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Abstract

This paper describes a consistency protocol that exploits versioning storage-nodes. The protocol provides
linearizability with the possibility of read aborts in an asynchronous system that may suffer client and
storage-node crash failures. The protocol supports both replication and erasure coding (which precludes
post hoc repair of partial-writes), and avoids the excess work of two-phase commits. Versioning storage-
nodes allow the protocol to avoid excess communication in the common case of no write sharing and no
failures of writing clients.
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1 Introduction

Survivable storage systems (e.g., Petal [19], Myriad [7], SwiftRAID [21], PASIS [35], and Cheops [3])
preserve and provide access to data even when a subset of storage-nodes fail. The common architecture for
such systems spreads data redundantly (either via replication or erasure coding) across a set of decentralized
storage nodes. Even when some have failed, the remaining storage-nodes can provide sufficient information
to reconstruct stored data.

One difficulty created by this architecture is the need for a consistent view, across storage-nodes, of the
most recent update. That is, the set of fragments used by a reader must correspond to the same update op-
eration. Such consistency is made difficult by concurrent updates from distinct clients, partial updates made
by clients that fail, and failures of storage-nodes. Without such consistency, data loss is possible with repli-
cation and likely with erasure coding, since no storage-node has all of the data and mismatched fragments
produce garbage. Protocols exist for achieving such consistency, but they generally involve significant extra
work even in the common cases.

This paper describes a new approach to achieving such consistency, built upon internal data versioning
within storage-nodes. If each storage-node keeps all versions of its fragments, it becomes possible to achieve
useful consistency semantics without excess communication or I/O in the common cases of non-failed clients
and minimal write sharing. Such versioning is increasingly common in storage systems because it simplifies
several aspects of data protection, including recovery from user mistakes [32], recovery from system fail-
ure [14], and survival of client compromises [34]. Further, it can be implemented with minimal performance
cost ( ��� %) [34] and capacity demand ( ����� %) [33].

The consistency semantic for which we strive is a variation of linearizability [13] that permits read
operations to abort with no return value (rarely in practice). These semantics have been studied previously
by Pierce, for example, under the name “pseudo-atomicity” [28]. Our contribution consists of a simple and
practical protocol that exploits versioning to implement these semantics for decentralized, redundant stor-
age. It elegantly handles partial writes without requiring two-phase commit or repair, which is particularly
difficult for erasure coding schemes.

Briefly, the protocol works as follows. After polling storage-nodes to discover a logical time value,
clients update a data-item by writing fragments to at least a write threshold of storage-nodes. Clients read
a data-item by fetching the latest versions of fragments from a read threshold of storage-nodes; additional
fragments and earlier versions are read, as necessary, until a consistent answer is found. A proof of the
protocol’s correctness is sketched, and optimizations are discussed. Then, the protocol is refined to replace
logical time with loosely synchronized clocks, eliminating the extra round-trip for writers.

Our goal for this protocol is practical efficiency for survivable storage, and it is therefore tuned for
common scenarios. In particular, most studies of distributed storage systems (e.g., [4, 10, 15, 26]) indicate
that minimal writer-writer and writer-reader sharing occurs, usually well under 1% of operations. In the
absence of such sharing, only the uncommon case of partial writes by failing clients requires more than the
minimum work for consistency — in a sense, the system is extremely optimistic in that the system only
involves extra work if a reader actually observes a concurrent write operation.

The remainder of the paper is organized as follows. Section 2 discusses related work. Section 3 de-
scribes the system model assumed. Section 4 presents and proves our protocol. Section 5 extends the
protocol to work with loosely synchronized client clocks, eliminating the extra roundtrip for acquiring log-
ical time during a write operation. Section 6 discusses performance, Byzantine clients, and pruning of old
versions.
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Figure 1: High-level architecture for survivable storage. Spreading redundant data across independent storage-nodes increases
the likelihood of data surviving failures of storage-nodes. Clients update multiple servers to complete a write and (usually) readers
fetch information from multiple servers to complete a read.

2 Background

Figure 1 illustrates the basic architecture of a fault-tolerant, or survivable, distributed storage system. To
write a data-item � , Client A issues write requests to multiple storage-nodes, storing inter-related fragments.
To read � , Client B issues read requests to an overlapping subset of storage-nodes. This basic scheme allows
readers and writers to successfully access data-items even when subsets of the storage-nodes have failed.
To provide reasonable storage semantics, however, the system must guarantee that readers see consistent
answers—for example, assuming no intervening writes, two successful reads of � should produce the same
answer (the most recent write) independent of which subset of storage-nodes are contacted.

A common data distribution scheme used in such storage systems is data replication. That is, a writer
stores a replica of the new data-item value at each storage-node to which it sends a write request. Since each
storage-node has a complete instance of the data-item, the main difficulty is identifying and retaining the
most recent instance. It is often necessary for a reader to contact multiple storage-nodes to ensure that it sees
the most recent instance. Examples of decentralized storage systems that use this design include Harp [20],
Petal [19], BFS [6], and Farsite [5].

Some decentralized storage systems spread data among storage-nodes more space-efficiently, using
erasure coding or even simple striping. With striping, a data-item is divided into fragments, all of which
are needed to reconstruct the entire data-item. With erasure coding, a data-item is encoded into a set of
pieces such that any sufficient subset allows reconstruction. (A simple erasure code is the RAID mecha-
nism [27] of striping plus parity computed across the stripe units.) With these data distribution schemes,
reads require fragments from multiple servers. Moreover, the set of fragments must correspond to the same
write operation. Examples of decentralized storage systems that use erasure coding include Zebra [12],
SwiftRAID [21], Intermemory [8], and Myriad [7].
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2.1 Related work

There has been much work on protocols for maintaining consistency across distributed servers. This section
highlights some relevant related work.

A common approach to dealing with the partial writer problem is two-phase commit [11]. This works
for both replication and erasure coding, but doubles the number of round-trips for every write. For replica-
tion, the partial writer problem can also be addressed via “repair,” which involves a client or storage-node
distributing a partially written value to storage-nodes that have not seen it. This is usually not an option
for systems using erasure codes, since partial writes may not provide enough information to reconstruct the
original data or the missing fragments.

A common approach to dealing with concurrency is to suppress it, either via locking or optimistic
concurrency control [17]. Alternately, many systems (e.g., Harp [20] and Petal [19]) serialize their actions
through a primary storage-node.

An alternate approach to handling both problems is to have the data stored on storage-nodes be im-
mutable [29, 30]. By definition, this eliminates the difficulties of updates for existing data. In doing so,
it shifts the problem up one level — an update now consists of creating a new data-item and modifying
the relevant name to refer to it. Decoupling the data-item creation from its visibility simplifies both, but
making the metadata service fault-tolerant often brings back the same issues. Examples of systems that use
this model include SWALLOW [29], Amoeba [25], and most of the recent peer-to-peer filesystems (e.g.,
Past [31], CFS [9], Farsite [5], and the archival portion of Oceanstore [16]).

Our target consistency semantics (linearizability with read aborts) have been studied previously. No-
tably, Pierce [28] presents a protocol implementing these semantics in a decentralized storage system. This
protocol is achieved by conjoining a protocol that implements pseudo-regular semantics (regular seman-
tics [18] with read aborts) with a “write-back” protocol (repair). The penultimate step of a read operation is
to write-back the intended return value, which ensures that the return value of the read operation is written
to a full quorum before it is returned. The utility of write-back hinges on full data replication, allowing a
reader to utilize the value fetched from a single storage-node (assuming no Byzantine failures). As noted
earlier, this form of repair is not possible when data is distributed with more space-efficient schemes (e.g.,
erasure codes).

Versioning storage-nodes in our protocol provide capabilities similar to “listeners” in the recent work of
Martin, et al. [22]. The listeners protocol guarantees linearizability (without read aborts) in a decentralized
storage system. To do so, a read operation establishes a connection with a storage-node. The storage-node
sends the current data-item value to the client. As well, the storage-node sends updates it receives back to
the client, until the client terminates the connection. Thus, a reader may be sent multiple versions of a data
item. In our protocol, readers look backward in time via the versioning storage-nodes, rather than listen into
the future. Looking back in time is more message-efficient in the common case, and it avoids the need for
repair (a.k.a., write-back) to deal with client failures. It does, however, come with the possibility of read
aborts.

Many have exploited the fact that messaging overhead and round-trip counts can be reduced with
loosely synchronized clocks. For example, Adya, et al. [1, 2] use loosely synchronized clocks as a compo-
nent of a logical timestamp.

3 System Model

This section describes the system model assumed for the protocol presented, which provides linearizabil-
ity with the possibility of read aborts in an asynchronous system. It introduces terminology, explains the
capabilities of storage-nodes, defines the failure model, and details the consistency guarantee being pursued.
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���
Write � to data-item � at logical time ��� ����! #" �$�&%(' ) WRITE *+� " � " ���&,

���
Read latest logical time ��� of data-item � ����! #" �$�&%(' ) QUERY TIME *+�-,

���
Read latest � of data-item � �.��! #" �$� " �/%0' ) READ LATEST *+�-,

���
Read � of data-item � previous to logical time ��� ����! #" �$� " �/%0' ) READ PREVIOUS *+� " ���&,

� = data-item ID��� = logical timestamp 
= storage-node ID� = data-item value

Figure 2: Interface of a versioning storage-node

3.1 Terminology

Discussion of the system infrastructure is phrased in terms of data-items, clients, and storage-nodes (servers).
There are 1 storage-nodes and any number of clients in the system. There are two types of operations in
the protocol — read operations and write operations — both of which operate on data-items. Clients per-
form read/write operations that issue multiple read/write requests to storage-nodes. Requests are executed
by storage-nodes; for example, a request that is executed by a storage-node is complete at that storage-node.
A storage-node that executes a write request is said to host that write request or data-item. For clarity, and
without loss of generality, we describe the protocol in terms of replication—thus, read/write requests trans-
fer data-items from/to storage-nodes. By design, no aspect of the protocol assumes that storage-nodes hold
an entire data-item rather than a data-item fragment (e.g., one portion of an erasure-encoded data-item).

Each data-item is uniquely identified by a data-item ID (e.g., a logical block number). A client ID
uniquely identifies a client in the system. Each client maintains a client request ID that uniquely identifies
each write operation by the client. Each write operation is distinguished by a unique logical timestamp of the
form 2 data-item time, client ID, client request ID 3 . Left to right precedence is used to compare two logical
timestamps (i.e., data-item time is compared before client ID which is compared before client request ID).
The client ID is included to distinguish between write operations from different clients at the same data-item
time. The client request ID is included to distinguish between write operations from the same client at the
same data-item time.

3.2 Versioning storage-nodes

Storage-nodes maintain versions of data-items. Every write request creates a new version of the data-item at
the storage-node. Versions of a data-item are distinguished by logical timestamps (i.e., logical timestamps
are unique per data-item).

Storage-nodes provide an interface to write a data-item at a specific logical time (WRITE). Indeed,
the logical time of the write operation is a necessary parameter of a write request. Storage-nodes can
execute back-in-time write requests, i.e., write requests with a logical timestamp earlier than the latest logical
timestamp hosted by the storage-node. Back-in-time writes are inserted in timestamp order into the history
of the data-item.

Storage-nodes provide an interface to read the latest data-item (READ LATEST); an interface to read
the latest data-item previous to a given timestamp (READ PREVIOUS); and an interface to read the logical
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time of the latest data-item (QUERY TIME). This interface is shown in Figure 2.
It is assumed that all versions of a data-item that are hosted at a storage-node are stored indefinitely.

Realistically, it is necessary to periodically prune version histories to reclaim storage space. Determining
which data-item versions can be safely pruned at each storage-node is non-trivial. The intricacies of version
pruning are discussed in Section 6.3.

3.3 Failure Model

Communication between clients and storage-nodes is asynchronous, point-to-point, and reliable. Only client
failures that occur during write operations need be considered, since those are the only ones that can affect
other operations in the protocol. Clients may fail at any point during a write operation — before issuing
any write requests, after issuing any number of write requests, or before receiving all write request acknowl-
edgements. A correct client does not fail during a write operation.

Malicious (Byzantine) clients are not addressed here. However, it is possible for versioning storage-
nodes to generate an audit trail and effectively roll-back malicious writes. Together, these features provide
some protection from malicious clients [34]. Byzantine clients are briefly discussed in Section 6.2.

Storage-nodes may crash. For simplicity, we assume that crash failures are permanent. No more than4
storage-nodes may fail.

3.4 Consistency Model

Operations are concurrent if their operation durations overlap. The duration of a read operation is measured
from the start time at the issuing client to the end time at the client. A read operation that returns a value is
said to complete. A read operation may abort without returning a value. The duration of a write operation is
measured from its start time at the issuing client to its completion time, which is defined to be the moment
that a write threshold of storage-nodes have executed the write request. Note that the completion time of a
write operation is a system property — the client issuing a write operation will not know its exact completion
time.

Operations are linearizable if there exists some sequential order of operations such that the order of
operations at each client is maintained and each operation appears to occur at a distinct time within its
operation duration [13].

The targeted consistency model is linearizability with read aborts, which is similar to Pierce’s “pseudo-
atomic consistency” [28]. That is, the set of all write operations and all complete read operations must be
linearizable. Read operations that abort are excluded from the linearizable set of operations.

4 Decentralized Consistency via Versioning

This section presents the protocol for decentralized consistency via versioning storage-nodes. It also dis-
cusses a proof of correctness, the consequences of read and write threshold sizes, performance enhance-
ments, and how it would be used in a synchronous environment.

4.1 Overview

At a high-level, the protocol proceeds as follows. Logical timestamps are used to totally order all write
operations. At the start of a write operation, a client issues a QUERY TIME operation to determine a data-
item time that is greater than, or equal to, the data-item time of the latest complete write (the complete
write with the highest timestamp). A logical timestamp is constructed that is guaranteed to be unique and
greater than those seen from the previous QUERY TIME operations. Logical timestamps identify write
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requests from the same write operation across storage-nodes. Logical timestamps also ensure that write-
write concurrency cannot necessitate an abort, in contrast to optimistic concurrency control protocols that
perform validation via two-phase commit.

For a read operation, a client issues read requests to the set of 5 storage-nodes. Once at least a
read threshold of storage-nodes reply, the client identifies the latest candidate write, which is the data-item
version returned with the greatest logical timestamp.

The latest candidate write is either part of the latest complete write or part of a partial-write. A partial-
write is a write that has not yet completed at a write threshold of storage-nodes. If it is determined that the
latest candidate write is a complete write, it is the latest complete write, and the read operation completes. If
it is determined that the latest candidate write is a partial-write, it is discarded, previous data-item versions
are requested, and a new latest candidate write is identified. This step may be repeated. The determination
of complete and partial-writes is discussed in later sections. A read operation aborts if the client cannot
determine if the latest candidate write is either complete or partial. Since it is possible for read operations to
abort, the protocol can only guarantee linearizability with read aborts. The next three sections provide more
detail on read and write thresholds, write operations, and read operations.

4.2 Read and Write Thresholds

There are constraints on the number of requests that must be executed for an operation to be complete. The
write threshold 6 and the read threshold 7 are related to one another, as well as to 5 (the number of
storage-nodes in the system) and 8 (the upper bound on the number of storage-node failures in the system).

The threshold values, like those in voting and quorum systems, are bound by an “overlap” constraint:

7:9;6 <;5
To classify the latest candidate write as the latest complete write, a read operation must observe the latest
complete write in its entirety. This places a lower bound on 7 :

6 =;7
The failure model further constrains the threshold values:

6 =;7>=;5@?A8
8CBD6 =:5@?E8

The upper bounds ( 5>?F8 ) on 7 and 6 ensure that even if there are 8 failures in the system, write operations
will complete and that read operations may complete. The write threshold is constrained to be greater than
8 to ensure that a complete write persists in the face of 8 failures.

Before detailing the write operation, it is necessary to introduce one additional constraint, 7HG (read
overlap), such that:

7IGJ<:5K?L6
With 7 G replies to the QUERY TIME operation, a client can construct a logical timestamp greater than that
of the latest complete write. A complete write must be successfully executed at at least 6 storage-nodes,
so that at least one of the 7MG is guaranteed to overlap with 6 . Notice that 7NG , unlike 7 is not constrained
to be greater than or equal to 6 .
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WRITE O+PJQSRUT(V
1: W�X Phase 1 X�W
2: SEND O QUERY TIME QZY+P-[\T TO ]�^_V`^baMced
3: repeat
4: RECEIVE O QUERY TIME RESPONSE QZY!^�Q\f$g&[\T
5: hiV jkhmlMY!^�Qnf�g&[
6: until Ono h-o�jejmprq.T
7: W�X Phase 2 X�W
8: sf$gtV jAY INC u MAX u ]wvyx f�gzx g{V�vUaIhUdw|}|+Q�~&�`PJQnp&�`P-[
9: SEND O WRITE QZY+PJQ�R�Q sf$g&[\T TO ]�^bV`^_a�ced

10: repeat
11: RECEIVE O WRITE RESPONSE QZY!^�Q�sf�gr[\T
12: ��V jt��lMY!^�Q sf�gr[
13: until Ono ��o�jej��ET
� = set of write acknowledgements~&�`P = client IDP = data-item IDf�g = logical timestamp

sf�g = logical timestamp for write operationh = set of time query responsesp q = read observation thresholdp&�`P = client request ID^ = storage-node in cg = data-item timec = set of � storage-nodes in the systemR = value of data-item� = write threshold

Figure 3: Write Operation

4.3 Write Operation

The write operation is divided into two phases. The first phase determines the current logical timestamp
for the data-item. The second phase issues write requests to a set of storage-nodes until at least a write
threshold of write requests have been acknowledged. Pseudo code for a write operation to data-item � is
shown in Figure 3.

Phase 1: (Lines 2 - 6) The client issues QUERY TIME requests to the � storage-nodes. Once the client
receives replies from �M� storage-nodes, it is guaranteed to have observed a logical timestamp greater than,
or equal to, that of the latest complete write of the data-item. Partial-writes and write operations that are
concurrent to the query may contain timestamps later than that of the latest complete write.

Phase 2: (Lines 8 - 13) The client constructs a new data-item time by incrementing the maximum
observed data-item time and then appending the client ID and a new request ID. The client issues write
requests to each of the storage-nodes with the new logical timestamp. The client can consider the write
complete once � storage-nodes have acknowledged the write requests.

4.4 Read Operation

The read operation also has two phases. The first phase consists of the client establishing an initial
latest candidate write. The second phase consists of determining if the latest candidate write is a complete
write. Pseudo code for a read operation to data-item � is shown in Figure 4.

Phase 1: (Lines 2 - 6) The client issues read requests for the most recent version of data-item � to all
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�A� �
READ �+�-� �

1: ��� Phase 1 �.�
2: SEND � READ LATEST ���+�-�\� TO ��� � �����e�
3: repeat
4: RECEIVE � READ LATEST RESPONSE ���!�#�\ �¡¢� � �\�
5: £ � � £F¤��!�#�n �¡z� � �
6: until �n¥ £-¥ �e�k¦ �
7: ��� Phase 2 �.�
8: repeat
9: § �¡ � � MAX ¨ �ª©`«  $¡ � ©/�I£U�w¬

10: ­�i� � ©y« �A� ©U�I£¯®°©y«  �¡ �e� § �¡
11: § ± � � �ª©`« � � ©/��£F®²©y«  �¡ �e� § �¡³�
12: if �n¥ § ±´¥�µk±¶� then
13: RETURN ­�
14: end if
15: if �n¥ § ±´¥Z·��+¸º¹ ¦ �(µm±¶� then
16: ABORT
17: end if
18: £ � � �w© � ©/��£F®²©y« ����²§ ±¶�
19: SEND � READ PREVIOUS ���+�J�y§ $¡&�\� TO ��� � �b�M�m¹_£U�
20: repeat
21: RECEIVE � READ PREVIOUS RESPONSE ���!�#�n �¡z� � �\�
22: £ � � £¯¤��!�#�n $¡¢� � �
23: until �n¥ £-¥ �e�m¦ �
24: until � FALSE �
� = data-item ID �¡ = logical timestamp

§ �¡ = logical timestamp of latest candidate write¸ = number of storage-nodes in the system£ = set of read responses being considered� = storage-node in server-group �»
= upper bound on failures in the system� = set of ¸ storage-nodes in the system�
= value of data-item

­� = value of latest candidate write± = write threshold

§ ± = subset of £ that host the latest candidate write

Figure 4: Read Operation

¼
storage-nodes. The client adds each response to a set of considered read responses ( ½ ). Once the client’s

set contains ¾ responses, the client identifies the latest candidate write.
Phase 2: (Lines 8 - 24) With ¾ responses, the read operation can attempt to determine if the latest

candidate write is a complete write or a partial-write. However, there is a chance that the latest candidate
write cannot be classified as either complete or partial. This may occur if some of the storage-nodes that
have not responded contain copies of the latest candidate write.

If the latest candidate write is a complete write, it is the latest complete write; the read operation
completes by returning this value. If the latest candidate write cannot be classified, the read operation
aborts. If the latest candidate write is an identifiable partial-write, it is discarded.

All storage-nodes that host the discarded latest candidate write are removed from the set of read re-
sponses. Requests for the data-item version previous to the discarded latest candidate write are issued to all
storage-nodes not currently in the set of read responses. Once the set of read responses contains ¾ responses,
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Figure 5: Asynchronous Read Example: This figure shows the steps necessary to perform a read operation of data-item ¿ ( ¿°À
represents the version of ¿ at logical time Á ) for each of two reads. The read after time Â
Ã successfully completes in two steps. The
read after time ÂÅÄ spuriously aborts.

the second phase begins anew. The read operation continues in this manner until the latest complete write is
identified or the read operation aborts.

4.4.1 Example read operation

An example illustrating the steps a read operation performs is shown in Figure 5. The first read, at time Æ-Ç ,
successfully completes. The initial latest candidate write, È Ç , is classified as a partial-write and discarded.
The client can deduce this, since even if storage-node four contained È¶Ç , a write threshold for ÈkÇ does not
exist. Read requests for the next latest candidate write ( ÈkÉ ) are issued, and the responses are sufficient to
identify it as the latest complete write.

The second read (at time ÆzÊ ) must abort due to a lack of information. The latest candidate write, È�Ê ,
cannot be classified as partial or complete. This read is different from the first, in that storage-node two may
contain ÈbÊ . If it does, È�Ê would be the latest complete write. The asynchronous communication model
precludes issuing a read request to storage-node two, since it may be failed. The read operation must abort.

4.5 Proof of Correctness

In this section we sketch a proof that our protocol implements linearizability of operations [13], excluding
reads that abort.

Definition 1. Operation Ë#Ç precedes operation ËÌÊ if operation ËÅÇ completes before operation ËÍÊ begins.
The precedence relation is written as Ë�Ç�ÎÏËÐÊ .

Operation Ë Ê is said to follow, or to be subsequent to, operation Ë Ç . The notation Ë ÇmÑÎÒË Ê is used to
mean operation ËÅÇ does not precede operation ËÍÊ ; ËÓÇ is either concurrent to ËÔÊ or ËÐÊ°ÎÏËÓÇ . Also, note that a
partial-write does not precede any operation, since it never completes.

Definition 2. Æ_Õ×Ö-Ø\Ù denotes the logical timestamp of write operation Ú .
Definition 3. The notation ÛÜØ�Õ×Ö/ÝÜÙ means that read operation Ú returns the value (first component) of

the Þ data-item value, logical timestamp ß pair written by write operation à .
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For a read operation to return a value, the read operation must complete. Aborted read operations are
excluded from the set of read operations for which áÌâ is defined.

Lemma 1. If ã-ä�åÏãçæ , then èêé×ã-äÔëçì´èêé×ãçæÐë .
Proof sketch: íMî²ï;ðòñ_ó ensures that the first phase of a write operation achieves a higher timestamp

than any other write operation that preceded it. ô
Observation 1. èêé×ã ä ëeõMõöèêé×ã æ ë{÷�ø ùkõMõöú . Uniqueness of logical timestamps is guaranteed by

the inclusion of the client ID and the client request ID.
Observation 2. Timestamp order is a total order on write operations that is consistent with the prece-

dence order among writes.
Lemma 1 proves that timestamp order is consistent with precedence. And, by Observation 1, timestamp

order does impose a total order on all writes.
Lemma 2. If á�û$é×ãçäÍë¢ü¯áþýÜé×ãçæÌëÿü¯á.û�å áyý , then è_é×ãçäÍë � èêé×ãçæÌë .
Proof sketch: Since á û é×ã ä ë , read á û observed at least ó storage-nodes holding the value and timestamp

of ãçä . Since during áÜý , at most � of these servers could be unavailable to áÔý , áþý must interact with at least
ó ñ�����ó ñ é ð ñLí�ë servers that hold the value and timestamp of ãJä . Since áþý does not abort, it must
observe ó servers holding the value and timestamp of ãIä or holding a write with a higher timestamp. ô

Note that there is a partial order on all read operations (that complete), obtained by ordering reads
according to the timestamps of the write operations whose values they return, i.e., á û é×ã ä ë�� á ý é×ã æ ëJ÷�ø
èêé×ãçäÍë�ì èêé×ãçæÐë . Lemma 2 ensures that this partial order is consistent with precedence among reads, and
so any way of extending this partial order to a total order yields an ordering of reads that complete that is
consistent with precedence among reads.

Lemma 3. If á�û$é×ãçäÍë¢üFè_é×ãçäÔë�ì èêé×ãçæÐë , then ãçæ	�å á.û .
Proof sketch: Assume for a contradiction that ã æ å á û . Since ã æ is complete when á û begins, á û must

return the result of a write operation with a logical timestamp greater than, or equal to, ãNæ (as in Lemma 2).
However, á û returns ã ä , a contradiction. Thus, ã æ �å á û . ô

Lemma 3 provides the basis for “merging” the timestamp order on writes with the timestamp order
of (the values returned by) complete reads to obtain a totally ordered set of operations consistent with
precedence, since it shows that each read can be ordered following the write whose value it returns (and
before any later write in timestamp order). This completes the argument of linearizability for all operations
except aborted reads.

4.6 Refinements For Implementations

Finding the maximal current timestamp: It is possible for a write operation to begin and complete such
that it is ordered behind a partial-write that existed before the operation began. The base protocol waits for
only íIî responses to its QUERY TIME requests, which is sufficient for correctness. But, waiting for more
storage-nodes to reply would increase the probability that a logical timestamp is constructed that is greater
than that of an earlier partial-write.

Observability of complete writes: Whenever the latest candidate write is unclassifiable, a read must abort.
This can occur for both partial-writes and complete writes. A partial-write that exists at 
}ó ñ��
��ó ñ��
�
storage-nodes may not be classifiable as partial. A complete write that exists at 
}ó���ó����Íñ��
� storage-nodes
may not be classifiable as complete. Since � storage-nodes may be failed, fewer than ó of the storage-nodes
hosting the complete write could be available. In this scenario, it is possible for the write operation to be
unclassifiable and for the above cases to be indistinguishable to a read operation. In order to maximize the
likelihood of subsequent reads observing a complete write, it can be useful to write to more storage-nodes
than necessary.

Spurious aborts and retries: The asynchronous system model may lead to spurious read aborts. The
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problem lies in the fact that only ��������� read responses are collected before attempting to distinguish
a partial-write from a complete write. In the case of ��� ����� , it might be useful to wait until �!�"�
responses are collected, since this reduces the probability of aborting. Moreover, it is possible — in many
systems likely — that there are fewer than � failures in the system. If responses from greater than �!�#�
storage-nodes could be solicited, read operations would complete more often. However, the asynchronous
system model precludes such an approach. In some cases, retrying an aborted read operation will result in
successful completion. For example, responses from a different set of ���$� storage-nodes (e.g., due to
variations in response times) could allow the read operation to complete.

Early completion of reads: The base protocol waits for � responses to its READ LATEST requests. But, a
read operation may be able to complete correctly before � read responses are received, if �&% MAX ')(�*+�,�
(.-0/
1 . That is, read operations can be made more efficient if the set of responses is examined as each
arrives, once overlap is guaranteed, in order to determine if the latest candidate write can be classified.

4.7 Synchronous system model

Placing a bound on the message propagation delay changes the properties of the consistency protocol. Re-
finements that take advantage of a synchronous system model can be introduced. Since synchrony assump-
tions (i.e., timeouts) are often employed in real implementations, it is useful to consider the consistency
protocol in a synchronous system model.

A synchronous system model reduces the amount of concurrency in a system by bounding the duration
of correct write operations. More importantly, a synchronous model allows read operations to consider
more than � �2� responses before having to abort. The exit condition from the repeat-until loop is modified
to collect read responses until either a timeout occurs or all storage-nodes respond. This provides a read
operation with responses from all correct storage-nodes. Such information can reduce the frequency of
spurious aborts. In an asynchronous system model, the client cannot use timeouts to deduce the set of failed
storage-nodes.

5 Loosely Synchronized Clocks

This section examines an alternate form of the “consistency via versioning” protocol, which uses loosely
synchronized client clocks to determine the data-item time component of the logical timestamps. Protocols
to achieve approximate clock synchronization in today’s networks are well known, inexpensive, and widely
deployed [23, 24]. In the resulting consistency protocol, a write operation requires significantly fewer
messages than in the original protocol. Clock synchronization messages are required, but they are out-of-
band from read and write operations. The consistency model remains the same (linearizability with read
aborts). But, the definition of operation duration has to be expanded to accommodate clock skew.

5.1 Protocol Modifications

The original protocol’s write operation is modified to use the client’s local clock; that is, Phase 1 of Figure 3
is replaced by a simple read of the client’s local clock. The local clock is used as the data-item time in the
logical timestamp for a write operation. With this change a QUERY TIME operation becomes unnecessary,
and there are one fewer roundtrips per write operation. The logical timestamp in the refined protocol is
still guaranteed to be unique for each data-item, because of the client-specific fields, and it serves the same
function.

Client clocks are not perfectly synchronous — there is some skew, bound by 3 , between a client clock
and global real time. Thus, data-item times based on client clocks result in a new definition of operation
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Figure 6: Write Duration This figure shows the durations of two different write operations. For each, the operation duration
extends backwards by 4 . Each write begins at time 57698;:=<?> and complete at time 5A@;BDCFEHGI8KJL8 . Figure (a) shows the operation duration
extended forward to 4 . Figure (b) shows the operation duration ending at the operation completion time.

duration for write operations. The clock skew extends each write operation duration by up to MON . More
precisely, to account for clock skew, the duration of the write operation is padded by the upper bound on
clock skew. Thus, if the write operation begins at global time PRQTS=U+VLW , its duration is at least from PXQTSDU+VLWZY[N
to P\QTS=U+VLW�]$N . Assuming that the write operation completes at P_^a`cb_dfegS=hiS , its duration is from PjQTSDU+VLWkYlN ( N
time units behind the local clock) to the maximum of m P_^D`=b_dfegS=hiSfnHP\QTS=U+VLWo]pNOq . An example of this is shown in
Figure 6. The definition of “concurrent operation” and the consistency guarantee provided by the protocol
does not change. But, longer operation durations can lead to more operations being defined as concurrent to
one another.

A synchrony assumption for the exchange of clock messages is required to bound N . No other syn-
chrony assumption need be introduced to the system model. For example, the synchronous clock sub-system
may use a synchronous communication path (e.g., GPS), while the consistency protocol operates over an
asynchronous communication path.

5.2 Consequences of Clock Skew

Pseudo-write sharing: Clock skew introduces pseudo-write sharing for write operations by distinct clients
that begin within MON of each other. This pseudo-write sharing can cause the reader-observed ordering of write
operations to differ from the real-world order. In particular, a write operation by a client with a slow clock
may remain after a “subsequent” write operation by a client with a fast clock — the client with the fast clock
may write backwards in logical time. Writes that begin more than MON apart in global time are guaranteed
to be correctly ordered by the precedence relation. Clearly, a system with small N provides a more usable
consistency model than one with a large N .
Lost read-modify-write sequences: Pseudo-write sharing introduces a problem for read-modify-write
sequences of operations. The problem is best illustrated through an example. A client performs a read of
data-item r . The latest complete write of r , sut , has data-item time PRt . The client modifies the value read
and writes it back as swv with data-item time Pxv (the local clock value). If PXvzy,P_t , the second write is
written back in time, even though the initial write clearly completed first.

This problem can be solved when a single client performs both the read and the write operation. To do
so, a client must keep track of the data-item times of read operations and utilize them in write operations
during a read-modify-write sequence. Specifically, if the local client clock is behind the latest data-item
time returned in the read operation, the client instead increments and uses the data-item time from the read
operation. In this manner, the client guarantees that the write operation occurs later in logical time than the
write operation observed by the read operation. Note that as long as the previous write’s data-item time is
within N of global-time and the read-modify-write cycle takes a non-zero amount of time, the incremented
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Protocol Operation Transmit Msgs Reply Msgs Total Msgs

Asynchronous Write { |~}D�u�O�z{ �k}=�u� { |~}=���=��{ ��}=��� { ��|����f��}a�f�u�
Read { |~}=��� { |~}=���k�;� { ��|~}c�������;�

Synchronous Write { |~}D�u�O�z{ �k}=�u� { |~}=���c�Z{ �k}=��� { ��|����f��}D�f���
Read { |~}=��� { |~}=��� { ��|~}c�����

Synchronized Clocks Write 0 + { �k}=�u� 0 + { �k}=�u� { �f�k}c���u�
2-Phase-Commit Write ����� � ���

Read {g��}=��� {)��}=�u� { ��}c�����
Listeners [22] Write { �k}=�u�O�p{ �k}=�u� { ��}D�u�9��{ ��}=��� { ���k}D�f�u�

Read |���� { ��}=|�� { |��w�$���u}c��|����u�

Table 1: Number of messages exchanged in non-conflict, no-failure case: The notation � ���T��� expresses a bound on the
number of messages such that the lower bound � guarantees correctness and the upper bound � may be useful in certain cases
(e.g., improved read availability). If two sets of bounds are provided (e.g., in the write cases), each set of bounds refers to a different
phase of that operation.

data-item time is also within � of global-time.
Unfortunately, this solution does not extend to read-modify-write sequences involving out-of-band

communication. For example, client � reads data-item � and sends the value to client � , who then performs
a write operation based on the value of � . A possible solution would be to extend storage-nodes to return
the logical timestamp of the latest write request to a data-item with write request responses. This hint could
be used by a client to determine if its write is the latest write seen by a particular storage-node. For example,
by comparing the set of timestamps returned by all storage-nodes, the client can determine whether the write
operation would be viewed as the latest complete write. As a form of optimistic concurrency control [17], it
could then retry the sequence.

6 Discussion

6.1 Performance

Table 1 shows the bounds on the number of messages that the consistency protocols discussed in this paper,
together with two-phase commit and the Listener’s protocol described in [22], must exchange in common
cases of no failures and no concurrency. Bounds on the number of messages are given, such that the lower
bound guarantees correctness, while the upper bound gives the worst-case (which may be useful in certain
situations, e.g., improved read availability).

In common mode operation, there are no failures and a low degree of write-write and read-write concur-
rency. Thus, very few partial-writes are observed. Using the asynchronous model, clients in this mode are
expected to execute write requests at �¡ �¢ storage-nodes and read requests at £ storage-nodes. Using the
synchronous model, clients in this mode are expected to execute write requests at all non-failed (between �
and �¤ �¢ ) storage-nodes and read requests at £ storage-nodes. Recall that writes go to more than ¥ nodes
to minimize aborts and maximize availability. If clients are using schemes such as erasure codes or striping,
the protocol adds no excess communication, since it is usually appropriate for clients to communicate with
approximately the same number of storage-nodes.

Protocols that ensure no partial-writes ever occur, such as two-phase commit, have higher per-write
operation costs and may have lower per-read operation costs for replication. For erasure codes or striping,
however, this would not be the case. The Listeners protocol has extra round-trip messages that are required
to setup and tear-down state that the clients maintain on the storage nodes.
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6.2 Byzantine Clients

Malicious clients are difficult. Of course, a malicious client can corrupt any data to which it has write access.
As well, a malicious client can deliberately perform a partial-write, or even write mismatching data-items
to different storage-nodes. The protocol correctly handles the former, however performance may degrade.
Solving the latter problem will require the addition of data integrity checks to the protocol.

Using loosely synchronized client clocks to improve write efficiency introduces another attack. A
malicious client can write data-items with future timestamps. If this occurs, subsequent updates by correct
clients may be lost since they become “back-in-time” updates. If storage-nodes are assumed to have clocks
that are loosely synchronized with the client clocks, then storage-nodes can disallow write requests with
data-item times more than ¦O§ ahead of the storage-node clock. Such a policy bounds the distance into the
future a malicious client may write.

Finally, the versioning performed by the storage-nodes can be leveraged to diagnose and recover from
malicious client actions [34]. For example, since the storage-nodes keep a full history of every data-item, it
is possible to retrieve old versions (that occurred before the malicious writes) and copy them forward to the
present. Automating such recovery for a decentralized store is an interesting avenue for future research.

6.3 Old Version Pruning

Eventually, old versions must be pruned to prevent the exhaustion of storage-node capacity. But only data-
items previous to the latest complete write may be safely pruned, and the completeness of a write operation
is not observable by a single storage-node.

Pruning is envisioned to be controlled by a garbage collection service run above the storage service.
The garbage collector can identify the latest complete write by performing a read operation that completes.
To prune data-items previous to the latest complete write, a garbage collector interface is added to the
storage-node to allow deletion of all versions of data-items with logical timestamps before a given one (e.g.,
the latest complete write).

7 Summary

Versioning storage-nodes enable a consistency protocol that is efficient in the common case of no update
conflicts and no failures. Moreover, versioning storage-nodes allow the protocol to support erasure-coded
data with client failures (i.e., partial-writes of erasure-coded data are non-destructive). The protocol de-
scribed in this paper guarantees linearizability with the possibility of read aborts. The protocol is correct in
an asynchronous environment and is readily optimized in a synchronous environment.
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