Verifiable Secret Redistribution for
Threshold Sharing Schemes

Theodore M. Wong Chenxi Wahg  Jeannette M. Wing
February 2002
CMU-CS-02-114

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We present a new protocol for verifiably redistributing secrets frorfmam) threshold sharing scheme to

an(m’,n’) scheme. Our protocol guards against dynamic adversaries. We observe that existing protocols
either cannot be readily extended to allow redistribution between different threshold schemes, or have vul-
nerabilities that allow faulty old shareholders to distribute invalid shares to new shareholders. Our primary

contribution is that in our protocol, new shareholders can verify the validity of their shares after redistribu-
tion between different threshold schemes.
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1 Introduction

Threshold cryptography protocols provide fundamental building blocks for secure distributed computation
and the safeguarding of secrets. The area of threshold cryptography has been studied extensively since its
introduction by Blakley and Shamir[Bia79,"Sha79].

Two categories of threshold protocaispactive secret sharinfPSS) protocols anskcret redistribution
protocols, provide enhanced protection agaghystamic adversarie§OY91]). PSS protocols [EGMY97a,
FGMY9/b,[FMY99,[EMYOL [ HIKY95, H1197,[Rah98] protect against an adversary through periodic up-
dating of the shares, which renders old shares obtained by the adversary useless. In general, PSS protocols
retain the same threshold scheme before and after updating. Secret redistribution protocols protect against an
adversary through periodic redistribution of shares fronfrann) threshold sharing scheme to @n’, n’)
schemel[DJ97, EGMYYF7a], without requiring the intermediate reconstruction of the original secret.

To prevent faulty shareholders from corrupting the shares generated by a PSS or redistribution protocol,
the shareholders mugerify the validity of their shares after protocol execution (i.e., confirm that the shares
can be used to reconstruct the original secret). In PSS protocols, shareholders obtain verification information
during the initial distribution of shares, and update the information after updating the shares. In redistribution
protocols, new shareholders obtain verification information from the old shareholders.

We observe that the verification mechanisms in existing protocols have the following shortcomings:

e The mechanisms in PSS protocols cannot be readily extended to allow “updates” between different
threshold schemes or between disjoint sets of shareholders. Thus, these protocols cannot respond to
the permanent removal or addition of a shareholder.

e The mechanisms in redistribution protocols have vulnerabilities that allow a faulty old shareholder to
distribute invalid shares to new shareholders.

Our study is motivated by the application of redistribution protocols to survivable storage systems
[WBST00,\MWBPT01]. A survivable storage system distributes shares of files (secrets) across a set of storage
servers. The system redistributes files to recover from the compromising of servers or to balance file access
loads upon the addition of new servers.

We present a new protocol feerifiable secret redistributioVSR) from an(m, n) threshold scheme to
an(m/,n’) scheme. We base our protocol on Desmedt and Jajodia’s redistribution prafocol [DJ97], in which
new shareholders generate shares feuinshare®f old shares. We extend their protocol with Feldman’s
verifiable secret sharing (VSS) scheme [Eel87] to enable new shareholders to verify the validity of their
subshares (i.e., confirm that the subshares can be used to reconstruct old shares). However, we go beyond
a ndve extension, which does not enable new shareholders to verify that they have received subshares of
valid old shares. To achieve complete verification in our protocol, old shareholders broadcast a commitment
to the secret to the new shareholders. We prove that the new shareholders can generate valid new shares if
they can both verify the validity of the old shares and verify the validity of the subshares.

The primary contribution of our work is that in our protocol:

e New shareholders can verify the validity of their shares after redistribution between different threshold
schemes.

2 Related work

Blakley and Shamir invented secret sharing schemes independently. In Shamir$ sharing scheme
[Sha79], the interpolation of am — 1 degree polynomial fromn of n points yields a constant term in



the polynomial that corresponds to the secret. In Blakley’s scheme_[Bla79], the intersectiomfof
vector spaces yields a one-dimensional vector that corresponds to the secret. Desmedt surveys other sharing
schemes[Des97].

Feldman’s VSS scheméEel87] is one of several to catch a dealer that attempts to distribute invalid
shares. Choet al present a scheme in which the dealer and shareholders perform an interactive secure
distributed computatior [CGMAB5]. Benaloh [Ben87], Gennaro and Mi¢ali [GJKR96, GM95], Goldreich
et al [GMWS&], and Rabin and Ben-Or[Rah94, RBD89] propose schemes in which the dealer and share-
holders participate in an interactive zero-knowledge proof of validity; the scheme of Gennaro and Micali,
and that of Rabin and Ben-Or, is information-theoretically secure. Pedérson[Ped91] presents a scheme, like
Feldman’s, in which the dealer broadcasts a non-interactive zero-knowledge proof to the shareholders. Beth
protocol differs from previous VSS schemes in that the multiple “dealers” of the new shares (the old share-
holders) do not have the secret, and must use other information to generate a proof for the new shareholders.
Also, each new shareholder verifies the validity of the subshares distributed by the old shareholders, and
verifies the validity of the shares used by the old shareholders to generate the subshares.

Frankelet al [ EGMY97b, EMY99,[EMYUL] and Rabin(IRah98] propose PSS protocols in which each
shareholder periodically distributes a subshare of its share to each of the other shareholders. Each share-
holder combines the received subshares to generate a new share. A drawback of these PSS protocals is
that the shareholders rely on commitments received during the initial distribution of the secret to verify the
validity that their generated shares, and thus one cannot redistribute between disjoint.sdtarefholders.

Also, the commitments depend om andn, and thus one cannot redistribute from @n, n) to (m’,n’)
threshold scheme. Lastly, the protocols build upon specific threshold schemes, and may not be applicable to
a general class of schemes.

Desmedt and JajodiaD.]97] present a secret redistribution protocol that does not require the intermedi-
ate reconstruction of the original secret. We present the details of their protocol in"$ec. 3.2. Their protocol
allows redistribution between different threshold schemes, and between disjoint sets of shareholders. Unfor-
tunately, a compromised old shareholder in both protocols can undetectably distribute “subshares” of some
random value instead of subshares of a valid old share. New shareholders that use these “subshares” will
generate invalid new shares.

Frankelet al [EGMYY7a], independently of Desmedt and Jajodia, present a (proactive) redistribution
protocol for shares of a private key in a public key cryptosystem. The protocol involves redistribution of
the key from ar(m, n) to (m, m) threshold scheme, followed by redistribution to(a#f, n’) scheme. Each
old shareholder broadcasts a commitment to its share when it distributes the subshares. New shareholders
use the commitment to verify the validity of their subshares. However, nothing prevents a compromised old
shareholder from broadcasting a “commitment” to some random value. Thus, the protocol ultimately suffers
from the same shortcoming as that of Desmedt and Jajodia.

Other researchers present secret redistribution protocols that do not involve the physical redistribution
of shares. Blaklet al consider threshold schemes tliigenroll (remove) shareholders from the access
structure with broadcast messages IBBCM92]; the new shareholders are a subset of the old ones. Cachin
proposes a secret sharing scheme #rablls (adds) shareholders in the access structure after the initial
sharing [Cac95]; the new shareholders are a superset of the old ones. Btahpieesents a scheme in which
the dealer uses broadcast messages to activate different, possibly disjoint, authorized [subsefs [BCSV96].
Blundo’s scheme requires shareholders to have a share regardless of whether or not they are in the active
authorized subset, in contrast to Desmedt and Jajodia’s scheme. Our VSR protocol alters the threshold
scheme by physical redistribution of shares, and allows new shareholders to verify that they have valid
shares.

Herzberget al [HIKY95, H.1.197] propose a PSS protocol for Shamir's sharing schéme_[Sha79] in
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which each shareholder periodically distributgglate share$o all other shareholders. Zhou, Schneider,

and van Renesse propose a PSS protocol for asynchronous, wide-area networks, and employ it in an on-line
certification authority [ZSvR00]. Our VSR protocol, unlike these PSS protocols, can redistribute shares to
arbitrary access structures. However, we assume that there exist reliable broadcast communication channels
among all participants and private channels between every pair of participants in our protocol, which Zhou
et alavoid in their asynchronous protocol.

3 Cryptographic building blocks

In this section, we outline the cryptographic protocols that form the building blocks for our VSR protocol.
We first summarize Desmedt and Jajodia’s secret redistribution protocoll [DJ97] for linear secret sharing
schemes, and then summarize Feldman’s VSS schemel[Fel87].

3.1 Mathematical notation

An (m,n) linear threshold schemis an algorithm for the distribution of shares of a secret to a set of
shareholders such that the secret is a linear combination of the sharesmafdrareholders. We define a
secretk to be in setlC of secrets, and each shareholdéo be in the seP (|P| = n) of shareholders. To
distributek, we generate a shasgfor eachi € P with apolynomiala(i):

m—1
si=k+ Z alil 1)
=1

wheres; is in the setS; of shares, and; is in the setS of share sets. For linear threshold schensess S;
for all 7, j € P. To reconstruck, we combines; from all i in anauthorized subsesf (| 3| = m) of P:

k=) ti(si) (2)

i€eB

1; is a homomorphism frors§; to IC; we aggregate; into the set) of homomorphisms. For linear threshold
schemes, the homomorphisms are multiplications by scaldiieJ97]. All authorized subset8 are in the
access structur€». We represent linear threshold schemes with the t{ipje IC, S, ¥}.

We utilize a homomorphic commitment functi@n(x) [Ben87,[Fel87] that maps from plain-text to
cipher-text and is hard to invert!(z) is such that:

C(a+0b) =C(a)C(b)
Olaz) = (C(a))” ©)

3.2 Desmedt and Jajodia’s secret redistribution protocol

Desmedt and Jajodia present a protocol for the redistribution of shares of secrets from threshold sharing
schemes without requiring the intermediate reconstruction of the secrei [DJ97]. For schemes that satisfy the
conditions in Fig[]1, we can use the protocol in Fig. 2 to redistribute shares. Suppose we hafed set
shareholdersthat have shares of a secret: distributed with the schem@'p, K, S, ¢), and wish to redis-

tribute to a se?’ of shareholderg that have shares, distributed with a different schen(&”,,, IC, &', 7).
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To achieve this, we select an authorized sulsetI'» and use an intermediate sche(g,, S;, Si, zﬁi) to
distribute subshares; of eachs; of i € B to eachy € P/, where the sef; of sets of subshares is:

~

$={Sy:jeB B eTh} (4)

and the seft&i of homomorphisms frons; to S; is:

di={dy:icB B elp| ©)

If we treats;; as being distributed by another intermediate schéige 8., S, v) (with S; ands); defined
similarly to S; and+); in Eqns. [#) and[{5)), we can generatefor eachj with the following equation:

S5 =Y Widi (6)

i€eB

The correctness of the protocol depends on a condition that the homomorphisms of the old, intermediate,
and new schemgsseudo-commutédomomorphisms);, 1, ; andw;i pseudo-commute if:

¥; 0 iy = Y o Pl (7)

1. For a sefP of shareholders, there exists a linear sharing sch@mekC, S, 1) such that each € P has received a
shares; € S; € Sof k € K.

2. For each € P there exists an intermediate linear sharing schéie, S;, Si, 1&;) for the distribution of subshares
;5 of s;to eachj € P'.

3. Forallz,y e K,z +y=y+z.
4. Foreach € B € T'p andj € B’ € T/, there exist homomorphisms, v, 1}, andi;; that pseudo-commute:

Vi 01y = V; 01%‘1‘

Figure 1: Necessary conditions for the redistribution of shares from linear sharing schemes [DJ97].

Desmedt and Jajodia’s Secret Redistribution protocol:
To redistributek from the(m, n) scheme{l'p, K, S, ¢} to the(m’, n’) scheme(T'p/, K, S', ¢'}:

1. Select an authorized subdete I'». Use the intermediate scher(@;),,si,&,@f;i) to distribute subshares; of
each share; of i € Bto eachj € P'.

2. Foreacly € P', treat;; as if distributed with another intermediate sche(fig, S}, S}, 9}), and generate):

D C)

i€EB

Figure 2: Desmedt and Jajodia’s secret redistribution protocol for linear sharing schemess [DJ97].



3.3 Feldman’s VSS scheme

Feldman presents a scheme that shareholders of a secret can use to verify the validity of theirshares [Fel87].
Feldman assumes that there exists a homomorphic commitment fungtigrthat is hard to invert. Given

the threshold schem'», K, S, ¢}, the dealer of the secréte I, in addition to sending shares € S;

to eachi € P, broadcast€’'(k) andC(a;) ... C(an—1) (commitments of the coefficients of the polynomial

a(7) used to generatg). Eachi then verifies that; is a valid share of with the following equation:

m—1

C(si) = C(k) [] Cla)” 8)

=1

Eqgn. (8) follows from Eqn.[{1) and the homomorphic propertie€'6f) in Eqn. (3). Since”'(z) is hard to
invert, no: can learnt from the broadcast af'(k). We summarize Feldman’s scheme in Fig. 3.

4 The VSR protocol

We present our verifiable secret redistribution protocol for secrets distributed with linear threshold schemes.
We represent thém, n) and(m’,n’) schemes witHT'p, K, S, ¢} and{T'p/, K, S’, ¢’} respectively. We
assume that there exists a homomorphic commitment funcfior that is hard to invert, and that there
exist reliable broadcast communication channels among all participants and private channels between every
pair of participants. We also assume that there are at mestn faulty old shareholders, that > 7, and
that there are@’ non-faulty new shareholders.
The initial distribution of a secret (ITIAL in Fig. @) proceeds as in Feldman’s VSS scheme [Fel87].
The dealer of secrdt € K distributes shares; € S; to each shareholdérc P, using the polynomiad (i)
(INITIAL step 1). The dealer also broadcasts:), C(aq) ... C(an—1), Which eachi uses in Eqn.[{8) to
verify the validity of s; (INITIAL steps 2 and 3). If EQn[](8) holdsstoress; andC'(k) (INITIAL step 4).
Redistribution of the secret @®IST in Fig. @) proceeds as in Desmedt and Jajodia’s protacoi |DJ97].
Eachi in an authorized subs& € I'p uses an intermediate schegiey, S;, S;, 1[/} (with the polynomial
al(j)) to distribute subshareg; € S; of s; to each shareholder € P’ (REDIST step 1). Eachj then
generates the new shaH’Je(Eqn. @), which is RDIST step 4). We may redistributean arbitrary number
of times before we reconstruct it.

Feldman'’s Verifiable Secret Sharing scheme:
To use them, n) threshold schemél'», K, S, ¢} to distribute a secrét € K:

1. For each € P, use the polynomiak(i) = k + a1i + ... + am—1i™ ' to compute the share = a(i) of k, and
sends; to ¢ over a private channel.

2. For each € P, use commitment functio@'(z) to generate’'(k), C(a1), ... ,C(am—1), and broadcast them to al
1.

3. Foreach € P, verify that:

m—1

Csi) = Ck) [] Clar)”

=1

If the condition holds; broadcasts a “commit” message. Otherwideroadcasts an “abort” message.

Figure 3: Feldman’s VSS scheme for &m, n) threshold schemé[Eei87].



Verifiable Secret Redistribution protocol:
INITIAL : To use thgm, n) linear threshold schemi@'», K, S, ¢} to distribute a secrét € K:

1. For each € P, use the polynomiat(i) = k + a1i 4 ... + am—13™ " to compute the sharg of k, and send; to
1 over a private channel.

2. Use commitment functio@(x) to generateC'(k), C(ai1),...,C(am—1), and send them to afl € P over the
broadcast channel.

3. Foreach € P, verify that:

m—1

Csi) = Ck) [ Cla)”

=1
If the condition holds; broadcasts a “commit” message. Otherwidaroadcasts an “abort” message.
4. Ifall « € P agree to commit, eachstoress, andC'(k). Otherwise, they abort the protocol.
REDIST: To redistributek from the(m, n) scheme{l'», K, S, 1} to the(m’, n’) scheme(T'p/, K, S’, ¥’}

1. For each € B (B € T'p), use the polynomiad}(j) = s; +aj1j + ... + a;<m,_1)jm/‘1 to compute the subshares
3;; of s;, and send;; to the corresponding € P’ over a private channel.

2. For each € P, use the commitment functiafi(x) generateC(s;), C(ai1), - .. , C(a;m/—1)), and send them to all
j € P’ over the broadcast channel.

3. For eachj € P/, verify that:

and:

Clk)y=[[ctso®

i€B
If the conditions hold; broadcasts a “commit” message. Otherwjsbroadcasts an “abort” message.

4. Ifall j € P’ agree to commit, eachgenerates’;:

/ oA
sj =D Wjidy

i€EB

and stores; andC/(k). Otherwise, they abort the protocol.

Figure 4: Verifiable secret redistribution protocol for the redistribution of shares frofmam) to (m/, n’) threshold
scheme.



For the new shareholders to verify that their shares of the secret are valid after redistribution, we require
that two conditionsSSHARES VALID andSUBSHARESVALID, hold. Recall that for linear threshold schemes,
homomorphisms); are multiplications by scalarg;. When alli € B (B € I'p) redistributes; to each
j € P', all s; are valid shares df if:

SHARES-VALID :

k= ZieB V3 8;

SUBSHARES-VALID :
Vi € B,B/ elp s = ZjEB’ T,Z);ré”
We define aNEw-SHARESVALID condition. The condition holds if new shareholders have valid shares
of the secret. We prove in Sec. 4.3 thaw-SHARESVALID holds if SHARESVALID andSUBSHARES
VALID hold. The definition oNEW-SHARESVALID follows from Eqn. [R) for{T'p/, KC, S, '}

NEW-SHARES-VALID .
— ! !
k=2 jen Vs

We use Feldman’s VSS scheme to verify taaBSHARESVALID holds in our protocol. The distribution
of 5;; from s; (REDIST step 1) is an application of the schefi&y, S;, S;,9'}. Thus, each € B broadcasts
C(s;) andC(as1) - - . C(a;im—1)), Which eachy uses to verify the validity of;; (REDIST step 2).

The key insight embodied in our VSR protocol is that thé&vaaextension of Desmedt and Jajodia’s
protocol with Feldman’s scheme does not in itself allow the new shareholders to verifygWasHARES
VALID holds. The difficulty arises because Feldman’s scheme only verifies tisstHARESVALID holds,
which in the absence &(fFHARESVALID is insufficient to verify thaNEw-SHARESVALID holds. Although
Desmedt and Jajodia observe that the linear properties of their protocol and the propetties efisure
that eachj generates valid shares1D197], they implicitly assume that éa&clB distributes subshares of
valid s;. The VSS scheme simply allowise B shareholder to prove that it distributed valig of some
value. However; may have distributed “subshares” of some random value insteag of s;. Thus, we
require a sub-protocol farto prove that it distributed;; of s; to j € P’.

To allow the new shareholders to verify trstARES VALID holds, which together witlBUBSHARES
VALID verifies thatNEw-SHARESVALID holds, the old shareholders in our protocol broadcast a commit-
ment to the secret: € B must therefore stor€’(k) (received during MITIAL) and later broadcast it to
j € P'. Recall that each receivess; from eachi to verify thatsuBSHARESVALID holds. Once eacl
receivesC'(k), it verifies thats; is a valid share ok with the following equation:

C(k) =[] C(s0) (9)

i€eB

Eqn. (9) follows from Eqn.[{2) and the homomorphic propertie€'6f) in Eqn. (B). Since&’(z) is hard to
invert, noj can learnk from the broadcast af'(k).

4.1 Assumptions about faulty shareholders

When we redistribute a secret from the schefiig, K, S, 1} to the scheméI'p/, K, §’, ¢’} with our VSR
protocol, we assume that at leastof then shareholders i® and alln’ of the shareholders iR’ are non-
faulty, and up torn — m of the remaining shareholders i may be faulty. We denote faulty shareholders,
and the values they distribute, with over-bars. A non-faulty shareholde distributes valid subshares
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§;; of its shares; to all shareholderg € P’ and broadcast§'(k) corresponding to secréte K. A faulty
shareholdef € P may distribute invalid subsharé_% or broadcas€' (k) not corresponding té.

We also assume that we do not know whiehof the n shareholders ifP are non-faulty. Suppose we
include a faulty shareholdérin our selection of authorized subsgtc I'p to participate in redistribution
(REDIST in Fig. B). However, ifi distributesﬁgj, one of the; will detect the presence af since one
of Eqns. [B) or [(9) will not hold. Alternatively, if broadcast<’(k), all j will detect the discrepancy
when non-faulty old shareholders broado@gk). Thus,i must participate in the protocol without fault
or risk detection. If we detect the presenceioive must restart redistribution with another seteofold
shareholders. Unfortunately, we cannot identifyith our protocol.

The assumption that we do not know whigh shareholders irP are non-faulty bounds the relative
values ofm andn. We assume that we can detect discrepancies bet@genand C (k) broadcast by
faulty and non-faulty shareholders 7 respectively. However, if we were to select a grouprofaulty
shareholders inadvertently, then we would be unable to detect discrepanciesiibatiadcast' (k). We
therefore require that, > % S0 eaclB3 contains at least one non-faulty shareholdem i 2, n —m faulty
shareholders i could conspire to reconstruktor deceive shareholders 1.

The requirement that alt’ shareholders ifP’ are non-faulty is reasonable if we view the purpose of
our VSR protocol as one of detecting faulty behavior by shareholdéPps rhis is analogous to one of the
assumptions underlying Feldman’'s VSS scheme[Fel87], in which the shareholders are implicitly trusted to
store valid shares (and reject invalid shares) of a secret.

4.2 Computational cost

The computational cost for each new shareholder of verification in our VSR protoeol$R Step 3 in
Fig. ) isO(mm’) multiplications andO(mm’) exponentiations, exclusive of the cost of the commitment
function C'(x). Consider redistribution from the scherfEp, K, S, ¢} to the schemdI'p/, K, S, ¢'}.
Each new shareholdgre P’ performsm — 1 multiplications 8 € I'p; |B| = m) andm exponentiations

to verify thatSHARESVALID holds (Eqn.[(9)), for a total cost @ (); we do not include the (small) cost
of computing the powers aof Eachj also performsn’ — 1 multiplications 8’ € I'p/; |B| = m') and

m’ — 1 exponentiations fom old shareholders € B to verify thatSUBSHARESVALID holds (Eqn.[(8)),
for a total cost ofO(mm'). Thus, the total cost for eachto verify that both conditions hold i®(mm')
multiplications andD (mm') exponentiations, exclusive of the cost@fz).

4.3 Correctness

We prove thaNEw-SHARESVALID holds after share redistribution §HARESVALID and SUBSHARES
VALID hold. We also show that Eqn$] (8) aftl (9) verify tRaBBSHARESVALID andSHARESVALID hold.

Lemma 1 SUBSHARESVALID holds if Egn. [B) holds.
PROOF Proved by Feldmari[FeiB7[]
Lemma 2 SHARESVALID holds if Eqn. [P) holds.

PrROOFE Assume that Eqn[)9) holds. It then follows theARESVALID holds from Eqgn.[(2) and the
homomorphic properties of the commitment funct@fr). O

Theorem 1 (VSR theorem) For the (m, n) linear threshold schem@p, K, S, ¢} and the(m/, n") scheme
{Tp, K, S, ¢'}, for all secretsk € K, and for all authorized subset$ € T'p, B’ € I'p/, NEW-SHARES
VALID holds after redistribution ok with the VSR protocol ilSHARESVALID and SUBSHARESVALID
hold.



PRoOOF Assume that botBHARESVALID andSUBSHARESVALID hold. Then:

E = Zwisi (SHARESVALID)
ieB

= Zwi Z%ﬁg (SUBSHARESVALID)

i€B JEB

= Y wihid; (i is ahomomorphism)
i€B jeB’

= Z Z %%Zszy (pseudo-commutativity of homomorphisms (Edn. (7)))
i€B jeB’

- ZZ%%I&J Vr,ye K:x+y=y+x)

jeB' i€B
= > <Z @Egls”> (v, is a homomorphism)
jeB  \ieB
= D us;  (Ean. (@)
jeB’

O
Our correctness proof mirrors that for Desmedt and Jajodia’s secret redistribution profacol [DJ97].

5 Specialization of the VSR protocol for Shamir’s sharing scheme

We present the specialization of our VSR protocol for Shamir’s sharing scheme[Sha79]. We first summarize
Shamir's scheme, and then specialize our protocol for Shamir's scheme. We present the specialization to
demonstrate the practical application of our VSR protocol, and to emphasize the need for new shareholders
to obtain the commitment to the secret for verification of their shares.

5.1 Shamir’s sharing scheme

Shamir presents afm, n) sharing scheme based on polynomial interpolation [Sha79]. The detgén
Zy, (p prime;p > n), and each shareholders in the setP (|P| = n). All mathematical operations are in
the finite fieldZ,. To distributek, we select a polynomial(i) with degreen — 1 and constant terrh, and
generate a sharg for eachi in P with a(i):

si=k+at+... am_limil (10)
wheres; € Z,. To reconstruck, we recovenn coordinate pairgs, s;) of all i € B, (where|B| = m and
B e F%), and use the pairs in the Lagrange interpolation formula:

k:Zbisi where b; = H L (11)

ieB 1EB,I#i (l—1)

We represent Shamir's scheme with the tufllg, Z,,, {Z,}, v}, wherey; = b; andy; € ¥°.
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5.2 The VSR protocol for Shamir’'s scheme

We present our VSR protocol for secrets distributed with Shamir’s sharing scheme [Sha79]. We represent the
(m,n) scheme with(T'3, Z,,, {Z,}, ¥°}, and the(m’, n’) scheme with{I'3,, Z,, {Z,}, ¥'°}. We assume
that the computation of discrete logs in a finite field is intractable. As for the general VSR protocol, we
assume there exist reliable broadcast communication channels among all participants and private channels
between every pair of participants. We assume that there are atrmost faulty old shareholders, that
m > %, and that there are’ non-faulty new shareholders. We summarize the protocol inFig. 5.

Redistribution of the secret gIST in Fig. [§) proceeds as follows. Ea¢hn an authorized subset
B € I'} uses an intermediate schel(iB?,, Z,, {Z,}, 1'%} (with the polynomlala () to distribute
subshareﬁw € Z, of their shares; of secretk € Z, to each shareholdgr € P 'S (REDIST step 1).
Eachj then generates the new shage(RED|ST step 4)

=) bidi; (12)

i€eB

To allow the new shareholders to verify th@#iARESVALID and SUBSHARESVALID hold, the old
shareholders use the commitment function:

Clz) =g" (13)

whereg is a generator fo,.

Voe{l,...,p—1}Faec{l,... ,p—1}:¢g* =bmod p (14)

The old shareholdetisc B (B € T' %) broadcast the commitment to the segfetshareg*, and coefficients
of the polynomialg®it . .. g%('-1) (REDIST Step 2 in Fig[). The new shareholdgrs P’ then verify that
(REDIST Step 3):

m/—1

g =g I (g™ (15)

=

[y

for each: € B, and

l
k — S; bz J—
g~ = | |(g )’ where b; || T (16)

icB 1€B,I#i (t—1)

5.3 Discussion

To emphasize the shortcomings in théueaextension of Desmedt and Jajodia’s redistribution protocol
[DJ97] by Feldman's VSS scheme_[E€l87], we present an alternative verification mechanism for secret
redistribution for Shamir’'s scheme[Sha79] that still requires the new shareholders to obtain the commitment
to the secret. Consider redistribution of a seértom the schemél's, Z,, {Z,}, ”L/}S}to the schemgI's,,

L, {Zp}, 9 'S1. Suppose we knew the sharg®f the old shareholdefisc B (B € I'3 ») and the coefficients
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Verifiable Secret Redistribution protocol for Shamir's sharing scheme:
INITIAL : To use them, n) scheme{T'3, Z,, {Z,}, ¥°} to distribute a secrét € Z,:

1. For each € P, use the polynomiat(i) = k + a1i + ... + a,—1i™ "' to compute the shares of k, and sends;
to: € P over a private channel.

2. Useg to generatg”, ¢° ... g%, and send them to alle P over the broadcast channel.
3. Foreach € P, verify that:

m—1
S; ag il
g =¢" [ (4™
=1
If the condition holds; broadcasts a “commit” message. Otherwidaroadcasts an “abort” message.
4. Ifalli € P agree to commit, eachstoress; andg”. Otherwise, they abort the protocol.
REDIST: To redistributek from the (m, n) scheme{I'$, Z,, {Z,}, ¥°} to the(m’, n’) scheme(T's,, Z,, {Z,}, 5}

1. Foreach € B (B € I'3), use the polynomiat;(j) = s; + a}15 + ... + afl-(m,,l)j"“*l to compute the subsharg
;5 of s;, and send;; to the corresponding € P’ over a private channel.

2. For each € P, useg to generatg®’, g“§1 ...g" =" -1 and send them to ajl € P’ over the broadcast channel.
3. Foreacly € P’, verify that:

vieB:g'=g" [ (4"

and:

ngH(gSi)bi where b; = H (liz)

icB 1EB,I#i

If the conditions hold; broadcasts a “commit” message. Otherwjsbroadcasts an “abort” message.

4. Ifall j € P’ agree to commit, eachgenerates’;:

’ ~
Sj: E bisij

i€B

2S

and stores; andg”®. Otherwise, they abort the protocol.

Figure 5: \Verifiable secret redistribution protocol for the redistribution of shares from Shafwir/s:) sharing
schemel[Sha?9] to Shamirs:’, n’) scheme.
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of the polynomiak;(j) used by: to distribute the subsharés; of s;. We could then interpolate the’ — 1
degree polynomial that a central dealer could have used to distribute $§1a1té$: to new shareholders
j € P’ directly:

s = sz@ij (Ean. (8))

i€B
= Z b; (si +aqi+... + a;(m,_l)jm/‘l) (REDIST Step 1 in Fig[B)
icB 17)
= Z biSi + Z blailj + ...+ Z bia;(m/_l)jm,_l (Eqn m.))
i€B ieB i€B
=k+ (Z bmh) Jj+...+ (Z biag(m,_1)> jm=1 (Egn. (11))
i€B eB

We might be tempted to use a new check similar to that in Feldman’s VSS scheme to verify the validity
of the shares held by new shareholders. Supposeiead¢hbroadcasts the same information as they did in
the specialized VSR protocol ¢®IsT Step 2 in Fig[[p). Eachi € P’ then verifies thagg is a valid share of
k with the following equation:

m/—1

g% = grg(Ciesbian)i | g(Siesbtiy))s (18)

Eqgn. (IB) follows from Eqn.[{17) and the homomorphic properties of exponentiation. Since finding discrete
logs is intractable, ng can learn: from the broadcast af*.

Even though the new check in Eq.](18) appears similar to that of Feldman’s VSS scheme ifj Eqn. (8)
(with C'(z) = ¢™), itis subtly different from our use of Feldman’s scheme to verify the# SHARESVALID
holds. More specifically, in our use of Feldman’s scheme a single old shareliaid® proves to the:’
new shareholderg € P’ that it distributed valid subshares. In the new check suggested by [Efn. (18), the
m shareholders € B prove that they distributed valid subshares of valid shares ta’thew shareholders
j € P'. To use Feldman’s scheme, we require that eadoioadcast only the commitments to the shares
g% and coefficients of the polynomiatit ... ¢%'-1 . Forj to use the new check, we require that each
broadcast in addition the commitment to the segfefas required in our VSR protocol in S&t. 4).

6 Summary and future work

We have presented a protocol to verifiably redistribute shares of secrets between different threshold schemes.
We proved that new shareholders have valid shares after redistribuian®ES VALID andSUBSHARES

VALID hold, and have given the corresponding verifications. We showed that our protocol guards against
faulty behavior by up tox — m of the old shareholders provided that > 7. In our presentation, we
assumed that there exist commitment functions that are hard to invert, and that there exist reliable broadcast
communication channels among all participants and private channels between every pair of participants.
The primary contribution of our work is that in our protocol, new shareholders can verify the validity of
their shares after redistribution between different threshold schemes.

As part of our future work, we will investigate ways to identify faulty old shareholders during redistribu-
tion, and to relax the bounds on the number of non-faulty new shareholders. We are currently implementing
our protocol as part of the Carnegie Mellon PASIS survivable storage systemfMBR/BST00] to eval-
uate its performance costs.
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