts the scope of this problem from the 
individual to the family.  Thus, it is the records of second generation DNA databases that our research is 
concerned with. 
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2.3. Computational Methods of Privacy Protection 
 
There have been several computational systems introduced that help render data anonymous.  These 
include Scrub [19], which locates personally identifying information in unrestricted textual documents, 
and the Datafly [20] and Mu-Argus [21] systems, which attempt to render field-structured person-specific 
databases sufficiently anonymous.  A recent attempt to protect DNA sequences has been introduced in the 
work of Lin et al [22].  In this work, the technique of “binning” is applied to protect single nucleotide 
polymorphism (SNP) data.  This technique attempts to release data such that for each set of characteristics 
in the data there are at least as many released sequences equal to the size of a specific bin.  However, the 
technique addresses variant regions in DNA with a length of one nucleotide, and as such, it does not 
address the issue of many other common types of mutations, including insertions, deletions, inversions, or 
repeat mutations.  Furthermore, the method protects regions that have variation of a maximum of two 
different nucleotides, but mutations may occur through any of the four possible nucleotides.  Currently, 
there are no known generalized techniques to protect DNA sequence beyond that of single nucleotide 
variations or for nucleotide regions with a distribution of nucleotides greater than two.  As such, none of 
the proposed systems can stymie the attack strategy described below. 
 

3 Re-identification Methods 
 
We propose a system for determining the re-identifiability of sequenced DNA, independent of any 
explicit demographics or identifiers maintained with the information.  The method reveals DNA database 
entries that can be re-identified to the subjects of the data.  Figure 1 provides a graphical overview of the 
re-identification procedure, and the steps of the procedure are elaborated upon below. 
 

   
Figure 1.  Overview of the DNA re-identification procedure. 

 
First, clinical information databases are partitioned into patient profiles with DNA-based diseases and 
those without such diseases.  Next, this information is re-identified with publicly available information.  
Third, DNA databases from various institutions are partitioned into entries with a known disease gene 
mutation and entries without known mutation.  Finally, the re-identified clinical information partition and 
known DNA mutation partition are crossed for linkage.  Re-identification occurs when a positive link is 
established.  The following in sections 3.1 through 3.4 are expanded upon from their initial publication in 
[23]. 
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3.1. Step 1: Relating Clinical Codes and Genetic Disease 
 
Many diseases are known to have genetic influence, and of such diseases, a growing number are being 
found to depend on interactions of multiple gene products and environmental influence, such as certain 
cancers.  Mutations in specific genes may not necessarily cause a certain disease, but instead can raise the 
risk of developing that disease, such as mutations in the BRCT domain of BRCA1 and breast cancer [24], 
or variants of the APOE4 gene and late onset Alzheimer’s disease [25].  Still, there exists an expanding 
group of genetic influence diseases that are caused by mutation in a single gene.  These diseases span a 
variety of biological processes involving cancer, immunity, metabolism, the nervous system, signaling, 
and molecular transporters [26].  As a result of the growing number of characterized disease genes, the 
first step is to determine and organize the relationships between single gene detectable disease and 
publicly available hospital discharge data.  Information and references on the relationships between genes 
and diseases can be found at NCBI’s website.  OMIM and Genes and Disease (GD) [27] pages were used 
to determine clinically tractable diseases with a DNA basis.  Most of the genetic disorders discussed on 
these websites are the direct result of mutations in a single gene.  To determine diseases with a 
deterministic genetic basis that would be useful for this study, we searched for diseases on the GD pages 
in the diagnoses codes of publicly available discharge databases.  The codes used in this study were 
International Classification of Diseases, Ninth revision (ICD-9) [28]. 
 

3.2. Step 2: Re-Identifiability of Individuals with Genetic Diseases 
 
Population-based health record profiles were constructed from state collected hospital discharge 
databases, which we refer to as health data profiles, via the method depicted in Figure 2.  For each 
hospital visit in the health data that contains a diagnosis corresponding to that of a single disease gene, a 
profile is constructed consisting of the attributes {date of birth, gender, ZIP, disease, hospital visit info}, 
where ZIP is the patient's residential postal code.  Profiles are then merged based on census demographics 
for {age, gender, ZIP} so that values for hospital visit info from profiles that are likely to relate to the 
same person were combined. The set of resulting profiles contain the demographics for persons diagnosed 
with targeted diseases and information from the hospital collecting data for a second-generation DNA 
database. It has been shown using data linkage algorithms that 80-100% of discharge database entries can 
be accurately re-identified using publicly available population registers [29].  Therefore, if we can match 
re-identified patients from a discharge database, who have been diagnosed with a simple genetic disease, 
to corresponding genetic sequences stored in a second-generation DNA database (maintained by a 
hospital), we can reveal the identity of the DNA contributors in almost all cases.  

The combination of attributes from a database that can uniquely indicate an entity are termed a 
quasi-identifier (QI) [30]. The identifiability of the quasi-identifier was evaluated by determining the 
uniqueness of the quasi-identifier value combinations in the population.  For example, consider the quasi-
identifying value {4/6/75, M, 61010}.  If there exists only one living person with this combination during 
the period the data was collected, then this individual could be positively re-identified.  However, if there 
existed more than 1, then attempts to determine the identification of the individual, using solely the quasi-
identifier, would yield ambiguous results. 
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Figure 2. Longitudinal health record profile construction, for Huntington’s disease (i.e. ICD-9 3334) from clinical 
information databases.  The first step queries for all distinct demographics with the specified diagnosis.  The shaded 
column corresponds to the specific diagnosis code used for the query.  Next, the databases are requeried with the 
captured demographic combinations to append additional clinical information from other hospital visits.  Individuali 
is an appended identifier for each unique entity, determined from demographic information. The shaded set 
corresponds to a profile for a single individual. 
 

3.4. Step 3: Direct Information Inference from DNA Sequence 
 
In previous work, we introduced the CleanGene [23] methodology, which offered several methods for 
inference from sequence. This tool can be useful in the inference of 1) deterministic disease gene 
mutations, 2) the hospital releasing a sequence, as well as in particular cases, 3) gender of the subject may 
be learned.  
 

3.5. Step 4: Linking DNA and Health Database Entries 
 
Here we introduce several methods for linkage of health and DNA data.  Both of the presented methods 
employ techniques to link data with minimal information relative to the genotype-phenotype relationship. 
There are several assumptions invoked to assist in this analysis.  First, the only genetic knowledge 
considered is as follows: no prior knowledge is used to discern between different types of mutations for a 
specific disease.  For example, it is well known that Huntington’s disease is characterized by a strong 
inverse relationship between the size of the CAG triplet repeat expansion and the age of onset of the 
disease [31, 32].  Thus, there exist additional inferences that can be extracted beyond correspondence of 
gene and ICD-9 code.    Yet, in this study we are concerned with the general situation only; an individual 
has an abnormal number of CAG repeats in the HD gene.  In doing so, we prevent any inaccurate or 
ambiguous linkages that might occur due to the overlapping of age of onset variance associated with each 
repeat size.  Furthermore, if a mutation is found in a disease gene sequence released by a data collecting 
institution, then there exists the presence of an observable clinical phenotype as specified by the 
associated ICD-9 code. 
 The final assumption states that the DNA of an individual has minimal changes the times from 
collection from one institution to another.  For example, consider the following hypothetical scenario. In 
1996, Mr. Jones went to the University of Chicago Medical Center and had his DNA sequenced for some 
reason, such as diagnostic testing of a particular disease.  Two years later, Mr. Jones has treatment for a 
disorder at another hospital in Illinois, such as Rush Presbyterian Hospital (in Chicago).  Once again, Mr. 
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Jones has his DNA sequenced or his DNA is sent from the first collecting hospital.  At both hospitals, the 
Mr. Jones’ DNA sequence is stored in a DNA database.  There may be some variation between the two 
sets of sequences, due to some random occurrence, such as mutation during cell division over time, 
sequence analysis glitch, or difference in tissue type that the DNA was procured from.  However, the 
difference between Mr. Jones two samples of DNA would still be more similar than his DNA and the 
sequences of that of some random individual, Mr. Smith. 
 

3.5.1. Intersect-Purge 
 
The Intersect-Purge (IP) system utilizes longitudinal datasets, which are constructed via the uniqueness of 
combinations of demographics of individuals in discharge databases as described above.  The formal 
algorithm is presented in Figure 3. 
 

Algorithm: Intersect-Purge 

Input 1) Patient profiles of clinical data (basic hospital visit information) 
2) DNA database information from collecting institutions 

 
Output List of re-identified DNA database entries 

Assumes DNA entries of different individuals can be resolved 
Step 1 Construct binary matrix of patient health information and collecting institutions 
Step 2 Construct binary matrix of DNA information and collecting institutions 

while Unique pair (DNA, hospital) exists 
Step 3      Attempt re-identification of pair 
Step 4      Remove outlier column (patient) and row (hospital) 

Figure 3. Pseudocode for the Intersect-Purge algorithm 
 
The following assumptions are made for convenience. 
 

1) Let HOSPITALS be the set of hospital identification numbers (HID) for which DNA and hospital 
discharge data are available specific to the disease gene. In Figure 4, HOSPITALS = {H1, H2, H3}. 

2) Let DNA be the union of all DNA available from hospitals specific to the disease gene. In fact, 
DNA is a table over (HID, Sequence). 

3) Let DISCHARGE be the union of all hospital discharge available for visits from the hospitals that 
include a diagnosis specific to the disease gene.  

 
Step 1: Establish Uniqueness. The goal of IP is to determine how data from a re-identified database, the 
hospital discharge profiles, can be linked to de-identified database, the DNA entries.  To establish this 
link, we have generalized the genotype-phenotype relationship and considered only the use of audit trails 
in the re-identification process.  Therefore, the only factor indicative of uniqueness is the number of 
individuals visiting a particular hospital.  When there is only one individual at a hospital, then a re-
idenitification must occur between this individual and the lone DNA sequence at this hospital.  However, 
if there are additional features that permit a relationship to be established between DNA and health data 
the number of possible re-identifications can be increased.  If gender of the individual was explicitly 
stated or could have been inferred from DNA [33], then the sets HOSPITALS and DNA could have been 
partitioned into mutually exclusive smaller sets based on the gender of the individual and the gender of 
the DNA.  Therefore, for any attribute with greater than one value, we can increase the maximum number 
of possible unique entries.  In actuality, the number of combinations is equal to i|ai|, where |a| is the 
number of distinct values for an attribute that is common between the two datasets being linked.  For 
example, consider the use of the following fields {hospital id, sex, gp2}, the number of distinct classes for re-
identification is |hospital id|*|sex|*|gp|.  When the DNA and health datasets are crosses several key facts are 
                                                           
2 The set of genotype-phenotype relationship for a particular genetic loci. 
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employed; namely that 1) it is known that the hospitals visited in the two datasets are the same, 2) there is 
only one type of mutation considered that can cause the observed clinical diagnosis, and 3) we can 
distinguish between the genders in the database entries.  Thus, if it is impossible to distinguish between 
the genders, then the number of classes that the datasets would reveal would be the number of hospitals. 
 
Step 2: Remove Duplicate Information.  Once a DNA entry is re-identified, the entry and its associated 
identied information no longer need to be considered for re-identification.  Removal of this data is 
possible, since each DNA entry is traceable from one institution to another.  The removal of duplicate 
data, can allow for new DNA sequences and identified data to become unique outliers. 
 
Step 3: Iterate Until Fail Re-identification. After removal of the re-identified individuals from all other 
hospitals that they visited, the search process restarts.  The program continues in an iterative manner until 
the search step fails to re-identify an individual.  
 

3.5.1.1. Intersect-Purge Example 
 
A graphical overview of a simple situation is provided in Figure 4 in which three individuals deposit 
clinical and genetic information over 3 hospitals. Patient P1 visits hospital H1. Patient P2 visits hospitals 
H1 and H2. And finally, patient P3 visits hospitals H1, H2 and H3. Following a patient’s visit, a hospital is 
reported to maintain a copy of the DNA sequence information for the patient, denoted ACTGi and hospital 
discharge information for the patient’s visit that includes {Birthdate, Gender, ZIP}. The hospital 
discharge information is denoted DGZi. 
 

 
 
Figure 4. Graphical representation of patient information in hospital databases and Intersect-Purge after first round 
of outlier detection.  The open circle represents a linkage of DNA to re-identifiable health information, the 
prohibit symbol represents removal of the information from the consideration range in the next pass of the 
algorithm. 
 
If H3 has only one patient in DNA presenting the disease gene and the only patient reported in 
DISCHARGE with a diagnosis of the disease, then the DNA sequence must originate from DGZ3, which 
identifies P3. Upon knowing the identity of P3, we can remove all instances of P3 from HOSPITALS and 
DNA by matching the P3 Sequence and P3 demographic information. As a result, we can reiterate the 
search for a unique occurrence of patient data and notice that, as a result of the removal of P3,, H2 now has 
an outlier of one patient in DNA presenting the disease gene and the patient reported in DISCHARGE 
with a diagnosis of the disease, so the remaining DNA sequence harbored at H2 must originate from 
DGZ2, which identifies P2. This patient was not unique at H2 during the first round of outlier detection 
with IP, due to the presence of P3’s information.  Similarly, with the knowledge of P2 identity, we can 
then search HOSPITALS and DNA to remove all instances of P2. As a result, after two iterations, H1 has 
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only one patient in DNA presenting the disease gene and the patient reported in DISCHARGE with a 
diagnosis of the disease, so the DNA sequence must originate from DGZ1, which identifies P1. Following 
this simple process of identifying a unique occurrence, identifying it, and then purging it from the others, 
made it possible to render the DNA sequences identifiable. 
 

3.5.1.2. Complexity 
 
The problem is simplified by considering that under our model, DNA sequences are distinct to 
individuals, as such, the number of sequences is equal to the number of identified entities.  This analysis 
proceeds, in terms of the matrix representation of IP.  First, the binary data-location matrix M, sized 
|PATIENTS|  |HOSPITALS|, is filled for all health data profiles.  This process completes in 
O(|DISCHARGE|) time.  Concurrently, we construct and maintain an additional row R for the column 
sums, where R(i) is the column sum for row i.  First, the row sum is parsed for an instance of a 1 in this 
row and, when found, we link this patient to the DNA sequence in the subtract 1 from the column sum.  
This step is of O(|HOSPITALS|) for the scan and O(|PATIENTS|) for the column scan.  The re-identified 
row and column are removed and the search repeats with a table of size (|PATIENTS|-1)  (|HOSPITALS|-
1).  We iterate the search, re-identification, and removal process until no more re-identifications can be 
made. The complexity of this search strategy is approximately quadratic and is O([max(|PATIENTS|, 
|HOSPITALS|]2). 
 

3.5.1.3. Re-identification Upper limit 
 
The maximum number of patients that can be identified by IP is bounded and directly dependent on the 
product of the set sizes of observed values for a common attribute as shown above. The actual limit is a 
linear function of this product.  The maximum number of re-identified patients can only be achieved 
when the number of distinct patients is less than or equal to the number of partitioning classes i|ai|-1.  In 
the examples hospitals above, the maximum is simply the number of hospitals considered.  
 

3.6. Re-identification of DNA in Trails 

The IP algorithm is able to re-identify through iterative outlier detection of isolated occurrences of 
patients in hospitals (i.e. P3 in H3). Thus, IP considers the set of individuals that visit each hospital.  When 
a hospital is found with a single occurrence of an individual from their respective class (i.e. male or 
female), a linkage is made. However, the hospital trail for an individual would be more distinguishing 
than searching for hospital visit sizes of 1.  Thus, it seems that it would be more useful to search the 
patterns of hospitals visited for each patient.  The hospital visits made by each patient should be utilized 
as the set, rather than the patients at each hospital.  This is exactly how the workings of the Re-
identification in DNA (REID) are based.  Figure 9 provides pseudocode for the basic operation of the 
REID algorithm, which utilizes JDBC as did IP. The actual algorithm includes some attention to 
assumptions made in this basic operation, but Figure 5 does provide a description of the basic approach.  
Valid assumptions will be clarified below. 
 
Steps 1 and 2: Construct Trails.  The hospital trails for each patient are a binary representation of the set 
of all hospitals considered for all individuals.  This construction proceeds in the same manner as was 
performed Intersect-Purge. 
 
Step 3: Determine Uniquess of Trail.  For each row in the matrix, if it is unique, or in other words, if 
there are no other patients exhibiting the same visit pattern, then the data is linked to the identical 
demographic pattern found in the other dataset for re-idenitification.  
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Algorithm: Re-idenitification of DNA 

Input 1) Patient profiles of clinical data (basic hospital visit information) 
2) DNA database information from collecting institutions 

Output List of re-identified DNA database entries 
Assumes DNA entries of different individuals can be resolved 
Step 1 Construct audit trail for each patient 
Step 2 Construct audit trail for each DNA sequence 
Step 3   for Each audit trail 

If      Audit trail is unique 
           Attempt re-identification of audit trail 

Figure 5.  Pseudocode for the REID algorithm. 
 

3.6.1. Re-identification of DNA Example 
 
To demonstrate the power of REID, consider the more complex situation depicted in Figure 6.  By 
applying Iterative-Purge to the dataset, there would not be any individuals that could be identified.  The 
algorithm would not be able to initiate.  There are no outliers in the first round.   The algorithm simply 
stops after one iteration and returns no individuals.  
 

Figure 6. DNA data collection scenario. IP fails to re-identify any individual, while REID re-identifies all 
individuals.  

 

Let us consider the algorithm in terms of sets of clinical information.  In the first pass of the algorithm the 
patient sets at each hospital would be: {P3, P4, P5} for H1, {P2, P3, P6} for H2, and {P1, P2, P5} for H3.  
Notice that the size of each set is greater than the necessary size of 1 for IP to determine the identity of an 
individual.  However, it is useful to consider an alternate representation of the matrix and use the sets of 
hospitals that patients visit for each patient instead of each hospital.  We are now interested in 
determining if the hospital trail of a patient is unique.  To determine the uniqueness of the hospital trail, 
we can consider the occurrence of each patient at a hospital.  Either the patient made a visit or the patient 
did not make a visit.  The REID representation is expanded to incorporate all hospitals in the known set of 
hospitals for each patient as in Figure 7. 
 
 

 
 
 
 
 

Figure 7.  Resolving IP ambiguities by conversion of set to matrix representation. 
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Direct comparison of rows in the resulting matrix of Figure 7 reveals that each individual has a unique 
trail that allows for a linkage to occur between identity and DNA.  The example presented considers the 
set of hospitals that the six patients visited.  Yet this set is a subset of the total number of hospitals in a 
geographic location, such as a state in the United States.  Thus, if there exists a larger number of visited 
hospitals for all considered patients, the representation of the above patients would still be identifiable 
provided that no other patients visited the same hospitals. 
 

3.6.2. Re-identification Upper limit  
 
The maximum number of patients that can be identified by REID is bounded by the number of binary 
strings for the number of attribute combinations.  Therefore, the maximum number of reidentifications is 
equal to 2 i|ai|-1. 
 
 
3.6.2. Complexity 
 
The computational speed of the basic REID algorithm provided in Figure 5 is as follows. Step 1 and 2 
each have a one time execution/construction of O(|DISCHARGE|) and O(|DNA|). We analyze the 
complexity of trail comparison of health data.  The DNA trail analysis is a direct corollary. Step 3, 
executes each |PATIENT| times. For each iteration, the trail is compared to the number of patients 
remaining to be checked for re-identification. Thus, each trail is compared to at most |PATIENT| trails, 
but almost always less than this maximum.  Therefore, the overall computation time is quadratic and is 
O(|PATIENT|2). 
 

4 Results 
 
The re-identification algorithms are assessed with hospital discharge data (called health data) for the state 
of Illinois spanning the years 1990 through 1997.  In many states, such datasets are publicly available.[34] 
There are approximately 1.3 million hospital discharges per year in the health data, which reportedly 
corresponds to hospital compliance of 99+% for all discharges occurring in Illinois hospitals.[35]  
Diagnosis codes, procedure codes, patient demographics, and hospital identity are among the information 
documented for each visit. For this analysis we assume the second-generation DNA database under 
question results from patients that are in the hospital. 
 

4.1. Code-Gene Relationships 
 
Over 30 diseases caused by a mutation in a single gene were found to have distinct annotations in the 
discharge data at a first order search of specific names of disease and genetic characterization.  A partial 
listing of the diagnoses that can be extracted from the hospital discharge data is presented in Table 1.  The 
ICD-9 codes represent disease that manifest as the result of mutations in single genes.  The preliminary 
search has not been exhausted, since the names of some diseases are classified differently in the clinical 
information than its genetic counterpart.  Examples of such well-defined diseases with different names in 
the database include diastrophic dysplasia, spinal muscular atrophy (SMA), and Angelman syndrome. 
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# Disease in Medical Release Data ICD-9 Known Gene(s) 
1 Adrenoleukodystrophy 3300 ALD 
2 Amyotrophic Lateral Sclerosis (ALS) 33520 SOD1, ALS2, ALS4, ALS5 
3 Burkitt’s Lymphoma 2002 MYC 

4 Chronic Myeloid Leukemia 
2051 

20510 
20511 

BCR, ABL 

5 Cystic Fibrosis 

27700 
27701 
V181 
V776 

CFTR, CFM1 

6 Duchenne’s Muscular Dystrophy (paralysis) 33522 DMD 
7 Ellis-van Creveld (chondroectodermal dysplasia) 75655 EVD 

8 Essential Tremor (idiopathic) 
(autosomal dominant account for ½ of the cases) 3331 ETM1 (FET1), ETM2 

9 Familial Mediterranean Fever (amyloidosis) 2773 FMF 
10 Fragile X 75983 FMR1 
11 Friedrich’s Ataxia 3340 FRDA 
12 Galactosemia 2711 GALT 

13 Gaucher's disease (cerebroside lipidosis)  2727 
3302 GBA 

14 Hemophilia Type A 2860 HEMA 
15 Hereditary Hemmorhagic Telangiectasia 4480 H 
16 Huntington’s Chorea 3334 HD 
17 Hyperphenylalaninemia (Phenylketonuria) 2701 PAH 
18 Immunodeficiency with hyper-Igm (HIM) 27905 TNFSF5 
19 Machado-Joseph Disease (Spinocerebellar Ataxia 3) 3348 MJD 
20 Marfan Syndrome 75982 FBN1 
21 Menkes Syndrome 75989 ATP7A 
22 Methemoglobinemia 2897 HBB, HBA1, DIA1 
23 Myotonic dystrophy 3592 DM 

24 Pendred's syndrome 
(familial goiter with deaf-mutism) 243 PDS 

25 Prader-Willi Syndrome 75981 SNRPN 
26    
27 Refsum’s Disease 3563 PAHX 
28 Sickle Cell Anemia 28260 HBB 
29 Spinocerebellar ataxias – or atrophy 3349 SCA1 

30 Tangier disease 
(familial high-density lipoprotein deficiency) 2725 ABC1 

31 Tay-Sachs   3301 HEXA 
32 Tuberous Sclerosis (Pringle’s disease) 7595 TSC1, TSC2 
33 Vitelliform Macular Dystrophy (Best Disease) 36276 VMD2 
34 von Hippel-Lindau (angiomatosis retinocerebellosa) 7596 VHL 
35 Werner's disease or syndrome 2598 WRN 

36 a)  Werdnig-Hoffmann disease 
b)  Kugelberg-Welander 

3350 
33511 

SMA1 
SMN/NAIP region 

37 Wilson’s Disease 2751 ATP7B 
Table 1. Sample of ICD-9 code descriptions with known gene counterparts. 
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4.3. Re-identification of DNA with REID and IP 
 
This section of the results utilizes discharge databases spanning the years 1990-1997.  Eight different 
single gene disorders are analyzed including cystic fibrosis (CF), Friedrich’s Ataxia (FA), hereditary 
hemorrhagic teleganictasia (HHT), Huntington’s Disease (HD), phenylketonuria (pku), refsum’s disease 
(RD), sickle cell anemia (SC), and tuberous sclerosis (TS).  A summary of the DNA based disease cohorts 
is provided in Table 2. 
 

Disease Patients Hospitals Min Max Mean Median St. Dev 
CF 1149 174 1 8 1.155098 1 1.805918 
FA 129 105 1 5 1.126099 1 1.711538 
HD 419 172 1 7 1.221283 1 1.77327 

HHT 429 159 1 8 1.065105 1 1.697674 
PKU 77 57 1 10 1.528985 2 2.068182 
RD 4 8 2 2 2 2 0 
SC 7730 207 1 34 1.822576 2 2.380466 
TS 220 119 1 8 1.107661 1 1.79021 

Table 2. Summary statistics of the genetic datasets studied with the re-identification algorithm. 

 

4.3.1. Identifiability of DNA with REID and IP 
 
Figure 8 demonstrates the identifiability of different DNA database entries based on the IP and REID 
systems.  Results range from 0% to 100% identifiability with IP and from 33-100% identifiability with 
REID.  As can be observed in Tables 3 and 4 and is graphically showing in figure 9, the risk of re-
identifiability decreases as the number of patients per hospital increases. This is an expected result and 
will be elaborated upon below.  Two different sets of common fields were used for this study.  The first of 
re-identification attributes, shown in figure 14, consists of {hospital visited, diagnosed disease}.  The 
second set includes the additional attribute gender.  As expected, the addition of the sex attribute increases 
the identifiability of the data. 
 

Percent of Cohort Re-identified Disease Average # Disease 
Patients per hospital 

IP REID 
CF 6.60 3.22% 32.90% 
FA 1.23 38.76% 68.99% 
HD 2.48 11.03% 50.00% 

HHT 2.70 10.49% 52.21% 
PKU 1.35 33.77% 75.32% 
RD 0.50 100.00% 100.00% 
SC 37.34 0.32% 37.34% 
TS 2.10 16.00% 51.60% 

Table 3. Selection of classes used for re-identification with the IP and REID algorithms. 
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Percent of Cohort Re-identified Disease- 
Gender 

Average # Disease 
Patients per hospital 

IP REID 
CF-F 3.92 7.18% 43.09% 
CF-M 3.95 8.11% 39.36% 
FA-F 0.88 80.00% 80.00% 
FA-M 0.96 57.97% 78.26% 
HD-F 1.26 47.59% 79.14% 
HD-M 1.87 32.49% 50.63% 
HHT-F 1.74 22.95% 64.34% 
HHT-M 1.62 25.41% 63.24% 
PKU-F 1.08 59.62% 80.77% 
PKU-M 1.00 64.00% 80.00% 
RD-F 0.50 100.00% 100.00% 
RD-M 0.50 100.00% 100.00% 
SC-F 22.09 1.34% 43.76% 
SC-M 18.61 1.21% 36.51% 
TS-F 1.10 58.76% 78.35% 
TS-M 1.41 39.02% 61.79% 

Table 4. Selection of classes blocked by gender used for re-identification with the IP and REID algorithms. 
(M=male, F=female) 
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Figure 8.  Relationship between re-identification capabilities of IP and REID.  Complete cohorts are used with both 
types of classes (male, female, and no gender consideed). 
 

The relationship between re-identifiability, the number of hospitals, and the number of distinct individuals 
in the discharge dataset is depicted in Figure 9.  We demonstrate the previous with the IP algorithm.  
Notice that there is an inverse power relationship between the average number of patients per hospital and 
the fraction of the individuals in the discharge database that could be linked to their respective DNA 
database entries. 
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Figure 9. Identification using Intersect-Purge.  left) Comparison of different class types: 1)Split on disease and 
gender. 2) Split on disease alone. right)  Both class types 1 and 2 (from a) combined.  Regression line has minimal 
change. 
 
The identifiability of both class types (hospitals with and without gender) for IP and REID are plotted in 
Figure 8.  The raw data used for these plots is directly from Tables 3 and 4.  Notice, that identifiability for 
REID depreciates at a much slower rate than IP.  By the time that IP is within 0.5% of zero identifiability, 
REID continues to identify over 30% of the disease cohort, in this case sickle cell anemia. 
 The probability of an audit trail being found to be unique is not dependent on the distribution of 
patients and hospitals alone.  There is also a dependence on the actual numbers of people and hospitals in 
the system being analyzed.  Intuitively, one would expect that a system with 50 patients and 50 hospitals 
would have more re-identifications occur than a system with 50 patients and 20 hospitals.  A similar 
result would be expected if we varied the number of patients while holding the number of hospitals 
constant.  This was analyzed and found to be true.  The number of patients visiting a certain number of 
hospitals was analyzed with respect percent of the subgroup of the cohort that was re-identified.  We 
considered the number of patients with respect to the number of available hospital audit trails.  The 
number of audit trails was taken as the number of possible trails for the number of hospitals visited.  For 
example, consider a cohort that visited 150 hospitals.  If one hospital was visited, then 150 choose 1, or 
150, possible audit trails exist.  If two hospitals were were visited, then 150 choose 2, or 11175, trails 
possible trails exist.  This is analysis is shown for the REID algorithm in Figure 10, where both the 
number of patients and the number of audit trails are considered in the log scale.  However, while all 
possible audit trails are available for each patient, only a small fraction are actually observed in the 
dataset.  This is due to the fact that as the number of hospitals visited increases, less patients actually visit 
this increased number.  So, while the number of available audit trails increases, a lower ratio audit trails 
are actually used than when there were a lesser number available. For a more real world representation of 
re-identifiability with respect to the number of audit trails we analyzed this concept with respect to the 
populations from the above re-identification experiments. The results are provided in Figure 11, and 
follow the expected trend of increased re-identifiability. 
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Figure 10.  Re-identifiability as a function of number of patients and theoretical number of audit trails.  The two 
plots are the same, merely in different orientations of the vertices. The data used for this plot is from all available 
genetic datasets.  The number of patients and available number of audit trails are plotted in the log scale.  As the 
shade of the surface plot becomes lighter, re-identifications increase. 
 

 
Figure 11.  Re-identifiability as a function of number of patients and actual number of audit trails.  The two plots are 
the same, merely in different orientations of the vertices. The data used for this plot is from all available genetic 
datasets.  The number of patients and available number of audit trails are plotted in the log scale.  As the shade of 
the surface plot becomes lighter, re-identifications increase. 
 

5 Discussion 
 
5.1. Hospital Audit Trails versus Single Hospital Outlier Detection 
 
It is evident from the empirical results that the REID algorithm provides a stronger re-identification tool 
than the IP algorithm.  However, it may not be readily apparent why REID outperforms IP.  The 
theoretical maximum re-identifications for each algorithm are depicted in Figure 12.  IP is basically an 
iterative outlier detection method.  As such, it is necessary for an outlier to exist for IP to begin outlier 
detection.  The outliers are a single patient with a particular disease.  The number of patients that can be 
identified, as discussed in the upper limit analysis of section 3.5.7 is linearly dependent on the number of 
hospitals visited.  One can never re-identify more patients than there are hospitals.  However, the more 
common a disease is, it is obvious that the average number of patients per hospital increases.  With this 
increase, the chances of finding a small number of patients in any particular hospital are small. 
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Figure 12. Theoretical maximum number of identifiable individuals for REID and IP.  The number of classes 
considered is the number of hospitals in the dataset.  REID has an exponential relationship, while IP has a linear. 
 
REID circumvents this linear relationship by invoking a combinatorial aspect of how individual in a real 
world population visit hospitals.  Hospitals with more than one patient presenting a particular disease 
should not be ruled out, since the same patients may visit other hospitals.  Not all of these patients visit 
the same hospital.  Thus, as the number of hospitals increases, the number of audit trails exponentially 
increases, permitting more opportunity for re-identification. 
 

5.2. Probability of Re-identification 
 
While the theoretical maximum re-identifiability growth is a feature that explains the difference between 
IP and REID, it is rarely achieved in most real world systems.  One reason for the inability to reach 
maximum re-identification relates to the distribution of patients’ hospital visits.  The distribution is not 
uniform.  Therefore, we can consider each hospital with a distinct probability of a patient visiting it.  
Therefore, let us consider the following representation.  Let the set of patients with a particular disease be 
P = {p1, p2, p3,…,pM}, and let the complete set of hospitals visited by such patients be H = {h1, h2, 
h3,…,hN}.  Furthermore, let the number of distinct patients visiting each particular hospital be represented 
by the set X = {x1, x2, x3,…,xN}.  If we consider hospitals independently of each other, then the probability 
of a patient visiting the ith hospital is a simple Bernoulli probability xi/M.  Therefore, the probability of 
any particular audit trail a being observed is the multinomial: 
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where (x) is an indicator function defining the binary status of the audit trail for the institution under 
consideration.  While this model accounts for the non-uniform distribution of individuals in hospitals, 
there may still exist correlation between the hospitals that are visited at the individual level. 
 For a more accurate representation of the probability of any particular audit trail being observed, we 
map the set X to a new set X .  This mapping occurs by the following measure of dependence in hospital 
visits.  Consider two hospitals h1 and h2.  If all of the individuals that visited hospital 1, visited hospital 2 
as well, then there is complete containment of the hospital visits of hospital 2 by set of hospital 1 visits.  
As such, by including the hospital visits made to hospital 2, when an individual has visited hospital 1, the 
probability of an audit trail with visits to hospital 1 and 2 is erroneously inflated, since the same amount 
of information can be coded by the hospital 1 visit.  Therefore, in the new set X , x 1 is set equal to x1, 
while x 2 is set equal to x2-x1 to account for the double counting.  We define independence to be the case 
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when there is incomplete containment of neither for hospitals visits when compared with a second patient.  
Figure 13 provides a visual representation of the concept.  

 

 
Figure 13. Graphical set representation of hospital visit dependence and independence 

 
So, how do the probabilities change with removal of complete dependent hospital visits? This we 
compute as [P(a)-P(a )] / P(a), where P(a) is the log probability of an audit trail before removal of 
dependent hospital visits and P(a ) is the log probability of an audit trail after removal.  The results of this 
analysis with cystic fibrosis cohort are provided Figure 14. For each audit trail the change in the 
probability of observing each particular audit trail from the cystic fibrosis dataset was estimated.  The 
change in probability is normalized by the magnitude of the original probability.  The magnitude was 
used to prevent a change in sign of the measured feature, since probabilities measured in the log scale 
have a negative value.  One could simply have chosen to normalize by the negation of the original audit 
trail probability. 
 It is clear that for most of the observed audit trails in this dataset, the removal of dependent hospital 
visits reduced the probability that an audit trail would be found to be unique.  To orient the reader, since 
the probabilities were measured in the log scale, the more negative a value, the improbable it is to observe 
that audit trail.  Therefore, when the measured value of Pr(original audit trail)-Pr(revised audit trail) is 
negative, then we can say that we would expect the revised audit trail to have less of a chance of being re-
identified.  Similarly, if the sign of the difference was positive, then it is expected that the audit trail has 
an increased probability of being found unique. 
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Figure 14. (left) Representation of how the probability of observing an audit trail changes with removal of 
dependent hospital visits.  The probability changes were normalized by the magnitude of the original probability.  
The cystic fibrosis dataset was used. (right) Same data unnormalized. 
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The resulting probabilities for real data audit trail is shown in figure 15 for the disease cystic fibrosis.  We 
find that for as the frequency of an audit trail decreases, there is an increase in the probability of that audit 
trail being unique. However, it must be noted, that there are substantial differences in probability for each 
audit trail when compared with another.  As a result, the removal of the dependent hospital visits does not 
have a substantial change on the probability that an audit trail will be observed.  We validate (not shown) 
that removal of the dependent hospital visits has minimal effect on the probability of an audit trail being 
observed.  The probabilities of different audit trails have a large enough difference, such that when the 
dependent hospital visits are removed from the set, the revised probabilities arising from the multinomial 
model do not change the relative ordering of the datapoints.  This is graphically depicted in Figure 15. 
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Figure 15.  Probability of uniqueness for the reduced set of hospital visits and audit trail frequency (i.e. the 
number of times a particular audit trail was actually observed). 

 

5.3. Other Means of Re-Identification 
 
It should be noted that population registers and summaries of populations are not only way to establish 
the identity of an individual.  There are many other publicly available utilities to assist in re-identification.  
One such utility that we explore is the Social Security Death Index Database.  Through the use of this 
database and knowledge of the approximate date of death from health information, we can establish the 
identity of an individual.  The date of death from health information may be directly stated in the health 
information or it may be predicted from the observed trajectory of the disease in question.  Thus, while a 
longitudinal health profile may seem ambiguous when crossed with a population register, in fact there 
may be other information uniquely characterize the individual of interest. 
 

5.4. Concerns for Genetic Privacy 
 
The DNA re-identification experiments of this work demonstrate the effectiveness of constructing trails to 
infer additional information about the individuals in databases.  Such inferences can be used for uniquely 
creating linkages and re-identifying the DNA information to the persons who are the subject. These re-
identifications can be performed even when the DNA data itself contains no additional fields of data, such 
as gender.  The results are further alarming because the number of common features in DNA is expected 
to increase with time, thereby providing more inferences to other fields of publicly and semi-publicly 
available data.  This underscores privacy concerns that impact on the ability to conduct research [36, 37, 
38], and as such, the biomedical must address such problems. Furthermore, we underscore the realization 
that DNA includes latent information that may be useful at a later time of study, but is not known at a 
particular time.  Such types of information may consist of SNPs and allelic gene variants that can be used 
for specific treatments or additional genes that have to be discovered that play a role in susceptibility to 
disease. 
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