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Abstract

We consider a distributed server system and ask which policy should be used

for assigning tasks to hosts. In our server, tasks are not preemptible. Also,

the task's service demand is not known a priori. We are particularly con-

cerned with the case where the workload is heavy-tailed, as is characteristic

of many empirically measured computer workloads. We analyze several natural

task assignment policies and propose a new one TAGS (Task Assignment based

on Guessing Size). The TAGS algorithm is counterintuitive in many respects,

including load unbalancing, non-work-conserving, and fairness. We �nd that

under heavy-tailed workloads, TAGS can outperform all task assignment policies

known to us by several orders of magnitude with respect to mean response time

and mean slowdown, provided the system load is not too high. We also intro-

duce a new practical performance metric for distributed servers called server
expansion. Under the server expansion metric, TAGS signi�cantly outperforms

all other task assignment policies, regardless of system load.
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1 Introduction

In recent years, distributed servers have become commonplace because they al-

low for increased computing power while being cost-e�ective and easily scalable.

In a distributed server system, requests for service (tasks) arrive and must

be assigned to one of the host machines for processing. The rule for assigning

tasks to host machines is known as the task assignment policy. The choice of

the task assignment policy has a signi�cant e�ect on the performance perceived

by users. Designing a distributed server system often comes down to choosing

the \best" task assignment policy for the given model and user requirements.

The question of which task assignment policy is \best" is an age-old question

which still remains open for many models.

In this paper we consider the particular model of a distributed server system

in which tasks are not preemptible { i.e. we are concerned with applications

where context switches are too costly. For example, one such application is batch

computing environments where the hosts themselves are parallel processors and

the tasks are parallel. Context switching between tasks involves reloading all the

processors and memory to return them to the state before the context switch.

Because context switching is so expensive in this environment, tasks are always

simply run to completion. Note, the fact that context switches are too expensive

does not preclude the possibility of killing a job and restarting it from scratch.

We assume furthermore that no a priori information is known about the

task at the time when the task arrives. In particular, the service demand of the

task is not known. We assume all hosts are identical and there is no cost (time

required) for assigning tasks to hosts. Figure 1 is one illustration of a distributed

server. In this illustration, arriving tasks are immediately dispatched by the

central dispatcher to one of the hosts and queue up at the host waiting for

service, where they are served in �rst-come-�rst-served (FCFS) order. Observe

however that our model in general does not preclude the possibility of having a

central queue at the dispatcher where tasks might wait before being dispatched.

It also does not preclude the possibility of an alternative scheduling discipline

at the hosts, so long as that scheduling discipline does not require preempting

tasks and does not rely on a priori knowledge about tasks.

Our main performance goal, in choosing a task assignment policy, is to min-

imize mean waiting time and more importantly mean slowdown. A task's slow-

down is its waiting time divided by its service demand. All means are per-task

averages. We consider mean slowdown to be more important than mean wait-

ing time because it is desirable that a task's delay be proportional to its size.

That is, in a system in which task sizes are highly variable, users are likely to

anticipate short delays for short tasks, and are likely to tolerate long delays for

longer tasks. Later in the paper we introduce a new performance metric, called
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server expansion which is related to mean slowdown. A secondary performance

goal is fairness. We adopt the standard de�nition of fairness that says all tasks,

large or small, should experience the same expected slowdown. In particular,

large tasks shouldn't be penalized { slowed down by a greater factor than are

small tasks.1

Consider some task assignment policies commonly proposed for distributed

server systems: In the Random task assignment policy, an incoming task is sent

to Host i with probability 1=h, where h is the number of hosts. This policy

equalizes the expected number of tasks at each host. In Round-Robin task as-

signment, tasks are assigned to hosts in a cyclical fashion with the ith task

being assigned to Host i mod h. This policy also equalizes the expected number

of tasks at each host, and has slightly less variability in interarrival times than

does Random. In Shortest-Queue task assignment, an incoming task is imme-

diately dispatched to the host with the fewest number of tasks. This policy has

the bene�t of trying to equalize the instantaneous number of tasks at each host,

rather than just the expected number of tasks. All the above policies have the

property that the tasks arriving at each host are serviced in FCFS order.

The literature tells us that Shortest-Queue is in fact the best task assign-

ment policy in a model where the following conditions are met: (1) there is no

a priori knowledge about tasks, (2) tasks are not preemptible, (3) each host

services tasks in a FCFS order, (4) incoming tasks are immediately dispatched

to a host, and (5) the task size distribution is Exponential (see Section 2).

If one removes restriction (4), it is possible to do even better. What we'd

really like to do is send a task to the host which has the least total outstanding

work (work is the sum of the task sizes at the host) because that host would

a�ord the task the smallest waiting time. However, we don't know a priori

which host currently has the least work, since we don't know task sizes. It

turns out this is actually easy to get around: we simply hold all tasks at the

dispatcher in a FCFS queue, and only when a host is free does it request the

next task. It is easy to prove that this holding method is exactly equivalent to

immediately dispatching arriving tasks to the host with least outstanding work

(see [6] for a proof and Figure 2 for an illustration). We will refer to this policy

as Least-Work-Remaining since it has the e�ect of sending each task to the host

with the currently least remaining work. Observe that Least-Work-Remaining

comes closest to obtaining instantaneous load balance.

It may seem that Least-Work-Remaining is the best possible task assign-

ment policy. Previous literature shows that Least-Work-Remaining outper-

forms all of the above previously-discussed policies under very general conditions

(see Section 2). Previous literature also suggests that Least-Work-Remaining

1For example, Processor-Sharing (which requires in�nitely-manypreemptions) is ultimately

fair in that every task experiences the same expected slowdown.
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Figure 1: Illustration of a distributed server.
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Figure 2: Two equivalent ways of implementing the Least-Work-Remaining

task assignment policy. (a) Shows incoming tasks immediately being dispatched
to the host with the least remaining work, but this requires knowing a priori
the sizes of the tasks at the hosts. (b) Shows incoming tasks pooled at a FCFS
queue at the dispatcher. There are no queues at the individual hosts. Only when
a host is free does it request the next task. This implementation does not require
a priori knowledge of the task sizes, yet achieves the same e�ect as (a).
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may be the optimal (best possible) task assignment policy in the case where the

task size distribution is Exponential (see Section 2 for a detailed statement of

the previous literature).

But what if task size distribution is not Exponential? We are motivated in

this respect by the increasing evidence for high variability in task size distri-

butions, as seen in many measurements of computer workloads. In particular,

measurements of many computer workloads have been shown to �t heavy-tailed

distributions with very high variance, as described in Section 3 { much higher

variance than that of an Exponential distribution. Is there a better task as-

signment policy than Least-Work-Remaining when the task size variability is

characteristic of empirical workloads? In evaluating various task assignment

policies, we will be interested in understanding the in
uence of task size vari-

ability on the decision of which task assignment policy is best. For analytical

tractability, we will assume that the arrival process is Poisson { our simulations

indicate that the variability in the arrival process is much less critical to choosing

a task assignment policy than is the variability in the task size distribution.

In this paper we propose a new algorithm called TAGS { Task Assignment

by Guessing Size which is speci�cally designed for high variability workloads.

We will prove analytically that when task sizes show the degree of variability

characteristic of empirical (measured) workloads, the TAGS algorithm can out-

perform all the above mentioned algorithms by several orders of magnitude. In

fact, we will show that the more heavy-tailed the task size distribution, the

greater the improvement of TAGS over the other task assignment algorithms.

The above improvements are contingent on the system load not being too

high. 2 In the case where the system load is high, we show that all the task

assignment policies have such poor performance that they become impractical,

and TAGS is especially negatively a�ected. In practice, if the system load is

too high to achieve reasonable performance, one adds new hosts to the server

(without increasing the outside arrival rate), thus dropping the system load,

until the system behaves as desired. We refer to the \number of new hosts which

must be added" above as the server expansion requirement. We will show that

TAGS outperforms all the previously-mentioned task assignment policies with

respect to the server expansion metric (i.e., given any initial load, TAGS requires

far fewer additional hosts to perform well).

We will describe three 
avors of TAGS. The �rst, called TAGS-opt-meanslowdown

is designed to minimizemean slowdown. The second, called TAGS-opt-meanwaitingtime

2For a distributed server, system load is de�ned as follows:

System load = Outside arrival rate � Mean task size = Number of hosts

For example, a system with 2 hosts and system load .5 has same outside arrival rate as a

system with 4 hosts and system load .25. Observe that a 4 host system with system load �

has twice the outside arrival rate of a 2 host system with system load �.
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is designed to minimize mean waiting time. Although very e�ective, these

algorithms are not fair in their treatment of tasks. The third 
avor, called

TAGS-opt-fairness, is designed to optimize fairness. While managing to be

fair, TAGS-opt-fairness still achieves mean slowdown and mean waiting time

close to the other 
avors of TAGS.

Section 2 elaborates in more detail on previous work in this area. Sec-

tion 3 provides the necessary background on measured task size distributions

and heavy-tails. Section 4 describes the TAGS algorithm and all its 
avors. Sec-

tion 5 shows results of analysis for the case of 2 hosts and Section 6 shows

results of analysis for the multiple-host case. Section 7 explores the e�ect of

less-variable job size distributions. Lastly, we conclude in Section 8. Details on

the analysis of TAGS are described in the Appendix.

2 Previous Work on Task Assignment

2.1 Task assignment with no preemption

The problem of task assignment in a model like ours (no preemption and no a

priori knowledge) has been extensively studied, but many basic questions remain

open.

One subproblem which has been solved is that of task assignment under the

restriction that all tasks be immediately dispatched to a host upon arrival and

each host services its tasks in FCFS order. Under this restricted model, it has

been shown that when the task size distribution is exponential and the arrival

process is Poisson, then the Shortest-Queue task assignment policy is optimal,

Winston [19]. In this result, optimality is de�ned as maximizing the discounted

number of tasks which complete by some �xed time t. Ephremides, Varaiya,

and Walrand [5] showed that the Shortest-Queue task assignment policy also

minimizes the expected total time for the completion of all tasks arriving by

some �xed time t, under an exponential task size distribution and arbitrary

arrival process. The actual performance of the Shortest-Queue policy is not

known exactly, but the mean response time is approximated by Nelson and

Phillips [11], [12]. Whitt has shown that as the variability of the task size

distribution grows, the Shortest-Queue policy is no longer optimal [18]. Whitt

does not suggest which policy is optimal.

The scenario has also been considered, under the same restricted model

described in the above paragraph, but where the ages (time in service) of the

tasks currently serving are known, so that it is possible to compute an arriving

task's expected delay at each queue. In this scenario, Weber [17] considers the

Shortest-Expected-Delay rule which sends each task to the host with the
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least expected work (note the similarity to the Least-Work-Remaining policy).

Weber shows that this rule is optimal for task size distributions with increasing

failure rate (including Exponential). Whitt [18] shows that there exist task size

distributions for which this rule is not optimal.

Wol�, [20] has proven that Least-Work-Remaining is the best possible task

assignment policy out of all policies which do not make use of task size. This

result holds for any distribution of task sizes and for any arrival process.

Another model which has been considered is the case of no preemption

but where the size of each task is known at the time of arrival of the task.

Within this model, the SITA-E algorithm (see [7]) has been shown to outperform

the Random, Round-Robin, Shortest-Queue, and Least-Work-Remaining algo-

rithms by several orders of magnitude when the task size distribution is heavy-

tailed. In contrast to SITA-E, the TAGS algorithm does not require knowledge

of task size. Nevertheless, for not-too-high system loads (< :5), TAGS improves

upon the performance of SITA-E by several orders of magnitude for heavy-tailed

workloads.

2.2 When preemption is allowed and other generalizations

Throughout this paper we maintain the assumption that tasks are not pre-
emptible. That is, once a task starts running, it can not be stopped and re-

continued where it left o�. By contrast there exists considerable work on the

very di�erent problem where tasks are preemptible (see [8] for many citations).

Other generalizations of the task assignment problem include the scenario

where the hosts are heterogeneous or there are multiple resources under con-

tention.

The idea of purposely unbalancing load has been suggested previously in [3]

and in [1], under di�erent contexts from our paper. In both these papers, it

is assumed that task sizes are known a priori. In [3] a distributed system with

preemptible tasks is considered. It is shown that in the preemptible model,

mean waiting time is minimized by balancing load, however mean slowdown is

minimized by unbalancing load. In [1], real-time scheduling is considered where

tasks have �rm deadlines. In this context, the authors propose \load pro�ling,"

which \distributes load in such a way that the probability of satisfying the

utilization requirements of incoming tasks is maximized."
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3 Heavy Tails

As described in Section 1, we are concerned with how the distribution of task

sizes a�ects the decision of which task assignment policy to use.

Many application environments show a mixture of task sizes spanning many

orders of magnitude. In such environments there are typically many small tasks,

and fewer large tasks. Much previous work has used the exponential distribution

to capture this variability, as described in Section 2. However, recent measure-

ments indicate that for many applications the exponential distribution is a poor

model and that a heavy-tailed distribution is more accurate. In general a heavy-

tailed distribution is one for which

PrfX > xg � x��;

where 0 < � < 2. The simplest heavy-tailed distribution is the Pareto distribu-

tion, with probability mass function

f(x) = �k�x���1; �; k > 0; x � k;

and cumulative distribution function

F (x) = PrfX � xg = 1� (k=x)�:

A set of task sizes following a heavy-tailed distribution has the following prop-

erties:

1. Decreasing failure rate: In particular, the longer a task has run, the longer

it is expected to continue running.

2. In�nite variance (and if � � 1, in�nite mean).

3. The property that a very small fraction (< 1%) of the very largest tasks

make up a large fraction (half) of the load. We will refer to this important

property throughout the paper as the heavy-tailed property.

The lower the parameter �, the more variable the distribution, and the more

pronounced is the heavy-tailed property, i.e. the smaller the fraction of large

tasks that comprise half the load.

As a concrete example, Figure 3 depicts graphically on a log-log plot the

measured distribution of CPU requirements of over a million UNIX processes,

taken from paper [8]. This distribution closely �ts the curve

PrfProcess Lifetime > Tg = 1=T:

In [8] it is shown that this distribution is present in a variety of computing en-

vironments, including instructional, research, and administrative environments.
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In fact, heavy-tailed distributions appear to �t many recent measurements

of computing systems. These include, for example:

� Unix process CPU requirements measured at Bellcore: 1 � � � 1:25 [10].

� Unix process CPU requirements, measured at UC Berkeley: � � 1 [8].

� Sizes of �les transferred through the Web: 1:1 � � � 1:3 [2, 4].

� Sizes of �les stored in Unix �lesystems: [9].

� I/O times: [14].

� Sizes of FTP transfers in the Internet: :9 � � � 1:1 [13].

In most of these cases where estimates of � were made, � tends to be close to

1, which represents very high variability in task service requirements.

In practice, there is some upper bound on the maximum size of a task,

because �les only have �nite lengths. Throughout this paper, we therefore model

task sizes as being generated i.i.d. from a distribution that follows a power law,

but has an upper bound { a very high one. We refer to this distribution as a

Bounded Pareto. It is characterized by three parameters: �, the exponent of

the power law; k, the smallest possible observation; and p, the largest possible

observation. The probability mass function for the Bounded Pareto B(k; p; �)

is de�ned as:

f(x) =
�k�

1� (k=p)�
x���1 k � x � p: (1)

In this paper, we will vary the �-parameter over the range 0 to 2 in order

to observe the e�ect of changing variability of the distribution. To focus on

the e�ect of changing variance, we keep the distributional mean �xed (at 3000)

and the maximum value �xed (at p = 1010), which correspond to typical values

taken from [2]. In order to keep the mean constant, we adjust k slightly as �

changes (0 < k � 1500).

Note that the Bounded Pareto distribution has all its moments �nite. Thus,

it is not a heavy-tailed distribution in the sense we have de�ned above. How-

ever, this distribution will still show very high variability if k � p. For exam-

ple, Figure 4 (right) shows the second moment E
�
X2
	
of this distribution as a

function of � for p = 1010, where k is chosen to keep E fXg constant at 3000,

(0 < k � 1500). The �gure shows that the second moment explodes exponen-

tially as � declines. Furthermore, the Bounded Pareto distribution also still

exhibits the heavy-tailed property and (to some extent) the decreasing failure

rate property of the unbounded Pareto distribution. We mention these prop-

erties because they are important in determining our choice of the best task

assignment policy.
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4 The TAGS algorithm

This section describes the TAGS algorithm.

Let h be the number of hosts in the distributed server. Think of the hosts

as being numbered: 1; 2; : : : ; h. The ith host has a number si associated with

it, where s1 < s2 < : : : < sh.

TAGS works as shown in Figure 5: All incoming tasks are immediately dis-

patched to Host 1. There they are serviced in FCFS order. If they complete

before using up s1 amount of CPU, they simply leave the system. However, if

a task has used s1 amount of CPU at Host 1 and still hasn't completed, then

it is killed (remember tasks cannot be preempted because that is too expensive

in our model). The task is then put at the end of the queue at Host 2, where

it is restarted from scratch3. Each host services the tasks in its queue in FCFS

order. If a task at host i uses up si amount of CPU and still hasn't completed

it is killed and put at the end of the queue for Host i+ 1. In this way, the TAGS

algorithm \guesses the size" of each task, hence the name.

The TAGS algorithm may sound counterintuitive for a few reasons: First of

all, there's a sense that the higher-numbered hosts will be underutilized and the

3Note, although the task is restarted, it is still the same task, of course. We are therefore

careful in our analysis not to assign it a new service requirement.
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�rst host overcrowded since all incoming tasks are sent to Host 1. An even more

vital concern is that the TAGS algorithm wastes a large amount of resources by

killing tasks and then restarting them from scratch.4 There's also the sense that

the big tasks are especially penalized since they're the ones being restarted.

TAGS comes in 3 
avors; these only di�er in how the si's are chosen. In

TAGS-opt-meanslowdown, the si's are chosen so as to optimize mean slowdown.

In TAGS-opt-meanwaitingtime, the si's are chosen so as to optimize mean wait-

ing time. As we'll see, TAGS-opt-meanslowdownand TAGS-opt-meanwaitingtime

are not necessarily fair. In TAGS-opt-fairness the si's are chosen so as to opti-

mize fairness. Speci�cally, the tasks whose �nal destination is Host i experience

the same expected slowdown under TAGS-opt-fairness as do the tasks whose

�nal destination is Host j, for all i and j.

TAGSmay seem reminiscent of multi-level feedback queueing, but they are not
related. In multi-level feedback queueing there is only a single host with many

virtual queues. The host is time-shared and tasks are preemptible. When a task

uses some amount of service time it is transferred (not killed and restarted) to

a lower priority queue. Also, in multi-level feedback queueing, the tasks in that

lower priority queue are only allowed to run when there are no tasks in any of

the higher priority queues.

5 Analysis and Results and For the Case of 2

Hosts

This section contains the results of our analysis of the TAGS task assignment

policy and other task assignment policies. In order to clearly explain the e�ect

of the TAGS algorithm, we limit the discussion in this section to the case of 2

hosts. In this case we refer to the tasks whose �nal destination is Host 1 as

the small tasks and the tasks whose �nal destination is Host 2 as the big tasks.
Until Section 5.3, we will always assume the system load is 0:5 and there are 2

hosts. In Section 5.3, we will consider other system loads, but still stick to the

case of 2 hosts. Finally, in Section 6 we will consider distributed servers with

multiple hosts.

We evaluate several task assignment policies, all as a function of �, where �

is the variance-parameter for the Bounded Pareto task size distribution, and �

ranges between 0 and 2. Recall from Section 3 that the lower � is, the higher the

variance in the task size distribution. Recall also that empirical measurements

of task size distributions often show � � 1.

4My dad, Micha Harchol, would add that there's also the psychological concern of what

the angry user might do when he's told his task's been killed to help the general good.
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We will evaluate the Random, Least-Work-Remaining, and TAGS policies.

The Round-Robin policy (see Section 1) will not be evaluated directly be-

cause we showed in a previous paper [7] that Random and Round-Robin have

almost identical performance. As we'll explain in Section 5.1, our analysis of

Least-Work-Remaining is only an approximation, however we have con�dence

in this approximation because our extensive simulation in paper [7] showed it

to be quite accurate in this setting. As we'll discuss in Section 5.1, our analysis

of TAGS is also an approximation, though to a lesser degree.

Figure 6(a) below shows mean slowdown under TAGS-opt-slowdown as com-

pared with the other task assignment policies. The y-axis is shown on a log

scale. Observe that for very high �, the performance of all the task assign-

ment policies is comparable and very good, however as � decreases, the perfor-

mance of all the policies degrades. The Least-Work-Remaining policy consis-

tently outperforms the Random policy by about an order of magnitude, how-

ever the TAGS-opt-slowdown policy o�ers several orders of magnitude fur-

ther improvement: At � = 1:5, the TAGS-opt-slowdown policy outperforms

the Least-Work-Remaining policy by 2 orders of magnitude; at � � 1, the

TAGS-opt-slowdown policy outperforms the Least-Work-Remaining policy by

over 4 orders of magnitude; at � = :4 the the TAGS-opt-slowdown policy out-

performs the Least-Work-Remaining policy by over 9 orders of magnitude, and

this increases to 15 orders of magnitude for � = :2!

Figures 6(b) and (c) show mean slowdown of TAGS-opt-waitingtime and

TAGS-opt-fairness, respectively, as compared with the other task assignment

policies. Since TAGS-opt-waitingtime is optimized for mean waiting time,

rather than mean slowdown, it is understandable that its performance im-

provements with respect to mean slowdown are not as dramatic as those of

TAGS-opt-slowdown. However, what's interesting is that the performance of

TAGS-opt-fairness is very close to that of TAGS-opt-slowdownand yet TAGS-opt-fairness

has the additional bene�t of fairness.

Figure 7 is identical to Figure 6 except that in this case the performance

metric is mean waiting time, rather than mean slowdown. Again the TAGS al-

gorithm, especially TAGS-opt-waitingtime, shows several orders of magnitude

improvement over the other task assignment policies.

Why does the TAGS algorithm work so well? Intuitively, it seems that

Least-Work-Remaining should be the best performer, since Least-Work-Remaining

sends each task to where it will individually experience the lowest waiting time.

The reason why TAGS works so well is 2-fold: The �rst part is variance reduction
(Section 5.1) and the second part is load unbalancing (Section 5.2).
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Figure 6: Mean slowdown for distributed server with 2 hosts and system
load .5 under (a) TAGS-opt-slowdown, (b) TAGS-opt-waitingtime, and (c)
TAGS-opt-fairness as compared with the Least-Work-Remaining and Random

task assignment policies.
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Figure 7: Mean waiting time for distributed server with 2 hosts and system
load .5 under (a) TAGS-opt-slowdown, (b) TAGS-opt-waitingtime, and (c)
TAGS-opt-fairness as compared with the Least-Work-Remaining and Random

task assignment policies.
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5.1 Variance Reduction

Variance reduction refers to reducing the variance of task sizes that share the

same queue. Intuitively, variance reduction is important for improving perfor-

mance because it reduces the chance of a small task getting stuck behind a big

task in the same queue. This is stated more formally in Theorem 1 below, which

is derived from the Pollaczek-Kinchin formula.

Theorem 1 Given an M/G/1 FCFS queue, where the arrival process has rate
�, X denotes the service time distribution, and � denotes the utilization (� =

�E fXg). Let W be a task's waiting time in queue, S be its slowdown, and Q

be the queue length on its arrival. Then,

E fWg =
�E
�
X2
	

2(1� �)
[Pollaczek-Kinchin formula]

E fSg = E fW=Xg = E fWg �E
�
X�1

	
E fQg = �E fWg

Proof: The slowdown formulas follow from the fact thatW and X are indepen-

dent for a FCFS queue, and the queue size follows from Little's formula.

Observe that every metric for the simple FCFS queue is dependent on

E
�
X2
	
, the second moment of the service time. Recall that if the workload

is heavy-tailed, the second moment of the service time explodes, as shown in

Figure 4.

We now discuss the e�ect of high variability in task sizes on a distributed

server system under the various task assignment policies.

Random Task Assignment The Random policy simply performs Bernoulli

splitting on the input stream, with the result that each host becomes an inde-

pendent M=B(k; p; �)=1 queue. The load at the ith host, �i, is equal to the

system load, �. The arrival rate at the ith host is 1=h-fraction of the total

outside arrival rate. Theorem 1 applies directly, and all performance metrics

are proportional to the second moment of B(k; p; �). Performance is generally

poor because the second moment of the B(k; p; �) is high.

Round Robin The Round Robin policy splits the incoming stream so each

host sees an Eh=B(k; p; �)=1 queue, with utilization �i = �. This system has

performance close to the Random policy since it still sees high variability in

service times, which dominates performance.
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Least-Work-Remaining The Least-Work-Remaining policy is equivalent

to an M/G/h queue, for which there exist known approximations, [16],[21]:

E
�
QM=G=h

	
= E

�
QM=M=h

	
�
E
�
X2
	

E fXg
2
;

where X denotes the service time distribution, and Q denotes queue length.

What's important to observe here is that the mean queue length, and therefore

the mean waiting time and mean slowdown, are all proportional to the second

moment of the service time distribution, as was the case for the Random and

Round-Robin task assignment policies. In fact, the performance metrics are all

proportional to the squared coe�cient of variation (C2 =
EfX2g
EfXg2

) of the service

time distribution.

TAGS The TAGS policy is the only one which reduces the variance of task sizes

at the individual hosts. Let pi be the fraction of tasks whose �nal destination

is Host i. Consider the tasks which queue at Host i: First there are those

tasks which are destined for Host i. Their task size distribution is B(si�1; si; �)

because the original task size distribution is a Bounded Pareto. Then there are

the tasks which are destined for hosts numbered greater than i. These tasks are

all capped at size si. Thus the second moment of the task size distribution at

Host i is lower than the second moment of the original B(k; p; �) distribution

(for all hosts except the highest-numbered host, it turns out). The full analysis

of the TAGS policy is presented in the Appendix and is relatively straightforward

except for one point which we have to fudge and which we explain now: For

analytic convenience, we need to be able to assume that the tasks arriving at

each host form a Poisson Process. This is of course true for Host 1. However

the arrivals at Host i are those departures from Host i � 1 which exceed size

si�1. They form a less bursty process than a Poisson Process since they are

spaced apart by at least si�1. Throughout our analysis of TAGS, we make the

assumption that the arrival process into Host i is a Poisson Process.

5.2 Load Unbalancing

The second reason why TAGS performs so well has to do with \load unbalancing."

Observe that all the other task assignment policies we described speci�cally try

to balance load at the hosts. Random and Round-Robin balance the expected

load at the hosts, while Least-Work-Remaining goes even further in trying to

balance the instantaneous load at the hosts. In TAGS we do the opposite.

Figure 8 shows the load at Host 1 and the load at Host 2 for TAGS-opt-slowdown,

TAGS-opt-waitingtime, and TAGS-opt-fairness as a function of �. Observe

that all 3 
avors of TAGS (purposely) severely underload Host 1 when � is low
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but for higher � actually overload Host 1 somewhat. In the middle range, � � 1,

the load is balanced in the two hosts.

We �rst explain why load unbalancing is desirable when optimizing overall

mean slowdown of the system. We will later explain what happens when op-

timizing fairness. To understand why it is desirable to operate at unbalanced

loads, we need to go back to the heavy-tailed property. The heavy-tailed prop-

erty says that when a distribution is very heavy-tailed (very low �), only a

miniscule fraction of all tasks { the very largest ones { are needed to make up

more than half the total load. As an example, for the case � = :2, it turns out

that less than 10�6 fraction of all tasks are needed to make up half the load. In

fact not many more tasks, still less than 10�4 fraction of all tasks, are needed

to make up :99999 fraction of the load. This suggests a load game that can

be played: We choose the cuto� point (s1) such that most tasks ((1 � 10�4)

fraction) have Host 1 as their �nal destination, and only a very few tasks (the

largest 10�4 fraction of all tasks) have Host 2 as their �nal destination. Because

of the heavy-tailed property, the load at Host 2 will be extremely high (.99999)

while the load at Host 1 will be very low (.00001). Since most tasks get to run

at such reduced load, the overall mean slowdown is very low.

When the distribution is a little less heavy-tailed, e.g., � � 1, we can't play

this load unbalancing game as well. Again, we would like to severely underload

Host 1 and send .999999 fraction of the load to go to Host 2. Before we were able

to do this by making only a very small fraction of all tasks (< 10�4 fraction)

go to Host 2. However now that the distribution is not as heavy-tailed, a larger

fraction of tasks must have Host 2 as its �nal destination to create very high

load at Host 2. But this in turn means that tasks with destination Host 2 count

more in determining the overall mean slowdown of the system, which is bad

since tasks with destination Host 2 experience larger slowdowns. Thus we can

only a�ord to go so far in overloading Host 2 before it turns against us.

When get to � > 1, it turns out that it actually pays to overload Host 1

a little. This seems counter-intuitive, since Host 1 counts more in determining

the overall mean slowdown of the system because the fraction of tasks with

destination Host 1 is greater. However, the point is that now it is impossible to

create the wonderful state where almost all tasks are on Host 1 and yet Host 1 is

underloaded. The tail is just not heavy enough. No matter how we choose the

cuto�, a signi�cant portion of the tasks will have Host 2 as their destination.

Thus Host 2 will inevitably �gure into the overall mean slowdown and so we

need to keep the performance on Host 2 in check. To do this, it turns out we

need to slightly underload Host 2, to make up for the fact that the task size

variability is so much greater on Host 2 than on Host 1.

The above has been an explanation for why load unbalancing is important

with respect to optimizing the system mean slowdown. However it is not at all

clear why load unbalancing also optimizes fairness. Under TAGS-opt-fairness,

17



(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Loads at hosts under TAGS−opt−slowdown: 2 hosts, load .5

alpha

− Load host 1

−− Load host 2

(b)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Loads at hosts under TAGS−opt−waitingtime: 2 hosts, load .5

alpha

− Load host 1

−− Load host 2

(c)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Loads at hosts under TAGS−opt−fairness: 2 hosts, load .5

alpha

− Load host 1

−− Load host 2

Figure 8: Load at Host 1 as compared with Host 2 in a distributed
server with 2 hosts and system load .5 under (a) TAGS-opt-slowdown, (b)
TAGS-opt-waitingtime, and (c) TAGS-opt-fairness. Observe that for very
low �, Host 1 is run at load close to zero, and Host 2 is run at load close to 1,
whereas for high �, Host 1 is somewhat overloaded.
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(b) System load 0:5
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(c) System load 0:7
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Figure 9: Mean slowdown under TAGS-opt-slowdown in a distributed server
with 2 hosts with system load (a) 0:3, (b) 0:5, and (c) 0:7. In each �gure the
mean slowdown under TAGS-opt-slowdown is compared with the performance
of Random and Least-Work-Remaining. Observe that in all the �gures TAGS

outperforms the other task assignment policies under all �. However TAGS is
most e�ective at lower system loads.
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the mean slowdown experienced by the small tasks is equal to the mean slowdown

experienced by the big tasks. However it seems in fact that we're treating the

big tasks unfairly on 3 counts:

1. The small tasks run on Host 1 which has very low load (for low �).

2. The small tasks run on Host 1 which has very low E
�
X2
	
.

3. The small tasks don't have to be restarted from scratch and wait on a

second line.

So how can it possibly be fair to help the small tasks so much? The answer

is simply that the small tasks are small. Thus they need low waiting times to

keep their slowdown low. Big tasks on the other hand can a�ord a lot more

waiting time. They are better able to amortize the punishment over their long

lifetimes. It is important to mention, though, that this would not be the case

for all distributions. It is because our task size distribution for low � is so

heavy-tailed that the big tasks are truly elephants (way bigger than the smalls)

and thus can a�ord to su�er more.5

5.3 Di�erent Loads

Until now we have studied only the model of a distributed server with two hosts

and system load :5. In this section we consider the e�ect of system load on the

performance of TAGS. We continue to assume a 2 host model. Figure 9 shows the

performance of TAGS-opt-slowdown on a distributed server with 2 hosts run at

system load (a) 0:3, (b) 0:5, and (c) 0:7. In all three �gures TAGS-opt-slowdown

improves upon the performance of Least-Work-Remaining and Random under

the full range of �, however the improvement of TAGS-opt-slowdown is much

better when the system is more lightly loaded. In fact, all the task assign-

ment policies improve as the system load is dropped, however the improve-

ment in TAGS is the most dramatic. In the case where the system load is 0:3,

TAGS-opt-slowdown improves upon Least-Work-Remaining by over 4 orders of

magnitude at � = 1, by 6 or 7 orders of magnitude when � = :6 and by almost

20 orders of magnitude when � = :2! When the system load is 0:7 on the other

5It may interest the reader to understand the degree of unfairness exhibited by

TAGS-opt-slowdown and TAGS-opt-waitingtime. For TAGS-opt-slowdown, our analysis shows

that the expected slowdown of the big tasks always exceeds that of the small tasks and

the ratio increases exponentially as � drops, so that at � = 2, E fSlowdown(bigs)g �
2�EfSlowdown(smalls)g, and at � = :2, EfSlowdown(bigs)g � 104�EfSlowdown(smalls)g.
In contrast, for TAGS-opt-waitingtime, the expected slowdown of the big tasks is approxi-

mately equal to that of the small tasks until � drops below 1, at which point the expected

slowdown of the big tasks drops way below that of the small tasks, the ratio of bigs to smalls

decreasing superexponentially as � drops.
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hand, TAGS-opt-slowdown behaves comparably to Least-Work-Remaining for

most � and only improves upon Least-Work-Remaining in the narrower range

of :6 < � < 1:5. Notice however that at � � 1, the improvement of TAGS-opt-slowdown

is still about 4 orders of magnitude.

Why is the performance of TAGS so correlated with load? There are 2 reasons,

both of which can be understood by looking at Figure 10 which shows the loads

at the 2 hosts under TAGS-opt-slowdown in the case where the system load is

(a) 0:3, (b) 0:5, and (c) 0:7.

The �rst reason for the ine�ectiveness of TAGS under high loads is that the

higher the load, the less able TAGS is to play the load-unbalancing game described

in Section 5.2. For lower �, TAGS reaps much of its bene�t at the lower � by

moving all the load onto Host 2. When the system load is only 0:5, TAGS is easily

able to pile all the load on Host 2 without exceeding load 1 at Host 2. However

when the system load is 0:7, the restriction that the load at Host 2 must not

exceed 1 becomes a bottleneck for TAGS since it means that Host 1 can not be

as underloaded as TAGS would like. This is seen by comparing Figure 10(b) and

Figure 10(c) where in (c) the load on Host 1 is much higher for the lower � than

it is in (b).

The second reason for the ine�ectiveness of TAGS under high loads has to

do with what we call excess. Excess is the extra work created in TAGS by tasks

being killed and restarted. In the 2-host case, the excess is simply equal to

� � p2 � s1, where � is the outside arrival rate, p2 is the fraction of tasks whose

�nal destination is Host 2, and s1 is the cuto� di�erentiating small tasks from

big tasks. An equivalent de�nition of excess is the di�erence between the actual

sum of the loads on the hosts and h times the system load, where h is the

number of hosts. Notice that the dotted line in Figure 10(a)(b)(c) shows the

sum of the loads on the hosts.

Until now we've only considered the distributed servers with 2 hosts and

system load 0:5. For this scenario, excess has not been a problem. The reason

is that for low �, where we need to do the severe load unbalancing, excess is

basically non-existent for loads 0:5 and under, since p2 is so small (due to the

heavy-tailed property) and since s1 could be forced down. For high �, excess

is present. However all the task assignment policies already do well in the high

� region because of the low task size variability, so the excess is not much of a

handicap.

When we look at the case of system load 0:7, however, excess is much more

of a problem, as is evidenced by the dotted line in Figure 10(c). One reason

that the excess is worse is simply that overall excess increases with load because

excess is proportional to � which is in turn proportional to load. The other

reason that the excess is worse at higher loads has to do with s1. In the low �

range, although p2 is still low (due to the heavy-tailed property), s1 cannot be
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forced low because the load at Host 2 is capped at 1. Thus the excess for low

� is very high. To make matters worse, some of this excess must be heaped on

Host 1. In the high � range, excess again is high because p2 is high.

Fortunately, observe that for higher loads excess is at its lowest point at

� � 1. In fact, it is barely existent in this region. Observe also that the

� � 1 region is the region where balancing load is the optimal thing to do (with

respect to minimizing mean slowdown), regardless of the system load. This

\sweet spot" is fortunate because � � 1 is characteristic of many empirically

measured computer workloads, see Section 3.

6 Analytic Results for Case of Multiple Hosts

Until now we have only considered distributed servers with 2 hosts. For the case

of 2 hosts, we saw that the performance of TAGS-opt-slowdown was amazingly

good if the system load was 0:5 or less, but not nearly as good for system load

> 0:5. In this section we consider the case of more than 2 hosts.

The phrase \adding more hosts" can be ambiguous because it is not clear

whether the arrival rate is increased as well. For example, given a system with

2 hosts and system load 0:7, we could increase the number of hosts to 4 hosts

without changing the arrival rate, and the system load would drop to 0:35. On

the other hand, we could increase the number of hosts to 4 hosts and increase

the arrival rate appropriately (double it) so as to maintain a system load of 0:7.

In our discussions below we will attempt to be clear as to which view we have

in mind.

One claim that can be made straight o� is that an h host system (h > 2)

with system load � can always be con�gured to produce performance which is

at least as good as that of a 2 host system with system load �. To see why,

observe that we can use the h host system (assuming h is even) to simulate a 2

host system as illustrated in Figure 11: Rename Hosts 1 and 2 as Subsystem 1.

Rename Hosts 3 and 4 as Subsystem 2. Rename Hosts 5 and 6 as Subsystem 3,

etc. Now split the tra�c entering the h host system so that 2=hth of the tasks

go to each of the h=2 Subsystems. Now apply your favorite task assignment

policy to each Subsystem independently { in our case we choose TAGS. Each

Subsystem will behave like a 2 host system with load � running TAGS. Since

each Subsystem will have identical performance, the performance of the whole

h host system will be equal to the performance of any one subsystem. (Observe

that the above cute argument works for any task assignment policy).

Figure 12 shows the mean slowdown under TAGS-opt-slowdown for the case

of a 4 host distributed server with system load 0:3. Comparing these results to

those for the 2 host system with system load 0:3 (Figure 9(a)), we see that:
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(a) System load 0:3
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(c) System load 0:7
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Figure 10: Load at Host 1 and Host 2 under TAGS-opt-slowdown shown for
a distributed server with 2 hosts and system load (a) 0:3 (b) 0:5 (c) 0:7. The
dotted line shows the sum of the loads at the 2 hosts. If there were no excess,
the dotted line would be at (a) 0:6 (b) 1:0 and (c) 1:4 in each of the graphs
respectively. In �gures (a) and (b) we see excess only at the higher � range.
In �gure (c) we see excess in both the low � and high � range, but not around
� � 1.
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Figure 12: Mean slowdown under TAGS-opt-slowdown compared with other task
assignment policies in the case of a distributed server with 4 hosts and system
load 0:3. The cuto�s for TAGS-opt-slowdown were optimized by hand. In many
cases it is possible to improve upon the results shown here by adjusting the cuto�s
further, so the slight bend in the graph may not be meaningful. Observe that the
mean slowdown of TAGS almost never exceeds 1.

1. The performance of Random stayed the same, as it should.

2. The performance of Least-Work-Remaining improved by a couple orders

of magnitude in the higher � region, but less in the lower � region. The

Least-Work-Remaining task assignment policy is helped by increasing

the number of hosts, although the system load stayed the same, because

having more hosts increases the chances of one of them being free.

3. The performance of TAGS-opt-slowdown improved a lot. So much so,

that the mean slowdown under TAGS-opt-slowdown is never over 6 and

almost always under 1. At � � 1, TAGS-opt-slowdown improves upon

Least-Work-Remainingby 4-5 orders of magnitude. At � = :6, TAGS-opt-slowdown

improves upon Least-Work-Remaining by 8-9 orders of magnitude. At

� = :2, TAGS-opt-slowdown improves upon Least-Work-Remaining by

over 25 orders of magnitude!

The enhanced performance of TAGS on more hosts may come from the fact

that more hosts allow for greater 
exibility in choosing the cuto�s. However
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it is hard to say for sure because it is di�cult to compute results for the case

of more than 2 hosts. The cuto�s in the case of 2 hosts were all optimized

by Mathematica, while in the case of 4 hosts it was necessary to perform the

optimizations by hand (and for all we know, it may be possible to do even

better). For the case of system load 0:7 with 4 hosts we ran into the same type

of problems as we did for the 2 host case with system load 0:7.

6.1 The Server Expansion Performance Metric

There is one thing that seems very arti�cial about our current comparison of

task assignment policies. No one would ever be willing to run a system whose

expected mean slowdown was 1010. In practice, if a system was operating with

mean slowdown of 1010, the number of hosts would be increased, without in-

creasing the arrival rate, (thus dropping the system load) until the system's per-

formance improved to a reasonable mean slowdown, like 3 or less. Consider the

following example: Suppose we have a 2-host system running at system load .7

and with variability parameter � = :6. For this system the mean slowdown un-

der TAGS-opt-slowdown is on the order of 109, and no other task assignment pol-

icy that we know of does better. Suppose however we desire a system with mean

slowdown of 3 or less. So we double the number of hosts (without increasing the

outside arrival rate). At 4 hosts, with system load 0:35, TAGS-opt-slowdown

now has mean slowdown of around 1, whereas Least-Work-Remaining's slow-

down has improved to around 108. It turns out we would have to increase

number of hosts to 13 for the performance of Least-Work-Remaining to im-

prove to the point of mean slowdown of under 3. And for Random to reach that

level it would require an additional 109 hosts!

The above example suggests a new practical performance metric for dis-

tributed servers, which we call the server expansion metric. The server ex-

pansion metric asks how many additional hosts must be added to the existing

server (without increasing outside arrival rate) to bring mean slowdown down

to a reasonable level (where we'll arbitrarily de�ne \reasonable" as 3 or less).

Figure 13 compares the performance of our task assignment policies according

to the server expansion metric, given that we start with a 2 host system with

system load of 0:7. For TAGS-opt-slowdown, the server expansion is only 3 for

� = :2 and no more than 2 for all the other �. For Least-Work-Remaining, on

the other hand, the number of hosts we need to add ranges from 1 to 27, as �

decreases. Still Least-Work-Remaining is not so bad because at least its per-

formance improves somewhat quickly as hosts are added and load is decreased,

the reason being that both these e�ects increase the probability of a task �nd-

ing an idle host. By contrast Random, shown in Figure 13(b), is exponentially

worse than the others, requiring as many as 105 additional hosts when � � 1.

Although Random does bene�t from increasing the number of hosts, the e�ect
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(a) Non-log scale
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Figure 13: Server expansion requirement for each of the task assignment policies,
given that we start with a 2 host system with system load of 0:7. (a) Shows just
Least-Work-Remaining and TAGS-opt-slowdown on a non-log scale (b) Shows
Least-Work-Remaining, TAGS-opt-slowdown, and Random on a log scale.
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Figure 14: Second moment of B(k; p; �) distribution, where now the upper
bound, p, is set at p = 107, rather than 1010. The mean is held �xed at 3000 as
� is varied. Observe that the coe�cient of variation now ranges from 2, when
� = 2 to 33, when � = :2.

isn't nearly as strong as it is for TAGS and Least-Work-Remaining.

7 The e�ect of the range of task sizes

The purpose of this section is to investigate what happens when the range of

task sizes (di�erence between the biggest and smallest possible task sizes) is

smaller than we have heretofore assumed, resulting in a smaller coe�cient of

variation in the task size distribution.

Until now we have always assumed that the task sizes are distributed ac-

cording to a Bounded Pareto distribution with upper bound p = 1010 and �xed

mean 3000. This means, for example, that when � � 1 (as agrees with empirical

data), we need to set the lower bound on task sizes to k = 167. However this

implies that the range of task sizes spans 8 orders of magnitude!

It is not clear that most applications have task sizes ranging 8 orders in mag-

nitude. In this section we rederive the performance of all the task assignment

policies when the upper bound p is set to p = 107, while still holding the mean

of the task size distribution at 3000. This means, for example, that when � � 1
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Figure 15: Mean slowdown under TAGS-opt-slowdown in a distributed server
with 2 hosts with system load 0:5, as compared with the performance of Random
and Least-Work-Remaining. In this set of results the task size distribution is
B(k; p; �), where p = 107.

(as agrees with empirical data), we need to set the lower bound on task sizes to

k = 287, which implies the range of task sizes spans just 5 orders of magnitude.

Figure 14 shows the second moment of the Bounded Pareto task size distri-

bution as a function of � when p = 107. Comparing this �gure to Figure 4, we

see that the task size variability is far lower when p = 107 and therfore so is the

coe�cient of variation.

Lower variance in the task size distribution suggests that the improvement

of TAGS over the other task assignment policies will not be as dramatic as in

the higher variability setting (when p = 1010). This is in fact the case. What is

interesting, however, is that even in this lower variability setting the improve-

ment of TAGS over the other task assignment policies is still impressive, as shown

in Figure 15. Figure 15 shows the mean slowdown of TAGS-opt-slowdown as

compared with Random and Least-Work-Left for the case of two hosts with

system load 0:5. Observe that for � � 1, TAGS improves upon the other task

assignment policies by over 2 orders of magnitude. As � drops, the improvement

increases. This �gure should be contrasted with Figure 9(b), which shows the

same scenario where p = 1010.

29



8 Conclusion and Future Work

This paper is interesting not only because it proposes a powerful new task

assignment policy, but more so because it challenges some natural intuitions

which we have come to adopt over time as common knowledge.

Traditionally, the area of task assignment, load balancing and load sharing

has consisted of heuristics which seek to balance the load among the multiple

hosts. TAGS, on the other hand, speci�cally seeks to unbalance the load, and

sometimes severely unbalance the load. Traditionally, the idea of killing a task

and restarting from scratch on a di�erent machine is viewed with skepticism,

but possibly tolerable if the new host is idle. TAGS, on the other hand, kills tasks

and then restarts them at a target host which is typically operating at extremely

high load, much higher load than the original source host. Furthermore, TAGS

proposes restarting the same task multiple times.

It is interesting to consider further implications of these results, outside the

scope of task assignment. Consider for example the question of scheduling CPU-

bound tasks on a single CPU, where tasks are not preemptible and no a priori

knowledge is given about the tasks. At �rst it seems that FCFS scheduling is

the only option. However in the fact of high task size variability, FCFS may

not be wise. This paper suggests that killing and restarting tasks may be worth

investigating as an alternative, if the load on the CPU is low enough to tolerate

the extra work created.

Task assignment also has applications outside of the context of a distributed

server system described in this paper. A very interesting recent paper by Shaikh,

Rexford, and Shin [15] discusses routing of IP 
ows (which also have heavy-

tailed size distributions) and recommends routing long 
ows di�erently from

short 
ows.
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9 Appendix

This section contains the formulas we used in evaluating the TAGS task assign-

ment policy. We will use the notation de�ned in Table 1.

The following observation will be helpful in understanding the �rst batch of

formulas below: Observe that the original tasks, all of which enter Host 1, are

have sizes i:i:d: from B(k; p; �). However, once a task is moved to Host 2, we

know that its size exceeds s1. Conditional on this knowledge, we can assume

that the tasks entering Host 2 have sizes i:i:d: from B(s1; p; �). Likewise the

tasks entering Host j have sizes i:i:d: from B(sj�1; p; �). Observe also that the

tasks whose �nal destination is Host j have sizes i:i:d: from B(sj�1; j; �).

The formulas below assume knowledge of the cuto� points s0; s1; : : : ; sh.

These are determined using mathematica to optimize either mean slowdown,

mean waiting time or fairness, as desired.
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�k�
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h Number of hosts

B(k; p; �) Task size distribution

p Upper bound on task size distribution

k Lower bound on task size distribution

f(x) Probability mass function for B(k; p; �).

� Heavy-tailed parameter

s0; s1; : : : ; sh Task size cuto�s

si Upper bound on task size seen by Host i

� Outside arrival rate into system

� System load

host�i Load at Host i

pi Fraction of tasks whose �nal destination is Host i,

i.e., whose size is between si�1 and si.

hostpi Fraction of tasks which spend time at Host i

host�i Arrival rate into Host i

E fXg Mean task size under B(k; p; �) distribution

E
�
Xj
	

jth moment of task size distribution B(k; p; �)

E fXig Expected size of tasks whose �nal destination is Host i.

E fhostXig Expected size of tasks which spend time at Host i

E
�
X2

i

	
Second moment of size of tasks whose �nal destination is Host i.

E
�
hostX2

i

	
Second moment of size of tasks which spend time at Host i

E f1=Xig Expected 1/size of tasks whose �nal destination is Host i

E fhostWig Expected waiting time at Host i

E fWig Total expected waiting time for tasks with �nal destination Host i

E fSig Expected slowdown for tasks with �nal destination Host i

E fWg Expected waiting time for tasks under TAGS

E fSg Expected slowdown for tasks under TAGS

Excess Total excess work being done

Table 1: Notation for analysis of TAGS
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host�i = host�i �E fhostXig
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o

There are two equivalent ways of de�ning excess. We show both below and

check them against each other in our computations.

true-sum-of-loads =

hX
i=1

host�i

desired-sum-of-loads = h � �

Excessa = true-sum-of-loads� desired-sum-of-loads

Excessb =

hX
i=2

host�i � si�1

Excess = Excessa = Excessb

Computing mean waiting time and mean slowdown follows from Theorem 1,

except for one fudge, as explained earlier in the text: we will assume that the

arrival process into each host is a Poisson Process. Observe that in computing

mean slowdown, we have to be careful about which jobs we're averaging over.

The calculation works out most easily if we condition on the �nal destination

of the job, as shown below.

E fhostWig = host�i �E
�
hostX2

i

	
=(2(1� host�i))

E fWig =

iX
j=1

E fhostWjg

E fWg =

hX
i=1

E fWig � pi

E fSig = E fWig �E f1=Xig

E fSg =

hX
i=1

E fSig � pi
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