Optimal binary trees in online algorithms!

D. Sleator and M. Talupur

September 2002
CMU-CS-02-148

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Some binary search tree algorithms, such as splay trees, structure the tree in a way that
depends on the history of accesses. In this paper we consider what happens if at each point
in time the optimal binary search tree (for the access frequencies seen so far) is maintained.
We prove lower and upper bounds on the competitive ratio (with respect to the final optimal
tree) of such an algorithm

! This research was sponsored by National Science Foundation (NSF) grant no. CCR-0122581. The
views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the NSF or the US government.

Keywords: optimal binary trees, online algorithms, competitive analysis

1 Introduction

An important idea in data structure design is that of self-adjustment, in which the data
structure changes in response to the requests it sees. Self-adjusting data structures are
often analyzed using competitive analysis, in which the performance of the data structure is
compared to that of a hypothetical adversary who has the advantage of seeing the future. In
this approach the worst-case ratio of the cost of the self-adjusting data structure in question
is compared to an optimal off-line algorithm. The goal is to find self-adjusting algorithms
that minimize this competitive factor.

In the usual framework for competitive analysis, the off-line optimum (adversary) is
allowed to adjust the structure according to the same rules as the on-line algorithm. Blum
et. al [1] asked what happens if we restrict the adversary so that it is not allowed to adjust
its structure over time? They showed (among other things) that using this modified form
of competitiveness, there exists a randomized binary search tree algorithm that is (1 + €)
competitive. Kalai and Vempala [2] then constructed a specific and practical algorithm that
achieves this. In this paper, we analyze a specific algorithm for maintaining a binary search
tree.

More specifically, problem we consider is that of using a binary search tree to store a
static set of n items. A sequence of access requests (searches) is applied to the tree. The cost
incured in an access is simply the depth of the accessed node in the tree. Given a set of access
frequencies, a well-known O(n?) algorithm [3] can be used to construct the optimal static tree
for that particular frequency distribution. So one very plausible algorithm to consider is the
one which, at every step, constructs the optimal tree for the current frequency distribution,
and uses that for the next search. This is the algorithm we analyze in this paper. Without
loss of generality (as explained below) we can ignore the cost of computing the optimal trees
and not charge the algorithm for restructuring the tree at each step.

Kalai and Vempala [2] showed that a slightly modified version of this algorithm achieves
(1 4+ €) competitiveness. Each element has a pseudo-frequency. This is initialized randomly
according to a specific exponential distribution (depending on €). From then on the pseudo-
frequency is updated just like the frequency (it’s incremented when the element is accessed).
At each step the structure is simply that of the optimal tree built according to the pseudo-
frequencies.

In this report, we analyze the performance of the algorithm that maintains an optimal
binary search tree at every stage and see how it measures up against the best possible static
offline algorithm. We give upper and lower bounds on the competitive ratio of this algorithm.

2 The algorithm

As described before our online algorithm computes an optimal tree for the request sequence
so far after each request. We ignore the cost of computing the optimal tree and restructuring
the binary tree at each stage for now. We consider only the search costs.

First we give a lower bound on the competitive factor which holds for any deterministic
algorithm.

Theorem 2.1. For any deterministic algorithm the competitive factor must be at least 4/3.

Proof. Consider any deterministic online algorithm D and an adversary A.The adversary
A identifies two elements from the tree that D maintains(we can assume that the tree D
maintains has at least 2 elements, the case with one element is not interesting). Now one
these elements must be at a depth at least 2 (depth of the root is taken to be 1). Since the
algorithm D is deterministic the adversary A knows which element is at depth 2 (or lower)
and A accesses it. Thus the adversary keeps accessing the lower of the two elements it has
identified and at every step algorithm D incurs a cost of at least 2.

In the optimal tree for the whole sequence of requests, the element which was accessed
most often is at the root and the other element will be at depth 2. This means the average
cost per access is at most 1.5 since the element with higher access frequency is at depth 1
and the other element is at depth 2. Elements other than the two identified elements can be
ignored as they are not accessed at all. Hence, the ratio of the cost of algorithm D to that
of the final optimal tree is at least 2/1.5 = 4/3. O

This result holds for any deterministic algorithm and so holds for the algorithm which main-
tains an optimal tree at every step. We now prove an upper bound on the competitive ratio
of our algorithm. We make use of a result from [4] which gives an upper bound on the depth
of an element in an optimal binary tree. The result states that if the weight (i.e. the number
of requests) of the subtree rooted at node i is W;, the weight of the whole tree is W and the
depth of the node i is d then

W; 2

- =

W = Fys
where Fj 3 is the d+& number in the fibonacci series 1, 1, 2, 3, 5, 8.... From this it follows
that if weight (i.e the number of requests) of a element is w; and its depth is d then

— <
W = Fuy3

because the weight of the subtree rooted at element i is atleast w;. Since ﬁ is less than d)Ld’
the depth of a node i (in the optimal tree) with weight w; is bounded from above by log, I,
where ¢ is the golden ratio, W is the total weight of the tree.We also use a result by Knuth

which states that the average path length, C,,, for an optimal tree satisfies

H—log(g) <Co <H+1
where H is the entropy of the normalized weight sequence p; . . p,. This inequality holds for
H > % This condition is satisfied for almost all sequences, the exceptions being extremely
skewed distributions. Exercise 6.2.35 in [3] shows that the expected entropy of a randomly
generated sequence is l"g"). There is weaker result by Mehlhorn [5] that is independent of
the entropy of the sequence. The result states

H/log(3) < Copt

To bound the competitive ratio of our algorithm, we first get an upper bound on the cost
of a sequence of requests to the binary tree in terms of the entropy of the request sequence,
H, the number of requests, W and the number of elements in the tree,n . We assume that the
number of requests, W = Q(n?). Once we have an upper bound on the cost for a sequence
of requests we can get an upper bound on the competitive factor using the results by Knuth,
[3] and Mehlhorn, [5], which give lower bounds on the cost incurred by an optimal tree.

Theorem 2.2. On any sequence of requests the cost of the algorithm that maintains an
optimal tree at every stage is upper bounded by

(log, 2)(W — 1)H + (n + 1) logy (V1) 4+ 2

e
where H 1is the entropy of the sequence of normalized weights of the elements and C is as
defined above. We assume that W, the number of accesses is Q(n?) where n is the number
of elements.

Proof. Let W; denote the total number of accesses to element ¢ at the end of the requests.
Then Y-, W; = W. Consider the optimal tree just before some access, say an access to element
J. Let w] be the weight of element ¢ and let >, w; = W’ Then the cost of the access to
element j is upper bounded by:

WI
=)
j
= log, (W) — log, ()

Consider the first term in the upper bound, log, W' the weight of the tree. The first
terms of all the upper bounds sum to log¢(W — 1)1, because the total weight of the tree
increases from 0 to W — 1 in steps of size 1. Note that for the first access to a element the
above bound will not be valid as the weight of the element would be 0. For the first access
n is an upper bound on the access depth. For n elements thsum of all the upper bounds
is n®. We will account for this at the end. For the second term, log,(w}) where wj is the
weight of the element 7, consider the upper bounds on all accesses to a particular element 3.
For these accesses the second term sums to log,(W; — 1)!, because the weight of the element
1 increases from 1 to W, — 1 in steps of size 1. So the sum of the second terms over all the
accesses is 3_; log,(W; — 1)1 So the sum of the upper bounds on the accesses is

log¢(

logy(W — 1)1 = " log,(W; — 1)!

Using Sterling’s formula, n! = v27n(2)"(1 4+ - + O(3z)) and ignoring the (5~ + O(55))
part for now, the above sum is less than

(W = 1)log, (=) + Llog, (2m(W — 1)) — 5,(W; — 1) log, (1)
— Yi(3logy(2m(Wi - 1)))

We will ignore the 3 log, (2r(W — 1)), 3 log,(2m(W; — 1))'s for now, because they are small
compared to the other terms. The above expression then reduces to

3

W -1

- (I/Vz_l))

W~ 1)logy("U0) — (i 1) gy
)+ (= Dlog, (<)

= (W - 1)(3?: 11 log¢(32 — 1)) +(n— 1)10g¢(W —

= (Wi — 1) log,(o

)

(&

Wi w W—l)

logy(737)) + (n — 1) logy(

s(W—l)(W

W -1

€

= log,(2)(W — DH + (n — 1) logy(~——)

The terms we ignored previously are upper bounded by

(12(%} " O((Wi DL e,

Taking this into account, the sum of the upper bounds on the access costs is itself upper
bounded by
logy (2) (W — 1)H + (n — 1) logy (=) + (i + O (ripys)) (W — 1) log (1)

e

+3 log,(2n (W — 1))

. 1) + %log¢(27r(W —1))

For W much greater than n, the number of elements in the tree, the above expression is
upper bounded by
-1

(&

(logy 2)(W —1)H + (n +1) logd,(W)

Adding the upper bound n° on the cost of first access to each of the n elements to the
expression above we have the required upper bound on the cost of the request sequence. [

2

Since o
CYo;mt > H — log(%)

for entropy greater than 2/e the competitive factor of the algorithm is upper bounded by

(logs2)(W —1)H + (n + 1) logd@)
W (H —log(<1))

which for W much greater than n is close to
(log, 2)H
H —log(¢)
Using Mehlhorn’s result we can obtain a weaker bound that holds at all entropies. First note
that
W -1

€

(log, 2)(W —1)H + (n + 1) 10g¢(W _ 1) < (logy 2)(W)H + (n + 1) log(

€

)

Since Cyp: > H/log(3) the competitive factor of our algorithm is upper bounded by

log,(2)(W)H + (n+1) logd,(%)
W H/log(3)

which for W = Q(n?) equals log,(2) log(3) = log, 3

We have so far ignored the cost of finding an optimal tree at every stage. Optimal tree for
a given sequence of weights can be found in O(n?) time. Instead of computing optimal tree
at every stage we can compute an optimal tree once every O(n?) steps. This will ensure that
cost of computing optimal trees is distributed over O(n?) steps and hence will be negligible.
So we only need to prove that fixing an optimal tree for O(n?) steps does not cause much
deterioration in the performance. The following theorem proves that there is no significant
change in the cost of our algorithm over any sequence of requests.

Theorem 2.3. The overhead for fizing the tree for O(n?) steps is a constant per step and it
can be made as small as wanted by increasing the number of steps for which the tree is fized.
The number of requests, W, is assumed to be 2(n?), where n is the number of elements.

Proof. Consider a block of d - n? requests/steps, where d is some constant, with the optimal
tree fixed just before the beginning of the block. Let the weight of element 7 be w; and the
total weight of the tree be W. During the d - n? steps, let i be accessed f; times. 3 f; =
d -n?. If the algorithm had continued using the updated optimal tree after each access then
the cost for the d - n? steps would have been

(W+d-n? wz~|—fZ 1)!
o) 2l Ty

log(

using similar reasoning as in the previous theorem. The cost of for the d - n? steps with tree
fixed is 3 filog(}X). The difference of these two is

dn w; % -
5 itog() — log(U o (U A

Using Sterling’s formula and using the same approximation as previously used, the expression
is equal to

> filog(yy) — (W +d-n” —1) log(W+d;”2‘1) + (W — 1) log(
+ 3w+ fi — 1) log(“EL=l) — 35 (w; — 1) log(¥L)

w-1
)

Noting that S w; = W and Y f; = d - n?, the above expression reduces to

¥ filog(X) — (W +d-n? —1)log(W +d-n?* — 1) + (W — 1) log(W — 1)
+ X (wi + fi = 1)log(w; + fi = 1) = X(wi — 1) log(w; — 1)

> fi log(wﬂi) — (W +d-n*—1)log(l + d'ﬁ,_l)W + (W —1)log(W — 1)
+ 3 (w; + f; — 1) logw; (1 + ﬁw—:l)] — > (w; — 1) log(w; — 1)

> filog(L) — (W +d-n® —1)log(W) — (W +d-n* — 1) log(1 + 1) + (W —1)log(W —1)
+ 3 (w; + fi = 1) log(w;) + X(w; + fi = 1) log(1 + £2) — — 1) log(w; — 1)

Since log(14y) is at most ylog(e), the above expression is at most

Y filog(y,) — (W +d.n® — 1) log(W) — log(e) (W + d.n® — 1)% + (W —1)log(W —1)
+ Y (w; + fi — 1) log(wi) + X log(e) (wi + f; — 1)L — 5(w; — 1) log(w; — 1)

Since Y f; = d - n? the above expression is equal to

(W —=1)log(W —1) — (W — 1) log(W) —L— > (w; — 1) log(w;) — X (w; — 1) log(w; — 1)
—log(e)(W +d - n? — 1)%2=L + Y log(e) (w; + f; — 1)]21)—71

1)—log(e)(d-nz—l)—log()(d +Zlog —1—|—u

Z_ wz

! 1)+log(e)(n—1)—log(e)(d n—1)° + > log(e)

<) (w;i—1) log(
<) (w; — 1) log(1 —
<) log(e)(w; — l)wi — o

= log(e)(2n — 1) + > _ log(e)(

The expression Zlog(e)((f";—,l)z) is maximum when f; = n? where k is such that wy is
the smallest among all weights and all other f;’s are 0. The maximum value of the above
expression then is

(d-n*—1)2

= log(e)(2n —1) +log(e) (— -

)

If w; > d? - n?, then the upper bound would be less than or equal to

= log(e)(2n — 1) + log(e)(n?)

Note that w; need not be O(n?), but it can be so only the first few times the element i is
accessed. So ignoring these first few times, the overhead of fixing the tree for a block is at
most

log(e)(2n — 1) + log(e)(n?)
per block. This overhead can be distributed over the accesses in the block. Then the overhead

per step is clearly a constant inversely dependent on the block size. So we can make the
overhead to as small as we want by increasing the block size. Hence the theorem. O

3 Conclusion

We considered an online algorithm which maintains an optimal binary search tree at each step
and we proved upper and lower bounds on the competitive factor of such an algorithm with
respect to the static optimal offline algorithm (which is the final optimal tree for the whole
sequence). The lower bound we proved holds for any deterministic algorithm even when
the adversary is offline oblivious. We gave two upper bounds, the first one is a stronger
result, but it depends on the entropy of the request sequence. The second upper bound is
independent of the entropy of the request sequence. For both the upper bounds we assumed
that the number of requests is 2n?, where n is the number of the elements in the tree. This
result in conjunction with the result from Kalai and Vempala, [2], demonstrates the power
of randomization techniques again.

References

[1] Shuchi Chawla Avrim Blum and Adam Kalai. Static optimality and dynamic search
optimality in lists and trees. In Symposium on Discrete Algorithm (SODA’02), 2002.

[2] Adam Kalai and Santosh Vempala. Follow the leader algorithm. To be published, 2001.
[3] Donald E. Knuth. The art of computer programming, Vol 3. Addison Wesley, 1997.

[4] D. S. Hirschberg L. L. Larmore and M. Molodowitch. Subtree weight ratios for optimal
binary search trees. Tech. rpt. 86-02, ics dept., UC Irvine, 1986.

[5] Kurt Mehlhorn. Nearly optimal binary search trees. Acta Informatica, pages 5:287-295,
1975.

