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Abstract

The goal of this paper is to demonstrate that a method for inductive program
synthesis (as described in [SW98]) can be applied to the problem of learning
cyclic (iterative/recursive) macro-operations from planning. Input in the pro-
gram synthesis system is a so-called initial program which represents an ordered
set of straight-forward transformations from input states to the desired output.
In the context of planning, the input states correspond to initial states, the
output state to the planning goal, and transformations are shortest operation
sequences. Ordering of transformations can be achieved by calculating a mini-
mal spanning tree for the problem graph with the state(s) fulfilling the goal as
root. We have implemented a non-linear backward planner which generates such
a complete partial order as a by-product of planning. Output of the program
synthesis system is a recursive program scheme representing the generalization
of a program limited to solving a finite problem of given size to a general solu-
tion strategy. Our synthesis method is embedded in the theory of the semantic
of functional programs and in the theory of inductive inference (see [MS98])
and thereby provides a sound formal basis for macro-construction. The cur-
rent implementation can generalize tail, linear and tree recursive structures and
combinations of such structures with multiple (and possibly interdependent)
recursive parameters.
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Chapter 1

Introduction

Learning macro-operators is a topic of interest nearly since the beginning of
planning research [FN71a, Min85, Kor85]. While macros do not lead in gen-
eral to greater efficiency in planning [Min85, DC96], they are nevertheless a
useful and interesting contribution to planning research. Firstly, if construc-
tion of macros 1s not performed blindly but augmented by information about
occurrence frequencies of operator sequences and if retrieval of macros is orga-
nized efficiently, planning can be speed-up considerably when introducing linear
macros [Min85]. A linear macro-operator generally represents an aggregation
of the pre- and post-conditions over a sequence of primitive operators. Using
a macro-operator instead of a set of primitive operators reduces the number of
match-select-apply cycles executed during planning and thereby also the number
of planning decisions which might result in backtracking. For iterative macros
efficiency gains should be even higher, because they not only provide aggregated
operators but additionally incorporate part of the control strategy for planning
[SC89, BVI6].

Secondly, learning in planning is per se a topic of interest for cognitive sci-
ence and artificial intelligence. Work on linear macro-operators in planning has
its parallel in work on learning by chunking [RN86] and knowledge compilation
[And86] in cognitive science. While this work addresses the fact that human
problem solvers improve their skills by experience (i.e. faster generation of solu-
tions which less errors in accordance with the power law of practice [NR81]), it
neglects a second important aspect of human learning: When solving a problem
of given complexity (as the Tower of Hanoi with three discs) humans can extrap-
olate a general strategy for solving problems of the same type with arbitrary
complexity (as Tower of Hanoi problems with an arbitrary number of discs;
[Kla78]). In production system architectures with fixed interpreter strategy this
kind of learning cannot be modelled [SC89, SWar]. Therefore, coming up with
a technique for learning cyclic macro-operators from experience is a challenging
problem for planning as well as cognitive science research.!

INow macro learning becomes also of interest in reinforcement learning. See NIPS’98
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The importance of learning iterative macro-operators was first addressed by
Carbonell, Cheng and Shell [CC86, SC89, DCI6] and is also acknowledged by
Schmid in the context of machine learning [SW98] and cognitive science [SWar].
While the work of Carbonell and colleagues addresses efficiency gains in planning
and gives ideas about a technique for constructing iterative macros in context of
the expert system FERMI, Schmid proposes to combine planning and program
synthesis in the following way: Planning provides straight-forward “programs”
for transforming input into desired output states. These straight-forward pro-
grams can be generalized by a technique for inductive program synthesis. The
first step corresponds to exploring a problem or — in the context of program
construction — to hand-simulating I/O transformations. The second step cor-
responds to (unsupervised) learning from experience and — in the context of
automatic programming — to programming by demonstration [Coh98, Wel99a].
While the first step is dependent on background-knowledge (especially on the
semantics of predefined operations and on knowledge about data structures), the
second step can be performed (with some limitations, see [MS98]) purely syntac-
tically. That is, generation of initial programs is dependent on heuristic infor-
mation — but the synthesis method corresponds to a generic pattern-matching
algorithm which can be completely formalized and its soundness, efficiency and
scope can be determined in a general way.

In this paper we will focus on generating initial programs from planning.
The synthesis technique is described in detail elsewhere [SW98, MS98]. Be-
cause our approach is somewhat out of the context of current research in plan-
ning, we start with an informal example to motivate our ideas. More concrete,
we will show that the function clearblock can be easily inferred from planning
experience. The clearblock-function is an example of a simple iterative macro
[MW38T7], corresponding to a linear recursion. Afterwards, we will introduce
our planning system and discuss it in relation to other planning systems as
PRODIGY [VCP195], UCPOP [PW92], graphplan-approaches [BF97, KNH97]
and universal planning [Sch87, Sch95, CRT98]. Our system DPlan is a sound
and complete non-linear backward planner implemented in LISP. In the fourth
part, we will give further examples of learning linear-recursive macros, as for
example a general solution strategy for the rocket-problem with an arbitrary
number of objects [VC93b] and afterwards we will discuss more complex exam-
ples as constructing a tower of ordered blocks and Tower of Hanoi; furthermore
we will address the application of planning to list and number problems. We
will conclude with an evaluation of our approach and further work to be done.

workshop “Abstraction and Hierarchy in Reinforcement Learning”: Amy McGovern, Univer-
sity of Massachusetts, Amherst, acQuire-macros: An Algorithm for Automatically Learning
Macro-Actions, and David Andre, University of California, Berkeley, Learning Hierarchical
Behaviors; http://www-anw.cs.umass.edu/~ dprecup/call for_participation.html.



Chapter 2

How to clear a block —
inductive generalization of
plans

2.1 A recursive function for clearing a block

A human problem solver in many cases is able to generalize a strategy for solving
a complete class of problems from his/her experience of solving some example
problems. For example, if a person is able to clear the bottom block of a three
block tower, we assume that he/she also is able to clear the bottom block of a
tower consisting of an arbitrary number of blocks, even if the person has never
performed this action sequence before. The need of automated mechanisms
for this kind of learning by experience was for example addressed more than
a decade ago by Manna and Waldinger [MW87]. Our proposal differs in two
aspects from this seminal work: firstly, while Manna and Waldinger discuss the
synthesis of imperative programs, we will discuss the synthesis of functional
programs; secondly — and more crucially — Manna and Waldinger proposed a
deductive technique for synthesizing conditional and recursive plans while we
are proposing an inductive technique, based on inductive program synthesis.

The plan Manna and Waldinger can derive automatically from a goal spec-
ification by their deductive tableau method is

if clear(a)

then A

else  makeclear(hat(a));
put(hat(a), table).

makeclear(a) <

To clear a block a, first determine whether 1t is already clear. If not, clear
the block that 1s on top of block a and then put that block on the table. If a
block a is clear, the empty sequence of operations A is returned.
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Our functional variant of this program is
clearblock(x,s) = g(cleartop(x), s, puttable(topof(x), clearblock(topof(x),s)).

We represent conditionals by the McCarthy-conditional g(z,y, z) = if z then y
else z. To clear a block x in a situation s, check whether # is already clear. If
yes, do nothing and return the current situation; otherwise, put the block lying
on top of block x on the table in a situation where this block is already cleared.
The situation variable s holds a conjunction of propositions, as {on(A B), on(B
C), clearblock(A)} where A, B and C' are constants. The predicate cleartop(z)
is true, if @ is currently instantiated with a constant K and clearblock(K )} is an
element of the current situation s. The function topof(y) is defined as on(z y) =
topof(y) = z). Application of the operator puttable(y,s) has the effect that on(y
z) is deleted and clearblock(z) is added from/to the propositions representing sit-
uation s. The function clearblock(z,s) is linear recursive, that is, it corresponds
to a loop or — in other words — to an iterative macro-operation. In contrast to
the iterative macros proposed by Shell and Carbonell [SC89], in our case, if the
precondition is fulfilled the macro terminates, otherwise, the operation puttable
is (repeatedly) applied.

Excursion: Inductive synthesis of recursive program schemes

We will present the general idea of our synthesis method in a nutshell.
The method was originally proposed by Wysotzki [Wys83] as an extension
of Summers’ method [Sum77] and was extended further, implemented
and formalized in the framework of grammar inference by Schmid [SW98,
MS98].

The synthesis technique starts with an initial program as input and
tries to fold it by extrapolating a recursive program scheme. An ini-
tial program is a nested conditional expression representing an ordering
of straight-forward transformations. We can synthesize the clearblock-
function from the following initial program:

G = g(cleartop(z), s, puttable(topo f(x),
g(cleartop(topof(x)), s, puttable(topo f(topo f(x)),

0))))-

This initial program represents the experience of clearing a block in a
world consisting of maximally three blocks. If there are more blocks (i.e.
topof(topof(z)) is not clear), the actions are undefined (£2). Note, that
the initial program corresponds to the second unfolding of the clearblock-
function given above. That is, for program synthesis we reverse the idea
of determining the semantic of a recursive function as its smallest fixpoint
[FHS&8]: from a given sequence of unfoldings we want to extrapolate the
minimal recursive program scheme which can generate these unfoldings.
An imitial program G can be folded into a recursive program ¢f f it
can be decomposed into a sequence Gl = Q, ¢l = tr(g[(tl/_vl])/m) with
l=1...n, ¢ = @G of partial transformations which successively cover a
larger amount of inputs. That is, we have to find a term ¢r in G which has
the characteristic that successively more complex subterms of G can be
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expressed by inserting the previous subterm at position m where variables
v are substituted by terms ¢. For our example we have:

g(o) - Q
gt = g(cleartop(z), s, puttable(topo f(x),?))
g = g(cleartop(z), s, puttable(topo f(x),
g(cleartop(topof(x)), s, puttable(topo f (topo f(x)),2))))
= G

with ¢r = g(cleartop(z), s, puttable(topof(z), m)) and the substitutions
[topof(x) [x].
Because G = tr(G{;7.) /m) holds for all G’s,

¢ — 0
¢ = g(cleartop(x), s,puttable(topof(x),g[(fo)pof(m)/m]))
¢g® = g(cleartop(z), s, puttable(topo f(x), g[(tlo)pof(m)/m] )

we can fold G into G = tr(Gpy/.)/m). For our example that is

G = g(cleartop(z), s, puttable(topo f (x), Griopof (z) /2]))

which corresponds to the clearblock-program given above.

Our method is defined independently of a given programming lan-
guage. Instead, we consider programs as terms which are elements of some
arbitrary term algebra and we infer recursive program schemes [CN78]
which can be interpreted with respect to a programming language. With
our method we can infer tail recursive structures (i.e. for-loops), linear
recursive structures (i.e. while-loops), tree-recursive structures and com-
binations thereof. We can deal with programs starting with a constant
part and — what is beyond the scope of IL.P-approaches [MDR94, FYar] —
we can deal with multiple recursive parameters which can be interdepen-
dent. What is currently out of the scope of our method are substitutions
which are themself performed recursively (as in the ackerman-function).
For details about the formal background, the synthesis algorithm, its scope
and complexity, see [SW98, MSO8].

Our method of program synthesis from initial programs can be seen as an
approach to learning by generalizing over experience or — in the context of
programming — as programming by demonstration. From the perspective of
planning research, we argue that planning provides initial experience with a
problem (i.e. a kind of initial program) which we can generalize by means of
program synthesis. That is, we propose a method which makes it possible to
infer a large class of cyclic macros in a formally sound way. From the perspective
of program synthesis research, we argue that the method to construct initial
programs by rewriting input/output examples (see below) can be replaced by
more powerful (and more natural) planning techniques. To sum up, we propose
the following steps for learning cyclic macro-operators:
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1. Constructing initial programs from input/output examples:

(a) Construct an ordered set of straight-forward transformations from
input states to output (i.e. goal) states by planning

(b) Transform the plan into an initial program

2. Generalizing initial programs into cyclic macro-operations by program
synthesis.

Above, we showed, how the cyclic macro for the clearblock-problem can be
inferred from an initial program. In the rest of this section, we will describe
the first step — constructing an initial program by planning — for the clearblock-
problem.

2.2 A plan for clearing a block in a finite prob-
lem space

In the following we will show how the initial program for the clearblock-problem
can be automatically constructed by planning. For the simple clearblock-
problem we need only one operator — puttable — which we define in a STRIPS-like
syntax:

(setq rules ’( (rule puttable
(if Cet > x) ) Con (xx) (>y)))
(then (puttable (< x)))
(conq ( add ((ct (< y)))
del ((on (< x) (< ¥))) ) )
) ).

The presented notation is the one used for our planner DPlan: The precon-
ditions are given as a list starting with the keyword ¢f (with ¢t as shorthand
notation for cleartop). The preconditions are interpreted as conjunction of pos-
itive literals with existential quantified variables. Variables are represented by
(> x) signaling that the binding for z is to be obtained from the current state
or (< x) signaling that # has to be instantiated in accordance with the current
bindings. The operator is given after the keyword then. The operator effect is
given as usual by add- and del-lists (which represent conjunctions of positive
literals with existential quantified variables). Our planner can also deal with
conditional effects which we will show in the next section.

For our example we assume a blocksworld consisting of three blocks A, B
and C'. Our planning goal is

(setq goal ( (¢t C) ) ).

DPlan can deal with goals which are composed of a conjunction of (possibly
interdependent) subgoals which will also be discussed in the next section.
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To be able to generalize, we need to make the following experience: clearing
C when 1t is the bottom of a three-block tower, clearing C' when it is the bottom
of a two-block tower and clearing C' when it is already clear. That is, we want
to regard for example the following initial states:

(setq states ’(
((on A B) (on B C) (ct A))
((on B C) (ct A) (ct B))
((ct A) (ct B) (ct C))

).

Typically, a planner would produce a separate plan for each of the initial states.
In contrast, we want to deal with all three states in a single planning process
and thereby obtain a plan covering all given initial states'. The idea, to use
planning over sets of states in program synthesis was originally proposed by
Wysotzki [Wys87].

Informally, our planner proceeds in the following way:

1. Search for all states in states which are subsumed by goal (i.e. where the set
of goal literals is a subset of a state).

2. If there are no such states: stop with error (the goal cannot be fulfilled)
else delete these states from states and use them as root for the plan (If there
is only one state fulfilling the goal, use this state as root, otherwise introduce a
top-node with all states fulfilling the goal as children.).

3. For each node in the plan do recursively until states is empty:

(a) Calculate all immediate predecessors (by backward-application of operator
effects). Insert the operations as arc-labels and the predecessors as new
nodes in the plan®.

(b) Delete all states corresponding to the predecessors from states.

Deleting all states corresponding to calculated predecessors from the set of initial
states guarantees that only the shortest possible (optimal) operation sequences
to transform a state into the goal are calculated and that there occur no cy-
cles. Furthermore, the planner can work completely without backtracking. The
resulting plan i1s a complete partial order over the initial states, i.e. the mini-
mal spanning tree [GH85] of the problem space with the goal state(s) as root.
Each planning step is saved as a structure of instantiated operation, predeces-
sor node, constructed new state (child node), and the instantiated preconditions
and effects.

To generate (shortest) operation sequences for transforming a set of n initial
states into the desired goal, in classical approaches planning has to be performed
n times. Each planning episode could involve backtracking. We are arguing,
that regarding a set of states “simultaneously” in one backtracking-free planning
process is more efficient than planning n times with backtracking. Furthermore,

IWe will discuss the relation of DPlan to universal planning in the next chapter.
2This step will be discussed in detail in the next chapter.
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[¢(<CT m> (CT BY <CT €3]

{PUTTRBELE B}

[(<OH B € (CT A CT B} |
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Figure 2.1: Output of DPlan for clearblock

by providing the planner with a set of states, there is no need of providing axioms
for checking the admissibility of predecessor states. Instead, we can determine
if a new state is legal by a look-up in the set of states. Finally, if generating
predecessor states involves instantiation of free variables (as y in puttable) the
set of legal instantiations can also be calculated by look-ups in the set of states.
In section 3 we will present these aspects of DPlan in detail.

The output DPlan generates for the clearblock-problem is given in figure
2.13. Only one state fulfilled the goal (ct €). This state is the root of the
plan. Only one operation — (puttable A) — is applicable. Its backward appli-
cation results in a single legal predecessor state. Again, only one operation —
(puttable B) — is applicable. The next predecessor cannot be expanded fur-
ther. All states from states have been used in planning. The plan tree (only
a list for this simple example) represents the shortest operator sequences for
transforming each initial state into the goal: ((CT A) (CT B) (CT C)) fulfills
the goal already, the other states can be transformed by: puttable(A, ((on B C)
(CT B) (CT A))) and puttable(B, puttable(A, ((on A B) (on B C} (CT A)))).

2.3 Replacing constants by constructive expres-
sions
In the rest of this section we will describe how the plan produced by DPlan is

transformed into an initial program. The crucial aspect of this transformation
1s to replace constants by constructive expressions. To motivate this step, we

3 All graphics are the original outputs produced by DPlan. Operations are regarded as arc-
labels but are represented as intermediate nodes between two states in the graphical output

of DPlan.
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make an excursion to program synthesis again.

An excursion to Summers’ method

In Summers’ [Sum?77] classical approach to inductive program syn-
thesis, the first step is to rewrite the given input/output examples con-
structively. To use Summers’ own example (and notation), if we have the

I/O-pairs

PN

)
(4)
(AB)
(ABC)

N

the righthand-sides (outputs) are rewritten into functional expressions
for transforming the input into the output

(Al = i
fo[x] = cons[z;nil];

f3[x] = cons[cons[car[z];nil]; cons[cdr[z];nil]];

fa[x] = cons[cons[car[z]; nil]; cons[cons[cadr[z];nil];

conslcddr[z];ndl]]]}.

Rewriting is performed by applying the predefined functions car, cdr
their legal compositions and cons to the input-part of the example in
such a way that they transform the input into the desired output®. The
[/O-examples can now be written as

{0 = nil
(A) = cons[z;nill;
(AB) = cons[cons[car[z];nil]lcons[cdr[z]; nil]];
(ABC) = cons[cons[car[z];nil]lcons[cons[cadr[z];nil]

conslcddr[z];ndl]]]}.

This corresponds to the minimal spanning tree generated by DPlan: for
each state (input example) we are provided with the shortest operation
sequence to transform the input into the goal (desired output) and these
sequences are ordered by their complexity. We will show later, that plan-
ning provides a far more powerful method for rewriting 1/O-examples than
the technique proposed by Summers.

After rewriting the output-parts of the examples, we need a more
abstract way to discriminate between the different inputs. The equations
above express statements as “if parameter & of function f(z) has value
‘(A)’ then return (cons & nil)”. Now we want to replace the input values
by boolean expressions as “if  is a one-element list”. To obtain this,

4Summers’ method was restricted to functions with a single list as argument which return
a list by using only the primitive operations car, cdr and cons. Rewriting was restricted much
more than it is the case in genetic programming (see for example [Koz92] for the synthesis of
the “tower” program).
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Summers relies on a predefined complete partial order (cpo) over lists
(with the empty list as bottom-element). He abstracts from the concrete
inputs and classifies their abstract forms with respect to the cpo. For
example, the form of (A B) is (w w) with (w) < (w w) < (w w w) can be
characterized by atom[cddr[z]]. We omit the details given in [Sum?77]; for
our example we obtain:

pi[z] = atom[z]

p[z] = atom[cdr[z]]
ps[z] = atom[cddr[z]]
pa[z] T.

The first step of Summers’ program synthesis technique is finished
when the p; — f; expressions are combined into a single function

Flz] + [atom[z] = nil
atom[cdr([z]] = cons[z; nil]
atom[cddr[z]] — cons[cons[car[z];nil]; cons[cdr[z]; nil]]
T — cons[cons[car[z];nil]; cons[cons[cadr[z]; nil);

cons[cddr[z]; nd]]]].

This is the kind of initial program, Summers constructs from I1/O-
examples. In the next step, the initial program is folded into a recursive
program in a similar but more restricted way than our method (see section
2.1). By detecting regularities between succeeding subexpressions, the
following program for “unpacking” lists is synthesized:

unpack[z] + [atom[z] — nil;
T — u[z]]
ulz] « [atom[cdr[z]] = cons[z;nil];
T — cons[cons[car[z];nil]; u[cdr[z]]]].

To come back to the clearblock-problem: Planning provided us with (nearly)
the righthand-side of such straight-forward programs. For our clearblock exam-
ple (cf. figure 2.1) we have:

filz,s] — s
falz,s] — puttable(B,s)
falz,s] — puttable(A, puttable(B,s)).

In contrast to Summers, we still have the constants given in the states instead
of more abstract expressions. Summers used knowledge about the structure of
lists and a predefined order over their complexity to rewrite inputs as (A B)
into atomfeddr{z]]. We will do something similar to this idea: providing our
system with background knowledge about the structure of the problem domain
in the form of rewrite-rules. For the clearblock-problem we provide the following
information
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; Predicates which indicate constructive rewriting
(defun is-c-pred (p-name)
(equal p-name ’on)

)

; rewrite rule
; p is a proposition (predicate-name arguments)
; c—eq returns an association list
; of constant - constructive-expression pairs
; (on x y) == [x = (topof y)]
(defun c-eq (p)
(list (nth 1 p) (list ’topof (nth 2 p))) ; assoc-list
).

A proposition on(K7, K2) gives us the information that constant K is on the top
of constant K. So, we use all on-predicates in a linear (sub-) plan to generate
bindings of constants with their constructive equivalent. This idea corresponds
to Manna and Waldinger’s use of the hat-axiom [MW87]:

if not Clear(w,y)
then On(w, hat(w,y),y) for all states w and blocks y.

For the clearblock-problem we obtain the bindings ((4 = topof(topof(C}))
(B = topof(C))) by applying the following (here only informally given) algorithm

o Find substitutions

— For each proposition p of each state Do

* If is—c-pred (predicate-name of p)
then return (c-eq p)(i.e. the binding of the constant(s) with their
constructive equivalent)

* Union all found bindings
o Apply substitutions

— For each proposition of each state Do

* As long as applying the substitutions results in a different form of the
arguments of the proposition Do
replace the arguments by their constructive equivalence.

“Find substitutions” gives us ((A = topof(B)) (B = topof(C))}); and “Ap-
ply substitutions” rewrites all propositions of each state recursively. That 1s,
topof(B) gets rewritten to topof(topof(C)). For problems more complex than
clearblock rewriting is done for each linear subplan (see chapter 3). The output
generated by DPlan is given in figure 2.2. Now — as for the righthand sides
of Summers’ straight-forward programs — the operations are represented in a
constructive way and — what we will need for constructing the boolean condi-
tions — the states itself are represented over a constructive data type also. The
remaining constant symbols in the plan can now be interpreted as variables (in
correspondence to Summers’ abstract forms of the original inputs).
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Figure 2.2: Result of constructively rewriting constants for clearblock

Using background-knowledge — as Summers’ cpo or Manna and Waldinger’s
axioms — is an important technique for learning cyclic macro-operators in plan-
ning. While background knowledge is seldomly regarded in classification learn-
ing [Mit97] it is central (domain theory) in explanation based learning [MKKC86]
and also common practice in the context of program synthesis from examples
(see cf. the inductive logic programming literature [MDR94, FYar] and the
genetic programming literature [Koz94])>.

2.4 Determining relevant predicates

In the next step, will determine the minimal set of relevant predicates of each
constructively rewritten state of the plan. This corresponds to Summers’ in-
troduction of boolean expressions as the lefthand-sides of his straight-forward
programs — and ins some way also to the discrimination predicates used in
conditional planning [PS92, BV97]. The relevant predicates can be identified
easily from the information obtained during planning: Each legal planning step
consists of an instantiated operator which transforms a state (the state newly
constructed by backward-planning) into the state given at the current node.
That is, the predicate(s) in the add-list of the operator must match with pred-
icate(s) of the current state. These predicates are the one which are fulfilled in
the current planning step and therefore, they are the relevant predicates.

For the clearblock-example we obtain: (et C}) for the root-node which is
generated by puttable(topof C) and (et (topof C}) for the second node which is
generated by puttable(topof(topof C)). The leafs of a plan represent states for
which exists no predecessor in the given problem domain. For leaf nodes, we
regard the predicates given as preconditions of the last applied operator. Thus,

we obtain {(et (topof(topof C))), (on (topof(topof(C}) (topof C)))} as relevant

5In some planning systems, cf. PRODIGY [VCP195], the planner can be provided with
additional information about control rules to make planning more efficient for a given domain;

similarly, such systems could be extended to provide information about the data structures
of the planning domain
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Figure 2.3: Binary planning tree for clearblock

predicates for the last state. But the predicate (on (topof(topof(C)) (topof C)))
is not really relevant. It plays no role with regard to a general strategy for
clearing a block. There are at least two heuristic strategies for cleaning the leaf-
node predicates: First, we could assume that, if up to now only the operator
puttable was used in planning this would also be the case for larger domains and
accordingly replace the leaf-predicates by the instantiated add-list of puttable.
Secondly, we could compare the predicates used so far and only accept such
predicates of the preconditions which are also used in the predecessor nodes.
But we will see, that we don’t need such heuristics because the leaf states are
not regarded when rewriting the plan to an initial program.

2.5 Generating a binary tree

Now we are nearly done with transforming the original plan tree into a format
suitable for generalization. We will rewrite the plan into a binary structure.
This structure is similar to the plans proposed by [Wys87] and can be used to
generate the shortest operator sequences for a set of input states (similar to a
universal plan) by means of an interpreter function.

In case of linear plans, generating the binary tree is simple: For each predi-
cate node we introduce a left successor s. The variable s represents that there 1s
a situation where the predicate given at the predecessor node is true, or, more
generally, that the predicates given on the path to this leaf are true. The right
successor 1s the next predicate node with the arc labelled by the operation. If
there is no further operation given, we terminate the path with an asterix, in-
dicating, that for this case, we have made no experience during planning. The
binary tree for the clearblock-problem is given in figure 2.3.

In case of non-linear plans, we try to unify different paths. If there still
remain non-linear subplans, we can either introduce an arbitrary sequence or
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we can try to generalize over the tree structure (see chapter 4). Note, that
for unifying different paths of a plan it i1s crucial that constructive rewriting
has been performed before: when searching a generalization, it is meaningless
to unify sub-paths involving identical constants. But it makes sense to unify
sub-paths with identical constructive expressions!

2.6 Transforming the plan tree into a program
term

In the last step, we rewrite the final plan into the syntax required for initial
programs as input in our program synthesis system®. To obtain the initial
program for clearblock given above

G = g(cleartop(x), s, puttable(topof(x),
g(cleartop(topof(x)), s, puttable(topof(topof(x)),

2))))

we regard each predicate node as a boolean condition, its left successor as the
then-case and its right successor as else-case. Remember that the remaining
constants in the rewritten plan are regarded as variables.

The plan can be read as “If block C'is clear then return the current situation,
else, put the top of block C' on the table in a situation for which holds: if the
top of block C'is clear then ...”. So, if an arc is labelled with an operator, the
subtree becomes the additional argument of the operator. If the subtree of an
operator does not contain a further operator and if there is an asterix in this
subtree, we terminate rewriting by introducing Q (representing the undefined
sequence in infinite term algebras [Wys83, CN78]) as argument.

Note, that the clearblock macro not only generalizes over the size of the
blocksworld domain (number of blocks), but also over the position of the block
which is to be cleared. In planning, we made experience with clearing the
bottom block of a tower, the recursive program can clear an arbitrary block .

SRemark: this step is not implemented yet. Currently, we provide “handmade” initial pro-
grams or unfoldings of given recursive programs to our synthesis system. Fckhard Wiederhold
now is implementing the transformation as part of a student project.



Chapter 3

DPlan — A non-linear
backward planning system

It may be a little unusual to propose a non-linear backward planning algorithm
when the state of the art is graphplan [BF97, KNH97] and SAT-planning [KS98].
But from the perspective of learning in planning efficient plan construction 1s
not the crucial question. From a cognitive point of view [SWar], we want to
model how experience with a small finite problem domain can be generalized
to an efficient solution strategy for a complete class of problems. It is not very
plausible to assume that a human problem solver would explore a logistics prob-
lem with 105 action steps [Wel99b]. In fact, we can assume that it is possible
to extract a general strategy as “try to load as many objects as possible in the
transporter if at one place” from very small problem domains (see transporta-
tion example in section 4). From the perspective of planning we propose an
automated approach to generalize finite plans into cyclic macro-operations. For
our synthesis method described shortly in section 2.1, initial programs which
correspond to the third expansion of a hypothetical recursive program scheme
are sufficient [MS98]. So, usually it is enough to construct plans in domains
consisting of three objects of each given type and clearly for domains of such
restricted size efficiency questions are not crucial. On the other hand, we argue
that the availability of iterative macro-operations can lead to high efficiency
gains when the planner is confronted with a problem of a already known class
(cf. Tower of Hanoi with 3 discs or sorting of lists with three elements) but of
different size (n discs, n list elements). Similar arguments as well as calcula-
tions of efficiency gains and experimental data for iterative macro-operators are

presented by Shell and Carbonell [SC89].

In this chapter we will present the planning system DPlan and discuss it in
relation to current planning methodology. The transformation of the originally
output of DPlan into an initial program is discussed in chapter 4.

17
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3.1 Semantics for D-plans

The planner DPlan produces the minimal spanning tree of a finite problem space
(for an overview of algorithms for calculating spanning trees of graphs see cf.
[GH85, Tar83]). The root of the spanning tree are all problem states which
are subsumed by the planning goal. The minimal spanning tree represents the
shortest operation sequences for all problem states. Because this idea is similar
to the Dijkstra-algorithm for calculating all shortest paths to a given node in a
graph [Dij59], we call our planner DPlan and the resulting plans D-plans.

3.1.1 Operators, states, and operations

First, we define operators, states, operations (actions)!.

Definition 1 (Operator). An operator is a 4-tuple consisting of
1. a name, which 1s a string,
2. the precondition ¢, which is a conjunction of positive literals,

3. an operation template 6, which is the operator name and the number
and names of its arguments,

4. the effect ¢ = a6, a.d., with ¢ as effect condition (limited to a single
positive literal), a; and d; as Add- rsp. Del-effects if ¢ is true and «, and
de as Add- rsp. Del-effects if ¢ is false.

When ¢ = 0, ay =0, §; = (§, the operator is “unconditioned”.

Note, that in contrast to the definition of operators in other planning systems
[PW92, VCP195, KNH97] we do not give an explicit parameter list. Up to
now, we have only untyped parameters. Furthermore, we currently allow only
a single effect condition. In the current (first) implementation of the planner
we do not regard negation, disjunction and universal quantifiers. We hope to
extend our approach to these features.

An example of the valid operator put is given in figure 3.1. This operator has
a conditional effect: A block # can be put on a block y if both blocks are clear.
Applying this operation has the (primary) effects [FY95] that « lies on y and
y 1s no longer free. If block x was on the table, these are the only effects; but,
if # was lying on another block z, there are the additional (side-) effects that x
does no longer lay on z and z is clear. Figure 4 shows only one possibility for
representing the put-operator. Another possibility is, to introduce an additional
predicate ontable(z).

Definition 2 (State). A state is a set of positive ground literals (ground
atoms). We denote a positive ground literal with p and the set of positive
ground literals with P. As usual, a state S € 2% is a set of ground atoms.

Examples for states are {on(A,B),on(B,C),ct(A)}, {ct(A), ct(B), ct(C)}.

! Terminology and sequence of our definitions follow mostly [KNH97].
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name: put
pre : {cleartop(x), cleartop(y)}
op : put(x,y)

eff : if on(x,z)
then ADD {ct(z), on(x,y)} DEL {on(x,z), ct(y)}
else ADD {on(x,y)} DEL {ct(y)}

Figure 3.1: The operator put

name: put

pre : {cleartop(x), cleartop(y), for-all(z) = on(x,z)}
op : put(x,y)

eff : ADD {on(x,y)} DEL {ct(y)}

name: put

pre : {cleartop(x), cleartop(y), on(x,z)}

op : put(x,y)

eff : ADD {ct(z), on(x,y)} DEL {on(x,z), ct(y)}

Figure 3.2: The two variants of the put-operator

Definition 3 (Operation/Variants of an operator). An operation o is a
ground instance of an operator. That is, all parameters are instantiated with
constants. Additionally, operations have unique effects. A conditioned operator
(as defined in def. 1) results in two operations: ¢gU; o, 6 and o U—g; ae, de.
We call the uninstantiated forms of a conditioned operator variants.

We use the term operation instead of the often used term action. In contrast
to other planners dealing with operators with conditioned effects, in DPlan
each operation has a unique effect. Instantiation of a conditioned operator is
performed with respect to its variants. The variants of the put-operator are given
in figure 3.2. Note, that while DPlan does currently not allow for negation and
universal quantifiers in specifying operators we can deal with such expressions
in operator variants’. To apply a,,d, we have to make sure that —~¢ holds for
all possible instantiations.

An example of two put-operations derived by instantiating the put-operator

20f course, we have not really to deal with universal quantifiers because Vo—p(z) = =3p(z).



20 CHAPTER 3. DPLAN — A NON-LINEAR BACKWARD PLANNER

o1 is valid for {ct(A), ct(B), ct(C)} in a blocksworld of three blocks A, B, C'
name: put

pre : {cleartop(B), cleartop(C), = on(B,A)}

op : put(B,C)

eff : ADD {on(B,C)} DEL {ct(C)}

o0q is valid for {on(B, A), ct(B), ct(C)} in a blocksworld of three blocks A, B, C
name: put
pre : {cleartop(B), cleartop(C), on(B,A)}

op : put(B,C)

eff : ADD {ct(A), on(B,C)} DEL {on(B,A), ct(C)}

Figure 3.3: Operations derived from the put-operator

is given in figure 3.3. In a blocksworld consisting of only three blocks A, B,
and C', the preconditions ¢ constrain the possible instantiations of z. For the
examples in figure 3.3 we have o = {z + A}.

3.1.2 Operation applications, admissible states, and vari-
able bindings

In the following we will define the application of a single operation and of opera-
tion sequences. Furthermore, we will describe how the admissibility of calculated
predecessor states is checked, when operations are applied backward and we will
describe how variable bindings are determined in backward-planning. Remem-
ber, that our planner works for sets of initial states, i.e. 1t calculates a cpo for
all states of a finite problem domain.

Definition 4 (Applying an operation). We denote the set of all operators
with O. Let O be the set of all ground instances (operations) of O and Res :
2P x O — 2 be a function from states and operations to states.

Application of a single operation o to a state S is defined as

_ (SUA(SaO))\D(SaO) s ifpo CS
Res(S,0) = { unde fined . otherwise

with A(S, 0) as instantiated ADD-list of 0 and D(S, 0) as instantiated DEL-list.

Definition 5 (Applying an operation-sequence). The function Res can be
expanded to Res : 28 x O* — 2F with O* as set of operation-sequences. Ap-
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plication of a sequence of operations can be defined recursively as

Res(S, < o1, .. .op >):{ Res(S, 0) Cif[<or...on>| =1

Res(Res(S, < 01,...0n-1 >),0p); otherwise.

The forward application of operation-sequences is used in plan execution.

Because our planner is working backward, starting from the goal, we also
have to define backward application of an operation and backward application
of a set of operations.

Definition 6 (Applying an operation backward). We denote the set of all
operators with 0. Let O be the set of all ground instances (operations) of O
and Res : 2P x O — 2% be a function from states and operations to states.
Application of a single operation o backward to a state S is defined as

- _ [ (SU(D(S,0) Ugo)) \ A(S,0) ; if A(S,0) C S
Res™(5,0) _{ unde fined ' : otherwise

with A(S, 0) as instantiated ADD-list of 0 and D(S, 0) as instantiated DEL-list.

In contrast to forward-planning, we have to check whether a predecessor
state S’ calculated by Res™1(S,0) is admissible, i.e. if it is a legal state in the
planning domain. In our context, a state is admissible if it is consistent. For
example, a state in which block A lies on block B and block B is cleartop is not
admissible because it contains contradictory propositions.

Admissibility can be checked via axioms (see [Wys87] and model-based plan-
ning [CRT98]). That is, S = {p;...p,} € 2¥ is admissible if there is no axiom
where from some p;’s € S follows —p; and p; € 5. Another possibility to check
admissibility is, to generate a candidate predecessor S’ by backward application
of operation o and check whether Res(S’,0) = S for the current state S.

We can exploit the fact that our planner works on sets of initial states (i.e.
all states of a given finite problem domain). Because all states of a problem
space and no other states are admissible for a giving planning problem we can
omit the introduction of axioms and defined instead

Definition 7 (Admissibility of states). For a given planning problem in prob-
lem space D a state S is admissible iff S € D.

We illustrate the calculation of admissible predecessor states by backward
application of an operation, again with the familiar blocksworld example (see
figure 3.4). For the clarity of the example we assume that only the put-operator
given in figure 3.1 is available (for a complete specification of the tower-problem
we have to provide additionally a puttable-operator, see section 2.2 and below).
We obtain four instantiated operators consistent with the current state S. For
the three-block world, variable z can only be instantiated with C' for put; and
puts and only with A for puts and puty. Only the application of put; leads to
an admissible predecessor state. For put, subtraction of the Add-list from S
can not be performed completely, because ¢t(C) ¢ S and there is no state in D
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Set, of all admissible states of the three-block blocksworld:

Diower = { {on(A B), on(B C), ct(A)}, {on(B C), ct(A), ct(B)}, {ct(A), ct(B),
c(C)}, {on(B A), on(A ©), ct(B)}, {on(C A), on(A B), ct(C)}, {on(A C), on(C B),
ct(A)}, {on(B C), on(C A), ct(B)}, {on(C B), on(B A), ct(C)}, {on(A B), ct(A),
(O}, {on(A C), ct(A), ct(B)}, {on(B A), ct(B), ct(C)}, {on(C A), ct(B), ct(C)},
fon(C B), ct(A), ct(C)}, )

Current state: S = {on(A, B),on(B,C),ct(A)}

Put-operations:
name: put;
e : {cleartop(A), cleartop(B), = on(A,C)}
op : put(A,B)
eff : ADD {on(A,B)} DEL {ct(B)}

name: putz
e : {cleartop(A), cleartop(B), on(A,C)}
op : put(A,B)
eff : ADD {ct(C), on(A,B)} DEL {on(A,C), ct(B)}

name: puts

e : {cleartop(B), cleartop(C), = on(B,A)}
op : put(B,C)
eff : ADD {on(B,C)} DEL {ct(C)}

name: puts
e : {cleartop(B), cleartop(C), on(B,A)}
op : put(B,C)
eff : ADD {ct(A), on(B,C)} DEL {on(B,A), ct(C)}.

Calculating predecessors:

_1(S,put1) = {on(B,C),ct(A),ct(B)}/

_1(S,put2) = {on(B,0),ct(A),on(A,C),ct(B)} *
s_l(S,putg) = {on(A, B),ct(A),ct(B),ct(C)} *

(S, puts) = {on(A,B),ct(B),on(B, A),ct(C)} *.

Figure 3.4: Calculating predecessor states and selecting admissible predecessors
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where two blocks are lying on C' simultaneously. There are also no state in D
where A lies on B and B is cleartop (or where A lies on B and B simultaneously
on A).

The crucial (and most time-consuming) aspect in backward-planning is to
calculate the variable bindings [BW94] which are used to instantiate operators
and thereby to generate predecessor states. As for determining admissible states,
we can again rely on the predefined set of states D.

Definition 8 (Determination of variable bindings). Let S be the current
state. For each variant 6 of an operator with precondition ¢y (which can either
be o U @ or o U —gp) and effect ad (which can either be aid; or aed.) we
determine the set of legal variable bindings in the following way:

1.2=40

2. Find all substitutions o; with a, C S.
Set XtoX ={o; |i=1...n}.

3. For each o; find all compatible substitutions p with ¢o,,, C S’ with
S eD.
Set each o; € ¥ to gyp.

The composition of substitutions ¢ and p is compatible iff for (v < ¢) € o there
exists no (v ') € p with v = ¢/ and t # 1/, where ¢, are constants.

We will show below that by using look-ups in the set of states D determining
variable bindings can be performed much more efficient than in usual backward-
planning approaches.

Finally, we can define the application of “parallel operations”. That is, we
describe how the complete set of legal predecessors of a state is calculated.

Definition 9 (Applying a set of operations backward). Let Res;l be a
function from states and sets of operations to sets of states Res;l 2P %20

22" and D the set of all states of a given finite problem domain.

The backward application of a set of operations {0y ...0,} results in a set
of admissible predecessor states {Sy...Sy} with m < n and is defined in the
following way:

Resgl(S, {o}) = Res™ (S, 0)

{Res; (S, 01)} U Res; (S, {0i1 ... 0n})
Resgl(S,{Oi...on}): withi=1...n ; if Res;'(S,0l) €D

Resy ' (S, {041 ... 0n}) with i =1...n; otherwise.

For the state {on(B,C), ct(B), ct(A)} the application of a set of put operations
results in the admissible predecessors { {ct(A4), et(B), ct(C)}, {on(B,A), ct(B),
ct(C)}}. Of course, when planning in the blocksworld domain we also regard
applications of puttable-operations.



24 CHAPTER 3. DPLAN — A NON-LINEAR BACKWARD PLANNER

3.1.3 Implementation details

In our implementation, operators are defined in the following way:

(setq rules ’(
(rule puttable
(if (et > x) ) Con (<x) >y)))
(then (puttable (< x)))
(congq ( add ((ct (< y)))
del ((on (< x) (< y)))))

)
(rule put
(Gf (et O x) ) (et >y)))
(then (put (< x) (<y) ) )
(conq (cond ((on (< x) (> z))
(add ((on (< x) (< y)) (ct (< 2)))
del ((ct (< y)) (on (< x) (< 2)))))
(T (add ((on (< x) (< ¥)))
del ((ct (< y))) ) ) ) ))
))

The representation of variables as (> x) or (< y) is different from the often
used form 7x. We were inspired by Winston’s definition of match-select-apply
cycles for production systems [WH89]. The symbol > indicates that a variable
has to be instantiated in accordance to the current state; the symbol < that
a variable has be instantiated in accordance with the current set of bindings.
For backward-application of operations the semantics of < rsp. > 1s switched.
In the next implementation we want to replace > / < by the usual 7 notation.
This can be realized with only a slight modification in the algorithm: If there
is a variable: first look in the list of current bindings, if the variable is bound,
take this value, otherwise, obtain the binding from the current state.

We already remarked above that we hope to expand our first implementation
of DPlan to full ADL-syntax [Ped89]. Furthermore, we want to introduce the
possibility of defining data types for variables and we want to allow for external
function calls in operations similar to PRODIGY [BCE192]. These extensions
are crucial if we want to use our planner for calculating initial programs for
list and number problems which are usually regarded in program synthesis (see
chapter 4 and appendix E).

3.2 The algorithm DPlan

After defining the backward application of sets of operations to a current state
thereby generating the set of all admissible predecessor states we are ready to
define the planning problem.

Definition 10 (Planning problem). A planning problem P(O,D,G) is a
3-tuple where O is the set of operators, D a set of initial states and G a set of
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planning goals. All states S € D and G are sets of positive ground literals. In
the context of our work, D is the set of all states of a finite problem domain.

Planning goals are currently restricted to conjunctions of (possibly interdepen-
dent) subgoals (cf. {on(A,B), on(B,C}}). We are planning to extend goal
definitions to negation, disjunction and universal quantification in the future.

Let C' be the set of all constants (i.e. arguments of predicates P € S)
occurring in D. The set of operations O is the set of all possible ground instances
of O with respect to C.

Definition 11 (Minimal spanning tree of P).  The minimal spanning tree
of a planning problem © = (V| F) with the set of nodes V, the set of edges
E CV xV,and two labeling functions Sy : V — D, g : E — O is a tree with
arbitrary branching factor, i.e.

A (empty tree)
0=0K veVv (leaf)
v(fy...0,) with0<b<|D|

for which the following conditions hold:
(With ©; we denote the tree from the root to level [ and with N; we denote all
nodes in ©;.)

1. The root ©(N, E)y is

e L if there is no state S € D for which G C S holds (the planning
problem is not solvable), or

o v with fy(v) =S if S €D and G C S, and if there is no other state
S’ € D with G C S’ (there is exactly on state which fulfills the goal),
or

e (root node and first level of ©) v(w; ... wy) with Sy (v) = G and
Blw;) = Sif S € Dand G C S and fr(v,w;) = € for all w;,
2 < ¢ < ||D|| (there is more than one state fulfilling the goal).

2. For each leaf node v of @ the children are all w € Res;l(ﬁv(v), 0) with
w is admissible (i.e. w € D) and w ¢ N; . For each edge (v, w) we have
the label Bg (v, w) = o with Res™1(8v (v), 0) = w.

For the formal background and a variety of algorithms for spanning trees, see
cf. [GH85, Tar83].

Definition 11 entails the planning algorithm (which we already described
informally in chapter 2) given in table 3.1%. We will discuss its soundness,

3Remark: Def. 11 and the presentation of the algorithm are a bit overloaded. I will
formulate both “more elegantly” soon.

4The initialization and the tree expansion are not easy to read, because I discriminate be-
tween nodes v, w and node labels 8y (v) which are corresponding to states. When simplifying
def. 11 the algorithm can be simplified accordingly. Note, that the planning algorithm can
be implemented more efficient when integrating the calculation of variable bindings and state
candidates in one loop, see efficiency of DPlan below.
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completeness and optimality in section 3.4 and we will give further examples
below and in section 4. Information about the current implementation of DPlan
is given in appendix A.

Note, that in the implementation of DPlan we generate a graphical output
of © where the operations are not given as edge labels but as intermediate nodes
between nodes representing problem states.

Illustration: a blocksworld example
To generate a plan for building a tower of blocks A, B, C in a three-
block world, we present DPlan with the following problem specification:

(setq states ’(

((on a b) (on b c) (ct a))
((on b c) (ct a) (ct b))
((ct a) (ct b) (ct <))

((on b a) (on a c) (ct b))
((on ¢ a) (on a b) (ct ¢))
((on a ¢) (on ¢ b) (ct a))
((on b c) (on c a) (ct b))
((on ¢ b) (on b a) (ct ¢))
((on a b) (ct a) (ct c))
((on a ¢) (ct a) (ct b))
((on b a) (ct b) (ct c))
((on ¢ a) (ct b) (ct c))
((on ¢ b) (ct a) (ct c))

))

(setq goal

>( (on ab) (onbc) )
)

The ordering of states and of goal propositions is arbitrary. The op-
erator definitions for put and puttable were already presented in section
3.1.3.

Planning starts with checking whether there are states fulfilling the
goal: state ((on a b) (on b ¢) (ct a)) fulfills the goal and no other
state, therefore it gets the root of the plan and is deleted from the list of
current states (see “initialization” in table 3.1).

In the next step (first node expansion, see table 3.1), DPlan gener-
ates all such instantiations of all operator variants which ADD-list lit-
erals match with a literal of the current state. That is, candidates are
(puttable x) with y = A realizing (ct A), (put A B) with and with-
out (on A z) realizing (on A B) and (put B C) with and without (on
B z) realizing (on B C). Each operation candidate is applied backwards
(adding literals from the DEL-list and preconditions and deleting literals
from the ADD-list from the current state). The calculation of state can-
didates, selection of admissible candidates, and determination of variable
bindings was already illustrated in section 3.1.2. In figure 3.4 we demon-
strated for the put operator, that only one of the four candidates results in
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Table 3.1: The planning algorithm DPlan
input : a planning problem P(O, D, G)
output : the minimal spanning tree © for P or L
initialization: A = D, the set of current states
(1)L; ¢f there exists no state S € D with G C S
(2)v with Bv(v) =5 € Dand G C S; if there exists no other state
0= S'e D with G C S’

(3)v(w ... wy) with Bv(v) =G and Pv(w;) = S; VS; € Dand G C S;,
withBe(G,S;) =¢,i=1...n,2 <n <||D||; otherwise

for (2) and (3) A is reduced: A := A {Bv(v)} for (2) and A := A {Bv (w;) Vw;
for 93).
¢ Terminal condition: A = § (success) or =3v for which def. 11.3 holds (failure)

e Tree expansion: (1)
Ifo=1
Then return bottom
Else For all leafs v; of © = 8(v; ...vy) do
L. Calculate Q = {w|Bv(w) € Res; " (Bv(v),0) € A}

2. A=A\ {Bv(w)}forallw € Q

3. Expand O:
Replace leaf wv; by wvi(wi...wn) with pBg(vi,w;) = o with
Resy (Bv(0.),0) = {un ... wn).
endfor

¢ Node expansion: (2)
For the current state S = Bv(v) and for each variant 6 of an operator in O with
6 = o, qd
— Determination of all sets of legal bindings (2a)
1. 2=0
2. Find all substitutions o; with a, C 5
3.2 ={o;|t=1...k}
4. For each o; find all compatible substitutions p with ¢o,,, C 5" with
s'eD.
5. Set each o; € ¥ to o; := oip.
— Construct all operation candidates O = {o | 6}
— Calculate all state candidates
(SU(D(S,0) Ugo)) \ A(S,0) ; if A(S,0)C S

— -1 —
C=Res™ (5,0) = { unde fined and O := O\ {0} ; otherwise

with A(S,0) as instantiated ADD-list of o and D(S,0) as instantiated
DEL-list.

— For allceCwithcg AdoC:=C\c
— Return all pairs (0, 5’) with S’ = Res™(S,0) €C



28 CHAPTER 3. DPLAN — A NON-LINEAR BACKWARD PLANNER
T e [ W RO W] [N T N W] [ R A O AN [N T O

Figure 3.5: Result of DPlan for the tower problem

an admissible predecessor — (put A B) where A was not lying on another

block.

We give an additional illustration for puttable: First we find the legal
bindings # = B and & = C (see 2a in table 3.1) resulting in the operation
candidates:

name: puttable;

pre: {cleartop(B)}

op: puttable(B)

eff: ADD {cleartop(A)} DEL {on(B,A)}

name: puttables

pre: {cleartop(C)}

op: puttable(C)

eff: ADD {cleartop(A)} DEL {on(C,A)}

with the not admissible predecessors

Res™1(S, puttable;) = {on(A, B),on(B,C),on(B, A), ct(B)}
Res™1(S, puttables) = {on(A, B),on(B,C), on(C, A),ct(C)}.

That 1s, the expansion of the root results in the application of only one
operation (put A B) for the admissible predecessor state ((on B C) (ct
A) (ct B)). This state is deleted from the set of current states. Plan
expansion proceeds for this single leaf which has two legal predecessors
and so on. The final plan is given in figure 3.5. Note, that for initial states
corresponding to towers whose blocks are sorted in reverse to the desired
goal, the blocks have not to be unstacked completely. Instead the side-
effect of put — clearing a block z if # lies on a block and not on the table —
can be exploited for an optimal plan. While this plan is more intelligent
than simply first putting all blocks on the table and then constructing the
desired tower it complicates macro synthesis: reverse sorted towers has
to be considered as exception and treated differently than all other input
states.
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Table 3.2: Plan execution as depth-first search

e Let I be the input state (initial state) and L = ((©g)) the list of paths
(Og is the root of the plan).

e Until L = () or Head(Head(L)) = I Do
— Remove L, = Head(L) from L.

— For Head(L,) find all immediate successors S;,i =0...n in © with

edges (Head(Lg), S;) = o05.
— Create new lists (S;, 05, Tail(Ly)).
— Insert the lists in front of Tadl(L).

o If L = ( )
Then announce failure (7 is no admissible state in ©)
Else Res(I,Tail(Head(L))) (apply operation sequence)

3.3 Plan execution

The output of DPlan represents operation sequences for all possible states of
a given domain. For example, the Dplan for the tower problem (see figure
3.5) contains the plans for building a tower A, B, C' from initial state on(C,B),
on(B,A), ct(C) as left most path, from initial state on(B,C), ct(A), ct(B) as
partial path and so on.

Note that representing action sequences for each possible state differs from
the state-action tables used in universal planning [Sch87, Sch95]. We can calcu-
late action sequences because DPlan is restricted to deterministic worlds. That
1s, state changes can only occur as result to an operation application and there
are no possible influences from other agents or the environment. Thus, it cannot
be the case, that one of the planning objects is suddenly missing or is not at the
expected position. With this restrictions, plan execution can be performed a
simple tree-search algorithm. Both depth-first (see table 3.2) and breadth-first
(see table 3.3) search are possible (we use a similar notation as [Win92]).

For the abstract tree given in figure 3.6, the depth-first algorithm generates
the following sequence:

=g, L= ()

= ((b o1) (c 02) (4 03))

((e 04 o1) (f o5 o1) (c 02) (d 03))
= ((f o5 o1) (c 02) (4 03))

= ((c 02) (d 03))

((g 06 02) (d 03))

-> apply <06, o02>.

[ o e
1]

The corresponding sequence for the breadth-first algorithm is:
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a
03
9 02
b C d
0 05 06
e f g

Figure 3.6: Abstract minimal spanning tree

Table 3.3: Plan execution as breath-first search

e Let I be the input state (initial state) and L = ((©g)) the list of paths
(Og is the root of the plan).

e Until L = () or Head(Head(L)) = I Do
— Remove L, = Head(L) from L.

— For Head(L,) find all immediate successors S;,i =0...n in © with
edges (Head(Ly), S;) = o;.

Create new lists (S;, 05, Tail(Lg)).
Insert the lists at the end of Tail(L).

o If L = ( )
Then announce failure (7 is no admissible state in ©)
Else Res(I,Tail(Head(L))) (apply operation sequence)
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=g, L= ()

= ((b o1) (c 02) (d 03))

= ((c 02) (d 03) (e o4 ol1) (£ o5 ol))

= ((d 03) (e 04 o1) (f o5 ol1) (g 06 02))
= ((e o4 o1) (£ o5 ol) (g o6 02))

= ((f o5 o1) (g 06 02))

((g 08 02))

-> apply <06, o02>.

| e e e N

Alternatively, we could decompose the plan tree and save a state/action-
sequence table (as (a nil), b o1, ... (e o4-ol1),...). Searching the table has
the same complexity as search in the tree (if we do not introduce a efficient
hashtable representation mechanism).

3.4 Termination, Soundness, Completeness, Op-
timality, Efficiency

As usual, we can give no guarantee that the given specification of a problem
(i.e. goal, operators and set of states) are sound and complete. The following
theorems and proofs address the characteristics of DPlan with respect to a given
problem specification.

Theorem 1 (Termination). For given planning problem P(O,D,G DPlan ter-
minates either successful and returns the minimal spanning tree © of P or it
terminates unsuccessful and returns L.

Proof:
(1) First we proof that DPlan detects the unsolvability of a planning
problem (termination with L). There are two cases of unsolvability:

e Total unsolvability: There is no state S € D with G C 5.

e Partial unsolvability: The set of states A C D which are not
yet inserted in © is not empty but there exists no current leaf
v in © for which Res™!(v,0) returns an admissible state in A.

Total unsolvability is detected before the entrance in the planning
loop (see table 1, tree expansion) and DPlan terminates immediately.
In the case of partial unsolvability we have a current tree ©, =
v(vy...v,) with leafs v;, ¢ =1...n. If Res;l(vi, O) = 0 then DPlan
tries to expand wv;41. If Res;l(vi,O) = () for all v; than DPLan
terminates with ©; = Thetas;p, and returns L.

(2) DPlan terminates successfully if all states in D are regarded
in ©, i.e. A = () (this is a termination condition for the planning
loop, see table 1)5. g.e.d.

5Because partial solutions might also be of interest, in the implemented version DPlan
returns the partial spanning tree but without announcing success.
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Theorem 2 (Soundness). © If DPlan returns a minimal spanning tree © for
a given planning problem P(O,D,G then each path from an arbitrary node S €
Theta to the root is a operation sequence Q =< o; > with 0 < i < n with
G C Res(S;,< 0; >), i.e. Q is a solution.

Proof:
We prove soundness by induction over the length of operation se-
quences relying on definitions 11, 9 and 5.
[base case] Q@ =<>
We have to show that @ =<> holds exactly for such states S with
G C S. In definition 11 no operations are introduced only if P is
totally unsolvable (but then © = L), or, if there exists a unique
state S with G C .5, or if there exists a set of states S with G C 5.
So for all cases were © # L, the empty sequence of operations is
only valid for the root of © as defined in definition 11.1.
[induction step] Q@ =< 01 ...0, >
We regard an arbitrary path from a node S € © to the root of © with
edge labels < 0, ...01 >. We assume that the induction hypothesis
holds for this path, i.e., G C %(S, < 0p ...01 >. During planning,
we calculate all admissible predecessors of S not yet regarded in ©.
Applying Res;l(S, 0) can have the following results:

1. Res;l(S, 0)=10

2. Resgl(S, 0) = 5" with 0,41 = (5, 9)

3. Res;l(S, 0) = 51...5, with {op41,

Res;*(S,0)}.

For case (1) we do not introduce a new node (and thereby also no
new operation), that is G C Res(S,< op ...0; > still holds. For
case (2) we have an admissible predecessor of S in accordance to
definition 9. That is, Res(S’, 0p41) = S and therefore, in accordance
to definition 5, G C Res(S’, < 0ny1,0n...01 >). For case (3) we
have a set of admissible predecessors of S in accordance to definition
9. That is, Res(S}, 0n41,) = S for all S/ € Res;l(S, 0). Therefore,
in accordance to definition 5, G C Res(S!, < 0n41,,0n - ..01 >) holds
for all S;. g.e.d.

onp1 = (S1,S)VS; €

Theorem 3 (Completeness). Completeness follows from soundness and ter-
mination.

Theorem 4 (Optimality). For a planning problem P(O,D,G the resulting
plan © is a minimal spanning tree for problem space P and it represents the min-
wmal sequence of operations for transforming each state S € D into a state fulfill-
ing the goal. That is, G C Res(S,< 01...0, >)VS €D and -3 < o} ...0'm >
with G C Res(S,< o} ...0l, >) with m < n. In other words, Theta is a span-
ning tree with minimal depth for P.

SRemark: The proof could be more compact if I introduce a definition for the relation
between paths in ® and forward-application of operation sequences.
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Proof:
We can proof this theorem by structural induction over the levels of
O.
[base case:] © = Qg
We have to show, that the root @y of © represents all states S € D
which already fulfill G.
This follows immediately from definition 11: All states S € DwithG C
S are regarded when introducing the root of ©. If there is more than
one state fulfilling G C 5, a “dummy”-root is introduced with these
states as immediate successor nodes and empty edge labels.
[induction step:] © = O,
We regard a partial spanning tree, expanded to depth ! covering a
subsets of states from D for which the induction hypothesis holds.
That is, for all leafs S € ©; holds S € D and G C Res(S,<
01...0p >) and =3 < 0} ...0'm > with G C Res(S,< o} ...0, >)
with m < n. The expansion of the nodes S follows definition
11. That is, an admissible predecessor state S’ = Res™1(S,0) is
only then introduced into © if S ¢ ©;, otherwise S’ is a node in
Ok, k <I+1 with G C Res(S,<o1...06 >). qe.d

Theorem 5 (Efficiency). DPlan calculates the minimal spanning tree © with
a worst case effort of O(n?)".

Proof:®

The expansion of © (outer loop, (1) in table 1) needs (n — 1) cycles
in the worst case. That is, each node has exactly one predecessor.
So, in each cycle only one node is removed from A.

The expansion of a node in @ (inner loop, (2) in table 1) needs
in the worst case ||A|| cycles. That is, for calculating all sets of
possible bindings and determining the admissibility of predecessors,
each state which still has to be regarded has to be checked.

So, for ||P|| = n we have in the worst case n+n—14n—2...1=

S i= @ ~ n? steps. q.e.d.

We want to conclude this section with some remarks regarding efficiency of
DPlan. The complexity O(n?) is not too bad for a backward planning system
which additionally regards not a single, but a complete set of initial states.
The efficiency gains in comparison with other backward planners (cf. TOPI,
[BW94]) is mainly due to the fact that we can use look-ups to a (stepwise get-
ting smaller) set of states for calculating variable bindings (which has complexity
TN with [|7]] as number of literals in the initial state and ||G|| as number

"This holds for an optimized version of the algorithm given in table 1 and the current
implementation where all calculations performed after step 4 of calculating the bindings (in
expand node) are also performed in step 4.

8Remark: currently very quick and dirty! Especially the aspect of calculating sets of
bindings should be checked again.
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of goal literals for TOPI, that is, is NP-hard in the worst case”). Further-
more, by calculating a minimal spanning tree, DPlan works completely without
backtracking. Backtracking can in the worst case result in calculating the com-
plete search tree. For a problem domain with n states and m operations, the
worst case complexity is n””. Finally, generation of optimal (i.e. shortest) plans
can for ADL-planners only be guaranteed by using a breadth-first strategy (for
example, TPP [KNH97] cannot guarantee optimality). DPlan uses a kind of op-
timized breadth-first search — where the number of state candidates shrinks at
each level. Finally, we propose that our strategy of storing all (not yet regarded)
alternative operations and their outcomes, could be useful also in the context of
other planning systems: Usually, for each planning step all alternative actions
are calculated, but after selecting one action the other ones are forgotten. Thus,
in case of backtracking, all options have to be calculated again.

One might argue that we load the greater part of effort on the users of
DPlan who have to specify all states of a problem. We have some arguments
against this proposition: (1) Remember, that our main goal is providing initial
programs for program synthesis or — taking a planning perspective — general-
izing cyclic macro-operations from planning. If providing a planning system
with such experience that a more general strategy can be inferred, a traditional
planner might be called eventually with all possible states of a given problem as
initial state. The effort of planning immediately for n states with the method
used by DPLan is sure more efficient than calling a standard planning system
(with backtracking) n times. An argument agains our strategy is, that we can-
not model incremental learning as in PRODIGY [VCP*95]. (2) DPlan is not
intended primarily as efficient planning system but as a method for generat-
ing initial programs. We argue, that we can bridge the gap between universal
planning and program synthesis by planning only for problems with small com-
plexity and than generalize over the structure of these problems (for example
from a Tower of Hanoi problem with 3 discs to problems with an arbitrary num-
ber of discs). (3) Systems which use domain axioms to guarantee the generation
of valid plans — as model-based planning systems [CRT98] — make the task of
domain and problem specification much harder for the user than DPlan. For the
standard user it is clearly more easy to enumerate all possible states of a small
example domain than to formulate a complete and consistent set of axioms.

To take the load of enumerating all states of a problem from the user, we
could use one of the following two strategies: (a) generate the states automat-
ically from an initial state using the following algorithmical idea: generate the
solution path from initial state to goal by forward-application of rules. For all
states lying on the solution path which are not yet regarded: take these states
as new initial states and calculate their solution path. Terminate if no solution
path contains states which were not yet regarded!?; or (b) only provide DPlan
with an goal state and with the set of objects (for example blocks A, B, )
to be considered, calculate predecessors as specified in table 1 but with the fol-

9Remark: see theorem 1 in [BF97]: for operators with a fixed upper number of parameters
k, time effort is polynomial in k.
10Remark: This is a first idea and not really thought through.
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lowing modifications: generate all operation candidates by instantiate operators
with all predefined objects and check admissibility of a new state S’ by forward
application Res(o,S") = S for the current state S.

3.5 Comparison with Other Planners

To discuss DPlan in relation to other planning systems, we first introduce some

classification criteria [RN95, AHE90, Wel99b]:

e state space vs. plan space. Planning can either be described as search
in state space or as search in the space of partial plans. State based
planners introduce new (intermediate) states by applying (instantiated)
operators to a current state. Planning terminates if an operator sequence
transforming the initial state into the goal state 1s found. That is, a plan
is a path though the search tree with states as nodes and operators as
arcs. Plan space planners search though the space of (partial) plans. An
initial plan (“null plan”) consists of the initial state — as preconditions
which are initially true — and the goal statement — as postconditions (ef-
fects) which finally must be true. A partial plan is expanded by refinement
operators and modification operators: Refinement operators add ordering
constraints (putting one plan step before another) and binding constraints
for variables, modification operators introduce new planning steps. Plan-
ning terminates if the plan is complete (every preconditions of every step
is achieved by some other step) and consistent (there are no contradictions
in ordering and binding constraints).

e progression vs. regression. Progression planners search forward from
the initial state to the goal; regression planners search backwards — back-
ward planning does not rely on a complete description of states. The no-
tion of forward/backward search is not strictly applicable to plan-spaced
planners.

¢ linear vs. non-linear. Linear plans do not allow for interleaving of goals.
That is, if a subgoal is selected, first all the steps to solve this subgoal are
calculated after the next subgoal is considered. Linear planners are not
complete (they can for example not, or not efficiently, solve the Sussman
anomaly [Sus75])!

e total vs. partial order. Total order planners return a list (sequence) of
planning steps; partial order planners allow to leave (independent) plan-
ning steps unordered.

e domain and problem specification. A problem is usually presented
by an initial state and a (set/conjunction) of problem solving goals. The
specification of operators is sometimes called domain theory. In STRIPS
[FN71b] (initial) states are represented as conjunctions of function-free
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ground literals, goals are represented as conjunctions of function-free liter-
als (which can contain implicitly existentially quantified variables). State
descriptions must not be complete. Operators are represented by precon-
ditions, an action description (name), and effects. Preconditions are a
conjunction of atoms, effects conjunctions of literals. Effects are repre-
sented as ADD- and DEL- lists (some times as a single list of literals with
the DEL-effects negated). Instantiated operators are called actions. Op-
erators containing variables are called operator schemes. If all variables of
an operator can be instantiated in a situation s in such a way that all pre-
conditions are true, the operator is called applicable. Situation calculus
[McC98] allows to represented problems and operators using the full ex-
pressiveness of first-order logic. All predicates (as part of state, goal and
action descriptions) have a situation variable as (additional) argument.
Currently, most planning systems use (at least a subset of) ADL (action
description language) [Ped89] to represent operators. Using ADL gives
us most of the expressiveness of situation calculus without sacrificing the
efficiency of using STRIPS operators. ADL allows for conditional effects
(eliminating premature commitment to an operator as source of ineffi-
ciency), negated and disjunctive goals, universal quantification. Addition-
ally, updating of variable values and application of functions is allowed.

We can now classify some well-known planning systems:
e Classic work in planning is:

— GPS [NS61]: a state-space, linear, total-order planner; it uses means-
end analysis, starting with the planning-goals, attacking one goal
after the other in arbitrary order, using depth-first search with back-
tracking.

— QA3 [Gre69]: models planning as theorem proving, using situation

calculus. Another prominent approach to planning as deductive proof
problem was introduced by [MW87].

— STRIPS [FNT71b]: a state-space, linear, total order progression plan-
ner; a similar approach is realized in HACKER, [SusT75].

— NOAH [Sac75]: was the first partial-order planner, working in plan-
space and being non-linear (i.e. allows interleaving of goals)*!.

— [Wal7h]: introduced goal-regression planning; their approach is based
on state-space and generates non-linear and total order plans; a sys-
tem in this tradition is for example INTERPLAN [Tat75].

e The next generation of planners:

IINOAH was originally characterized as hierarchical planner. Today, hierarchical planning
describes — knowledge intensive — approaches which are based on operators on different levels
of abstraction, as for example ABSTRIPS [Sac74] and hierarchical task network planners
[ea94]
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— In the eighties and early nineties the main focus was on plan-space
partial-order planning. Prominent examples are: TWEAK [Cha87],
SNLP [MR91] and finally UCPOP [PW92], which is an extension of
SNLP to ADL; see [Wel94] for an overview. In contrast to state-space
planners, these planners employ a least committment strategy: that
is, instantiations of variables and orderings of steps are delayed as
long as possible. The central — and computationally most complex
— aspect of these planners is to detect threads and calculate causal
links between planning steps.

— PRODIGY [Vel94] is a state-space, regression, non-linear, total order
planner with a powerful domain specification language (cf. allowing
type-hierarchies and infinite datatypes for variables). In contrast to
the systems named above, the work in PRODIGY does not focus on
efficiency but on combining planning and learning (allowing variable
control strategies and learning of such strategies).

— Additionally to these — so-called classic — planning systems, approaches
for dealing with uncertain and/or incomplete information were de-
veloped (see [RN95], Chap. 13 for an overview). Replanning systems
monitor plan execution, detect violations of current preconditions
and generate a new plan starting from the current state. Conditional
planners (cf. CNLP [PS92], B-PRODIGY [BV97]) introduce different
subplans for different contexts (i.e. generate trees of plans). Reactive
planners, as for example universal planning [Sch87], calculate the de-
sired action for each possible state of the world (which is of course
only possible in — small — finite domains). An alternative to planning
in uncertain environments is the use of reinforcement learning.

e Current trends: A variety of new planning approaches attacking the prob-
lem of planning efficiency are developed. There is a renaissance of state-
based approaches.

— GRAPHPLAN [BF97, KNH97]: started the series of approaches
which transfer techniques from other domains of computer science
to planning. The concept of minimal flow in networks was applied to
planning problems: In a first step, a planning graph is constructed
by forward search, in a second step a plan is extracted by backward
search. The planning graph is organized in levels corresponding to
time steps. Nodes are facts (single ground literals in contrast to
states) and actions. The first level represents all facts which are
true in the initial state; the next level represents all actions which
have their preconditions fulfilled by the initial facts and “no-op” ac-
tions (doing nothing preserves facts); the next level contains all add-
and del-effects of the actions and the preserved facts. Fdges are in-
troduced only between immediate succeeding levels: preconditions
edges from facts to actions and add- and del-edges from actions to
facts. Additionally, a (incomplete) set of exclusion relations among
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planning graph nodes is calculated (mutex) for interfering or compet-
ing actions and propositions. If all goal propositions are reached by
add-edges and are not mutex at one level,| plan expansion terminates
with success and we know, that a valid plan exists for the given prob-
lem. In the next step, the planning graph is searched backward for
a valid plan (a “flow” from the last level to the initial propositions).
That is, a valid plan is a subgraph of the planning graph. Indepen-
dent actions are not ordered but returned as a set if they occur at
one level, that is, a partial order plan is returned. The original algo-
rithm was based on STRIPS-like operators [BF97]; the planner IPP
[KNH97] is an extension to an ADL subset. To use our terminology
from above: graphplan approaches are state-based, nonlinear, partial
order regression planners.

— SAT-planners, as BLACKBOX [KS98]: argue that planning is a spe-
cial kind of theorem-proving and that first-order theorem-proving
does not scale well. They propose to model planning in the frame-
work of propositional satisfiability testing rather than to use special-
ized planning algorithms. Similar to GRAPHPLAN, SAT-planning
relies on a propositional planning graph. States and actions are rep-
resented as (propositional) logical clauses. A plan corresponds to a
model (i.e. truth-assignment) that satisfies a set of logical constraints
representing initial state, goal state and domain axioms. Domain ax-
ioms characterize the consistency of states and legal state transitions
(i.e. operator applications). Currently, different representations for
planning graphs are investigated, for example graphplan-based en-
codings and state-based encodings. Representing states rather than
single literals as nodes seems most promising. An efficient (but in-
complete) method for finding plans is to use local stochastic search

(as Walksat).

— Model-based planners: are a current approach, especially for plan-
ning in non-deterministic domains. Model-based planners generate
universal plans in an reasonably efficient way by encoding plans
as OBDD’s (ordered binary decision diagrams) and using symbolic
model checking to explore large state spaces [CRT98]. Application
of symbolic model checking to deterministic planning problems is

reported in [DGR9SE].

DPlan is a state-based non-linear total order regression planner. Similar to
universal, conditional and model-based planners it does not rely on the pre-
sentation of an initial state but works on sets of states instead. In contrast to
model-based planners but similar to conditional planners, we specify operators
in STRIPS or a subset of ADL (and not predefine all possible actions) and we
do not rely on domain axioms. Currently, domain specifications for DPlan allow
for conditional effects, but we want to extend it to a larger subset of ADL.

Our planner is sound and complete and termination (with a valid plan or a
partial plan) is guaranteed (which is not in general true for plan-based partial-
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order planners).

Planning effort is polynomial in the number of states. This statement is
somewhat unfair when comparing DPlan with classical planners, because we
do not consider the extraction of a single plan (for a given initial state) in
our analysis (see section 3.3, plan execution). In a loose way, the (backward)
generation of a plan in DPlan corresponds to the (forward) construction of a
planning graph, which can also be done in polynomial time.

Finally, DPlan can guarantee to calculate optimal plans. This is true, be-
cause our planning algorithm is basically a breadth-first search.

Other than all planners mentioned above, the main motivation for DPlan
was not to develop a sound, complete and efficient planner but to provide initial
programs for program synthesis (see section 2). Tt is recognized in the plan-
ning community that there is a close relation between conditional planning and
program synthesis (see [RN95], Chap. 13, p. 411). Our main interest is to
cross-fertilize both fields: using planing methods to provide initial programs for
program synthesis and using program synthesis to provide a technique for learn-
ing cyclic macro-operators — thereby making universal planning more efficient.

3.6 Empirical evaluation

Although it is not really meaningful to compare running times of planning al-
gorithms which are implemented in different programming languages (LISP for
PRODIGY, UCPOP and DPLAN; C for GRAPHPLAN and IPP) and using dif-
ferent amounts of information (single initial states vs. sets of states for DPlan
and universal planners; domain axioms for model-based approaches!'?) we are
planning to run experiments using the domains of the AIPS-98 planning com-
petition (see http://www.cs.cmu.edu/~ aips98/, and the artificial domains
from [BW94] — see also empirical results in [BF97, KNH97])!3. While the com-
parison of the absolute values for performance does not give any valid infor-
mation, a comparison of the shape of the problem size/time plots can be of
interest. In particular, it should support the theoretical analysis of planning ef-
ficiency given above and give empirical insight in the scope of problems solvable
by DPlan. Furthermore, we will use these planning domains to identify and
illustrate meaningful possibilities for cyclic macro generation.

12We can ignore the use of domain-specific control knowledge cf. for PRODIGY.
13Remark: Hopefully, the comparison will be supported by participants of our student
project in summer term 99.
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Chapter 4

Transformation of Plans to
Programs — Bridging the
gap between planning and
program synthesis

As described in chapter 2, our program synthesis system constructs cyclic macros
by generalizing over unifiable substructures of a initial program. To provide an
input to the synthesis system, the original output of DPlan has to be trans-
formed into the format of such initial programs. Transformation of the original
DPLan output — the minimal spanning tree — currently is fully implemented for
linear plans and partially for plan-trees (for example the tower problem pre-
sented at the end of section 3.2, see figure 3.5). As described in chapter 3,
the current implementation of DPlan cannot deal with universal quantification,
infinite types and application of functions in operators. Therefore, planning for
list and number problems is currently only possible in a limited way.

Because transformation of plans into initial programs is still work in progress,
we will present our approach only informally and give examples together with
an identification of open problems in plan transformation instead. An informal
algorithm for transforming D-plans into initial programs is given in table 4.1.
The motivation for each transformation step and an illustration for the clear-
block problem was given in chapter 2. Note that our idea to linearize plans —
unification of branches with identical operations and calculating intersections
for conjunctions of predicate — corresponds to concepts introduced in inductive
logic programming [LD94] and explanation based learning [MKKC86, BV96].
Furthermore, dealing with a sequence of different states in one path corresponds
roughly to the concept of subsumption in ILP.
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Table 4.1:

CHAPTER 4. TRANSFORMATION OF PLANS TO PROGRAMS

Informal algorithm for transforming D-plans into initial programs

(Steps marked with (*) are under investigation, that is, currently it is not proven
that these steps preserve the semantic of a D-plan.)

1. If the plan is linear then

(a)

(b)

(e)

Rewrite Constants. Replace constants by constructive expres-
sions: recursively apply the rewrite-rules given in the domain speci-
fication to D-plan.

Determine Relevant Predicates. Only keep such predicates of a
state which occur in the ADD-list of the backward applied operation
for each state-node in D-plan.

Generate binary tree. For each predicate-node introduce a left
successor s covering the case that the predicates are true. If no
further operation is given, terminate the path with an asterix as last
right successor of a predicate-node.

Rewrite into program term. Transform the plan into the syntax
of program terms (introduce conditional expressions).

For each linear subplan: Rewrite Constants.
Determine Relevant Predicates.

Unify. branches with identical operations and replace the preceding
predicate-nodes by their intersection. (*)

If the plan is now linear
then Generate binary tree.
else For each linear subplan: Generate binary tree. (*)

Rewrite into program term.
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Table 4.2: Linear recursive macro-operations (here represented in LISP syntax)
; clear a block x: puttable all block topof x
(defun clearblock (x s) = (cond ((cleartop x) s)
(T (puttable (topof x) (clearblock (topof x) s)))))
; build a tower: put next block on current topof tower -- i.e. specified base
; (baseof x) has to be guaranteed to be cleartop!
(defun putblocks (x tw) = (cond ((on x (baseof s)) tw)
(T (put x (putblocks (baseof x) tw)))))
; unload objects o from vehicle v; (empty o) indicates that there are
; no more objects at the current position
(defun unloados (o d) = (cond ({at o d) d)
(T (unload o (unloados (next o) d)))))
; load objects o into vehicle v; assumes infinite capacity for v
(defun loados (o v) = (cond ((insideR o) v)
(T (load o (loados (next o) v)))))

4.1 Inferring linear-recursive macro-operators

If the minimal spanning tree of a problem domain results in an linear order of
states and involves only one operator, the plan can easily generalized to a cyclic
macro-operation corresponding to a linear recursion. A typical example for a
linear macro is the clearblock function discussed in chapter 2.

In general, linear recursive macros can be generalized from and applied to
all problem domains which involve the repeated application of an operation to
a data structure which is reduced by each application step. For the clearblock
problem the operation puttable has to applied for each block lying on top of the
block which has to be cleared. Other examples for linear domains are: building a
tower by putting one block upon another block if the blocks currently considered
are guaranteed to be clear, and loading or unloading a series of objects in or from
a transportation vehicle (rocket, plane, truck, train, or briefcase). A sample of
linear recursive macros is given in table 4.2.

4.1.1 Unstacking and building a tower

The domain specification for building a tower is given in table 4.3. The original
output of DPlan is given in figure 4.1. Note, that we defined put with an
conditional effect as above. But for the given problem domain the case that z
is lying on another block (and not on the table) never occurs.

Plan transformation into an initial program starts with replacing constants
by constructive expressions. We apply a rewrite-rule converse to clearblock
— the block which must be put before another block in accordance with the
goal statement is the baseof this block (see figure 4.2). The put operator adds
on(z,y) as primary effect — for this simple linear domain the side effect ¢t(z) is
never produced. Thus, the relevant predicate at each state node is on(z, y) only.
Figure 4.3 presents the binary planning tree for putblocks. In this transformation
step, the leaf node is not reduced (see arguments and heuristics in section 2.4).

The binary tree can now easily be transformed into a program term (initial
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Table 4.3: Domain specification for stacking blocks (putblocks)

; Linear put (analogous to clearblock)
; putting one block upon another when each block is clear when considered

(Make-Package ’pd-put)
(Export ’(states goal rules is-c-pred c-eq ))

)

(setq states ’(

(Con a b) (on b ¢) (ct a))
(Con b ¢) (ct a) (ct b))
((ct a) (ct b) (ct ¢))
)]

(setq goal >( (on a b) (on b c) ) )

(setq rules

>( (rule put
(if Cct O x) )
(Cct Oy

(then (put (< x) (<y) ) )
(conq (cond ((on (< x) (> 2)) (add ((on (< x) (< y)) (ct (< 2)))
del ((ct (< y)) (on (< x) (< 2)))))
(T (add (Con (< x) (< y)))
del ((ct (< y))) ) )

; Predicates which indicate constructive rewriting
(defun is-c-pred (p-name)

(equal p-name ’on)
)
; (on x y) == [y = (next x)]
(defun c-eq (p)

(list (nth 2 p) (list ’baseof (nth 1 p))) ; assoc-list
)



4.1. INFERRING LINEAR-RECURSIVE MACRO-OPERATORS

{{ON A B> (ON B C} (CT A}}

|((ET B (OH B C)} (CT A}

[¢(<CT ©> (cT BY <CT Ay} |

Figure 4.1: Output of DPlan for putblocks

{{CT A} {(ON {(BASEOF A> (BASEOF {BASEOF A>}} (ON A {BASEOF A)}

[¢PUT R {BASEOF A3} |

{{CT A} {ON {BASEOF A} {(BASEOF {BASEOF A)}} {CT {(BASEOF A}})

|{PUT {BASEOF A} (BASEOF (BASEDF H}))l

J

|({ET A} (CT {BASEOF A}} (CT (BASEOF {BASEOF H}))}|

Figure 4.2: Rewritten constants for putblocks
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[¢(ON R (BASEOF AY}} |

(5} [¢PUT A (BASEOF M)} |

|

|({UH {BASEOF A} {BASEOF {BASEOF H)}))l

[<PUT ¢BASEOF R} ¢BASEOF {BASEOF A}}} |

|((ET {BASEOF A}} (CT {BASEOF {BASEOF H})})|

Een

Figure 4.3: Binary tree for putblocks

program) by interpreting predicate nodes as conditions, left branches as then-
and right branches as else-case:

G = g(on(x, baseof(x)),s, put(x,
g(on(baseof(x),baseof(baseof(x))), s, put(baseof(z),
0))))

or in LISP syntax

G = (cond((on z (baseof)) s)
(T(put »
(cond((on(baseof x)(baseof(baseof x))) s)
(T (put(baseof x)
omega)))))).

The initial program can be folded in the recursive macro given in table
4.2. Note, that we named s into tw (for “current tower”) for more intuitive
readability. Remember, that the situation variable s is introduced to represent
the current situation (state) which is returned if the predicates at the parent
node are true in this state.

4.1.2 Unloading and loading objects

Veloso [VC93a] proposed the rocket and a more general transportation do-
main. Transportation problems typically involve the loading of objects into a
transport-vehicle and their unloading at a given destination. Plan construction
for transportation problems often relies on interleaving of subgoals to generate
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optimal plans — first loading all objects at the current position and then driving
to the destination instead of loading one objects, driving to the destination,
driving back, transferring the next object and so on. If resources (fuel) have to
be taken into regard or if a transport vehicle can only drive in one direction as in
the rocket domain, handling all objects at a location even becomes necessary for
construction of valid plans. Applying load and unload macros in these domains
could reduce planning effort dramatically.

In the next section we will see, that — although rocket is a relatively simple
structured domain — it is not strictly linear when planning without restricting
the order of handling objects. The rocket domain involves the execution of two
consecuting linear macros load and unload and of an move operator inbetween.
In the following we will deal with reduced problems: planning to load or unload
objects from a vehicle. The problem specifications are given in tables 4.4 and
4.5. Because we will discuss macro generation for the rocket domain in the next
section, the predicate names and rule definitions are taken from this domain.
Note, that we do not consider the state ((insideR 02) (at ol B) (atR B)) for
unload and the state ((insideR 02) (at ol A) (atR A}) for load. That is, we
already imply an ordering of objects in the state definition. Otherwise, the
resulting plan would not be linear. Furthermore, the rewrite rules for load and
unload are converse (as for clearblock and putblocks) to guarantee that the basic
case (the “bottom” object, which is not rewritten constructively) will appear in
the root of the linear plan.

The DPlan outputs for unload and load are given in figures 4.4 and 4.5. The
binary trees are given in figures 4.6 and 4.7. The resulting program terms are:

G = glat(olB), B,unload(ol,
g(at(next(ol)B), B, unload(next(ol),
0))))

for unload and

G = g(insideR(02),V,load (02,
g(inside R(next(02)), V,load(next(02),
0))))

for load.
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Table 4.4: Domain specification for unloading objects

unload (basic macro for transportation domains)

; unload all objects from a vehicle
(Make-Package ’pd-unload)
(Export ’(states goal rules is-c-pred c-eq))

(setq states ’(
((at o1 B) (at o2 B) (atR B))
((insideR o1) (at o2 B) (atR B))
((insideR o1) (insideR 02) (atR B))
)]

(setq goal ’((at ol B) (at 02 B)))

(setq rules
’( (rule unload
(if (insideR (> x)) (atR (> y)))
(then (unload (< x)))
(conq (add ((at (< x) (< y)))
del ((insideR (< x)))

; Predicates which indicate constructive rewriting
(defun is-c-pred (p-name)

(or (equal p-name ’at) (equal p-name ’insideR))
)
; next(ol)
> 02 = next(ol)

(at o1 x) and (at 02 x) => o2

; (insideR o1) and (insideR o02)

(defun c-eq (p)

(cond ((equal (nth 1 p) ’02)
(list (nth 1 p) ’(next ol)) ; assoc-list (02 (next ol))
)

))
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Table 4.5: Domain specification for loading objects

load (basic macro for transportation domains)

load all objects from a vehicle (assuming a vehicle with infinite

)
)
)
)

capacity
(Make-Package ’pd-load)
(Export ’(states goal rules is-c-pred c-eq))

(setq states ’(
((at o1 A) (at 02 A) (atR A))
((insideR o1) (at o2 A) (atR A))
((insideR o1) (insideR 02) (atR A))
)]

(setq goal ’>((insideR o1) (insideR 02)))

(setq rules
’( (rule load
(if (at (> x) A) (atR A))
(then (load (< x)))
(conq (add ((insideR (< x)))
del ((at (< x) A))

; Predicates which indicate constructive rewriting
(defun is-c-pred (p-name)
(or (equal p-name ’at) (equal p-name ’insideR))

)

; (at o1 x) and (at 02 x) => ol

; (insideR o1) and (insideR o02)

(defun c-eq (p)

(cond ((equal (nth 1 p) ’ol)
(list (nth 1 p) ’>(next 02)) ; assoc-list (ol (next 02))
)

next(02)
> ol = next(o2)

))
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UHLORD .. PLAN

({AT 01 B) (AT 02 B} {(ATE B)}

{UHLOAD 01}

({INSIDER 01> (AT 02 B} (ATE B))

{UHLOAD 02}

((INSIDER D2} (INSIDER 01> (ATR B))

Figure 4.4: Output of DPlan for unload

({INSIDER 01> (IHSIDER 02} {ATR A}

((AT 02 A} (IHNSIDER 01} {ATR A}}

({AT 01 AY {AT 02 A} {ATE A}}

Figure 4.5: Output of DPlan for load
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({AT 01 B})}
CUHLOAD 01}

[({AT ¢HEXT D1} B}} |

[t52] [(UNLOAD (HEXT 0131 |

[{(INSIDER {NEXT D13} (ATR B}} |

{5) || (%)

Figure 4.6: Binary tree for unload

{{INSIDER 02}}

[({INSIDER (HEXT 0233} ]

[¢s1] [¢LOAD <HEXT 0233 ]

[{{AT ¢HEXT 02) A} (ATR A}}|

{5) || (=)

Figure 4.7: Binary tree for load
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4.2 Complex cyclic macros: non-linear struc-
tures

Examples for non-linear structures are tower (presented in chapter 3.2 and dis-
cussed in [Wys87]), rocket and other transportation domains [VC93a], and hanot.
A non-linear D-plan not necessarily implies that the resulting cyclic macro has
to be non-linear. The reason for this can be found in function theory [FH88]:
A given syntactical realization of a function does not necessarily correspond
with its semantic complexity [Hin78, Odi89]. For example, we can rewrite a
tree-recursive function for calculating Fibonacci numbers into a linear recursive
structure (by introducing an additional variable), or there exist loop-programs
(corresponding to linear recursions) for hanoi problems [Er83, Pet84]. Similarly,
a given sample of problem solutions — as represented in a D-plan — may have
characteristics which make it possible to rewrite its given syntactical form into
a computationally less complex structure.

We can think of three possible strategies to deal with non-linear DPlan
outputs which we want to incorporate in our system:

e Using already acquired linear macros: We can provide our system first with

simple linear problems and use the generalized linear macros when plan-
ning for more complex problems. For example, using the unload and load
macros for solving the rocket problem results in a linear plan: load objects,
move rocket, unload objects. This kind of “hierarchical” macro learning
has two problems: (a) we need a teacher which provides the system with
problems in such a sequence that hierarchical learning is possible; (b) dur-
ing planning not only the operators given in the domain specification but
additionally the macro memory has to be searched and applicability of
macros has to be checked.
Of course, the second problem has to be addressed anyway when we want
to apply cyclic macros to make planning more efficient. Checking if a
macro is applicable can be performed in two ways: either we index macros
with semantical information (the predicates they fulfill and the domain in
which they were learned) or we use pattern-matching between partial D-
plan trees and unfolded cyclic macros (i.e. an initial program generated
by expanding macro to a given depth)?!.

e Rewriting non-linear structures into linear structures if possible: That
is the strategy we currently investigate. After constructively rewriting
each linear path of the plan, we try to unify different planning paths.
If the resulting structure is still a tree, we rewrite a “side-ordering” of
paths (corresponding to a “case” statement) into a nested “sub-ordering”
(corresponding to nested if-then-else statements) — that is, we convert a
partial order into an arbitrary total order.

o Generating initial programs from non-linear plans: While linear macros

'Remark: Stefan BShm is investigating this strategy in his diploma thesis.
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are computationally more efficient than tree-recursive ones, they are not
necessarily more efficient on the level of representation. Furthermore, a
more compact (tree-) recursive macro is often easier to understand by
humans than an optimized version because it is formulated in a “more
natural” way (compare for example the tree and the linear recursive ver-
sions of fibonacci or hanoi).

e For the last two cases we may either generalize a “complex” macro, or try
to learn encapsulated linear macros (as load and unload) in the context of
a more complex problem (as rocket). The second strategy has to be based
on a principle for segmenting a problem in independent subproblems (a
syntactical approach for such segmentations is realized for example in

ALPINE [Kno90]).

The rest of this section will be very superficial. Because transformation for
non-linear plans is not fully implemented yet? we just present the original DPlan
outputs and discuss some open problems.

4.2.1 Building a tower of alphabetically ordered blocks

Koza [Ko0z92] synthetisized a program for building a tower of blocks in a pre-
defined order using genetic programming — that is, he provided the learning
algorithm with a training set of initial states and the desired goal and inferred
the tower function by search in the space of possible programs (see figure 4.8).
This program does not guarantee that for each possible input the shortest oper-
ation sequence is executed: for initial states which correspond to towers sorted
reverse to the goal tower it is not necessary to put all blocks on the table first.
Instead, the tower can just reversed by exploiting the side-effect of put that a
block gets cleared if the top of it is put on another block.

A program which builds a tower from arbitrary input states with optimal
operation sequences is given in appendix B. The main function shows one
possible realization of a cyclic macro for solving the tower problem:

(defun tower (1)
(cond ((is-tower 1) 1)
((and (exists-tower 1)
(exist-free-neighbors 1))
(tower (put (scndgreatest 1) (greatest 1) 1)))
(T (tower (puttable (topof (greatest-no-tower 1)) 1)))
)

To generalize a macro corresponding to this program, it would be necessary
to “invent” predicates (is-tower, exists-tower, exists-free-neighbors)
and introduce more than one selector function (not only topof as used in the
clearblock macro, but also greatest, scndgreatest, and greatest-no-tower).
Predicate invention is an established method in inductive logic programming

2Remark: I hope to be finished with a first prototype by Mai 1999.
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program synthesized:

(EQ (DU (MT CS) (NOT CS)) (DU (MS NN) (NOT NN)))
a more readable version:

equal (

do move-to-table(x) until not(current-stack),

do move-to-stack(next-necessary-block) until not(next-necessary-block)

)

Genetic Programming:
e representing programs as function terms

e cross-over (syntactically correct) terms

e evaluate programs by their performance on a set of examples

Figure 4.8: Synthesizing tower with genetic programming

[FYar]. Therefore, it would be interesting to try to incorporate this idea in our
plan transformation approach.

Another possible macro® is: apply put(z, y) for the desired goal order of
blocks beginning from the base and apply cleartop to each block which is argu-

ment of put:

; 1 is the (reversed) goal sorting, f.e. (C B &)
; s is initialized with an initial state and modified by put and clearblock
; clearblock is a recursive function using puttable
(defun tower (1 s)
(cond ((null 1) s)
(T (tower (cdr 1)
(put (clearblock (cadr 1) s) (clearblock (car 1) s) s)))
).

The strategy we currently investigate will generate non of these macros but
a single complex function (see discussion of the rocket domain below).

4.2.2 Rocket problems for arbitrary numbers of objects

The DPlan domain specification for rocket is given in table 4.6.

There exists a second legal state fulfilling the goal — ((at of B) (at 02 B)
(atR A)) — which we currently do not consider. The output of DPlan for the
rocket domain is given in figure 4.9. If we allow different sequences to load or
unload objects in the definition of states, the state ordering i1s not completely
linear. There is always a branch dealing with an alternative ordering — but
this branch is always pruned because the following states are already dealt with
in another branch. This observation leads us to the following hypothesis for a

3proposed by Fritz Wysotzki 1998
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Table 4.6: The rocket domain

; one-way rocket transportation problem, Veloso & Carbonell 93

; two locations A and B and a oneway-st between
; transporter: R (rocket) can load objects (two objects ol, 02)
(Make-Package ’pd-rocket)
(Export ’( states goal rules
is-c-pred c-eq )

)

(setq states ’(
((at o1 B) (at o2 B) (atR B))
((insideR o1) (at 02 B) (atR B)) ; symmetric states
((insideR 02) (at ol B) (atR B)) ;=00
((insideR o1) (insideR 02) (atR B))
((at o1l A) (atR A) (at 02 B))
((insideR o1) (atR A) (at o2 B))
((at 02 A) (atR A) (at ol B))
((insideR 02) (atR A) (at ol B))
((at o1 A) (at 02 A) (atR A))
((insideR o1) (at 02 A) (atR A&)) ; symmetric states
((insideR 02) (at ol A) (atR A)) -7-
((insideR o1) (insideR 02) (atR A)) )

(setq goal ’((at ol B) (at 02 B)) )

(setq rules
>( (rule move
(if (atR &) )
(then (moveR))
(conq (add ((atR B))
del ((atR 4)) ) ) )
(rule unload
(if (insideR (> x)) (atR (> y)))
(then (unload (< x)))
(conq (add ((at (< x) (< y)))
del ((insideR (< x))) ) > )
(rule load
(if (at (> x) A) (atR A))
(then (load (< x)))
(conq (add ((insideR (< x)))
del ((at (< x) A)) ) ) ) )
; Predicates which indicate constructive rewriting
(defun is-c-pred (p-name)
(or (equal p-name ’at) (equal p-name ’insideR))
)
; (at ol x) and (at 02 x) => 02
; (insideR o1) and (insideR o02)
(defun c-eq (p)
(cond ((equal (nth 1 p) ’02)
(list (nth 1 p) ’>(next o1)) ; assoc-list (02 (next ol))
)

next(ol)
> 02 = next(ol)

))
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Figure 4.9: Output of DPlan for rocket

linearization heuristic: If an operation leads to a leaf node and if this operation
1s also handled in another branch a a deeper level, then the operation and its
succeeding leaf node can be deleted from the branch.

If the branches for alternative orderings are deleted, all states are in an total
order. Nevertheless, generalization is not so easy as for the problems discussed in
section 4.1, because more than one operator 1s involved. The current implemen-
tation of our synthesis algorithm cannot deal with such inputs: it generates the
hypothesis g(at(x, B), B, unload(z, rocket(next(x), B))) which cannot be main-
tained when the move operator appears. To solve this problem, our synthesis
algorithm has to be extended to subprogram construction. We are planning to
extend our synthesis algorithm to subprogram generation —i.e. allowing to infer

more than one recursive equation from an initial program?.

Two programs solving the rocket domain for an arbitrary number of objects
are given in appendix C. Both programs cover all possible input states — that
is not only states where all objects are at location A at the beginning, but also
problems, where some objects are already in the rocket or at the destination.
The first program makes use of the linear macros for unload and load, the second
program is a “complex” macro for solving the complete problem. For real world
applications 1t is not acceptable, that we allow infinite capacity for the rocket.
That 1s, we would need a second predicate for load which checks whether the
rocket has still free capacity. This predicate has to be provided with the domain
specification: the test full(rocket) has to be included into the preconditions of
load.

4Remark: This will probably done in the diploma thesis of Martin Miihlpfordt.
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Table 4.7: The hanoi domain (static predicates are not listed for each state)

; Tower of Hamoi (3 discs)

(Hake-Package ’pd-hanoi)
(Export ’(states goal rules is-c-pred c-eq))

(setq states ’(
((on d3 p1) (on d2 d3) (om di d2) (ct d1) (ct p2) (ct p3)
((on d3 p2) (on d2 d3) (om di d2) (ct d1) (ct pl) (ct p3)
((on d3 p3) (on d2 d3) (om di d2) (ct d1) (ct pl) (ct p2)
((on d3 p1) (om d2 d3) (om dl p2) (ct d1) (ct d2) (ct p3)
((on d3 p1) (on d2 d3) (om di p3) (ct d1) (ct d2) (ct p2)
((on d3 p2) (on d2 d3) (om di p1) (ct dl) (ct d2) (ct p3)
((on d3 p2) (om d2 d3) (om di p3) (ct d1) (ct d2) (ct p1)
((on d3 p3) (on d2 d3) (om di p1) (ct dl) (ct d2) (ct p2)
((on d3 p3) (on d2 d3) (om di p2) (ct d1) (ct d2) (ct pl)
((on d2 p1) (om di d3) (om d3 p2) (ct d1) (ct d2) (ct p3)
((on d2 p1) (on di d3) (om d3 p3) (ct d1) (ct d2) (ct p2)
((on d2 p2) (on di d3) (om d3 p1) (ct d1) (ct d2) (ct p3)
((on d2 p2) (om di d3) (om d3 p3) (ct d1) (ct d2) (ct p1)
((on d2 p3) (on di d3) (om d3 p1l) (ct dl) (ct d2) (ct p2)
((on d2 p3) (on di d3) (om d3 p2) (ct dl) (ct d2) (ct pl)
((on d3 p1) (om di d2) (om d2 p2) (ct d1) (ct d3) (ct p3)
((on d3 p1) (on di d2) (om d2 p3) (ct d1) (ct d3) (ct p2)
((on d3 p2) (on di d2) (om d2 p1) (ct d1) (ct d3) (ct p3)
((on d3 p2) (om di d2) (om d2 p3) (ct d1) (ct d3) (ct p1)
((on d3 p3) (on di d2) (om d2 p1) (ct d1) (ct d3) (ct p2)
((on d3 p3) (on di d2) (om d2 p2) (ct d1) (ct d3) (ct pl)
((on d3 p1) (om di p2) (om d2 p3) (ct d1) (ct d2) (ct d3)
((on d3 p1) (om d2 p2) (om dl p3) (ct d1) (ct d2) (ct d3)
((on di p1) (om d3 p2) (om d2 p3) (ct d1) (ct d2) (ct d3)
((on d2 p1) (om d3 p2) (om dl p3) (ct d1) (ct d2) (ct d3)
((on dt p1) (om d2 p2) (om d3 p3) (ct d1) (ct d2) (ct d3)
((on d2 p1) (om di p2) (om d3 p3) (ct d1) (ct d2) (ct d3)

; statics (currently included in every state)

s(smaller pl d1) (smaller pl d2) (smaller pl d3) (smaller p2 dl)

;(smaller p2 d2) (smaller p2 d3) (smaller p3 d1) (smaller p3 d2)

;(smaller p3 d3) (smaller d2 d1) (smaller d3 d1) (smaller d3 d2)

)

(setq goal >((on d3 p3) (on d2 d3) (on di d2)))
(setq rules ’(
(rule move
(if (on (> d) (> from)) (ct (< d)) (smaller (> to) (< d)) (ct (< to0)))
(then (move (< d) (< from) (< to)))
(cong (add ((on (< @) (< to)) (ct (< from)))
del ((on (< @) (X from)) (ct (< to))) ) NN

4.2.3 Tower of Hanoi

The domain specification for hanot is given in table 4.7. Here one shortcom-
ing of our currently restricted specification language becomes obvious: static
predicates (i.e. predicates which are never changed by an operator application
—in contrast to fluents) cannot be defined globally for a domain but they have
to be enumerated for each state. The graphical DPlan output is too large for
one screen-shot. Therefore we will give a © ‘hand-drawn” plan tree instead (see
figure 4.10). A recursive program for solving Tower of Hanoi problems is given
in appendix D.

4.3 Planning for list and number problems

Planning problems — as blocksworld, Tower of Hanoi, transportation, or schedul-
ing problems — are typically not considered in program synthesis. On the other
hand, number and list problems are only seldom considered in planning. Re-
member, that our planning approach is mainly intended for providing initial
programs for program synthesis. To be able to compare our approach with
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move d1 pl d2 move d1 p2 d2

move W

move dly/ _@ve d1d3d2

move|d2 d3 p2

move\dl d2 p3
move/dl p2 p3

Figure 4.10: Output of DPlan for hanoi (abridged drawing)
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other current (ILP) approaches (as FOIL [Qui90], GOLEM [MF90], or PRO-
GOL [Mug95]), we have to be able to deal with the standard examples used in
this area which are mostly list processing problems.

For a lot of typical planning problems there exist isomorphic or at least
structural similar list and/or number problems [SW98]. For example, append
has an nearly 1somorphic structure to loadob and unloadob — the only difference
is, that we need a selector (head) and a reductor (tail) function instead of only
next:

append(l1,12) = g(empty(l1),12, cons(hd(I1), append(tl(l1),12))).

The clearblock problem is similar to calculating the factorial of a number
[SWar] — instead of the parameter s representing the (globally available) current
situation we here have a constant output (1):

factorial(x) = g(eq0(x), 1, mult(x, factorial (pred(x)))).

While generalizing recursive marcos from initial programs for these kind of
problems is easy [MS98], generating such initial programs with DPlan is cur-
rently not: Domain specifications for append and factorial cannot be repre-
sented in a natural way in the current version of DPlan because of our limited
domain specification language®. In full ADL we could represent the factorial
domain as:

mult(z,y):
PRECOND: z #0
UPDATE: z <z x (z—1)
fized(z):
PRECOND: z =0
UPDATE: z «+ 1.

Allowing conditional effects, the operators could be integrated in a single one
with no global precondition.

We give an example for modelling a list-domain without these features for
sort (see table 4.8; see also a specification of this domain in PRODIGY in
appendix E). This domain was originally introduced in [Wys87].

Again, we have to enumerate the static predicates for each state. The swap
operator here is restricted to list neighbors — therefore, the intended cyclic macro
is a bubble-sort algorithm. The DPlan output is given in figure 4.11.

5Remark: Extending our domain specification language will be worked on by Eckhard
Wiederhold as his student project
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Table 4.8: The sort domain

; sort

(Hake-Package ’pd-sort)
(Export ’(states goal rules is-c-pred c-eq))

(setq states ’(
((isc pl 1) (isc p2 2) (isc p3 3) (db pL p2) (db p2 p3))
((isc p1 1) (isc p2 3) (isc p3 2) (db pl p2) (db p2 p3))
((isc p1 2) (isc p2 1) (isc p3 3) (db pl p2) (db p2 p3))
((isc pl 2) (isc p2 3) (isc p3 1) (db pL p2) (db p2 p3))
((isc p1 3) (isc p2 1) (isc p3 2) (db pl p2) (db p2 p3))
((isc p1 3) (isc p2 2) (isc p3 1) (db pl p2) (db p2 p3))

)

; isc = is-conmtent position element

; db = directly before position_i position_j

; db is static

(setq goal ’((isc pl 1) (isc p2 2) (isc p3 3)))

(setq rules

>( (rule swap
GE (@b (> p) (& @) (sc (> p) O a1)) (isc & @) (& 12)))
(then (swap (< p) (X q)))
(conq (add ((isc (< p) (< n2)) (isc (< @) (< n1)))

del ((isc (< p) (< n1)) (isc (< @) (< n2)))
) )

mali
[
ICIA PR 4 1T F7 711G PR G G AL R
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Figure 4.11: Output of DPlan for sort



Chapter 5

Conclusions and further
work

We presented the state-based non-linear backward planner DPlan. DPlan is a
universal planner for deterministic domains which is sound and complete and
constructs optimal plans. The current implementation relies on sets of states
as input, that is, planning is used to construct a complete partial order over
states with respect to the number of operations needed to transform a state
into a state fulfilling the planning goals. Providing such state sets results in an
only polynomial effort for planning. Because DPlan is mainly intended as a tool
for constructing initial programs as input into our program synthesis algorithm
[SWI8, MS98], we typically only plan for small domains (where it is easy to
enumerate all states for an user). Our next implementation will be based on
the alternative strategy described in chapter 3 — planning without initial states.
Because we then have (1) to generate all possible predecessors for each state
node, and (2) eliminate non-admissible and already considered states, planning
effort will than be (as usual for generic planners) exponential in the worst case.
The next version of DPlan will be able to use a more powerful ADL-like domain
specification language. Our main concern is to introduce universal quantification
and the possibility of applying functions.

Secondly, we presented our approach for transforming DPlan outputs into
initial programs. The current implementation can only deal with linear plans,
an extension to non-linear plans is under construction.

We believe that combining planning with program synthesis is fruitful for
both areas of research: On the one hand, planning provides a more powerful tool
for constructing initial (straight-forward) programs than the search and rewrite
techniques usually employed in inductive program synthesis systems (see chap-
ter 2). Planning is the natural approach to model the search of transformation
sequences for inputs into desired outputs and i1t provides a standardized and
powerful language for representing knowledge about primitive operators. We
have extended this language to represent also knowledge about data-structures
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— rewrite-rules to replace constants by constructive expressions. On the other
hand, program synthesis provides a powerful approach to cyclic macro general-
ization. Our synthesis system [SW98] which is based on the theory of recursive
functions and formalized in the framework of grammatical inference [MS98] pro-
vides a formally sound and purely syntactical approach to generalizing recursive
functions from initial programs. The idea of cyclic macros can also be used to
make universal planning more efficient: plans have only generated for small fi-
nite domains and then can be generalized to domains of arbitraty complexity.
Finally, cyclic macros provide an alternative to learning control rules [VCP+95]:
a cyclic macro which in our approach is represented as recursive program scheme
represents the complete subgoal structure of a domain. Therefore, if a cyclic
macro is available, a plan can be generated completely without search by simply
applying the macro to a given input state. To make cyclic macros available of
planning, we have to provide a method for selecting an appropriate macro from
memory. This is clearly a non-trivial problem; two ideas for macro retrieval are
discussed at the beginning of section 4.2. A drawback in contrast to learning
in PRODIGY [VCP195] is, that in our approach, learning cannot be performed
incremental: To generalize a cyclic macro information about the transformation
structure for the complete state set has to be available.

Clearly, there is still a lot to do, to bring our approach to a scope and a
level of performance similar to PRODIGY [VCP195] — another system that
combines planning and machine learning. But we strongly believe, that using
the formal background of program synthesis for macro learning can open an new
perspective on learning in planning.



Appendix A

Implementation of DPlan

README for DPlan

Ute Schmid Dec. 1998

available at http://ki.cs.tu-berlin.de/"schmid/DPlan-1.0/

DPlan consists of the following modules:

- dplan.lsp : main module for planning and transformation of dplans

to initial programs
- plan-dstruc.lsp: global datastructure (each planning step as structure)

- ps-back.lsp : backward application of sets of operators to current state
- c-rewrite.lsp : rewriting of constants to constructive expressions
- p~xtree.lsp : graphical output of trees via xtree (platform dependent!)
- myxtree : shell-script for calling xtree
- Xxtree : public domain program, see HELP-install

Currently implemented for Allegro Common Lisp
(previous version for clisp)

If want to avoid to adapt dplan to your platform
outcomment the following expressions in dplan.lsp

- loading of package p-xtree
- the calls of (xtree tree name) in function plan-control
- it is possible that you have to outcomment additionally
(also in plan-control)
* the external call of xmv ("save window with grafical output as give")
* or adapt the syntax for calling external functions
"user::run-shell-command ..."
to your version of common lisp

Before starting dplan:
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- make sure that you give the correct path for xtree in myxtree
if you want to use the graphical output

- provide a problem specification in the correct format (required
as input)
-> see pd-cb, pd-tower, pd-rocket as examples

Running the planner:
call lisp, load dplan, call (start)
(input of a problem-specification file is handled interactively)



Appendix B

A recursive program for
building towers

Building a tower of alphabetically ordered blocks
in blocksworlds with arbitrary numbers of blocks
and for arbitrary initial states

Ute Schmid Dec 4 97

Representation: blocks names als numbers 1...n (instead of 4, B, C...)

H each partial tower as list

Input: list of lists

Examples for the three blocks world

(1 23)) ((23) (1)) (1) (2 3) ((21) (3) ((321)) ((12) @3

(1 3) (2)) ((31) (2)) (32) (1)) ((132) ((231)) ((213)) (3172)

=3
o
—
el
[
[
=]
o
ot
s
=]
=]
w

; flattens a list 1
(defun flatten (1)
(cond ((null 1) nil)
(T (append (car 1) (flatten (cdr 1))))
)
)

; X+l = y°?

(defun onedif (x y)
(= 1+ 1) y)

)

; blocks world selectors

; topmost block of a tower
(defun topof (tw)
(car tw)

)
; bottom block (base) of a tower
(defun bottom (tw)
(car (last tw))
)

; next tower
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; foen ((21) (3)) > (21)
(defun get-tower (1)

(car 1)
)

; tops of all current towers
(defun topelements (1)

(sort (map ’list #’car 1) #°>)
)

; topblock with highest number
(defun greatest (1)

(car (topelements 1))
)

; topblock mit second highest number
(defun scndgreatest (1)

(cadr (topelements 1))
)

; label of the block with the highest number
(defun maxblock (1)
(cond ((null 1) 0)
(T (car (sort (flatten 1) #°>)))
))

; find a tower (more than 1 block) which is not correctly sorted
(defun no-tower (1)
(cond ((null 1) nil)
((and (base (get-tower 1) 1) (sorted (get-tower 1)))
(no-tower (cdr 1)))

((single-block (get-tower 1)) (no-tower (cdr 1)))
(T (car 1))

))

; find all towers which are not correctly sorted

(defun get-all-no-towers (1)

(cond ((null 1) nil)
((and (base (get-tower 1) 1) (sorted (get-tower 1)))

(get-all-no-towers (cdr 1)))

((single-block (get-tower 1)) (get-all-no-towers (cdr 1)))
(T (cons (car 1) (get-all-no-towers (cdr 1))))

))

(defun find-greatest (max 1)
(cond ((null 1) max)
((> (topof max) (topof (car 1))) (find-greatest max (cdr 1)))
(T (find-greatest (car 1) (cdr 1)))
))

; find incorrect tower containing highest element
(defun greatest-no-tower (1)
(cond ((null 1) nil)
(T (find-greatest (car (get-all-no-towers 1))
(cdr (get-all-no-towers 1))))
))

; blocksworld predicates

; is tower only a single block?
(defun single-block (tw)

(= (length tw) 1)
)

; has tower block with highest number as base?



(defun base (tw 1)

(equal (bottom tw) (maxblock 1))

)

; exist two partial towers which top elements differ only by one?
(defun exist-free-neighbours (1)
(onedif (scndgreatest 1) (greatest 1))

)

; exists a correct partial tower?

; f.e. (2 3) or (B Q)
(defun exists-tower (1)
(cond ((null 1) nil)

((and (equal (bottom (get-tower 1)) (maxblock 1))
(sorted (get-tower 1))) T)

(T (exists-tower

))

; is block x predecessor
(defun successor (x tw)
(cond ((null tw) T)

(cdr 1)))

to top of a tower?

((onedif x (car tw)) T) ;(successor x (cdr tw)))

(T nil)
))

; is tower sorted?
(defun sorted (tw)
(cond ((null tw) T)

((successor (car tw) (cdr tw)) (sorted (cdr tw)))

(T nil)
))

; exists only one tower?

(defun single-tower (1)
(null (cdr 1))

)

; goal state?
(defun is-tower (1)

(and (single-tower 1) (sorted (get-tower 1)))

; put x on y
(defun put (x y 1)
(cond ((null 1)
(print
nil)
((equal (caar 1)

((equal (caar 1)
(T (cons (car 1)

))

; puttable x
(defun puttable (x 1)
(cond ((null 1) nil)
((equal (caar 1)

(T (cons (car 1)

’put) (print x) (print y)

x) (cond ((not (null (cdar 1)))
(append (list (cdar 1)) (put x y (cdr 1))))
(T (put x y (cdr 1)))))

y) (cons (cons x (car 1)) (put x y (cdr 1))))

(put x y (cdr 1))))

x) (print ’puttable) (print x)
(cons (1list x) (cons (cdar 1) (cdr 1))))
(puttable x (cdr 1))))
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i

(defun tower (1)
(cond ((is-tower 1) 1)
((and (exists-tower 1)
(exist-free-neighbours 1))
(tower (put (scndgreatest 1) (greatest 1) 1)))
(T (tower (puttable (topof (greatest-no-tower 1)) 1)))



Appendix C

Recursive programs for
rocket domain

;3 Iterative Macro for the Rocket Domain
;; (assuming a rocket with infinete capacity)
;3 Ute Schmid 11/23/98

;3 call (rocket boxes-at-A boxes-at-B boxes-in-Rocket position-of-Rocket)
S cf. (rocket ’(b1l b2 b3) nil nil ’A)
S (rocket ’(bl) (b2 b3) ’A))

;3 1st variant: recursive loadb and unload
;3 problem: call of rocket after loadb relies on instantiation of
;; boxes-at-A with nil

;3 alternatives: global variables
HH loadb returns a list of boxes-at-A and boxes-in-Rocket

H without let loadb would be evaluated twice!!

;3 --- primitive opns --- ;;

(defun empty (1)
(null 1)
)

(defun put (e 1)
(cons e 1)

)

(defun next-box (1)
(car 1)

)

(defun rest-boxes (1)

(cdr 1)

33 --- drive --- ;;
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(defun drive-to-B (position)
(cond ((eq position ’A) (print ’rocket-arrived-at-B) °’B)
( T nil)
))

;3 —--- recursive load and unload --- ;;

(defun unload (position boxes-in-Rocket boxes-at-B)
(print ‘(...unloading box ,@(next-box boxes-in-Rocket)))
(cond ((empty boxes-in-Rocket) boxes-at-B)
(T (put (next-box boxes-in-Rocket)
(unload position (rest-boxes boxes-in-Rocket) boxes-at-B)
) )
))

(defun loadb (boxes-at-A boxes-in-Rocket)
(print ‘(...loading box ,@(next-box boxes-at-4)))
(cond ((empty boxes-at-A) boxes-in-Rocket)
(T (put (next-box boxes-at-A4)
(loadb (rest-boxes boxes-at-A) boxes-in-Rocket)
) )
))

;3 —--- ROCKET --- ;;

(defun rocket (boxes-at-A boxes-at-B boxes-in-Rocket position-of-Rocket)
(print ‘(boxes-at-A ,Q@boxes-at-A boxes-at-B ,Q@boxes-at-B
boxes-in-Rocket ,@boxes-in-Rocket
position-of-Rocket ,@position-of-Rocket))
(cond ((empty boxes-at-4)
(cond ((empty boxes-in-Rocket)
(print ’done)
T
)
((eq ’A position-of-Rocket)
(print ’driving-to-dest-and-unloading)
(unload (drive-to-B position-of-Rocket) boxes-in-Rocket
boxes-at-B)
)
(T (print ’cannot-reach-goal) nil)
))
(T
(cond ((eq ’B position-of-Rocket)
(print ’cannot-reach-goal)
nil
)
(T
(print ’loading-boxes)
(rocket nil boxes-at-B
(loadb boxes-at-A boxes-in-Rocket)
position-of-Rocket

))

;3 Iterative Macro for the Rocket Domain
;; (assuming a rocket with infinete capacity)
;3 Ute Schmid 11/23/98

;3 call (rocket boxes-at-A boxes-at-B boxes-in-Rocket position-of-Rocket)

S cf. (rocket ’(b1l b2 b3) nil nil ’A)
S (rocket ’(b1) (b2 b3) ’4))



;3 2nd variant: recursive rocket only

;3 --- primitive opns --- ;;

(defun empty (1)
(null 1)
)

(defun put (e 1)
(cons e 1)

)

(defun next-box (1)
(car 1)
)

(defun rest-boxes (1)
(cdr 1)

33 --- drive --- ;;

(defun drive-to-B (position)
(cond ((eq position ’A) (print ’rocket-arrived-at-B) °’B)
( T nil)
))

;3 --- ROCKET --- ;;

(defun rocket (boxes-at-A boxes-at-B boxes-in-Rocket position-of-Rocket)
(print ‘(boxes-at-A ,Q@boxes-at-A boxes-at-B ,Q@boxes-at-B
boxes-in-Rocket ,@boxes-in-Rocket
position-of-Rocket ,@position-of-Rocket))
(cond ((empty boxes-at-4)
(cond ((empty boxes-in-Rocket)
(print >done)
T
)
((eq ’A position-of-Rocket)
(print ’driving-to-dest)
(rocket boxes-at-A boxes-at-B boxes-in-Rocket
(drive-to-B position-of-Rocket))
)
((eq ’B position-of-Rocket)
(print ’unloading-boxes)
(rocket boxes-at-A (put (next-box boxes-in-Rocket) boxes-at-B)
(rest-boxes boxes-in-Rocket) position-of-Rocket)
)
(T (print ’cannot-reach-goal) nil)
))
(T
(cond ((eq ’B position-of-Rocket)
(print ’cannot-reach-goal)
nil
)
(T
(print ’loading-boxes)
(rocket (rest-boxes boxes-at-A) boxes-at-B
(put (next-box boxes-at-A) boxes-in-Rocket)
position-of-Rocket)
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Appendix D

A recursive program for
Tower of Hanoi with
arbitrary input states

Towers of Hanoi generalized for arbitrary initial states

; Ute Schmid

; (1) Load

s (2) C = goal peg

H (SETQ 4 °(1 2 3) B NIL C NIL) or

H (SETQ 4 °(1 2) B NIL C ’(3)) or

H (SETQ 4 ° (1) B NIL C *(1 2)) or

H (SETQ & °(2 3) B NIL C ’(1)) or

H etc. for 3 discs: 27 poss.

(3) (ghanoi)

help functions

; on: returns peg on which a disc lies

(DEFUN ison (disc peg)
(COND ( (NULL peg) NIL)
( (= (CAR peg) disc) T
(T (ison disc (cdr peg)))

)
)

(DEFUN on (disc current-peg goal-peg inter-peg)
(COND ( (ison disc (eval current-peg)) current-peg)
( (ison disc (eval goal-peg)) goal-peg)
(T inter-peg)
)
)

; interpeg: returns peg which is neither the peg on which the currently
; regarded disc lies nor the current goal-peg

(DEFUN interpeg (disc peg)
(CoND ( (or (and (equal (on disc A ’B ’C) ’B) (equal peg ’C))
(and (equal (on disc ’A ’B ’C) ’C) (equal peg ’B))
) CR)
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( (or (and (equal (on disc ’A ’B ’C) ’A) (equal peg ’C))
(and (equal (on disc ’A ’B ’C) ’C) (equal peg ’A))

) ’B)
( (or (and (equal (on disc ’A ’B ’C) ’A) (equal peg ’B))
(and (equal (on disc ’A ’B ’C) ’B) (equal peg ’A))

) °C)

)
)

; topof: returns top disc of a peg

(DEFUN topof (peg)

(COND ( (null (car (eval peg))) nil)
(T (car (eval peg)))

)

)

; clearpeg: true, if no disc is on peg. false otherwise

(DEFUN clearpeg (peg)

(COND ( (null (car (eval peg))) T)
( T nil)

)

)

; cleartop: true if no disc is on top of the current disc, false otherwise

(DEFUN cleartop (disc)

(COND ( (and (equal (on disc A ’B °C) ’A) (= (car A) disc))
( T(‘zmd (equal (on disc ’A ’B ’C) ’B) (= (car B) disc))
( T(‘zmd (equal (on disc ’A ’B ’C) ’C) (= (car C) disc))
( ?nil)

; movedisc: put disc to peg

(DEFUN movedisc (disc peg)
(COND ( (= disc 0) (PRINT (LIST °’NO ’DISC)))
( (equal (on disc ’A ’B ’C) peg)
(PRINT (LIST ’Disc disc ’IS ’ON ’PEG peg))
)
( (OR (clearpeg peg) (> (topof peg) disc))

(PRINT
(LIST °MOVE °DISC disc
’FROM (on disc ’A ’B °C)
’TO peg
) )

(SET (on disc ’A ’B ’C) (CDR (eval (on disc ’A ’B ’C))))
(SET peg (CONS disc (EVAL peg)))

)
( T (PRINT (LIST ’MOVING disc ’TO peg ’IMPOSSIBLE )))

; move: the recursive function for calculating the goal-stack for
; solving tower of hanoi

(DEFUN move (disc peg)
(COND ( (and (= disc 1) (equal (on disc ’A ’B °C) peg)) T )

( T (COND
( (equal (on disc ’A ’B ’C) peg)
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(move (- disc 1) peg)
)
( (and (not (equal (on disc A ’B ’C) peg))
(not (and (cleartop disc) (clearpeg peg)))
(> disc 1))
(move (- disc 1) (interpeg disc peg))
)
)
(movedisc disc peg)
(COND ((> disc 1) (move (- disc 1) peg)))

(DEFUN number-of-discs (pl p2 p3)
(+ (LENGTH p1) (+ (LENGTH p2) (LENGTH p3)))
)

; move: number of discs x goal-peg -> solution
(DEFUN ghanoi ()

(move (number-of-discs A B C) ’C)

)
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APPENDIX D. TOH WITH ARBITRARY INPUT STATES



Appendix E

List Sorting in PRODIGY

Prodigy offers the possibility to use infinite types and external functions. 1
wanted to define an inifinite type number and an external function which returns
the content of a list-position. But, when I tried to specify the list sorting
problem with these features, it did not work!. Therefore, I modelled the list-
sorting domain in a standard way: usingSome-Number instead of the built-in
lisp-predicate numberp and explicitely coding the ¢s-content predicate.

1A meeting with Eugene Fink, Nov. 1998, brought the result, that this kind of specification
is currently not possible. I will check again with Manuela Veloso.
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;;; Domain: Lists (flat, over nat-numbers)

(create-problem-space ’lists :current t)

(ptype-of Position :top-type)

(ptype-of Content :top-type) ; represents the current content of a position

(operator SWAP
(params <p1> <p2>)
(preconds
((<p1> POSITION)
(<p2> POSITION)
(<n1> (and CONTENT (Some-Number)))
(<n2> (and CONTENT (Some-Number)))

)

(and (directly-before <pl> <p2>)
(is-content <p1l> <n1>)
(is-content <p2> <n2>))

)
(effects
O
((del (is-content <pl> <ni1>))
(del (is-content <p2> <n2>))
(add (is-content <pl> <n2>))
(add (is-content <p2> <n1>))
)

Figure E.1: Definition of the 1list-domain in PRODIGY



;53 example problem

;33 sort list of 3 elements; instantiate with

;5 [1 2 3] 0 swaps

;55 [1 3 2] swap(3,2)

;55 [2 1 3] swap(2,1)

;55 [2 3 1] swap(3,1),swap(2,1)
;55 [31 2] swap(3,1),swap(3,2)

;53 [3 2 1] swap(3,2) ,swap(3,1) ,swap(2,1)
(setf (current-problem)

(create-problem

(name sortl)

(objects

(posl pos2 pos3 position)

)

(state

(and (directly-before posl pos2) ; static
(directly-before pos2 pos3) ; static

(is-content posl 3)
(is-content pos2 2)
(is-content pos3 1)
))
(goal
(and (is-content posl 1)
(is-content pos2 2)
(is-content pos3 3)
))

Figure E.2: Specification of a list-sorting problem in PRODIGY
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