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Abstract

We present a type theory for higher-order modules that accounts for many central issues in module system
design, including translucency, applicativity, generativity, and modules as first-class values. Our type sys-
tem harmonizes design elements from previous work, resulting in a simple, economical account of modular
programming. The main unifying principle is the treatment of abstraction mechanisms as computational
effects. Our language is the first to provide a complete and practical formalization of all of these critical
issues in module system design.
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1 Introduction

The design of languages for modular programming is surprisingly delicate and complex. There is a funda-
mental tension between the desire to separate program components into relatively independent parts and the
need to integrate these parts to form a coherent whole. To some extent the design of modularity mechanisms
is independent of the underlying language [16], but to a large extent the two are inseparable. For example,
languages with polymorphism, generics, or type abstraction require far more complex module mechanisms
than those without them.

Much work has been devoted to the design of modular programming languages. Early work on CLU [18]
and the Modula family of languages [33, 2] has been particularly influential. Much effort has gone into the
design of modular programming mechanisms for the ML family of languages, notably Standard ML [22]
and Objective Caml [26]. Numerous extensions and variations of these designs have been considered in the
literature [20, 17, 27, 30, 5].

Despite (or perhaps because of) these substantial efforts, the field has remained somewhat fragmented,
with no clear unifying theory of modularity having yet emerged. Several competing designs have been
proposed, often seemingly at odds with one another. These decisions are as often motivated by pragmatic
considerations, such as engineering a useful implementation, as by more fundamental considerations, such as
the semantics of type abstraction. The relationship between these design decisions is not completely clear,
nor is there a clear account of the trade-offs between them, or whether they can be coherently combined into
a single design.

The goal of this paper is to provide a simple, unified formalism for modular programming that consolidates
and elucidates much of the work mentioned above. Building on a substantial and growing body of work on
type-theoretic accounts of language structure, we propose a type theory for higher-order program modules
that harmonizes and enriches these designs and that would be suitable as a foundation for the next generation
of modular languages.

1.1 Design Issues

Before describing the main technical features of our language, it is useful to review some of the central issues
in the design of module systems for ML. These issues extend to any language of similar expressive power,
though some of the trade-offs may be different for different languages.

Controlled Abstraction Modularity is achieved by using signatures (interfaces) to mediate access be-
tween program components. The role of a signature is to allow the programmer to “hide” type information
selectively. The mechanism for controlling type propagation is translucency [10, 13], with transparency and
opacity as limiting cases.

Phase Separation ML-like module systems enjoy a phase separation property [11] stating that every
module is separable into a static part, consisting of type information, and a dynamic part, consisting of
executable code. To obtain fully expressive higher-order modules and to support abstraction, it is essential
to build this phase separation principle into the definition of type equivalence.

Generativity MacQueen coined the term generativity for the creation of “new” types corresponding to
run-time instances of an abstraction. For example, we may wish to define a functor SymbolTable that,
given some parameters, creates a new symbol table. It is natural for the symbol table module to export an
abstract type of symbols that are dynamically created by insertion and used for subsequent retrieval. To
preclude using the symbols from one symbol table to index another, generativity is essential—each instance
of the hash table must yield a “new” symbol type, distinct from all others, even when applied twice to the
same parameters.

Separate Compilation One goal of module system design is to support separate compilation [13]. This
is achieved by ensuring that all interactions among modules are mediated by interfaces that capture all of
the information known to the clients of separately-compiled modules.
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Principal Signatures The principal, or most expressive, signature for a module captures all that is known
about that module during type checking. It may be used as a proxy for that module for purposes of separate
compilation. Many type checking algorithms, including the one given in this paper, compute principal
signatures for modules.

Modules as First-Class Values Modules in ML are “second-class” in the sense that they cannot be
computed as the results of ordinary run-time computation. It can be useful to treat a module as a first-class
value that can be stored into a data structure, or passed as an ordinary function argument or result [10, 23].

Hidden Types Introducing a local, or “hidden”, abstract type within a scope requires that the types of
the externally visible components avoid mention of the abstract type. This avoidance problem is often a
stumbling block for module system design, since in most expressive languages there is no “best” way to avoid
a type variable [8, 17].

1.2 A Type System for Modules

The type system proposed here takes into account all of these design issues. It consolidates and harmonizes
design elements that were previously seen as disparate into a single framework. For example, rather than
regard generativity of abstract types as an alternative to non-generative types, we make both mechanisms
available in the language. We support both generative and applicative functors, admit translucent signatures,
support separate compilation, and are able to accommodate modules as first-class values [23, 28].

Generality is achieved not by a simple accumulation of features, but rather by isolating a few key mecha-
nisms that, when combined, yield a flexible, expressive, and implementable type system for modules. Specif-
ically, the following mechanisms are crucial.

Singletons Propagation of type sharing is handled by singleton signatures, a variant of Aspinall’s and
Stone and Harper’s singleton kinds [32, 31, 1]. Singletons provide a simple, orthogonal treatment of sharing
that captures the full equational theory of types in a higher-order module system with subtyping. No previous
module system has provided both abstraction and the full equational theory supported by singletons,1 and
consequently none has provided optimal propagation of type information.

Static Module Equivalence The semantics of singleton signatures is dependent on a (compile-time)
notion of equivalence of modules. To ensure that the phase distinction is respected, we define module
equivalence to mean “equivalence of static components,” ignoring all run-time aspects.

Subtyping Signature subtyping is used to model “forgetting” type sharing, an essential part of signature
matching. The coercive aspects of signature matching (dropping of fields and specialization of polymorphic
values) are omitted here, since the required coercions are definable in the language.

Purity and Impurity Our type system classifies module expressions into pure (effect-free) and impure
(effectful) forms. To ensure proper enforcement of abstraction, impure modules are incomparable (may not be
compared for equality with any other module) and non-projectible (may not have type components projected
from them). It follows that impure modules are also non-substitutable (may not be substituted for a module
variable in a signature).

Abstraction and Sealing Modules that are sealed with a signature to impose type abstraction [10] are
regarded as impure. In other words, sealing is regarded as a pro forma computational effect. This is consistent
with the informal idea that generativity involves the generation of new types at run time. Moreover, this
ensures that sealed modules are incomparable and non-projectible, which is sufficient to ensure the proper
semantics of type abstraction.

1Typically the omitted equations are not missed because restrictions to named form or valuability prevent programmers
from writing code whose typeability would depend on those equations in the first place [4].
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Totality and Partiality Functors are λ-abstractions at the level of modules. A functor whose body is
pure is said to be total ; otherwise it is partial. It follows that the application of a pure, total functor to a pure
argument is pure, whereas the application of a pure, partial functor to a pure argument is impure. Partial
functors are naturally generative, meaning that the abstract types in its result are “new” for each instance;
total functors are applicative, meaning that equal arguments yield equal types in the result. Generative
functors are obtained without resort to “generative stamps” [22, 20].

Weak and Strong Sealing Since sealing induces a computational effect, only partial functors may contain
sealed sub-structures; this significantly weakens the utility of total functors. To overcome this limitation we
distinguish two forms of effect, static and dynamic, and two forms of sealing, weak and strong. Weak sealing
induces a static effect, which we think of as occurring once during type checking; strong sealing induces a
dynamic effect, which we think of as occurring during execution. Dynamic effects induce partiality, static
effects preserve totality.

Existential Signatures In a manner similar to Shao [30], our type system is carefully crafted to circumvent
the avoidance problem, so that every module enjoys a principal signature. However, this requires imposing
restrictions on the programmer. To lift these restrictions, we propose the use of existential signatures to
provide principal signatures where none would otherwise exist. We show that these existential signatures
are type-theoretically ill-behaved in general, so, we restrict their use to a well-behaved setting. In the style
of Harper and Stone [12], we propose the use of an elaboration algorithm from an external language that
may incur the avoidance problem, into our type system, which does not.

Packaged Modules Modules in our system are “second-class” in the sense that the language of modules
is separate from the language of terms. However, following Mitchell et al. [23] and Russo [28], we provide a
way of packaging a module as a first-class value. In prior work, such packaged modules are typically given an
existential type, whose closed-scope elimination construct can make for awkward programming. Instead, our
account of type generativity allows us to employ a more natural, open-scope elimination construct, whereby
unpackaging a packaged module engenders a dynamic effect.

While these features combine naturally to form a very general language for modular programming, they
would be of little use in the absence of a practical implementation strategy. Some previous attempts have
encountered difficulties with undecidability [10] or incompleteness of type checking [26]. In contrast, our
formalism leads to a practical, implementable programming language.

The rest of this paper is structured as follows: In Section 2 we present our core type system for higher-
order modules, including the intuition behind its design and a brief description of the decidable typechecking
algorithm. In Section 3 we discuss the programming importance of having both weak and strong forms of
sealing. In Section 4 we explain the avoidance problem and how it can be circumvented using an elaboration
algorithm. In Section 5 we present a very simple, orthogonal extension of our core system to provide support
for packaging modules as first-class values. Finally, in Section 6 we compare our system with related work
and in Section 7 we conclude.

2 Technical Development

We begin our technical development by presenting the syntax of our language in Figure 1. Our language
consists of four syntactic classes: terms, types, modules, and signatures (which serve as the types of modules).
The language does not explicitly include higher-order type constructors or kinds (which ordinarily serve as
constructors’ types); in our language the roles of constructors and kinds are subsumed by modules and
signatures. Contexts bind module variables (s) to signatures.

As usual, we consider alpha-equivalent expressions to be identical. We write the capture-avoiding sub-
stitution of M for s in an expression E as E[M/s].
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types τ ::= Typ M | Πs:σ.τ | τ1 × τ2

terms e ::= Val M | 〈e1, e2〉 | πie | e M |
fix f(s:σ):τ.e | let s = M in (e : τ)

signatures σ, ρ ::= 1 | [[T ]] | [[τ ]] | Πtots:σ1.σ2 | Πpars:σ1.σ2 |
Σs:σ1.σ2 |

�
(M)

modules M, N, F ::= s | 〈〉 | [τ ] | [e : τ ] | λs:σ.M | M1M2 |
〈s = M1, M2〉 | πiM |
let s = M1 in (M2 : σ) |
M :>σ | M ::σ

contexts Γ ::= • | Γ, s:σ

Figure 1: Syntax

Types There are three basic types in our language. The product type (τ1 × τ2) is standard. The function
type, Πs:σ.τ , is the type of functions that accept a module argument s of signature σ and return a value of
type τ (possibly containing s). As usual, if s does not appear free in τ , we write Πs:σ.τ as σ → τ . (This
convention is used for the dependent products in the signature class as well.) Finally, when M is a module
containing exactly one type (which is to say that M has the signature [[T ]]), that type is extracted by TypM .
A full-featured language would support a variety of additional types as well.

Terms The term language contains the natural introduction and elimination constructs for recursive func-
tions and products. In addition, when M is a module containing exactly one value (which is to say that M
has the signature [[τ ]], for some type τ), that value is extracted by Val M . When f does not appear free in
e, we write fix f(s:σ):τ.e as Λs:σ.e.

The conventional forms of functions and polymorphic function are built from module functions. Ordinary
functions are built using modules containing a single value:

τ1 → τ2
def

= [[τ1]] → τ2

λx:τ.e(x)
def

= Λs:[[τ ]].e(Val s)

e1e2
def

= e1[e2]

and polymorphic functions are built using modules containing a single type:

∀α.τ(α)
def

= Πs:[[T ]].τ(Typ s)

Λα.e(α)
def

= Λs:[[T ]].e(Typ s)

e τ
def

= e[τ ]

Signatures There are seven basic signatures in our language. The atomic signature [[T ]] is the type of
an atomic module containing a single type, and the atomic signature [[τ ]] is the type of an atomic module
containing a single term. The atomic modules are written [τ ] and [e : τ ], respectively. (We omit the type
label “: τ” from atomic term modules when it is clear from context.) The trivial atomic signature 1 is the
type of the trivial atomic module 〈〉.

The functor signatures Πtots:σ1.σ2 and Πpars:σ1.σ2 express the type of functors that accept an argument
of signature σ1 and return a result of signature σ2 (possibly containing s). The reason for two different
Π signatures is to distinguish between total and partial functors, which we discuss in detail below. For
convenience, we will take Π (without a superscript) to be synonymous with Πtot. When s does not appear
free in σ2, we write Πs:σ1.σ2 as σ1 → σ2.

The structure signature Σs:σ1.σ2 is the type of a pair of modules where the left-hand component has
signature σ1 and the right-hand component has signature σ2, in which s refers to the left-hand component.
As usual, when s does not appear free in σ2, we write Σs:σ1.σ2 as σ1 × σ2.
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signature SIG =

sig

type s

type t = s * int

structure S : sig

type u

val f : u -> s

end

val g : t -> S.u

end

. . . is compiled as . . .

Σs:[[T ]].
Σt:

�
([Typ s × int]).
ΣS:(Σu:[[T ]].Σf :[[Typu → Typ s]].1).

Σg:[[Typ t → Typ(π1S)]].1

Figure 2: ML Signature Example

The singleton signature
�

(M) is used to express type sharing information. It classifies modules that have
signature [[T ]] and are statically equivalent to M . Two modules are considered statically equivalent if they
are equal modulo term components; that is, type fields must agree but term fields may differ. Singletons at
signatures other than [[T ]] are not provided primitively because they can be defined using the basic singleton,
as described by Stone and Harper [32]. The definition of

�
σ(M) (the signature containing only modules

equal to M at signature σ) is given in Figure 5.

Modules The module syntax contains module variables (s), the atomic modules, and the usual intro-
duction and elimination constructs for Π and Σ signatures, except that Σ modules are introduced by
〈s = M1, M2〉, in which s stands for M1 and may appear free in M2. (When s does not appear free in
M2, the “s =” is omitted.) No introduction or elimination constructs are provided for singleton signatures.
Singletons are introduced and eliminated by rules in the static semantics; if M is judged equivalent to M ′

in σ, then M belongs to
�

σ(M ′), and vice versa.
The remaining module constructs are strong sealing, written M :>σ, and weak sealing, written M ::σ.

When a module is sealed either strongly or weakly, the result is opaque. By opaque we mean that no client
of the module may depend on any details of the implementation of M other than what is exposed by the
signature σ. The distinction between strong and weak sealing is discussed in detail below.

Although higher-order type constructors do not appear explicitly in our language, they are faithfully
represented in our language by unsealed modules containing only type components. For example, the kind
(T →T )→T is represented by the signature ([[T ]]→ [[T ]])→ [[T ]]; and the constructor λα:(T →T ).(int×α int)
is represented by the module λs:([[T ]] → [[T ]]).[int× Typ(s [int])].

Examples of how ML-style signatures and structures may be expressed in our language appear in Figures 2
and 3.

Comparability and Projectibility Two closely related issues are crucial to the design of a module
system supporting type abstraction:

1. When can a module be compared for equivalence with another module?

2. When can a type component be projected from a module and used as a type?
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structure S1 =

struct

type s = bool

type t = bool * int

structure S = struct

type u = string

val f = (fn y:u => true)

end

val g = (fn y:t => "hello world")

end

. . . is compiled as . . .

〈s = [bool],
〈t = [bool× int],

〈S = 〈u = [string], 〈f = [λy: Typ u.true], 〈〉〉〉,
〈g = [λy: Typ t."hello world"], 〈〉〉〉〉〉

Figure 3: ML Structure Example

We say that a module is comparable iff it can be compared for equivalence with another module, and that
a module is projectible iff its type components may be projected and used as type expressions. (In the
literature most presentations emphasize projectibility [10, 13, 14].)

A simple analysis of the properties of comparability and projectibility suggests that they are closely
related. Suppose that M is a projectible module with signature [[T ]], so that Typ M is a type. Since type
equality is an equivalence relation, this type may be compared with any other, in particular, Typ M ′ for
another projectible module M ′ of the same signature. But since Typ M and Typ M ′ fully determine M , we
are, in effect, comparing M with M ′ for equivalence. This suggests that projectible modules be regarded as
comparable for type checking purposes. Conversely, if M is a comparable module, then by extensionality M
should be equivalent to [Typ M ], which is only sensible if M is also projectible.

Purity and Impurity The design of our module system rests on the semantic notions of purity and
impurity induced by computational effects. To motivate the design, first recall that in a first-class module
system such as Harper and Lillibridge’s [10] there can be “impure” module expressions that yield distinct
type components each time they are evaluated. For example, a module expression M might consult the
state of the world, yielding a different module for each outcome of the test. The type components of such
a module are not statically well-determined, and hence should not be admitted as type expressions at all,
much less compared for equivalence. On the other hand, even in such a general framework, pure (effect-free)
modules may be safely regarded as both comparable and projectible.

In a second-class module system such examples are not, in fact, expressible, but we will nevertheless find
it useful to classify modules according to their purity.2 This classification is semantic, in the sense of being
defined by judgments of the calculus, rather than syntactic, in the sense of being determined solely by the
form of expression. Such a semantic approach is important for a correct account of type abstraction in a
full-featured module language.

The axiomatization of purity and impurity in our system is based on a set of rules that takes account
of the types of expressions, as well as their syntactic forms. The type system is conservative in that it
“assumes the worst” of an impure module expression, ruling it incomparable and non-projectible, even when
its type components are in fact statically well-determined. As we will see shortly, this is important for

2Moreover, in Section 5 we will introduce the means to re-create these examples in our setting, making essential use of the
same classification system.
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enforcing type abstraction, as well as ensuring soundness in the presence of first-class modules. In addition,
since it is sound to do so, we deem all pure module expressions to be comparable and projectible. That is,
to be as permissive as possible without violating soundness or abstraction, we identify comparability and
projectibility with purity. Finally, note that a module is judged pure based on whether its type components
are well-determined, which is independent of whether any term components have computational effects.

In the literature different accounts of higher-order modules provide different classes of pure modules.
For example, in Harper and Lillibridge’s first-class module system [10], only syntactic values are considered
pure. In Leroy’s second-class module calculi [13, 14], purity is limited to the syntactic category of paths. In
Harper et al.’s early “phase-distinction” calculus [11] all modules are deemed to be pure, but no means of
abstraction is provided.

Abstraction via Sealing The principal means for defining abstract types is sealing, written M :>σ.
Sealing M with σ prevents any client of M from depending on the identities of any type components
specified opaquely—with signature [[T ]] rather than

�
[[T ]](M)—inside σ. From the point of view of module

equivalence, this means that a sealed module should be considered incomparable. To see this, suppose
that M = ([int] :>[[T ]]) is regarded as comparable. Presumably, M could not be deemed equivalent to
M ′ = ([bool] :>[[T ]]) since their underlying type components are different. However, since module equivalence
is reflexive, if M is comparable, then M must be deemed equivalent to itself. This would mean that the type
system would distinguish two opaque modules based on their underlying implementation, a violation of type
abstraction.

A significant advantage of our judgmental approach to purity is that it affords a natural means of ensuring
that a sealed module is incomparable, namely to judge it impure. This amounts to regarding sealing as a
pro forma run-time effect, even though no actual effect occurs at execution time. Not only does this ensure
that abstraction violations such as the one just illustrated are ruled out, but we will also show in Section 3
that doing so allows the type system to track the run-time “generation” of “new” types.

Applicative and Generative Functors Functors in Standard ML are generative in the sense that each
abstract type in the result of the functor is “generated afresh” for each instance of the functor, regardless
of whether or not the arguments in each instance are equivalent. Functors in Objective Caml, however,
are applicative in the sense that they preserve equivalence: if applied to equivalent arguments, they yield
equivalent results. In particular, the abstract types in the result of a functor are the same for any two
applications to the same argument.

Continuing the analogy with computational effects, we will deem any functor whose body is pure to be
total, otherwise partial. The application of a pure, total functor to a pure argument is pure, and hence
comparable. Total functors are applicative in the sense that the application of a pure total functor to
two equivalent pure modules yields equivalent pure modules, because the applications are pure, and hence
comparable. Partial functors, on the other hand, always yield impure modules when applied. Therefore
they do not respect equivalence of arguments (because the results, being impure, are not even comparable),
ensuring that each instance yields a distinct result.

We distinguish the signatures of total (applicative) and partial (generative) functors. Total functors have
Π signatures, whereas partial functors have Πpar signatures. The subtyping relation is defined so that every
total functor may be regarded (degenerately) as a partial functor.

Weak and Strong Sealing In our system we identify applicative functors with total ones, and generative
functors with partial ones. To make this work, however, we must refine the notion of effect. For if sealing is
regarded as inducing a run-time effect, then it is impossible to employ abstraction within the body of a total
functor, for to do so renders the body impure. (We may seal the entire functor with a total functor signature
to impose abstraction, but this only ensures that the exported types of the functor are held abstract in any
clients of that functor. It does not permit a substructure in the body of the functor to be held abstract in
both the clients of the functor and in the remainder of the functor body.)

The solution is to distinguish two forms of sealing—strong, written M :>σ as before, and weak, written
M ::σ. Both impose abstraction in the sense of limiting type propagation to what is explicitly specified
in the ascribed signature by regarding both forms of sealing as inducing impurity. However, to support a
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Γ `κ M : σ κ v κ′

Γ `κ′ M : σ
(1)

Γ `κ M : σ

Γ `W (M :>σ) : σ
(2)

Γ `κ M : σ

Γ `κt D (M ::σ) : σ
(3) Γ ` ok

Γ `P s : Γ(s)
(4)

Γ, s:σ1 `κ M : σ2 κ v D

Γ `κ λs:σ1.M : Πtots:σ1.σ2
(5)

Γ, s:σ1 `κ M : σ2

Γ `κu D λs:σ1.M : Πpars:σ1.σ2
(6)

Γ, s:σ1 ` σ2 sig

Γ ` Πtots:σ1.σ2 ≤ Πpars:σ1.σ2
(7)

Γ `κ M1 : Πtots:σ1.σ2 Γ `P M2 : σ1

Γ `κ M1M2 : σ2[M2/s]
(8)

Γ `κ M1 : Πpars:σ1.σ2 Γ `P M2 : σ1

Γ `κt S M1M2 : σ2[M2/s]
(9)

Γ `κ M : Σs:σ1.σ2

Γ `κ π1M : σ1
(10)

Γ `P M : Σs:σ1.σ2

Γ `P π2M : σ2[π1M/s]
(11)

Γ `κ M : σ Γ ` σ ≤ σ′

Γ `κ M : σ′
(12)

Figure 4: Key Typing Rules

useful class of applicative functors, we further distinguish between static and dynamic effects. Weak sealing
induces a static effect, whereas strong sealing induces dynamic effect.

The significance of this distinction lies in the definition of total and partial functors. A functor whose body
involves a dynamic effect (i.e., is dynamically impure), is ruled partial, and hence generative. Thus strong
sealing within a functor body induces generativity of that functor. A functor whose body is either pure, or
involves only a static effect (i.e., is dynamically pure), is ruled total, and hence applicative. This ensures
that applicative functors may use abstraction within their bodies without incurring generative behavior. The
methodological importance of this distinction is discussed in Section 3.

A dynamic effect may be thought of as one that occurs during execution, whereas a static effect is one that
occurs during type checking. Dynamic effects are suspended inside of a λ-abstraction, so functor abstractions
are dynamically pure. However, when applied, the dynamic effects inside the functor are released, so that
the application is dynamically impure. On the other hand, static effects occur during type checking, and
hence are not suspended by λ-abstraction, nor released by application.

Formalization The typing judgment for our system is written Γ `κ M : σ, where κ indicates M ’s purity.
The classifier κ is drawn from the following four-point lattice:

W

/ \
D S

\ /
P

The point P indicates that M is pure (and hence comparable and projectible), D indicates dynamic purity,
S indicates static purity, and W indicates well-formedness only (no purity information). Hence, Γ `P M : σ
is our purity judgment. It will prove to be convenient in our typing rules to exploit the ordering (written
v), meets (u), and joins (t) of this lattice, where P is taken as the bottom and W is taken as the top. We
also sometimes find it convenient to use the notation Πδs:σ1.σ2 for a functor signature that is either total
or partial depending on whether δ = tot or δ = par, respectively.

Some key rules are summarized in Figure 4. Pure modules are dynamically pure and statically pure,
and each of those are at least well-formed (rule 1). Strongly sealed modules are neither statically nor
dynamically pure (2); weakly sealed modules are not statically pure, but are dynamically pure if their body
is (3). Applicative functors must have dynamically pure bodies (5); generative functors have no restriction
(6). Applicative functors may be used as generative ones (7). Variables are pure (4), and lambdas are
dynamically pure (5 and 6). The application of an applicative functor is as pure as the functor itself (8),
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but the application of a generative functor is at best statically pure (9). Finally, the purity of a module is
preserved by signature subsumption (12). The complete set of typing rules is given in Appendix A.

The rules for functor application (rules 8 and 9) require that the functor argument be pure. This is
because the functor argument is substituted into the functor’s codomain to produce the result signature,
and the substitution of impure modules for variables (which are always pure) can turn well-formed signatures
into ill-formed ones (for example, [Typ s] becomes ill-formed if an impure module is substituted for s). (An
alternative rule proposed by Harper and Lillibridge [10] resolves this issue, but induces the avoidance problem,
as we discuss in Section 4.) Therefore, when a functor is to be applied to an impure argument, that argument
must first be bound to a variable, which is pure. Similarly, projection of the second component of a pair is
restricted to pure pairs (rule 11), but no such restriction need be made for projection of the first component
(rule 10), since no substitution is involved.

Static Equivalence In the foregoing discussion we have frequently made reference to a notion of module
equivalence, without specifying what this means. A key design decision for a module calculus is to define
when two comparable modules are to be deemed equivalent. Different module systems arise from different
notions of equivalence.

If a pure module has signature [[T ]], it is possible to extract the type component from it. Type checking
depends essentially on the matter of which types are equal, so we must consider when TypM is equal to
Typ M ′. The simplest answer would be to regard Typ M = Typ M ′ exactly when the modules M and M ′ are
equal. But this is too naive because we cannot in general determine when two modules are equal. Suppose
F : [[int]] → σ and e, e′ : int. Then F [e] = F [e′] if and only if e = e′, but the latter equality is undecidable
in general.

A characteristic feature of second class module systems is that they respect the phase distinction [11]
between compile-time and run-time computation. This property of a module system states that type equiv-
alence must be decidable independently of term equivalence. This should be intuitively plausible, since a
second-class module system provides no means by which a type component of a module can depend on a
term component. (This is not happenstance, but the result of careful design. We will see in Section 5 that
the matter is more subtle than it appears.)

Based on this principle, we define module equivalence to be “equivalence for type checking purposes”,
or static equivalence. Roughly speaking, two modules are deemed to be equivalent whenever they agree on
their corresponding type components.3

We write our module equivalence judgment as Γ ` M ∼= M ′ : σ. The rules for static equivalence of atomic
modules are the expected ones. Atomic type components must be equal, but atomic term components need
not be:

Γ ` τ ≡ τ ′

Γ ` [τ ] ∼= [τ ′] : [[T ]]

Γ `P M : [[τ ]] Γ `P M ′ : [[τ ]]

Γ ` M ∼= M ′ : [[τ ]]

Since the generative production of new types in a generative functor is notionally a dynamic operation,
generative functors have no static components to compare. Thus, pure generative functors are always
statically equivalent, just as atomic term modules are:

Γ `P M : Πpars:σ1.σ2 Γ `P M ′ : Πpars:σ1.σ2

Γ ` M ∼= M ′ : Πpars:σ1.σ2

As these rules indicate, static equivalence of atomic term modules and generative functors is trivial, as
is static equivalence of trivial modules (i.e., modules of signature 1). In the meta-theory, it is therefore
convenient to consider the class of signatures of the form 1, [[τ ]], and Πpars:σ1.σ2, which we call unitary to
suggest that they behave like unit (i.e., 1) with respect to static equivalence. (See Appendices D and E for
further details on the utility of the “unitary” distinction.) The complete set of equivalence rules is given in
Appendix A.

As an aside, this discussion of module equivalence refutes the misconception that first-class modules are
more general than second-class modules. In fact, the expressiveness of first- and second-class modules is

3The phase distinction calculus of Harper, et al. [11] includes “non-standard” equality rules for phase-splitting modules M

into structures 〈Mstat , Mdyn〉 consisting of a static component Mstat and a dynamic component Mdyn . Our static equivalence
M ∼= M ′ amounts to saying Mstat = M ′

stat in their system. However, we do not identify functors with structures, as they do.
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incomparable. First-class modules have the obvious advantage that they are first-class. However, since the
type components of a first-class module can depend on run-time computations, it is impossible to get by
with static module equivalence and one must use dynamic equivalence instead (in other words, one cannot
phase-split modules as in Harper et al. [11]). Consequently, first-class modules cannot propagate as much
type information as second-class modules can.

Singleton Signatures Type sharing information is expressed in our language using singleton signa-
tures [32], a derivative of translucent sums [10, 13, 17]. (An illustration of the use of singleton signatures
to express type sharing appears in Figure 2.) The type system allows the deduction of equivalences from
membership in singleton signatures, and vice versa, and also allows the forgetting of singleton information
using the subsignature relation:

Γ `P M :
�

σ(M ′) Γ `P M ′ : σ

Γ ` M ∼= M ′ : σ

Γ ` M ∼= M ′ : σ

Γ `P M :
�

σ(M ′)

Γ `P M : σ

Γ `
�

σ(M) ≤ σ
Γ ` M ∼= M ′ : σ

Γ `
�

σ(M) ≤
�

σ(M ′)

When σ = [[T ]], these deductions follow using primitive rules of the type system (since
�

[[T ]](M) =
�

(M) is
primitive). At other signatures, they follow from the definitions given in Figure 5.

Beyond expressing sharing, singletons are useful for “selfification” [10]. For instance, if s is a variable
bound with the signature [[T ]], s can be given the fully transparent signature

�
(s). This fact is essential to

the existence of principal signatures in our type checking algorithm. Note that since singleton signatures
express static equivalence information, the formation of singleton signatures is restricted to pure modules.
Thus, only pure modules can be selfified (as in Harper and Lillibridge [10] and Leroy [13]).

Singleton signatures complicate equivalence checking, since equivalence can depend on context. For
example, λs:[[T ]].[int] and λs:[[T ]].s are obviously inequivalent at signature [[T ]] → [[T ]]. However, using
subsignatures, they can also be given the signature

�
([int])→ [[T ]] and at that signature they are equivalent,

since they return the same result when given the only permissible argument, [int].
As this example illustrates, the context sensitivity of equivalence provides more type equalities than

would hold if equivalence were strictly context insensitive, thereby allowing the propagation of additional
type information. For example, if F : (

�
([int]) → [[T ]]) → [[T ]], then the types Typ(F (λs:[[T ]].[int])) and

Typ(F (λs:[[T ]].s)) are equal, which could not be the case under a context-insensitive regime.
A subtle technical point arises in the use of the higher-order singletons defined in Figure 5. Suppose

F : [[T ]]→ [[T ]]. Then
�

[[T ]]→[[T ]](F ) = Πs:[[T ]].
�

(F s), which intuitively contains the modules equivalent to F :
those that take members of F ’s domain and return the same thing that F does. Formally speaking, however,
the canonical member of this signature is not F but its eta-expansion λs:[[T ]].F s. In fact, it is not obvious
that F belongs to

�
[[T ]]→[[T ]](F ).

To ensure that F belongs to its singleton signature, our type system (following Stone and Harper [32])
includes the extensional typing rule:

Γ `P M : Πs:σ1.σ
′
2 Γ, s:σ1 `P M s : σ2

Γ `P M : Πs:σ1.σ2

Using this rule, F belongs to Πs:[[T ]].
�
(F s) because it is a function and because Fs belongs to

�
(F s).

A similar extensional typing rule is provided for products. It is possible that the need for these rules
could be avoided by making higher-order singletons primitive, but we have not explored the meta-theoretic
implications of such a change.

Since a module with a (higher-order) singleton signature is fully transparent, it is obviously projectible
and comparable, and hence could be judged to be pure, even if it would otherwise be classified as impure.
This is an instance of the general problem of recognizing that “benign effects” need not disturb purity. Since
purity is a judgment in our framework, we could readily incorporate extensions to capture such situations,
but we do not pursue the matter here.

Lastly, it is worth noting that for all unitary signatures σ (as defined in Section 2),
�

σ(M) = σ. This
results from the fact that singletons express static equivalence, and all modules of a unitary signature are
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�
[[T ]](M)

def

=
�
(M)

�
[[τ ]](M)

def

= [[τ ]]
�

1(M)
def

= 1
�

Πtots:σ1.σ2
(M)

def

= Πtots:σ1.
�

σ2
(Ms)

�
Πpars:σ1.σ2

(M)
def

= Πpars:σ1.σ2
�

Σs:σ1 .σ2
(M)

def

=
�

σ1
(π1M)×

�
σ2[π1M/s](π2M)

� �
(M ′)(M)

def

=
�
(M)

Figure 5: Singletons at Higher Signatures

statically equivalent at that signature. The distinction between the higher-order singleton definitions for Πtot

and Πpar exhibits another instance of equivalence depending on context. In particular, while λs:[[T ]].[int]

and λs:[[T ]].s are inequivalent at [[T ]] → [[T ]], they are equivalent at [[T ]]
par
→ [[T ]] because they may both be

assigned the latter signature, which is unitary, by subsumption.

Type Checking Our type system enjoys a sound, complete, and effective type checking algorithm. Our
algorithm comes in three main parts: first, an algorithm for synthesizing the principal (i.e., minimal) signa-
ture of a module; second, an algorithm for checking subsignature relationships; and third, an algorithm for
deciding equivalence of modules and of types.

Module typechecking then proceeds in the usual manner, by synthesizing the principal signature of a
module and then checking that it is a subsignature of the intended signature. The signature synthesis
algorithm is given in Appendix C, and its correctness theorems are stated below. The main judgment of
signature synthesis is Γ `κ M ⇒ σ, which states that M ’s principal signature is σ and M ’s purity is inferred
to be κ.

Subsignature checking is syntax-directed and easy to do, given an algorithm for checking module equiv-
alence; module equivalence arises when two singleton signatures are compared for the subsignature relation.
The equivalence algorithm is essentially Stone and Harper’s algorithm [32] for type constructor equivalence
in the presence of singleton kinds, extended to handle unitary signatures and the interplay between module
equivalence and type equivalence. The algorithm, along with its proof of correctness and decidability, is de-
tailed in Appendices D and E. The proof is mostly identical to the Stone-Harper proof. In extending it, we
have taken the opportunity to revise a few minor errors and inelegancies; in particular, the lemmas leading
up to the proof of soundness for the equivalence algorithm have been considerably simplified (Appendix D).

Theorem 2.1 (Soundness)
If Γ `κ M ⇒ σ then Γ `κ M : σ.

Theorem 2.2 (Completeness)
If Γ `κ M : σ then Γ `κ′ M ⇒ σ′ and Γ ` σ′ ≤ σ and κ′ v κ.

Note that since the synthesis algorithm is deterministic, it follows from Theorem 2.2 that principal signatures
exist. Finally, since our synthesis algorithm, for convenience, is presented in terms of inference rules, we
require one more result stating that it really is an algorithm (see Appendix F for proof details):

Theorem 2.3 (Effectiveness)
For any Γ and M , it is decidable whether there exist σ and κ such that Γ `κ M ⇒ σ.

11



signature SYMBOL TABLE =

sig

type symbol

val string to symbol : string -> symbol

val symbol to string : symbol -> string

val eq : symbol * symbol -> bool

end

functor SymbolTableFun () :> SYMBOL TABLE =

struct

type symbol = int

val table : string array =

(* allocate internal hash table *)

Array.array (initial size, NONE)

fun string to symbol x =

(* lookup (or insert) x *) ...

fun symbol to string n =

(case Array.sub (table, n) of

SOME x => x

| NONE => raise (Fail "bad symbol"))

fun eq (n1, n2) = (n1 = n2)

end

structure SymbolTable = SymbolTableFun ()

Figure 6: Strong Sealing Example

3 Strong and Weak Sealing

Generativity is essential for providing the necessary degree of abstraction in the presence of effects. When a
module has side-effects, such as the allocation of storage, abstraction may demand that types be generated
in correspondence to storage allocation, in order to ensure that elements of those types relate to the local
store and not the store of another instance.

Consider, for example, the symbol table example given in Figure 6. A symbol table contains an abstract
type symbol, operations for interconverting symbols and strings, and an equality test (presumably faster
than that available for strings). The implementation creates an internal hash table and defines symbols to
be indices into that internal table.

The intention of this implementation is that the Fail exception never be raised. However, this de-
pends on the generativity of the symbol type. If another instance, SymbolTable2, is created, and the
types SymbolTable.symbol and SymbolTable2.symbol are considered equal, then SymbolTable could be
asked to interpret indices into SymbolTable2’s table, thereby causing failure. Thus, it is essential that
SymbolTable.symbol and SymbolTable2.symbol be considered unequal.

The symbol table example demonstrates the importance of strong sealing for encoding generative abstract
types in stateful modules. Generativity is not necessary, however, for purely functional modules. Leroy [14]
gives several examples of such modules as motivation for the adoption of applicative functors. For instance,
one may wish to implement persistent sets using ordered lists. Figure 7 exhibits a purely functional SetFun
functor, which is parameterized over an ordered element type, and whose implementation of the abstract
set type is sealed. When SetFun is instantiated multiple times—e.g., in different client modules—with the
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signature ORD =

sig

type elem

val compare : elem * elem -> order

end

signature SET = (* persistent sets *)

sig

type elem

type set

val empty : set

val insert : elem * set -> set

...

end

functor SetFun (Elem : ORD)

:: SET where type elem = Elem.elem =

struct

type elem = Elem.elem

type set = elem list

...

end

structure IntOrd = struct

type elem = int

val compare = Int.compare

end

structure IntSet1 = SetFun(IntOrd)

structure IntSet2 = SetFun(IntOrd)

Figure 7: Weak Sealing Example

same element type, it is useful for the resulting abstract set types to be seen as interchangeable.
In our system, SetFun is made applicative, but still opaque, by weakly sealing its body. Specifically,

IntSet1.set and IntSet2.set are both equivalent to SetFun(IntOrd).set. This type is well-formed
because SetFun has an applicative functor signature, and SetFun and IntOrd, being variables, are both
pure. Recall that a functor containing weak sealing is impure and must be bound to a variable before it can
be used applicatively.

The astute reader may notice that weak sealing is not truly necessary in the SetFun example. In fact,
one can achieve the same effect as the code in Figure 7 by leaving the body of the functor unsealed and
(strongly) sealing the functor itself with an applicative functor signature before binding it to SetFun. This
is the technique employed by Shao [30] for encoding applicative functors, as his system lacks an analogue of
weak sealing. A failing of this approach is that it only works if the functor body is fully transparent—in the
absence of weak sealing, any opaque substructures would have to be strongly sealed, preventing the functor
from being given an applicative signature.

The best examples of the need for opaque substructures in applicative functors are provided by the
interpretation of ML datatype’s as abstract types [12]. In both Standard ML and Caml, datatype’s are
opaque in the sense that their representation as recursive sum types is not exposed, and thus distinct
instances of the same datatype declaration create distinct types. Standard ML and Caml differ, however,
on whether datatype’s are generative. In the presence of applicative functors (which are absent from
Standard ML) there is excellent reason for datatype’s not to be generative—namely, that a generative
interpretation would prevent datatype’s from appearing in the bodies of applicative functors. This would
severely diminish the utility of applicative functors, particularly since in ML recursive types are provided
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only through the datatype mechanism. For example, an implementation of SetFun with splay trees, using
a datatype declaration to define the tree type, would require the use of weak sealing.

For these reasons, strong sealing is no substitute for weak sealing. Neither is weak sealing a substitute
for strong. As Leroy [14] observed, in functor-free code, generativity can be simulated by what we call weak
sealing. (This can be seen in our framework by observing that dynamic purity provides no extra privileges
in the absence of functors.) With functors, however, strong sealing is necessary to provide true generativity.
Nevertheless, it is worth noting that strong sealing is definable in terms of other constructs in our language,
while weak sealing is not. In particular, we can define strong sealing, using a combination of weak sealing
and generative functor application, as follows:

M :>σ
def

= ((λ :1.M) ::(Πpar :1.σ)) 〈〉

The existence of this encoding does not diminish the importance of strong sealing, which we have made
primitive in our language regardless.

4 The Avoidance Problem

The rules of our type system (particularly rules 8, 9, and 11 from Figure 4) are careful to ensure that sub-
stituted modules are always pure, at the expense of requiring that functor and second-projection arguments
are pure. This is necessary because the result of substituting an impure module into a well-formed signature
can be ill-formed. Thus, to apply a functor to an impure argument, one must let-bind the argument and
apply the functor to the resulting (pure) variable.

A similar restriction is imposed by Shao [30], but Harper and Lillibridge [10] propose an alternative
that softens the restriction. Harper and Lillibridge’s proposal (expressed in our terms) is to include a
non-dependent typing rule without a purity restriction:

Γ `κ M1 : σ1 → σ2 Γ `κ M2 : σ1

Γ `κ M1M2 : σ2

When M2 is pure, this rule carries the same force as our dependent rule, by exploiting singleton signatures
and the contravariance of functor signatures:

Πs:σ1.σ2 ≤ Πs:
�

σ1
(M2).σ2

≡ Πs:
�

σ1
(M2).σ2[M2/s]

=
�

σ1
(M2) → σ2[M2/s]

When M2 is impure, this rule is more expressive than our typing rule, because the application can still occur.
However, to exploit this rule, the type checker must find a non-dependent supersignature that is suitable for
application to M2.

The avoidance problem [8, 17] is that there is no “best” way to do so. For example, consider the signature:

σ = ([[T ]] →
�

(s)) ×
�
(s)

To obtain a supersignature of σ avoiding the variable s, we must forget that the first component is a constant
function, and therefore we can only say that the second component is equal to the first component’s result
on some particular argument. Thus, for any type τ , we may promote σ to the supersignature:

ΣF :([[T ]] → [[T ]]).
�

(F [τ ])

This gives us an infinite array of choices. Any of these choices is superior to the obvious ([[T ]]→ [[T ]])× [[T ]],
but none of them is comparable to any other, since F is abstract. Thus, there is no minimal supersignature
of σ avoiding s. The absence of minimal signatures is a problem, because it means that there is no obvious
way to perform type checking.

In our type system, we circumvent the avoidance problem by requiring that the arguments of functor
application and second-projection be pure (thereby eliminating any need to find non-dependent supersigna-
tures), and provide a let construct so that such operations can still be applied to impure modules. We have
shown that, as a result, our type theory does enjoy principal signatures.
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module elaboration ∆ `κ M̂ ; M : ς
signature coercion ∆ ` M : ς ≤ σ ; M ′

existential peeling M : ς
peel
=⇒ M ′ : ς ′

signature elaboration ∆ ` σ̂ ; σ
type elaboration ∆ ` τ̂ ; τ
term elaboration ∆ ` ê ; e : τ

elaborator signatures ς ::= 1 | [[T ]] | [[τ ]] |
�
(M) |

Πtots:σ.ς | Πpars:σ.ς |
Σs:ς1.ς2 | ∃s:ς1.ς2

elaborator contexts ∆ ::= • | ∆, s:ς

Figure 8: Elaborator Judgments

To achieve this, however, our let construct must be labeled with its result signature (not mentioning
the variable being bound), for otherwise the avoidance problem re-arises. This essentially requires that
every functor application or projection involving an impure argument be labeled with its result signature
as well, leading to potentially unacceptable syntactic overhead in practice. Fortunately, programs can be
systematically rewritten to avoid this problem, as we describe next.

4.1 Elaboration and Existential Signatures

Consider the unannotated let expression let s = M1 in M2, where M1 : σ1 and M2 : σ2(s). If M1 is pure,
then the let expression can be given the minimal signature σ2(M1). Otherwise, we are left with the variable
s leaving scope, but no minimal supersignature of σ2(s) not mentioning s. However, if we rewrite the let

expression as the pair 〈s = M1, M2〉, then we may give it the signature Σs:σ1.σ2(s) and no avoidance problem
arises. Similarly, the functor application F (M) with F : Πs:σ1.σ2 and impure M : σ1 can be rewritten as
〈s = M, F (s)〉 and given signature Σs:σ1.σ2.

Following Harper and Stone [12], we propose the use of an elaboration algorithm to systematize these
rewritings. This elaborator takes code written in an external language that supports unannotated let’s, as well
as impure functor application and second-projection, and produces code written in our type system. Since
the elaborator rewrites modules in a manner that changes their signatures, it also must take responsibility
for converting those modules back to their expected signature wherever required. This means that the
elaborator must track which pairs are “real” and which have been invented by the elaborator to circumvent
the avoidance problem.

The elaborator does so using the types. When the elaborator invents a pair to circumvent the avoidance
problem, it gives its signature using an existential ∃ rather than Σ. In the internal language, ∃s:σ1.σ2 means
the same thing as Σs:σ1.σ2, but the elaborator treats the two signatures differently: When the elaborator
expects (say) a functor and encounters a Σs:σ1.σ2, it generates a type error. However, when it encounters an
∃s:σ1.σ2, it extracts the σ2 component (the elaborator’s invariants ensure that it always can do so), looking
for the expected functor.

4.1.1 Formalization

The elaborator is defined in terms of the five judgments given in Figure 8. The metavariables M̂ , σ̂, etc., range
over expressions in the external language (these are the same as the internal language’s expressions, except
that unannotated let is supported), and the metavariables ς and ∆ range over the elaborator’s signatures
and contexts (the same as the internal language’s, except that ∃ is supported, as given in Figure 8).

The main judgment is module elaboration, written ∆ `κ M̂ ; M : ς , which means that the external
module M̂ elaborates to the internal module M , which has the signature ς and purity κ. The signature,
type, and term elaboration judgments are similar (except that signatures and types have no classifiers to
generate). Two judgments are included for eliminating existentials: signature coercion is used when the
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∆ `κF
F̂ ; F : ςF sF :

�
ςF

(sF )
peel
=⇒ G : Πs:σ1.ς2

∆ `κM
M̂ ; M : ςM ∆, sF :ςF , sM :ςM ` sM : ςM ≤ σ1 ; N κM 6= P

∆ `κF tκM
F̂ M̂ ; 〈sF = F, 〈sM = M, GN〉〉 : ∃sF :ςF .∃sM :ςM .ς2[N/s]

(13)

∆ `κ1
M̂1 ; M1 : ς1 ∆, s:ς1 `κ2

M̂2 ; M2 : ς2 κ1 t κ2 6= P

∆ `κ1tκ2
let s = M̂1 in M̂2 ; 〈s = M1, M2〉 : ∃s:ς1.ς2

(14)

∆, s:σ′
1 ` s : σ′

1 ≤ σ1 ; M ∆, s:σ′
1, t:ς2[M/s] ` t : ς2[M/s] ≤ σ′

2 ; N (δ, δ′) 6= (par, tot)

∆ ` F : Πδs:σ1.ς2 ≤ Πδ′

s:σ′
1.σ

′
2 ; λs:σ′

1. let t = FM in (N : σ′
2)

(15)

∆ ` π2M : ς2[π1M/s] ≤ σ ; N

∆ ` M : ∃s:ς1.ς2 ≤ σ ; N
(16)

π2M : ς2[π1M/s]
peel
=⇒ M ′ : ς

M : ∃s:ς1.ς2
peel
=⇒ M ′ : ς

(17)
ς not an existential

M : ς
peel
=⇒ M : ς

(18)

Figure 9: Illustrative Elaboration Rules

desired result signature is known, peeling is used to peel off the outermost existentials when the result is not
known. The signature coercion judgment is written ∆ ` M : ς ≤ σ ; M ′, meaning that a (pure) module
M with signature ς when coerced to signature σ becomes the (pure) module M ′. The peeling judgment is

written M : ς
peel
=⇒ M ′ : ς ′, meaning that M : ς peels to M ′ : ς ′.

Some illustrative rules of the elaborator appear in Figure 9; the complete definition is given in Appendix G.
In these rules, the auxiliary operation · takes elaborator signatures and contexts to internal ones by replacing
all occurrences of ∃ with Σ. They also use an elaborator signature analog of higher-order singletons, which
are defined exactly as in Figure 5 with the additional case:

�
∃s:ς1.ς2(M)

def

= ∃ :
�

ς1(π1M).
�

ς2[π1M/s](π2M)

A disadvantage of employing an elaborator is that it is difficult to argue rigorously about whether it is
correct. Unlike the internal language, which is defined by a declarative type system and proven decidable
by a sound and complete typechecking algorithm, the external language has no declarative definition but is
defined directly via the elaboration algorithm itself, so there is no reference system against which to compare
the elaborator. Nevertheless, we can still state and prove some important invariants about elaboration, as
enumerated in the theorem below. In particular, the module and signature that are output by module
elaboration are well-formed in the internal language and, moreover, the signature is principal.

Theorem 4.1 (Elaborator Invariants)
Suppose ∆ ` ok. Then:

1. If ∆ `κ M̂ ; M : ς then ∆ `κ M ⇒ ς (and hence ∆ `κ M : ς).

2. If ∆ ` M : ς ≤ σ ; M ′ and ∆ `P M : ς and ∆ ` σ sig then ∆ `P M ′ : σ.

3. If M : ς
peel
=⇒ M ′ : ς ′ and Γ `P M ⇒ ς then Γ `P M ′ ⇒ ς ′.

4. If ∆ ` σ̂ ; σ then ∆ ` σ sig.

5. If ∆ ` τ̂ ; τ then ∆ ` τ type.

6. If ∆ ` ê ; e : τ then ∆ ` e ⇒ τ (and hence ∆ ` e : τ).

Proof: By straightforward induction on the elaboration algorithm. �
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Rules 13 and 14 illustrate how the elaborator constructs existential signatures to account for hidden,
impure modules: In each of these rules, impure modules are let-bound, providing variables that may be used
to satisfy the purity requirements on existential peeling and signature coercion (required by the invariants
in Theorem 4.1) and on functor application (required by the type system). These variables must leave
scope, requiring the construction of a pair that the elaborator tags with an existential signature. (Each of
these rules carries a side condition that certain modules involved are impure; when those conditions do not
hold, less interesting rules are used to produce more precise signatures.) Rule 15 illustrates the coercion of
functors, and rules 16, 17, and 18 handle elimination of existentials.

Rule 15 is interesting because it demonstrates the importance of static purity. The elaborator invariant
requires that modules synthesized by signature coercion be pure (because they are often fed back in as
inputs), but in the case that δ = par, the synthesized lambda is pure only because the type system can
recognize that its body is statically pure and its dynamic impurity is captured by the lambda.

Although our elaborator serves only to deal with the avoidance problem, a realistic elaborator would
also address other issues such as coercive signature matching (where a field is either dropped or made less
polymorphic), open, type inference, datatypes, and so forth [12]. We believe our elaborator extends to cover
all these issues without difficulty.

4.1.2 Primitive Existential Signatures

In a sense, the elaborator solves the avoidance problem by introducing existential signatures to serve in place
of the non-existent minimal supersignatures not mentioning a variable. In light of this, a natural question
is whether the need for an elaborator could be eliminated by making existential signatures primitive to the
type system.

One natural way to govern primitive existentials is with the introduction and elimination rules:

Γ `P M : σ1 Γ ` σ ≤ σ2[M/s] Γ, s:σ1 ` σ2 sig

Γ ` σ ≤ ∃s:σ1.σ2

and
Γ, s:σ1 ` σ2 ≤ σ Γ ` σ1 sig Γ ` σ sig

Γ ` ∃s:σ1.σ2 ≤ σ

With these rules, the avoidance problem could be solved: The least supersignature of σ2(s) not mentioning
s:σ1 would be ∃s:σ1.σ2(s).

Unfortunately, these rules (particularly the first) make type checking undecidable. For example, each of
the queries

Πs:σ.[[τ ]]
?
≤ ∃s′:σ.Πs:

�
σ(s′).[[τ ′]]

and

(λs:σ.[τ ])
?
∼= (λs:σ.[τ ′]) : ∃s′:σ.Πs:

�
σ(s′).[[T ]]

holds if and only if there exists pure M : σ such that the types τ [M/s] and τ ′[M/s] are equal. Thus,
deciding subsignature or equivalence queries in the presence of existentials would be as hard as higher-order
unification, which is known to be undecidable [9].

We have explored a variety of alternative formalizations of primitive singletons as well, and none has led
to a type system we have been able to prove decidable.

4.2 Syntactic Principal Signatures

It has been argued for reasons related to separate compilation that principal signatures should be expressible
in the syntax available to the programmer. This provides the strongest support for separate compilation,
because a programmer can break a program at any point and write an interface that expresses all the
information the compiler could have determined at that point. Such strong support does not appear to
be vital in practice, since systems such as Objective Caml and Standard ML of New Jersey’s higher-order
modules have been used successfully for some time without principal signatures at all, but it is nevertheless
a desirable property.
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Our type system (i.e., the internal language) does provide syntactic principal signatures, since principal
signatures exist, and all the syntax is available to the programmer. However, the elaborator’s external
language does not provide syntax for the existential signatures that can appear in elaborator signatures,
which should be thought of as the principal signatures of external modules. Thus, we can say that our basic
type system provides syntactic principal signatures, but our external language does not.

In an external language where the programmer is permitted to write existential signatures, elaborating
code such as:

(λs′:(∃s:σ1.σ2) . . .)M

requires the elaborator to decide whether M can be coerced to belong to ∃s:σ1.σ2, which in turn requires
the elaborator to produce a M ′ : σ1 such that M : σ2[M

′/s]. Determining whether any such M ′ exists
requires the elaborator to solve an undecidable higher-order unification problem: if σ2 =

�
([τ ]) →

�
([τ ′])

and M = λt:[[T ]].t, then M : σ2[M
′/s] if and only if τ [M ′/s] and τ ′[M ′/s] are equal.

Thus, to allow programmer-specified existential signatures in the greatest possible generality would make
elaboration undecidable. Partial measures may be possible, but we will not discuss any here.

5 Packaging Modules as First-Class Values

It is desirable for modules to be usable as first-class values. This is useful to make it possible to choose
at run time the most efficient implementation of a signature for a particular data set (for example, sparse
or dense representations of arrays). However, fully general first-class modules present difficulties for static
typing [17].

One practical approach to modules as first-class values was suggested by Mitchell, et al. [23], who propose
that second-class modules automatically be wrapped as existential packages [24] to obtain first-class values. A
similar approach to modules as first-class values is described by Russo and implemented in Moscow ML [28].

This existential-packaging approach to modules as first-class values is built into our language. We write
the type of a packaged module as 〈|σ|〉 and the packaging construct as pack M as 〈|σ|〉. Elimination of packaged
modules (as for existentials) is performed using a closed-scope unpacking construct. These may be defined
as follows:

〈|σ|〉
def

= ∀α.(σ → α) → α

pack M as 〈|σ|〉
def

= Λα.λf :(σ → α).f M

unpack e as s:σ in (e′ : τ)
def

= e τ (Λs:σ.e′)

(Compare the definition of 〈|σ|〉 with the standard encoding of the existential type ∃β.τ as ∀α.(∀β. τ→α)→α.)
The main limitation of existentially-packaged modules is the closed-scope elimination construct. It has

been observed repeatedly in the literature [19, 3, 17] that this construct is too restrictive to be very useful.
For one, in “unpack e as s:σ in (e′ : τ)”, the result type τ may not mention s. As a consequence, functions
over packaged modules may not be dependent; that is, the result type may not mention the argument.
This deficiency is mitigated in our language by the ability to write functions over unpackaged, second-class
modules, which can be given the dependent type Πs:σ.τ(s) instead of 〈|σ|〉 → τ .

Another problem with the closed-scope elimination construct is that a term of package type cannot be
unpacked into a stand-alone second-class module; it can only be unpacked inside an enclosing term. As each
unpacking of a packaged module creates an abstract type in a separate scope, packages must be unpacked at
a very early stage to ensure coherence among their clients, leading to “scope inversions” that are awkward
to manage in practice.

What we desire, therefore, is a new module construct of the form “unpack e as σ”, which coerces a first-
class package e of type 〈|σ|〉 back into a second-class module of signature σ. The following example illustrates
how adding such a construct carelessly can lead to unsoundness:

module F = λs:[[〈|σ|〉]].(unpack (Val s) as σ)
module X1 = F [pack M1 as 〈|σ|〉]
module X2 = F [pack M2 as 〈|σ|〉]

Note that the argument of the functor F is an atomic term module, so all arguments to F are statically
equivalent. If F is given an applicative signature, then X1 and X2 will be deemed equivalent, even if the
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types τ ::= · · · | 〈|σ|〉
terms e ::= · · · | pack M as 〈|σ|〉
modules M ::= · · · | unpack e as σ

Γ ` σ1 ≡ σ2

Γ ` 〈|σ1|〉 ≡ 〈|σ2|〉

Γ `κ M : σ

Γ ` pack M as 〈|σ|〉 : 〈|σ|〉

Γ ` e : 〈|σ|〉

Γ `S unpack e as σ : σ

Figure 10: Packaged Module Extension

original modules M1 and M2 are not! Thus, F must be deemed generative, which in turn requires that the
unpack construct induce a dynamic effect.

Packaged modules that admit this improved unpacking construct are not definable in our core language,
but they constitute a simple, orthogonal extension to the type system that does not complicate type checking.
The syntax and typing rules for this extension are given in Figure 10. Note that the closed-scope unpacking
construct is definable as

let s = (unpack e as σ) in (e′ : τ)

Intuitively, unpacking is generative because the module being unpacked can be an arbitrary term, whose
type components may depend on run-time conditions. In the core system we presented in Section 2, the
generativity induced by strong sealing was merely a pro forma effect—the language, supporting only second-
class modules, provided no way for the type components of a module to be actually generated at run time.
The type system, however, treats dynamic effects as if they are all truly dynamic, and thus it scales easily
to handle the real run-time type generation enabled by the extension in Figure 10.

6 Related Work

Harper, Mitchell and Moggi [11] pioneered the theory of phase separation, which is fundamental to achieving
maximal type propagation in higher-order module systems. Their non-standard equational rules, which
identify higher-order modules with primitive “phase-split” ones, are similar in spirit to, though different in
detail from, our notion of static module equivalence. One may view their system as a subsystem of ours in
which there is no sealing mechanism (and consequently all modules are pure).

MacQueen and Tofte [20] proposed a higher-order module extension to the original Definition of Standard
ML [21], which was implemented in the Standard ML of New Jersey compiler. Their semantics involves a
two-phase elaboration process, in which higher-order functors are re-elaborated at each application to take
advantage of additional information about their arguments. This advantage is balanced by the disadvantage
of inhibiting type propagation in the presence of separate compilation since functors that are compiled
separately from their applications cannot be re-elaborated. A more thorough comparison is difficult because
MacQueen and Tofte employ a stamp-based semantics, which is difficult to transfer to a type-theoretic
setting.

Focusing on controlled abstraction, but largely neglecting higher-order modules, Harper and Lillib-
ridge [10] and Leroy [13, 15] introduced the closely related concepts of translucent sums and manifest
types. These mechanisms served as the basis of the module system in the revised Definition of Standard
ML 1997 [22], and Harper and Stone [12] have formalized the elaboration of Standard ML 1997 programs
into a translucent sums calculus. To deal with the avoidance problem, Harper and Stone rely on elaborator
mechanisms similar to ours. The Harper and Stone language can be viewed as a subsystem of ours in which
all functors are generative and only strong sealing is supported.

Leroy introduced the notion of an applicative functor [14], which enables one to give fully transparent
signatures for many higher-order functors. Leroy’s formalism may be seen as defining purity by a syntactic
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# module type S = sig type t end

module F = functor (X : S) ->

struct type u = X.t type v = X.t end

module G = functor (X : S) ->

struct type u = X.t type v = u end

module AppF = F((struct type t = int end : S))

module AppG = G((struct type t = int end : S));;

(* Output of the Objective Caml 3.04 compiler *)

module type S = sig type t end

module F : functor (X : S) ->

sig type u = X.t and v = X.t end

module G : functor (X : S) ->

sig type u = X.t and v = u end

module AppF : sig type u and v end

module AppG : sig type u and v = u end

Figure 11: Encoding of the Avoidance Problem in O’Caml

restriction that functor applications appearing in type paths must be in named form. On one hand, this
restriction provides a weak form of structure sharing in the sense that the abstract type F(X).t can only
be the result of applying F to the module named X. On the other hand, the restriction prevents the system
from capturing the full equational theory of higher-order functors, since not all equations can be expressed
in named form [4]. Together, manifest types and applicative functors form the basis of the module system
of Objective Caml [26].

The manifest type formalism, like the translucent sum formalism, does not address the avoidance problem,
and consequently it lacks principal signatures. This can lead Objective Caml to anomalous behavior such
as that illustrated in Figure 11, which implements an instance of the avoidance problem. Two functors F

and G are defined that have equivalent, fully transparent principal signatures. However, when applied to the
same impure module, the signatures of the results AppF and AppG differ rather arbitrarily (seemingly based
on some purely syntactic discrepancy between F’s and G’s signatures).

More recently, Russo, in his thesis [27], formalized two separate module languages: one being a close
model of the SML module system, the other being a higher-order module system with applicative functors
along the lines of O’Caml, but abandoning the named form restriction as we do. Russo’s two languages
can be viewed as subsystems of ours, the first supporting only strong sealing, the second supporting only
weak sealing. We adopt his use of existential signatures to address the avoidance problem, although Russo
also used existentials to model generativity, which we do not. Russo’s thesis also describes an extension to
SML for packaging modules as first-class values. This extension is very similar to the existential-packaging
approach discussed in the beginning of Section 5, and therefore suffers from the limitations of the closed-scope
unpacking construct.

While Russo defined these two languages separately, he implemented the higher-order module system
as an experimental extension to the Moscow ML compiler [25]. Combining the two languages without
distinguishing between static and dynamic effects has an unfortunate consequence. The Moscow ML higher-
order module system places no restrictions on the body of an applicative functor; in particular, one can
defeat the generativity of a generative functor by eta-expanding it into an applicative one. Exploiting this
uncovers an unsoundness in the language [6], that, in retrospect, is clear from our analysis: one cannot
convert a partial into a total functor.

Shao [30] has proposed a single type system for modules supporting both applicative and generative
functors. Roughly speaking, Shao’s system may be viewed as a subsystem of ours based exclusively on strong
sealing and dynamic effects, but supporting both Π and Πpar signatures. As we observed in Section 3, this
means that the bodies of applicative functors may not contain opaque substructures (such as datatype’s).
Shao’s system, like ours, circumvents the avoidance problem (Section 4) by restricting functor application and
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projection to pure arguments (which must be paths in his system), and by eliminating implicit subsumption,
which amounts to requiring that let expressions be annotated, as in our system. It seems likely that our
elaboration techniques could as well be applied to Shao’s system to lift these restrictions, but at the expense
of syntactic principal signatures. Shao also observes that fully transparent functors may be regarded as
applicative; this is an instance of the general problem of recognizing benign effects, as described in Section 2.

7 Conclusion

Type systems for first-order module systems are reasonably well understood. In contrast, previous work on
type-theoretic, higher-order modules has left that field in a fragmented state, with various competing designs
and no clear statement of the trade-offs (if any) between those designs. This state of the field has made it
difficult to choose one design over another, and has left the erroneous impression of trade-offs that do not
actually exist. For example, no previous design supports both (sound) generative and applicative functors
with opaque subcomponents.

Our language seeks to unify the field by providing a practical type system for higher-order modules that
simultaneously supports the key functionality of preceding module systems. In the process we dispel some
misconceptions, such as a trade-off between fully expressive generative and applicative functors, thereby
eliminating some dilemmas facing language designers.

Nevertheless, there are several important issues in modular programming that go beyond the scope of
our type theory. Chief among these are:

• Structure Sharing. The original version of Standard ML [21] included a notion of module equivalence
that was sensitive to the dynamic, as well as static, parts of the module. Although such a notion
would violate the phase distinction, it might be possible to formulate a variation of our system that
takes account of dynamic equivalence in some conservative fashion. It is possible to simulate structure
sharing by having the elaborator add an abstract type to each structure to serve as the “compile-time
name” of that structure. However, this would be merely an elaboration convention, not an intrinsic
account of structure sharing within type theory.

• Recursive Modules. An important direction for future research is to integrate recursive modules [7, 5, 29]
into the present framework. The chief difficulty is to achieve practical type checking in the presence
of general recursively dependent signatures, or to isolate a practical sub-language that avoids these
problems.
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A Type System

To reduce the number of freshness side-conditions, we adopt the convention that a context may not bind the
same variable more than once. The second premises of Rules 42 and 44 appear within curly braces to denote
that they are redundant once we have proven Validity in Appendix B. They are built into the declarative
system as a technical device to shorten some of the proofs (in particular, for Theorems B.14 and E.7).

Well-formed contexts: Γ ` ok

• ` ok
(1)

Γ ` σ sig

Γ, s:σ ` ok
(2)

Well-formed types: Γ ` τ type

Γ `P M : [[T ]]

Γ ` Typ M type
(3)

Γ, s:σ ` τ type

Γ ` Πs:σ.τ type
(4)

Γ ` τ ′ type Γ ` τ ′′ type

Γ ` τ ′ × τ ′′ type
(5)

Γ ` σ sig

Γ ` 〈|σ|〉 type
(6)

Type equivalence: Γ ` τ1 ≡ τ2

Γ ` [τ1] ∼= [τ2] : [[T ]]

Γ ` τ1 ≡ τ2
(7)

Γ ` σ1 ≡ σ2 Γ, s:σ1 ` τ1 ≡ τ2

Γ ` Πs:σ1.τ1 ≡ Πs:σ2.τ2
(8)

Γ ` τ ′
1 ≡ τ ′

2 Γ ` τ ′′
1 ≡ τ ′′

2

Γ ` τ ′
1 × τ ′′

1 ≡ τ ′
2 × τ ′′

2

(9)
Γ ` σ1 ≡ σ2

Γ ` 〈|σ1|〉 ≡ 〈|σ2|〉
(10)

Well-formed terms: Γ ` e : τ

Γ ` e : τ ′ Γ ` τ ′ ≡ τ
Γ ` e : τ

(11)
Γ `κ M : [[τ ]]

Γ ` Val M : τ
(12)

Γ `κ M : σ Γ, s:σ ` e : τ Γ ` τ type

Γ ` let s = M in (e : τ) : τ
(13)

Γ, f :[Πs:σ.τ ], s:σ ` e : τ

Γ ` fix f(s:σ):τ.e : Πs:σ.τ
(14)

Γ ` e : Πs:σ.τ Γ `P M : σ

Γ ` e M : τ [M/s]
(15) Γ ` e′ : τ ′ Γ ` e′′ : τ ′′

Γ ` 〈e′, e′′〉 : τ ′ × τ ′′
(16)

Γ ` e : τ ′ × τ ′′

Γ ` π1e : τ ′
(17)

Γ ` e : τ ′ × τ ′′

Γ ` π2e : τ ′′
(18)

Γ `κ M : σ

Γ ` pack M as 〈|σ|〉 : 〈|σ|〉
(19)

Well-formed signatures: Γ ` σ sig

Γ ` ok
Γ ` 1 sig

(20)
Γ ` ok

Γ ` [[T ]] sig
(21)

Γ ` τ type

Γ ` [[τ ]] sig
(22)

Γ `P M : [[T ]]

Γ `
�

(M) sig
(23)

Γ, s:σ′ ` σ′′ sig

Γ ` Πδs:σ′.σ′′ sig
(24)

Γ, s:σ′ ` σ′′ sig

Γ ` Σs:σ′.σ′′ sig
(25)

Signature equivalence: Γ ` σ1 ≡ σ2

Γ ` ok
Γ ` 1 ≡ 1

(26)
Γ ` ok

Γ ` [[T ]] ≡ [[T ]]
(27)

Γ ` τ1 ≡ τ2

Γ ` [[τ1]] ≡ [[τ2]]
(28)

Γ ` M1
∼= M2 : [[T ]]

Γ `
�

(M1) ≡
�

(M2)
(29)

Γ ` σ′
2 ≡ σ′

1 Γ, s:σ′
2 ` σ′′

1 ≡ σ′′
2

Γ ` Πδs:σ′
1.σ

′′
1 ≡ Πδs:σ′

2.σ
′′
2

(30)
Γ ` σ′

1 ≡ σ′
2 Γ, s:σ′

1 ` σ′′
1 ≡ σ′′

2

Γ ` Σs:σ′
1.σ

′′
1 ≡ Σs:σ′

2.σ
′′
2

(31)
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Signature subtyping: Γ ` σ1 ≤ σ2

Γ ` ok
Γ ` 1 ≤ 1

(32)
Γ ` ok

Γ ` [[T ]] ≤ [[T ]]
(33)

Γ ` τ1 ≡ τ2

Γ ` [[τ1]] ≤ [[τ2]]
(34)

Γ ` σ′
2 ≤ σ′

1 Γ, s:σ′
2 ` σ′′

1 ≤ σ′′
2 Γ, s:σ′

1 ` σ′′
1 sig (δ1, δ2) 6= (par, tot)

Γ ` Πδ1s:σ′
1.σ

′′
1 ≤ Πδ2s:σ′

2.σ
′′
2

(35)

Γ ` σ′
1 ≤ σ′

2 Γ, s:σ′
1 ` σ′′

1 ≤ σ′′
2 Γ, s:σ′

2 ` σ′′
2 sig

Γ ` Σs:σ′
1.σ

′′
1 ≤ Σs:σ′

2.σ
′′
2

(36)

Γ `P M : [[T ]]

Γ `
�

(M) ≤ [[T ]]
(37)

Γ ` M1
∼= M2 : [[T ]]

Γ `
�

(M1) ≤
�

(M2)
(38)

Well-formed modules: Γ `κ M : σ

Γ ` ok
Γ `P s : Γ(s)

(39) Γ ` ok
Γ `P 〈〉 : 1

(40)
Γ ` τ type

Γ `P [τ ] : [[T ]]
(41)

Γ ` e : τ {Γ ` τ type }

Γ `P [e : τ ] : [[τ ]]
(42)

Γ, s:σ′ `κ M : σ′′ κ v D

Γ `κ λs:σ′.M : Πs:σ′.σ′′
(43)

Γ, s:σ′ `κ M : σ′′ {Γ, s:σ′ ` σ′′ sig }

Γ `κu D λs:σ′.M : Πpars:σ′.σ′′
(44)

Γ `κ F : Πs:σ′.σ′′ Γ `P M : σ′

Γ `κ FM : σ′′[M/s]
(45)

Γ `κ F : Πpars:σ′.σ′′ Γ `P M : σ′

Γ `κt S FM : σ′′[M/s]
(46)

Γ `κ M ′ : σ′ Γ, s:σ′ `κ M ′′ : σ′′

Γ `κ 〈s = M ′, M ′′〉 : Σs:σ′.σ′′
(47)

Γ `κ M : Σs:σ′.σ′′

Γ `κ π1M : σ′
(48)

Γ `P M : Σs:σ′.σ′′

Γ `P π2M : σ′′[π1M/s]
(49)

Γ ` e : 〈|σ|〉

Γ `S unpack e as σ : σ
(50)

Γ `κ M : σ

Γ `κt D (M ::σ) : σ
(51)

Γ `κ M : σ

Γ `W (M :>σ) : σ
(52)

Γ `P M : [[T ]]

Γ `P M :
�
(M)

(53)
Γ, s:σ′ `P Ms : σ′′ Γ `P M : Πs:σ′.ρ

Γ `P M : Πs:σ′.σ′′
(54)

Γ `P π1M : σ′ Γ `P π2M : σ′′

Γ `P M : σ′ × σ′′
(55)

Γ `κ M ′ : σ′ Γ, s:σ′ `κ M ′′ : σ Γ ` σ sig

Γ `κ let s = M ′ in (M ′′ : σ) : σ
(56)

Γ `κ′ M : σ′ Γ ` σ′ ≤ σ κ′ v κ

Γ `κ M : σ
(57)

Module equivalence: Γ ` M1
∼= M2 : σ

Γ `P M : σ

Γ ` M ∼= M : σ
(58)

Γ ` M2
∼= M1 : σ

Γ ` M1
∼= M2 : σ

(59)
Γ ` M1

∼= M2 : σ Γ ` M2
∼= M3 : σ

Γ ` M1
∼= M3 : σ

(60)

Γ ` τ1 ≡ τ2

Γ ` [τ1] ∼= [τ2] : [[T ]]
(61)

Γ `P M : [[T ]]

Γ ` [Typ M ] ∼= M : [[T ]]
(62)

Γ `P M1 : σ Γ `P M2 : σ σ is unitary

Γ ` M1
∼= M2 : σ

(63)
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Γ ` σ′
1 ≡ σ′

2 Γ, s:σ′
1 ` M1

∼= M2 : σ′′

Γ ` λs:σ′
1.M1

∼= λs:σ′
2.M2 : Πs:σ′

1.σ
′′

(64)
Γ ` F1

∼= F2 : Πs:σ′.σ′′ Γ ` M1
∼= M2 : σ′

Γ ` F1M1
∼= F2M2 : σ′′[M1/s]

(65)

Γ ` M ′
1
∼= M ′

2 : σ′ Γ, s:σ′ ` M ′′
1
∼= M ′′

2 : σ′′

Γ ` 〈s = M ′
1, M

′′
1 〉

∼= 〈s = M ′
2, M

′′
2 〉 : Σs:σ′.σ′′

(66)

Γ ` M1
∼= M2 : Σs:σ′.σ′′

Γ ` π1M1
∼= π1M2 : σ′

(67)
Γ ` M1

∼= M2 : Σs:σ′.σ′′

Γ ` π2M1
∼= π2M2 : σ′′[π1M1/s]

(68)

Γ, s:σ′ ` M1s ∼= M2s : σ′′ Γ `P M1 : Πs:σ′.ρ1 Γ `P M2 : Πs:σ′.ρ2

Γ ` M1
∼= M2 : Πs:σ′.σ′′

(69)

Γ ` π1M1
∼= π1M2 : σ′ Γ ` π2M1

∼= π2M2 : σ′′

Γ ` M1
∼= M2 : σ′ × σ′′

(70)

Γ `P M ′ : σ′ Γ, s:σ′ `P M ′′ : σ Γ ` σ sig

Γ ` let s = M ′ in (M ′′ : σ) ∼= M ′′[M ′/s] : σ
(71)

Γ `P M1 :
�
(M2)

Γ ` M1
∼= M2 :

�
(M2)

(72)
Γ ` M1

∼= M2 : σ′ Γ ` σ′ ≤ σ

Γ ` M1
∼= M2 : σ

(73)

B Declarative Properties

This section is devoted to proving the essential properties of the declarative type system given in Appendix A.
To minimize the amount of reproving, we have designed our type system so that the pure fragment is as
close as possible to the system of Stone and Harper [32], which we refer to hereafter as SH. Most of the
theorems and proofs in this section are exactly analogous with the development in Appendix B of SH. Thus,
the proofs here only give the (nontrivial) new cases, and we refer the reader to SH for the majority of them.

B.1 Preliminaries

Throughout we will write Γ ` J to denote any judgment with right hand side J (where J includes the
purity level κ in module typing judgments). In addition, we use the “=” sign to indicate syntactic equality
(modulo α-equivalence).

Proposition B.1 (Subderivations)
1. Every proof of Γ ` J contains a subderivation of Γ ` ok.

2. Every proof of Γ1, s:σ, Γ2 ` J contains a strict subderivation of Γ1 ` σ sig.

Proof: By induction on derivations. �

Proposition B.2 (Free Variable Containment)
If Γ ` J , then FV (J ) ⊆ dom(Γ).

Proof: By induction on derivations. �
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• ∆ ` γ : Γ iff

1. ∆ ` ok

2. And, ∀s ∈ dom(Γ). ∆ `P γs : γ(Γ(s))

• ∆ ` γ1
∼= γ2 : Γ iff

1. ∆ ` ok

2. And, ∀s ∈ dom(Γ). ∆ ` γ1s ∼= γ2s : γ1(Γ(s))

Figure 12: Typing and Equivalence Judgments for Substitutions

Proposition B.3 (Reflexivity)
1. If Γ ` τ type, then Γ ` τ ≡ τ .

2. If Γ ` σ sig, then Γ ` σ ≡ σ and Γ ` σ ≤ σ.

3. If Γ `P M : σ, then Γ ` M ∼= M : σ.

Proof: By induction on derivations. �

Definition B.4 (Context/World Extension)
The context/world Γ2 is defined to extend the context Γ1 (written Γ2 ⊇ Γ1) if the contexts viewed as partial
functions give the same result for every module variable s in dom(Γ1). (Note that this is a purely syntactic
condition and does not imply that either context is well-formed.)

Proposition B.5 (Weakening)
1. If Γ1 ` J , Γ2 ⊇ Γ1, and Γ2 ` ok, then Γ2 ` J .

2. If Γ1, s:σ2, Γ2 ` J , Γ1 ` σ1 ≤ σ2 and Γ1 ` σ1 sig, then Γ1, s:σ1, Γ2 ` J .

Proof: By induction on the derivation of the first premise. �

Substitutions γ are defined as maps from variables to modules, which may be applied (in the usual
capture-avoiding manner) to arbitrary syntactic expressions. We denote the identity substitution as id and
substitution extension as γ[s 7→M ]. Figure 12 defines typing and equivalence judgments for substitutions.

Proposition B.6 (Substitution)
1. If Γ ` J and ∆ ` γ : Γ, then ∆ ` γ(J ).

2. If Γ1, s:σ, Γ2 ` J and Γ1 `P M : σ, then Γ1, Γ2[M/s] ` J [M/s].

Proof:

1. By induction on the derivation of the first premise.

2. By induction on the derivation of the first premise. Let Γ = Γ1, s:σ, Γ2. If J = ok, then the proof is
straightforward by cases on Γ2. Otherwise, Γ ` ok is a strict subderivation. Let ∆ = Γ1, Γ2[M/s]. By
induction, ∆ ` ok. Let γ = id[s 7→M ]. It is easy to see that ∆ ` γ : Γ. The desired result then follows
from Part 1.

�

Proposition B.7 (Properties of Type Equivalence)
1. If Γ ` τ1 ≡ τ2, then Γ ` τ2 ≡ τ1.
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2. If Γ ` τ1 ≡ τ2 and Γ ` τ2 ≡ τ3, then Γ ` τ1 ≡ τ3.

3. If Γ ` M1
∼= M2 : [[T ]], then Γ ` Typ M1 ≡ Typ M2.

4. If Γ ` τ type, then Γ ` Typ[τ ] ≡ τ .

5. If Γ `P [τ ] : σ, where σ is either [[T ]] or
�

(M), then Γ ` τ type.

Proof:

1-2. By Rules 7 and 61, Γ ` τ1 ≡ τ2 if and only if Γ ` [τ1] ∼= [τ2] : [[T ]], and module equivalence is symmetric
and transitive.

3. By Rule 62, Γ ` [TypM1] ∼= M1 : [[T ]] and Γ ` [Typ M2] ∼= M2 : [[T ]]. By symmetry and transitivity,
Γ ` [Typ M1] ∼= [TypM2] : [[T ]]. The desired result follows by Rule 7.

4. By Rule 62, Γ ` [Typ[τ ]] ∼= [τ ] : [[T ]]. The desired result follows by Rule 7.

5. By induction on the derivation of the premise.

�

The following definition of the sizes of signatures has the property that it is invariant under substitution,
i.e., size(σ) = size(σ[M/s]).

Definition B.8 (Sizes of Signatures)
Let the size of a signature σ (written size(σ)) be defined inductively as follows:

size(1)
def

= 1

size([[T ]])
def

= 1

size([[τ ]])
def

= 2

size(
�

(M))
def

= 2

size(Πδs:σ1.σ2)
def

= 2 + size(σ1) + size(σ2)

size(Σs:σ1.σ2)
def

= 2 + size(σ1) + size(σ2)

B.2 Validity and Functionality

We are now prepared to prove the critical and nontrivial properties of Validity and Functionality. Validity
states that every expression appearing within a provable judgment is well-formed. Functionality states that
applying equivalent substitutions to equivalent expressions yields equivalent expressions. Given Validity, it
is straightforward to prove Functionality directly. Unfortunately, the unavoidable asymmetry in rules such
as Rule 68 forces Validity to depend on Functionality as well (see Section 3.2 of Stone’s thesis for a more
detailed description of the problem).

To prove the two properties simultaneously, we define a strengthened equivalence relation in Figure 13.
For modules and types, the relation takes the form of a strengthened induction hypothesis for Validity,
ensuring that the modules or types in question are not only equivalent, but well-formed. For signatures, we
employ a Kripke-style logical relation that ensures the signatures are functional in their free variables. The
proof involves a fairly standard form of logical relations argument.

Lemma B.9 (Monotonicity)
Suppose ∆′ ` ok and ∆′ ⊇ ∆.

1. If τ1 is τ2 [∆], then τ1 is τ2 [∆′].

2. If M1 is M2 in σ [∆], then M1 is M2 in σ [∆′].

3. If σ1 is σ2 [∆], then σ1 is σ2 [∆′].
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• σ1 is σ2 [∆] iff

1. ∆ ` ok

2. And,

– σ1 = 1 and σ2 = 1

– Or, σ1 = [[T ]] and σ2 = [[T ]]

– Or, σ1 = [[τ1]] and σ2 = [[τ2]] and τ1 is τ2 [∆]

– Or, σ1 =
�
(M1) and σ2 =

�
(M2) and M1 is M2 in [[T ]] [∆]

– Or, σ1 = Πδs:σ′
1.σ

′′
1 and σ2 = Πδs:σ′

2.σ
′′
2 and σ′

1 is σ′
2 [∆] and ∀∆′ ⊇ ∆ if M1 is M2 in σ′

1 [∆′]
then σ′′

1 [M1/s] is σ′′
2 [M2/s] [∆′]

– Or, σ1 = Σs:σ′
1.σ

′′
1 and σ2 = Σs:σ′

2.σ
′′
2 and σ′

1 is σ′
2 [∆] and ∀∆′ ⊇ ∆ if M1 is M2 in σ′

1 [∆′]
then σ′′

1 [M1/s] is σ′′
2 [M2/s] [∆′]

• τ1 is τ2 [∆] iff

1. ∆ ` τ1 ≡ τ2

2. And, ∆ ` τ1 type

3. And, ∆ ` τ2 type

• M1 is M2 in σ [∆] iff

1. ∆ ` M1
∼= M2 : σ

2. And, ∆ `P M1 : σ

3. And, ∆ `P M2 : σ

• γ1 is γ2 in Γ [∆] iff

1. ∆ ` ok

2. And, ∀s ∈ dom(Γ). γ1(Γ(s)) is γ2(Γ(s)) [∆]

3. And, ∀s ∈ dom(Γ). γ1s is γ2s in γ1(Γ(s)) [∆]

Figure 13: Logical Relations for Declarative Properties
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4. If γ1 is γ2 in Γ [∆], then γ1 is γ2 in Γ [∆′].

Proof:

1-2. By Weakening.

3. By induction on the sizes of σ1 and σ2, and by Parts 1 and 2.

4. By Parts 2 and 3.

�

Lemma B.10 (Properties of Related Signatures)
If σ1 is σ2 [∆], then ∆ ` σ1 sig, ∆ ` σ2 sig, ∆ ` σ1 ≡ σ2, ∆ ` σ1 ≤ σ2, and ∆ ` σ2 ≤ σ1.

Proof: See proof of SH Lemma B.6. All new cases are trivial, except for Πpar, for which the proof is the
same as in the Π case. �

Corollary B.11 (Logical Subsumption)
If M1 is M2 in σ1 [∆] and σ1 is σ2 [∆], then M1 is M2 in σ2 [∆].

Corollary B.12 (Properties of Related Substitutions)
If γ1 is γ2 in Γ [∆], then ∆ ` γ1

∼= γ2 : Γ, ∆ ` γ1 : Γ and ∆ ` γ2 : Γ.

Lemma B.13 (Symmetry and Transitivity of Logical Relations)
1. If τ1 is τ2 [∆], then τ2 is τ1 [∆].

2. If τ1 is τ2 [∆] and τ2 is τ3 [∆], then τ1 is τ3 [∆].

3. If M1 is M2 in σ [∆], then M2 is M1 in σ [∆].

4. If M1 is M2 in σ [∆] and M2 is M3 in σ [∆], then M1 is M3 in σ [∆].

5. If σ1 is σ2 [∆], then σ2 is σ1 [∆].

6. If σ1 is σ2 [∆] and σ2 is σ3 [∆], then σ1 is σ3 [∆].

7. If γ1 is γ2 in Γ [∆], then γ2 is γ1 in Γ [∆].

8. If γ1 is γ2 in Γ [∆] and γ2 is γ3 in Γ [∆], then γ1 is γ3 in Γ [∆].

Proof:

1-2. By Parts 1 and 2 of Proposition B.7.

3-8. See proof of SH Lemma B.8. All new cases are trivial, except for Πpar, for which the proof is the same
as in the Π case.

�

It is worth noting that the existence of the redundant premises in Rules 42 and 44 allow the following
statement of the Fundamental Theorem of Logical Relations to avoid mentioning the typing judgments for
terms and impure modules.

Theorem B.14 (Fundamental Theorem of Logical Relations)
Suppose γ1 is γ2 in Γ [∆].

1. If Γ ` τ type, then γ1τ is γ2τ [∆].
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2. If Γ ` τ1 ≡ τ2, then γ1τ1 is γ2τ2 [∆].

3. If Γ ` σ sig, then γ1σ is γ2σ [∆].

4. If Γ ` σ1 ≡ σ2, then γ1σ1 is γ2σ2 [∆].

5. If Γ ` σ1 ≤ σ2, then γ1σ1 is γ2σ1 [∆], γ1σ2 is γ2σ2 [∆], and ∆ ` γ1σ1 ≤ γ2σ2.

6. If Γ `P M : σ, then γ1M is γ2M in γ1σ [∆] and γ1σ is γ2σ [∆].

7. If Γ ` M1
∼= M2 : σ, then γ1M1 is γ2M2 in γ1σ [∆] and γ1σ is γ2σ [∆].

Proof: By induction on derivations. See proof of SH Theorem B.9. All new cases are straightforward, with
the following exceptions:

• Case: Rule 3.

1. By IH, γ1M is γ2M in [[T ]] [∆].

2. So ∆ `P γ1M : [[T ]], ∆ `P γ2M : [[T ]], and ∆ ` γ1M ∼= γ2M : [[T ]].

3. By Rule 3, ∆ ` Typ γ1M type and ∆ ` Typ γ2M type.

4. Then, by Part 3 of Proposition B.7, ∆ ` Typ γ1M ≡ Typ γ2M .

• Case: Rule 42.

1. By IH, γ1τ is γ2τ [∆], so [[γ1τ ]] is [[γ2τ ]] [∆].

2. By Corollary B.12, ∆ ` γ1 : Γ and ∆ ` γ2 : Γ.

3. So, by Substitution, ∆ `P γ1([e : τ ]) : [[γ1τ ]] and ∆ `P γ2([e : τ ]) : [[γ2τ ]],

4. By Lemma B.10 and subsumption, ∆ `P γ2([e : τ ]) : [[γ1τ ]]

5. Thus, by Rule 63, ∆ ` γ1([e : τ ]) ∼= γ2([e : τ ]) : [[γ1τ ]].

• Case: Rule 44. Similar to the proof for Rule 42.

• Case: Rule 7.

1. By IH, [γ1τ1] is [γ2τ2] in [[T ]] [∆].

2. So ∆ `P [γ1τ1] : [[T ]], ∆ `P [γ2τ2] : [[T ]], and ∆ ` [γ1τ1] ∼= [γ2τ2] : [[T ]].

3. By Rule 7, ∆ ` γ1τ1 ≡ γ2τ2.

4. Then, by Part 5 of Proposition B.7, ∆ ` γ1τ1 type and ∆ ` γ2τ2 type.

�

Lemma B.15 (Identity Substitution is Related to Itself)
If Γ ` ok, then id is id in Γ [Γ].

Proof: By induction on the derivation of Γ ` ok.

• Case: Rule 1. Trivial.

• Case: Rule 2.

1. Γ ` ok is a strict subderivation, so by IH, id is id in Γ [Γ].

2. By Monotonicity, id is id in Γ [Γ, s:σ].

3. By Theorem B.14, σ is σ [Γ, s:σ].

4. Since Γ, s:σ `P s : σ and Γ, s:σ ` s ∼= s : σ,

5. we have s is s in σ [Γ, s:σ].
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6. Thus, id is id in Γ, s:σ [Γ, s:σ].

�

Corollary B.16 (Validity)
1. If Γ ` τ1 ≡ τ2, then Γ ` τ1 type and Γ ` τ2 type.

2. If Γ ` σ1 ≡ σ2, then Γ ` σ1 sig and Γ ` σ2 sig.

3. If Γ ` σ1 ≤ σ2, then Γ ` σ1 sig and Γ ` σ2 sig.

4. If Γ `P M : σ, then Γ ` σ sig.

5. If Γ ` M1
∼= M2 : σ, then Γ `P M1 : σ, Γ `P M2 : σ, and Γ ` σ sig.

Proof: By Theorem B.14, Lemma B.15, and Lemma B.10. �

Corollary B.17 (Symmetry and Transitivity of Signature Equivalence)
1. If Γ ` σ1 ≡ σ2, then Γ ` σ2 ≡ σ1.

2. If Γ ` σ1 ≡ σ2 and Γ ` σ2 ≡ σ3, then Γ ` σ1 ≡ σ3.

Corollary B.18 (Equivalence Implies Subtyping)
If Γ ` σ1 ≡ σ2, then Γ ` σ1 ≤ σ2 and Γ ` σ2 ≤ σ1.

Proposition B.19 (Transitivity of Signature Subtyping)
If Γ ` σ1 ≤ σ2 and Γ ` σ2 ≤ σ3, then Γ ` σ1 ≤ σ3.

Proof: By induction on the sizes of the signatures involved, and by Validity. �

Here we define equivalence and subtyping for contexts. Context equivalence is used in proving soundness
of the equivalence algorithm defined in Appendix D, which maintains two contexts. The concept of context
subtyping is useful in proving completeness of principal signature synthesis (Appendix C).

Definition B.20 (Context Equivalence)
Define Γ1 to be equivalent to Γ2 (written Γ1 ≡ Γ2), inductively as follows:

• ≡ •

Γ1 ≡ Γ2 Γ1 ` σ1 ≡ σ2

Γ1, s:σ1 ≡ Γ2, s:σ2

Definition B.21 (Context Subtyping)
Define Γ1 to be a subcontext of Γ2 (written Γ1 ≤ Γ2)
iff Γ2 ` ok and ∀s ∈ dom(Γ1) ⊆ dom(Γ2). Γ2 ` Γ2(s) ≤ Γ1(s).

Proposition B.22 (Properties of Context Subtyping and Equivalence)
1. If Γ1 ≤ Γ2 and Γ1 ` J , then Γ2 ` J .

2. If Γ1 ≤ Γ2 and Γ2 ` σ sig, then Γ1 ≤ Γ2, s:σ.

3. If Γ1 ≤ Γ2 and Γ2 ` σ2 ≤ σ1, then Γ1, s:σ1 ≤ Γ2, s:σ2.

4. Context subtyping is reflexive and transitive.

5. Context equivalence is reflexive, symmetric and transitive, and implies context subtyping.

Proof: Straightforward. �
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Proposition B.23 (Validity for Other Judgments)
1. If Γ ` e : τ , then Γ ` τ type.

2. If Γ `κ M : σ, then Γ ` σ sig.

Proof: By induction on derivations, and by Validity. �

Lemma B.24 (Equivalent Substitutions are Related)
If Γ ` ok and ∆ ` γ1

∼= γ2 : Γ, then γ1 is γ2 in Γ [∆].

Proof: By induction on the derivation of Γ ` ok.

• Case: Rule 1. Trivial.

• Case: Rule 2.

1. Γ ` ok is a strict subderivation, so by IH, γ1 is γ2 in Γ [∆].

2. By Theorem B.14, γ1σ is γ2σ [∆].

3. By assumption, ∆ ` γ1s ∼= γ2s : γ1σ.

4. By Validity, γ1s is γ2s in γ1σ [∆].

5. Therefore, γ1 is γ2 in Γ, s:σ [∆].

�

Corollary B.25 (Functionality)
Suppose ∆ ` γ1

∼= γ2 : Γ.

1. If Γ ` τ type, then ∆ ` γ1τ ≡ γ2τ .

2. If Γ ` τ1 ≡ τ2, then ∆ ` γ1τ1 ≡ γ2τ2.

3. If Γ ` σ sig, then ∆ ` γ1σ ≡ γ2σ.

4. If Γ ` σ1 ≡ σ2, then ∆ ` γ1σ1 ≡ γ2σ2.

5. If Γ ` σ1 ≤ σ2, then ∆ ` γ1σ1 ≤ γ2σ2.

6. If Γ `P M : σ, then ∆ ` γ1M ∼= γ2M : γ1σ.

7. If Γ ` M1
∼= M2 : σ, then ∆ ` γ1M1

∼= γ2M2 : γ1σ.

Proof: By Theorem B.14, Lemma B.24, and Lemma B.10. �

B.3 Admissible Rules

Here we enumerate some important admissible rules, which fall into two categories. First, Proposition B.26
states that the rules of our type system involving singleton signatures extend to higher-order singletons (as
defined in Figure 5). Since the well-formedness of

�
σ(M) does not necessarily imply that M has signature

σ, the latter must be added as a premise to the higher-order variants of some of the rules.
Second, Proposition B.27 states that β- and η-equivalence rules for functions and products are admissible

in our system, as well as giving an alternative formulation of the typing, equivalence and extensionality rules
for products. The presentation of these rules is taken directly from Section 2.2 of Stone’s thesis [31] and the
proofs are nearly identical to those given in Section 3.2 of Stone’s thesis. (The singleton system presented
in Stone’s thesis is essentially the same as that of SH, with only a few minor differences in presentation.)
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Proposition B.26 (Higher-Order Singleton Rules)
1. γ(

�
σ(M)) =

�
γσ(γM).

2. If Γ ` M1
∼= M2 : σ, then Γ ` M1

∼= M2 :
�

σ(M2).

3. If Γ `P M : σ, then Γ `
�

σ(M) sig and Γ `P M :
�

σ(M).

4. If Γ `P M1 :
�

σ(M2) and Γ `P M2 : σ, then Γ ` M1
∼= M2 :

�
σ(M2).

5. If Γ `P M : σ, then Γ `
�

σ(M) ≤ σ.

6. If Γ ` M1
∼= M2 : σ1 and Γ ` σ1 ≤ σ2, then Γ `

�
σ1

(M1) ≤
�

σ2
(M2).

Proof: By induction on the size of σ in Parts 1-5 and σ1 in Part 6. The proof is almost identical to the
proofs of Lemma 3.3.2 and Proposition 3.3.3 in Stone’s thesis. All new cases involve unitary signatures, and
most involve trivial applications of Validity and/or Reflexivity, since a unitary signature σ =

�
σ(M). Here

are the two cases which do not follow directly from Validity and Reflexivity.

4. • Case: σ is unitary. Follows by Rule 63.

6. • Case: σ1 = Πs:σ′
1.σ

′′
1 and σ2 = Πpars:σ′

2.σ
′′
2 , so

�
σ2

(M2) = σ2.

(a) By Validity and Part 5, Γ `
�

σ1
(M1) ≤ σ1.

(b) Thus, by transitivity, Γ `
�

σ1
(M1) ≤ σ2.

�

Proposition B.27 (Admissibility of Beta, Eta, and Alternative Product Rules)
1. If Γ, s:σ′ `P M : σ′′ and Γ `P M ′ : σ′, then Γ ` (λs:σ′.M)M ′ ∼= M [M ′/s] : σ′′[M ′/s].

2. If Γ, s:σ′ ` M1
∼= M2 : σ′′ and Γ ` M ′

1
∼= M ′

2 : σ′, then Γ ` (λs:σ′.M1)M
′
1
∼= M2[M

′
2/s] : σ′′[M ′

1/s].

3. If Γ `P M1 : σ1 and Γ, s:σ1 `P M2 : σ2, then Γ ` π1〈s = M1, M2〉 ∼= M1 : σ1

and Γ ` π2〈s = M1, M2〉 ∼= M2[M1/s] : σ2[M1/s].

4. If Γ ` M1
∼= M ′

1 : σ1 and Γ, s:σ1 ` M2
∼= M ′

2 : σ2, then Γ ` π1〈s = M1, M2〉 ∼= M ′
1 : σ1

and Γ ` π2〈s = M1, M2〉 ∼= M ′
2[M

′
1/s] : σ2[M

′
1/s].

5. If Γ `P M : Πs:σ′.σ′′, then Γ ` M ∼= λs:σ′.Ms : Πs:σ′.σ′′.

6. If Γ `P M : Σs:σ′.σ′′, then Γ ` M ∼= 〈π1M, π2M〉 : Σs:σ′.σ′′.

7. If Γ ` Σs:σ′.σ′′ sig, Γ `P M ′ : σ′, and Γ `P M ′′ : σ′′[M ′/s], then Γ `P 〈M
′, M ′′〉 : Σs:σ′.σ′′.

8. If Γ ` Σs:σ′.σ′′ sig, Γ ` M ′
1
∼= M ′

2 : σ′, and Γ ` M ′′
1
∼= M ′′

2 : σ′′[M ′
1/s],

then Γ ` 〈M ′
1, M

′′
1 〉

∼= 〈M ′
2, M

′′
2 〉 : Σs:σ′.σ′′.

9. If Γ ` Σs:σ′.σ′′ sig, Γ ` π1M1
∼= π1M2 : σ′, and Γ ` π2M1

∼= π2M2 : σ′′[π1M1/s],
then Γ ` M1

∼= M2 : Σs:σ′.σ′′.

Proof: See proof of Proposition 3.3.4 and Part 6 of Proposition 3.3.3 of Stone’s thesis. �
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Module typechecking: Γ `κ M ⇐ σ

Γ `κ M ⇒ σ′ Γ ` σ′ ≤ σ

Γ `κ M ⇐ σ

Principal signature synthesis: Γ `κ M ⇒ σ

Γ ` ok
Γ `P s ⇒

�
Γ(s)(s)

Γ ` ok
Γ `P 〈〉 ⇒ 1

Γ ` τ type

Γ `P [τ ] ⇒
�

([τ ])
Γ ` e ⇐ τ

Γ `P [e : τ ] ⇒ [[τ ]]

Γ, s:σ′ `κ M ⇒ σ′′ κ v D

Γ `κ λs:σ′.M ⇒ Πs:σ′.σ′′

Γ, s:σ′ `κ M ⇒ σ′′ S v κ

Γ `κu D λs:σ′.M ⇒ Πpars:σ′.σ′′

Γ `κ F ⇒ Πs:σ′.σ′′ Γ `P M ⇐ σ′

Γ `κ FM ⇒ σ′′[M/s]

Γ `κ F ⇒ Πpars:σ′.σ′′ Γ `P M ⇐ σ′

Γ `κt S FM ⇒ σ′′[M/s]

Γ `P M ′ ⇒ σ′ Γ, s:σ′ `P M ′′ ⇒ σ′′

Γ `P 〈s = M ′, M ′′〉 ⇒ σ′ × σ′′[M ′/s]

Γ `κ′ M ′ ⇒ σ′ Γ, s:σ′ `κ′′ M ′′ ⇒ σ′′ κ′ t κ′′ 6= P

Γ `κ′ tκ′′ 〈s = M ′, M ′′〉 ⇒ Σs:σ′.σ′′

Γ `κ M ⇒ Σs:σ′.σ′′

Γ `κ π1M ⇒ σ′

Γ `P M ⇒ σ′ × σ′′

Γ `P π2M ⇒ σ′′

Γ `κ M ⇐ σ

Γ `κt D M ::σ ⇒ σ

Γ `κ M ⇐ σ

Γ `W M :>σ ⇒ σ

Γ ` e ⇐ 〈|σ|〉

Γ `S unpack e as σ ⇒ σ

Γ `P M ′ ⇒ σ′ Γ, s:σ′ `P M ′′ ⇐ σ Γ ` σ sig

Γ `P let s = M ′ in (M ′′ : σ) ⇒
�

σ(let s = M ′ in (M ′′ : σ))

Γ `κ′ M ′ ⇒ σ′ Γ, s:σ′ `κ′′ M ′′ ⇐ σ Γ ` σ sig κ′ t κ′′ 6= P

Γ `κ′ tκ′′ let s = M ′ in (M ′′ : σ) ⇒ σ

Figure 14: Module Typechecking and Principal Signature Synthesis

C Typechecking and Synthesis

In this section we give an algorithm for typechecking modules and prove it sound and complete with respect
to the declarative system. To decide whether a module has a given signature, the algorithm synthesizes the
principal signature of a module and then checks whether the principal signature is a subtype of the given
signature. The module typechecking judgment is written Γ `κ M ⇐ σ, where κ is the minimal purity of M
but σ is any signature assignable to M in context Γ. The principal signature synthesis judgment is written
Γ `κ M ⇒ σ, where κ is the minimal purity of M and σ is the principal signature of M in context Γ.

The synthesis algorithm itself is very straightforward. The astute reader will notice, however, that the
synthesis rules for atomic term modules and unpacked modules rely on an undefined judgment for term
typechecking of the form Γ ` e ⇐ τ . Eventually we will give a term typechecking algorithm to implement
this as well (Figure 18), but for technical reasons it turns out that we cannot do so yet. The problem is
that the algorithm for term typechecking relies on the ability to reduce types to a normal form, which is a
consequence of the proof of decidability for type and module equivalence. For the moment, then, we will
take Γ ` e ⇐ τ to be synonymous with Γ ` e : τ . Once we have proven decidability of type and module
equivalence, we will be able to fully define module typechecking and prove it decidable (Appendix F).

Theorem C.1 (Soundness of Module Typechecking/Synthesis)
If Γ `κ M ⇐ σ or Γ `κ M ⇒ σ, then Γ `κ M : σ.

Proof: By straightforward induction on the typechecking/synthesis algorithm. The only non-trivial case
is that of pure products, which follows easily from selfification (Rule 55) and Functionality. �
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It turns out to be important that the principal signatures of pure modules are in what we call pure
synthesis form, which essentially means that they do not contain dependent product (Σ) signatures, except
under Πpar. In particular, if the synthesis rule for second projections (π2M) is not allowed to assume that
M ’s principal signature is a non-dependent product, then the completeness proof (see Theorem C.5 below)
appears to break for very subtle reasons in the case of Rule 55. This is the reason we have a separate
synthesis rule for pure pairs, although we do not have a counterexample to completeness in the system with
only one synthesis rule for pairs.

Definition C.2 (Pure Synthesis Form)
A signature σ is in pure synthesis form if:

• σ is unitary, [[T ]], or
�

(M),

• Or, σ = Πs:σ1.σ2, where σ2 is in pure synthesis form,

• Or, σ = σ1 × σ2, where σ1 and σ2 are in pure synthesis form.

Proposition C.3 (Properties of Principal Signature Synthesis)
1. Synthesis is deterministic, i.e. if Γ `κ1

M ⇒ σ1 and Γ `κ2
M ⇒ σ2, then σ1 = σ2 and κ1 = κ2.

2. If Γ `P M ⇒ σ, then σ is in pure synthesis form.

Proof: By straightforward induction on the typechecking/synthesis algorithm. �

Lemma C.4 (Weakening for Module Typechecking/Synthesis Algorithm)
1. If Γ1 `κ M ⇒ σ, Γ1 ⊆ Γ2, and Γ2 ` ok, then Γ2 `κ M ⇒ σ.

2. If Γ1 `κ M ⇐ σ, Γ1 ⊆ Γ2, and Γ2 ` ok, then Γ2 `κ M ⇐ σ.

Proof: By straightforward induction on the typechecking/synthesis derivation. �

The statement of completeness involves a strengthened induction hypothesis that makes use of context
subtyping (Definition B.21). The ability to strengthen the context (thus weakening the resulting judgment)
is required to prove completeness for Rules 47 and 56.

Theorem C.5 (Completeness of Module Typechecking/Synthesis)
If Γ `κ M : σ and Γ ≤ Γ′, then Γ′ `κ′ M ⇐ σ, where κ′ v κ. Moreover, if κ′ = P, then Γ′ `P M ⇐

�
σ(M).

Proof: By induction on derivations.

• Case: Rule 39.

1. We have Γ′ `P s ⇒
�

Γ′(s)(s).

2. By definition of context subtyping, Γ′ ` Γ′(s) ≤ Γ(s).

3. By Proposition B.26, Γ′ `
�

Γ′(s)(s) ≤
�

Γ(s)(s).

• Case: Rules 40, 41, and 42. Trivial.

• Case: Rule 43.

1. By IH, Γ′, s:σ′ `κ′ M ⇒ ρ, where Γ′, s:σ′ ` ρ ≤ σ′′ and κ′ v κ v D.

2. Thus, Γ′ `κ′ λs:σ′.M ⇒ Πs:σ′.ρ and Γ′ ` Πs:σ′.ρ ≤ Πs:σ′.σ′′.

3. If κ′ = P, then by IH, Γ′, s:σ′ ` ρ ≤
�

σ′′(M).

4. By Proposition B.27, Γ′, s:σ′ ` (λs:σ′.M)s ∼= M : σ′′.

5. So, by Proposition B.26, Γ′, s:σ′ `
�

σ′′(M) ≤
�

σ′′ ((λs:σ′.M)s),

36



6. and Γ′ ` Πs:σ′.ρ ≤
�

Πs:σ′.σ′′ (λs:σ′.M).

• Case: Rule 44.

1. By IH, Γ′, s:σ′ `κ′ M ⇒ ρ, where Γ′, s:σ′ ` ρ ≤ σ′′, and κ′ v κ.

2. If κ′ v D, then Γ′ `κ′ λs:σ′.M ⇒ Πs:σ′.ρ and Γ′ ` Πs:σ′.ρ ≤ Πpars:σ′.σ′′.

3. Otherwise, Γ′ `κ′ u D λs:σ′.M ⇒ Πpars:σ′.ρ′, Γ′ ` Πpars:σ′.ρ ≤ Πpars:σ′.σ′′, and κ′ u D v κ u D.

4. Since
�

Πpars:σ′ .σ′′(λs:σ′.M) = Πpars:σ′.σ′′, we are done.

• Case: Rule 45.

1. By IH and inversion on subtyping, Γ′ `κ′ F ⇒ Πs:ρ′.ρ′′,

2. where Γ′ ` Πs:ρ.ρ′′ ≤ Πs:σ′.σ′′ and κ′ v κ.

3. So, Γ′ ` σ′ ≤ ρ′ and Γ′, s:σ′ ` ρ′′ ≤ σ′′.

4. By IH, Γ′ `P M ⇐ σ′, and so Γ′ `P M ⇐ ρ′.

5. Thus, Γ′ `κ′ FM ⇒ ρ′′[M/s], and by Substitution, Γ′ ` ρ′′[M/s] ≤ σ′′[M/s].

6. If κ′ = P, then by IH, Γ′, s:σ′ ` ρ′′ ≤
�

σ′′ (Fs).

7. By Substitution and Proposition B.26, Γ′ ` ρ′′[M ′/s] ≤
�

σ′′ [M/s](FM).

• Case: Rule 46.

1. By IH and inversion on subtyping, Γ′ `κ′ F ⇒ Πδs:ρ′.ρ′′,

2. where Γ′ ` Πδs:ρ.ρ′′ ≤ Πpars:σ′.σ′′ and κ′ v κ.

3. So, Γ′ ` σ′ ≤ ρ′ and Γ′, s:σ′ ` ρ′′ ≤ σ′′.

4. By IH, Γ′ `P M ⇐ σ′, and so Γ′ `P M ⇐ ρ′.

5. By Substitution, Γ′ ` ρ′′[M/s] ≤ σ′′[M/s].

6. If δ 6= par, then Γ′ `κ′ FM ⇒ ρ′′[M/s].

7. In the case that κ′ = P, then by IH, Γ′, s:σ′ ` ρ′′ ≤
�

σ′′(Fs).

8. By Substitution and Proposition B.26, Γ′ ` ρ′′[M ′/s] ≤
�

σ′′ [M/s](FM).

9. If δ = par, then Γ′ `κ′ t S FM ⇒ ρ′′[M/s] and κ′ t S v κ t S.

• Case: Rule 47.

1. Let M = 〈s = M ′, M ′′〉.

2. By IH, Γ′ `κ′ M ′ ⇒ ρ′, where Γ′ ` ρ′ ≤ σ′ and κ′ v κ.

3. Since Γ, s:σ′ ≤ Γ′, s:ρ′,

4. by IH, Γ′, s:ρ′ `κ′′ M ′′ ⇒ ρ′′, where Γ′, s:ρ′ ` ρ′′ ≤ σ′′ and κ′′ v κ.

5. If κ′ t κ′′ 6= P, then we are done,

6. since Γ′ `κ′tκ′′ M ⇒ Σs:ρ′.ρ′′, Γ′ ` Σs:ρ′.ρ′′ ≤ Σs:σ′.σ′′, and κ′ t κ′′ v κ.

7. Otherwise, Γ′ `P M ⇒ ρ′ × ρ′′[M ′/s].

8. In addition, by IH, Γ′ ` ρ′ ≤
�

σ′(M ′) and Γ′, s:ρ′ ` ρ′′ ≤
�

σ′′(M ′′).

9. By Soundness, Γ′ `P M ′ : ρ′ and Γ′, s:ρ′ `P M ′′ : ρ′′.

10. By Proposition B.27, Γ′ ` π1M ∼= M ′ : ρ′ and Γ′ ` π2M ∼= M ′′[M ′/s] : ρ′′[M ′/s].

11. By Proposition B.26, Γ′ ` ρ′ ≤
�

σ′(π1M).

12. By Substitution, Γ′ ` ρ′′[M ′/s] ≤
�

σ′′[M ′/s](M
′′[M ′/s]).

13. Then, by Functionality and Proposition B.26, Γ′ ` ρ′′[M ′/s] ≤
�

σ′′ [π1M/s](π2M).

14. Thus, Γ′ ` ρ′ × ρ′′[M ′/s] ≤
�

Σs:σ′.σ′′(M).
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15. Since Γ′ ` Σs:ρ′.ρ′′ ≤ Σs:σ′.σ′′ and, by Soundness, Γ′ `P M : Σs:ρ′.ρ′′,

16. we have Γ′ `P M : Σs:σ′.σ′′, and so Γ′ `
�

Σs:σ′ .σ′′(M) ≤ Σs:σ′.σ′′.

• Case: Rule 48.

1. By IH and inversion on subtyping, Γ′ `κ′ M ⇒ Σs:ρ.ρ′′,

2. where Γ′ ` Σs:ρ′.ρ′′ ≤ Σs:σ′.σ′′ and κ′ v κ.

3. Thus, Γ′ `κ′ π1M ⇒ ρ and Γ′ ` ρ′ ≤ σ′.

4. If κ′ = P, then by IH, Γ′ ` Σs:ρ′.ρ′′ ≤
�

Σs:σ′ .σ′′(M),

5. so Γ′ ` ρ′ ≤
�

σ′(π1M).

• Case: Rule 49.

1. By IH, inversion on subtyping, and Proposition C.3, Γ′ `P M ⇒ ρ′ × ρ′′,

2. where Γ′ ` ρ′ × ρ′′ ≤
�

Σs:σ′ .σ′′(M).

3. Thus, Γ′ `P π2M ⇒ ρ′′.

4. By inversion, Γ′, s:ρ′ ` ρ′′ ≤
�

σ′′[π1M/s](π2M).

5. By Soundness, Γ′ `P π1M : ρ′.

6. So by Substitution, Γ′ ` ρ′′ ≤
�

σ′′ [π1M/s](π2M).

• Case: Rules 50, 51, 52, and 53. Trivial, by IH.

• Case: Rule 54.

1. By IH and inversion on subtyping, Γ′ `P M ⇒ Πs:ρ′.ρ′′, where Γ′ ` σ′ ≤ ρ′.

2. By Lemma C.4, Γ′, s:σ′ `P M ⇒ Πs:ρ′.ρ′′.

3. Since Γ′, s:σ′ `P s ⇐ ρ′, we have Γ′, s:σ′ `P Ms ⇒ ρ′′.

4. By IH and Proposition C.3, Γ′, s:σ′ ` ρ′′ ≤
�

σ′′(Ms).

5. Thus, Γ′ ` Πs:ρ′.ρ′′ ≤
�

Πs:σ′.σ′′(M).

• Case: Rule 55.

1. By IH, Γ′ `P π1M ⇒ ρ′ and Γ′ `P π2M ⇒ ρ′′,

2. where Γ′ ` ρ′ ≤
�

σ′(π1M) and Γ′ ` ρ′′ ≤
�

σ′′ (π2M).

3. By inversion on synthesis and Proposition C.3, Γ′ `P M ⇒ ρ′ × ρ′′.

4. Since Γ′ ` ρ′ × ρ′′ ≤
�

σ′×σ′′(M), we are done.

• Case: Rule 56.

1. Let M = let s = M ′ in (M ′′ : σ).

2. By IH, Γ′ `κ′ M ′ ⇒ ρ′, where Γ′ ` ρ′ ≤ σ′ and κ′ v κ.

3. Since Γ, s:σ′ ≤ Γ′, s:ρ′,

4. by IH, Γ′, s:ρ′ `κ′′ M ′′ ⇒ ρ′′, where Γ′, s:ρ′ ` ρ′′ ≤ σ and κ′′ v κ.

5. If κ′ t κ′′ 6= P, then Γ′ `κ′tκ′′ M ⇒ σ and κ′ t κ′′ v κ.

6. Otherwise, Γ′ `P M ⇒
�

σ(M).

7. By Soundness, Γ′ `P M : σ, so Γ′ `P M ⇐ σ as well.

• Case: Rule 57.

1. By IH, Γ′ `κ′′ M ⇐ σ′, where κ′′ v κ′ v κ.

2. Since Γ′ ` σ′ ≤ σ, Γ′ `κ′′ M ⇐ σ.

3. If κ′′ = P, then by IH, Γ′ `P M ⇐
�

σ′(M).

4. By Soundness and Proposition B.26, Γ′ `P M ⇐
�

σ(M).

�
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D An Algorithm for Deciding Equivalence

In this section we define an algorithm for deciding type, signature, and module equivalence, and prove it
sound with respect to declarative equivalence. The algorithm, given in Figures 15 and 16, is nearly identical
to the SH algorithm, with a few simple extensions. It makes use of two contexts and two signatures (which
will always be equivalent when the algorithm is invoked) in order to ensure symmetry and transitivity of the
algorithm. We refer to the reader to SH for discussion of how the algorithm works.

The interesting extensions consist of two new weak head reduction rules and two new kinds of paths.
The reduction rule for let s = M ′ in (M ′′ : σ) is the same as the one for π2〈s = M ′, M ′′〉, which corresponds
to the intuition that the former is encodable as the latter when M ′ and M ′′ are pure. There is also a weak
head reduction rule for modules that merely contain a type projected from another module.

Module paths P are extended to include modules that consist solely of a product, function or package
type. (The system in Stone’s thesis achieves a similar effect by baking in × and → as type constructor
constants of kind T →T →T , thus making τ1 × τ2 and τ1 → τ2 paths.) Formally, paths are defined as follows:

P ::= s | PM | π1P | π2P | [Πs:σ.τ ] | [τ ′ × τ ′′] | [〈|σ|〉]

Also note that any two modules of unitary signature are deemed equivalent by the algorithm automatically,
as are any two modules of singleton signature.

The structure of our soundness proof is based closely on the SH soundness proof (SH Section 3). We
simplify the proofs of the lemmas considerably, however, by performing induction on synthesis derivations
instead of declarative derivations. We believe the same technique may be used to simplify the SH proof as
well.

Lemma D.1 (Correspondence Between Natural and Principal Signatures)
If Γ `P P ⇒ σ, then Γ ` P ↑ σ′, where Γ `P P : σ′ and σ =

�
σ′ (P ).

Proof: By induction on the principal signature synthesis algorithm.

• Case: Γ `P [τ ] ⇒
�

([τ ]), where Γ ` τ type. Trivial, since Γ ` [τ ] ↑ [[T ]] and Γ `P [τ ] : [[T ]].

• Case: Γ `P s ⇒
�

Γ(s)(s), where Γ ` ok. Trivial, since Γ ` s ↑ Γ(s) and Γ `P s : Γ(s).

• Case: Γ `P PM ⇒ σ′′[M/s], where Γ `P P ⇒ Πs:σ′.σ′′ and Γ `P M ⇐ σ′.

1. By IH, Γ ` P ↑ Πs:σ′.σ, where Γ `P P : Πs:σ′.σ and σ′′ =
�

σ(Ps).

2. Thus, Γ ` PM ↑ σ[M/s] and Γ `P PM : σ[M/s].

3. By Proposition B.26, σ′′[M/s] =
�

σ(Ps)[M/s] =
�

σ[M/s](PM).

• Case: Γ `P π1P ⇒ σ′, where Γ `P P ⇒ Σs:σ′.σ′′.

1. By IH, Γ ` P ↑ Σs:σ1.σ2, where Γ `P P : Σs:σ1.σ2 and σ′ =
�

σ1
(π1P ).

2. Thus, Γ ` π1P ↑ σ1 and Γ `P π1P : σ1.

• Case: Γ `P π2P ⇒ σ′′, where Γ `P P ⇒ σ′ × σ′′.

1. By IH, Γ ` P ↑ Σs:σ1.σ2, where Γ `P P : Σs:σ1.σ2, σ′ =
�

σ1
(π1P ), and σ′′ =

�
σ2[π1P/s](π2P ).

2. Thus, Γ ` π2P ↑ σ2[π1P/s] and Γ `P π2P : σ2[π1P/s].

�

Lemma D.2 (Properties of Natural Signature Extraction)
1. If Γ1 ` P1 ↑ σ1 ↔ Γ2 ` P2 ↑ σ2, then Γ1 ` P1 ↑ σ1 and Γ2 ` P2 ↑ σ2.

2. Natural signature extraction is deterministic, i.e. if Γ ` P ↑ σ1 and Γ ` P ↑ σ2, then σ1 = σ2.
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Natural signature extraction: Γ ` P ↑ σ

Γ ` [τ ] ↑ [[T ]]
Γ ` s ↑ Γ(s)
Γ ` PM ↑ σ′′[M/s] if Γ ` P ↑ Πs:σ′.σ′′

Γ ` π1P ↑ σ′ if Γ ` P ↑ Σs:σ′.σ′′

Γ ` π2P ↑ σ′′[π1P/s] if Γ ` P ↑ Σs:σ′.σ′′

Weak head reduction: Γ ` M1
wh
−→ M2

Γ ` (λs:σ′.M)M ′ wh
−→ M [M ′/s]

Γ ` π1〈s = M ′, M ′′〉
wh
−→ M ′

Γ ` π2〈s = M ′, M ′′〉
wh
−→ M ′′[M ′/s]

Γ ` let s = M ′ in (M ′′ : σ)
wh
−→ M ′′[M ′/s]

Γ ` [Typ M ]
wh
−→ M

Γ ` P
wh
−→ M if Γ ` P ↑

�
(M)

Γ ` F1M
wh
−→ F2M if Γ ` F1

wh
−→ F2

Γ ` π1M1
wh
−→ π1M2 if Γ ` M1

wh
−→ M2

Γ ` π2M1
wh
−→ π2M2 if Γ ` M1

wh
−→ M2

Weak head normalization: Γ ` M
wh
=⇒ N

Γ ` M
wh
=⇒ N if Γ ` M

wh
−→ M ′ and Γ ` M ′ wh

=⇒ N

Γ ` M
wh
=⇒ M otherwise

Figure 15: Auxiliary Judgments for Equivalence Algorithm
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Algorithmic type equivalence: Γ1 ` τ1 ⇔ Γ2 ` τ2

Γ1 ` τ1 ⇔ Γ2 ` τ2 if Γ1 ` [τ1] : [[T ]] ⇔ Γ2 ` [τ2] : [[T ]]

Algorithmic signature equivalence: Γ1 ` σ1 ⇔ Γ2 ` σ2

Γ1 ` 1 ⇔ Γ2 ` 1
Γ1 ` [[T ]] ⇔ Γ2 ` [[T ]]
Γ1 ` [[τ1]] ⇔ Γ2 ` [[τ2]] if Γ1 ` τ1 ⇔ Γ2 ` τ2

Γ1 `
�
(M1) ⇔ Γ2 `

�
(M2) if Γ1 ` M1 : [[T ]] ⇔ Γ2 ` M2 : [[T ]]

Γ1 ` Πδs:σ′
1.σ

′′
1 ⇔ Γ2 ` Πδs:σ′

2.σ
′′
2 if Γ1 ` σ′

1 ⇔ Γ2 ` σ′
2

and Γ1, s:σ
′
1 ` σ′′

1 ⇔ Γ2, s:σ
′
2 ` σ′′

2

Γ1 ` Σs:σ′
1.σ

′′
1 ⇔ Γ2 ` Σs:σ′

2.σ
′′
2 if Γ1 ` σ′

1 ⇔ Γ2 ` σ′
2

and Γ1, s:σ
′
1 ` σ′′

1 ⇔ Γ2, s:σ
′
2 ` σ′′

2

Algorithmic module equivalence: Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2

Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2 if σ1 and σ2 are each unitary or singleton

Γ1 ` M1 : [[T ]] ⇔ Γ2 ` M2 : [[T ]] if Γ1 ` M1
wh
=⇒ P1, Γ2 ` M2

wh
=⇒ P2,

and Γ1 ` P1 ↑ [[T ]] ↔ Γ2 ` P2 ↑ [[T ]]
Γ1 ` M1 : Πs:σ′

1.σ
′′
1 ⇔ Γ2 ` M2 : Πs:σ′

2.σ
′′
2 if Γ1, s:σ

′
1 ` M1s : σ′′

1 ⇔ Γ2, s:σ
′
2 ` M2s : σ′′

2

Γ1 ` M1 : Σs:σ′
1.σ

′′
1 ⇔ Γ2 ` M2 : Σs:σ′

2.σ
′′
2 if Γ1 ` π1M1 : σ′

1 ⇔ Γ2 ` π1M2 : σ′
2

and Γ1 ` π2M1 : σ′′
1 [π1M1/s] ⇔ Γ2 ` π2M2 : σ′′

2 [π1M2/s]

Algorithmic path equivalence: Γ1 ` P1 ↑ σ1 ↔ Γ2 ` P2 ↑ σ2

Γ1 ` s ↑ Γ1(s) ↔ Γ2 ` s ↑ Γ2(s)
Γ1 ` P1M1 ↑ σ′′

1 [M1/s] ↔ Γ2 ` P2M2 ↑ σ′′
2 [M2/s] if Γ1 ` P1 ↑ Πs:σ′

1.σ
′′
1 ↔ Γ2 ` P2 ↑ Πs:σ′

2.σ
′′
2

and Γ1 ` M1 : σ′
1 ⇔ Γ2 ` M2 : σ′

2

Γ1 ` π1P1 ↑ σ′
1 ↔ Γ2 ` π1P2 ↑ σ′

2 if Γ1 ` P1 ↑ Σs:σ′
1.σ

′′
1 ↔ Γ2 ` P2 ↑ Σs:σ′

2.σ
′′
2

Γ1 ` π2P1 ↑ σ′′
1 [π1P1/s] ↔ Γ2 ` π2P2 ↑ σ′′

2 [π1P2/s] if Γ1 ` P1 ↑ Σs:σ′
1.σ

′′
1 ↔ Γ2 ` P2 ↑ Σs:σ′

2.σ
′′
2

Γ1 ` [Πs:σ1.τ1] ↑ [[T ]] ↔ Γ2 ` [Πs:σ2.τ2] ↑ [[T ]] if Γ1 ` σ1 ⇔ Γ2 ` σ2

and Γ1, s:σ1 ` τ1 ⇔ Γ2, s:σ2 ` τ2

Γ1 ` [τ ′
1 × τ ′′

1 ] ↑ [[T ]] ↔ Γ2 ` [τ ′
2 × τ ′′

2 ] ↑ [[T ]] if Γ1 ` τ ′
1 ⇔ Γ2 ` τ ′

2 and Γ1 ` τ ′′
1 ⇔ Γ2 ` τ ′′

2

Γ1 ` [〈|σ1|〉] ↑ [[T ]] ↔ Γ2 ` [〈|σ2|〉] ↑ [[T ]] if Γ1 ` σ1 ⇔ Γ2 ` σ2

Figure 16: Equivalence Algorithm for Modules and Signatures
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Proof: By straightforward induction on path equivalence and natural signature extraction. �

Lemma D.3 (Determinacy of Weak Head Reduction and Normalization)
1. Weak head reduction is deterministic, i.e. if Γ ` M

wh
−→ M1 and Γ ` M

wh
−→ M2, then M1 = M2.

2. Weak head normalization is deterministic, i.e. if Γ ` M
wh
=⇒ N1 and Γ ` M

wh
=⇒ N2, then N1 = N2.

Proof:

1. By induction on weak head reduction.

2. By Part 1.

�

Lemma D.4 (Weak Head Reduction Implies Equivalence At Principal Signature)
If Γ `P M1 ⇒ σ and Γ ` M1

wh
−→ M2, then Γ ` M1

∼= M2 : σ.

Proof: By induction on the derivation of the second premise.

• Case: Γ ` (λs:σ′.M)M ′ wh
−→ M [M ′/s].

1. By inversion on synthesis, Γ `P (λs:σ′.M)M ′ ⇒ σ′′[M ′/s],

2. where Γ, s:σ′ `P M ⇒ σ′′ and Γ `P M ′ ⇐ σ′.

3. By Theorem C.1 and Proposition B.27, Γ ` (λs:σ′.M)M ′ ∼= M [M ′/s] : σ′′[M ′/s].

• Case: Γ ` π1〈s = M ′, M ′′〉
wh
−→ M ′.

1. By inversion on synthesis, Γ `P π1〈s = M ′, M ′′〉 ⇒ σ′,

2. where Γ `P M ′ ⇒ σ′ and Γ, s:σ′ `P M ′′ ⇒ σ′′.

3. By Theorem C.1 and Proposition B.27, Γ ` π1〈s = M ′, M ′′〉 ∼= M ′ : σ′.

• Case: Γ ` π2〈s = M ′, M ′′〉
wh
−→ M ′′[M ′/s].

1. By inversion on synthesis, Γ `P π2〈s = M ′, M ′′〉 ⇒ σ′′[M ′/s],

2. where Γ `P M ′ ⇒ σ′ and Γ, s:σ′ `P M ′′ ⇒ σ′′.

3. By Theorem C.1 and Proposition B.27, Γ ` π2〈s = M ′, M ′′〉 ∼= M ′′[M ′/s] : σ′′[M ′/s].

• Case: Γ ` let s = M ′ in (M ′′ : σ)
wh
−→ M ′′[M ′/s].

1. By inversion on synthesis, Γ `P let s = M ′ in (M ′′ : σ) ⇒
�

σ(let s = M ′ in (M ′′ : σ)),

2. where Γ `P M ′ ⇒ σ′, Γ, s:σ′ `P M ′′ ⇐ σ, and Γ ` σ sig.

3. By Theorem C.1 and Rule 71, Γ ` let s = M ′ in (M ′′ : σ) ∼= M ′′[M ′/s] : σ.

4. By Proposition B.26, Γ ` let s = M ′ in (M ′′ : σ) ∼= M ′′[M ′/s] :
�

σ(let s = M ′ in (M ′′ : σ)).

• Case: Γ ` [Typ M ]
wh
−→ M .

1. By inversion on synthesis, Γ `P [Typ M ] ⇒
�

([Typ M ]), where Γ `P M : [[T ]].

2. By Rule 62, Γ ` [Typ M ] ∼= M : [[T ]].

3. By Proposition B.26, Γ ` [TypM ] ∼= M :
�

([TypM ]).

• Case: Γ ` P
wh
−→ M , where Γ ` P ↑

�
(M).
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1. By Lemma D.1, Γ `P P :
�
(M) and Γ `P P ⇒

�
(P ).

2. Thus, Γ ` P ∼= M :
�

(P ).

• Case: Γ ` F1M
wh
−→ F2M , where Γ ` F1

wh
−→ F2.

1. By inversion on synthesis, Γ `P F1M ⇒ σ′′[M/s],

2. where Γ `P F1 ⇒ Πs:σ′.σ′′ and Γ `P M ⇐ σ′.

3. By IH, Γ ` F1
∼= F2 : Πs:σ′.σ′′.

4. By Theorem C.1 and reflexivity, Γ ` M ∼= M : σ′.

5. By Rule 65, Γ ` F1M ∼= F2M : σ′′[M/s].

• Case: Γ ` π1M1
wh
−→ π1M2, where Γ ` M1

wh
−→ M2.

1. By inversion on synthesis, Γ `P π1M1 ⇒ σ′, where Γ `P M1 ⇒ Σs:σ′.σ′′.

2. By IH, Γ ` M1
∼= M2 : Σs:σ′.σ′′.

3. By Rule 67, Γ ` π1M1
∼= π1M2 : σ′.

• Case: Γ ` π2M1
wh
−→ π2M2, where Γ ` M1

wh
−→ M2.

1. By inversion on synthesis, Γ `P π2M1 ⇒ σ′′, where Γ `P M1 ⇒ σ′ × σ′′.

2. By IH, Γ ` M1
∼= M2 : σ′ × σ′′.

3. By Rule 68, Γ ` π2M1
∼= π2M2 : σ′′.

�

Corollary D.5 (A Module Is Equivalent To Its Weak Head Normal Form)
1. If Γ `P M1 : σ and Γ ` M1

wh
−→ M2, then Γ ` M1

∼= M2 : σ.

2. If Γ `P M : σ and Γ ` M
wh
=⇒ N , then Γ ` M ∼= N : σ.

Proof:

1. By Theorem C.5, Γ `P M1 ⇒ σ′, where Γ ` σ′ ≤ σ. By Lemma D.4, Γ ` M1
∼= M2 : σ′, so by Rule 73,

Γ ` M1
∼= M2 : σ.

2. By Part 1, reflexivity and transitivity.

�

Theorem D.6 (Soundness of Equivalence Algorithm)
1. If Γ1 ≡ Γ2, Γ1 ` τ1 type, Γ2 ` τ2 type, and Γ1 ` τ1 ⇔ Γ2 ` τ2, then Γ1 ` τ1 ≡ τ2.

2. If Γ1 ≡ Γ2, Γ1 ` σ1 sig, Γ2 ` σ2 sig, and Γ1 ` σ1 ⇔ Γ2 ` σ2, then Γ1 ` σ1 ≡ σ2.

3. If Γ1 ≡ Γ2, Γ1 ` σ1 ≡ σ2, Γ1 `P M1 : σ1, Γ2 `P M2 : σ2, and Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2, then
Γ1 ` M1

∼= M2 : σ1.

4. If Γ1 ≡ Γ2, Γ1 `P P1 : ρ1, Γ2 `P P2 : ρ2, and Γ1 ` P1 ↑ σ1 ↔ Γ2 ` P2 ↑ σ2, then Γ1 ` σ1 ≡ σ2 and
Γ1 ` P1

∼= P2 : σ1.

Proof: By induction on the algorithmic judgments.

1. (a) By Rule 41, Γ1 `P [τ1] : [[T ]] and Γ2 `P [τ2] : [[T ]].

(b) By IH, Γ1 ` [τ1] ∼= [τ2] : [[T ]].
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(c) By Rule 7, Γ1 ` τ1 ≡ τ2.

2. All cases are straightforward by inversion on the signature formation rules and induction.

3. • Case: Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2, where σ1 and σ2 are unitary.
Since Γ1 `P M1 : σ1 and Γ1 `P M2 : σ1, by Rule 63, Γ1 ` M1

∼= M2 : σ1.

• The remaining cases are proved exactly as in Part 1 of SH Theorem 3.7, with the exception that
the last step of the Σ case involves an application of Part 9 of Proposition B.27.

4. • Case: Γ1 ` s ↑ Γ1(s) ↔ Γ2 ` s ↑ Γ2(s). Trivial.

• Case: Γ1 ` P1M1 ↑ σ′′
1 [M1/s] ↔ Γ2 ` P2M2 ↑ σ′′

2 [M2/s],
where Γ1 ` P1 ↑ Πs:σ′

1.σ
′′
1 ↔ Γ2 ` P2 ↑ Πs:σ′

2.σ
′′
2 and Γ1 ` M1 : σ′

1 ⇔ Γ2 ` M2 : σ′
2.

(a) For i ∈ {1, 2}, by Theorem C.5, Γi `P PiMi ⇒ ρ′′i [Mi/s],

(b) where Γi `P Pi ⇒ Πs:ρ′i.ρ
′′
i and Γi `P Mi ⇐ ρ′i.

(c) By Lemma D.1 and Lemma D.2, Γi ` Pi ↑ Πs:σ′

i.σ
′′

i , Γi `P Pi : Πs:σ′

i.σ
′′

i , and ρ′i = σ′

i.

(d) By IH, Γ1 ` Πs:σ′
1.σ

′′
1 ≡ Πs:σ′

2.σ
′′
2 and Γ1 ` P1

∼= P2 : Πs:σ′
1.σ

′′
1 .

(e) By inversion, Γ1 ` σ′
1 ≡ σ′

2 and Γ1, s:σ
′
1 ` σ′′

1 ≡ σ′′
2 .

(f) By Theorem C.1, Γi `P Mi : σ′
i, so by IH, Γ1 ` M1

∼= M2 : σ′
1.

(g) By Functionality, Γ1 ` σ′′
1 [M1/s] ≡ σ′′

2 [M2/s].

(h) By Rule 65, Γ1 ` P1M1
∼= P2M2 : σ′′

1 [M1/s].

• Case: Γ1 ` π1P1 ↑ σ′
1 ↔ Γ2 ` π1P2 ↑ σ′

2, where Γ1 ` P1 ↑ Σs:σ′
1.σ

′′
1 ↔ Γ2 ` P2 ↑ Σs:σ′

2.σ
′′
2 .

(a) For i ∈ {1, 2}, by Theorem C.5, Γi `P π1Pi ⇒ ρ′i, where Γi `P Pi ⇒ Σs:ρ′i.ρ
′′
i .

(b) By Theorem C.1, Γi `P Pi : Σs:ρ′i.ρ
′′

i .

(c) By IH, Γ1 ` Σs:σ′
1.σ

′′
1 ≡ Σs:σ′

2.σ
′′
2 and Γ1 ` P1

∼= P2 : Σs:σ′
1.σ

′′
1 .

(d) By inversion, Γ1 ` σ′
1 ≡ σ′

2, and by Rule 67, Γ1 ` π1P1
∼= π1P2 : σ′

1.

• Case: Γ1 ` π2P1 ↑ σ′′
1 [π1P1/s] ↔ Γ2 ` π2P2 ↑ σ′′

2 [π1P2/s],
where Γ1 ` P1 ↑ Σs:σ′

1.σ
′′
1 ↔ Γ2 ` P2 ↑ Σs:σ′

2.σ
′′
2 .

(a) For i ∈ {1, 2}, by Theorem C.5, Γi `P π2Pi ⇒ ρ′′i , where Γi `P Pi ⇒ ρ′i × ρ′′i .

(b) By Theorem C.1, Γi `P Pi : ρ′i × ρ′′i .

(c) By IH, Γ1 ` Σs:σ′
1.σ

′′
1 ≡ Σs:σ′

2.σ
′′
2 and Γ1 ` P1

∼= P2 : Σs:σ′
1.σ

′′
1 .

(d) By inversion, Γ1, s:σ
′
1 ` σ′′

1 ≡ σ′′
2 , and by Rule 67, Γ1 ` π1P1

∼= π1P2 : σ′
1.

(e) By Functionality, Γ1 ` σ′′
1 [π1P1/s] ≡ σ′′

2 [π1P2/s].

(f) By Rule 68, Γ1 ` π2P1
∼= π2P2 : σ′′

1 [π1P1/s].

• Case: Γ1 ` [Πs:σ1.τ1] ↑ [[T ]] ↔ Γ2 ` [Πs:σ2.τ2] ↑ [[T ]],
where Γ1 ` σ1 ⇔ Γ2 ` σ2 and Γ1, s:σ1 ` τ1 ⇔ Γ2, s:σ2 ` τ2.

(a) By Theorem C.5 and inversion on principal signature synthesis,
Γ1 ` Πs:σ1.τ1 type and Γ2 ` Πs:σ2.τ2 type.

(b) So, Γ1 ` σ1 sig and Γ2 ` σ2 sig, and by IH, Γ1 ` σ1 ≡ σ2.

(c) In addition, Γ1, s:σ1 ` τ1 type and Γ2, s:σ2 ` τ2 type.

(d) So by IH, Γ1, s:σ1 ` τ1 ≡ τ2.

(e) Thus, Γ1 ` Πs:σ1.τ1 ≡ Πs:σ2.τ2, and Γ1 ` [Πsσ1.τ1] ∼= [Πs:σ2.τ2] : [[T ]].

• Case: Γ1 ` [τ ′
1×τ ′′

1 ] ↑ [[T ]] ↔ Γ2 ` [τ ′
2×τ ′′

2 ] ↑ [[T ]], where Γ1 ` τ ′
1 ⇔ Γ2 ` τ ′

2 and Γ1 ` τ ′′
1 ⇔ Γ2 ` τ ′′

2 .
The proof is similar to and simpler than the previous case.

• Case: Γ1 ` [〈|σ1|〉] ↑ [[T ]] ↔ Γ2 ` [〈|σ2|〉] ↑ [[T ]], where Γ1 ` σ1 ⇔ Γ2 ` σ2.
The proof is similar to the previous two cases.

�
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Lemma D.7 (Symmetry and Transitivity of Equivalence Algorithm)
1. If Γ1 ` τ1 ⇔ Γ2 ` τ2, then Γ2 ` τ2 ⇔ Γ1 ` τ1.

2. If Γ1 ` τ1 ⇔ Γ2 ` τ2, and Γ2 ` τ2 ⇔ Γ3 ` τ3, then Γ1 ` τ1 ⇔ Γ3 ` τ3.

3. If Γ1 ` σ1 ⇔ Γ2 ` σ2, then Γ2 ` σ2 ⇔ Γ1 ` σ1.

4. If Γ1 ` σ1 ⇔ Γ2 ` σ2, and Γ2 ` σ2 ⇔ Γ3 ` σ3, then Γ1 ` σ1 ⇔ Γ3 ` σ3.

5. If Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2, then Γ2 ` M2 : σ2 ⇔ Γ1 ` M1 : σ1.

6. If Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2, and Γ2 ` M2 : σ2 ⇔ Γ3 ` M3 : σ3,
then Γ1 ` M1 : σ1 ⇔ Γ3 ` M3 : σ3.

7. If Γ1 ` P1 ↑ σ1 ↔ Γ2 ` P2 ↑ σ2, then Γ2 ` P2 ↑ σ2 ↔ Γ1 ` P1 ↑ σ1.

8. If Γ1 ` P1 ↑ σ1 ↔ Γ2 ` P2 ↑ σ2, and Γ2 ` P2 ↑ σ2 ↔ Γ3 ` P3 ↑ σ3,
then Γ1 ` P1 ↑ σ1 ↔ Γ3 ` P3 ↑ σ3.

Proof: By straightforward induction on algorithmic judgments. The proof of Part 8 makes use of Lemma D.2.
�

Lemma D.8 (Weakening for Equivalence Algorithm)
Suppose Γ ⊆ Γ′, Γ1 ⊆ Γ′

1, and Γ2 ⊆ Γ′
2.

1. If Γ ` P ↑ σ, then Γ′ ` P ↑ σ.

2. If Γ ` M1
wh
−→ M2, then Γ′ ` M1

wh
−→ M2.

3. If Γ ` M
wh
=⇒ N , then Γ′ ` M

wh
=⇒ N .

4. If Γ1 ` τ1 ⇔ Γ2 ` τ2, then Γ′
1 ` τ1 ⇔ Γ′

2 ` τ2.

5. If Γ1 ` σ1 ⇔ Γ2 ` σ2, then Γ′
1 ` σ1 ⇔ Γ′

2 ` σ2

6. If Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2, then Γ′
1 ` M1 : σ1 ⇔ Γ′

2 ` M2 : σ2.

7. If Γ1 ` P1 ↑ σ1 ↔ Γ2 ` P2 ↑ σ2, then Γ′
1 ` P1 ↑ σ1 ↔ Γ′

2 ` P2 ↑ σ2.

Proof: By straightforward induction on algorithmic judgments. �

E Completeness of the Equivalence Algorithm

The completeness proof for the equivalence algorithm, which is the main contribution of Stone and Harper,
extends easily to our system. As in SH, we employ a six-place Kripke-style logical relation, given in Figure 17,
that involves two worlds and two signatures. All the extensions to the logical relation are straightforward.
For modules of unitary signature the logical relation is trivial and only requires that the two signatures are
related. We do not bother to define a logical relation for types because the algorithm treats them as modules
of base signature [[T ]], and logical equivalence at signature [[T ]] coincides with algorithmic equivalence.

In adapting the SH proof, we have taken the opportunity to restructure the definition of the logical
relation so as to eliminate the need for the logical “validity” predicate that SH defines. As shown in
Figure 17, logical validity is definable as logical equivalence of a module or signature with itself, and using
symmetry and transitivity of the equivalence algorithm it is easy to show that our relation is equivalent
to SH’s. The advantage of our formulation is that it obviates SH Lemma 4.4 (Reflexivity), which states
precisely that our definition of logical validity is admissible.
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• (∆1; σ1) is (∆2; σ2) iff

1. (∆1; σ1) ≈ (∆2; σ2), (∆1; σ1) ≈ (∆1; σ1), and (∆2; σ2) ≈ (∆2; σ2)

• (∆1; σ1) ≈ (∆2; σ2) iff

1. σ1 = σ2 = 1

2. Or, σ1 = σ2 = [[T ]]

3. Or, σ1 = [[τ1]] and σ2 = [[τ2]] and ∆1 ` τ1 ⇔ ∆2 ` τ2

4. Or, σ1 =
�
(M1) and σ2 =

�
(M2) and ∆1 ` M1 : [[T ]] ⇔ ∆2 ` M2 : [[T ]]

5. Or, σ1 = Πδs:σ′
1.σ

′′
1 and σ2 = Πδs:σ′

2.σ
′′
2 and (∆1; σ

′
1) is (∆2; σ

′
2) and ∀∆′

1 ⊇ ∆1, ∆
′
2 ⊇ ∆2 if

(∆′
1; M1; σ

′
1) is (∆′

2; M2; σ
′
2) then (∆′

1; σ
′′
1 [M1/s]) is (∆′

2; σ
′′
2 [M2/s])

6. Or, σ1 = Σs:σ′
1.σ

′′
1 and σ2 = Σs:σ′

2.σ
′′
2 and (∆1; σ

′
1) is (∆2; σ

′
2) and ∀∆′

1 ⊇ ∆1, ∆
′
2 ⊇ ∆2 if

(∆′
1; M1; σ

′
1) is (∆′

2; M2; σ
′
2) then (∆′

1; σ
′′
1 [M1/s]) is (∆′

2; σ
′′
2 [M2/s])

• (∆1; σ1 ≤ ρ1) is (∆2; σ2 ≤ ρ2) iff

1. ∀∆′
1 ⊇ ∆1, ∆

′
2 ⊇ ∆2 if (∆′

1; M1; σ1) is (∆′
2; M2; σ2) then (∆′

1; M1; ρ1) is (∆′
2; M2; ρ2).

• (∆1; M1; σ1) is (∆2; M2; σ2) iff

1. (∆1; σ1) is (∆2; σ2)

2. And, (∆1; M1; σ1) ≈ (∆2; M2; σ2), (∆1; M1; σ1) ≈ (∆1; M1; σ1), and (∆2; M2; σ2) ≈ (∆2; M2; σ2)

• (∆1; M1; σ1) ≈ (∆2; M2; σ2) iff

1. σ1 and σ2 are unitary

2. Or, σ1 = σ2 = T and ∆1 ` M1 : [[T ]] ⇔ ∆2 ` M2 : [[T ]]

3. Or, σ1 =
�
(N1) and σ2 =

�
(N2)

and ∆1 ` M1 : [[T ]] ⇔ ∆1 ` N1 : [[T ]] and ∆2 ` M2 : [[T ]] ⇔ ∆2 ` N2 : [[T ]]

4. Or, σ1 = Πs:σ′
1.σ

′′
1 and σ2 = Πs:σ′

2.σ
′′
2 and ∀∆′

1 ⊇ ∆1, ∆
′
2 ⊇ ∆2 if (∆′

1; N1; σ
′
1) is (∆′

2; N2; σ
′
2)

then (∆′
1; M1N1; σ

′′
1 [N1/s]) is (∆′

2; M2N2; σ
′′
2 [N2/s])

5. Or, σ1 = Σs:σ′
1.σ

′′
1 and σ2 = Σs:σ′

2.σ
′′
2 and (∆1; π1M1; σ

′
1) is (∆2; π1M2; σ

′
2) and

(∆1; π2M1; σ
′′
1 [π1M1/s]) is (∆2; π2M2; σ

′′
2 [π1M2/s])

• (∆1; γ1; Γ1) is (∆2; γ2; Γ2) iff

1. ∀s ∈ dom(Γ1) = dom(Γ2). (∆1; γ1s; γ1(Γ1(s))) is (∆2; γ2s; γ2(Γ2(s)))

• (∆; σ)valid iff (∆; σ) is (∆; σ)

• (∆; M ; σ)valid iff (∆; M ; σ) is (∆; M ; σ)

• (∆; γ; Γ)valid iff (∆; γ; Γ) is (∆; γ; Γ)

Figure 17: Logical Relations for Proving Completeness of Equivalence Algorithm
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Lemma E.1 (Monotonicity)
Suppose ∆′

1 ⊇ ∆1 and ∆′
2 ⊇ ∆2.

1. If (∆1; σ1) is (∆2; σ2), then (∆′
1; σ1) is (∆′

2; σ2).

2. If (∆1; M1; σ1) is (∆2; M2; σ2), then (∆′
1; M1; σ1) is (∆′

2; M2; σ2).

3. If (∆1; γ1; Γ1) is (∆2; γ2; Γ2), then (∆′
1; γ1; Γ1) is (∆′

2; γ2; Γ2).

Proof: By induction on the size of the signatures involved. �

Lemma E.2 (Logical Equivalence Implies Logical Subsumption)
If (∆1; σ1) is (∆1; ρ1), (∆2; σ2) is (∆2; ρ2), and (∆1; ρ1) is (∆2; ρ2),
then (∆1; σ1 ≤ ρ1) is (∆2; σ2 ≤ ρ2).

Proof: See proof of SH Lemma 4.3. All the new cases involve unitary signatures and are trivial. �

Lemma E.3 (Symmetry of Logical Relations)
1. If (∆1; σ1) is (∆2; σ2), then (∆2; σ2) is (∆1; σ1).

2. If (∆1; M1; σ1) is (∆2; M2; σ2), then (∆2; M2; σ2) is (∆1; M1; σ1).

3. If (∆1; γ1; Γ1) is (∆2; γ2; Γ2), then (∆2; γ2; Γ2) is (∆1; γ1; Γ1).

Proof: See proof of SH Lemma 4.5. All the new cases involve unitary signatures and are trivial, with the
exception that the proof of Part 1 in the case that σ1 and σ2 are Πpar is the same as for the Π and Σ cases. �

Lemma E.4 (Transitivity of Logical Relations)
1. If (∆1; σ1) is (∆1; ρ) and (∆1; ρ) is (∆2; σ2), then (∆1; σ1) is (∆2; σ2).

2. If (∆1; M1; σ1) is (∆1; N ; ρ) and (∆1; N ; ρ) is (∆2; M2; σ2), then (∆1; M1; σ1) is (∆2; M2; σ2).

Proof: See proof of SH Lemma 4.6. All the new cases involve unitary signatures and are trivial, with the
exception that the proof of Part 1 in the case that σ1 and σ2 are Πpar is the same as for the Π and Σ cases. �

Define
wh
−→∗ to be the reflexive, transitive closure of

wh
−→.

Lemma E.5 (Closure of Logical Relations Under Weak Head Expansion)
If (∆1; M1; σ1) is (∆2; M2; σ2), ∆1 ` M ′

1
wh
−→∗ M1, and ∆2 ` M ′

2
wh
−→∗ M2,

then (∆1; M
′
1; σ1) is (∆2; M

′
2; σ2).

Proof: See proof of SH Lemma 4.7. All the new cases involve unitary signatures and are trivial. �

Lemma E.6 (Logical Relations Imply Algorithmic Equivalence)
1. If (∆1; σ1) is (∆2; σ2), then ∆1 ` σ1 ⇔ ∆2 ` σ2.

2. If (∆1; M1; σ1) is (∆2; M2; σ2), then ∆1 ` M1 : σ1 ⇔ ∆2 ` M2 : σ2.

3. If (∆1; σ1) is (∆2; σ2) and ∆1 ` P1 ↑ σ1 ↔ ∆2 ` P2 ↑ σ2, then (∆1; P1; σ1) is (∆2; P2; σ2).

Proof: See proof of SH Lemma 4.8. All the new cases involve unitary signatures and are trivial, with the
exception that the proof of Part 1 in the case that σ1 and σ2 are Πpar is the same as for the Π and Σ cases. �

Theorem E.7 (Fundamental Theorem of Logical Relations)
Suppose (∆1; γ1; Γ) is (∆2; γ2; Γ).
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1. If Γ ` τ type, then ∆1 ` γ1τ ⇔ ∆2 ` γ2τ .

2. If Γ ` τ1 ≡ τ2, then ∆1 ` γ1τ1 ⇔ ∆2 ` γ2τ2, ∆1 ` γ1τ1 ⇔ ∆2 ` γ2τ1, and ∆1 ` γ1τ2 ⇔ ∆2 ` γ2τ2.

3. If Γ ` σ sig, then (∆1; γ1σ) is (∆2; γ2σ).

4. If Γ ` σ1 ≡ σ2, then (∆1; γ1σ1) is (∆2; γ2σ2), (∆1; γ1σ1) is (∆2; γ2σ1), and (∆1; γ1σ2) is (∆2; γ2σ2).

5. If Γ ` σ1 ≤ σ2, then (∆1; γ1σ1 ≤ γ1σ2) is (∆2; γ2σ1 ≤ γ2σ2),
(∆1; γ1σ1) is (∆2; γ2σ1), and (∆1; γ1σ2) is (∆2; γ2σ2).

6. If Γ `P M : σ, then (∆1; γ1M ; γ1σ) is (∆2; γ2M ; γ2σ).

7. If Γ ` M1
∼= M2 : σ, then (∆1; γ1M1; γ1σ) is (∆2; γ2M2; γ2σ), (∆1; γ1M1; γ1σ) is (∆2; γ2M1; γ2σ),

and (∆1; γ1M2; γ1σ) is (∆2; γ2M2; γ2σ).

Proof: By induction on derivations. In all cases, (∆1; γ1; Γ) is (∆1; γ1; Γ) and (∆2; γ2; Γ) is (∆2; γ2; Γ).
For most of the cases, see proof of SH Theorem 4.9. Here we give the new cases:

Well-formed types: Γ ` τ type.

• Case: Rule 3.

1. By IH, (∆1; γ1M ; [[T ]]) is (∆2; γ2M ; [[T ]]).

2. By Lemma E.5, (∆1; [Typ γ1M ]; [[T ]]) is (∆2; [Typ γ2M ]; [[T ]]).

3. So, ∆1 ` [Typ γ1M ] : [[T ]] ⇔ ∆2 ` [Typ γ2M ] : [[T ]].

4. Thus, ∆1 ` γ1(Typ M) ⇔ ∆2 ` γ2(TypM).

• Case: Rule 4. The proof is a reflexive instance of the proof for Rule 8.

• Case: Rule 5. The proof is a reflexive instance of the proof for Rule 9.

• Case: Rule 6. The proof is a reflexive instance of the proof for Rule 10.

Type equivalence: Γ ` τ1 ≡ τ2.
It suffices to prove that if Γ ` τ1 ≡ τ2 and (∆1; γ1; Γ) is (∆2; γ2; Γ) then ∆1 ` γ1τ1 ⇔ ∆2 ` γ2τ2, because
we can apply this to get ∆2 ` γ2τ1 ⇔ ∆2 ` γ2τ2, so ∆1 ` γ1τ1 ⇔ ∆2 ` γ2τ1 by Symmetry and Transitivity
of the algorithm. A similar argument yields ∆1 ` γ1τ2 ⇔ ∆2 ` γ2τ2.

• Case: Rule 7.

1. By IH, (∆1; [γ1τ1]; [[T ]]) is (∆2; [γ2τ2]; [[T ]]).

2. So, ∆1 ` [γ1τ1] : [[T ]] ⇔ ∆2 ` [γ2τ2] : [[T ]].

3. Thus, ∆1 ` γ1τ1 ⇔ ∆2 ` γ2τ2.

• Case: Rule 8.

1. By IH, (∆1; γ1σ1) is (∆2; γ2σ2).

2. By Lemma E.6, ∆1 ` γ1σ1 ⇔ ∆2 ` γ2σ2.

3. Now, ∆1, s:γ1σ1 ` s ↑ γ1σ1 ↔ ∆2, s:γ2σ2 ` s ↑ γ2σ2.

4. So by Monotonicity and Lemma E.6, (∆1, s:γ1σ1; s; γ1σ1) is (∆2, s:γ2σ2; s; γ2σ2).

5. By IH and Symmetry, (∆1; γ1σ1) is (∆2; γ2σ1) and (∆2; γ2σ2) is (∆2; γ2σ1).

6. By Lemma E.2, (∆1; γ1σ1 ≤ γ1σ1) is (∆2; γ2σ2 ≤ γ2σ1).

7. So, (∆1, s:γ1σ1; s; γ1σ1) is (∆2, s:γ2σ2; s; γ2σ1).

8. Thus, by Monotonicity, (∆1, s:γ1σ1; γ1; Γ, s:σ1) is (∆2, s:γ2σ2; γ2; Γ, s:σ1).

9. Then, by IH, ∆1, s:γ1σ1 ` γ1τ1 ⇔ ∆2, s:γ2σ2 ` γ2τ2.
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10. Therefore, ∆1 ` [Πs:γ1σ1.γ1τ1] ↑ [[T ]] ↔ ∆2 ` [Πs:γ2σ2.γ2τ2] ↑ [[T ]],

11. and so ∆1 ` [Πs:γ1σ1.γ1τ1] : [[T ]] ⇔ ∆2 ` [Πs:γ2σ2.γ2τ2] : [[T ]],

12. and finally ∆1 ` γ1(Πs:σ1.τ1) ⇔ ∆2 ` γ2(Πs:σ2.τ2).

• Case: Rule 9.

1. By IH, ∆1 ` γ1τ
′
1 ⇔ ∆2 ` γ2τ

′
2 and ∆1 ` γ1τ

′′
1 ⇔ ∆2 ` γ2τ

′′
2 .

2. Therefore, ∆1 ` [γ1τ
′
1 × γ1τ

′′
1 ] ↑ [[T ]] ↔ ∆2 ` [γ2τ

′
2 × γ2τ

′′
2 ] ↑ [[T ]],

3. and so ∆1 ` [γ1τ
′
1 × γ1τ

′′
1 ] : [[T ]] ⇔ ∆2 ` [γ2τ

′
2 × γ2τ

′′
2 ] : [[T ]],

4. and finally ∆1 ` γ1(τ
′
1 × τ ′′

1 ) ⇔ ∆2 ` γ2(τ
′
2 × τ ′′

2 ).

• Case: Rule 10.

1. By IH, ∆1 ` γ1σ1 ⇔ ∆2 ` γ2σ2.

2. Therefore, ∆1 ` [〈|γ1σ1|〉] ↑ [[T ]] ↔ ∆2 ` [〈|γ2σ2|〉] ↑ [[T ]],

3. and so ∆1 ` [〈|γ1σ1|〉] : [[T ]] ⇔ ∆2 ` [〈|γ2σ2|〉] : [[T ]],

4. and finally ∆1 ` γ1〈|σ1|〉 ⇔ ∆2 ` γ2〈|σ2|〉.

Well-formed signatures: Γ ` σ sig.
All the new cases involve unitary signatures and are trivial, with the exception of the Πpar case, for which
the proof is the same as for the Π and Σ cases.

Signature equivalence: Γ ` σ1 ≡ σ2.
All the new cases involve unitary signatures and are trivial, with the exception of the Πpar case, for which
the proof is the same as for the Π and Σ cases.

Signature subtyping: Γ ` σ1 ≤ σ2.
In all the new cases, σ2 is a unitary signature. By definition of the logical relation, this means that in
order to show logical subsumption it suffices to show (∆1; γ1σ2) is (∆2; γ2σ2). Showing this is as well as
(∆1; γ1σ1) is (∆2; γ2σ1) is trivial for the 1 and [τ ] cases. For the (Π, Πpar) and (Πpar, Πpar) cases, the proof
is the same as the one for the (Π, Π) case.

Well-formed modules: Γ `P M : σ.

• Case: Rule 40. Trivial.

• Case: Rule 42. By the same reasoning as for Rule 22, applied to the second (redundant) premise.

• Case: Rule 44. By the same reasoning as for Rule 24, applied to the second (redundant) premise.

• Case: Rule 47. The proof is a reflexive instance of the proof for Rule 66.

• Case: Rule 55. The proof is a reflexive instance of the proof for Rule 70.

• Case: Rule 56.

1. By IH, (∆1; γ1M
′; γ1σ

′) is (∆2; γ2M
′; γ2σ

′).

2. So, (∆1; γ1[s 7→ γ1M
′]; Γ, s:σ′) is (∆2; γ2[s 7→ γ2M

′]; Γ, s:σ′).

3. By Proposition B.2, s 6∈ FV (σ).

4. Then by IH, (∆1; (γ1M
′′)[γ1M

′/s]; γ1σ) is (∆2; (γ2M
′′)[γ2M

′/s]; γ2σ).

5. By Lemma E.5, (∆1; γ1(let s = M ′ in (M ′′ : σ)); γ1σ) is (∆2; γ2(let s = M ′ in (M ′′ : σ)); γ2σ).
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Module equivalence: Γ ` M1
∼= M2 : σ.

It suffices to prove that if Γ ` M1
∼= M2 : σ and (∆1; γ1; Γ) is (∆2; γ2; Γ)

then (∆1; γ1M1; γ1σ) is (∆2; γ2M2; γ2σ), because we can apply this to get (∆2; γ2M1; γ2σ) is (∆2; γ2M2; γ2σ),
so (∆1; γ1M1; γ1σ) is (∆2; γ2M1; γ2σ) by Symmetry and Transitivity of the algorithm. A similar argument
yields (∆1; γ1M2; γ1σ) is (∆2; γ2M2; γ2σ).

• Case: Rule 61. Trivial, by IH.

• Case: Rule 62.

1. By IH, (∆1; γ1M ; [[T ]]) is (∆2; γ2M ; [[T ]]).

2. By Lemma E.5, (∆1; γ1[Typ M ]; [[T ]]) is (∆2; γ2M ; [[T ]]).

• Case: Rule 63. Trivial, by IH.

• Case: Rule 66.

1. By the same reasoning as in the proof for Rule 25, (∆1; γ1(Σs:σ′.σ′′)) is (∆2; γ2(Σs:σ′.σ′′)).

2. By IH, (∆1; γ1M
′
1; γ1σ

′) is (∆2; γ2M
′
2; γ2σ

′).

3. So, (∆1; γ1[s 7→ γ1M
′
1]; Γ, s:σ′) is (∆2; γ2[s 7→ γ2M

′
2]; Γ, s:σ′).

4. Then by IH, (∆1; (γ1M
′′
1 )[γ1M

′
1/s]; γ1σ

′′[γ1M
′
1/s]) is (∆2; (γ2M

′′
2 )[γ2M

′
2/s]; γ2σ

′′[γ2M
′
2/s]).

5. By Lemma E.5, (∆1; π1〈s = γ1M
′
1, γ1M

′′
1 〉; γ1σ

′) is (∆2; π1〈s = γ2M
′
2, γ2M

′′
2 〉; γ2σ

′)

6. and (∆1; π2〈s = γ1M
′
1, γ1M

′′
1 〉; γ1σ

′′[γ1M
′
1/s]) is (∆2; π2〈s = γ2M

′
2, γ2M

′′
2 〉; γ2σ

′′[γ2M
′
2/s]).

7. Also by Lemma E.5, (∆1; γ1M
′
1; γ1σ

′) is (∆1; π1〈s = γ1M
′
1, γ1M

′′
1 〉; γ1σ

′)

8. and (∆2; γ2M
′
2; γ2σ

′) is (∆2; π1〈s = γ2M
′
2, γ2M

′′
2 〉; γ2σ

′).

9. So, (∆1; γ1σ
′′[π1〈s = γ1M

′
1, γ1M

′′
1 〉/s]) is (∆2; γ2σ

′′[π1〈s = γ2M
′
2, γ2M

′′
2 〉/s]),

10. (∆1; γ1σ
′′[γ1M

′
1/s]) is (∆1; γ1σ

′′[π1〈s = γ1M
′
1, γ1M

′′
1 〉/s]),

11. and (∆2; γ2σ
′′[γ2M

′
2/s]) is (∆2; γ2σ

′′[π1〈s = γ2M
′
2, γ2M

′′
2 〉/s]).

12. By Lemma E.2, (∆1; π2〈s = γ1M
′
1, γ1M

′′
1 〉; γ1σ

′′[π1〈s = γ1M
′
1, γ1M

′′
1 〉/s])

is (∆2; π2〈s = γ2M
′
2, γ2M

′′
2 〉; γ2σ

′′[π1〈s = γ2M
′
2, γ2M

′′
2 〉/s]).

13. Therefore, (∆1; γ1〈s = M ′
1, M

′′
1 〉; γ1(Σs:σ′.σ′′)) is (∆2; γ2〈s = M ′

2, M
′′
2 〉; γ2(Σs:σ′.σ′′)).

• Case: Rule 70. Trivial, by IH.

• Case: Rule 71.

1. By IH, (∆1; γ1M
′; γ1σ

′) is (∆2; γ2M
′; γ2σ

′).

2. So, (∆1; γ1[s 7→ γ1M
′]; Γ, s:σ′) is (∆2; γ2[s 7→ γ2M

′]; Γ, s:σ′).

3. By Proposition B.2, s 6∈ FV (σ).

4. Then by IH, (∆1; (γ1M
′′)[γ1M

′/s]; γ1σ) is (∆2; (γ2M
′′)[γ2M

′/s]; γ2σ).

5. By Lemma E.5, (∆1; γ1(let s = M ′ in (M ′′ : σ)); γ1σ) is (∆2; γ2(M
′′[M ′/s]); γ2σ).

�

Lemma E.8 (Identity Substitution Is Related To Itself)
If Γ ` ok, then (Γ; id; Γ) is (Γ; id; Γ).

Proof: See proof of SH Lemma 4.10. �

Corollary E.9 (Completeness of Equivalence Algorithm)
1. If Γ ` τ1 ≡ τ2, then Γ ` τ1 ⇔ Γ ` τ2.
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2. If Γ ` σ1 ≡ σ2, then Γ ` σ1 ⇔ Γ ` σ2.

3. If Γ ` M1
∼= M2 : σ, then Γ ` M1 : σ ⇔ Γ ` M2 : σ.

Proof: By Lemma E.6, Theorem E.7, and Lemma E.8. �

Lemma E.10
1. If Γ1 ` τ1 ⇔ Γ1 ` τ1 and Γ2 ` τ2 ⇔ Γ2 ` τ2, then Γ1 ` τ1 ⇔ Γ2 ` τ2 is decidable.

2. If Γ1 ` σ1 ⇔ Γ1 ` σ1 and Γ2 ` σ2 ⇔ Γ2 ` σ2, then Γ1 ` σ1 ⇔ Γ2 ` σ2 is decidable.

3. If Γ1 ` M1 : σ1 ⇔ Γ1 ` M1 : σ1 and Γ2 ` M2 : σ2 ⇔ Γ2 ` M2 : σ2,
then Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2 is decidable.

4. If Γ1 ` P1 ↑ σ1 ↔ Γ1 ` P1 ↑ σ1 and Γ2 ` P2 ↑ σ2 ↔ Γ2 ` P2 ↑ σ2,
then Γ1 ` P1 ↑ σ1 ↔ Γ2 ` P2 ↑ σ2 is decidable.

Proof: See proof of SH Lemma 4.12. �

Corollary E.11 (Decidability of Equivalence Algorithm on Well-Formed Things)
1. If Γ ` τ1 type and Γ ` τ2 type, then Γ ` τ1 ⇔ Γ ` τ2 is decidable.

2. If Γ ` σ1 sig and Γ ` σ2 sig, then Γ ` σ1 ⇔ Γ ` σ2 is decidable.

3. If Γ `P M1 : σ and Γ `P M2 : σ, then Γ ` M1 : σ ⇔ Γ ` M2 : σ is decidable.

Proof: By Corollary E.9, comparison of each well-formed type, signature or module with itself is decidable.
The desired result then follows from Lemma E.10. �

F Decidability

With a decidable equivalence algorithm in hand, we may now define a term typechecking algorithm. Given
a term and a type, the algorithm synthesizes the (unique) type of a term and checking that the synthesized
type is equivalent to the given type. In the cases of function application (e M) or projection from pairs (πie),
the synthesized type of e is not necessarily in the correct form and must be weak-head-reduced to a type of
the form Πs:σ.τ or τ ′ × τ ′′, respectively.

Now that we have filled in the definition of term typechecking, we proceed to prove soundness and
completeness of term and module typechecking, reusing the proofs for module typechecking from Appendix C.
Once we have shown this, decidability of the entire type system follows straightforwardly from the fact that
the typechecking algorithm and subsignature checking are syntax-directed and module and type equivalence
are decidable.

Theorem F.1 (Soundness of Full Typechecking/Synthesis)
1. If Γ ` e ⇐ τ or Γ ` e ⇒ τ , then Γ ` e : τ .

2. If Γ `κ M ⇐ σ or Γ `κ M ⇒ σ, then Γ `κ M : σ.

Proof: By straightforward induction on the typechecking/synthesis algorithm, as before. In the term appli-
cation and projection cases (e M and πie), the proof requires a straightforward application of Corollary D.5
to show that [τe] is equivalent to its weak head normal form. �

Proposition F.2 (Properties of Typechecking/Synthesis)
1. Type synthesis is deterministic, i.e. if Γ ` e ⇒ τ1 and Γ ` e ⇒ τ2, then τ1 = τ2.
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Term typechecking: Γ ` e ⇐ τ

Γ ` e ⇒ τ ′ Γ ` τ ′ ≡ τ
Γ ` e ⇐ τ

Type synthesis for terms: Γ ` e ⇒ τ

Γ `κ M ⇒ [[τ ]]

Γ ` ValM ⇒ τ

Γ `κ M ⇒ σ Γ, s:σ ` e ⇐ τ Γ ` τ type

Γ ` let s = M in (e : τ) ⇒ τ

Γ `κ M ⇐ σ

Γ ` pack M as 〈|σ|〉 ⇒ 〈|σ|〉

Γ, f :[Πs:σ.τ ], s:σ ` e ⇐ τ

Γ ` fix f(s:σ):τ.e ⇒ Πs:σ.τ

Γ ` e ⇒ τe Γ ` [τe]
wh
=⇒ [Πs:σ.τ ] Γ `P M ⇐ σ

Γ ` e M ⇒ τ [M/s]

Γ ` e1 ⇒ τ1 Γ ` e2 ⇒ τ2

Γ ` 〈e1, e2〉 ⇒ τ1 × τ2

Γ ` e ⇒ τe Γ ` [τe]
wh
=⇒ [τ1 × τ2]

Γ ` πie ⇒ τi
(i ∈ {1, 2})

Figure 18: Term Typechecking and Unique Type Synthesis

2. Signature synthesis is deterministic, i.e. if Γ `κ1
M ⇒ σ1 and Γ `κ2

M ⇒ σ2, then σ1 = σ2 and
κ1 = κ2.

3. If Γ `P M ⇒ σ, then σ is in pure synthesis form.

Proof: By straightforward induction on the typechecking/synthesis algorithm, with applications of Lemma D.3
in the term application and projection cases. �

Lemma F.3 (Weakening for Full Typechecking/Synthesis)
1. If Γ1 ` e ⇒ τ , Γ1 ⊆ Γ2, and Γ2 ` ok, then Γ2 ` e ⇒ τ .

2. If Γ1 ` e ⇐ τ , Γ1 ⊆ Γ2, and Γ2 ` ok, then Γ2 ` e ⇐ τ .

3. If Γ1 `κ M ⇒ σ, Γ1 ⊆ Γ2, and Γ2 ` ok, then Γ2 `κ M ⇒ σ.

4. If Γ1 `κ M ⇐ σ, Γ1 ⊆ Γ2, and Γ2 ` ok, then Γ2 `κ M ⇐ σ.

Proof: By straightforward induction on the typechecking/synthesis algorithm, with applications of Lemma D.8
in the term application and projection cases. �

Theorem F.4 (Completeness of Full Typechecking/Synthesis)
1. If Γ ` e : τ and Γ ≤ Γ′, then Γ′ ` e ⇐ τ .

2. If Γ `κ M : σ and Γ ≤ Γ′, then Γ′ `κ′ M ⇐ σ, where κ′ v κ.
Moreover, if κ′ = P, then Γ′ `P M ⇐

�
σ(M).

Proof: The proof of Part 2 is the same as for Theorem C.5. Here is the proof of Part 1:

• Case: Rules 11 and 12. Trivial, by IH.

• Case: Rule 13.

1. By IH, Γ′ `κ′ M ⇒ σ′, where Γ′ ` σ′ ≤ σ.

2. Since Γ, s:σ ≤ Γ′, s:σ′, by IH, Γ′, s:σ′ ` e ⇐ τ .

3. Since Γ′ ` τ type, we have Γ′ ` let s = M in (e : τ) ⇒ τ .

• Case: Rule 14. Trivial, by IH.
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• Case: Rule 15.

1. By IH, Γ′ ` e ⇒ τe, where Γ′ ` τe ≡ Πs:σ.τ .

2. By Corollary E.9, Γ′ ` τe ⇔ Γ′ ` Πs:σ.τ .

3. By inspection of the equivalence algorithm, Γ′ ` [τe]
wh
=⇒ [Πs:σ′.τ ′],

4. where Γ′ ` σ′ ⇔ Γ′ ` σ and Γ′, s:σ′ ` τ ′ ⇔ Γ′, s:σ ` τ .

5. By Corollary D.5, Γ′ `P [Πs:σ′.τ ′] : [[T ]].

6. So, Γ′ ` σ′ sig, Γ′ ` σ sig, Γ′, s:σ′ ` τ ′ type and Γ′, s:σ ` τ type.

7. Thus by Theorem D.6, Γ′ ` σ′ ≡ σ.

8. Then since Γ′, s:σ′ ≡ Γ′, s:σ, by Theorem D.6, Γ′, s:σ′ ` τ ′ ≡ τ .

9. By IH, Γ′ `P M ⇐ σ, so Γ′ `P M ⇐ σ′.

10. Thus, Γ′ ` e M ⇒ τ ′[M/s], and by Substitution, Γ′ ` τ ′[M/s] ≡ τ [M/s].

• Case: Rule 16. Trivial, by IH.

• Case: Rules 17 and 18. Similar to the proof for Rule 15.

• Case: Rule 19. Trivial, by IH.

�

Theorem F.5 (Decidability of Judgments with Well-Formed Contexts)
Suppose Γ ` ok.

1. If Γ ` σ1 sig and Γ ` σ2 sig, then Γ ` σ1 ≤ σ2 is decidable.

2. Γ ` τ type is decidable.

3. It is decidable whether there exists τ such that Γ ` e ⇒ τ .

4. Γ ` e : τ (or equivalently, Γ ` e ⇐ τ) is decidable.

5. Γ ` σ sig is decidable.

6. It is decidable whether there exist σ and κ such that Γ `κ M ⇒ σ.

7. Γ `κ M : σ (or equivalently, Γ `κ′ M ⇐ σ for κ′ v κ) is decidable.

Proof: Part 1 is by straightforward induction on the structure of σ1 and σ2 and by Corollary E.11. Parts 2,
3, 5 and 6 are by straightforward induction on the structure of τ , e, σ and M , respectively. Part 4 follows
from Parts 2 and 3 and Corollary E.11. Part 7 follows from Parts 1, 5 and 6.

It is worth noting that as Γ ` ok is an assumption of the theorem, it must be preserved upon invocations
of the IH, which means that all signatures must be checked for well-formedness before being added to the
context. This well-formedness check is always either decidable by induction or else unnecessary because the
signature is the result of synthesis (and thus well-formed by Theorem F.1).

Also worth noting is that in the application and projection cases of term synthesis, if Γ ` e ⇒ τe, then
Γ ` τe ≡ τe and Γ ` τe ⇔ Γ ` τe by Corollary E.9. Thus, by inspection of the algorithm, weak head
normalization of [τe] terminates. �

Lemma F.6 (Decidability of Context Well-formedness)
Γ ` ok is decidable.

Proof: By straightforward induction on Γ and by Theorem F.5. �

Corollary F.7 (Decidability)
The type system is decidable.
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G Elaboration Rules

Existential peeling: M : ς
peel
=⇒ M ′ : ς ′

π2M : ς2[π1M/s]
peel
=⇒ N : ς

M : ∃s:ς1.ς2
peel
=⇒ N : ς

ς not an existential

M : ς
peel
=⇒ M : ς

Type elaboration: ∆ ` τ̂ ; τ

∆ `P M̂ ; M : ς ∆ ` M : ς ≤ [[T ]] ; N

∆ ` Typ M̂ ; TypN

∆ ` σ̂ ; σ ∆, s:σ ` τ̂ ; τ

∆ ` Πs:σ̂.τ̂ ; Πs:σ.τ

∆ ` τ̂1 ; τ1 ∆ ` τ̂2 ; τ2

∆ ` τ̂1 × τ̂2 ; τ1 × τ2

∆ ` σ̂ ; σ
∆ ` 〈|σ̂|〉 ; 〈|σ|〉

Term elaboration: ∆ ` ê ; e : τ

∆ `P M̂ ; M : ς M : ς
peel
=⇒ N : [[τ ]]

∆ ` Val M̂ ; Val N : τ

∆ `κ M̂ ; M : ς ∆ ` τ̂ ; τ ∆, s:ς ` ê ; e : τ ′ ∆, s:ς ` τ ′ ≡ τ

∆ ` let s = M̂ in (ê : τ̂ ) ; let s = M in (e : τ) : τ

∆ ` Πs:σ̂.τ̂ ; Πs:σ.τ ∆, f :[Πs:σ.τ ], s:σ ` ê ; e : τ ′ ∆, f :[Πs:σ.τ ], s:σ ` τ ′ ≡ τ

∆ ` fix f(s:σ̂):τ̂ .ê ; fix f(s:σ):τ.e : Πs:σ.τ

∆ ` ê ; e : τe ∆ ` [τe]
wh
=⇒ [Πs:σ.τ ] ∆ `P M̂ ; M : ς ∆ ` M : ς ≤ σ ; N

∆ ` ê M̂ ; e N : τ [N/s]

∆ ` ê1 ; e1 : τ1 ∆ ` ê2 ; e2 : τ2

∆ ` 〈ê1, ê2〉 ; 〈e1, e2〉 : τ1 × τ2

∆ ` ê ; e : τe ∆ ` [τe]
wh
=⇒ [τ1 × τ2]

∆ ` πiê ; πie : τi
(i ∈ {1, 2})

∆ `κ M̂ ; M : ςM ∆ ` σ̂ ; σ ∆, s:ςM ` s : ςM ≤ σ ; N

∆ ` pack M̂ as 〈|σ̂|〉 ; pack (let s = M in (N : σ)) as 〈|σ|〉 : 〈|σ|〉

Signature elaboration: ∆ ` σ̂ ; σ

∆ ` 1 ; 1 ∆ ` [[T ]] ; [[T ]]
∆ ` τ̂ ; τ

∆ ` [[τ̂ ]] ; [[τ ]]

∆ `P M̂ ; M : σ ∆ ` M : σ ≤ [[T ]] ; N

∆ `
�
(M̂) ;

�
(N)

∆ ` σ̂1 ; σ1 ∆, s:σ1 ` σ̂2 ; σ2

∆ ` Πδs:σ̂1.σ̂2 ; Πδs:σ1.σ2

∆ ` σ̂1 ; σ1 ∆, s:σ1 ` σ̂2 ; σ2

∆ ` Σs:σ̂1.σ̂2 ; Σs:σ1.σ2

Signature coercion: ∆ ` M : ς ≤ σ ; N

∆ ` M : 1 ≤ 1 ; M ∆ ` M : [[T ]] ≤ [[T ]] ; M

∆ ` τ1 ≡ τ2

∆ ` M : [[τ1]] ≤ [[τ2]] ; M

∆ ` M :
�

(N) ≤ [[T ]] ; M

∆ ` N1
∼= N2 : [[T ]]

∆ ` M :
�

(N1) ≤
�

(N2) ; M

∆ ` π2M : ς2[π1M/s] ≤ σ ; N

∆ ` M : ∃s:ς1.ς2 ≤ σ ; N

∆, s:σ′
1 ` s : σ′

1 ≤ σ1 ; M ∆, s:σ′
1, t:ς2[M/s] ` t : ς2[M/s] ≤ σ′

2 ; N (δ, δ′) 6= (par, tot)

∆ ` F : Πδs:σ1.ς2 ≤ Πδ′

s:σ′
1.σ

′
2 ; λs:σ′

1. let t = FM in (N : σ′
2)
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∆ ` π1M : ς1 ≤ σ1 ; N1 ∆ ` π2M : ς2[π1M/s] ≤ σ2[N1/s] ; N2

∆ ` M : Σs:ς1.ς2 ≤ Σs:σ1.σ2 ; 〈N1, N2〉

Module elaboration: ∆ `κ M̂ ; M : ς

∆ `P s ; s :
�

∆(s)(s) ∆ `P 〈〉 ; 〈〉 : 1
∆ ` τ̂ ; τ

∆ `P [τ̂ ] ; [τ ] :
�

([τ ])
∆ ` ê ; e : τ

∆ `P [ê] ; [e : τ ] : [[τ ]]

∆ ` σ̂1 ; σ1 ∆, s:σ1 `κ M ; N : ς2 κ v D

∆ `κ λs:σ̂1.M̂ ; λs:σ1.N : Πs:σ1.ς2

∆ ` σ̂1 ; σ1 ∆, s:σ1 `κ M ; N : ς2 S v κ

∆ `κu D λs:σ̂1.M̂ ; λs:σ1.N : Πpars:σ1.ς2

∆ `P F̂ ; F : ςF F : ςF
peel
=⇒ G : Πs:σ1.ς2 ∆ `P M̂ ; M : ς ∆ ` M : ς ≤ σ1 ; N

∆ `P F̂ M̂ ; GN : ς2[N/s]

∆ `κ F̂ ; F : ςF sF :
�

ςF
(sF )

peel
=⇒ G : Πs:σ1.ς2

∆ `P M̂ ; M : ς ∆, sF :ςF ` M : ς ≤ σ1 ; N κ 6= P

∆ `κ F̂ M̂ ; 〈sF = F, GN〉 : ∃sF :ςF .ς2[N/s]

∆ `κF
F̂ ; F : ςF sF :

�
ςF

(sF )
peel
=⇒ G : Πs:σ1.ς2

∆ `κM
M̂ ; M : ςM ∆, sF :ςF , sM :ςM ` sM : ςM ≤ σ1 ; N κM 6= P

∆ `κF tκM
F̂ M̂ ; 〈sF = F, 〈sM = M, GN〉〉 : ∃sF :ςF .∃sM :ςM .ς2[N/s]

∆ `κF
F̂ ; F : ςF sF :

�
ςF

(sF )
peel
=⇒ G : Πpars:σ1.ς2

∆ `κM
M̂ ; M : ςM ∆, sF :ςF , sM :ςM ` sM : ςM ≤ σ1 ; N

∆ `κF tκM t S F̂ M̂ ; 〈sF = F, 〈sM = M, GN〉〉 : ∃sF :ςF .∃sM :ςM .ς2[N/s]

∆ `P M̂1 ; M1 : ς1 ∆, s:ς1 `P M̂2 ; M2 : ς2

∆ `P 〈s = M̂1, M̂2〉 ; 〈s = M1, M2〉 : ς1 × ς2[M1/s]

∆ `κ1
M̂1 ; M1 : ς1 ∆, s:ς1 `κ2

M̂2 ; M2 : ς2 κ1 t κ2 6= P

∆ `κ1tκ2
〈s = M̂1, M̂2〉 ; 〈s = M1, M2〉 : Σs:ς1.ς2

∆ `P M̂ ; M : ς M : ς
peel
=⇒ N : ς1 × ς2

∆ `P π1M̂ ; π1N : ς1

∆ `κ M̂ ; M : ς s :
�

ς(s)
peel
=⇒ N : ς1 × ς2 κ 6= P

∆ `κ π1M̂ ; 〈s = M, π1N〉 : ∃s:ς.ς1

∆ `P M̂ ; M : ς M : ς
peel
=⇒ N : ς1 × ς2

∆ `P π2M̂ ; π2N : ς2

∆ `κ M̂ ; M : ς s :
�

ς(s)
peel
=⇒ N : ς1 × ς2 κ 6= P

∆ `κ π2M̂ ; 〈s = M, π2N〉 : ∃s:ς.ς2

∆ `κ M̂ ; M : ςM ∆ ` σ̂ ; σ ∆, s:ςM ` s : ςM ≤ σ ; N

∆ `κt D M̂ :: σ̂ ; (let s = M in (N : σ)) ::σ : σ

∆ `κ M̂ ; M : ςM ∆ ` σ̂ ; σ ∆, s:ςM ` s : ςM ≤ σ ; N

∆ `W M̂ :> σ̂ ; (let s = M in (N : σ)) :>σ : σ

∆ `P M̂1 ; M1 : ς1 ∆, s:ς1 `P M̂2 ; M2 : ς2

∆ `P let s = M̂1 in M̂2 ; π2〈s = M1, M2〉 : ς2[M1/s]

∆ `κ1
M̂1 ; M1 : ς1 ∆, s:ς1 `κ2

M̂2 ; M2 : ς2 κ1 t κ2 6= P

∆ `κ1tκ2
let s = M̂1 in M̂2 ; 〈s = M1, M2〉 : ∃s:ς1.ς2

∆ ` ê ; e : τ ∆ ` σ̂ ; σ ∆ ` τ ≡ 〈|σ|〉

∆ `S unpack ê as σ̂ ; unpack e as σ : σ
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