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The day is short, and the work is great,
and the labourers are sluggish,

and the reward is much,
and the Master is urgent [...]

It is not thy duty to complete the work,
but neither art thou free to desist from it [...]

(Avot: 2:20-21) [58]





Acknowledgements

Let me begin by saying that this journey turned out to be longer and more complex than I had
expected. In August of 1989 I arrived in Pittsburgh to begin my graduate studies. I had the
fortune to share a truly beautiful apartment with a gentleman and a scholar, Josh Bloch. At
the time he was finishing up his dissertation while working for a startup. Then, as now, I was
impressed by his design sense, sense of humor, breadth of interest, and diversity of talents.
Josh’s Sunday activities might begin with consuming the New York Times while regaling me
with a blow-by-blow account of discovering a bug in a thread package (note to posterity: spin-
waiting for a mutex on a multiprocessor is probably counterproductive), continue through
changing the oil in his Toyota Tercel, and culminate in levelling his landlord’s shrubbery
with a Milwaukee Sawzall. In short, I had met the first of many impressive role models at
Carnegie Mellon’s School of Computer Science. While I aspired to emulate these role models
in many ways, the only objectively measurable triumph I can point to is having exceeded
them all in terms of the duration of my graduate career.

I owe many other people thanks, which I will attempt to offer in roughly chronological
order, beginning with my parents, Bob and Carey Eckhardt. Thank you for providing me
with a caring, stable, education-focused family life, for supporting my tendency to break
loose from the curricula envisioned by others, and for your continued close companionship.
Also, thank you for knowing exactly which things belonged in the “goals” and “objectives”
boxes on those forms.

I am grateful for three true friendships, dating from elementary school and junior high,
which persist to this day. Ben, Chris, and Angela—thank you for the times you told me I
was wrong, the times you told me I wasn’t, and all the other times too.

In some sense this dissertation is a distressingly incomplete repayment of the debt I owe
to Robert Michael Owens, known variously as “Bob,” “Mike,” “Mikey,” and “the guy with
the bad attitude.” He and his research partner Mary Jane Irwin, through vehicles as concrete
as accounts on a PDP-11 running Version 7 Unix and as abstract as that “bad attitude”
(which I carry in my heart every day), were responsible for involving me in the community
of Computer Science before, during, and after my undergraduate studies at Penn State. I
wish I could present him with a copy of this dissertation.

Though it seems a little odd in these days of Internet-connected Coke machines, I also
owe thanks to the Gifted Program at the State College Area High School for harboring a
terminal and a 300 baud dialup modem, which turned many study halls into precious time
online.

Many people contributed to making my time at Penn State meaningful. Among those
who particularly contributed to preparing me for graduate school were Bob, Janie, Joe
Lambert, Jonathan Goldstine, and Jesse Barlow. Romayne Bernitt, the “UREP secretary,”
always brightened my day, and I always knew that her partners in the main office, Helen
DeFurio, Flo Thomas, and Vicki Keller, were rooting for me too. Over the years, I have had
excellent luck in housemates, which began with Ron Bayline and Dean Batten. My friend
Sohail Malik has helped me in countless ways over the years, while serving as an example
both professionally and personally. I must thank Larry Spence, my Political Science advisor

1



at Penn State, for waiting so patiently for me to emerge from the distractions of technology
to confront my true destiny (and also for those Friday afternoons).

I came to Carnegie Mellon because it seemed like the kind of place I wanted to be a part
of. I was right. The tradition of collegiality in the School of Computer Science makes it a gem
among the academic programs I am familiar with. I guess first of all I should thank Stewart
Clamen, for that thing I shouldn’t really know about. I want to thank Xuemei Wang for
helping me pass AI. My life was enriched by Vince Cate in many ways, including his cheerful
contributions to those Nectar demos, his freewheeling curiosity, and his generosity in letting
me sleep on his floor for that week while the paint dried. Thank you, Zoran Popović (aka
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Abstract

As wired computer networks support increasingly sophisticated applications and wireless
local area networks become ubiquitous and fast, it is more natural for users to seek a “wireless
Internet” experience that is qualitatively the same as that provided by the wired Internet.
However, wireless LANs pose two fundamental challenges to this vision. Harsh and dynamic
error environments challenge end-to-end adaptation at the transport and application layers.
In addition, dynamic and location-dependent errors challenge the notion of “fair” scheduling
of flows sharing a wireless link.

This dissertation advances the claim that a combination of protocol-blind link-level error
control and error-sensitive link scheduling effectively addresses these two challenges.

The first step is a bit-level trace-based analysis of the error environment provided by
a particular wireless link technology (AT&T WaveLAN I) in the face of attenuation and
interference. Based on the insights revealed by this analysis, the next step is designing
an adaptive link-level error control module. Finally, we propose a new notion of fairness
appropriate for error-prone wireless links. This new scheduling approach balances application
sensitivity to error-induced throughput changes against the need to preserve link efficiency.

The proposed mechanisms are evaluated by deploying them in an actual operating system,
running on real hardware, and subjecting them to trace replay of the error environments we
observed. Particular attention is given to the interaction between link-level error control and
TCP’s end-to-end error and congestion control mechanisms. The result is a system that can
noticeably improve application-level throughput in a wide variety of error environments and
can sensibly allocate limited and dynamic network capacity among network flows.
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Chapter 1

Introduction

During the 1990’s the Internet came of age, becoming a hugely successful infrastructure
for delivering electronic mail and hypertext to any computer plugged into a wall. Now
it is expanding simultaneously in two directions. First, as the “last mile” connectivity
evolves from analog dial-up telephone lines to high-speed links, it is increasingly practical to
deliver high-bandwidth and/or real-time audio-visual content. Second, as the exponential
growth in processor power is applied to radio communications, cellular wireless networks are
increasingly ubiquitous and gaining enough per-user capacity to support data and multimedia
traffic in addition to voice. However, the wireless environment poses fundamental challenges
which make it difficult to offer wireless users the same fidelity of experience that they expect
based on using wired networks.

The first major challenge is that wireless transmissions suffer from attenuation, fad-
ing, and interference from competing transmissions. These can result in significant rates
of transmission errors, which may manifest themselves as bit corruptions within a packet,
partially-received (truncated) packets, or packets that are sent but not received. These mis-
fortunes must be overcome if we are to provide applications with a high-quality network
environment.

The second major challenge is that the severity of wireless link errors may vary sud-
denly and dramatically due to unpredictable changes in the surrounding environment. This
impedes applications that either require a certain quality of network service or that try to
adapt their communication strategies to prevailing network conditions.

This introductory chapter is structured as follows. The relationship between the Internet
architecture and wireless link errors is discussed in Section 1.1. The thesis statement is
presented in Section 1.2 and a brief overview of the supporting results presented in later
chapters is found in Section 1.3. Section 1.4 lists background assumptions used to direct the
research agenda. Section 1.5 discusses research efforts that are related to the thesis work
as a whole; other, more-detailed examinations are made in the body chapters. Background
information on the wireless local area network technology used in the course of this research
effort, WaveLAN I, is found in Section 1.6.
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1.1 Can the Internet Architecture Manage Wireless

Errors?

Wireless links differ from traditional “wired” (including fiber-optic) links in two ways that
challenge current implementations of the standard Internet protocol suite. First, on wireless
links packet loss or corruption due to transmission errors is not rare. This calls into question
the standard Internet assumptions that transmission errors should be corrected by transport-
level protocols at end systems [119, 24] and that end-to-end packet loss typically indicates
network congestion [60]. Second, end systems sharing a wireless link may experience different
error rates depending on error conditions, such as interference, at their different locations
(“location-dependent errors”). Traditional Internet link-scheduling mechanisms (ranging
from FIFO through Weighted Fair Queueing) assume that packet transmission failure is not
only rare but also independent of which station the packet is addressed to. Violating these
assumptions calls into question the meanings of “fair” scheduling, per-flow quality of service,
and even looser notions such as service level agreements.

Meanwhile, much of the Internet’s success to date has resulted from its architecture, a
lingua franca unifying disparate network types. The original architects of the Internet were
faced with multiple incompatible networks and a desire to enable communication among
them [32]. Much of the Internet’s success has come from their approach of standardizing
base-line, widely-usable mechanisms (such as addressing and best-effort delivery) without
specifying “the right way” to perform every useful function at every network node. In
particular, the Internet architecture has encouraged addressing problems locally when there
is compelling local knowledge and deferring solutions to end systems when there is no known
generally-applicable local solution.

For example, maximum transmission unit (MTU) size is a per-link decision because a
specific link may have size constraints different from the rest of the Internet. Queue service
order and queue-drop policies are per-link, which makes sense since only a given link knows
its instantaneous traffic load and typical load patterns. Nearly every link includes some form
of error detection, such as per-character parity or a per-frame checksum, tuned to match that
link’s expected corruption patterns; some links include link-specific error control mechanisms
such as error coding or retransmission.

In the other direction, flow control, congestion control, in-order delivery, retransmission
policies (including timing and persistence), application-visible framing, authentication, and
privacy have been deferred to end systems, either because end-system applications have
widely divergent needs in these areas or because no generally-accepted per-hop solution is
known.

In some cases where network support for a feature is clearly required but not fully under-
stood, such as Quality of Service, the Internet architecture includes coarse-grained hinting,
such as the Differentiated Services (previously “Type of Service”) header field [91].

The relationship between the Internet architecture and wireless link errors can be broken
down into two main questions:

1. To what extent should the responsibility for overcoming wireless link errors reside at
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end-system hosts versus wireless links, and

2. Do parts of the existing Internet protocol infrastructure need to be replaced or re-
worked? Might we need to replace or upgrade transport protocols so they can work
across wireless links (Section 4.7.8) or might wireless links need to “fix up” the opera-
tion of specific end-to-end protocols (Sections 4.7.9 and 4.7.10)?

Ideally, wireless link errors could be addressed without changes to non-wireless infrastructure
and without special support for every combination of transport protocol and wireless link
type.

1.2 The Thesis

It is possible to effectively address wireless link errors locally, through a combi-
nation of protocol-blind link-level error control, which lessens the damage, and
error-sensitive link scheduling, which ensures sensible outcomes in response to
unrecoverable link capacity loss.

First, we believe that most wireless link errors can and should be handled locally by
using per-link knowledge of the error environment to design an appropriate error coding and
retransmission scheme. Second, we believe that, while link-level error control can insulate
end-to-end traffic flows from the worst effects of the dynamic wireless error environment,
severe and location-dependent errors require a new notion of the “fair share” of a wireless
link. We propose and evaluate effort-limited fairness, which allows wireless links to con-
sider both per-flow throughput stability needs and whole-link efficiency concerns. When
we combine adaptive link-level error control with error-sensitive link scheduling, unmodified
existing end-to-end protocols can effectively use wireless links despite dynamic and severe
error environments.

This thesis was investigated by focusing closely on one particular wireless LAN environ-
ment, WaveLAN I (see Section 1.6). In that context, we began with a detailed character-
ization of how this wireless LAN behaves in response to typical environmental challenges.
We collected detailed traces of the system in operation. Analysis of these traces revealed
specific challenges for reliable data networking and suggested possible remedies. Next, we
designed and implemented a multi-layered network protocol stack, running in a production
operating system kernel on real hardware, to test mechanisms and policies for responding
to these challenges. Finally, we used trace replay to evaluate the quality of our proposed
solutions.

1.3 Overview of Results

The evidence for the thesis is established over the course of four chapters. A brief summary
of each one will provide the reader with a coherent vision of the remainder of the dissertation
document.
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1.3.1 Characterizing Environmental Challenges

Chapter 2 summarizes how WaveLAN responds to a variety of environmental threats, such
as various interfering radiation sources and obstacles. From this investigation we learn that
common environmental challenges pose serious threats to reliable wireless communication.

Some sources of observed errors, such as signal absorption by human beings and interfer-
ence from mobile communication appliances, suggest that wireless link errors will frequently
be dynamic on a variety of time scales.

Measurements reveal that error environments are sensitive to a wide variety of factors,
including the construction materials used by different buildings.

The results in this chapter were previously published in the proceedings of ACM SIG-
COMM ’96 [38] (copyright c© 1996 Association for Computing Machinery).

1.3.2 Trace-based Evaluation of Adaptive Error Control

Chapter 3 deepens this investigation by selecting detailed error traces from several partic-
ularly interesting error environments and simulating the effectiveness of various link-level
error control strategies.

This investigation yields two important results. First, efficiency in the face of dynamic
errors demands adaptive error control strategies—while static policies may work well in some
error environments, they perform poorly or fail in others. Second, it is feasible to construct
strategies that are both simple to implement and perform well in various dynamic error
environments.

This study was selected for a special issue of Mobile Networks and Applications (MONET),
published by Kluwer Academic Publishers, on the topic of adaptive mobile networking [40].

1.3.3 End-to-end Evaluation of Local Adaptive Error Control

Chapter 4 addresses two architectural questions about deploying adaptive error control.
The final authority on error control is, necessarily, some end-to-end protocol between

communicating entities [119, 24]. However, for practical reasons, every network link provides
some per-hop error control functionality, if only byte parity or a simple frame checksum.
This conflict poses the question of how much effort should be devoted by a wireless link to
overcoming its own errors and how those efforts will interact with end-to-end error control.
This question is important because, if the primary responsibility for wireless link errors will
belong to end systems, potentially every end-to-end protocol would need to become “wireless
aware.”

If any error control is to be done locally, this raises the question of whether specific
mechanisms will be required to support each end-to-end transport protocol or whether this
can be done in the protocol-blind fashion typical of the Internet to date.

We argue that it is desirable for wireless link errors to be addressed on a per-link basis
and for this error control to be independent of the end-to-end transport protocol in use. We
demonstrate that this approach is feasible by examining the interactions between link-level
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error control and TCP. Chapter 4 also expands on Chapter 3’s arguments in favor of adaptive
error control strategies by retargeting our error environment traces from the realm of abstract
throughput simulation to a prototype LAN implemented in an open-source operating system
kernel. The result is a confirmation of our per-link protocol-blind adaptive error control
approach.

This work was first presented at the Sixth IEEE International Conference on Network
Protocols (ICNP ’98) [39].

1.3.4 Effort-limited Fair (ELF) Wireless Link Scheduling

Link-level error control techniques can increase the effective throughput available over an
error-challenged link by converting many end-to-end packet losses into mild throughput
reductions. For example, if a wireless link begins to lose half of the packets transmitted
across it, retransmission might transform the 50% end-to-end packet loss rate into a 0%
end-to-end packet loss rate, but the available throughput would still drop by half. In a
different situation, error coding might reduce the packet error rate due to bit corruption
from 90% to 5% but coding overhead could cost 20% of each packet body. The result would
be that throughput would increase from 10% to 76%. In each case substantial link capacity
is irreversibly lost.

If some application flows need a certain amount of throughput to function correctly, or
seek to adapt their behavior according to throughput availability, wireless link errors become
a scheduling problem. That is, a wireless link scheduler can transfer throughput losses from
some flows to others by giving error-prone flows extra air time. This may be done to ensure
a particular quality of service for some flows or to improve the ability of other flows to track
and adapt to changing conditions. Which flows deserve how much extra air time support is
a complex policy issue.

Once a policy has been arrived at, design problems remain. Many link schedulers make
complex, long-term decisions about the service a flow will receive. Some flows are allocated a
specific fraction of a link’s throughput based on administrative considerations such as coop-
erative bandwidth purchases. Other flows may request particular service guarantees and are
subject to the outcomes of complex admission control algorithms. These pre-computed deci-
sions must be reconsidered when environmental conditions change in a way that drastically
increases the error rates of one or more flows. If the error environment changes frequently
and dramatically, link scheduling algorithms must be redesigned around this central fact of
dynamic capacity.

Chapter 5 describes a new approach to wireless link scheduling, “Effort-limited Fairness,”
which builds on the existing Weighted Fair Queueing paradigm while intelligently managing
highly dynamic wireless link capacity. We translate this new policy framework into a sched-
uler algorithm and evaluate its behavior by both simulation and deployment in our network
prototype.

An early version of this chapter was presented at IEEE INFOCOM 2000 [41].
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1.3.5 Result Summary

The result of our investigation is a demonstration that wireless link errors can be addressed
without upheaval to the existing Internet architecture. Even severe and dynamic errors
can be ameliorated by protocol-blind adaptive link-level error control when it is designed
to address the error characteristics of a particular link. Our investigation presents evidence
that interactions between per-link and end-to-end error control are not troublesome. Effort-
limited fair scheduling yields sensible and intuitive results for flows in the face of enormous
error rate variability. This scheduling approach can benefit not only flows with specific
reservations, but also the best-effort flows that make up the vast majority of Internet traffic
today.

A summary of this dissertation recently appeared in a special issue of Wireless Com-
munications and Mobile Computing (JWCMC), devoted to the topic of reliable transport
protocols for mobile computing [42] (copyright c© 2002 John Wiley & Sons, Ltd.).

1.4 Scope

This work embodies a variety of assumptions, falling into two main categories. We assume
certain plausible architectural features that help us focus on both error management tech-
niques and guide our evaluation of them. In addition, we omit detailed consideration of
certain important but complicated architectural areas due to time and space constraints.

First, we assume the following architectural features:

• non-minimal mobile hosts:

When this research effort began, we chose to focus on mobile nodes equivalent in
power to laptops (at the time, roughly a 33 MHz processor with 8-32 megabytes of
RAM), despite their limited portability. This decision, which was based on our belief
in the power of technological growth [86], was in conscious contrast with research into
“lightweight” mobile hosts [121, 133]. Over time platforms possessing this degree of
computational power, which provides benefits such as operation even while discon-
nected from a network, flexibility of data formats and error control strategies, and a
large, evolving software base, have shrunk to pocket size (as of 2001 multiple cellular
telephones with full-blown HTML browsers were available on the U.S. market).

• cellular radio architecture:

Cellular radio networks [109] re-use the radio frequency spectrum by partitioning a
large area into smaller “cells” and assigning a subset of the spectrum to each cell.
Each cell, or small group of cells, typically has its own connection to a wired backbone
network. Cellular systems are often designed with the expectation that traffic between
mobile hosts in a single cell is rare; this assumption can simplify both hardware and
software. At any time, a single cell contains a known number of mobile clients, and the
cell’s base station can assign resources, such as bandwidth and transmission power, to
these clients according to their needs. Advances in radio hardware, signal processing,
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and antenna system design are steadily increasing the practical per-cell bandwidth at
the same time as decreasing hardware prices make it practical to devote this bandwidth
to smaller cells (i.e., fewer mobile hosts).

Ad-hoc networks [27] are an alternative organization in which a large, geographically
dispersed collection of mobile hosts unite to form a network infrastructure. There
is no formal division into cells with its attendant carefully engineered frequency re-
use; distributed medium-access control protocols allow a single channel to be re-used
in a randomized fashion. At present, ad-hoc networks are an ongoing research area
and there is is little experience with providing ad-hoc Quality of Service support for
applications. For these reasons, this work considers cellular data networks.

• shared channel:

This work focuses on a shared radio channel of 1 to 20 Mb/s due to the widespread com-
mercial availability of products in this range, including the IEEE 802.11 Wirless LAN
standard [70]. Having multiple hosts share access to a single channel may not obviously
be desirable. For example, the Qualcomm CDMA Cellular Phone System [118, 106, 64]
uses CDMA to provide each handset with a dedicated channel to and from the base
station. This approach requires less-intelligent handsets and is cheaper since the per-
channel hardware at each base station is operating at a low bit rate. But multimedia
networks with computationally powerful hosts may be better served by a system which
allows a more flexible division of bandwidth among hosts, and which allows multicast
transmission of data such as video streams. A shared channel arbitrated by some form
of time-division multiplexing, such as IEEE 802.11 or HiperLAN 2 [104] should provide
these benefits and greatly reduce the cost of base stations, since they would need only
one high-speed data path (correlator, codec, modem, transceiver) instead of many.
It seems likely that a single channel (i.e., wireless cell) will typically be occupied by
between 1 and 100 mobile hosts at any time.

• IP version 4:

During implementation of the prototype network evaluated in this work, we used ver-
sion 4 of the Internet Protocol (IP) [101]. However, only minor details would need to
be changed in order to support IPv6 or even non-IP-based networks.

Second, we do not devote significant time to

• handoff planning and management:

Allowing a mobile host to move from one radio cell to another requires substantial
infrastructure support. For example, the inter-cell backbone must track the location
of every mobile host in order to route data to and from it. Furthermore, if a cellular
network wishes to provide Quality of Service support, it may be necessary for it to
carefully balance mobile hosts across cells in order to ensure that each cell has enough
resources to support its mobile clients. In addition, it may be necessary for adjacent
cells to carefully coordinate the transfer of a mobile host between them. There is
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substantial ongoing research in the area of handoff support and management [1, 75],
and this is somewhat orthogonal to the issues of how best to support mobile hosts
within a single cell. Therefore, this work omits support for, and consideration of,
handoff.

• inter-network blame assignment:

Whenever application data needs to cross multiple networks, such as a campus cellular
radio network, a regional Internet Service Provider, and the Internet backbone, and
the application expects a particular quality of service, there is the possibility that the
application will receive lower quality than it needs, even if it has carefully reserved
resources on each network it is using. When this happens, the first step toward reme-
dying the problem will be determining which network is not meeting its stated level of
quality. This will require networks providing quality of service to track what level of
quality they are actually providing to each application and to share that information
with applications or with other networks. While this sort of information is similar to
information that will be necessary to manage intra-cell wireless error control strate-
gies, this work does not consider the more general problem of inter-network blame
assignment.

1.5 Related Research Efforts

While more-detailed reviews of related research will be presented in the following chapters,
a brief overview of several efforts in the area of wireless network architectures will clarify the
high-level differences between this work and that of others.

1.5.1 IEEE 802.11

The IEEE 802.11 wireless LAN effort [70] began as a “second generation wireless Ether-
net.” The primary goals were to replace proprietary wireless LAN technologies with multi-
vendor interoperability and to apply research results to improving Medium Access Control
performance. The 802.11 standard provides a simple packet-level retransmission facility and
supports several levels of physical-layer error coding. An optional “Point Coordination Func-
tion” provides rudimentary support for link scheduling by allowing a base station to allocate
air time among stations by polling.

If we consider link-level error control, there are both similarities and differences with
this work. For example, both the 802.11e draft standard [59] and our prototype use Reed-
Solomon block codes to recover from errors experienced by an underlying direct-sequence
spread spectrum (DSSS) physical layer; both the widely-used 802.11b standard [69] and our
prototype segment and reassemble network-level datagrams into smaller link-level frames.
Chapters 3 and 4 could be used as trace-based experimental evidence for setting certain
802.11 MAC parameters such as retransmission counters. However, our results go beyond
this to investigate the utility of dynamic frame size adjustment and the feasibility of designing
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adaptive error control policies that work across a wide range of error environments. Also,
while 802.11b supports adaptive adjustment of the transmission symbol rate, “the algorithm
for performing rate switching is beyond the scope of this standard.” The demonstrated
utility of our Flex adaptation policy (Section 3.3) could prove useful in this regard.

The original 802.11 specification said very little about how a base station should perform
link scheduling, and we are not aware of a commercial 802.11 implementation that includes
PCF polling. The IEEE 802.11e working group [59] is upgrading the standard to add Quality
of Service support including both traffic specifications and scheduling. It is likely that, once
again, the exact scheduling algorithm will not be specified. One feature of the current
802.11e draft is priority-based scheduling. In Chapter 5 we will argue that this approach has
limited applicability. Furthermore, the ELF approach we will advocate has an architectural
advantage significant to the Internet: an ELF scheduler naturally improves the performance
stability of the Internet’s “bread and butter” best-effort traffic without requiring it to declare
a traffic specification and pre-allocate link throughput.

1.5.2 Wireless ATM

For approximately a decade researchers have investigated ways to extend the ATM network
protocol family [5] to mobile wireless links [22, 116, 128, 67]. While this effort necessarily
faces many of the same problems that “wireless Internet” research does, there are important
differences.

The ATM quality of service model is very complicated. A flow may be queued according
to one of several disciplines: UBR (unspecified bit rate), roughly equivalent to traditional
best-effort delivery; ABR (available bit rate), similar in scope to ECN [110]; CBR (constant
bit rate); or VBR (variable bit rate). These disciplines involve traffic specifications and
shaping functions with many parameters. ATM forbids out-of-order delivery and encourages
flows to specify delay and jitter requirements. Because ATM data payloads are 48 bytes and
packetized speech is an architecturally significant flow type, there is a tendency for flows
to consist of tiny evenly-spaced packets. This poses significant challenges to medium access
control (MAC) protocol designs and link schedulers.

Wireless ATM inherits a focus we will refer to “hard QoS.” By this we mean several
things. First, flows are encouraged to express detailed quality of service requirements and,
assuming flow set-up succeeds, expect that these requirements will be met precisely for long
periods of time. Second, flows sharing a link may specify QoS requirements that differ not
only in quantity but in kind–a link scheduler must be prepared to simultaneously and faith-
fully execute contracts specified in ABR, CBR, and VBR terms, with per-flow throughputs
varying by multiple orders of magnitude. The computation required to do this, split between
connection setup and real-time link scheduling, may be substantial. Finally, record-keeping,
billing, and periodic status reporting may be complex as well.

Our work focuses on a simpler notion of quality of service. First, we believe it is important
to do a good job for best-effort traffic. In Chapter 5 we will demonstrate a way to balance
efficiency and fairness concerns that supports best-effort flows as well as constant bit-rate
flows. On the other hand, our scheduling work is not as feature-rich as that of others; in
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particular, we do not explicitly manage delay jitter.

While experimental Wireless ATM networks have been constructed [100, 115], the re-
search to date does not appear to have resulted in standardization or commercial products.

1.5.3 HiperLAN

Since 1991 the European Telecommunications Standards Institute has been developing a
wireless data infrastructure known as HIPERLAN (High Performance Radio Local Area
Network). The HiperLAN 1 functional specification was released in 1996 and updated in
1998 [103]; however, that effort did not culminate in released products [57]. The HiperLAN 2
definition [104] was released in 2000; commercial implementations are expected sometime in
2002.

HiperLAN 2, like Wireless ATM, has a “hard QoS” focus [61] beginning with multiple
data-link connections per station. A link adaptation function uses multiple modulation
systems and error correction codes to trade off throughput and reliability. Power control is
used for a mixture of technical and regulatory reasons.

It is difficult to predict whether our trace data would generalize from WaveLAN to
HiperLAN 2, since the latter uses a different modulation approach and operates in a different
frequency band. However, we expect adaptive link-level error control to be as important to
performance for HiperLAN 2 as it has been for our prototype network. We believe that severe
and dynamic error conditions will be particularly challenging for “hard QoS” schedulers since
they will be in the position of writing very detailed contracts and being unable to meet them;
the ELF approach could serve as a model for “what to do when you can’t do what you said
you would.”

1.5.4 Reiner Ludwig’s “Cross-Layer Interactions” dissertation

The doctoral dissertation of Reiner Ludwig [78] is relevant to this work because it investi-
gates in depth the interactions between link-level and end-to-end error control. While that
dissertation and this one overlap in areas and display substantial philosophical compatibility,
they differ in terms of network environment, experimental approach, and contribution areas.

Ludwig’s work takes place in a different network environment. The radio link studied is
that of GSM cellular phones [44]. GSM’s RLP provides a 9.6 Kbit/s channel. Error con-
trol includes a fixed FEC (Forward Error Correction) code, cross-frame interleaving (which
induces a 90 ms latency), and link-level retransmission (which can delay a packet up to 2.5
s).

That work, like this one, is based on real-world trace data. However, one of his research
contributions is an infrastructure for simultaneously tracing, in a correlated fashion, multiple
protocol layers. This allows him to study cross-layer interactions in finer detail. Ludwig’s
error traces consider not only errors due to hazards of the radio channel but also handoff-
related errors. In the other direction, the error traces presented in Chapter 3 are detailed
enough to allow investigation of adaptive error coding.
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Both dissertations make contributions to the understanding of link-layer error control and
continue on to suggest changes in higher protocol layers. Based on his detailed multi-layer
traces, Ludwig proposed modifications to the TCP transport protocol, where this dissertation
focuses instead on the relationship between link errors and packet scheduling.

Further details of the relationship between these research efforts will be covered in Sec-
tion 4.7.2.

1.5.5 IETF PILC working group

The Performance Implications of Link Characteristics (“pilc”) working group of the Internet
Engineering Task Force has produced several documents containing a variety of advice for de-
signers of both end-to-end protocols such as TCP [34] and specific network link technologies,
including link-level retransmission [45]. In addition to communicating consensus on design
issues when it is available, these documents are also designed to expose technology imple-
mentors to a variety of ongoing research efforts when consensus has not yet been reached.
They therefore frequently refer to academic research, and [45] cites an earlier version of
Chapter 4.

1.6 Experimental platform: WaveLAN I

The wireless LAN employed in this work is WaveLAN I [127], originally known as NCR
WaveLAN, then AT&T WaveLAN, then Lucent WaveLAN. WaveLAN I has been superseded
in the marketplace by Lucent WaveLAN II and other implementations of the IEEE 802.11
Wireless LAN standard [70].

Though WaveLAN I is now obsolete, it is an attractive research platform for this work.
First, it represents a “competent” physical layer in the sense that it uses direct sequence
modulation and antenna diversity to effectively combat multipath interference. It allows
us to capture the complete bodies of packets that have experienced data corruption, which
frequently allows us to determine the degree and precise nature of the corruption. This is im-
portant for designing and evaluating error coding strategies. Most existing implementations
of the IEEE 802.11 wireless LAN standard [70] appear to perform the non-trivial medium
access control protocol in hardware, which would significantly constrain our investigation of
integrating flow scheduling with medium access control scheduling.

Several similarities between WaveLAN I and 802.11b [69] (the popular “Wi-Fi” flavor
of 802.11) suggest results of this work may apply to modern systems. First, 802.11b uses
a Direct Sequence Spread Spectrum modulation scheme very similar to WaveLAN I’s, and
the 802.11e draft standard [59] suggests adding basically the same error correction code
that we evaluate in Chapter 3. Also, the original 802.11 specification includes an optional
Medium Access Control (MAC) extension called the “Point Control Function” (PCF), up-
dated in 802.11e, which would allow deployment of the ELF scheduling approach we discuss
in Chapter 5.
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1.7 Road Map

The remainder of this document consists of five chapters. Chapter 2 investigates the severity
of various typical environmental hazards and the sensitivity of WaveLAN to details of these
hazards. In addition to interfering radiation sources, we will consider issues such as building
construction. We will observe that the damage inflicted by each hazard can vary widely
depending on such details as object location or construction materials, meaning that the
importance of each hazard varies according to situation.

Chapter 3 delves deeper by collecting bit-level error traces in selected error environments
and then uses these traces to simulate the effectiveness of various link-level error control
strategies. Chapter 4 investigates how link-level error control behaves “in the real world.”
In particular, in the context of a running prototype system, we will evaluate the extent to
which link-level error control is compatible with TCP’s end-to-end error control.

Through careful measurement and analysis, and by implementing link-level error con-
trol, we are able to greatly reduce the impact of wireless link errors. However, this only
lessens the extent to which dynamic error patterns result in unpredictable application-level
performance. Chapter 5 describes how a new approach to wireless link scheduling, “Effort-
limited Fairness,” builds on the existing Weighted Fair Queueing paradigm while intelligently
managing highly dynamic wireless link capacity.

Contributions of this work are summarized in Chapter 6.
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Chapter 2

Characterizing Environmental
Challenges

2.1 Introduction

Before embarking on ambitious plans to resolve problems posed by wireless links, we believe
it is important to characterize the damage caused by various threats. The purpose of this
chapter is to survey the major threats to WaveLAN in a typical office environment. We wish
to address the following questions:

• Which potential hazards matter the most in practice?

• How sensitive is the severity of each hazard to minor environmental perturbations,
such as mobile host location or building materials?

• Which hazards that affect WaveLAN are likely to affect other wireless LAN technologies
in similar fashions?

We will find that in many situations communication can proceed unimpeded by errors,
suggesting that heavyweight error-control mechanisms are frequently inappropriate, but that
in some situations errors are significant enough to demand careful attention if communica-
tion is to proceed at all. For example, WaveLAN can communicate effectively through
multiple walls, but is significantly affected by certain cordless telephone technologies. Once
we have identified which error sources require more-detailed investigation, the next chapter
will employ a trace study to characterize error patterns down to the bit level, determine how
dynamic these errors are, and evaluate adaptive error control solutions.

The remainder of this chapter is organized as follows. In Sections 2.2 and 2.3 we present
a brief summary of the sources of wireless errors and our methodology for characterizing the
error environment. We then present the results of our study: characterization of in-room,
line-of-sight communication (Section 2.4), measurements of the errors caused by passive
obstacles (Section 2.5) and competing radiation sources (Section 2.6). We discuss related
work in Section 2.7 and summarize in Section 2.8.
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2.2 Sources of Wireless Errors

For the purposes of this study, we organize the possible sources of errors in a wireless network
into three groups.

The first group contains error sources we investigated and report on in this chapter:

• attenuation. When electromagnetic energy encounters matter, some of it is lost in the
form of heat. WaveLAN can usually penetrate several walls while maintaining a very
low error rate, but we found attenuation to be a significant source of errors.

• front end overload. If a very powerful transmitter of one frequency band is near a
receiver of another band, the transmitter may overwhelm filters in the receiver and
inject substantial noise. As we expect wireless computer networks to be employed
in close proximity to microwave ovens and cellular phones, we have made an initial
investigation into errors due to front-end overload.

• narrowband interference. This is due to an unfriendly transmitter occupying a small
frequency band overlapping (perhaps totally) with the band we wish to use. We inves-
tigated the effects of two 900 MHz FM cordless phones.

• spread-spectrum interference. This is due to an unfriendly transmitter either switch-
ing between narrowband frequencies or spreading its energy simultaneously across a
wide frequency band. We have investigated interference between competing WaveLAN
transmitters and between WaveLAN and other 900 MHz spread-spectrum sources.

The second group contains error sources which might have an impact on WaveLAN
performance, but which we did not or could not control the behavior of:

• natural background noise. For example, infrared wireless networks may perform poorly
if they are near sources of direct sunlight. We did not attempt to measure or control
for background noise.

• multipath interference. When electromagnetic radiation reflects off of or diffracts
around objects, it takes multiple paths between the transmitter and the receiver. Since
these paths are typically of different lengths, there will be destructive interference,
which can greatly reduce signal strength. We have not studied how multipath effects
interfere with WaveLAN, in part because they are difficult to model and study, and in
part because WaveLAN is explicitly designed to resist them.

The third group contains error sources we did not consider in this chapter:

• path loss (dispersion). The intensity of electromagnetic energy reaching a receiver is
decreased by distance even in free space. We found that WaveLAN did not suffer errors
due to path loss even in large lecture halls.
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• motion. If two communicating objects are moving with respect to each other, the
frequency of the electromagnetic energy changes according to the Doppler effect. While
this effect may be significant in some radio environments [56], the Doppler shift due
to moving a WaveLAN unit at the speed of sound would be substantially less than
the inaccuracy of the clock crystals employed by WaveLAN[127]. Hence we have not
investigated errors due to motion.

• data dependent effects. Some modulation schemes can lose clock synchronization in
the face of certain long bit patterns. We will investigate data-dependent effects as part
of our bit-level trace study presented in in Chapter 3.

2.3 Methodology

2.3.1 WaveLAN

WaveLAN I [127] (henceforth: “WaveLAN”) was designed to be an affordable, easy-to-
install wireless extension of an existing bridged Ethernet system. Products include ISA and
PCMCIA network interfaces for PC-compatible computers and stand-alone WaveLAN-to-
Ethernet packet bridges. They operate in either the 902-928 MHz or the 2.4-2.8 GHz ISM
(Industrial, Scientific, and Medical) license-free band. The PCMCIA units comprise a Type
II PCMCIA card and an external unit a little larger and heavier than a deck of cards.

Internally, the WaveLAN interface contains a standard Intel 82593 single-chip CSMA/CD
LAN controller, custom logic for signal processing and modem control, and a custom radio
transceiver. The transmitter applies DQPSK modulation to a 2 megabit/s data stream,
yielding a 1 megabaud signal. This signal is further modulated by an 11 chip per bit sequence
(hence “direct sequence”) to produce an 11 MHz wide signal which is transmitted with
a power of 500 milliwatts. The receiver selects between two perpendicular antennas and
multiple incoming signal paths to combat multipath interference.

The modem control unit prepends a 16-bit “network ID” to every packet on transmit,
and can be set to reject all but one network ID on receive. In addition, it informs the host of
the channel condition upon each packet arrival by reporting signal level, silence level, signal
quality, and antenna selected for each packet. The signal and silence levels (5 bits) are derived
from the receiver’s automatic gain control (AGC) setting just after the beginning and end of
the packet, respectively. Because the MAC protocol discourages simultaneous transmission
and immediately consecutive transmissions, measuring the silence level during an inter-packet
time is typically a good indication of the amount of non-WaveLAN background interference.
The signal quality (4 bits) is sampled just after the beginning of the packet and is derived
from the information the receiver uses to select between the two antennas. These values are
summarized in Table 2.1.

As it is difficult to detect collisions in this radio environment, WaveLAN employs a
CSMA/CA (collision avoidance) MAC protocol [6]. In CSMA/CD, a station which becomes
ready to transmit while the medium is busy will make its first transmission attempt as soon
as the medium is free, based on the optimistic assumption that it is the only waiting station.
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Packet parameter Range

Signal level 0–32
Silence level 0–32
Signal quality 0–16
Antenna 0–1

Table 2.1: WaveLAN per-packet modem information. The units of measure are not presented
in [127].

If this assumption is wrong, all waiting stations will quickly learn their mistake by sensing a
collision. Since WaveLAN cannot sense collisions, they result in packet losses which must be
dealt with by higher layer protocols. WaveLAN CSMA/CA attempts to avoid collision losses
by treating a busy medium as a collision. That is, any stations that become ready to transmit
while the medium is busy will delay for a random interval when the medium becomes free.
Aside from the modified MAC protocol and lower data rate, the 82593 performs all standard
Ethernet functions, including framing, address recognition and filtering, CRC generation and
checking, and transmission scheduling with exponential backoff.

Many of the techniques cellular radio systems [106, 64, 109] employ to re-use frequencies
in nearby areas, such as power control, frequency diversity and code diversity, are easiest
to employ in a point-to-point environment. Since WaveLAN follows the Ethernet protocol,
where stations multicast to dynamic sets of peers rather than communicating exclusively
with a central base station, it would be difficult to estimate the power required to contact
a particular set of receivers for each packet transmission, and expensive or complex to syn-
chronize with many stations each using a different spreading sequence. Perhaps for these
reasons, WaveLAN does not provide the ability to vary transmit power and does not use
frequency or code diversity. Instead, hosts may program their WaveLAN radio receivers to
mask out weak signals by specifying minimum threshold values for signal level and signal
quality. This improves throughput and may be sufficient to simulate cell boundaries in some
cases even though WaveLAN is inherently a single shared channel. In addition, the “network
ID” provides multiple logical Ethernet address spaces, which allows WaveLAN-to-Ethernet
bridges to use standard bridge routing protocols.

2.3.2 Data Collection

To characterize WaveLAN error environment, we monitored the quality of data transfers
between two identical DECpc 425SL laptops (25 MHz 80486) running NetBSD 1.0A. For
different tests, we placed the PCs in different environments or added competing radiation
sources.

The data transfers consisted of specially-formatted UDP datagrams. On the receiver,
the kernel device driver was modified to place both the Ethernet controller and the modem
control unit into “promiscuous” mode and to log, for each incoming packet, every bit and all
available status information, even if the packet failed the Ethernet CRC check. We decided
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to collect bursts of packets at the maximum possible transmission rate (roughly 1.4 Mb/s for
this machine and protocol stack), aggregating multiple bursts to form a long trial. Within
each trial, packets consisted of 256 32-bit words wrapped inside UDP, IP, Ethernet, and
modem framing. Within each packet the data words were identical to facilitate identification
even in the face of substantial noise, and the data value was incremented between packets.

There are many reasons why a transmitted test packet might not be received intact,
and we will consider them in order from the outside of the packet toward the center. First,
certain errors might cause the modem unit to miss the beginning-of-frame marker, resulting
in a slightly-damaged packet being totally lost. Second, it is possible for a packet to arrive
correctly but be lost by the receiver due to unrelated system activity, even though we tried
to reduce this to a minimum. Third, errors in the packet headers and trailers might lead the
Ethernet or IP layers to discard the packet due to damage or mis-addressing. To address
this, we enabled promiscuous receive and disabled automatic CRC filtering at the Ethernet
level and used a heuristic matching procedure to determine whether a given packet was
one of the test series. Finally, a packet may arrive but the body may be truncated and/or
some bit values may be incorrect. We applied a second heuristic procedure to determine
the sequence number of any packet believed to be a test packet. Since the packet body
consists of a single word repeated multiple times, truncated packet bodies are ambiguous–it
is not possible to know which words are missing. Therefore, we produced an estimated error
syndrome (bit corruption pattern) for only those test packets which were damaged but not
truncated. Furthermore, we report precise bit error figures only for errors in the data portion
of the packet, as reconstructing the exact IP header (and thus the Ethernet CRC trailer) is
difficult. Therefore, there are some packets which we knew to be damaged but for which we
could not determine the exact number of corrupted bits. Due to these factors, our packet
loss rate and bit error rate (BER) figures are necessarily only estimates.

Column Name Meaning

Packets Received Test packets received
Packet Loss Percentage of transmitted test packets that were lost
Packets Truncated Number of received test packets that were truncated
Bits received Number of body bits received, rounded down
Wrapper Damaged Number of packets with damaged headers or trailers
Body Bits Total number of body bits damaged in trial
Worst Body Number of bits damaged in most-corrupted packet body

Table 2.2: Column heading explanations

Throughout this chapter, we will present data not only on error events (lost or damaged
packets) but also on the radio signal characteristics reported by the WaveLAN unit as a
side effect of every packet reception. We hope this will offer insight into the reasons behind
certain error events, as opposed to merely recording their frequencies. Table 2.2 explains
the column headings we use in most tables. When we present signal level, silence level, and
signal quality, we give the minimum observation (marked ↓), mean (µ), standard deviation
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(σ, in parentheses), and maximum observation (↑). Unless otherwise specified, all runs use
a receive threshold of 3 and a quality threshold of 1. The “Body Bits” and “Worst Body”
headings typically refer to the number of affected bits, except in Table 2.12, where the
frequency of these events merits displaying them in percentage form.

In some trials we received packets from WaveLAN units in nearby rooms or in other
buildings. Typically these packets were few, had poor signal characteristics, and were dam-
aged. Frequently we could determine that they were ARP packets or inter-bridge routing
packets. We present them, labelled “Outsiders,” only when they are significant (due to num-
ber or signal characteristics). It is possible for reasons explained above that some packets
we identify as outsiders may instead be badly corrupted test packets.

Many independent variables could be investigated for effects on loss and error rates.
Examples include: noise emitted by different models of laptop computers, relative position of
transmitter and receiver, orientation of antenna, temperature, humidity, position of human
bodies, different transmit and receive capabilities of individual units, different materials
of walls, ceilings, floors, and furniture, and effects of very distant competing transmitters.
Many of these variables have too many values to investigate with any thoroughness, may vary
greatly from building to building, or, in the case of interference, may be nearly impossible to
measure outside a “clean room” environment. Therefore, our approach for this study was to
select certain variables, manipulate them coarsely, and focus on those with the most obvious
effect, i.e., attenuation, obstacles, and active radiation sources.

2.4 In-room line-of-sight communication

We discuss WaveLAN behavior in the best case, two stations communicating in the same
room. We first present the results of a series of long-running trials designed to estimate the
BER of the link under good conditions. We then briefly describe how signal propagation is
affected by distance in the absence of obstacles, and finish by examining the effect of the
receive threshold on in-room communication.

2.4.1 Base case

In Table 2.3 we present the results of several long trials in an office for a signal level of
approximately 29.5.

Two points are worthy of note. First, the bit error rate is very low. These trials represent
more than 1010 bits, and we experienced very few errors. This is certainly low enough for
optimism about extending even fairly error-intolerant applications to a wireless network.
Second, some process is causing packets to be lost even in a near perfect environment, though
at a rate of well under one per thousand. This could be due to some critical host resource
being overloaded, or perhaps could indicate that the modem unit’s AGC occasionally reacts
too slowly and causes the beginning of a packet to be missed. In a running network, this
loss would probably correspond to less than one packet per second, which would plausibly
go unnoticed even by a multimedia application.
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Trial Packets Packet Packets Bits Wrapper Body Worst
Name Received Loss Truncated Received Damaged Bits Body

office1 102720 .03% 1 8 × 108 0 0 –
office2 40080 0% 0 3 × 108 0 0 –
office3 102720 .01% 0 8 × 108 0 0 –
office4 122159 .02% 0 109 0 0 –
office5 488399 .07% 0 4 × 109 0 0 –
office6 122160 .04% 0 109 1 1 1
office7 122160 .02% 0 109 1 0 –
office8 125040 .02% 0 109 0 0 –
office9 122160 .02% 0 109 0 0 –

Table 2.3: Results of in-room experiment

2.4.2 Path loss

Next we look at how the signal level changes as a function of distance. This is shown in
Figure 2.1. In this experiment the receiver is held fixed adjacent to one wall of a large
lecture hall while the transmitter is moved away from it to various distances (the zero
point represents the two modem units in physical contact). To the extent that the setup
approximates omnidirectional antennas in free space, one would expect to see a smooth
dropoff in signal level as distance increases. Indeed, that is the dominant theme. The dips
at six and thirty feet are probably due to multipath interference (similar WaveLAN non-
monotonicity was observed in [37]), and are likely to be particular to the room where the
measurements were taken.
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Figure 2.1: Signal level as a function of distance. Error bars represent minimum and maxi-
mum observed signal levels.
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2.4.3 Summary of in-room operation

In typical cases, the bit error rate and packet loss rate of the network are very low, and there
is reason to believe this is true throughout even large rooms.

2.5 Errors due to passive obstacles

In this section, we focus on mundane obstacles which we expect WaveLAN stations to typ-
ically encounter. We present the results of three experiments. In the first, we measure the
effect created by a single wall. In the second, we hold a receiver in a fixed position and mea-
sure the propagation environment to it from four transmitter locations. Finally, we interpose
a human body between two WaveLAN units and observe the effects on data transport and
signal metrics.

2.5.1 Single wall

In order to measure the effects of walls on WaveLAN signal propagation, we performed two
experiments, summarized in Table 2.4. We collected data when a transmitter and receiver
were separated by approximately 7 feet (“Air 1”), and then when they were further separated
by approximately 6 inches of wall (“Wall 1”). In the case of the second wall, we were forced
to interpose not only the wall but an additional four feet of free space, which should have a
negligible effect. In each of the four receiver locations we collected 108 bits with no loss or
error whatsoever.

Trial Packets Level Silence Quality
Name Received ↓ µ σ ↑ ↓ µ σ ↑ ↓ µ σ ↑
Air 1 12720 29 30.58 ( 0.70) 32 0 1.80 ( 1.38) 7 15 15.00 ( 0.00) 15
Wall 1 12720 24 25.78 ( 0.67) 28 0 1.25 ( 1.27) 7 14 15.00 ( 0.03) 15
Air 2 12715 25 28.58 ( 0.60) 30 0 3.35 ( 1.11) 13 15 15.00 ( 0.00) 15
Wall 2 12720 25 26.66 ( 0.59) 28 0 3.25 ( 1.10) 8 15 15.00 ( 0.00) 15

Table 2.4: Signal metrics with a single wall

However, the WaveLAN reports slightly different propagation quality numbers for the
different scenarios. We see that the wall affects the signal level in a way that is similar to a
noticeable move across a room, though the signal quality is not significantly reduced. The
first wall is plaster with a wire mesh core and it reduces the signal level by about 5 points.
The second wall consists of concrete blocks and reduces the signal level by only 2 points, i.e.,
concrete walls seem to be less hindrance for these signals than plaster over wire mesh walls.
Because interposing a wall requires moving one unit, and because small position changes
may result in noticeable propagation changes, we cannot be certain how much the wall itself
is to blame. However, we have observed similar signal strength decreases due to walls in
several other experiments.
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2.5.2 Multiple obstacles

In the second experiment we use a more complex setup in the building with concrete block
walls (“Wall 2” of the previous experiment). The layout is shown in Figure 2.2, and the
results of the test are summarized in Table 2.5. The receiver and the first transmitter location
are at diagonally opposite sides of a single office, and we obtain results similar to the previous
in-office case. The second transmitter location is approximately four feet away through a
single concrete block wall, and corresponds to the single wall experiment of the previous
section. The other two transmitter locations are more distant, with several intervening
walls and metal objects. They are at distances of roughly 45 and 30 feet respectively from
the receiver. The fourth transmitter location shows us our first corrupted packet bodies.
Twenty-five of the received packets have a total of 82 bit errors, with the worst packet
containing seven bit corruptions. While this number is trivial to correct using error coding,
the existing WaveLAN system does not include such a mechanism. The fourth transmitter
location demonstrates a single packet truncation of roughly 10% of the packet body.

R

T1 T2

T4

T5

Figure 2.2: Layout of multi-room experiment

It is instructive to make a more detailed comparison of the propagation environments
along these four paths (Tables 2.6 and 2.7). First we see that moving through a single
wall from Tx1 to Tx2 has not significantly changed the propagation environment. Next we
observe that passing through more walls and a door to Tx5 has a more noticeable effect.
Finally, if we look in more detail at the Tx5 location, we see that the corrupted packets have
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Trial Packets Packet Packets Bits Wrapper Body Worst
Name Received Loss Truncated Received Damaged Bits Body

Tx1 12715 0% 0 108 0 0 –
Tx2 12720 .007% 0 108 0 0 –
Tx4 1440 .07% 0 107 0 0 –
Tx5 1440 .07% 1 107 0 82 7

Table 2.5: Results of multi-room experiments

noticeably reduced signal level, while the sole truncated packet has a noticeably reduced
signal quality. We will see similar correlations in other scenarios, so they may point to some
feature of the WaveLAN hardware. For example, it is possible that data decoding and clock
recovery are impaired by different signal features.

From this brief investigation of obstacles, we learn that different construction materials
have noticeably different effects on WaveLAN propagation.

Trial Packets Level Silence Quality
Name Received ↓ µ σ ↑ ↓ µ σ ↑ ↓ µ σ ↑
Tx1 12715 25 28.58 ( 0.60) 30 0 3.35 ( 1.11) 13 15 15.00 ( 0.00) 15
Tx2 12720 25 26.66 ( 0.59) 28 0 3.25 ( 1.10) 8 15 15.00 ( 0.00) 15
Tx4 1440 11 13.81 ( 0.66) 15 0 4.03 ( 1.27) 9 15 15.00 ( 0.00) 15
Tx5 1440 7 9.50 ( 0.93) 12 0 4.08 ( 1.29) 8 11 14.99 ( 0.15) 15

Table 2.6: Signal metrics for multi-room experiment

Packet Packets Level Silence Quality

Type Received ↓ µ σ ↑ ↓ µ σ ↑ ↓ µ σ ↑
All 1440 7 9.50 ( 0.93) 12 0 4.08 ( 1.29) 8 11 14.99 ( 0.15) 15

Error-Free 1414 7 9.51 ( 0.92) 12 0 4.08 ( 1.28) 8 14 15.00 ( 0.03) 15

Truncated 1 10 10.00 ( -.–) 10 3 3.00 ( -.–) 3 12 12.00 ( -.–) 12

Body Damaged 25 7 8.72 ( 0.87) 10 1 4.56 ( 1.27) 8 11 14.72 ( 0.87) 15

Table 2.7: Signal metrics for multi-room scenario Tx5

2.5.3 Human Body

After noticing in a few informal trials that WaveLAN signals seemed significantly attenuated
by a human body, we decided to investigate further. In order to obtain a path with signifi-
cant attenuation, we separated two WaveLAN units by placing them in two rooms across a
hallway. The direct path was approximately 56 feet long and passed through two concrete
block walls and some classroom furniture. We collected two packet streams, with the sec-
ond impaired by the presence of a person bending over as if to examine the laptop screen
closely. Tables 2.8 and 2.9 contain the results. Interposing a person has induced packet loss,
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truncation, and packet body damage. Furthermore, we observe a noticeable reduction in
signal level. These results could be significant if similar networks were deployed in crowded
lecture halls, though the effect would probably be mitigated if a WaveLAN base station were
located near the ceiling.

Trial Packets Packet Packets Bits Wrapper Body Worst
Name Received Loss Truncated Received Damaged Bits Body

No body 1440 0% 0 107 0 0 -
Body 1442 .14% 3 107 1 224 27

Table 2.8: Effects of human body on packet loss and errors

Trial Packet Packets Level Silence Quality

Name Type Received ↓ µ σ ↑ ↓ µ σ ↑ ↓ µ σ ↑
No body All Packets 1440 11 12.55 ( 0.60) 15 0 4.23 ( 1.47) 13 15 15.00 ( 0.00) 15

Body All Packets 1442 5 6.73 ( 0.88) 10 0 1.90 ( 1.64) 9 11 14.95 ( 0.27) 15

Undamaged 1214 5 6.73 ( 0.87) 10 0 1.73 ( 1.59) 9 14 14.99 ( 0.09) 15

Truncated 3 7 7.67 ( 0.47) 8 0 3.00 ( 2.16) 5 11 12.33 ( 1.25) 14

Wrapper damaged 1 5 5.00 ( 0.00) 5 1 1.00 ( 0.00) 1 15 15.00 ( 0.00) 15

Body damaged 224 5 6.74 ( 0.95) 9 0 2.85 ( 1.61) 7 13 14.77 ( 0.51) 15

Table 2.9: Effect of human body on signal measurements

2.5.4 Signal Level versus Errors

Because the WaveLAN design addresses threats such as multipath effects and narrowband
interference, signal level is an important predictor of error rate, and an interesting question is
when the signal level is too low to receive packets reliably. Table 2.10 presents the aggregated
results of several trials, with slight variations of receiver position, orientation, and obstacles
within each trial. While undamaged packets may have a signal level as low as 5, and damaged
packets one as high as 12, the main body of damaged packets has signal levels below 8,
whereas it is well above 8 for undamaged packets. In this aggregation, we observed several
“outsider” packets, which we believe to be from other buildings; the most striking difference
between the damaged (truncated and/or corrupted) and undamaged outsider packets is their
signal quality.

2.6 Errors due to competing active radiation sources

We briefly discuss four different types of interference: front end overload, narrowband inter-
ference, spread spectrum interference, and competing WaveLAN units.
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Packet Packets Level Silence Quality

Type Received ↓ µ σ ↑ ↓ µ σ ↑ ↓ µ σ ↑
All test packets 8634 4 14.15 ( 6.32) 27 0 2.89 ( 1.64) 9 2 14.80 ( 0.86) 15

Undamaged 7942 5 14.74 ( 6.23) 27 0 2.83 ( 1.64) 9 3 14.94 ( 0.37) 15

Truncated 107 4 6.20 ( 1.44) 10 0 3.48 ( 1.34) 6 6 10.07 ( 1.74) 15

Wrapper damaged 9 6 7.56 ( 0.83) 9 0 2.89 ( 1.79) 6 10 12.89 ( 2.18) 15

Body damaged 576 4 7.52 ( 1.45) 12 0 3.61 ( 1.46) 9 2 13.80 ( 1.75) 15

Undamaged outsiders 73 5 6.23 ( 0.77) 8 0 2.63 ( 1.12) 5 9 14.49 ( 0.99) 15

Damaged outsiders 867 2 5.19 ( 1.87) 18 0 3.26 ( 1.37) 17 1 7.49 ( 2.06) 15

Table 2.10: Packet error conditions versus signal metrics

2.6.1 Front end overload

If a very powerful transmitter is close to a receiver, the early filter stages of the receiver, which
are designed to reject out-of-band signals, may be overwhelmed. We tested two sources of
front end overload. The first was a 144 MHz Amateur Radio Service FM transmitter emitting
roughly two watts while in physical contact with the receiver’s modem unit. During this test
we observed no bit errors unless we separated the two WaveLAN units far enough for the
signal level to be severely attenuated, which is itself a source of errors.

Microwave ovens are powerful sources of potential interference which are common in
an office environment. Though we expect them to be well shielded, even a small leakage
percentage would be significant. We made a crude test of a single microwave oven. The
transmitter was placed at varying distances from the receiver, which was in physical contact
with a microwave oven (operating with the door closed), and no errors were observed. Since
most microwave ovens operate in the 2 GHz range, it is possible that 2.4 GHz WaveLAN
units would receive more interference.

2.6.2 Narrowband interference

We briefly investigated the effects of two narrowband 900 MHz cordless phones (AT&T 9100,
Panasonic KX-T9500) on WaveLAN reception. We placed our WaveLAN transmitter and
receiver approximately 20 feet apart in a large lecture hall and subjected them to various
telephone interference. The results of this investigation are summarized in Table 2.11. In
the “phones off” trial, the handsets and base units were turned off; in the “cluster” trial,
both handsets and base units were activated and placed a few inches from the receiver’s
modem unit. These represent the extreme cases. For the other three trials, we moved either
the handsets or the base units to an office across the hall from the lecture hall to investigate
whether the phones were using some form of power control.1 In the “handsets nearby talking”
case, a human body was necessarily near the receiver, but in all other cases nobody was in
the immediate vicinity of the WaveLAN units.

1Power control is the practice of reducing transmitter power as long as it does not induce errors; this
saves battery life and allows frequency re-use.
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Trial Packet Packets Level Silence Quality

Name Source Received ↓ µ σ ↑ ↓ µ σ ↑ ↓ µ σ ↑
Phones off Test 1432 25 26.71 ( 0.66) 28 0 2.40 ( 1.32) 6 14 14.98 ( 0.14) 15

Outsiders 330 2 4.69 ( 1.56) 25 0 2.57 ( 1.37) 6 1 6.67 ( 1.99) 15

Cluster Test 1440 25 26.89 ( 0.61) 28 8 15.45 ( 1.22) 19 15 15.00 ( 0.00) 15

Handsets nearby Test 1440 25 26.62 ( 0.62) 28 3 11.33 ( 2.62) 15 13 14.93 ( 0.26) 15

Handsets nearby Test 1431 25 26.63 ( 0.59) 28 0 6.11 ( 1.98) 10 14 14.96 ( 0.20) 15

talking Outsiders 213 6 7.85 ( 0.87) 11 2 6.26 ( 1.73) 11 1 9.93 ( 1.93) 15

Bases nearby Test 1440 25 26.31 ( 0.65) 28 17 19.32 ( 1.18) 21 15 15.00 ( 0.00) 15

Table 2.11: The effects of narrowband 900 MHz cordless phones

Except for the “cluster” trial, both handsets received nearly solid static, and the Pana-
sonic unit beeped, presumably to indicate poor signal conditions. In sharp contrast, Wave-
LAN experienced no damaged test packets, and only background levels of packet loss (the
“phones off” and “handsets nearby talking” trials each experienced a single packet loss). The
telephones affected the silence level to varying degrees; in the two cases where the silence
level was lowest, we observed packets from stations not participating in the test (they were
relatively weak and all were damaged in some way, so we suspect they were leakage from
one or more nearby buildings which we know contain WaveLAN units). The fact that the
highest silence level is in the “bases nearby” trial, when the handsets were distant, rather
than the “cluster” trial, suggests that the cordless phones may be using power control.

We also briefly investigated the effects of an Advanced Mobile Phone Service (AMPS)
narrowband FM cellular phone on WaveLAN reception. Once again, at varying distances,
the WaveLAN seemed immune to bit errors. On the other hand, the cellular phone received
significant amounts of white noise, totally overwhelming the audio signal, when it was close
to an operating WaveLAN transmitter. We did not control for the effects of power control
or channel selection by the cellular phone system.

WaveLAN’s resistance to these interference sources is probably due to the DSSS modu-
lation, which is known to be resistant to narrowband sources [99].

2.6.3 900 MHz spread spectrum cordless phone

We also investigated the effects of two 900 MHz spread spectrum cordless phones, an AT&T
9300 and a Radio Shack ET-909.2 The two phones were quite similar in user interface and
effects on WaveLAN reception. Unfortunately, if the handsets were within approximately
three feet of each other, they could not simultaneously maintain connections to their respec-
tive base stations, even when multiple channels were employed. Our WaveLAN transmitter
and receiver were approximately 25 feet apart in a conference room. The “near” location
used for these trials was several inches from the receiver’s modem unit, and the “far” location
was approximately 14 feet from the receiver and 20 feet from the transmitter. For all runs
we collected enough received packets to yield roughly 107 bits of packet body. Throughout

2The Radio Shack ET-909 reportedly uses DSSS modulation, and we suspect the AT&T 9300 does as
well.
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the tests the telephones maintained acceptable audio signals. There were occasional clicks,
but no actual outages, and the handsets did not complain about poor signal conditions.

The results of this investigation are summarized in Table 2.12. Three cases indicate that
these phones can severely damage the WaveLAN environment: half of the packets are totally
lost, while every packet that arrives is truncated. On the other hand, the “RS remote cluster”
case indicates that reasonable separation between the WaveLAN and telephone leaves the
link unharmed (though we will see below that the signal characteristics change noticeably).
Finally, the “AT&T handset” case demonstrates that there is a significant intermediate effect:
while a small number of packets are lost or truncated, nearly two thirds of the remainder
contain correctable errors (the worst corruption of a packet body observed was 5% of the
bits).

Trial Phone Handset Base Packet Packets Wrapper Body Worst
Name Type Location Location Loss Truncated Damaged Bits Body
Phones off - - - .5% 0% 0% 0% -
RS base RS far near 52% 100% 0% 0% -
RS cluster RS near near 51% 100% 0% 0% -
AT&T cluster AT&T near near 52% 100% 0% 0% -
RS remote cluster RS far far 0% 0% 0% 0% -
AT&T handset AT&T near far 1% 4% 1% 59% 4.9%

Table 2.12: Summary of spread spectrum cordless phones

The signal information presented in Tables 2.13 and 2.14 suggests the following observa-
tions:

• The phones add a significant amount of noise to the environment. Every case except
for “phones off” has a very high silence level.

• Very low signal quality seems to be a good predictor of truncation.

• If the signal level is high but signal quality is not outstanding, bit errors are likely.

• Based on signal information, in some trials some “outsiders” may be test packets
corrupted beyond recognition.

In summary, ISM band spread spectrum cordless phones, depending on their location,
can be harmless, severely disrupt a WaveLAN, or inject mild, plausibly correctable errors.

2.6.4 Competing WaveLAN units

The single-channel design of the WaveLAN suggests that non-cooperating WaveLAN units
could provide significant mutual interference. Using the experimental layout described in
Section 2.5.2, we placed additional WaveLAN transmitters at the Tx4 and Tx5 locations,
and raised their receive threshold to 35, thus ensuring they would transmit continuously,
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Trial Packet Packets Level Silence Quality

Name Source Received ↓ µ σ ↑ ↓ µ σ ↑ ↓ µ σ ↑
Phones off Test 1389 28 29.63 ( 0.60) 31 0 2.20 ( 1.10) 7 15 15.00 ( 0.00) 15

Outsiders 619 2 7.35 ( 5.54) 29 0 2.51 ( 1.17) 7 1 9.84 ( 4.41) 15

RS base Test 1597 28 31.54 ( 2.57) 38 1 32.73 ( 5.44) 38 2 10.07 ( 3.29) 15

Outsiders 316 4 31.03 ( 5.77) 37 2 27.07 ( 8.06) 37 1 7.10 ( 4.07) 15

RS cluster Test 1488 28 32.01 ( 1.73) 37 0 30.73 ( 6.58) 37 1 8.91 ( 3.09) 15

Outsiders 1818 3 32.57 ( 2.71) 37 0 28.97 ( 6.84) 37 1 5.48 ( 2.98) 15

AT&T cluster Test 1766 29 32.52 ( 4.18) 41 1 38.96 ( 3.16) 41 1 7.45 ( 5.42) 15

Outsiders 157 4 28.69 ( 8.95) 40 1 37.77 ( 7.13) 41 1 8.30 ( 5.43) 15

RS remote cluster Test 1440 28 29.83 ( 0.65) 32 0 21.81 ( 5.91) 27 15 15.00 ( 0.00) 15

Outsiders 9 3 4.22 ( 0.63) 5 21 24.33 ( 1.41) 26 7 8.11 ( 1.10) 11

AT&T handset Test 1456 28 30.04 ( 1.04) 33 0 23.52 ( 6.57) 32 1 13.46 ( 2.14) 15

Outsiders 265 4 31.31 ( 6.23) 33 3 23.29 ( 6.33) 32 1 6.15 ( 1.57) 12

Table 2.13: Signal measurements for spread spectrum phones

Packet Packets Level Silence Quality

Type Received ↓ µ σ ↑ ↓ µ σ ↑ ↓ µ σ ↑
All test 9136 28 31.01 ( 2.57) 41 0 25.78 (12.67) 41 1 11.44 ( 4.35) 15

Undamaged 3341 28 29.81 ( 0.72) 32 0 13.96 (10.97) 30 1 14.81 ( 0.77) 15

Truncated 4911 28 32.02 ( 3.09) 41 0 34.27 ( 6.35) 41 1 8.76 ( 4.28) 15

Wrapper damaged 21 29 30.62 ( 0.65) 32 3 24.71 ( 5.79) 29 9 12.24 ( 1.63) 15

Body damaged 863 28 29.89 ( 1.00) 33 0 23.26 ( 6.79) 30 3 13.62 ( 1.98) 15

Table 2.14: Signal breakdown for spread spectrum phone test packets

without deferring to any nearby stations, including each other. We then attempted to trans-
mit from location Tx1 to the receiver. Using the standard receive threshold value of 3, the
link was completely unusable. For example, hundreds of unknown Ethernet addresses appear
in the receiver’s log, often attached to packet bodies transmitted by our test programs, indi-
cating that the Ethernet station address field was frequently corrupted. Many transmission
attempts by Tx1 were aborted due to repeated “medium busy” conditions. However, some
Tx1 packets arrived at the receiver with very little corruption.

Raising the receive thresholds of Tx1 and the receiver to 25, a value safely above the
signal levels we had measured from the hostile transmitters’ locations (Table 2.6), allowed
the communicating stations to completely mask out the competition. We collected 108 bits
with and without competition. In the case with competition, we experienced a .02% packet
loss rate, which is not clearly significant, and no bit errors. If we compare the signal statistics
(Table 2.15), we see that the background (“silence”) level has increased significantly, but that
the signal level and quality are essentially unchanged.

The observations are consistent with the following explanation. Raising the Tx1’s receive
threshold allowed it to transmit without deferring to the distant interfering stations. At this
point, various factors enabled the receiving station to capture almost every packet without
errors: the near-far effect, its elevated receive threshold, and WaveLAN’s multipath-resistant
signal processing.

These results suggest that transmitter power control is useful for wireless LANs, though
it would probably need to be coupled with link-level retransmission (discussed in the next
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Trial Packet Packets Level Silence Quality

Name Source Received ↓ µ σ ↑ ↓ µ σ ↑ ↓ µ σ ↑
Without interference Test 12715 25 28.58 ( 0.60) 30 0 3.35 ( 1.11) 13 15 15.00 ( 0.00) 15

With interference Test 12717 28 28.65 ( 0.49) 30 0 13.62 ( 3.39) 21 15 15.00 ( 0.00) 15

Outsiders 31 24 28.65 ( 0.51) 32 0 13.62 ( 3.39) 28 15 15.00 ( 0.00) 15

Table 2.15: Signal metrics with and without interfering WaveLAN transmitters

chapter) to mask occasional packet losses that would result. We have observed, though not
experimentally quantified, that, when operated with high receiver thresholds, WaveLAN is
fairly resistant to errors caused by hidden transmitters.

2.7 Related work

Duchamp and Reynolds have observed signal quality, throughput and error characteristics
of an earlier model of 900MHz WaveLAN installed in ISA bus PCs, subjected to various
challenges such as distance and multipath propagation [37]. Their testing regime included a
propagation environment impeded by distance and local scatter induced by reflections from a
wall. In this environment they observed packet loss and corruption rates both typically below
1%, except when a combination of attenuation and local scatter produced packet loss rates
in the vicinity of 10% with a peak around 15% and packet corruption rates ranging as high as
40%. In the difficult environment, both rates varied non-monotonically with distance, making
it very unstable and unpredictable in the face of small motions. We observed similar loss
and error rates due to attenuation and/or obstacles. Our work extends theirs by considering
more error sources and by our investigation of the feasibility of pseudo-cellular WaveLAN
operation.

Lewis and Guy measured the performance of the Arlan 610 system [73] and evaluated
its utility for mobile multimedia applications. An interesting study [13] suggests it may be
possible to obtain as much as 14 Mb/s from a single European DECT-style phone channel,
albeit with a BER of 10−5.

Rathke, Schlaeger, Wolisz [114] observed WaveLAN and Arlan in an office environment.
They took TCP throughput measurements at every intersection of a 2-meter grid. For each
LAN technology they observed throughput that was very poorly related to distance, including
numerous “dead spots” which were not easily predictable. They observed WaveLAN packet
loss rates of up to 40%.

2.8 Conclusions

We used detailed packet collection to investigate the effects of distance, obstacles, and dif-
ferent interference sources on the error and loss rates of WaveLAN a 2 Mb/s wireless LAN
designed specifically for an indoor fading environment. The DSSS modulation and multipath
resistant receiver design seemed to confer resistance to many environmental hazards.
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Distance alone seemed to have little effect over a fairly large area and WaveLAN can
frequently penetrate formidable obstacles, although it eventually succumbs to attenuation.
In general we observed very few errors. The worst errors were induced by spread spectrum
cordless phones operating in the same frequency band, and even these were substantially
reduced by distance.

In many cases, we observed a near-perfect link, arguing that error coding would be useless
overhead in most situations. However, there were other situations, some plausibly predictable
by signal measurements, in which there is frequent packet corruption. Our observations,
especially the spread spectrum phone results in Section 2.6.3, argue that the errors we did
observe might be recoverable through a variable forward error correction mechanism, and
this will be addressed in the next chapter.

In general, it appeared that environments which seriously threaten communication are
common. Some of the more serious threats, including human beings near radio transceivers
and spectrum crowding, are likely to affect many wireless LAN technologies. For example,
the IEEE 802.11b wireless LAN inhabits the same frequency band used by European DECT
cordless phones. The interference posed by competing WaveLAN transmitters IEEE 802.11b
systems, which do not currently support power control, might observe similar outcomes.
Finally, researchers seeking to characterize “real-world” error environments must be prepared
to vary many parameters, including building construction style.
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Chapter 3

Trace-based Evaluation of Adaptive
Error Control

Now that the initial investigation presented in Chapter 2 has determined which environmen-
tal threats are most serious to reliable and predictable wireless LAN communication, it is
time to investigate the major threats in more detail in order to design and verify effective
responses.

The main issues are

• How severe are commonly-encountered errors? What measures are effective against
them?

• Since fixed error control policies are simpler and cheaper to implement than dynamic
error control, do fixed policies perform acceptably?

• Even if it is theoretically possible for a dynamic error control policy with perfect
knowledge of the future to significantly outperform a static policy, this is not useful
for designing real systems. Effective real-world adaptation will require that recent
environmental conditions effectively predict conditions in the near future and that
collecting historical data and generating predictions are not computationally expensive.

• Finally, an error control policy that increases performance significantly across many
dynamic error environments is probably more useful than policies that perform very
well in particular dynamic environments and very poorly in others.

The core of this chapter will be a performance comparison of various fixed and dynamic
error control policies in multiple error environments.

Evaluating adaptive error control in a wireless environment is challenging because two
factors make repeatable experiments difficult. First, the wireless environment cannot easily
be isolated, so the dynamic error environment is hard to control. Second, the adaptation
process changes the behavior of the system, e.g., the packet stream sent with adaptation
will be different from the stream sent without adaptation, making a direct comparison of
different adaptation policies difficult. For these reasons we evaluate adaptive error control
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using a trace-based evaluation methodology. The first step of this process is characterizing
the error environment by collecting a set of detailed error traces. These traces then form
the input to a simulator that evaluates adaptation policies based on forward error correction
and packet shrinking. The simulator uses a performance metric that accounts for the traffic
stream changes introduced by the adaptation policies.

Section 3.1 presents the error traces used later to evaluate error control techniques and
policies. Section 3.2 analyzes the traces in terms of the frequency of bit corruption and the
amount of error correction overhead needed to reduce it to meaningful levels, the frequency
and degree of packet truncation and the extent to which packet length adjustment overcomes
truncation, and the frequency of packet loss. Section 3.3 describes the fixed and adaptive
error control policies we will compare using the simulator described in Section 3.4. Section 3.5
evaluates how each policy performs in relation to a perfectly-informed “oracle” and to each
other. Section 3.7 concludes with a summary of how necessary, how effective, and how
practical link-level adaptive error correction appears to be.

The evaluation in this chapter is somewhat independent of architectural considerations
such as whether error control should be per-hop versus end-to-end or whether it should be
a link-layer, network-layer, or transport-layer function. We will address these issues in the
next chapter.

3.1 Trace-based Error Environment

We investigate the nature of the WaveLAN error environment by collecting detailed error
traces for a set of interference scenarios. The traces we present span a wide range of packet
loss, truncation, and bit corruption rates and will be the basis for our later evaluation of
adaptive error control.

3.1.1 Trace Collection and Format

To characterize error environments, we monitored data transfers between two identical
DECpc 425SL laptops (25 MHz 80486) running NetBSD 1.1. For different tests, we placed
the PCs in different environments or added competing radiation sources. Our laptops use
PCMCIA WaveLAN [127] interfaces operating in the 902-928 MHz frequency band. Sec-
tion 1.6 provides more details on the WaveLAN interface.

We instrumented our kernel device driver to collect all packets (even runt packets and
those that fail Ethernet CRC) into an 8-megabyte kernel trace buffer. This allows collection
of approximately 30 seconds of continuous network activity. Packets are stored along with a
sub-millisecond timestamp and signal information from the RF modem: signal level during
reception (related to the receiver’s auto-gain-control level), “silence level” (signal level just
after packet reception), signal quality, and selected receive antenna. The designated trans-
mitter sends specially-formatted UDP datagrams that contain several repetitions of a single
Walsh code word. We selected Hadamard-Walsh codes for the packet contents because they
allow us to evaluate the sensitivity of the errors to packet contents (see Section 3.4.1). When
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the kernel trace buffer is full, the contents are compressed and stored on disk for off-line
analysis, and the transmitter is instructed to send another stream of packets.

The first phase of the analysis consists of processing the binary trace file into a text file
containing a content-insensitive summary of errors. Figure 3.1 shows an example. In general,
each processed trace event contains a timestamp, the transmitted and received packet lengths
(expressed as a count of 32-bit words), signal information from the RF modem, a packet
sequence number, and a list of corrupted (inverted) bits. In this example, packet 151 was
missing 3 out of 352 32-bit words, but was otherwise undamaged; packets 152 and 153 were
lost; packet 154 was severely truncated and nine bits of the remainder were corrupted; after
packet 154 a 7-word packet of unrecognizable contents was received. The second phase of
the analysis extracts various summary information from the traces, which is described in the
remainder of the section.

@2738775 {352 349} [40 2 4 1] 151:
lost 152 153
@2757194 {352 30} [34 40 10 1] 154: 156 160 163 320 324 327 411 415 418
@2780328 {-1 7} [34 40 6 0] alien

Figure 3.1: Example of human-readable trace file

3.1.2 Interference Scenarios

Among the error sources we could have investigated are attenuation, interfering radio sources,
multipath interference (which can vary due to details of antenna placement and orientation),
motion, and data dependent effects. We chose to focus on the effects of the most significant
error sources, as determined by our investigation in Chapter 2, namely active interference
sources and attenuation. Note that the encoding used by WaveLAN already addresses many
problems such as multipath interference (Section 1.6).

To explore the range of error severity due to interference, we investigated 30-second
traces in four different situations. In the “office” scenario, the communicating machines
were separated by a distance of approximately 5 feet, and there were no known interference
sources. In the “walking” scenario, the communicating machines were separated by roughly
3 feet. A cordless telephone base station was a few inches from the receiver’s modem unit (as
might be the case on an office desk), and the telephone handset moved repeatedly at walking
speed back and forth from roughly a foot away from the base station to a point approximately
30 feet away (where the handset complained about signal loss). The cordless phone used
was a Radio Shack ET-909, which uses spread spectrum modulation in the same band as
our WaveLAN units. We observed in the previous chapter that it is a particularly harsh
interference source. The “adjacent” case was the same as the “walking” case except that the
handset was fixed adjacent to the receiver’s modem unit and was power-cycled at a rate of
approximately twice per second (in an attempt to provide an error environment with more
challenging variability than the “walking” case). In the “table” case, two communicating
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units were approximately three feet apart, with the telephone handset and base station about
an inch and about five inches from the receiver’s modem unit. In these traces we observe
packet loss rates of up to 30% and packet truncation rates of up to 23%. We notice that
the bit error rate varies by more than an order of magnitude, and that this variation is not
straightforwardly linked to the other error rates.

3.1.3 Attenuation

While attenuation can be reduced by provisioning a network more densely with base stations,
mobile users may still encounter occasional coverage “holes.” Therefore, we investigated the
effects of attenuation to see how they differed from those of active interference sources.
The fifth, “walls,” trace represents a path with significant attenuation: we separated two
units by placing them in two rooms across a hallway. The direct path was approximately
17 feet long and passed through two thick concrete block walls, a metal display case, and
some classroom furniture. As compared to the interference environments, attenuation has
an almost insignificant truncation rate, but has significant packet corruption.

3.1.4 Summary

These five examples illustrate the wide range of damage induced by interference and atten-
uation. Table 3.1 details the three types of errors commonly encountered on wireless links:
lost packets, truncation, and bit corruption. Notice that the packet loss rate and bit error
rate both vary by three orders of magnitude while the the truncation rate varies by two
orders of magnitude, and that there is only weak correlation of those metrics (bit error rate
and packet corruption rate are only loosely related, as well). While the “office” trace is
essentially error-free, most end-to-end transport protocols would be seriously challenged by
the “walking” trace and essentially unable to operate in environments represented by the
other three traces (column headings are cumulative, so “packet corruption” is the percentage
of non-lost, non-truncated packets which were corrupted).

An important question is how the error environment changes over time. Figure 3.2
displays a packet-by-packet accounting of the dynamic behavior of four of the traces (the
essentially-error-free “office” trace is omitted). Again the traces differ noticeably. While
“walking” displays scattered packet corruption, “adjacent” is characterized by on/off pulses
of loss and truncation, “table” is nearly-continuous packet corruption with occasional loss
and truncation, while “walls” is a more-complicated mixture of loss, truncation, and corrup-
tion. In Chapter 2 we saw that the main error sources are attenuation caused by obstacles
(walls and humans) and interference caused by some active radio sources that use the same
frequency band as the WaveLAN card. For these types of error sources we expect that
changes will often be caused by human actions such as switching the competing source on or
off, or moving the mobile host or competing source. Indeed, as the “adjacent” interference
source is turned on and off, two steady but alternating error environments are visible. Even
though this is fairly rapid human action, long periods of similar error behavior occur.
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Trial Packets Bits Packet Packet Packet Bit
Name Sent Received Loss Rate Truncation Rate Corruption Rate Error Rate
Office 5729 6 × 107 0 0 3.4 × 10−4 0
Walking 5729 6 × 107 7 × 10−4 9 × 10−4 5.4 × 10−2 1.6 × 10−4

Adjacent 10487 6 × 107 3.1 × 10−1 2.3 × 10−1 3.5 × 10−3 1 × 10−3

Table 5916 6 × 107 5.4 × 10−2 1.9 × 10−2 9.4 × 10−1 4.9 × 10−3

Walls 5776 6 × 107 6 × 10−3 1.7 × 10−2 2.7 × 10−1 3.8 × 10−4

Table 3.1: Summary of various error scenarios. Since the trace buffer is of a fixed size, lost
packets cause it to fill more slowly, and it captures a wider range of sent-packet sequence
numbers. “Packet loss rate” is the fraction of packets that were sent but not received;
“packet truncation rate” is the fraction of packets that were received but truncated, and
“packet corruption rate” is the fraction of packets that were received without truncation but
with at least one corrupted bit in the UDP data area. The Bit Error Rate is computed for
all bits in the UDP data area which arrive at the receiver (that is, bits lost to truncation do
not contribute to the BER computation).

Note that there there will also be changes in the error environment at a finer time scale.
An example would be interference from another wireless network: the level of interference
could change from bit to bit. This type of interference is typically addressed by methods
different from what we propose in this dissertation. For example, WaveLAN uses direct se-
quence modulation to combat a variety of error sources (fading and narrowband interference
signals); wireless networks could also employ code diversity, frequency diversity, and base
station antenna sectoring to further reduce interference. Thus, in a well-designed wireless
LAN, it is plausible that most errors will be due to attenuation and interference varying on
a multi-packet time scale, as described above.

3.2 Errors and Error Control Techniques

In this section we summarize the error traces in terms of three error types, bit corruption,
packet truncation, and packet loss, and discuss error control options for each error type.

3.2.1 Bit Corruption

A first source of errors is bit corruption. WaveLAN typically operates as an Ethernet in
that all packets are protected by a 32-bit Ethernet CRC, and all packets failing that CRC
check are rejected. In Tables 3.2 and 3.3 we present a brief analysis of bit corruptions
occurring in eight cordless phone interference experiments, including “Office,” “Walking,”
“Adjacent,” “Table,” and four similar situations. The histogram in Table 3.2 indicates that
approximately 28% of the 269,037 transmitted packets would have been discarded as failing
CRC, but that essentially all of them have 5% or fewer flipped bits, well within the reach
of FEC. Furthermore, interference seems to corrupt each bit value with essentially identical
probability (Table 3.3). We did not observe any tendency for bad bits to be at any particular
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Figure 3.2: Temporal displays of four traces. Each point represents a single event, such as a
loss or corruption. Only the first 1,600 events of each trace are displayed.

bit position within a packet. However, bit corruptions very often follow a specific pattern:
three bits, separated by 3 and 2 bit positions, are flipped. This means that most error
bursts occur within one or two bytes. The particular pattern is plausibly an artifact of the
8-bit-deep linear feedback scrambler used by WaveLAN.

3.2.2 Applicability of FEC to Correcting Bit Corruption

The bit corruption patterns discussed above suggest that FEC can be used to reduce the
error rate. We now evaluate the effectiveness of Reed-Solomon burst-correcting block codes
at correcting the errors observed in our traces and briefly discuss the corresponding imple-
mentation costs. Appendix A contains FEC background information and a discussion of why
we chose to employ these particular codes.
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Percentage of Number of
bits flipped Packets

0 192846
1 74000
2 982
3 509
4 364
5 208
6 72
7 21
8 12
9 7

10 10
11 4
12 1
14 1

Table 3.2: Histogram of per-packet bit error rate

Original bit Times flipped Times sent

0 998945 1509063744
1 997311 1509568640

Table 3.3: Bit flipping behavior observed during the combined interference runs. The overall
bit error rate was 6.6 × 10−4.

Effectiveness

Reed-Solomon codes with 8-bit symbols have a block size of 255 bytes, which may be ar-
bitrarily divided among user data bytes and overhead bytes. The decoder can correct as
many corrupted bytes as half the number of overhead bytes, and doesn’t care how many bits
in a given byte are corrupted. This means that these codes are particularly suited to error
bursts of fewer than 8 bits. The 255-byte block size poses some inconvenience, as packet
body lengths are typically even and often slightly longer than a power of two. However, we
can break a packet into some number of 255-byte blocks and one “shortened” block, which
we zero-pad for encoding and decoding purposes.

We ran the traces presented in the previous section through a software implementation
of Reed-Solomon encoding, and evaluated how many corrupted packets could be recovered.
Figure 3.3 shows how effective FEC is at reducing data loss due to bit corruption. The graph
shows how the percentage of uncorrectable packet bodies decreases as the FEC overhead is
increased. We processed the traces described above by removing all records that reflect
losses, unrecognized packets, and truncated packets (for which full corruption patterns are
necessarily unavailable).
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Figure 3.3: Residual packet error rate versus error correction overhead. The residual packet
error rate is the percentage of packets that arrived without being lost or truncated and had
one or more bit errors not corrected by the Reed-Solomon code. The leftmost (0%) point
on each curve represents the uncorrected packet corruption rate given in Table 3.1. The
“office” dataset has no uncorrected errors once FEC is enabled, and hence is represented on
the graph by the single point (0,.03%).

It is difficult to say exactly what residual packet error rate is appropriate. If truncation
and loss (discussed below) were not threats and we were not using link-level retransmission,
we might select a threshold error coding failure rate of 1%, since that would cause little or no
disruption to higher-layer protocols such as TCP. It is worthy of note that the FEC overhead
level required to reach the neighborhood of 1% varies from 0% in the “office” environment
to 20% or 30% in the “table” environment. If retransmission is used, there is an efficiency
argument in favor of moderate residual error rates. Using the “table” environment as an
example, it may be better to suffer a 10% packet error rate rather than pay a 15% error
coding overhead. On the other hand, “optimizing” the packet error rate will increase latency.

These error coding efficiency results are conservative as we have not investigated inter-
leaving, which would tend to average out the number of corrupted symbols per block, quite
possibly improving performance. Even so, they show that FEC is effective at recovering from
bit corruption. The graphs also show that it would be costly to always employ error coding
strong enough for the worst case: substantial bandwidth would be wasted in the other cases.
Selecting an error coding appropriate for the average error rate is also suboptimal: it will be
too aggressive in some cases and not aggressive enough in others. Given the high variance
in error rates, the average is not a useful metric.

Implementation Costs

The costs associated with the implementation of FEC are additional bandwidth on the link,
as discussed above, and the FEC coder/decoder. FEC codecs can be implemented in either
hardware or software. For example, multi-rate single-chip convolutional codecs that operate
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at tens of megabits per second are available as commodity parts [107], making hardware
implementations practical and economical. For this work we relied on a publicly available
software implementation of Reed-Solomon codes [66], which can encode at up to 2.7 Mb/s
and decode at up to 1.5 Mb/s on a 100 MHz Pentium.

3.2.3 Packet Truncation

Truncated packets are a serious problem for network reliability. While erasure-correcting
FEC can be designed to recover from truncation, this requires overhead beyond that nec-
essary to correct occasional symbol errors. We have observed that WaveLAN experiences
significant truncation in heavy interference situations. While it seems intuitive that short
packets are less likely to be truncated than long packets, the truncation rate might depend on
the packet length in a number of ways. For example, the probability of truncation could be
proportional to the packet length (some interfering source occasionally truncates whichever
packet is being transmitted, independent of its length), or packets could be truncated to some
fixed length (by some process within the receiver). Identifying the precise error behavior is
important if we want to reduce the truncation rate.

In order to better understand the relationship between packet length and truncation
errors, we collected packet traces that use a mix of packet sizes. Since we do not understand
the cause of the truncation, it is important that all packet sizes get sufficient exposure to
the potential cause of truncation. For this reason, we arranged the packet sequences so that
roughly equal time was spent transmitting packets of each observed length, i.e., more of
the shorter packets were sent. One interesting detail is that the WaveLAN link header and
trailer occupy air time equivalent to 38 bytes [6] and Ethernet, IP, and UDP headers and
trailers occupy 48 bytes. This 86-byte overhead is significant when we send test packets of
only 128 user bytes. We correct for this by sending packets according to a schedule which
roughly balances their air time.

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600

p
e
r
c
e
n
t
a
g
e
 
o
f
 
p
a
c
k
e
t
s

packet size (user data bytes)

corruption
truncation

loss

Figure 3.4: Packet injury as a function of packet length. The cordless phone is on throughout
the trace, and both base and handset positions are fixed.
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Figure 3.5: Packet injury as a function of packet length. Unsteadiness in this plot may be
due to the fact that the interference source was intermittent, so the smaller number of large
packets could reduce sampling quality.

We present the results in two forms. The first (Figure 3.4) is a graph of packet outcome
as a function of packet length from a trace in which the cordless phone is providing steady
interference from a fixed location. Packets that are not lost may be corrupted, truncated,
or both (percentages in this figure and the next may add to over 100%). Note that this
corresponds to a harsh error environment: with a loss rate of nearly 60% and a corruption
rate of almost 40%, the packet error rate without error coding is nearly 100%. Focusing on
the truncation rate, we observe that for packets longer than 400 bytes virtually all received
packets are truncated, while for shorter packets the truncation rate increases linearly with
the (original) packet length.

While Figure 3.4 classifies packets according to how they were injured, it does not describe
the severity of the injury (the bit error rate or truncation extent). These figures are presented
in Table 3.4. Again focusing on the problem of truncation, we observe that truncation is
quite severe for long packets. For example, for full sized packets, usually fewer than half the
bits survive, making it difficult to extract useful data from truncated packets. For shorter
packets, truncation is less severe. One possible physical phenomenon that could cause this
type of packet truncation is clock drift. Since the carrier frequencies of the transmitter and
receiver typically vary by a small amount, WaveLAN performs active clock recovery [127].
It seems likely that under unfavorable conditions, clock drift could eventually overcome the
clock recovery process, causing the receiver to abort packet reception.

Figure 3.5 demonstrates similar outcomes for a trace collected with machines in the same
locations as the “table” trace. The main difference is that in Figure 3.4 the BER of nearly
10−2 means that essentially every packet experiences some corruption. Another way to look
at this is that the corruption-versus-packet-length curve has already reached its plateau at
the shortest packet length.

The above results suggest that packet size reduction is a realistic method for reducing
packet truncation rates. For example, Figure 3.4 indicates that reducing the packet size to
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Transmit Number Length after truncation % of Packets Bit Error
Length Observed min mean std. dev. Truncated Rate

? 104352 0 34.19 104.55 100.00 ?
128 7183 96 127.10 4.49 4.83 9.2 × 10−3

256 4023 96 235.42 42.97 24.76 9.1 × 10−3

384 3053 96 322.80 90.00 42.94 8.6 × 10−3

512 2067 96 381.64 139.14 61.97 8.8 × 10−3

640 2063 96 412.27 179.85 81.10 8.3 × 10−3

768 2022 96 427.71 198.52 96.88 8.6 × 10−3

896 2060 96 428.07 202.43 97.57 8.3 × 10−3

1024 1015 96 436.45 203.77 98.62 8.6 × 10−3

1152 1015 96 437.43 213.50 98.33 8.7 × 10−3

1280 1016 96 428.75 217.26 98.72 9.1 × 10−3

1408 1026 96 436.65 226.21 98.73 9.0 × 10−3

Table 3.4: Truncation details. Some of the unrecognized packets are probably “lost” test
packets; others seem to be interference mistakenly identified by the RF modem unit as a
potential packet. The bit error rate is computed over the non-truncated bits of each packet.

400 bytes would cut the truncation rate from 40% to 20% of the received packets. Packet
size reduction would need to be combined with retransmission of the truncated (and lost)
packets to reduce the error rate to a number that is acceptable to the upper-layer protocols.
Even for the extreme error environment used in this section, the link may still be quite useful:
if we make the conservative assumption that all truncated packets are useless (that is, no
erasure code or sub-packet blocking is employed), shrinking the packet size and applying
FEC might still achieve a useful fraction of the link rate. Furthermore, it is interesting to
note that even if truncated packet bodies are useless for conveying user data, we may still
be able to extract a small Logical Link Control layer header containing error statistics.

As a final note, we observe that the packet loss rate (Figures 3.4 and 3.5) and BER
(Table 3.4) appear to be independent of packet size.

3.2.4 Packet loss

The final type of error is packet loss. One possible explanation for packet “loss” might
be that our trace analysis is failing to recognize certain packets due to extreme truncation
or corruption, i.e., our approach creates false losses. We briefly investigated this hypothesis
and found that, while some periods of packet “loss” correspond with arrivals of unrecognized
packets, many do not. Furthermore, there are many occasions when unrecognized packets
arrive intermixed with sequential test packets.

Figures 3.4 and 3.5 suggest that the packet loss rate is independent of packet size, sug-
gesting another explanation. Each WaveLAN packet begins with a training pattern, a start
delimiter, a carrier training sequence, a “network ID”, and a standard Ethernet preamble [6].
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Though most of these fields are transmitted with physical-layer redundancy, damage to any
of them would probably cause the receiver hardware to overlook an entire packet. Table 3.1
does not clearly demonstrate that packet loss and bit error rate are linked, so this explanation
may be incorrect.

The problem of packet loss can be addressed by retransmission [36, 11] (or by cross-packet
interleaving, if additional latency is acceptable).

3.2.5 Summary

We used error traces to characterize a number of error environments for WaveLAN and we
discussed and evaluated error control techniques. The trace data demonstrate only loose
correlation among the damage we observed, namely packet loss, packet truncation, and bit
corruption. We showed that bit corruption can be addressed using FEC based on Reed-
Solomon codes. We also showed that packet truncation can be addressed by sending smaller
packets. Both FEC and packet shrinking have the property that they increase communication
overhead. As a result, it is not attractive to apply these techniques unless they are needed
(lost packets are most easily addressed using retransmission, which is inherently adaptive).
Our results show in fact that substantially different degrees of error coding are needed in the
different error environments we evaluated. In the next two sections, we propose and evaluate
adaptive error control policies.

3.3 Adaptive Error Control Strategies

In this section we discuss design considerations for adaptive error control strategies, im-
plementation issues that may complicate adopting adaptive error control, and present the
adaptation policies that we will evaluate in the next section.

3.3.1 Overview

The idea behind adaptive error correction is simple: the receiver collects information about
the status of the channel, it summarizes the information into an error estimate, which is
transfered to the sender, and the sender adapts how it sends data based on the error estimate.
Let us briefly look at some of the implementation options for each of these three components:

• Error information sources. A number of different information sources can be used
to determine the quality of the error environment. A hardware CRC algorithm may be
used for error detection, and most error correction algorithms can provide their clients
with an estimate of how close the decoded packet was to containing uncorrectable
errors. Alternatively, a wireless network interface may provide signal measurement
information which could warn of impending trouble, thus allowing predictive rather
than reactive error control. All the policies we evaluate are reactive schemes, based on
observed (rather than predicted) errors.
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• Error estimation. Single error events must be combined to yield an error estimate.
This summary will typically be generated periodically by applying a reduction method
(average, minimum, or maximum) over some time window. Different methods may
be used for different features. The error estimate then must be sent to the sender
in a fairly robust way so that the information arrives most of the time. Finally, the
sender must deal with the time-critical nature of the information, e.g., it must age state
measurements and it must have some method for estimating the results of experiments
it hasn’t performed recently. Two aging methods are used by our adaptation policies.

• Adaptation policy. The sender must modify how it sends data based on the error
estimation. This requires an understanding of the dependencies between error types
and the possible recovery techniques, i.e., it must know how each type of error can be
reduced or eliminated. Note that certain types of errors (e.g., packet loss) may not
be avoided by changing how data is sent, but require more radical approaches (e.g.,
retransmission). The policies we use below adapt the packet size and the degree of
redundancy used in FEC.

Adaptation will be effective if the system can collect reliable error estimates and react
appropriately to those estimates in a timely fashion, i.e., before conditions change again.
There are many reasons why adaptive error control may fail, e.g., it is not understood how
errors can be reduced by changing how data is sent, or the changes in error environment
happen too quickly to be tracked. Adaptive error control that works well in one environment
may not be effective in a different environment. For example, errors on a satellite link and in
a LAN environment are caused by different phenomena, and different error control strategies
(adaptive or not) are likely to be needed.

3.3.2 Adaptation Policies

To focus on the utility of adaptation, we evaluated three fixed policies and four adaptive
policies:

Bold roughly corresponds to an unmodified WaveLAN: maximally-sized packets (five 255-
byte blocks) are sent with no error coding. This policy could be considered a pure
ARQ link-layer policy: each packet will be transmitted repeatedly until it is received
error-free.

Light transmits maximally-sized packets with 5% coding overhead. This is potentially a
good policy since many packets are not badly damaged (see Section 3.2.2).

Robust attempts to excel in difficult conditions. It sends minimally-sized packets (one
255-byte block) with nearly one third of each devoted to coding overhead.

Bimodal is a simple-minded adaptive policy. It behaves exactly as “bold” when conditions
are good, and as “robust” when they are poor: if two consecutive packets are truncated
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or corrupted, it sends small, heavily-coded packets until three consecutive packets are
not damaged.

Bi-code is like “bimodal” except that it adjusts only coding overhead.

Bi-size is like “bimodal” except that it adjusts only packet size. “Bi-code” and “bi-size” are
included in an attempt to understand how much coding and packet sizing contribute
independently to the success of “bimodal.”

Flex adapts the packet size and degree of FEC redundancy independently. Whenever two
or more packets in a window of ten experience truncation, “flex” reduces its estimate
of the current safe packet size to 85% of the post-truncation packet length. If three
consecutive transactions do not experience truncation, “flex” begins to expand the
safe packet size estimate, adding first 200 bytes, then 400, then 800, until the estimate
reaches the maximum packet size. While “flex” maintains its estimate of the safe
packet size in bytes, it rounds this value downward to an integral number of 255-byte
blocks. Whenever two or more packets in a window of ten experience a decoder failure,
“flex” reduces its estimate of the fraction of each Reed-Solomon block that can carry
user data by 15%. If three consecutive packets do not experience decoder failure, “flex”
begins to expand the user data share, adding first 10 bytes, then 20, then 40, until the
entire block carries user data.

It is clear that more sophisticated policies are possible. However, our samples illustrate
the space of possible policies and, as we will see below, highlight interesting differences among
the trace environments.

3.4 Trace Replay Simulator

Evaluating adaptive error control in a wireless environment is challenging because repeatable
experiments are difficult. Repeatability is difficult for two reasons.

The first problem is that a wireless environment cannot easily be isolated, so the dynamic
error environment is hard to control. This problem is traditionally addressed by using trace-
based evaluation. A set of traces is collected that capture features of the environment
that are important to the protocols under investigation. The different protocols are then
implemented and evaluated in a simulator or an emulated environment [90, 93] that is driven
by the traces. By using the same set of traces for each of protocols, a direct comparison is
possible.

This chapter’s evaluation of adaptive error control policies follows the simulator approach,
driven by the traces presented in Section 3.1 (the next chapter’s evaluation of the same
policies in an operating system kernel yields substantial confirmation of the simulator results;
see Section 4.6.4). The simulator does a one-to-one transfer of errors from packets in the
trace to the stream of packets that is submitted to it. If a packet in the trace was lost, the
simulator marks the packet submitted to it as lost. If the trace shows packet truncation to
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x bytes, the simulator will truncate its packet to x bytes. Finally, if the trace shows bit
corruption, the simulator will corrupt the appropriate bits in whatever part of the packet
escaped truncation.

The second problem is that the adaptation process itself changes the behavior of the
system, so we must replay traces in situations different from the ones in which they were
collected. In our case, the packet contents may change as a result of FEC and the packet
size may be changed to reduce truncation errors. The correctness of applying an error
trace collected using one packet stream to a different packet stream depends strongly on the
characterization of the errors presented in Section 3.1. Let us consider both changing the
packet contents and packet size.

3.4.1 Varying Packet Contents

Applying bit corruption information collected using one set of packets to a set of packets with
different contents (e.g., as a result of adding FEC) is only correct if errors are not sensitive
to packet contents. This sensitivity could arise in multiple ways. Clock synchronization can
be impaired by long runs of all-one or all-zero bits. Furthermore, indoor high-speed wireless
LANs may suffer from inter-symbol interference, which occurs when a delayed echo of one
symbol interferes with the arrival of the next symbol. Also, changing packet contents will
change outcomes if channel errors typically force whichever bit is being transmitted to a
certain value (i.e., in some channels most errors occur when a one becomes a zero), in which
case it would be inaccurate for a simulator to replay bit errors as inversions.

Given the particular coding used in WaveLAN,1 one would expect error characteristics
for a particular experiment to be independent of the particular data contents. To evaluate
whether this is true, we chose a set of packet bodies whose contents vary significantly and then
observed whether they exhibited different error behavior. We chose the 128-bit and 1024-
bit Hadamard-Walsh codes [113], sets of orthogonal code words generated by a recursive
algorithm (see Figure 3.6). We augmented the sets by adding an all-zero code word. Each
set of codes includes a wide variety of run lengths and alternation patterns (for example,
H4 contains runs of length 1, 2, and 4). These sets are extensive but clearly not exhaustive.
By aggregating multiple trace runs from each of the interference scenarios, we collected
approximately 270,000 packets, or about 2100 apiece of each of the 129 different content
types, representing roughly 20 minutes of network activity.

To evaluate whether the error rates are sensitive to packet contents, we plotted histograms
of how many packet types experienced different rates of loss, truncation, and bit corruption.
To the extent that these errors are independent of packet type, we would expect to see tight
clustering of error rates around a central value with few outlying points, i.e., approximations
of normal curves. The results are shown in Figure 3.7. For example, every packet type
was truncated at a rate between 0.8% and 1.7%, with the greatest number of packet types

1 WaveLAN effectively transmits an 11-“chip” sequence for each bit, resulting in many transitions regard-
less of user data; the WaveLAN designers expected indoor multipath delay of up to 250 nanoseconds [127],
approximately one quarter of a dibit symbol time, which would mean that most inter-symbol interference
would be between chips belonging to a single dibit.
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Figure 3.6: Walsh code matrices, defined by a simple recursion. Each matrix row forms one
code word.

truncated at a rate of approximately 1.2%. While more extensive data could be collected and
more rigorous analysis could be applied, these results indicate there is no dramatic sensitivity
to packet contents. The remainder of this dissertation will assume that bit corruption and
truncation patterns can be collected and then applied in a meaningful way to packet streams
with different contents.

3.4.2 Varying Packet Size

Applying the truncation information collected using one packet size to a (shorter) packet is
valid only if the chance of truncating a packet to x bytes is the same for all packets (longer
than x), and is independent of the packet contents. Table 3.5, which presents received
packet length after truncation versus transmitted packet length, is based on the same trace
information presented in Table 3.4. If post-truncation received packet lengths were a function
of the transmitted packet length, we would expect that the percentage of packets truncated
to a certain length (entries in one row of Table 3.5) would vary noticeably across columns,
which we do not observe. If, on the other hand, truncation lengths are independent of
transmitted lengths, we would expect that rows would be internally consistent and different
from each other. For example, the “448” row indicates that roughly 10% of all packets
arrive with lengths in the 448-to-511-byte range, despite transmitted lengths ranging from
512 to 1408 bytes. However, the rows labelled “768” through “1408” show that essentially
no packets of any transmitted length arrive at the receiver with more than 768 bytes present.
This justifies treating a trace record containing a truncation to x bytes as an indication that
any packet shorter than x bytes would escape truncation and that any packet longer than x
bytes would be truncated to x bytes.

If we wish to also apply (part of) a long packet’s bit corruption syndrome to a simulated
short packet, we would wish to validate this by observing the bit error rate to be independent
of packet length; Table 3.4 supports this approach.
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Figure 3.7: Histograms of per-packet-type loss rates (top), truncation rates (middle), and
truncation rates (bottom). Note that these graphs capture the type, but not the degree, of
damage.
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Transmitted length
128 256 384 512 640 768 896 1024 1152 1280 1408

0 - - - - - - - - - - -
64 4% 5% 4% 5% 5% 5% 5% 4% 4% 4% 4%

128 95% 9% 9% 8% 11% 10% 10% 9% 9% 10% 9%
192 - 10% 8% 9% 9% 8% 10% 8% 9% 11% 11%
256 - 75% 9% 9% 8% 8% 8% 9% 9% 9% 8%
320 - - 10% 9% 9% 10% 10% 11% 11% 8% 10%
384 - - 57% 9% 9% 9% 8% 10% 8% 8% 8%
448 - - - 9% 10% 8% 10% 8% 9% 9% 9%
512 - - - 38% 8% 9% 9% 9% 8% 10% 10%
576 - - - - 9% 9% 9% 9% 10% 9% 9%

Received 640 - - - - 18% 8% 8% 9% 9% 7% 8%
Length 704 - - - - - 7% 6% 6% 5% 6% 5%

768 - - - - - 3% 0% 0% 0% 0% 1%
832 - - - - - - 0% - - 0% -
896 - - - - - - 2% 0% 0% - -
960 - - - - - - - 0% 0% 0% 0%

1024 - - - - - - - 1% 0% 0% 0%
1088 - - - - - - - - 0% - 0%
1152 - - - - - - - - 1% 0% -
1216 - - - - - - - - - - 0%
1280 - - - - - - - - - 1% -
1344 - - - - - - - - - - 0%
1408 - - - - - - - - - - 1%

Table 3.5: Received lengths versus transmitted lengths. The column headings are transmit-
ted lengths, and the row labels are the floors of histogram buckets: row 0 represents packets
received with length 0 through 63. Note that the leftmost non-blank entry of each row rep-
resents packets that were received without truncation. Columns may not add to 100% due
to accumulated roundoff errors.

3.4.3 Simulator Details

The architecture of the simulator is shown in Figure 3.8. The policy module implements a
specific error correction strategy. Its input is information on the errors that affected previous
packets. It periodically makes a “send” decision, which consists of specifying two numbers, a
count of 255-byte blocks to send and the number of user data bytes each block will carry (the
remainder is used to carry Reed-Solomon parity information). The policy module currently
has instantaneous access to the error estimate generated by the decoder on the receiver. This
represents a delay-free, error-free back channel. While this can be approximated in many
wireless LAN environments by piggybacking information on MAC-level acknowledgements
(see Section 4.3.1), it would be less practical for end-to-end protocols (see Section 4.2.1).
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The packet is then encoded using a software Reed-Solomon encoder, and forwarded to a
module that models the error characteristics of the wireless link.

Send
Policy

Coder
Channel
Model

Decoder Evaluation

Error Trace

Figure 3.8: Simulator architecture

The channel model takes an error trace and uses this to decide what damage to inflict on
the packet, as we described above. In order to ensure that the trace’s bit-corruption patterns
are long enough to cover any packet that our adaptation policy might choose to send, we
use only traces of long fixed-size packets. The transmission result is then forwarded to the
Reed-Solomon decoder, which will attempt to decode it. The decoder forwards the error
information for the packet to the evaluation module, and also generates an error estimate
for the policy module on the sender. Our traces contain a small number of packets which
experienced bit corruption in only the Ethernet or IP envelopes, for which we cannot recon-
struct the exact corruption pattern. The simulator treats these events as if no corruption
had occurred. While this is inaccurate, these packets are quite rare (28, or 0.5%, in the
“walls” trace, and no more than 4 in any other trace).

For each packet, the evaluation module is told whether the packet was lost, how many
blocks were not truncated, and how many blocks were successfully decoded. This results in a
packet efficiency figure: the number of correct bytes delivered to the receiver (zero in the case
of packet loss) divided by the “air time,” the amount of time required to send those bytes,
however they were encoded, plus WaveLAN, Ethernet, IP, and UDP headers and trailers.
While one would like to see an efficiency of 100%, packet headers and inter-packet gaps limit
the efficiency to 94%, even in an error-free environment.

We wish to compare the efficiencies of different error control policies, each transmitting
continuously, under a variety of error environments. Calculating the efficiencies of policies
adapting to a specific trace is straightforward if, during each transmission interval, all policies
use the same packet size as the trace packet: a policy’s efficiency is the total number of user
bytes delivered correctly divided by the total airtime.

Calculating efficiency is more complicated if policies use different packet sizes. The
fundamental problem is that the trace has incomplete information on the error environment,
e.g., no information is available on the environment during the inter-packet gap, so it is not
possible to precisely simulate the errors observed by each policy. We can use the per-packet
simulation outlined above, but we must apply a weight to the effect of each packet. Since
each simulated packet transmission “consumes” a trace record even if the packet is shorter
than the trace record, a policy that reduces packet size under high error conditions would
be billed for less air time than a policy that uses fixed packet sizes. Since each trace record
represents a certain amount of time, the effect would be that, in the simulation, the adaptive
policy would spend less time in the bad periods than the fixed policy, and would thus be
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experiencing a different error environment, rendering efficiency comparisons impossible.
We correct for this by scaling the effects of each packet (bytes delivered and airtime

consumed) by the ratio of the trace record’s airtime to the transmitted packet’s airtime.
In effect, during each trace interval, a policy can send one maximally-sized packet or one
and some fractional number of smaller packets. We can then compare policies in a fair
manner. One minor drawback of this solution is that it artificially limits the adaptivity of
algorithms, since adaptation is only allowed at fixed time intervals, rather than after every
packet exchange.

3.5 Simulation Results

In this section we will present the results of operating the seven adaptation policies presented
earlier in each of the five simulated error environments. The results indicate that static
policies are unlikely to perform efficiently and robustly as error conditions vary and that
straightforward reactive adaptation policies work well.

Table 3.6 presents the numerical efficiency ratings for the different adaptation policies.
Headers, trailers, and inter-packet gaps limit these numbers to 94%. The last column,
“oracle,” represents the efficiency of a policy using approximately the optimal packet size
and FEC parameters for each transmission slot. This is implemented by processing the
error trace into an “optimal choice” trace. A truncation event causes “oracle” to choose
a packet size rounded down from the observed truncation length to the nearest 255-byte
Reed-Solomon block boundary. The error coding level for each transmission slot is chosen
by repeatedly simulating the Reed-Solomon decoding process, varying the coding level from
0% to 30% by 5% steps, choosing the smallest coding level that results in all blocks being
decoded successfully. While this policy’s precise advance knowledge of every error event
gives it an unfair advantage over reactive policies, it provides a good basis for comparison.

Environment Bold Light Robust Bimodal Bi-code Bi-size Flex Oracle

Office 94% 89% 53% 94% 94% 94% 94% 94%
Walking 89% 87% 53% 89% 89% 89% 89% 93%
Adjacent 43% 41% 32% 50% 43% 44% 45% 54%
Table .06% 15% 49% 26% 33% 17% 58% 76%
Walls 69% 84% 52% 72% 73% 72% 81% 91%

Table 3.6: Performance of different error control policies.

Figure 3.9 shows the same data graphically: it shows, for each policy, its efficiency in
different scenarios, normalized in each scenario to the efficiency of the “oracle” policy. The
figure makes it clear that no single policy was best in all environments. In fact, all policies
but “flex” performed poorly (less than 70%) in at least one scenario. However, every policy
but “robust” scored above 95% (i.e., near-perfect efficiency) in at least one environment,
suggesting that many policies have some merit.
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Figure 3.9: Comparison of normalized performance for each policy. For each policy, each
bar represents that policy’s performance in one scenario (office, walking, adjacent, table,
or walls) normalized to the performance of the “oracle” in that scenario. This comparison
shows that “bold” and “light” perform well except for one case, “robust” always performs
satisfactorily, and “flex” always does well.

Several fixed policies performed well in several environments. For example, “bold” per-
formed acceptably in all but one case—even in the harsh “adjacent” environment, its large-
packet gamble sometimes pays off well. The “light” policy, which represents a plausible
fixed FEC policy, also performed well in all situations but one. “Robust” is the opposite of
“light,” performing well in only the “table” case.

Simplistic adaptation policies show more promise, especially in the “table” case, where
almost every packet is lightly corrupted. The “table” row of Table 3.6 shows that both
“bimodal” and “bi-code” outperformed “bold” by an embarrassing amount and outperformed
“light” by almost a factor of two. The “bi-size” policy shows that packet size is important in
high-truncation environments: it performed nearly as well as the “bimodal” and “bi-code”
except in the “table” case, where aggressive error coding is essential. Comparison among
these three adaptive policies suggests that independently adjusting packet size and coding
overhead is superior to linking them. For example, it is effective to adjust packet size and
coding overhead for the “adjacent” environment, but it is better to adjust only the coding
overhead in the “table” scenario.

“Flex” independently adjusts packet size and coding overhead, and also incorporates
longer-term channel history. The “flex” column of Table 3.6 shows that, while “flex” is often
not the star performer, it is always within 10% of the best (non-oracle) performer for each
trace.

The above results clearly show that which policy performs best depends on the scenario.
This raises the question of which policy one should implement. We argue that consistent
good performance across a wide range of scenarios (as delivered by “flex”) is more important
than being the best performer in any particular scenario. For example, the fact that “robust”
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performs best in the “table” scenario will do little to cheer up people working in “office”
conditions. This argues that the adaptive policies, especially “flex”, are preferable to the
fixed policies.

3.5.1 Summary

We believe that the results of this section make a strong case that adaptive error control
policies are both useful and practical. Any mobile host is likely to encounter each of these
scenarios (among many others) in its lifetime, so being able to adapt the error policy is
important; this type of adaptation is easy since it happens on a time scale of minutes.
Both the “walking” and “adjacent” case involve adaptation inside the trace, and are more
challenging since changes happen on a smaller time scale. However, the results show that it
is possible to track even these rapid changes. While there is room for investigating a wider
variety of information sources and measurement and estimation approaches, the simple “flex”
policy seems likely to suffice in many common environments.

3.5.2 Applicability of Results

Our adaptation results are based on the observation that some changes in the error envi-
ronment are slow because they are caused by human actions such as mobility. We believe
that similar results will be obtained for other LANs that face errors that can be amelio-
rated by modifying transmission resource consumption (via power control, error coding,
packet shrinking, or even adaptive medium access protocols). Note that while adaptive error
control has been applied to other wireless environments such as satellite links and cellular
phones, differences in both the error environment and how it changes mean that our results
may not generalize to these domains.

3.6 Related Work

3.6.1 Adaptive Forward Error Correction

If channel conditions such as error patterns or bandwidth available for redundancy change
over time, a single error correction algorithm may be inappropriate. While it is possible to use
several different FEC codes, each with dedicated hardware resources, more attractive schemes
exist. Hagenauer presents a family of codes called rate-compatible punctured convolution
codes [55] which use the popular Viterbi decoding algorithm [130, 49, 117]. One example code
family has 13 codes with redundancy overhead varying from 12.5% to 300%. Qualcomm,
Inc., a manufacturer of digital radio systems, offers a single-chip encoder/decoder designed
for satellite channels which operates at up to 25 Mb/s with four levels of redundancy [108].
Karn presents a variable-rate FEC system designed for implementation by general-purpose
microprocessors [65] and evaluates its operation on a link subject to short but frequent
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interference from radar. A study of dynamic adaptation to both channel noise and CDMA
multiple access interference may be found in [43].

3.6.2 Wireless Link Error Characteristics

Since solving the problem of high error rates depends critically on understanding the types
and frequencies of errors, many studies have characterized wireless LAN error environ-
ments [112, 37, 38]. We present more-detailed information (characterization of errors into
loss, truncation, and corruption, including error syndromes) which allows us to evaluate
the impact of specific error control mechanisms (packet shrinking and FEC) and adaptation
strategies.

RFC 2041 [92] describes an extensible wireless environment trace format and matching
trace replay tools, described further in [90, 93]. However, the system represents packet
errors rather than the sub-packet error phenomena (truncation and bit corruption) which
were necessary to obtain the positive results of this chapter. Designing and evaluating
adaptive error control mechanisms would benefit from even finer-grained trace data, i.e.,
“soft-decision” symbol traces provided by the digital signal processing layer of a receiver.

3.6.3 Existing Adaptive Links

A final area of related work is adaptive error control for wireless links. Satellite communi-
cation has been studied widely, and since error rates can be very high, satellite links make
extensive use of FEC to improve communication performance [107, 126]. In some cases,
adaptive FEC is used, but the conditions are very different from those in wireless LANs:
the causes and nature of the errors are very different, and the long roundtrip times means
that adaptation is many orders of magnitude slower than in a LAN. The DARPA Packet
Radio Network [62], a metropolitan-area mobile radio network designed to carry data and
voice traffic, included a multi-rate FEC codec, although we are not aware of any published
performance evaluation of this implementation. The Proxim RangeLAN frequency hopping
system has two data rates, the primary rate of 1.6 Mb/s, and a secondary rate of 800 Kb/s,
used to extend the usable range [105]. While having two symbol rates is more flexible than
having only one, our results suggest that multiple rates would allow efficiency in more sce-
narios. In addition, selecting an appropriate symbol rate for each transmission requires an
adaptation policy which could profit from evaluation similar to ours.

3.7 Conclusion

We began this chapter with a series of questions. We can now answer them as follows:

• Our work in this area has demonstrated that common environmental challenges can
cause serious levels of bit corruption, packet truncation, and packet loss for WaveLAN.
While the exact error patterns are likely to be specific to WaveLAN, most wireless
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LANs are faced with similar threats, such as attenuation, symbol corruption, and
clock drift.

• Error correction codes and packet shrinking prove useful against the error patterns we
encountered.

• It is easy to demonstrate situations in which fixed error control policies are very unde-
sirable.

• Luckily, adaptive error control policies which are simple to implement also perform
acceptably close to the ideal, and a single policy shows promise across a variety of error
environments. While this particular policy’s good performance may well be specific to
WaveLAN, it seems plausible that other networks subject to varying error environments
caused by human-timescale events (such as mobility of people and computers and
operation of competing wireless radiation sources) are likely to be able to ameliorate
these errors by adaptively modifying the offered traffic load via power control, error
coding, packet shrinking, or even adaptive medium access protocols. Note that while
adaptive error control has been applied to other wireless environments such as satellite
links and car phones, differences in both the error environment and how it changes
mean that results cannot be generalized to these domains.

Finally, because of the difficulty of controlling wireless environments, repeatable experi-
ments are difficult. This makes trace-based evaluation important. Sharing traces, as is done
by researchers working on memory caches and disk subsystems, would further facilitate com-
parative evaluation, since a direct comparison of results by different research groups becomes
possible. As a first step in creating a shared set of traces, we are making our traces available
at http://www.cs.cmu.edu/~davide/wltraces/.

Now that we have demonstrated the potential utility and practical feasibility of link-
level adaptive error control, the next chapter will investigate its applicability in a real-world
multi-layer, multi-protocol environment.
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Chapter 4

End-to-end Evaluation of Local
Adaptive Error Control

4.1 Introduction

Chapter 3 provides a detailed understanding of the WaveLAN error environment and error
control techniques that effectively address each error hazard. In addition, it demonstrates
that adaptive error control is both important and feasible. Evaluating adaptive error control
in the real world requires design decisions, a prototype implementation, and measurement
under realistic conditions. In particular, we seek answers to the following questions:

• Even after employing error coding and packet size adjustment, a non-trivial fraction
of packets will be lost at the link layer. When should the necessary retransmissions be
per-link versus end-to-end?

• Do we need new end-to-end transport protocols or protocol-specific accelerators in the
network, or can we use protocol-blind error control?

• Do our encouraging single-hop results generalize to more realistic network topologies?

• Do our encouraging simulation results generalize to actual TCP? For example, do
fluctuations in link-level throughput restrict TCP’s ability to take advantage of it? Is
there significant waste due to TCP retransmitting data that link-level error control is
also retransmitting?

The remainder of this chapter is organized as follows. In Section 4.2 we discuss the trade-
offs between local and end-to-end error control and consider local error control design issues.
A description of our experimental approach, including Medium Access Control (MAC) and
Logical Link Control (LLC) protocols, is found in Section 4.3. We describe the measure-
ment framework employed in Section 4.4. Section 4.5 evaluates link-level retransmission in
multiple error environments and multiple network environments while observing how well it
interacts with TCP. Once this basic robustness has been demonstrated, Section 4.6 describes
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packet-shrinking and error coding extensions to the LLC layer, which are subjected to trace-
based evaluation in Section 4.6.2. We discuss related work in Section 4.7 and summarize in
Section 4.8.

We will show that local, protocol-independent, persistent, adaptive link-level error con-
trol allows TCP to obtain substantial throughput in dynamic, harsh wireless LAN error
environments.

4.2 Local error control

Given the wide variety of approaches to solving the end-to-end problems caused by wireless
link errors, we will briefly justify our two main architectural decisions: we pursue local
per-link error control rather than end-to-end modifications to transport protocols, and our
link-level error control operates independently of the higher-level transport protocols rather
than targeting support toward particular ones.

4.2.1 Local versus end-to-end error control

Addressing link errors near the site of their occurrence appears attractive for several reasons.
First, entities directly connected by a link are most able to understand and manage its

particular characteristics. For example, it seems impractical for end-systems to track the
current propagation delay for each link they use, nor feasible for them to know which packet
loss events represent congestion versus intermittent link errors (TCP’s assumption that most
burst loss is due to congestion is a well-known incorrect simplifying assumption). Moreover,
entities on the link are likely to be able to respond more quickly to changes in the error
environment. Certain error control techniques, such as soft-decision decoding and energy
combining, are difficult or impossible to implement on an end-to-end basis.

Second, end-to-end error control necessarily involves multiple error-free links in solving a
purely local problem. If an error-prone wireless link is the last hop on a path from a distant
server to a mobile client, end-to-end retransmission demands bandwidth on every link, while
local retransmission requires extra bandwidth only where it’s truly needed. This argument
may become increasingly important if the Internet widely adopts flow-specific packet han-
dling and reservations. Requiring every application to reserve enough extra bandwidth on
every link to work around difficulty on its worst link would be inefficient.

Third, as a practical matter, deploying a new wireless link protocol on only those links
that need it is easier than modifying transport code on millions of deployed wired machines.
Application-level proxies address this problem to some extent, but they are currently con-
strained to running on end systems, whereas local error control can operate on exactly the
links that require it (such as a point-to-point link connecting two LANs).

Despite these attractions, traditional Internet engineering principles [119, 24, 45] and
an early simulation study [36] argue against “too much” per-hop reliability. In the case of
local error control for links with highly variable error rates there are at least three dan-
gers. First, local error recovery mechanisms may alter the characteristics of the network,
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which could confuse higher layer protocols. For example, local retransmission could result
in packet reordering or in large fluctuations of the round-trip time, either of which could
trigger TCP timeouts and retransmissions. Second, local and end-to-end error control are
adaptive mechanisms that may respond to the same events. This could result in undesirable
interactions, causing inefficiencies and potentially even instability. A very simple example is
duplicate retransmissions generated by the local recovery protocol and by TCP. These can
result in excessive link bandwidth consumption or, worse, queue overflow. Finally, a given
data packet may bear information with a limited useful lifetime, so any retransmission may
be wasted effort. For example, it is better to drop a late audio packet than to retransmit it,
since retransmission may make the next packet late as well.

Given the significant advantages of local error control, we will pursue a purely local
approach engineered to avoid the drawbacks mentioned above.

4.2.2 Design tradeoffs for local error control

Once we decide to address wireless link errors locally, we are faced with several options,
ranging from purely local solutions to solutions where the local error control interacts with
the higher layers in the protocol stack to avoid undesirable effects.

Adaptive codecs and multi-rate modems [74, 105] are useful underlying technology, but
do not represent a complete solution. While an intelligent modem could manage a sim-
ple point-to-point link, in a shared-channel LAN different mobile stations may experience
widely varying error conditions (due to, e.g., different locations [38]). Tracking the appro-
priate coding level for different stations would be challenging for a transparent low-level
hardware approach. Also, different flows to a single station might require different error
control strategies to trade off latency and reliability.

“Pure” link-layer approaches such as MACA [63], MACAW [20], and IEEE 802.11 [70]
apply error control on a per-packet basis and do so in a protocol- and application-independent
fashion. These mechanisms can potentially be made “flow-aware” by tailoring the level of
error control according to the declared needs of the flow. This could be as simple as allowing
each flow to enable or disable link-level retransmission, or more complex, such as bounding
retransmission of each packet according to a specified lifetime. Flow information could be
obtained through protocols such as RSVP [26] or IP Differentiated Services marking [91, 78].

“Protocol-aware” link-layer protocols [11] may inspect the packets they pass in order to
give special treatment where it is most needed. While this can significantly improve perfor-
mance, it requires gateways to understand a wide variety of transport or even application
protocols. The Internet currently carries a wide variety of incompatible streaming audio and
video protocols, and this situation seems likely to persist. The development of protocols
and the development and deployment of parsers could evolve into an “arms race” between
protocol designers and network administrators.

Solutions that require network support at the highest level in the protocol stack are
“gateway-style” or “indirect” error control [9, 29, 11, 135] which perform significant and
stateful protocol translation, or even data transcoding [136, 50], at the border of two sub-
nets with greatly differing characteristics. In addition to potentially needing to understand
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multiple protocols, this approach faces significant challenges when network routing changes,
as state must be migrated from one gateway to another.

In this chapter we evaluate the performance of “pure” link-layer error control. The first
reason is its simplicity. A second reason is that a number of protocols incorporating link-layer
error control are being defined and deployed (e.g., 802.11 [70]), so information about TCP
interactions may be valuable to these efforts. We focus on the case of reliable data transfer
using TCP, which is by far the most widely used transport protocol. Our approach is purely
link-layer in the sense that it treats packets as opaque, not depending on the TCP (or even
IP) specification or implementation, although, as we discuss below, our results suggest that
link-layer error control may benefit from awareness of flow-specific characteristics.

Our evaluation consists of two parts. First, we will observe how purely local error control
improves the performance of TCP, operating in a wide variety of situations. To understand
the interactions between local error control and TCP, we use simple local error control based
on local retransmission only (Section 4.3.3) and apply synthetic burst loss patterns designed
to provide particular stresses (Section 4.5). These results provide a LAN-independent case
for straightforward, protocol-independent local error control increasing TCP throughput
under a broad set of conditions. Second, we present a more realistic evaluation based on a
more sophisticated adaptive local error control implementation (Section 4.6) and WaveLAN-
specific error traces (Section 4.6.2).

4.3 Experimental Approach

In order to investigate the feasibility and desirability of adaptive link-level error control,
we built a small experimental framework on top of WaveLAN I (Section 1.6). In addition
to a bare-bones polling medium access control protocol, we added a logical link control
layer that provides reliable data transfer, including packet fragmentation and reassembly,
over multiple parallel flows per mobile client. This experimental prototype includes trace
replay mechanisms that allow us to apply the same real-world error traces we used in the
previous chapter to an actual TCP implementation running in an operating system kernel.
The increased realism this represents comes at a cost, since both repeatability and fidelity
are somewhat reduced.

4.3.1 MAC design

The goal of our MAC protocol design was building a vehicle for investigating the design and
effectiveness of local error control and interactions between protocol layers, rather than de-
signing a new standard or validating an existing one. Our focus is on a pico-cell environment
with a small number of mobile stations and a backbone-connected base-station responsible
for connecting the cell to the rest of the Internet.

Our resulting MAC is based on master/slave transactions. A master, presumably the
base station, periodically sends a message to each mobile slave; the message can transfer
data to the slave, and may invite the slave to transfer data itself. The MAC transactions
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can be divided into two types. First, the Invite and Join messages are used to add new
mobile hosts to the master’s polling list. Second, Poll-Data and Data-Ack are used for
data transfers. If the cell master wishes to transmit a packet to a slave, it issues a Data
message, and the slave immediately returns a Ack reply. The cell master can provide a slave
with an opportunity to transmit data by issuing a Poll message, which allows the slave to
issue Data. In many instances, the master will call for a two-way data exchange by sending
a single packet containing Poll and Data, which will cause the slave to generate a single
packet containing Data and Ack.

While packet loss is often considered a challenge for LLC to resolve, it has MAC-level
implications as well: the cell master must shift focus from one mobile station to another
even when packets are lost. Given the polled, contention-free nature of our MAC and the
low propagation delay in a LAN, the master can use simple timeouts to recover from packet
loss. This approach is not universally applicable. In particular, high satellite propagation
delays demand alternative approaches [126].

Each mobile station that is a member of a cell communicates with the master via one
or more bi-directional “channels,” which have packet queues associated with them, and
are independently polled by the master. Packets are filtered onto channels according to a
simple scheme that allows specifying or wildcarding hosts, protocols, and port numbers; this
specification is similar to the specification used for RSVP sessions [26].

The main packet elements used by the master and slave are summarized in Table 4.1.
While the MAC supports per-channel reservations, this will not be discussed until Chapter 5.

Command Issued by Function
Invite master solicit new slave stations
Join slave specifies IP address, (Ethernet) station address
New channel slave requests a new channel; specifies filter information
Kill channel slave deletes a channel
Scheduling request slave suggests scheduler parameters for a channel
Poll master solicitation for the slave to send a packet;

specifies slave, channel
acknowledges slave’s last transmission on this channel

Ack slave acknowledges master’s last Data transmission
Data master sent unsolicited by master

slave packet sent after solicitation via a Poll

Table 4.1: Summary of wireless MAC protocol. Slave stations piggyback channel manage-
ment requests (New, Kill, Scheduling request) onto Ack responses.

The operation of the MAC is similar to the IEEE 802.11 Point Control Function [70].
Clearly, many features could be added. For example, one could add contention periods,
similar to the 802.11 Distributed Coordination Function (DCF).
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Master sends Poll-Data packet:
may include data, ack/nack for last data transfer
from slave, and an invitation for data from slave

Slave sends Data-Ack packet:
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Figure 4.1: MAC and LLC actions

4.3.2 LLC design

In a wireless environment, data packets may be lost entirely, partially lost due to truncation,
or corrupted by bit errors. The simplest error control mechanism, stop-and-wait retransmis-
sion, addresses all three as follows. Both parties (master and slave) keep copies of each data
packet until they receive an acknowledgement from the other party via sequence number
fields in the Poll and Ack commands. Stop-and-wait retransmission is acceptable in our
environment because of the feasibility of immediate link-level acknowledgements, common
to many wireless LAN MAC protocols [70, 63, 20]. Links with high latencies [44, 83, 31]
may require sliding-window LLC.

The resulting actions executed by the MAC and LLC layers on both master and slave
are shown in Figure 4.1.

4.3.3 Implementation and Performance

Our hardware platform is Intel 80486 and Pentium laptops using 915 MHz PCMCIA card
WaveLAN units. We disabled the WaveLAN backoff protocol by programming the embed-
ded Ethernet controller to make only one transmission attempt per packet. This allows
us to schedule non-colliding packet transmissions. The master/slave polling protocol was
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then implemented in software on top of this basic packet transmission function. The mas-
ter continuously polls slaves, mixing Invite requests for new mobile hosts with Poll-Data
requests to known mobile hosts in the cell. In our experiments, one laptop operates as a mas-
ter/base station, while the other laptops use the slave protocol. The protocol is implemented
in a kernel device driver for NetBSD Unix.

The WaveLAN hardware has a nominal throughput of 2 Mbit/s, which drops to about
1.8 Mbit/s after considering the effects of headers and standard MAC overhead. A standard
Ethernet-style WaveLAN driver achieves 1.4 Mbit/s for a single TCP stream between two
hosts, compared to .8 Mbit/s when using our MAC protocol. This 43% loss in throughput
is a result of the stop-and-wait error control (described above) and the high per-packet
overhead of our software MAC implementation. However, this throughput is credible, and a
reasonable starting point for our research.

Clearly, MAC designers with control over hardware-level microengines can improve on
this implementation, especially in regard to performance. The software path on the slave to
respond to a poll from the master represents a non-trivial source of overhead.

4.4 Measurement framework

Our measurements were performed using laptops running our experimental system. Our
“base station” was a 25 MHz 80486 DECpc 425SL and our client was a 75 MHz Pentium
Toshiba Satellite Pro 400CDT, both running NetBSD 1.2. The base station was connected
to our campus Ethernet and routed traffic between it and the client. There was no attempt
to provide a “clean room” network environment or to make tests only at certain times of
day, but we didn’t observe substantial variation between experiments.

Performing repeatable and comparable experiments in a wireless environment is chal-
lenging because the events in the wireless environment are hard to control. We address
this problem by relying on a “packet killer” in the kernel device driver to drop or corrupt
packets in a controlled fashion. An administrative tool is used to load a list of packet error
events into the device driver. The driver can be instructed to apply the error event list to
transmitted packets, received packets, or both. Each error event specifies a packet length
threshold and an error coding parameter.

If the length of the packet being received or transmitted exceeds the length of the error
event’s threshold, the trace replay process should arrange for the packet to be truncated
(a threshold value of zero indicates that a packet loss should be simulated regardless of
transmitted length). This is implemented as follows: The packet killer on the sending
machine, the receiving machine, or both, will handle a truncation by prefixing the packet
with a special header flag specifying the truncation length. The receiving machine’s LLC
layer will be informed of the truncation length so it can serve as an input to the adaptation
policy process, but the packet contents will otherwise be ignored.

Since we lack hardware support for forward error correction (FEC), the “packet killer”
emulates the effect of FEC. Each error trace is processed off-line so that bit corruptions in a
trace event are summarized by the minimum-strength Reed-Solomon code required to decode
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the packet. This number is obtained from our bit-level corruption patterns in a conservative
fashion: even short user data blocks require a full block’s worth of parity symbols, and
a packet killer event encodes the code required to correct the most-damaged block in the
packet. The transmitting LLC layer inserts a Pad command at the front of the packet body
that both specifies the code strength in use and adds blank bytes to the packet so it is the
same size as if it had been encoded with the appropriate Reed-Solomon block code. If the
error encoding used by the packet is not as strong as the one specified in the appropriate
“packet killer” event, a decoder failure is indicated.

Each packet “consumes” an error event from the list; when the list is exhausted, the
device driver begins executing it from the beginning.

The packet killer emulates packet loss on output by setting the Ethernet destination MAC
address to a constant unused by any WaveLAN unit. Since each “lost” packet is actually
transmitted, exactly the appropriate amount of air time is consumed. On input, a loss event
is handled by the device driver’s interrupt routine immediately discarding the packet.

The “packet killer” framework allows a variety of emulated error environments. Sim-
ple deterministic traces, such as “lose every fifth packet,” can be constructed by hand.
More-realistic patterns that fit desirable statistical distributions can be generated off-line
via random-number processes. Finally, we can convert the same real-world error syndrome
traces we used in the previous chapter to the packet killer’s event format.

By replaying the same list of packet error events, we can repeat experiments, or directly
compare the effectiveness of different error control strategies in the same (emulated) error
environment.

Throughput numbers are based on wall clock time starting when the TCP connection
establishment handshake is complete and ending after the teardown is complete. Unless
otherwise stated, when we apply a given loss pattern to a connection, we apply it in the
direction of data flow (that is, packets bearing data are dropped, but acknowledgements are
not), because the effect on TCP throughput is greater and more easily understood. Since
TCP acknowledgements are cumulative while data packets are not, losing data packets is
more harmful.

In some cases we present processed output from tcpdump. Our output tap was placed in
the device driver at the beginning of the “output” driver call so that we could observe packets
sent by TCP even if they were dropped due to queue overflow at the transmitter. Some other
Ethernet drivers place the output tap in the “start” driver routine, after any queue dropping
has taken place, so tcpdump observes only packets that are actually transmitted. This
means that our traces more closely reflect what the sending TCP attempted to transmit,
while other traces more closely reflect which packets are actually sent on the wire.

In situations where we report numbers from multiple TCP streams, our transmission
program used multiple Unix processes and coordinated them so that all began transmitting
at the same time and ceased transmission when the first stream was complete.
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Figure 4.2: Hosts used in experiments

4.5 Pattern-based evaluation of local retransmission

In this section, we will compare the performance of TCP with and without local error control.
To investigate interactions between local and end-to-end error control, we used a very simple
local error control strategy, persistent local retransmission, and employed simple synthetic
packet loss patterns. Because interactions between local and end-to-end error control are
likely to vary as a function of the difference between the local and end-to-end round-trip
latencies, experiments were run in both a LAN and WAN environment (see Figure 4.2).
The LAN experiments used an Ethernet segment in addition to the wireless link. For the
WAN experiments, we used a remote host at NCAR, 6 hops away from our wireless LAN.
The round-trip time between CMU and NCAR is approximately 40 milliseconds; the path is
lightly loaded and essentially lossless. It should be noted that this latency, while substantial,
does not represent the worst available on the Internet: intercontinental latencies can easily
reach 120 milliseconds.

In this section, we will demonstrate the well-known severe degradation of TCP perfor-
mance in the face of modest packet loss, show how local retransmission avoids this un-
fortunate situation in a variety of situations, and present a more general analysis of the
effectiveness of local retransmission.

4.5.1 Basic robustness evaluation

We first focus on the simplest possible scenario: a single TCP connection between a wireless
slave and the master station. Figure 4.3 shows the throughput of TCP without local re-
transmission. As for all the results in this section, each data point summarizes the results of
5 1-megabyte runs; the error bar denotes the range of observations and the point on the bar
denotes the mean. The error pattern for Figure 4.3 consists of a single burst of one to eight
packets being dropped out of every hundred packets, resulting in error rates between 1% and
8%. We see that performance degrades quite quickly. TCP handles single packet drops well,
but, as we would expect, when multiple packets per window are dropped, TCP congestion
avoidance and timeouts are triggered [60, 47, 80] and performance drops by a factor of two.
It continues to drop quickly as the burst size increases. Conventional wisdom, supported by
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Figure 4.3: TCP versus data-packet loss in bursts of one to eight packets per hundred.
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Figure 4.4: TCP encountering 2% packet loss in 2-packet bursts.

recent work [81], says that TCP Reno can handle packet loss rates of up to 1-2%; our results
support this conclusion, given that burst losses are particularly challenging. Figure 4.4 shows
a tcpdump trace of a representative observation from the 2% loss (2-packet burst) case of
Figure 4.3. We see that timeouts substantially degrade performance.

Figure 4.5 shows the throughput of TCP when we enable local retransmission. Five-
packet bursts were dropped from windows of 6, 12, 25, 50, and 100 packets to yield a variety
of loss rates. Note that scale is very different from the scale in Figure 4.3: it covers loss rates
of 0-85% instead of 0-8%. We see that, as the link capacity degrades linearly, the achieved
throughput drops off in the same fashion, which is essentially ideal. Figure 4.6 shows a TCP
trace from the 83% loss case. The reason that this works well is straightforward. The local
retransmission hides most of the packet loss on the wireless link from TCP, so TCP stabilizes
at a rate corresponding to the average throughput of the wireless link.
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Figure 4.5: TCP with link-level retransmission, 0% to 83% loss.
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Figure 4.6: Trace of TCP with link-level retransmission, 83% loss.

4.5.2 A broad set of scenarios

Above we evaluated local retransmission in a very restricted scenario with the intent of un-
derstanding its behavior. In practice a wide range of conditions may impact the effectiveness
of local retransmission. In this section we evaluate its performance under a diverse set of
conditions.

So far we have presented results where only a single link is involved. A slightly more
complex topology involves a single Ethernet segment and our (bottleneck) wireless link.
Figure 4.7 shows the throughput under a variety of loss rates from a 100 MHz Pentium
system on the same Ethernet segment as the base station. The presence of the additional
link makes no noticeable difference in throughput; reversing the direction of flow (not shown)
results in the same performance.

Figure 4.8 extends our investigation to a WAN connection from our campus across the
vBNS to a Cray at ucar.edu. The network path comprises our base station, our departmental
gateway, two intermediate nodes at our service provider, a vBNS hop, the UCAR gateway,
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Figure 4.7: Effect of packet loss on TCP, Ethernet transmitter.
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Figure 4.8: Effect of packet loss on TCP, distant transmitter.

and the Cray. The round-trip time is approximately 40 milliseconds. Again, we observe that
local retransmission results in consistently good performance; reversing the flow direction
(not shown) yields no significant difference. The reduction in best-case rate from 100 to 70
kilobytes per second is due to the combination of TCP’s smaller long-haul maximum segment
size and the high per-packet cost of our software MAC implementation (Section 4.3.3).

Figure 4.9 depicts the results of running four independent TCP streams over our local
retransmission protocol. Each point represents the throughput of a single TCP stream during
a single run; five runs of four streams each time result in twenty observations for each loss
rate. Note that the distance between the best and worst rates observed for each loss rate is
very small, even though they may be from different runs.

4.5.3 Analysis

In this section we analyze why local retransmission is so effective. This allows us to identify
the conditions that must be met by local error control mechanisms for efficient interaction
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Figure 4.9: User throughput of four competing TCP streams.

with TCP.

Steady state conditions

We will begin by considering the simple case, a link with a constant error rate. With local
retransmission, the impact of the wireless link on traffic will be similar to that of a regular
wired link. The relative slowness of many wireless links means that buffer memory sufficient
to smooth out long burst losses is affordable. Assuming the wireless link is the bottleneck,
TCP congestion control will converge on the link’s available throughput.

When we consider the steady state behavior of TCP, local error control must meet several
requirements for TCP to exhibit stable behavior under steady error conditions:

• TCP interprets packet loss as a sign of congestion (Figure 4.3). This means that local
error control should be persistent enough that lost packets almost always indicate
congestion.

• Packet reordering results in the receiver generating duplicate acknowledgements, which
will cause the sender to infer packet loss or even congestion. Local error control mech-
anisms should avoid packet reordering since it will cause unnecessary transport-level
retransmissions, and thus waste bandwidth. An alternative to avoiding packet re-
ordering is to avoid its negative effects by, for example, suppressing duplicate acknowl-
edgements [11], but this requires special-case router code for each supported transport
protocol, a weakening of IP semantics.

• TCP estimates the round-trip time and uses this estimate to determine when it should
back off and retransmit data. If local error control can significantly delay packets,
round-trip times may become highly variable. This could cause unnecessary timeouts
and retransmissions or, alternatively, excessive backoffs that would unnecessarily delay
later retransmissions. The round-trip variability problem could be exacerbated by long
delays, suggesting that local retransmission may not be effective on satellite links.
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Figure 4.10: End-to-end packet loss rate as a function of local loss rate and maximum
retransmit count

Dynamic error environment

Aside from steady state conditions, we also must consider the case that error conditions
improve or degrade. If error conditions improve, the usable capacity of the link will improve
and periodic probes by TCP senders will discover and start using the excess bandwidth.
If error conditions degrade, local error control will need to retransmit harder to transfer
packets across the wireless link. The result is that the queue will drain more slowly and
will eventually overflow, causing packets to be lost. This will cause TCP to back off and
retransmit the lost packets. Since we have a congestion condition, this is exactly the right
response.

Persistence of local error control

Local error control is not an all-or-nothing arrangement, but error control strategies with
different degrees of effectiveness and persistence can be implemented. This raises the question
of how effective local error control must be to satisfy TCP.

Figure 4.10 shows how the end-to-end packet drop rate changes as a function of the
local packet loss rate and the maximum retransmit count, assuming steady state conditions
and random errors (of course, the residual error after a fixed number of retransmissions
will be higher if errors are bursty). Not surprisingly, the results show that, for high error
environments, retransmission may need to be very persistent if we want to keep the packet
drop rate below 1%. As we discussed in Section 4.5.1, TCP performance degrades quickly
if the end-to-end packet loss rate is more than a few percent, so limiting the number of
retransmissions to a small constant will work well only if wireless packet loss rates are low.

A potential drawback of persistent local retransmission is that it may delay packets
significantly. This may result in interference with TCP retransmission [36, 11]. To better
understand what happens in such conditions, we created an error environment that should
cause competing retransmissions. We chose a pattern that alternates between transferring
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Figure 4.11: Trace of competing-retransmission scenario: 100-packet burst every 500 packet
times.
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Figure 4.12: Zoomed-in trace of competing-retransmission scenario.

400 consecutive packets without errors, which will lull TCP into believing that the link has
high throughput and low latency, and dropping 100 consecutive packets, which will cause a
sudden significant delay and should trigger a TCP timeout.

Figure 4.11 shows the packet trace for a single-hop TCP flow encountering this error
pattern. The test program reported a throughput of 512 Kbit/s, about 80% of the link
capacity available after packet loss (640 Kbit/s). The trace shows that between the error
bursts TCP performs well. Figure 4.12 shows in more detail what happens during an error
burst. We observe two types of redundant packet: “probe” packets used by the sender to
reestablish contact, and a sequence of packets retransmitted after the pause, which TCP
incorrectly believes were lost. While we do have redundant retransmissions, the amount of
overlap is only about 3%. This overlap can be further reduced by the Eifel extension to
TCP [54] (see Section 4.7.2).

For local error control to perform well, end-to-end retransmission timeouts should be
substantially longer than the single-hop round-trip time. Many TCP implementations are
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derived from the Berkeley “Net-2” implementation, in which retransmissions are scheduled
by an operating system task which runs periodically, often every 500 milliseconds (the “slow
timeout” interval). This creates a floor on the end-to-end timeout that gives link-level error
control substantial time to hide error bursts. While TCP implementors might choose a finer
grain or impose a less conservative minimum timeout (typically two slow-timeout “ticks”),
this relatively coarse timeout is supported by RFC 793 [102], which suggests a minimum value
of one second for the retransmission timeout. Furthermore, TCP trace data suggests that
long-haul Internet connections may avoid many false timeouts by maintaining a minimum
retransmission timeout of at least one second [2]. As a result, long timeouts should be
considered more as protocol feature than implementation artifact.

It is also interesting to note that, regardless of the resolution of the timers, the values
they take on allow for some variation. For example, systems compliant with RFC 2988 [97]
set the retransmission timer to an estimate of the round-trip time plus four times the mean
deviation from that estimate, as suggested by Jacobson and Karels [60]. This means that,
if a variable number of wireless link-level retransmissions caused fluctuations in the end-
to-end round-trip time, TCP would tend to react by retransmitting more cautiously. Two
simulation studies [83, 31] have observed this positive interaction.

In summary, excessive retransmission persistence, such as the perpetual retransmission
implemented in our simple LLC, poses a risk of reduced performance due to inter-layer
duplicate retransmissions. However, factors such as TCP’s adaptation to delay variation,
cautious minimum timeout, and slow-start probing seem to allow persistent retransmission
with only a small efficiency loss. Meanwhile, giving up after only a few transmissions has
the potential to seriously compromise TCP performance. We conclude that a high degree of
link-layer retransmission persistence is well worth the minor negative side effects.

Similar results were obtained by Reiner Ludwig [79, 78]. He observes that persistent
retransmission is critical to TCP performance and that competing retransmissions are rare
and innocuous. He proposes and investigates a system that allows end-system control over
the degree of link-level retransmission persistence.

4.5.4 Summary of local retransmission experiments

We believe these experiments demonstrate the potential for a “pure link-layer” retransmission
strategy to use local knowledge to significantly and transparently enhance the throughput of
unmodified TCP in many difficult situations. The main limitation of this approach seems to
be that it cannot hide pathologically long delay bursts from TCP, which may respond with a
small amount of duplicate retransmission. On the other hand, when the delay period is over,
the order-maintaining queue structure allows TCP to recover smoothly. Note that, while
in our experiments the wireless link was the first or last segment in the path, the analysis
suggests this is not critical: what matters is that the conditions listed in Section 4.5.3 are
met.

While we have encouraging results for TCP, which is by far the dominant reliable data
transport protocol, it seems clear that other applications, such as streaming video, could
require different low-level retransmission policies. Luckily, the Internet seems to be evolving
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in the direction of making flow-type information available to link-layer elements via Differ-
entiated Services marking [91] or RSVP-like protocols [26]. Different low-level error control
policies could be implemented for packets belonging to flows of different types. For delay-
sensitive traffic such as interactive video or audio transfers, local retransmission could be
less persistent since packets “expire” after a certain time interval.

4.6 Trace-based evaluation of adaptive error control

The error environments we have investigated so far are unrealistic in two ways. First, the
packet loss patterns we used were synthetic and were not representative of any known natural
error patterns. Second, packet-loss error traces poorly describe actual error environments,
in which “packet loss” is due to a variety of underlying error events, detected by different
hardware or software layers. Packets could be “lost” due to capture effects, initial synchro-
nization failures, errors in recipient MAC addresses, synchronization loss due to clock drift,
checksum failures due to bit errors, etc. The techniques that defend against each threat
differ, and, since each one consumes air time and/or energy, it is counterproductive to try
to solve “packet loss” without some indication of which underlying process is responsible.

Therefore, in this section we will reprise the detailed trace-replay experiments of Chap-
ter 3, replacing the abstract throughput simulations used there with the throughput ob-
tained by actual kernel implementations of TCP and UDP. After describing our adaptive
error control implementation, we will present the performance of various error control policy
modules in the presence of different error environments. We will investigate whether the
rapidly-varying throughput made available by an adaptive link layer is readily usable by
TCP, evaluate the utility of adaptive error control policies and the error control techniques
they use, and compare the results of the previous chapter’s abstract throughput simulator
with the real-world TCP implementation measured herein.

4.6.1 LLC infrastructure

In Section 3.2 we observed that both packet length adjustment (“packet shrinking”) and
error coding can significantly reduce the packet error rates caused by the error environments
recorded in our trace data. When we wish to move beyond simple retransmission to employ
these techniques, several practical issues arise. First, since each of these techniques causes the
size of each transmisison’s user data payload to vary, we need some way of transmitting end-
to-end IP packets inside these small and variable payloads. Second, we need to collect data
about the current error environment so that adaptive policy code can control the mechanisms
we provide.

Three options for handling the variable-length payload problem are varying the IP MTU,
relying on IP datagram fragmentation, or providing local fragmentation and reassembly.

While it is possible to do end-to-end management of packet shrinking by adjusting the IP
maximum transmission unit (MTU) of the wireless link and propagating this information to
end systems, or by employing IP fragmentation, both approaches have substantial per-packet
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overheads for even medium-sized packets. For example, if we reduce our MTU from a typical
1000 bytes to 200 bytes, TCP is required to transmit the IP and TCP headers (typically a
total of 40 bytes) six times instead of once for a large packet, raising the header overhead
from roughly 4% to roughly 20%. While IP fragmentation would replicate only the IP
header, resulting in less throughput inefficiency, it would introduce other system overheads.
Generating each fragment would require IP header manipulations, including a checksum
recomputation. In addition, IP fragmentation results in non-trivial work for the receiving
end-system, such as maintaining and garbage-collecting a potentially arbitrary number of
reassembly queues.

Propagating link MTU values across the network is a slow and costly process, whether
this is done via routing protocols or per-flow MTU discovery, so it would be impractical to
adjust the value to prevailing error conditions.

Finally, both TCP segmentation and IP fragmentation would limit adaptation by break-
ing a packet once into fixed-sized sub-packets, thus committing the link to a fragmentation
policy on a coarse grain.

For these reasons, we implement packet shrinking through link-level packet segmentation
and reassembly over the wireless link.

This requires segmentation and reassembly buffers on each host and some changes to
the packet headers previously described in Section 4.3.1. Every Data transmission adds
to the existing packet sequence number a starting byte offset, a byte count, and a “packet
complete” bit, while acknowledgements consist of not only a packet sequence number but
also a cumulative length indicating correctly received bytes. A sender can signal that it
has abandoned a packet transmission partway through by incrementing its sequence number
before its peer has acknowledged the previous packet; at this point, the recipient knows
to flush its reassembly buffer. This premature abandonment was used to disable link-level
retransmissions for the experiment in Section 4.5.1. The resulting LLC protocol, summarized
in Table 4.2, can execute data transactions for variable-sized segments instead of complete
IP packets.

The other job of our LLC protocol is carrying adaptation strategy information between
the cell master and slave stations. If a master’s Poll reaches a slave, the slave’s response
will describe any observed packet truncation and/or decoder failures. If the slave’s response
reaches the master, the master will likewise note damage. Adaptation policy modules (de-
scribed in Section 3.3.2) use these observations to estimate the appropriate transmission
size and error coding level for the next transmission. This model assumes a link capable of
almost always transmitting a small amount of metadata even if the main body of a packet
is severely damaged. In practice, many wireless links transmit certain information, such
as synchronization or training sequences and station addresses using redundancy or robust
coding, making this assumption realistic.

4.6.2 Performance of TCP and UDP

To evaluate the performance of an error control policy operating in a particular error envi-
ronment, we measured the throughput across the link of a single TCP stream. In addition,
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Command Parameter Meaning
Poll Slave specifies slave station

Channel channel being acknowledged and polled
Slave-seqno last packet received on this channel
Slave-bytecount last byte received in that packet

Data Channel channel number
Seqno number of packet in progress
Offset first byte contained in this segment
Length count of bytes in this segment
Done segment contains final byte (boolean)

Ack Channel channel number
Master-seqno last packet received on this channel
Master-bytecount last byte received in that packet

Table 4.2: LLC packet summary. In the general case, the master transmits Poll and Data
together, to which the slave will respond with Data and Ack, also in a single transmission.

we measured the throughput obtained by a program that sprays UDP packets as fast as
possible, ignoring send queue overflows and losses, reporting only the number of packets
received. Since this program counts packets received, it estimates the link throughput after
error control.

Table 4.3 reports the results achieved by the adaptation policies from Section 3.3.2 when
confronted with the error traces presented in Section 3.1. The relative throughput achieved
by TCP and UDP for each combination of trace and policy is displayed in Figure 4.13. This
clearly indicates that, regardless of adaptation policy, the resulting link was as usable by
TCP as by loss-insensitive UDP: our adaptive error control system is not causing TCP to
lose performance due to false triggering of its congestion avoidance mechanism.

Trace Bold Light Robust Bimodal Bi-code Bi-size Flex

TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP

Office 90.1 91.0 84.8 85.4 32.0 32.2 89.9 90.3 89.6 90.2 89.6 90.6 89.7 89.9

Walking 84.5 85.2 81.3 82.4 32.0 31.6 84.6 84.9 84.2 85.1 84.2 84.7 83.2 83.8

Adjacent 15.0 15.9 14.8 15.4 5.4 5.3 15.1 15.0 14.1 15.0 14.6 15.1 14.7 15.2

Table 0 0 5.4 5.4 19.3 19.2 12.8 12.6 37.9 37.9 0 0 45.8 46.2

Walls 64.6 65.9 75.8 77.2 30.2 29.8 64.1 64.9 64.7 65.7 64.9 65.6 72.6 72.9

Table 4.3: Performance of different error control policies: averages, in kilobytes/second, of
five runs.

4.6.3 Utility of adaptive error control

Examining Table 4.3 more closely allows us to determine the utility of error coding and
packet length adjustment and the importance of employing each adaptively. Figure 4.14
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Figure 4.13: Comparison of TCP and UDP throughputs for the experimental scenarios.
The similarity of these throughput figures indicates that TCP is not falsely assuming link
congestion.

presents the TCP numbers graphically. For each error trace, the throughputs obtained by
the various adaptation policies are normalized to the throughput of the top performer. The
data are then transposed so that the figure displays, for each policy, how competitive it
was across error traces. This makes it clear that, for example, in every error environment
Robust achieves approximately half the throughput of whichever other policy was the best
for that environment.

The performance of the static policies is fairly predictable. Bold (retransmission, or
pure ARQ) does very well in low-error situations because it doesn’t spend any bandwidth on
shrinking or coding overhead. Unfortunately, it is unable to transfer any data in the “table”
case, which has a packet corruption rate of 94%, since TCP cannot complete its inital three-
way handshake before timing out. Light fares slightly worse in low-error situations but
manages to achieve some minimal throughput in the harsh “table” case. It dominates the
other policies in the “walls” scenario, in which 27% of the packets are corrupted, but only
lightly. Robust does poorly in essentially every case: in addition to 30% overhead lost to
coding, it loses substantial throughput due to the high cost of sending small packets.

The adaptive policies all perform generally well, with the exception of bi-size, which does
not perform coding–like bold, it cannot operate in the “table” case. Comparing the three
two-mode policies allows some evaluation of the utility of packet shrinking. If we examine
the performance of bimodal and bi-code in the “table” case, which has 94% corruption
but only 2% truncation, we can verify that linking packet shrinking to error coding level is
probably counterproductive, since at least in this case decoder failures are a poor predictor
of truncation and the performance reduction is substantial. The case for shrinking is better
made by comparing the two policies in the “adjacent” case, which has almost no corruption
and 23% truncation. In this situation packet shrinking provides a modest performance
increase. Finally, the flex policy, which can independently adjust shrinking and coding,
and can do so with finer granularity, does well overall and particularly well in the challenging
“table” and “walls” cases.

In summary, Bold demonstrates that error coding can be either useful or necessary
depending on error conditions (“walls” or “table”). The overall performance of the static
policies compared to the dynamic policies argues for adaptation. Finally, the strong perfor-
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Figure 4.14: Comparison of normalized performance for each policy. For each policy, each
bar represents that policy’s performance in one scenario (office, walking, adjacent, table, or
walls) normalized to the best performance in that scenario.

mance of Flex regardless of error environment suggests that a simple adaptive policy can
be very effective.

4.6.4 Comparison to simulator results

Comparing the TCP throughput results in Figure 4.14 to the throughput simulator numbers
in Figure 3.9 produces some confidence in both the simulator and the result of trace replay
in the running system.

The first thing to observe is that the results are similar—both measurement environments
find the same traces to be “hard” across policies and each policy finds the same traces to be
hard or easy regardless of the measurement platform.

Some of the differences between the figures are accounted for by two factors. First, the
simulator can eke out throughput in situations where real TCP cannot. This is clear if
we compare the performance of the bi-size policy in the “table” error environment—TCP
cannot establish a connection even though there is some throughput available. Second, the
“robust” policy, which achieves throughputs as high as 70% of the oracle in the simulator,
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never achieves much better than 40% of the best competing policy in the running system. We
attribute this to the high per-packet cost of our software implementation (see Section 4.3.3).

4.6.5 Summary

The above results suggest that error coding and packet length adjustment can build on
top of local retransmission to further increase throughput in interference and attenuation
environments. Adaptation appears to be vital to achieve good performance in the variety of
error environments that a single mobile host will plausibly encounter. Figure 4.13 indicates
that, regardless of adaptation policy, the resulting link was as usable by TCP as by loss-
insensitive UDP: our adaptive error control system is not causing TCP to lose performance
due to false triggering of its congestion avoidance mechanism.

4.7 Related work

4.7.1 TCP in Wired-cum-wireless Environments

An excellent survey paper, titled TCP in Wired-cum-wireless Environments [98], presents
a clear overview of the problems that wireless environments pose for TCP and discusses a
wide variety of research related to running TCP over wireless links. The paper includes
background information on various wireless network technologies and a concise description
of the WAP platform (widely known as “wireless web” in the cellular phone world).

4.7.2 Reiner Ludwig’s Cross-Layer study

.
A higher-level overview of the relationship between that dissertation [78] and this one

appears in Section 1.5.4. The author proposes modifications to the typical configuration of
the RLP radio link protocol and modifications to TCP’s congestion control and retransmis-
sion behavior to better handle data link errors and longer handoff-induced outages. We will
consider the link-level and TCP issues in turn.

Ludwig found that the typical configuration of the GSM RLP link protocol was sub-
optimal in three ways. First, the degree of forward error coding, which is fixed rather than
variable, was frequently stronger than necessary. Second, the frame size chosen by the RLP
designers is too small for many error environments, resulting in noticeable throughput reduc-
tion. Third, link-level retransmission was not sufficiently persistent to support TCP. These
results are all in agreement with our observations: error coding and frame length should both
be dynamically adjusted, and TCP requires link-level retransmission with substantial per-
sistence. In addition, we both observed that inter-layer retransmission effects were typically
not significant.

Our investigation of link-level error control was not constrained by a pre-existing link
protocol, so we had more freedom to experiment with error control mechanisms such as vari-
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able rate error coding and packet length adjustment and to investigate multiple adaptation
policies. On the other hand, Ludwig investigated mechanisms for varying the reliability of a
flow’s traffic according to “flow type” information which can be provided by communicating
end-systems.

Ludwig then proceeded to describe and analyze problems related to TCP’s handling
of retransmissions and timeouts. The relatively low throughput of the GSM radio chan-
nel means that round-trip delays due to link-level retransmissions are frequently visible on
the timescale used by TCP’s round-trip estimator. When TCP’s estimate of the round-
trip time is substantially incorrect, the result may be spurious retransmissions, congestion
avoidance behavior, and timeouts. Ludwig observed that much of this trouble is due to the
TCP transmitter’s inability to distinguish between acknowledgements of different end-to-end
transmissions of the same packet. He resolves the acknowledgement ambiguity by combining
use of the existing TCP timestamp option with modest code changes to TCP transmitter
behavior. While acknowledgement ambiguity in an end-to-end protocol merits a remedy,
this represents an argument for good design of protocol layers rather than for re-working the
Internet architecture (as suggested by others, see below).

A recent simulation study of this “Eifel Algorithm” for resolving transmission ambigu-
ity [54] observes substantial improvements in both throughput and download latency when
Eifel is applied to various common TCP implementations running over GSM’s General Packet
Radio Service (GPRS [30]).

4.7.3 Other Inter-layer Studies

An early simulation-based study of interactions between link-level retransmission and a TCP-
like protocol [36] suggested that, unless link errors are very common, link-layer retransmis-
sions would frequently duplicate end-to-end retransmissions. Later studies involving real
TCP have, to a large extent, not confirmed this concern.

A paper on Channel State Dependent Packet Scheduling, (which is discussed further
in Section 5.8.1) observes the importance of link-level retransmission for preserving TCP
throughput in the face of burst errors; coarse-grained TCP timeouts allowing multiple link-
level retransmissions; and the desirability of link-level error control being independent of
end-to-end transport protocols. Evaluation is via simulation with a Markov model of burst
packet loss.

An ns2 simulation study of TCP running over GPRS [83] observes TCP obtaining rea-
sonable performance over GPRS RLC, even in the face of harsh link-level conditions. In
particular, link-level retransmission is fast enough to operate beneath TCP, and TCP’s re-
transmission timeout is observed to back off in response to round-trip variance induced by
the low-level retransmissions.

An analytical study of TCP running over the link layer retransmission provided by the
new UMTS cellular telephone standard is analyzed in [31]. The study considers the effects of
fading (i.e., not interference), uses a Markov-model error environment, and does not consider
the effects of error coding. The primary results are that TCP performance is dramatically

91



improved by the presence of link-level retransmission and that “silent ARQ” (absence of
inefficient inter-layer retransmissions) is typical.

4.7.4 TULIP

TULIP (“transport unaware link improvement protocol“) [96] is a mostly-protocol-blind link-
layer retransmission scheme. While it does not attempt to locally compute end-to-end TCP
state or modify the TCP data stream, it differentiates between TCP packets bearing data,
which are transmitted reliably and in-order, and packets bearing only acknowledgement in-
formation, which are not. UDP traffic is not transmitted reliably. When possible, TULIP
piggybacks TCP acknowledgements on TULIP acknowledgements which are in turn piggy-
backed on MAC-level acknowledgements. The protocol uses a sliding window and selective
acknowledgements; timeouts are based on maximum link-level round trip time. Simulation
results show that TULIP allows TCP to perform well across a wide range of error rates and
distributions. In addition, TULIP outperforms the “Snoop” TCP accelerator (see below)
when error rates are high, largely because Snoop’s retransmission approach is similar to that
of TCP, which does not perform well in the face of high error rates.

The authors observe that variance in end-to-end round-trip time induced by link-level
retransmissions causes TCP to compute conservative end-to-end timeout values, as we sug-
gested in Section 4.5.3.

The TULIP results provide a third demonstration, after this research [39] and that of
Ludwig [79], that link-level retransmission is vital and effective for improving TCP perfor-
mance. Competing inter-layer retransmissions are not a relevant factor across a wide range
of error rates.

The published results do not clearly specify why TULIP inspects TCP packets to specif-
ically avoid reliable transmission of TCP acknowledgements. That is, no comparison of
TULIP running with and without reliable TCP acknowledgements is presented. Further-
more, it is not clear that all UDP traffic should be unreliable. Certain important applica-
tions, such as the Domain Name System [84, 85], rely on UDP and perform poorly when
multiple packets are lost.

4.7.5 Historical Wireless LAN retransmission efforts

Several high-speed wireless LANs include both link-level retransmission and packet frag-
mentation. The IBM Wireless RF LAN [14] performs fixed-size fragmentation primarily to
facilitate time scheduling and comply with frequency-hopping dwell time limits.

Though the MACA [63] and MACAW [20] protocols are designed for distributed multiple
access rather than the centralized control our MAC employs, we believe that their approach
to local retransmission is similar in spirit to ours. The MACAW protocol design considers
multiple flows per device and presents evidence that a post-packet acknowledgement increases
TCP throughput.

The Arlan wireless LAN includes medium-level retransmission; a comparative study of
WaveLAN and Arlan [114] observes noticeable TCP performance improvements as a result.
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4.7.6 IEEE 802.11 wireless LAN

The IEEE 802.11 wireless LAN standard [70] may optionally be configured to perform frag-
mentation into fixed-sized chunks, and retransmits packets a (configurable) fixed number
of times according to a length threshold. Our experience suggests that the relatively small
default configuration constants may leave enough residual errors to disturb TCP and that
adaptive packet coding and shrinking merit consideration.

Integrating adaptive local error control with the 802.11 contention-based Distributed Co-
ordination Function (DCF), a descendant of MACA and MACAW, faces no obvious major
obstacles. One challenge is that, unlike our prototype MAC and the 802.11 Point Coordina-
tion Function (PCF), DCF round-trip times may be very large in periods of heavy contention.
This poses two challenges: the control loop for the adaptive link protocol may be too long,
and long link-level delays may cause competing inter-layer retransmissions. The control loop
problem may be less difficult than it seems. Our approach is based on the assumption that,
once a packet is transmitted, the sender can quickly determine whether it must be retrans-
mitted and whether any coding or sizing adjustments are necessary. While DCF round-trip
times may be long, they are nonetheless bimodal: if a transmission is successful, it will
take place, and be acknowledged, within the strict bounds of the RTS-CTS-DATA-ACK cy-
cle. Truncation and decoder failure information could be added to the medium-level ACK.
Otherwise, some part of the cycle failed, which is analogous to a single packet loss in the
polled/PCF case, and the entire cycle will need to be repeated. The inter-layer competition
problem is straightforwardly parallel: if the round-trip time is always large, the end-to-end
transport protocol will back off to match; if it is typically small but occasionally becomes
very large, there may be an occasional competing retransmission, but this will probably be
unimportant.

The IEEE 802.11e draft standard [59] includes optional per-flow Reed-Solomon block
codes. The potential of this technique may be limited because the coding level employed is
static. We have observed that it is difficult for static error coding decisions to perform well
across a variety of error environments.

4.7.7 Other Link-Level Retransmission Systems

All three “second-generation” or “2G” cellular phone systems, the IS-54/IS-136 TDMA sys-
tem [87] the IS-95 Qualcomm CDMA system [64], and the European GSM standard [44], pro-
vide link-level retransmissions for packet data. The AIRMAIL design [7] adds bit-, byte-, and
packet-level adaptive forward error correction to yield a protocol for power- and processing-
constrained access devices.

A WaveLAN-based evaluation of packet shrinking [72] also suggests an architecture in-
cluding link-level fragmentation and adaptive error coding.
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4.7.8 Wireless-aware TCP

Researchers have proposed various modifications to TCP to improve performance over wire-
less links. These suggestions face two general obstacles. First, it is difficult for end-system
hosts to determine which negative packet outcomes are due to which link along a network
path. If multiple links exhibit different error modes, this problem is very challenging. Sec-
ond, deployment of modifications to TCP is traditionally very slow. Our position is that it
is unwise to deploy network links that typically re-order packets or frequently lose them in
the absence of congestion.

One approach is to modify the underlying network, or at least the wireless links, to
explicitly signal packet errors to TCP [52, 68]. This frees TCP from its assumption that losses
signal congestion and allows it to retransmit aggressively. Aside from various technical issues
related to the mechanisms and reliability of this signalling, there is a significant deployment
hurdle, in that every wireless link must generate the notifications and only wired TCPs that
understand them can benefit.

Wang and Kung [132] suggest an approach by which end-system hosts can distinguish
network congestion from packet loss by comparing the fates of two TCP streams, one carrying
bulk data and another carrying only token amounts.

The authors of [129] propose modifying TCP so that it can run more efficiently above
a protocol-blind link-layer retransmission scheme that does not preserve packet ordering.
Unmodified TCP receivers generate duplicate acknowledgements in response to mis-ordering,
which the TCP senders interpret as an indication of loss and congestion; the modified TCP
receiver artificially delays duplicate acknowledgements for a period of time in the hope that
the link layer can provide the missing packet. Simulation results indicate that this change
improves performance in the target environment but can degrade throughput noticeably in
the presence of genuine congestion-induced losses.

TCP modifications to allow senders to un-do congestion avoidance actions induced by
packet reordering are discussed in [23]. This work depends on TCP using a mechanism such
as Eifel [78] or DSACK [48] to detect spurious retransmissions.

Mobile TCP [123] attempts to improve TCP performance during handoffs. When the
mobile host senses a handoff, it notifies its peer, which temporarily attributes packet losses
to the handoff rather than to congestion. In addition, when a mobile host switches from one
network provider to another, the wired peer resets its network estimation state (round-trip
time, congestion window, etc.) to the same default values used to establish new connections.
These modifications result in noticeable performance improvements.

Freeze-TCP [53] proposes modifying the TCP receiver code to warn the remote TCP
sender of an impending link disconnection by closing the TCP receive window. Freeze-TCP
will later advise the sender of a reconnection by transmitting duplicate acknowledgements.
This allows the sender to freeze its connection state during a link outage or handoff so that
it doesn’t incorrectly infer congestion from the timeouts that it will observe. Assuming
advance notice of a link outage is available, this approach provides noticeable performance
improvements. The paper also presents an excellent overview of issues related to TCP
gateways and accelerators (discussed below).
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Finally, WTCP [122] proposes replacing TCP outright with a rate-based protocol in
wide-area wireless networks.

4.7.9 TCP accelerators

A comparison [11, 12] among the Berkeley LL family of link-layer retransmission protocols
demonstrated a noticeable performance enhancement obtained by retransmitting and filter-
ing TCP packets and acknowledgements. This implementation is specific to TCP and the
general approach depends on transport protocols generating frequent acknowledgements (as
opposed to, e.g., periodic summaries). Our situation differs from theirs in that our timeout
interval is smaller by roughly an order of magnitude and our retransmission scheme does
not re-order packets. This allows us to achieve good performance without depending on
TCP-specific protocol information. Such a dependence will require TCP accelerators to be
upgraded as new TCP options become popular.

Protocol independence allows us to provide good service for non-TCP applications. One
example is UDP-based request/response protocols such as Domain Name System (DNS)
lookups, where throughput needs are minimal but human intolerance of latency creates a
dependence on low end-to-end packet error rates.

4.7.10 TCP gateways

Several groups have examined “indirect” or “split” approaches to improving TCP perfor-
mance [8, 135, 9, 29, 10, 28], which rely on transparent protocol translators. For example, in
an indirect implementation of a transport protocol, a fixed host communicates with a mo-
bile host via a proxy that transparently terminates the transport-level connection and uses
another transport-level connection (and potentially another protocol) to reach the mobile
host.

Both TCP accelerators and TCP gateways fail to address non-TCP traffic and depend
on an ability to understand TCP packets.

However, TCP gateways face additional challenges. It is tricky to maintain the end-to-end
semantics of acknowledgements unless the gateway delays issuing its own acknowledgements
until hearing from the mobile host; being conservative in this fashion can reduce through-
put. When a mobile hosts moves from one TCP gateway coverage area to another, the
two gateways must migrate connection state information to avoid breaking the end-to-end
connection.

In light of these complexities, it is fortunate that our experience suggests TCP, and other
transport protocols, may benefit from simpler and protocol-blind link-level approach.

4.8 Conclusion

The results presented in this chapter indicate that “pure” link-layer local error control mech-
anisms can greatly increase the efficiency of data transfer in wireless LANs. When designed
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correctly, these mechanisms can mask the worst effects of the high and dynamic error rates
often found in wireless networks. Our experiments show that non-snooping local retrans-
mission can deliver vast improvements in TCP performance over lossy wireless LAN links,
allowing TCP to use a high fraction of the available link bandwidth. An analysis of our
experimental results shows that, to effectively support data transfers using TCP, local error
control should meet the following conditions: it should be persistent enough to virtually
eliminate non-congestion losses, should avoid packet reordering, and should not delay pack-
ets beyond the typical TCP end-to-end retransmission timeout. These conditions avoid false
triggering of TCP’s end-to-end error control mechanisms, such as congestion avoidance, fast
retransmission, and timeouts. Our experiments suggest that violating the third condition
may not be catastrophic, causing only a modest duplication of effort.

While these conditions are partly driven by properties of TCP’s error control mecha-
nisms, they are not specific to TCP itself. The local error recovery mechanisms do not
depend on TCP’s header format or acknowledgement generation rules, but instead rely on
high-level properties of the end-to-end congestion avoidance and error control mechanisms,
which are regarded as appropriate for reliable byte stream transport in general. Other flow
types, such as delay-sensitive streaming media, might prefer different error control policies,
such as reduced persistence. Flow-type-specific approaches are attractive alternatives to
protocol-specific approaches, and can be supported based on flow information obtained from
Differentiated Services marking [91] or RSVP-like protocols.

The above results were demonstrated using two local error control implementations. First
we implemented a simple, generally applicable design that uses only retransmission to recover
from errors. This allowed us to analyze error recovery behavior and to identify conditions
under which purely local error recovery is effective. Then we broke the “packet error rate”
abstraction barrier and applied our trace data, which faithfully represent loss, truncation, and
bit corruption. This allowed us to employ a more sophisticated adaptive local error control
implementation designed for WaveLAN hardware that includes local retransmission, adaptive
packet shrinking, and FEC coding. Simple adaptation policies outperformed static policies
across a range of error environments while allowing effective end-to-end communication using
both TCP and UDP.

Finally, the results obtained by TCP running over our adaptive error control policies
strikingly parallel the results obtained by last chapter’s abstract throughput simulator. This
increases the trust we can place in both measurement frameworks.
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Chapter 5

Effort-limited Fair (ELF) Wireless
Link Scheduling

5.1 Introduction

While the previous chapter demonstrated that adaptive link-level error control enables
higher-level protocols to perform well in the presence of even harsh error conditions, our
demonstrations were in the context of a single transport-level flow. That is, the throughput
achieved by a particular flow was solely a function of the error environment it encountered.
When we broaden our examination to include multiple flows (which may be running differ-
ent protocols), multiple machines sharing a wireless link, and location-dependent errors, it
is clear that we must address not only the question of the best transmission strategy for a
given flow at one instant, but which flow should be transmitting at that time.

Scheduling algorithms for wired links are defined according to specifications which map
offered traffic load to the performance that each flow “deserves”. Schedulers employ various
fairness notions, such as priority classes, packet deadlines, or specified percentages of link
throughput. They may be purely reactive, or may require flows to negotiate via an admission
control process before sending. Regardless of these design decisions, information flows in one
direction, from offered load to desired outcomes.

However, wireless link errors affect flows in an dynamic and unequal fashion. Flows
that “deserve” the same throughput in the absence of errors may differ greatly in their
sensitivity to throughput reductions. For example, a file download is injured less by reduced
throughput than a videoconference would be. Throughput sensitivity is a function of non-
technical considerations as well: on a corporate network, a video feed of a shareholder
meeting might be considered more deserving than an entertainment news show. Therefore,
when the capacity of a link drops significantly due to errors, a scheduler must feed this
information back and somehow adjust the throughput target for each flow. We believe that
this adjustment process cannot be automated without external information that specifies
not only how to distribute link time in the absence of errors, but also how to distribute link
errors when they arise.
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This information will allow the scheduler to balance the need for certain flows to meet
their throughput targets even in the presence of link errors against the need for to preserve
overall network efficiency. If one wireless station is experiencing a much higher error rate than
others, we might wish to compensate for that by giving it extra air time for retransmissions.
Alternatively, we might want to limit its air time since much of it would be better used on
other stations capable of error-free communication. In either case, the function of error-
sensitive link scheduling is to implement end-user decisions about which flows most require
stable throughput despite a dynamic error environment.

5.1.1 Chapter Outline

The remainder of this chapter is organized as follows. In the next section we list and discuss
the principles we used to guide our approach to the wireless link scheduling problem. Then,
in Section 5.3, we examine how various granularities of link errors affect link scheduling.
Then we use several detailed examples to illustrate the need for error-sensitive link schedul-
ing and the interplay between the competing notions of effort fairness, outcome fairness,
and link efficiency. In Section 5.4 we describe the power factor administrative control which
defines how a scheduler should respond to capacity loss. Section 5.5 describes a scheduler
implementing the power factor. In Section 5.6 we examine the behavior of this algorithm via
trace-driven simulation, and Section 5.7 reports on experience with our prototype implemen-
tation. In Section 5.8 we place our work in the context of related wireless packet scheduling
efforts.

5.2 Design Principles

The results in this chapter are guided by the following list of principles, which formalize the
concerns raised above:

1. in an error-free environment, the outcome achieved by a wireless scheduler should be
identical to that of an equivalent wireline scheduler;

2. the amount of capacity loss suffered by a flow should not be proportional to its transmis-
sion rate or its error rate, but should be configurable through administrative controls;

3. it must be possible to administratively bound the amount of capacity that is lost due
to location-dependent errors;

4. in the absence of information to the contrary, flows experiencing equal error rates
should experience the same capacity loss; and

5. capacity unused by one flow should be distributed “fairly” among other flows.

While several of our principles (1, 4, and 5) are similar to those used in other projects [76,
89], the principles dealing with capacity loss (2 and 3) are unique. These two principles will
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guide our design of a new scheduler model that will allow intuitive control over the effect of
capacity loss.

The complexity of the problem can be illustrated by considering a “straw man” solu-
tion, overprovisioning. Some fraction of the link, e.g., 20%, would be set aside to recover
from errors, while the remainder would be reserved or otherwise managed by a traditional
wireline scheduler. During low-error-rate periods, leftover “error control” air time would be
distributed among best-effort flows. This approach is not practical. For a variety of tech-
nological and regulatory reasons, wireless links often have a limited, fixed capacity, making
this type of overprovisioning undesirable. Furthermore, even reserving a large fraction of the
link for error control would not be adequate in all circumstances, since it is not possible to
bound the error rate in advance. Another possible approach would be to regularly reset the
relative weights or priorities of the flows, taking into account their current error rates. This
is not practical for a variety of reasons. As we saw in Chapter 3, error rates change very
quickly, so frequent manipulation would be required. Also, as we will discuss in Section 5.5.2,
determining per-flow error rates can be very difficult.

The scheduler model we propose focuses on the insight that, in a wireless environment,
we must distinguish between “effort” (air time spent on a flow) and “outcome” (actual useful
throughput achieved by the flow). While effort equals outcome in a wireline environment,
they can be substantially different in a wireless environment. Imagine that a wireline sched-
uler evaluates a set of flow requirements and determines that a certain flow would be satisfied
by 10% of the error-free link capacity. If that flow belongs to a station experiencing a 50%
packet loss rate, spending 10% of the link’s effort on that flow will result in it achieving
outcome equivalent to 5% of the link’s error-free throughput. But if this flow is critically
important to some application, it might make more sense to spend 20% of the link’s effort on
the flow so that it would achieve its expected outcome, 10% of the error-free link through-
put. To address this effort-outcome disconnection, we propose an “effort-limited fair” (ELF)
scheduling approach. An ELF scheduler strives to achieve per-flow outcomes envisioned by
users (such as a specific throughput for constant-bitrate flows or a specific link share for
best-effort flows), subject to limits on the effort (transmission time) spent on each flow, as
specified by a per-flow power factor setting. The power factor is a control knob that can be
used to administratively implement a variety of fairness and efficiency policies.

5.3 Justification of Principles

In this section we will analyze the hazards posed by a wireless error environment in order to
guide our design process. In particular, we will discuss how link errors of varying granularity
may be addressed, including the utility and limitations of time-slot swapping, present differ-
ing notions of how a wireless link scheduler should behave in the face of link capacity loss,
and discuss location-dependent errors in particular. The insight we gain from this analysis
will clarify and support our second and third design principles.
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5.3.1 Network model

We assume that a wireless network consists of one or more cells and that the bandwidth in
each cell is managed by a centralized packet scheduler. One example of a such a cell is an
IEEE 802.11 LAN [70] in which a base station is configured to manage all bandwidth via
the Point Control Facility.

We assume that the scheduler views traffic as a set of flows. Flows can be defined in
a variety of ways. One simplistic approach would be to define each mobile station’s traffic
with a cellular base station as a single flow; alternatively, each TCP or UDP connection
could be treated as a flow, or flows could be defined by an end-to-end state establishment
mechanism such as RSVP. This work is based on the Weighted-Fair Queueing (WFQ) wired-
link scheduling approach [35]. In a WFQ scheduler, link time is distributed over the flows
according to a set of weights. A WFQ scheduler can be used to implement throughput
reservations; in that case, the weights will be adjusted as flows enter and leave the network
so that reserved flows maintain their reserved rates. We have chosen WFQ as a basis in part
because its conceptual simplicity has resulted in substantial analysis and development [33,
15, 124, 89].

5.3.2 Scheduling implications of link error patterns

Wireless networks experience errors on different time granularities, and network designers
have devised a variety of error control mechanisms to battle these errors. Error bursts at the
bit level are typically addressed by a mixture of error coding and interleaving (Chapter 2),
which reduces but does not eliminate link capacity variation. At a coarser time granularity,
some packet errors can be predicted based on packet burst error patterns, and a wireless link
scheduler may attempt to reduce the overall packet error rate by swapping transmission slots
between stations believed to be experiencing a multi-packet error burst and stations believed
to be currently error-free [76, 89]. Again, this approach does not eliminate all capacity loss,
because of the imperfect predictability of error bursts and because some interference sources
may affect multiple stations or even the base station. We conclude that capacity loss is a
fundamental reality for wireless schedulers.

To discuss the impact of variable link capacity we will use an example of a wireless cell
with a capacity of 800 Kbit/s employing a WFQ scheduler to serve two guaranteed flows and
two best-effort flows. We will first assume that all errors are location independent, so that
all flows experience the same error rate. The flow properties and weights are summarized
in Table 5.1. We will use the term fidelity to denote the degree to which a scheduler is
“faithful” to a particular flow, namely the percentage of the flow’s expected throughput on
an error-free link that it actually achieves.

Let us first consider what happens if 50% of all packets are lost. Since all flows are
experiencing errors, most wireless fair queueing schedulers would assign transmission slots
to the flows according to their weights in Table 5.1. With this effort-fair approach, each flow
receives 100% of its expected effort, but this is degraded to yield only 50% of its expected
outcome (Table 5.2), so both rate-sensitive flows fail to achieve their desired rates.
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Client Target rate WFQ
Flow (kilobits/second) Weight

Audio reserved 8 1.0
Video reserved 350 44.0
FTP1 available 27.5
FTP2 available 27.5

Table 5.1: Client example

Client Expected Effort-fair Preferable
rate rate rate

(Kbit/sec) (Kbit/sec) (Kbit/sec)

Audio 8 4 ⊗ 8
√

Video 350 175 ⊗ 350
√

FTP1 221 110 ≈ 21 ≈
FTP2 221 110 ≈ 21 ≈

Table 5.2: Possible results of a 50% packet error rate. Results marked with “
√

” represent
flows meeting their needs; “⊗” represents un-met needs; “≈” represents flows without specific
requirements.

An alternative would be a priority-based scheduler which would allot enough extra effort
to the audio and video flows that they would achieve their target rates at the expense of
reducing the effort spent on the best-effort FTP flows. This would produce the result shown
in the last column of Table 5.2 which, given the target rates shown in Table 5.1, is the correct
outcome.

While the priority-based scheduler achieves high fidelity in the above scenario, it is too
simplistic to be practical. For example, with a 50% error rate, the priority-based scheduler
allocates about 89% of the useful bandwidth to reserved flows (358kbs/400kbs). Many
network managers would argue that this is unfair to the best effort-flows. Things get even
worse when the error rate increases. As soon as the error rate is more than 55%, the FTP
flows will receive no throughput even though both the audio and video flows will fail to
meet their reservations. Since no flow will be satisfied, this is an unreasonable use of the
bandwidth. A better allocation would be to have the audio stream meets its reservation
while the other three flows split the remaining bandwidth.

Each of these approaches performs well at one extreme of the error rate spectrum and
fails at the other extreme. The effort-fair scheduler ensures that a reserved flow experiencing
any errors will fail to meet its reservation, even if repairing the errors would require only
a trivial amount of unfairness to some other flow; the priority-based scheduler performs
unacceptably if any high-priority flow experiences a high error rate. An important insight of
this example is that, while we should help the video flow more than the FTP flows because
of its importance, we can help the audio flow more than any of the others: multiplying
its modest throughput needs by even a large factor to compensate for a high error rate
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won’t drive the link to starvation. This sort of decision calls for a control mechanism which
admission control can use to map flow rate and importance into a procedure for distributing
link capacity loss among flows. In summary, capacity loss should result in fidelity loss
according to administrative controls.

5.3.3 Location-dependent errors

Let us now consider the impact of location-dependent errors using an example with two
stations, one of which is error-free while the other experiences a 50% error rate. Each station
owns one “thumbnail” compressed video flow (100 Kbit/sec) and one FTP flow (best-effort).
Table 5.3 summarizes the results for four possible schedulers.

Flow Error Effort Priority Outcome Desirable
rate rate rate rate rate
(%) (Kbit/sec) (Kbit/sec) (Kbit/sec) (Kbit/sec)

Video1 0% 100
√

100
√

67 ⊗ 100
√

FTP1 0% 300 ≈ 250 ≈ 200 ≈ 167 ≈
Video2 50% 50 ⊗ 100

√
67 ⊗ 100

√
FTP2 50% 150 ≈ 125 ≈ 200 ≈ 167 ≈
Throughput 600 575 534 534
Efficiency 75% 72% 67% 67%

Table 5.3: Location-dependent errors. Results marked with “
√

” represent flows meeting
their needs; “⊗” represents un-met needs; “≈” represents flows without specific requirements.

With effort-based scheduling, the lost capacity is distributed proportional to the error
rate experienced by each flow, i.e., only the second station will suffer capacity loss, and
its video flow will not meet its throughput expectation. As we saw above, the effort-based
scheduler ensures that every reserved flow experiencing errors fails to meet its reservation.

A priority-based scheduler could ensure that both reserved flows are satisfied. We would
then need to define how it should divide the remaining link capacity among the (equal-
priority) best-effort flows; Table 5.3 assumes this division would be effort-fair. Once again,
we cannot actually deploy a priority-based scheduler, since a single high-priority flow expe-
riencing serious errors would starve every flow. Also, the throughput discrepancy between
the two FTP flows is very large, and a case could be made that it would be more fair for
them to receive the equal throughput.

To address the best-effort fairness issue, we could employ an “outcome-fair” scheduler,
which would allocate effort to flows in such a way that all flows would achieve the same
percentage of their expected throughput. In this case, an outcome-fair scheduler would
ensure that every flow achieves 67% of the throughput it would achieve on an error-free link.
In essence, the air time is divided equally among packets sent to the error-free station, lost
packets sent to the error-prone station, and packets that successfully reach the error-prone
station; each station receives equal throughput and 33% of the air time is wasted. While this
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would improve fairness among the FTP flows, neither video flow would achieve its desired
throughput. The outcome-fair scheduler, like the priority scheduler, behaves poorly when
any flow experiences a high error rate.

Finally, we will consider a more desirable outcome, in which both video flows meet
their needs and both FTP flows receive equal throughput. While this outcome could be
accomplished by a hybrid priority/outcome scheduler, this scheduler would become unusable
when confronted with any high-error-rate flow.

Notice that the presence of location-dependent errors adds an efficiency dimension to
the space of policy options. If all stations experience the same error rate, moving air time
from one flow to another does not effect the useful throughput of the cell. However, with
different error rates, moving air time from low-error flow to a high-error flow reduces the
useful throughput of the cell. This is clearly illustrated by the efficiency row in Table 5.3:
outcome-based scheduling results in markedly lower efficiency than effort-based scheduling.
All of these considerations call for a scheduler that employs outcome fairness for best-effort
flows when error rates are low, uses priority to support reserved flows as long as error rates
are moderate, and falls back to effort fairness in the face of very high error rates so that the
link will still provide some useful throughput.

This example illustrates two important concepts: Sometimes flows with different error
rates should experience the same fidelity, but meanwhile it must be possible to control cell-
wide efficiency in the presence of station-dependent errors by administratively bounding the
amount of link effort devoted to “fairness.”

5.3.4 Summary

The examples we have presented above argue that setting goals for wireless link schedulers
is challenging. Different mixes of flows, considered in terms of their relative throughput
requirements and sensitivity to throughput reductions, and different error rates, whether
shared or varying per mobile host, seem to argue for different approaches to dividing up air
time. We saw that it often makes sense to deliver a flow’s expected throughput even in the
face of mild errors but abandon it to its fate when its error rate becomes excessive. Below
we will investigate a notion of scheduler “fairness” that encompasses both behaviors.

5.4 The power factor

In this section we will present a model of how a wireless link scheduler should adjust flow
weights in response to errors in order to create a hybrid between effort fairness and outcome
fairness which is parameterized by a single administrative control, the “power factor.” We
will state a simple weight adjustment criterion, describe the throughput flows achieve as a
function of their error rates, show how this weight adjustment can apply to both constant-
rate and best-effort flows, and discuss the applicability of this approach. An example will
demonstrate that this scheduling approach achieves the sort of per-flow outcomes we sought
in the previous section.

103



5.4.1 Weighted fair queueing with adjustable weights

We will begin with a weighted fair queueing (WFQ) scheduler that distributes effort (air
time) according to weights provided by an admission control module. The scheduler will
adjust each flow’s weight in response to the error rate of that flow, up to a maximum weight
defined by that flow’s power factor, also provided by the admission control module (see
Figure 5.1).
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Figure 5.1: Scheduler models

For example, a power factor of 200% indicates that a flow’s weight should be doubled
in a high error environment, which means that it would gain weight relative to flows with a
lower power factor, but lose weight relative to flows with a higher power factor. This makes
it possible to, for example, increase the link share of voice and web traffic relative to video
traffic in a high error environment. We call this type of scheduler effort-limited fair (ELF)
because it manipulates flow weights to achieve outcome fairness subject to a limit on each
flow’s effort.

5.4.2 The power factor

In order to characterize the behavior of the ELF scheduler across the entire spectrum of
error rates, we introduce the following notation. Let us assume we have N flows sharing
a link with (error-free) bandwidth B. Each flow has a weight Wi, a power factor Pi, and
experiences an error rate Ei. We can now define the adjusted weight of flow i as

Ai = min(
Wi

1 − Ei
, Pi × Wi) (5.1)

That is, for low error rates we scale the weight Wi to make up for the link errors, but we
limit the adjustment to a factor Pi. The crossover point is at error rate Ec

i = Pi−1
Pi

. We will
refer to the error range Ei < Ec

i as the outcome region and the error range Ei > Ec
i as the

effort region. The throughput Ti for flow i is given by the product of the transmission time
it receives and its success rate,

Ti = (
Ai∑
j Aj

× B) × (1 − Ei)
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To justify this approach, we will look at the behavior of the scheduler under some specific
conditions.

First, in an error-free environment (Ei = 0, ∀i), the scheduler is equivalent to a traditional
WFQ scheduler with weights Wi.

As long as a flow is in its outcome region, Ai adjusts to exactly cancel the flow’s reduced
success rate (1 − Ei), yielding a throughput of

Ti =
Wi∑
j(Aj)

× B

That is, the effective weight of the flow is corrected back to Wi, although that is relative to
the adjusted weights of the whole link. If all flows are in their outcome regions and they all
experience the same error rate E the throughput of flow i becomes

Ti =
Wi

∑
j

Wj

1−Ej

× B =
Wi∑
j Wj

× (B × (1 − E))

Thus the scheduler is equivalent to a WFQ scheduler with the original weights Wi running
on a E-degraded link, which is exactly outcome-fair.

At the other end of the spectrum, if all flows are in their effort regions, i.e., Ei > Ec
i , ∀i,

the throughput becomes

Ti =
Pi × Wi∑
j(Pj × Wj)

× (B × (1 − Ei))

This means that the scheduler distributes transmission time to the flows in WFQ fashion
and the scheduler is “effort fair” (with adjusted weights).

Finally, one of the motivations for introducing the ELF scheduler approach was to limit
how much effort (transmission time) is given to any specific flow, so that one flow experiencing
very high error rates cannot degrade the performance of the entire link. The highest fraction
of the link time that flow i can take is given by

Pi × Wi

(Pi × Wi) +
∑

j 6=i(Wj)

when flow i is in its effort region and all other flows are error-free.

5.4.3 Fixed-rate reservations

A traditional WFQ scheduler can provide not only guaranteed link shares but also absolute
throughput guarantees. To guarantee a throughput of Ti to flow i, weights must be assigned
such that Ti = Wi∑

j
Wj

× B (and updated when flows enter or leave the system). Providing

absolute bandwidth reservations requires explicit support in ELF. The reason is that, while
ELF weight adjustment maintains each flow’s link share, errors decrease the size of the link.
To obtain absolute throughput reservations ELF will adjust the weights of guaranteed flows
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upward according to Equation 5.1 while simultaneously reducing the weights of best-effort
flows in a straightforward way.

To support throughput guarantees, we will define G to be the set of guaranteed flows
and Bi to be the bandwidth allocated to each flow i in G. Next, we will use fractions of the
error-free link as weights, i.e., Wi = Bi

B
, ∀i ∈ G. Admission control will be responsible for

ensuring that the link is not overcommitted in both the error-free case (
∑

i∈G Wi ≤ 1) and
when all guaranteed flows are error-limited (BGmax =

∑
i∈G Wi × Pi ≤ 1). Next, we aggregate

all best-effort flows into one virtual flow with a special weight-adjustment function

ABE = 1 − ∑

i∈G

Ai (5.2)

which ensures that the best-effort aggregate flow will consume only whatever link time is left
over after every guaranteed flow has either achieved its outcome or has reached its crossover
error rate Ec

i .

For any guaranteed flow with Ei < Ec
i , Ai = Bi/B

1−Ei
, so its expected throughput

Ti =
Ai∑
Aj

× B × (1 − Ei)

becomes the correct value,

Ti =

Bi/B
1−Ei

1
× B × (1 − Ei) = Bi

The best-effort flows will avoid starvation if BGmax < B, in which case an error-dependent
amount of transmission time will be allocated to the best-effort aggregate flow, which will
distribute it among the best-effort flows using exactly the approach of Section 5.4.2.

5.4.4 Example

This scheduler can support a variety of policies. For example, the hybrid outcome/effort
scheduler described in Section 5.3.3, which produced the “Desirable rate” column of Ta-
ble 5.3, can be implemented by setting the power factors of each flow to at least 200%. The
weight adjustments and resulting throughputs are shown in Table 5.4. The top section of the
table demonstrates how the scheduler adjusts the weight of the “Video2” flow in response to
errors. The center section shows how the errors experienced by “Video2” cause the weight of
the best-effort virtual flow to be adjusted downward in accordance with Equation 5.2. The
efficiency, and hence throughput, of the best-effort virtual flow depends on the mixture of
best-effort weights, power factors, and error rates. Finally, note that the base and adjusted
weights of the two best-effort FTP flows as displayed in the third section specify how they
share the throughput of their virtual sub-link, not the entire link.

In general, setting a flow’s power factor to 100% will cause it to be scheduled in an effort-
fair fashion, and raising its power factor will cause it to experience outcome fairness over a
wider range of error rates. In particular, it is feasible, albeit probably undesirable, to obtain
pure outcome fairness for all best-effort flows by setting their power factors to infinity.
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Flow Base Error Adjusted Desirable
Weight rate Airtime throughput

(%) Weight (kbit/sec)

Video1 1/8 0% 1/8 100
Video2 1/8 50% 2/8 100

(Best-Effort) (6/8) (irrelevant) (5/8) (dependent)

FTP1 1/2 0% 1/3 167
FTP2 1/2 50% 2/3 167

Table 5.4: Achieving the “Desirable” outcomes in Table 5.3.

5.4.5 Choosing power factors

So far we have assumed that an admission control module can set appropriate per-flow power
factors though we have not specified how they might be chosen. A few brief examples should
suggest the range of plausible options.

Since the vast majority of existing Internet traffic is best-effort and has no end-to-end flow
state, it is important to handle this case well. Luckily, reasonable results can be obtained by
a local administrative decision to award each best-effort flow a “reasonable” power factor,
such as 110% or 120%. The result is that many fluctuations in the local error rate will result
in only a mild degradation in throughput, which will be shared among all the best-effort
flows. This is more “friendly” to end-to-end protocols, which try to estimate and adapt to
throughput variations, than allowing each link-level error burst to stall one or more flows.

An extension to this approach would allow end-to-end protocols to signal, via Differenti-
ated Services marking [91], how to divide their air time between reliability and throughput.
That is, a flow selecting reliability might be assigned a weight of 1 and a power factor of
200% while a flow selecting throughput would be assigned a weight of 2 and a power factor
of 100%. The first flow would trade away best-case throughput in return for throughput
stability in the face of errors. From the point of view of the link, both flows would consume
the same amount of air time in the worst case. If this approach were coupled with the per-
flow persistence setting previously discussed in Section 4.5.4, the result would be potentially
useful for a wide variety of protocols: a single mechanism would allow them to affect the
behavior of both wired and wireless link scheduling.

For flows that signal a need for a particular throughput (via, e.g., RSVP), one possibil-
ity would be to adapt an existing wireline admission control module in a straightforward
fashion. If the link error rate is expected to rarely exceed a certain critical value Ec, assign
every admitted reserved flow a power factor of 1

1−Ec and stop admitting new reserved flows
when they occupy 1−Ec of the error-free link rate, which is when their worst-case air-time
requirements would consume the entire link.

Another possibility would be to assign power factors according to flow classes. For
example, flows requesting 8 Kbit/s or 64 Kbit/s could be categorized as voice flows and
assigned a power factor of 300%; a second throughput range, appropriate for compressed
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video, could be assigned a power factor of 150%. Such an admission control module would
need to avoid overcommitting the link, and would need some policy to determine how much
of the link could be assigned to each class.

Our goal is not to advance the power factor as a new end-to-end signalled flow parameter.
Rather, we expect that ELF will be a tool used to implement locally-desirable policies.

5.4.6 Discussion

The proposed “power factor” scheduler model meets the requirements outlined in the intro-
duction. By setting the power factor appropriately, administrators can control the degree
to which the fidelity of a flow will be maintained in the presence of errors. Selection of the
power factor should consider the relative importance and demands of flows (e.g., audio is
typically more valuable than video while requiring less bandwidth), and should also consider
fairness issues across classes (e.g., reserved traffic should not be able to starve best-effort
traffic). The power factor can also be used to control efficiency. For example, by keeping
all power factors below 200%, we can maintain whole-link efficiency over 50% (unless that
is impossible, i.e., every flow experiences an error rate above 50%).

In this section we demonstrated how adding a per-flow power factor setting transforms a
wireline WFQ scheduler into a hybrid effort/outcome WFQ scheduler. We believe that the
power factor is also a useful abstraction for other schedulers. One example is a priority sched-
uler. We could associate power factors with the different priority levels to avoid high priority
traffic completely starving low priority traffic or flows suffering from location-dependent er-
rors consuming a disproportionate fraction of the link capacity in a futile attempt to obtain
their expectations. Schedulers which offer more complex service characterizations will re-
quire additional work. A deadline-based scheduler or any scheduler attempting to meet delay
or jitter guarantees will clearly need to track outcomes for individual packets rather than
entire flows.

5.5 Scheduler Algorithm

Transforming ELF from a fairness specification appropriate for wireless links to an actual
error-sensitive wireless link scheduler requires several steps. Features of our prototype net-
work will suggest a particular base scheduler to which we will add ELF features. To cast
ELF into an algorithm we must address the difficulty of measuring error rates. After we
sketch the operation of our ELF scheduler with reference to pseudo-code we will discuss
some still-open design issues.

5.5.1 Scheduler model

In this section we will present an algorithm for a particular ELF scheduler based on weighted
round-robin (WRR). This scheduler will support reserved flows with absolute-rate reserva-
tions and best-effort flows which distribute the remaining capacity via weights. Flows in
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both classes will be bounded by effort limits. We use packet weighted round-robin (WRR)
instead of weighted fair queueing, measuring throughput in packet slots. One reason for
using WRR instead of WFQ is simplicity. Also, wireless networks are often slot-based for
synchronization and power-management purposes. Finally, the prototype network we use for
experiments in (Section 5.7) has a relatively high per-packet cost, so charging on a per-packet
instead of a per-byte basis is actually quite reasonable.

5.5.2 The difficulty of measuring error rates

The automatic weight adjustment approach of Section 5.4 assumes that a scheduler can easily
measure per-flow error rates. However, measuring error rates is far from straightforward.

One problem is that it is inherently difficult to obtain timely information about a flow’s
current error rate. This is particularly true for low-throughput flows. Since they transmit
infrequently, the standard procedure of using multiple observations to filter out measurement
noise would base the error rate estimate on a long period of time. If this timespan is longer
than the typical amount of time an error rate remains stable, the scheduler’s error estimate
will be essentially random.

A second problem, measurement timing, affects both low-throughput and high-throughput
flows. Transmission timing can greatly affect observed per-flow error rates. Table 5.5 demon-
strates how both per-flow and whole-link error rates depend as much on timing as on actual
link conditions. In the table, O represents an error-free time slot for a particular flow and X

represents a time slot which will cause a packet loss; O and X represent time slots when
the scheduler actually chooses to transmit for that flow. If we consider air time, Flow 1’s
“true” error rate is 0% and Flow 2’s is 50%, but different packet transmission timings vary
Flow 2’s observed error rate from 0% to 100% and the link’s error rate from 0% to 50%.

This example argues that, even if a scheduler can accurately predict a flow’s true error
rate, this is of limited use without very accurate prediction of error timing. For example, a
scheduler seeking to meet a short-term whole-link efficiency target might be forced to avoid a
specific flow because unfortunate timing effects were currently “artificially” raising its error
rate above the “true” value.

A pathological sub-case of the timing problem is posed by error bursts. If a flow’s errors
are typically bursty rather than uniformly distributed, a rapid retransmission is likely to
fall within an error burst. Thus, increasing a flow’s weight and giving it extra air time can
actually increase its error rate.

Finally, the whole-link error rate is a function of not only timing but also location-
dependent errors and power factors. Transmitting on behalf of different flows yields different
link-capacity measurements. Consider two flows with weight 50% and power factor 100%.
If one flow encounters a 50% error rate, the link capacity will be 75%. If that flow’s power
factor were 200% rather than 100%, it would use two thirds of the air time, wasting half of
that, and the link capacity would drop to 67%.

To the extent that per-flow and whole-link error rates are either not measurable or even
not clearly defined, the situation calls for a scheduling algorithm that approximates ELF
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airtime allocation without relying on explicit computations of per-flow error rates or whole-
link capacity. Such an approximation will be presented in the next section.

Flow 1 O O O O O O O O O O O O

Flow 2 O X O X O X O X O X O X

E1 = 0% E1 = 0% E1 = 0%
E2 = 0% E2 = 50% E2 = 100%

Etot = 0% Etot = 25% Etot = 50%

Table 5.5: Error rate as a function of transmission timing.

5.5.3 Algorithm Overview–tracking deserved throughput, effort,

and outcome

We will explain our scheduling algorithm using the pseudo-code in Figures 5.2 and 5.3.
The code embodies several simplifying assumptions. All flows have data queued at all times.
Transmission time is slotted into fixed-size packets, though an adaptive link layer may choose
to send shorter packets to avoid interference-related truncation. Each packet transmission
fully succeeds or fails (there are no sub-packet acknowledgements).

Admission control converts each flow’s weight into its expected inter-transmission interval
(a flow expecting 50% of the link would transmit every two time slots; this is referred to as
“WRR with WFQ-like spreading” in [88]). The transmission intervals of best-effort flows
apply not to actual link time but to a dilated virtual time (see below). Implementing the
power factor policy requires us to consider, for each flow, the amount of throughput it should
have experienced in the absence of link errors, the amount of throughput it has actually
achieved, and how much air time we have spent trying to reduce the gap between these values.
The scheduler keeps tracks this information via two per-flow variables, deserve, which stores
the number of packets by which this flow’s achievement lags the ideal situation, and effort,
which contains the amount of air time allocated to this flow but not yet expended. The
per-flow scheduler state is summarized in Table 5.6.

Flow parameter Meaning

Inter Flow’s transmission rate (expressed as interval,
in slots; equivalent to 1/rate)

Power Power factor (fixed point: 100% represented as 100)

Last Timestamp: start of flow’s most recent interval
Deserve Number of packets of throughput deserved (fixed point)
Effort Number of airtime slots banked (fixed point)

Table 5.6: Per-flow scheduler state. The first two fields are set by the admission control
mechanism and the other three constitute the scheduler’s internal state.
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Within each flow group (guaranteed or best-effort), the scheduler follows the same two
steps. First, each time the flow group’s clock advances, tick scans for flows whose inter-
transmission time period has passed, allocating each one a single packet’s worth of deserved
throughput and the amount of effort specified by its power factor. The flow will remain
eligible to transmit until it either achieves that throughput or exhausts that effort.

Second, choose is used to determine which flow, if any, should use the next transmission
slot. In this presentation choose will consider every eligible flow though other mechanisms,
such as burst error prediction (see below), could filter some flows out. When multiple flows
are eligible for transmission, choose selects the most urgent. We will choose the flow whose
outcome is currently lagging its deserved throughput by the greatest percentage, breaking
ties by serving low-throughput flows first. We prefer to serve low-throughput flows on the
grounds that jitter reduction might be more important to them. If choose detects no eligible
flow it indicates this to the caller.

The main scheduling function schedule, is called by the link layer when it is ready
to send a packet (Figure 5.3). It will first try to select an eligible guaranteed flow before
moving on to best-effort flows. That is, guaranteed flows are served until each is either
satisfied with its outcome or limited by expended effort, and the best-effort flows share the
leftover bandwidth. The main scheduler decision procedure operates as follows. First it uses
tick to inform guaranteed flows of the passage of time, and then it asks choose whether
any guaranteed flow should currently transmit. If not, it moves on to the best-effort class,
calling tick with the best-effort virtual time and then invoking choose.

While reserved time increases for each link time slot, best-effort time increases only when
no best-effort flow is eligible. To see why this is correct, recall that the basic ELF scheduler
provides flows in their outcome regions with the link share they expect, but that these shares
are fractions of the error-degraded link throughput. Thus, any errors that are encountered
must slow down the virtual time experienced by best-effort flows. For example, if every best-
effort flow is experiencing an error rate of 50%, every two packets of deserved throughput
will require three airtime slots. Since on average each best-effort flow’s eligibility will last
1.5 slot times, ticking the best-effort virtual clock only at the end of eligibility provides
the correct timing. In the other direction, sometimes no flow, guaranteed or best-effort, is
eligible. In that case the best-effort clock is advanced until a flow is eligible (or, if there are
no best-effort flows, a reserved flow will be served early).

At this time the link layer transmits a packet for the designated flow, employing what-
ever combination of packet length and error coding recently history suggests is prudent for
successful communication with that flow’s peer machine. Before the next scheduling decision
is made, the link layer will inform us of the transmission outcome using the function update,
which will bill the designated flow for the effort expended and update its achievement value
appropriately. For example, if the error control implementation believes the flow is likely
to experience packet truncation, it might choose to send a short packet (effort = 50%);
the flow’s “deserve” will be decremented by 50% if the transmission succeeds and will be
unchanged otherwise. This assumes the existence of a fast link-level acknowledgement, a
feature common to many wireless LAN MAC protocols [70, 63, 20]. The necessity for this
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/* per flow state kept by scheduler: */

/* inter - inter-transmission interval, 1/rate */

/* last - timestamp of last eligibility to send */

/* power - power factor (as percentage) */

/* deserve - amount of *outcome* flow deserves */

/* effort - amount of *effort* flow is entitled to */

/* "tick": update the deserve and effort of each flow */

tick(flow-list, now)

{

foreach flow (flow-list)

if (flow.last + flow.inter <= now)

shouldserve(flow, now);

}

shouldserve(flow, now)

{

++flow.deserve;

flow.effort += flow.power / 100;

cap_effort(flow);

flow.last = now;

}

/* "choose" next flow from a class of flows */

choose(flows, &resultflow)

{

int bestwlag = 0; /* best weighted lag */

int bestinter = 0;

int bestdeserve = 0;

flow bestflow = NULL;

foreach flow (flows) {

/* weighted lag: deserve / rate */

int wlag = flow.deserve * flow.inter;

/* must have effort */

if (flow.effort < 1)

continue;

/* most deserving flow has highest % lag */

/* tie breakers: low-rate flows first; */

/* then flows with more absolute lag */

if ((wlag < bestwlag) ||

((wlag == bestwlag) && (flow.inter > bestinter)) ||

((wlag == bestwlag) && (flow.inter == bestinter)

&& (flow.deserve < bestdeserve)) {

continue; /* not the most deserving */

}

/* becomes the most deserving */

bestwlag = wlag;

bestinter = flow.inter;

bestdeserve = flow.deserve;

bestflow = flow;

}

*resultflow = bestflow;

}

Figure 5.2: Pseudo-code for core of the scheduler

explicit two-stage transmission and billing feedback is unique to error-prone links, and the
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/* "schedule" picks next flow to be served */

schedule(&selectedflow)

{

static int now, dilatednow;

flow flow;

++now;

tick(protected-flows, now);

choose(protected-flows, &flow);

if (!flow && length (unprotected-flows) > 0) {

choose(unprotected-flows, &flow);

while (!flow) {

++dilatednow;

tick(unprotected-flows, dilatednow);

choose(unprotected-flows, &flow);

}

}

if (!flow} {

/* advance schedule */

nextflow(protected-flows, &flow);

shouldserve(flow, now);

}

*selectedflow = flow;

}

update(flow,outcome) /* call-back from link layer */

{

--flow.effort;

if (outcome == SUCCESS) {

--flow.deserve;

cap_effort(flow);

}

}

cap_effort(flow) /* limit accumulated effort */

{

/* retain no more than 4 packets’ effort */

int slack = 4;

int cap = ((flow.deserve/100)+slack)*flow.power;

flow.effort = max(flow.effort, cap);

}

/* "nextflow" picks the flow that will fire next */

nextflow(flows, &flow)

{

flow nextflow;

int nextfire = INFINITY;

foreach flow (flows)

int fire = flow.last + flow.inter;

if (fire < nextfire)

nextflow = flow;

nextfire = fire;

*flow = nextflow;

}

Figure 5.3: Pseudo-code for core of the scheduler - part 2

interface between the scheduler and the error control layer allows separate decision-making
about these orthogonal issues.
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Finally, whenever we update the status of a flow (functions tick and update) we check
whether the stored effort exceeds a threshold using the function cap effort. This is so that
a flow cannot accumulate a large effort bank while its error rate is low and seize the link
for an excessive period, starving other flows, when it encounters errors. Since the scheduler
always tracks deserved-but-not-attained throughput, capping the effort bank costs a flow
only latency, not throughput. We believe cap effort contains a plausible heuristic; one
more rigorous approach would be service curves [124].

Table 5.7 briefly illustrates the operation of this scheduler on behalf of two best-effort
flows. For the sake of brevity, Flow 2’s 50% error rate is in the form of a strict alternation
between success and failure, independent of transmission timing (i.e., we counterfactually
assume the opposite of reality as described in Section 5.5.2).

Air time 0 1 2 3 4 5 6 final
Virtual time 0 1,2 3,4

Flow 1
deserve 0 100 100 100 100 100 100 0

effort 0 200 200 200 300 300 300 200
outcome 0 0 0 0 100 100 100 200

Flow 2
deserve 0 100 100 0 100 100 0 0

effort 0 200 100 0 200 100 0 0
outcome 0 0 0 100 100 100 200 200

Transmission choice F2 (fail) F2 (ok) F1 (ok) F2 (fail) F2 (ok) F1 (ok)

Table 5.7: Blow-by-blow trace of ELF scheduling. Reading a column downward from the
top yields the scheduler state producing the decision indicated at the bottom

5.5.4 Possible extensions

A question ignored so far is to what extent best-effort flows should experience “fairness”
over a long term. That is, if a flow experiences errors for a period and loses throughput as a
result, is it entitled to regain that lost throughput later? This corresponds to the question
of whether there is a cap on each flow’s deserve value. If this value is allowed to grow
without bound, as in the current implementation, a flow will eventually reclaim the lost
throughput, at the expense of other flows in its class, when it experiences a low-error period.
Alternatively, this value could be capped or aged.

A related issue is what should happen to a flow that becomes idle. The policy of the
in-kernel implementation is that the flow’s deserve and effort would cease to increase (the
simulator, lacking idle flows, ignores this issue). Instead, we could allow an idle flow to
accumulate both deserve and effort up to some threshold; this would then allow the flow
to burst for a short while when it becomes active. Note that deciding whether a flow is
idle may be difficult for a centralized scheduler when error rates are high since queue length
information must be transmitted to the scheduler by mobile hosts.
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This scheduler implementation is orthogonal to swapping in the sense that, if there is some
good predictor of when a station is unreachable, choose can easily skip known-unreachable
stations.

The ELF approach could be used as the policy for an 802.11 Point Control Function
(PCF) [82]. If we assume that one station is in a position to discover the outcomes of most
packet transmissions, the LAN could operate according to the more-efficient Distributed
Control Function most of the time, and the controlling station could then use the PCF
period to allocate extra effort to stations according to their power factors.

5.6 Simulation

To evaluate our scheduling algorithm in a repeatable fashion we subjected it to a simple
trace-based simulation. The simulator assumes all flows are continuously busy, and records
throughput allocation decisions made by the scheduler (ignoring how real transport protocols
might react to allocation variations). Once a time slot is allocated to a given flow, the flex
adaptive error control policy (Section 3.3.2) decides which error control techniques to use
and the simulator applies the next event in the trace stream to determine success or failure.

We will plot the error-free link-level throughput each flow achieves, as a percentage of
what it would expect in the absence of errors, on its own independent vertical axis. Each plot
will include a “Link” pseudo-flow which represents the total link throughput as a fraction of
the error-free link throughput. Each flow will be represented by a moving-window average
throughput, sampled at the same rate as its expected inter-transmission interval (that is, a
flow expecting 50% of the link is sampled five times as frequently as a flow expecting 10%).
Each point on the graph is the mean of the 10 most recent samples.

We will present the results of three simulator runs. In the first, we evaluate the sched-
uler’s performance in the motivating scenario of Table 5.2. Two protected flows, audio and
video, expect 1% and 44% of the link, while two unprotected flows will share the remainder.
Throughout the trace, the link will experience a uniformly distributed 50% packet loss rate
which is independent of which flow’s packet is being transmitted. We would like the reserved
audio and video flows to experience little or no disruption while the two best-effort flows
should equally divide the remainder of the link.

Figure 5.4 shows the results of an effort-fair scheduler: each flow experiences a bursty
50% throughput reduction. While this is an acceptable outcome for the best-effort FTP
flows, it is disastrous for the video and audio flows. This is especially unfortunate given the
trivial amount of extra air time which would be required to give the audio flow full fidelity.

The effects of ELF scheduling can be observed by comparison with Figure 5.5. The
audio flow has a power factor of 300% in an attempt to ensure it will survive most plausible
link errors. The video flow has a power factor of 223%, a value chosen so that it and the
audio flow will consume the entire link in periods when the error rate is 55% or more. The
two best-effort flows each have a power factor of 120%, which will enable outcome-based
fairness between them in the face of light errors. The fidelity achieved by the FTP flows
drops dramatically from 50% to approximately 8%. However, the audio and video flows
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Figure 5.4: Effort-fair scheduling in a 50% loss scenario suggested by Table 5.2.
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Figure 5.5: ELF scheduling in a 50% loss scenario suggested by Table 5.2.

both achieve 100% fidelity. In the case of the video flow, which is more demanding, this
throughput is bursty, with intervals of reduced fidelity balanced by catch-up intervals. It
is feasible for the ELF scheduler to provide the low-throughput audio flow with essentially
perfect service.

Figures 5.6 and 5.7 demonstrate how the same flows would fare in a more interesting
error environment. In the “walls” error trace (Section 3.1.3), both packet losses and bit
corruptions vary in severity due to a person moving through the main signal path.

At first glance the two plots appear similar: error bursts, visible as sharp throughput
drops on the “Link” plot, immediately and briefly affect every flow. The differences, while
subtle, are significant. The video and audio flows receive an upward compensatory through-
put spike after each dropout. The cost is that each dropout is slightly worse for the two FTP
flows. In effect the ELF scheduler has shifted much of the end-to-end throughput adaptation
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Figure 5.6: Effort-fair response to a dynamic real-world error trace.
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Figure 5.7: ELF response to a dynamic real-world error trace.

burden from the rate-protected flows to the best-effort flows.

ELF can be used to mitigate the effects of location-dependent errors, as demonstrated
in Figures 5.8 and 5.9. The video flow and the “FTP1” best-effort flow belong to a station
experiencing significant errors, while the other two flows belong to a station encountering
none. The error-prone station observes a smoothly increasing frequency of packet loss,
ranging from 10% to 90%, surrounded by loss-free periods. Without ELF scheduling, the
errors directly affect FTP1 and the video flow.

If we assign the video and audio flows power factors of 140% and 300%, and employ ELF
scheduling, we improve fairness between the two FTP flows and provide better service to
the video flow as follows.

From packet 1000 to packet 2000, the scheduler shifts all of the video flow’s error burden
and some of FTP1’s burden to FTP2 so the best-effort flows experience equal throughput.
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Figure 5.8: Location-dependent error trace, effort-fair scheduling.
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Figure 5.9: Location-dependent error trace, ELF scheduling.

Then, however, flow “FTP1” exhausts its outcome region and begins to lose throughput
relative to “FTP2.” Next, errors begin to overwhelm the video flow’s ability to demand
extra link time. From this point on, any increase in the error rate is shared by “Video” and
“FTP1”. When the link no longer experiences errors, we observe two interesting phenomena.
First, the video flow receives throughput beyond its reservation so it can clear its lag, but
its power factor still limits its link time so that the FTP flows are not starved. Likewise, the
ill-fated “FTP1” flow receives more throughput than “FTP2” so it can achieve long-term
fairness with “FTP2.” Again, this short-term unfairness is limited by its power factor.

These scenarios illustrate the main goals of our scheduler. We have observed prioritization
of reserved flows over best-effort flows coupled with effort-limited outcome-based fairness.
The result is that reserved flows meet their throughput needs as long as their error rates
are lower than the error allowance specified by the power factor. The scheduler performs
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intuitively across a wide range of desired flow throughputs (1% to 44% of the link) and error
rates (10% to 90%).

5.7 Implementation Prototype

In addition to our simulator-based evaluation, we wished to verify that our scheduler would
function acceptably in a more “real-world” environment. We inserted the ELF scheduler into
our existing prototype wireless LAN, built from Intel 80486 and Pentium laptops running
NetBSD 1.2 and using 915 MHz PCMCIA card WaveLAN [127] units. The kernel device
driver includes a simplified poll/response Medium Access Control (MAC) protocol, similar
in spirit to the IEEE 802.11 Point Control Function [70]. In our experiments, one laptop
operates as a master/base station, while the others use the slave protocol. We will report
user-level throughput numbers obtained by the standard kernel TCP stack. In order for TCP
to make meaningful progress in the face of these high error rates, we employ the transparent
link-level error control mechanism described in Chapter 4. As we discussed in Section 5.5.3,
error control is largely orthogonal to scheduling, so we could have obtained similar exper-
imental results by disabling error control and reporting UDP throughput observed by the
receiver instead of TCP throughput observed by the sender.

The scheduler consists of 400 lines of code, of which approximately 150 lines are the heart
of the algorithm and the remainder is glue code, memory management, tracing support, and
trace-replay error injection code.

During the course of moving from simulation to in-kernel implementation, we confronted
several issues, centering on accounting for air time.

The first issue is that any shared medium link scheduler must determine which stations
have data queued for transmission. Since our prototype ELF scheduler was designed as
a centralized algorithm run by a single polling master station, we employed the simplest
approach, namely polling. In many situations a distributed queue occupancy algorithm,
typically using random backoff within per-priority time windows, would be preferable.

Timeouts were the second issue. If our master station polls a slave and either the poll or
the response is lost, this is detected by a fairly long timeout. The flow in question is then
billed a full timeslot worth of effort and makes no throughput progress. If we had the luxury
of implementing the MAC algorithm in hardware, real-time responses would allow the cell
master to detect the absence of a timely slave response partway through a time slot and try
a smaller transaction, with the same slave or another, during the remainder of the time.

The third issue was piggybacking. In principle, each TCP session would require two flows,
one in each direction. Though TCP provides a bidirectional byte stream, in practice much of
the time there is a “forward” flow carrying data and a “reverse” flow carrying acknowledge-
ments. In the case of a remote login session running on TCP, often packets flowing in one
direction contain big blocks of program output, while the other direction consists of a mixture
of acknowledgements and small keypress packets. Since our software MAC implementation
had a very high per-packet cost, we wished to avoid reserving throughput for the “reverse”
flows and charging them a full time slot worth of effort for every small packet. Our solution

119



was to implement bidirectional MAC-level flows and to allow a small fixed amount of reverse
traffic (up to 100 bytes) to travel for free. The result is that a file transfer is billed for large
data packets but not for the small TCP acknowledgements piggybacked on MAC-level Poll
or Data frames. A full-blown implementation would need to address the air time needs of
the reverse flow (especially for forward flows using throughput reservations).

We will present tcptrace output for four TCP streams generated by a master and two
slave stations. Each slave receives one reserved flow (link fraction: 5%, power factor: 300%)
and one best-effort flow (power factor: 150%). One slave station experiences no errors and
the other begins by experiencing no errors but then experiences 10 seconds each of 20% and
50% packet loss rates before returning to an error-free condition.

We would expect that the reserved flows always achieve their expected throughputs and
that the best-effort flows would experience equal throughput whenever their error rates
were below 30%. The traces in Figure 5.10 meet our expectations (the initial upward spike
in throughput displayed for each flow is an artifact of the throughput averaging done by
tcptrace). The slight sag in throughput observed by the reserved flows is an artifact of
the software implementation of our MAC protocol (we are forced to use conservative time-
outs to avoid packet collisions, so a lost packet takes slightly more air time than a packet
that arrives). The prototype implementation confirms the more detailed simulator results
presented earlier.
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Figure 5.10: Traces of reserved and best-effort TCP streams
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5.8 Related Work

5.8.1 Channel State Dependent Packet Scheduling

Channel State Dependent Packet (CSDP) scheduling [19] is based on the observation that
link-level retransmission interacts poorly with FIFO scheduling in the presence of error bursts
at a single mobile receiver. It is possible for all downlink packets to be trapped behind a single
packet destined for a temporarily unavailable receiver, resulting in unfairness and inefficiency.
CSDP scheduling replaces a single FIFO link queue with per-station queues and uses link
status information to block transmission to unavailable stations, achieving throughput and
fairness improvements. These results are based on simulations of TCP in a Markov-model
error environment, simple scheduling policies (FIFO, round robin, and longest-queue-first),
and simple channel state estimators (perfect advance knowledge and no knowledge).

5.8.2 WPS

Fair queueing in an error-prone wireless environment is examined in [76]. The WPS wireless
packet scheduler extends weighted round robin in an attempt to provide fairness, swap time
allocations between stations experiencing error bursts and currently error-free stations, avoid
scheduling bursts (so a packet burst won’t collide with an error burst), avoid polling stations
experiencing an error burst, and ensure that stations not experiencing errors receive their
expected throughputs. WPS takes into account imperfect information about link state and
client queue occupancy. A recent extension of this work [77] adds a variety of attractive
properties, such as separate management of delay and bandwidth and graceful trading off of
bandwidth between leading and lagging flows. Evaluation is via a simulator using a Markov-
model error environment. The main difference between this work and ELF is our belief that
it is frequently appropriate for error-free flows to yield throughput to flows experiencing
errors.

5.8.3 CIF-Q

A set of formal fairness properties for evaluating wireless versions of wired packet fair queue-
ing algorithms is proposed in [89]. Among these properties are that error-free stations should
not lose service to error-prone stations and that stations which receive extra throughput due
to another station’s unavailability are not forced to pay back this excess via a long service
outage. These properties are embodied in a proposed algorithm, Channel-condition Inde-
pendent packet Fair Queueing (CIF-Q), that achieves these fairness properties in the face of
errors. Both analytical and simulation results are presented, the latter based on an on-off
error model. ELF differs by being able to recover from the errors of some flows at the expense
of other flows.
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5.8.4 Server-Based Fairness Approach

The Server-Based Fairness Approach [111] creates one or more virtual “server” flows that
are used to compensate flows for errors they have experienced in the past. The amount
and timing of compensation depend on the amount of capacity reserved for each flow’s
compensation server, the relative weight of that flow compared to others sharing the same
compensation server, and the error rates experienced by all flows compensated by that
server. This approach is powerful due to its generality. For example, it is possible for
SBFA embedded in HFS-C to approximate ELF by constructing a tree with two top-level
nodes (reserved and best-effort, with the best-effort node allocated a tiny fraction of the
link), pairing every ELF flow with its own compensation server flow, and assigning weights
appropriately. One difference between the resultant scheduler and ELF is that ELF will
try to meet the latency expectations of low-rate flows experiencing errors at the expense of
slightly increasing the latencies of high-rate flows, even those not experiencing errors. Also,
this SBFA construction might suffer from efficiency issues because the compensation server
flows (50% of all flows) would frequently transition between being idle and active. The ELF
scheduler is designed to react efficiently to link errors, treating them as the common case.
We believe that the very generality of SBFA calls for a simple and intuitive fairness model
such as our power-factor approach.

5.8.5 Utility-Fair Scheduling

Utility-fair bandwidth allocation [21] presents a framework for allowing flows to specify
how much damage they incur as a result of varying amounts of throughput reduction. The
scheduler then allocates throughput to each flow so that all flows perceive the same subjective
quality. While this approach expresses more information about a flow’s needs than ELF does,
it is unclear how to apply it to location-dependent errors: it would appear that if a single
flow experiences a 100% error rate then all flows will experience a quality level of zero.

5.8.6 Unified Evaluation Framework

Various wireless link schedulers are compared according to a unified framework in [88]. The
paper begins by defining a “wireless fair service model” based on a list of seven properties
such as short-term fairness among flows not experiencing errors. A modular architectural
framework for wireless link schedulers is proposed: seven existing wireless fair schedulers
are decomposed into common parts such as error-free service model, lead and lag model,
compensation model, etc. Simulations and analysis show that two proposed schedulers,
CIF-Q and WFS, meet the proposed principles.

Neither the proposed “wireless fair service model” nor the decomposition model encom-
pass ELF. The core design principle of ELF is that flow fidelity should be a function of flow
importance as defined by users rather than merely a function of error environment. This
principle is at odds with those behind WPS/WFS, CIF-Q, etc.
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The disagreement carries over into the architectural decomposition realm as well. The
easiest way to see this is to consider a scheduler’s response to a time slot during which every
flow is “blocked” due to a predicted link outage. According to the paper’s “Lead and Lag
Model”, this situation will cause either every flow or no flows to be compensated for missing
that time slot. That is, whether a flow deserves recompense is a function of the scheduler’s
static design model for all flows rather than being a property settable for each flow. The
ELF approach is motivated by the core belief that some flows do deserve more scheduler
support than others.

Many of the schedulers evaluated in the paper perform timeslot swapping among flows
based on channel-state prediction. The paper examines the sensitivity of whole-link through-
put to prediction quality. Not surprisingly, for the algorithms evaluated, poor prediction of
a flow’s channel state markedly reduces throughput for that flow. But this begs the question
of what to do about the plausible case of an important flow with a high error rate and poor
channel-state prediction. With an ELF scheduler that flow can be assigned a power factor
high enough to overcome the errors even if prediction works poorly.

5.8.7 Combining Utility-fairness and error-sensitive scheduling

The WPS wireless link scheduler (discussed above) is augmented with utility fairness, ARQ,
and adaptive FEC in [51]. The scheduler monitors each flow’s transmission success rate to
determine the amount of error coding overhead necessary to avoid decoder failures. Utility
functions and coding overhead ratios are the inputs to a procedure that allocates WPS
airtime to maximize the weighted sum of all flow throughput utilities.

While the system adjusts transmission time to compensate for error coding overhead,
it is not apparent that there is a parallel adjustment for packet loss (potentially caused by
header synchronization failure or receiver clock drift).

The system as evaluated in the paper is outcome-fair since utility functions are based on
application-level throughput and not link-level transmission air time. Like other outcome-
fair systems, it suffers from the risk that a single flow experiencing a high error rate can
starve other flows.

The authors discuss the potential desirability of utility functions that account for effort
in addition to outcome but do not suggest specific effort-based utility functions or evaluate
their behavior.

Among the conclusions of the paper is that static FEC does not perform well in some
simulated error environments; this corroborates our trace-based results.

In summary, it is encouraging to see other authors considering variable-rate error coding
and per-flow importance specifications. However, we believe that efficiency concerns will
require further investigation into utility functions so that outcome and effort can be balanced.
In addition, practical difficulties related to measuring per-flow transmission success rates
(Section 5.5.2) may be encountered.
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5.8.8 802.11e Draft Standard

In Section 1.5.1 we briefly discussed the ongoing work of the IEEE to add quality-of-service
scheduling to the 802.11 wireless LAN standard. A simple priority-based scheduler, as pro-
posed, will significantly improve service quality for emerging 802.11b telephone handsets in
the face of bulk file transfers. However, this approach is probably not sufficient to fully ad-
dress questions about allocating air time among members of a QoS class (roughly, telephones
and mobile computers) in the face of location-dependent errors or avoiding starving one class
if another class encounters a high error rate. Luckily the 802.11e draft standard appears to
allow for substantial vendor innovation in link scheduling.

5.8.9 Summary

We believe that an explicit model of the desired outcome of a scheduling algorithm in the
face of errors, as provided by WPS, CIF-Q, and SBFA, is valuable. However, we believe it
is important in certain situations to give guaranteed flows “special treatment” when they
encounter errors, that it is often attractive to slightly reduce overall link efficiency to obtain
some amount of outcome fairness among best-effort flows, and that it must meanwhile be
possible to protect the link against flows with very high error rates. ELF provides a way of
coping with the fundamental challenges posed by wireless link capacity loss.

5.9 Conclusion

In this chapter we addressed the scheduling implications of severe, time-varying, and location-
dependent wireless link errors in a groundbreaking way.

We began by developing a new application-centered understanding of the problem, focus-
ing on the need to distribute link errors according to per-flow throughput-sensitivity needs
in addition to more-standard criteria such as flow transmission rate, flow error rate, and link
efficiency. For example, we might wish to imperceptibly reduce the throughput obtained by
a bulk file transfer operation if we could then devote substantial extra transmission time to
a low-rate audio flow and hence preserve its quality.

Motivated by various flow and error scenarios, we developed a new definition of fairness
for wireless link schedulers. When we explicitly track flow “effort” (transmission time)
against flow “outcome” (throughput), we can smoothly transition between two notions,
effort-fairness and outcome-fairness, each one attractive at one end of the error rate spectrum
but unattractive at the other. Effort-limited fairness is a unifying theme which balances
administratively-expressed flow needs (in the form of a “power factor” scheduler parameter)
and link efficiency in the face of dynamic and location-dependent errors. It is straightforward
to effort-bound both constant-bitrate and link-fraction scheduling.

We presented an implementation of ELF scheduling based on packet weighted-round-
robin. This scheduler overcomes the thorny challenge posed by the impracticality of mea-
suring per-flow error rates by approximating ELF-style dynamic adjustment of weights as
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a function of error rate. While this implementation does not perform timeslot-swapping
in response to burst errors, it would be straightforward to employ link-specific burst error
prediction.

Finally, we used simulation to illustrate the operation of ELF scheduling in various er-
ror environments and briefly presented experimental results for a proof-of-concept in-kernel
implementation.

125



126



Chapter 6

Conclusion

Wireless links have been a part of the ARPAnet since the 1970’s, even before the adoption
of TCP. Since that time, mobile hosts have shrunk in size from vans to palmtops. However,
researchers are working on many of the same issues, such as type-of-service queueing and
adaptive error control [120, 71, 62, 46]. The increasing ubiquity of wireless links has corre-
spondingly increased the importance of deploying well-researched solutions to the challenges
posed by wireless links while minimizing disruption to the wired Internet infrastructure.

This dissertation has demonstrated that a combination of techniques allows the existing
wired Internet to extend its reach across error-prone wireless links. Adaptive per-link error
control vastly increases the throughput even in harsh and dynamic error environments. Then
error-sensitive link scheduling enables both best-effort and reserved-service network flows to
obtain sensible throughput outcomes. These results are based on real-world trace data
replayed in a real operating system kernel.

This chapter begins by summarizing the contributions made by this research investigation
in Section 6.1. Areas of future work are discussed in Section 6.2 and closing remarks are in
Section 6.3.

6.1 Contributions

The top-level contribution of this dissertation is a convincing demonstration of how error-
prone wireless links can be “good citizens” on the Internet. At a finer grain, contributions
can be broken down as follows:

• Conceptual Contributions

– An explanation of how per-hop link-level error control is consistent with (rather
than opposing) the the end-to-end argument (Section 4.2).

– A list of principles we believe wireless link schedulers should obey (Section 5.2).

– An understanding that wireless link errors pose policy and architectural, as op-
posed to merely timing, challenges to designers of scheduling algorithms; the sug-
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gestion that outcome fairness for best-effort flows in the face of location-dependent
errors is useful and sensible (Section 5.3).

– The notion of Effort-Limited Fairness as a concept balancing per-flow throughput
stability and per-link efficiency (Section 5.4).

• Design Contributions

– An explanation of the difficulty of defining and measuring per-flow error rates
(Section 5.5.2).

– Design of an error-rate-sensitive scheduler that does not require explicit measure-
ment of error rates (Section 5.5.3).

– An interface accomplishing the necessary “billing relationship” between the LLC
layer’s adaptive error control and the MAC layer’s scheduling function (Sec-
tion 5.5.3).

– A two-level, best-effort/constant-bit-rate ELF scheduler (Sections 5.4.3 and 5.5).

• Experimental Results

– A characterization of the severity and dynamicity of various threats to WaveLAN
and demonstration that packet loss, packet truncation, and bit error rate are not
tightly correlated across error environments (Chapter 2; Section 3.2.3).

– A demonstration of the necessity for error control to be adaptive and the iden-
tification of a particular simple adaptation policy as effective (Sections 3.3 and
3.5).

– Public release of error traces (Section 3.7).

– Three conclusions about TCP and link-level error control (Chapter 4):

∗ Evidence that link-level retransmission must be very persistent to support
TCP,

∗ Evidence that this persistence does not give rise to substantial negative inter-
layer interactions, and

∗ Evidence that link-level retransmission can effectively support TCP, as evi-
denced by measurements of TCP and UDP throughput, without layer-violating
“snooping” or “spoofing” behaviors.

– A demonstration that sensible per-flow throughput outcomes are feasible despite
severe, dynamic error environments and without compromising link efficiency
(Chapter 5).
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6.2 Future Work

The dissertation work to date suggests several avenues for future research. The applicability
of the dissertation results could be broadened by obtaining detailed traces of other wireless
LANs, employing more-powerful error control techniques, and investigating power control.
The quality of interactions between the link layer and the transport and application layers
could be enhanced by automatic retransmission persistence, type-of-service marking, and
explicit congestion notification. Research into ELF scheduling could be pushed forward
by incorporating ELF into 802.11, incorporating channel-state estimation into ELF, and
casting the abstract ELF scheduler into an algorithm in a more rigorous fashion. Finally,
addressing inter-subnet blame monitoring may be increasingly important in the near future.
The remainder of this section will address these issues in turn.

6.2.1 Broadening Applicability

Per-LAN Error Traces

Present or rapidly-arriving link technologies include IEEE 802.11b, 802.11a, 802.11g, Blue-
tooth, and HiperLAN. Tuning link-level error control so that each new link type supports
Internet traffic well will probably require a study based on detailed packet trace data similar
to that presented in Chapters 2 and 3. Capturing these traces is frequently difficult due to a
tendency for device vendors to provide a fairly “black-box” interface to the underlying hard-
ware. If this unfortunate situation persists (see Section 6.3.2), individual researchers who
happen to have special access that allows them to collect good trace data are in a position
to produce studies worthy of publication.

Improved Error Coding

An incremental but probably worthwhile step would be upgrading the error control tech-
niques evaluated in Section 3.2. A simple thing to try would be interleaving, which can
noticeably improve the efficiency of both block and convolutional codes. The increasing
commercialization of wireless technologies has fueled research into error coding in general,
suggesting that employing modern techniques such as “turbo codes” [17, 16] would be fruit-
ful.

Power Control

While it is tempting to imagine “solving” transmission errors by increasing transmitter
output power, power control is a complex issue. In general there is constant pressure to
reduce output power. One obvious reason is that this can significantly increase battery life.
However, a less-obvious consideration is each mobile host’s radiated power causes interference
to other hosts. In fact, a plausible argument can be made for reducing the transmit power
of a mobile host while it is far from its base station, so that it will not cause excessive
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interference to hosts near it which are trying to communicate with other, more-distant base
stations [95].

6.2.2 Improving Inter-layer Communication

Automatic Retransmission Persistence

The high levels of retransmission persistence which are important to TCP (Section 4.5.3)
are unlikely to suit every application type. On the other hand, it is not clear that individual
applications will be in a position to specify either a retransmission count or a maximum
queue delay for each link that their packets will traverse. It would be useful to discover per-
link persistence heuristics which meet the needs of many transport protocols. One possible
approach is based on the increasing tendency of new transport protocols to perform conges-
tion control in a “TCP-friendly” fashion [134]. If each protocol is updating a packet loss
rate estimate every few round-trip-times, this may lead to TCP-like notions of packet time-
outs. For example, even if a particular streaming media protocol never retransmits packets,
it might well declare them permanently lost according to an adaptive delay bound similar
to TCP’s. In that case, individual links might be able to estimate useful packet lifetimes
according to TCP-like metrics. One candidate approach would be for a link to maintain a
per-flow running estimate of the time required to successfully transmit a single packet, and
to drop a packet from a flow’s queue when the head-of-line packet’s transmission latency
exceeded the flow’s typical transmission latency by a few standard deviations.

Type-of-Service Marking

Sections 4.5.3 and 4.5.4 discussed ways for transport protocols to signal to the link layer how
much link-level error control is appropriate. In addition, Section 5.4.5 briefly suggested how
end-to-end signalling could be used to derive flow power factors. It appears that the field
would benefit from investigation into tailoring link-level error control to the needs of real-
world applications not characterized well by bulk data transfer on top of TCP. An obvious
target for future research would be streaming audio or video on top of UDP or SCTP.

Explicit Congestion Notification

Wired links are beginning to deploy Explicit Congestion Notification [110], which alerts end-
systems to the potential onset of network congestion by marking queued packets. While
current implementations of ECN typically process (and discard) ECN information at the
transport layer, it is probably advisable for interested applications or their middleware layers
to obtain and react to this information.

It would be interesting to investigate ECN marking according to both per-packet re-
transmission count at the LLC layer and effort-bank exhaustion in the ELF scheduler at the
MAC layer. In addition to providing feedback to applications, this approach could lever-
age existing network monitoring infrastructure such as SNMP, which could inform network
administrators that certain links are frequently ECN marking.
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6.2.3 ELF scheduling

ELF scheduling for 802.11

The progress of the IEEE 802.11e wireless LAN Quality of Service working group [59] indi-
cates that per-flow scheduling for wireless links may become mainstream in the near future.
However, Section 5.3 suggests that the priority-based scheduling at the core of the current
draft standard may yield limited success. The main difficulty in adding ELF scheduling
to 802.11e would be replacing the prototype studied in the thesis research, which relies on
straightforward but inefficient polling, with a distributed approximation algorithm.

Initial work toward integrating ELF with the older 802.11b PCF is in progress [82].

Incorporating Channel-State Estimation into ELF

As discussed in Section 5.5.4, ELF could take advantage of link-specific techniques for pre-
dicting when a particular station is likely to experience either significant or unrecoverable
packet corruption. A simulation study combining detailed error traces, adaptive error con-
trol, competing channel-state prediction modules, measuring the resultant whole-link effi-
ciency of an ELF scheduler, would be straightforward and potentially valuable.

ELF Scheduler Formalization and Re-implementation

The current “proof-of-concept” ELF scheduler implementation makes several simplifications
that should be remedied. For example, it defers issues related to effort-banking by idle
flows and avoids long-term seizure of the link by a single flow through an ad-hoc approach
much less attractive than, for example, fair service curves [124]. In addition, the flow choice
function requires time linear in the number of flows, which might not be acceptable in some
environments.

6.2.4 Inter-subnet Performance Monitoring

Some flows requiring a certain quality of service will traverse multiple administrative domains
and subnetwork boundaries. For example, it is easy to imagine that a flow might originate at
a popular web server and cross the Internet backbone, multiple links in a corporate Ethernet,
and a wireless “last hop.” While it is obvious that every network must do its part for the
flow to obtain its desired service along the whole path, it is less clear what happens when
there is a failure.

Even if each subnetwork performs its own quality monitoring, this might be statistical
and coarse-grained in the sense of abstracting the experience of multiple flows over a period
of time. Therefore, end-systems may frequently discover trouble early. If so, is there any
way for them to narrow down the source of the problem? Will they have any way to control
routing to avoid subnetworks not living up to their performance promises?

One approach, Resilient Overlay Networks [3], focuses on improving the performance of
traditional best-effort traffic. However, it might be valuable for links that provide service
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quality to also provide failure alerts in a form more specific than ECN allows.

6.3 Concluding Remarks

6.3.1 Benefits of Measurement-driven Approach

In the course of this work it was very useful to be driven by measurement as opposed to pure
intuition.

Detailed error traces were particularly valuable. For example, we observed a rich collec-
tion of error environments, with the amounts of loss, truncation, and bit corruption varying
widely and somewhat independently, which was not obvious from the synthetic and stochastic
error models widely employed in published work on the “wireless link problem”. The dynam-
icity within individual error traces suggested an architectural need for link-level error control
to include dynamic on-the-fly packet fragmentation and reassembly. The internal structure
of error traces, including the prevalence of “medium-term” station-dependent errors, led to
consideration of the wireless link scheduling problem in terms of partially de-coupling the
throughput a flow “deserves” from its error rate.

Measurement was also valuable when it came to the question of competing inter-layer
retransmissions. Before the results of actual experiments were in hand, it was easy to imagine
it was a much more serious issue than it turned out to be. At this point both Reiner Ludwig
and myself have observed, in two different network environments, that this is not a major
concern (see Section 4.7.2).

6.3.2 Suggestions for Wireless LAN Equipment Designers

Designers of wireless LAN equipment could significantly increase the quality of research (and,
hence, the quality of their solutions for end users) by slightly opening up their devices.

It would be very useful if end-system wireless LAN hardware supported data collection.
The ability to collect detailed information about transmission and reception failures is in-
valuable. The level of access provided by WaveLAN is a good start: it is possible to receive
even packets that fail link-level CRC. Even better would be an “extended receive” mode
which would deliver soft-decision symbols from multiple antennas and delay paths, ideally
before iterative decoding.

Further experimentation would be enabled by providing not only information, but con-
trol. One product of the Active Networking research community is a variety of interfaces for
plugging small pieces of code into routers [125, 18]; research on software-defined radios [25]
could be informative as well. The quality of wireless link scheduling research would improve
dramatically if researchers could readily evaluate proposed algorithms in running systems.
Ideally designers of both end-system hardware and access points would give as much consid-
eration to high-level software control over MAC and FEC as to the hardware acceleration of
these functions.
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6.3.3 Closing

I recall with fondness a heady time during the 1990’s when it was clear to many in the research
community that the “next big thing” in networking was a revolution to overthrow the tyranny
of best-effort packet switching in favor of virtual-circuit cell-switching (i.e., ATM). The jury
is still out on the question of just how much per-hop per-flow state is required to support
important network applications. But I hope that this dissertation helps lay to rest the belief
that complex protocol-specific per-flow per-hop “hard state” is necessary for Internet traffic
to safely and efficiently traverse short-haul wireless links.
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Appendix A

Forward Error Correction background

Forward Error Correction is a mature field and this thesis makes no contributions in that
area. However, since we rely on FEC, we include a short overview of the field for the benefit
of readers unfamiliar with the area.

The field of FEC is constructed on a firm mathematical foundation, and there are closed-
form solutions for the behaviors of many codes under a variety of error models. Error coding
books exist at several levels of abstraction: handbooks [94], introductory approaches [4], and
in-depth studies [131, 74]. Error codes exist for many different applications, including erasure
channels (which can blot out a symbol rather than corrupting it), asymmetric channels
(which may tend to force symbols to certain values more than others), and burst error
channels (which tend to corrupt symbols in clumped or bursty patterns).

convolutional block

HammingGolay BCH

Extended Reed-Solomon

Figure A.1: Partial taxonomy of common error correcting codes

One important distinction is between block codes and convolutional codes (Figure A.1).
A block code operates by accepting a block of user data, typically of fixed size, and adding
a certain number of extra symbols to the block. As long as the number of transmission
errors per block is under a certain threshold, the receiver will be able to correctly recover the
original user data. If the number of errors exceeds the correction threshold, but is below a
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detection threshold, the receiver will be able to report that a block is corrupted. Otherwise,
the receiver may incorrectly believe that an entirely different block was sent. The fate of
each block is independent of every other block. In some block codes, the block size is directly
related to the symbol size. That is, if a transmission channel accepts (and therefore corrupts)
two-bit symbols, the block size will be a multiple of two bits. Encoding and decoding block
codes typically involves matrix algebra and/or polynomial arithmetic. The ratio of extra
symbols to user symbols within a transmitted block may be adjusted smoothly to meet the
needs of a particular application.

Convolutional codes, on the other hand, operate on data streams or on variable-sized
blocks (above a typically small minimum size). The encoder is a simple linear-feedback shift
register, similar to a CRC generator. The effect of the encoder is that each user symbol is
“smeared” across some number of transmission symbols (based on the length of the shift
register). Convolutional codes have correction and detection thresholds analogous to those
of block codes, but these thresholds are related to the number of corrupted symbols within
the “smearing window,” which is typically on the order of tens of bits. Convolutional code
redundancy overheads are typically a small integer multiple of the user data size (block code
overheads are often fractional), though there are “punctured” convolutional codes which
allow sub-multiple overhead amounts. While convolutional codes are not as straightforwardly
robust in the face of burst errors, they have several attractive features:

• They do not impose any data blocking on applications.

• They can be implemented cheaply and efficiently in hardware. Multi-rate codecs which
operate at transmission rates of tens of megabits are commercially available as VLSI
components.

• They can easily take advantage of “soft decision” demodulation, in which the demod-
ulator provides the decoder not only with the most likely symbol given the arriving
signal but also the likelihood that this symbol is correct. Soft-decision decoding typi-
cally yields an increase in performance roughly equivalent to doubling the transmission
power.

For the purposes of this thesis, we will employ a Reed-Solomon block code. This deci-
sion is based on several reasons. First, the WaveLAN hardware presents us with a “hard
decision” environment; that is, it provides us with bits, but not with bit certainty estimates,
so we cannot take advantage of soft decision decoding. Second, Reed-Solomon codes can
operate with a symbol size of 8 bits. This is attractive for software implementations, as
byte operations are typically more efficient than bit operations, and network packets are
typically an even number of bytes long. Third, the performance of Reed-Solomon codes, as
with other linear block codes, is insensitive to the particular user data bits (and we have
demonstrated that the underlying channel probably is, too). While production systems may
choose convolutional codes to obtain the benefits of soft-decision decoding, the adaptation
issues presented by a multi-rate codec are similar whether the code is block or convolutional.
As it happens, the recent IEEE 802.11e draft standard [59] employs Reed-Solomon block
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codes above a direct-sequence spread spectrum physical layer, an approach very similar to
the one followed in the course of this research.
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