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Abstract

The ever-growing number of high-dimensional, superlarge databases requires effective analysis
techniques to mine interesting information from the data. Development of new-wave method-
ologies for high-dimensional nonparametric regression has exploded over the last decade in an
effort to meet these analysis demands. This paper reports on an extensive simulation experiment
that compares the performance of ten different, commonly-used regression techniques: linear re-
gression, stepwise linear regression, additive models (AM), projection pursuit regression (PPR),
recursive partitioning regression (RPR), multivariate adaptive regression splines (MARS), alternat-
ing conditional expectations (ACE), additivity and variance stabilization (AVAS), locally weighted
regression (LOESS), and neural networks. Each regression technique was used to analyze multiple
datasets each having a unique embedded structure; the accuracy of each technique was determined
by its ability to correctly identify the embedded structure averaged over all the datasets. Datasets
used in the experiment were constructed to have a range of characteristics by varying the dimension
of the data, the true dimension of the embedded structure, the sample size, the amount of noise,
and the complexity of the embedded structure. Analyses of the results show that all of these
properties affect the accuracy of each regression technique under investigation. A mapping from
data characteristics to the most effective regression technique(s) is suggested.
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1. Introduction

Regression analysis in high dimensions quickly becomes extremely unreliable; this phenomenon
is called the “curse of dimensionality” (COD). There are three nearly equivalent formulations of
the COD, each offering a useful perspective on the problem:

1. The number of possible regression structures increases faster than exponentially with
dimension.

2. In high-dimensions, nearly all datasets are sparse.

3. In high dimensions, nearly all datasets show multicollinearity (and its nonparametric
generalization, concurvity).

Detailed discussion of this topic and its consequences for regression may be found in Hastie and
Tibshirani (1990) and in Scott and Wand (1991).

Historically, multivariate statistical analysis sidestepped the COD by imposing strong model as-
sumptions that restricted the potential complexity of the fitted models, thereby allowing sample
information to have non-local influence. But now there is growing demand for techniques that
make weaker model assumptions and use larger datasets. This has led to the rapid development of a
number of new methods, such as additive models (AM), projection pursuit regression (PPR), recur-
sive partitioning regression (RPR), multivariate adaptive regression splines (MARS), alternating
conditional expectations (ACE), additivity and variance stabilization (AVAS), locally weighted re-
gression (LOESS), and neural networks. The comparative performance of these methods, however,
is poorly understood.

2. Background

Currently, understanding of comparative regression performance is limited to a scattering of theo-
retical and simulation results. The key results for the most popular regression techniques (defined
in Section 3.1) are as follows:

� Donoho and Johnstone (1989) make asymptotic comparisons in terms of theL2 norm criterion

kf̂ � fk =

Z
IRp

[ ˆf(x)� f(x)]2�(x) dx

wherep is the dimension of the space and� is the density of the standard normal distribu-
tion (i.e., they use a weighted mean integrated squared error (MISE) criterion). Thus the
criterion judges an estimator according to the squared distance between its graph and the
true graph, with standard normal weighting to downplay disagreement far out in the tails.
They find that projection-based regression methods (e.g., PPR, MARS) perform significantly
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better for radial functions, whereas kernel-based regression (e.g., LOESS) is superior for
harmonic functions. Radial functions are constant on hyperspheres centered at0 (e.g., a
ripple in a pond), whereas harmonic functions vary periodically on such hyperspheres (e.g.,
an Elizabethan ruffle).

� Friedman (1991a) reports simulation studies of MARS alone, and related work is described
by Barron and Xiao (1991), Owen (1991), Breiman (1991a) and Gu and Wahba (1991).
Friedman examines several criteria; the main ones are scaled versions of mean integrated
squared error (MISE), predictive-squared error (PSE), and a criterion based on the ratio of a
generalized cross-validation (GCV) error estimate to PSE. The most useful conclusions are
the following:

1. When the data are pure noise in 5 and 10 dimensions, for sample sizes of 50, 100, and
200, MARS and AM are roughly comparable and unlikely to find spurious structure.

2. When the data are generated from the additive function of five variables

Y = 0:1 exp(4X1) +
4

1+ exp(�20X2 + 10)
+ 3X3 + 2X4 +X5

with five additional noise variables and sample sizes of 50, 100, and 200, MARS had a
slight but clear tendency to overfit, especially at the smallest sample sizes.

No simulations were done to compare MARS against other techniques. Breiman (1991a)
notes that Friedman’s examples (except for the pure noise case) have high signal-to-noise
ratios.

� Tibshirani (1988) gives theoretical reasons why AVAS has superior properties to ACE (but
notes that consistency and behavior under model misspecification are open questions). He
describes a simulation experiment that compares ACE to AVAS in terms of weighted MISE
on samples of size 100; the model isY = exp(X1 + cX2) with X1;X2 independentN(0;1)
andc taking a range of values to vary the correlation betweenY andX1. He finds that AVAS
and ACE are similar, but AVAS performs better than ACE when correlation is low.

� Breiman (1991b) developed nonparametric regression code that describes simulation results
for the Π-method, which fits a sum of products. His experiment used the following five
functions:

Y = exp[X1 sin(�X2)]

Y = 3 sin(X1X2)

Y =
40 exp[8((X1 � :5)2 + (X2 � :5)2)]

exp[8((X1 � :2)2 + (X2 � :7)2)]exp[8((X1 � :7)2 + (X2 � :2)2)]

Y = exp[X1X2 sin(�X3)]

Y = X1X2X3

Evaluation is based on mean squared error averaged over then data locations. The explana-
tory variables are independent draws from uniform distributions whose support contains the
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interesting functional behavior (the support is the region on which the probability density
is strictly greater than zero); to each observation, Breiman adds normal noise, choosing the
variance so that the signal-to-noise ratio ranges from .9 for the first function to 3.1 for the
third. Although theΠ-method was not explicitly compared in a simulation study against
the methods considered in this paper, Breiman made theoretical and heuristic comparisons,
as did discussants, especially Friedman (1991b) and Gu (1991). Their broad conclusions
include (1) model parsimony is increasingly valuable in high dimensions, (2) hierarchical
models based on sums of piecewise-linear terms are relatively good, and (3) data can be
found for which almost any method excels.

� Barron (1991, 1993) shows that in a somewhat narrow sense, the mean integrated squared
error of neural network estimates for the class of functions whose Fourier transform ˜g satisfiesR
j!jjg̃(!)j d! < c, for some fixedc, has orderO(1=m) + O(mp=n) ln n, wherem is the

number of nodes,p is the dimension, andn is the sample size. This is linear in the dimension,
evading the COD; similar results were subsequently obtained by Zhao and Atkeson (1992)
for PPR, and it is likely that the result holds for MARS, too. These results may be less
applicable than they seem; Barron’s class of functions excludes such standard cases as
hyperflats, becoming smoother as dimension increases.

� Ripley (1993, 1996) describes simulation studies of neural network procedures, usually in
contrast with traditionally statistical methods. Generally, he finds that neural networks per-
form poorly and are computationally burdensome, more so for regression than classification
problems.

� De Veaux, Psichogios, and Ungar (1993) compared MARS and a neural network on two
functions, finding that MARS was faster and more accurate in terms of MISE.

� Hastie and Tibshirani (1990) survey many of the new methods. They treat theory and real
datasets rather than simulation, but their account of the strategies behind the development of
the new methodologies was central to the design of the experiment described in this paper.

These short, often asymptotic, explorations do not provide sufficient understanding for a practi-
tioner to make an informed choice among regression techniques. By contrast, classification is
better understood; see Ripley (1994a, 1994b, 1996) and Sutherland et al. (1993) for comparative
evaluations of neural networks against more traditional statistical methodologies.

In an effort to fill this gap in the understanding of the comparative performance of regression
techniques, a designed simulation experiment was used to contrast ten of the most prominent
regression methods. The basis for the comparison is the mean integrated squared error (MISE) of
each of the different techniques, assessed across a range of conditions. MISE was chosen because
it is the criterion used in most previous studies, because it has an interpretable bias-variance
decomposition, and because it reflects essentially all discrepancies between the fitted and true
surfaces.

The experiment was run on a DecStation 3000 and an HP Apollo 715/75 over a period of nearly 19
months, using standard code, as described in Section 3. The results from the simulation experiment
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are summarized in Section 4; a complete set of results is provided in Appendix A. Conclusions
drawn from the results are discussed in Section 5.

3. Experimental design

The experiment was a 10� 5� 34 factorial design whose six factors were regression method,
function, dimension, sample size, noise, and model sparseness. The levels (or values) each factor
was allowed to take in the experiment are as follows:

Regression met hod. The ten levels of this factor are linear regression, stepwise linear re-
gression, MARS, AM, projection pursuit regression, ACE, AVAS, recursive partitioning
regression (this is very similar to CART), LOESS, and a neural network technique. See
Section 3.1 for a description of each of these regression techniques.

Function. This factor determines the functional relationship that is embedded in the data. The
five kinds of functions that were examined were hyperflats, multivariate normals with zero
correlation, multivariate normals with all correlations .8, two-component mixtures of mul-
tivariate normals with zero correlation, and a function proportional to the product of the
explanatory variables. The equations for these functions are, respectively, as follows:

f(X i) =
1
p

Pp

j=1Xi;j (Linear)

f(X i) = ( 1
2� )

p

2 ( 1
j:25Ij

)
1
2(exp�

1
2(Xi)

T (:25I)�1(Xi)) (Gaussian)

f(X i) = ( 1
2� )

p

2 ( 1
j:25Aj

)
1
2(exp�

1
2(Xi)

T (:25A)�1(Xi)) (Correlated Gaussian)

f(X i) =
1
2(

1
2� )

p

2 ( 1
j:16Ij

)
1
2 (exp�

1
2(Xi)

T (:16I)�1(Xi))+ (Mixture)
1
2(

1
2� )

p

2 ( 1
j:16Ij

)
1
2 (exp�

1
2(Xi�1)T (:16I)�1(Xi�1))

f(X i) = (
Qp

j=1 Xi;j)
1
p (Product)

wherep is the dimension,1 is ap-dimensional vector of ones, andA is a covariance matrix
with the off-diagonal entries set to .8 and the diagonal entries set to 1. These functions will
be referred to, respectively, as Linear, Gaussian, Correlated Gaussian, Mixture, and Product.
Figure 1 shows graphical representations of bivariate versions of these functions (i.e., two
explanatory variables and one response variable).

Dimension. The three levels of this factor take the dimension of the explanatory variable space
to bep = 2;6;12.
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Linear Gaussian Correlated
Gaussian

Mixture Product

Figure 1: Graphical representations of bivariate versions of the functions used
in the simulation experiment (i.e., two explanatory variables and one response
variable).

p = 2 p = 6 p = 12
k = 4 16 256 16,384
k = 10 40 640 40,960
k = 25 100 1,600 102,400

Table 1: Values of n for different values of dimension (p = 2;6;12) for small
(k = 4), medium (k = 10), and large (k = 25) sample sizes.

Sample size. The three levels of this factor take the sample size to ben = 2pk, wherep is the
dimension andk = 4;10;25. This scales across dimension, so that the different values of
k correspond to small, medium, and large samples, respectively. Table 1 shows the specific
values ofn for different values ofp andk.

Noise. This factor determines the variance in the additive Gaussian error associated with each
observation. The standard deviations of the error variance are� = 0:02;0:1;0:5.

Model sparseness. This factor determines the proportion of explanatory variables that are func-
tionally related to the response variable. The different levels consist of all variables, half of
the variables, and none of the variables. When none of the variables are explanatory, then
the Constant functionf(X i) = 1:0 is used regardless of the level of the Function factor.

Note that not all combinations of this design are realizable. Specifically, when model sparseness
is set so that none of the variables pertain to the response variable, then the level of function is
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irrelevant. Also, LOESS, neural networks, and sometimes AVAS required too much memory or
time when the sample size and/or dimension factors were large, resulting in additional missing
combinations. These issues will manifest in the results reported in Section 4 and in Appendix A.

For a particular combination of factor levels, the simulation experiment proceeds as follows:

1. Generate a uniform random sampleX1; : : : ;Xn inside the unit hypercube in IRp.

2. Generate a sample of random errors�1; : : : ; �n, all independent and identically distributed
(iid) N(0; �2).

3. CalculateYi = f(X i) + �i, wheref : IRp ! IR is the target function determined by
appropriate combinations of levels of function, dimension, and model sparseness.

4. Apply the regression method to obtainf̂ , an estimate off .

5. Estimate the integrated squared error off̂ over the unit cube (via Monte Carlo, on 10,000
random uniform points). Call thisM .

6. Repeat the first five steps 20 times. The average of the 20 resultingM values is an estimate
of the MISE; the standard error of this estimate is also calculated for use in subsequent
comparisons.

Both the random data sample and the Monte Carlo integration sample were reused for all regression
methods. These variance reduction techniques improve the accuracy of contrasts between the
methods.

From each combination of factor levels, an estimate of the MISE and its standard error was
obtained. Regression methods whose MISE values are significantly lower than competing methods
are superior. Note, however, that the COD implies that values ofM for largep are less accurate
than for smallerp (with all other factors remaining constant); this needs to be taken into account
when interpreting the results. The goal is to understand which regression methods are best for
which levels (or combinations of levels) of function, dimension, model sparseness, sample size,
and noise.

3.1. Regression met hods

Multiple linear regression (MLR) and stepwise linear regression (SLR) are standard methods that
have been used for decades. These methods are included as performance benchmarks for the
simulation study; it is assumed that most readers are already familiar with both techniques. For
MLR and SLR, the experiment used the commercial code available from SAS, with the SAS
defaults for entering and removing variables in SLR (i.e., using theSELECTION=STEPWISE
option ofPROC REG). A study of SLR performance is given by Frank and Friedman (1993).

For the remaining regression techniques, the simplest options and defaults were used consistently:
the fitted models were not primed to include polynomial or product terms, MARS and LOESS
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made first-order fits, and settings did not vary from one level of function to another. (Readers who
want details on the smoothers used by the regression methods and the default parameter settings
should examine the corresponding documentation.)

The code for the regression techniques used in the experiment (with the exception of MLR and
SLR) was assembled into a package called DRAT (Data Regression via Assembled Techniques);
the DRAT package is available atftp://ftp.cs.cmu.edu/user/bobski/drat/ .

3.1.1. Additive model

The additive model (AM) has been developed by several authors; Buja, Hastie and Tibshirani
(1989) describe the background and early development. The simplest AM has the form

E[Yi] = �0 +

pX
j=1

fj(Xij) (1)

where the functionsfj are unknown.

Since thefj are estimated from the data, one avoids the traditional assumption of linearity in the
explanatory variables; however, AM retains the assumption that explanatory variable effects are
additive. Thus the response is modeled as the sum of arbitrary smooth univariate functions of the
explanatory variables, but not as the sum of multivariate functions of the explanatory variables.
One needs a reasonably large sample size to estimate eachfj , but under the model posited in
Equation (1), the sample size requirement grows only linearly inp.

The backfitting algorithm, described in Hastie and Tibshirani (1990), is the key procedure used to
fit an AM: it is guaranteed to find the best fit between a given model and the data. Operationally,
the backfitting algorithm proceeds as follows:

1. At the initialization step, define functionsf (0)
j
� 1 and set�0 = Ȳ .

2. At theith iteration, estimatef (i+1)
j

by

f
(i+1)
j

= Sm(Y � �0 �
X
k 6=j

f i
k
j X1j ; : : : ;Xnj)

for j = 1; : : : ; p.

3. Check whetherjf (i+1)
j

� f
(i)

j
j < � for all j = 1; : : : ; p, where� is the convergence tolerance.

If not, return to step 2; otherwise, use thef (i)
j

as the additive functionsfj in the model.

This algorithm requires a smoothing operation (such as kernel smoothing or nearest-neighbor
averaging), indicated bySm(� j �). For large classes of smoothing functions, the backfitting
algorithm converges to a unique solution.
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3.1.2. Projection pursuit regression

The AM considers sums of functions taking arguments in the natural coordinates of the space of
explanatory variables. When the underlying function is additive with respect to variables formed
by linear combinations of the original explanatory variables, the AM is inappropriate. Projection
pursuit regression (PPR) was designed by Friedman and Stuetzle (1981) to handle such cases.

PPR employs the backfitting algorithm and a conventional numerical search routine, such as Gauss-
Newton, to fit a model of the form

E[Yi] =
rX

k=1

fk(�
T
k
X i)

where the�1; : : : ;�r determine a set ofr linear combinations of the explanatory variables. These
linear combinations are analogous to those used in principal components analysis (cf. Flury, 1988).
A salient difference is that these vectors need not be orthogonal; they are chosen to maximize the
predictive accuracy of the model as assessed through generalized cross-validation.

Specifically, the PPR alternately calls two routines. The first conditions upon a set of pseu-
dovariables that are linear combinations of the original variables; these are used in the backfitting
algorithm to find an AM that sums functions whose arguments are the pseudovariables (which
need not be orthogonal). The second routine conditions upon the estimated AM functions, and
searches for linear combinations of the original variables that maximize the fit. Alternating iterative
application of these methods converges, very generally, to a unique solution.

PPR can be hard to interpret whenr > 1. If r is allowed to grow without bound, PPR is consistent.
Unlike AM, PPR is invariant to affine transformations of the data; this is appealing when the
measurements impose no natural basis.

3.1.3. Recursive partitioning regression

Recursive partitioning regression (RPR) methods have become popular since the advent of the
CART (Classification And Regression Trees) methodology, developed by Breiman, Friedman,
Olshen and Stone (1984). This project is concerned with regression problems, in which the basic
RPR algorithm fits a model of the form

E[Yi] =
MX
j=1

�jIRj
(X i)

where theR1; : : : ; RM are rectangular regions that partition IRp, and IRj
(X i) is an indicator

function taking the value 1 if and only ifX i 2 Rj , and otherwise is zero.

RPR is designed to be very good at finding local low-dimensional structure in functions that
show high-dimensional global dependence. It is consistent and has a powerful graphic represen-
tation as a decision tree which increases interpretability. However, many elementary functions
are awkward for RPR, and it is difficult to discover when the fitted piecewise-constant model
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approximates a standard smooth function. The RPR code available on Statlib (accessible at
http://lib.stat.cmu.edu/ ) was used, rather than CART, to enable inclusion of nonpro-
prietary code in DRAT.

3.1.4. Multivariate adaptive regression splines

Friedman (1991a) describes a method that combines the PPR with RPR, using multivariate adaptive
regression splines. This procedure fits a weighted sum of multivariate spline basis functions, also
known as tensor-spline basis functions, and the model takes the form

E[Yi] =
qX

k=0

akBk(X1; : : : ;Xn)

where the coefficientsak are determined in the course of generalized cross-validation fitting. The
constant term follows by settingB0(X1; : : : ;Xn) � 1, and the other multivariate splines are
products of univariate spline basis functions:

Bk(x1; : : : ; xn) =
rkY
s=1

b(xi(s;k)jts;k) 1� k � r

Here the subscripti(s; k) indicates a particular explanatory variable, and the basis spline in that
variable has a knot atts;k. The values ofq, the r1; : : : ; rq, the knot sets and the appropriate
explanatory variables for inclusion are all determined adaptively from the data.

Multivariate adaptive regression splines (MARS) admits an ANOVA-like decomposition that can
be represented in a table and similarly interpreted. MARS is designed to perform well whenever
the true function has low local dimension. The procedure automatically accommodates interactions
between variables and variable selection.

3.1.5. Alternating conditional expectations

Another extension of AM permits functional transformation of the response variable, as well as the
p explanatory variables. The alternating conditional expectations (ACE) algorithm, developed by
Breiman and Friedman (1985), fits the model

E[g(Yi)] = �0 +

pX
j=1

fj(Xij) (2)

where all conditions are as given for Equation (1), exceptg is an unspecified function, scaled to
satisfy the technically necessary constraint that var[g(Y )] = 1 (otherwise, the zero transformation
would be trivially perfect).

Given variablesYi andX i, one wantsg and f1; : : : ; fp such that E[g(Yi)jX i] �
Pp

j=1 fj(Xij)

resembles independent error (without loss of generality, the constant term�0 can be ignored).
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Formally, one solves

(ĝ; f̂1; : : : ; f̂p) = argmin(g;f1;:::;fp)

8><
>:

nX
i=1

2
4g(Yi)�

pX
j=1

fj(Xij)

3
5

2
9>=
>;

where ˆg satisfies the unit variance constraint. Operationally, one proceeds as follows:

1. Estimateg by g(0), obtained by applying a smoother to theYi values and standardizing the
variance. Setf (0)

j
� 1 for all j = 1; : : : ; p.

2. Conditional ong(k�1)(Yi), apply the backfitting algorithm to find estimatesf (k)1 ; : : : ; f (k)
p

.

3. Conditional on the sum off (k)1 ; : : : ; f (k)
p

, obtaing(k) by applying the backfitting algorithm
(this interchanges the role of the explanatory and response variables). Standardize the new
function to have unit variance.

4. Test whethere(k) � e(k�1) = 0, where

e(k) = n�1
nX
i=1

2
4g(k)(Yi)�

pX
j=1

f
(k)

j
(Xij)

3
5

2

If it is zero, set ˆg = g(k), f̂j = f
(k)

j
; otherwise, go to step 2.

Steps 2 and 3 calculate smoothed expectations, each conditional upon functions of either the
response or the explanatory variables; this alternation gives the method its name.

The ACE analysis finds sets of functions for which the linear correlation of the transformed response
variable and the sum of the transformed explanatory variables is maximized. Thus ACE is closer
kin to correlation analysis, and the multiple correlation coefficient, than to regression. Since ACE
does not aim directly at regression, it has some undesirable features; for example, it treats the
response and explanatory variables symmetrically, small changes can lead to radically different
solutions (cf. Buja and Kass, 1985), and it does not reproduce model transformations. To increase
fairness of comparison, the experiment used an implementation of ACE slightly modified to include
a stepwise selection rule mimicking that of SLR.

3.1.6. Additivity and variance stabilization

To overcome some of the potential drawbacks of the ACE methodology, Tibshirani (1988) invented
a variation called additivity and variance stabilization (AVAS), which imposes a variance-stabilizing
transformation in the ACE backfitting loop for the explanatory variables. AVAS avoids at least two
of the deficiencies of ACE in regression applications: it reproduces model transformations and it
removes the symmetry between response and explanatory variables.
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3.1.7. Locally weighted regression

Cleveland (1979) proposed a locally weighted regression (LOESS) technique. Rather than simply
taking a local average, LOESS fits a model of the form E[Y ] = �(x)Tx where

�̂(x) = argmin
�2IRp

nX
i=1

wi(x)(Yi � �
T
X i)

2

andwi is a kernel function that weights the influence of theith observation according to the
(oriented) distance ofX i fromx.

Cleveland and Devlin (1988) generalize LOESS to include polynomial regression, rather than just
multiple linear regression, in fittingYi to the data, but the improvement seems small. LOESS has
good consistency properties, but can be inefficient at discovering some relatively simple structures
in data.

3.1.8. Neural networks

Many neural network (NN) techniques exist, but from a statistical regression standpoint (cf. Barron
and Barron, 1988), nearly all variants fit models that are weighted sums of sigmoidal functions
whose arguments involve linear combinations of the data. A typical feed-forward network uses a
model of the form

E[Y ] = �0 +

mX
i=1

�if(�
T
i
x+ 
i0)

wheref(�) is a logistic function and the�0, 
i0, and�i are estimated from the data. Formally, this
approach is similar to that in PPR. The choice ofm determines the number of hidden nodes in the
network, and affects the smoothness of the fit; in most cases the user determines this parameter,
but for the experiment,m is also estimated from the data.

The particular implementation of the neural net strategy that was employed is Cascor, developed
by Fahlman and Lebiere (1990) and used in a similar large-scale simulation comparison of classifi-
cation methods, described in Sutherland et al. (1993). It was chosen because it learns more rapidly
than standard feedforward nets with backpropagation training, because it was used previously in a
major comparison, and because it adaptively chooses the number of hidden nodes, thereby making
the analysis more automatic. However, Cascor is not necessarily a good indicator of all neural
network strategies. Recent work (Doering, Galicki, and Witte, 1997) suggests that in some cases
Cascor does not find optimal weights, and thus some alternative implementation of neural net
methods may achieve better performance.

Neural nets are widely used, although their performance properties, compared to alternative regres-
sion methods, have not been thoroughly studied. Ripley (1993) describes one assessment which
finds that neural net methods are not generally competitive. Another difficulty with neural nets is
that the resulting model is hard to interpret.
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3.2. Other design considerations

The other factors used in the simulation experiment (i.e., function, dimension, sample size, noise,
and model sparseness) reflect conventional criteria for performance comparison. Only a few
comments seem necessary:

Function. The different levels of function were chosen to reflect the range of structure that prac-
titioners typically encounter in applications. As shown in Figure 1, these include essentially
flat surfaces (Linear), surfaces with one or more bumps (Gaussian and Correlated Gaussian),
surfaces with structure that is additive in either the natural explanatory variables or linear
combinations of them (Mixture), and surfaces that incorporate multiplicative interactions
(Product). Also, these choices exercise each of the methods; by their constructions, ACE and
AVAS should excel on the Product function, NN and PPR should do well on the Correlated
Gaussian function, LOESS and AM should handle the Gaussian function, and RPR and
MARS should do well with the Mixture function.

Dimension. The values taken by the dimension factor may seem small. However, previous
experience with the impact of the curse of dimensionality (COD) suggests that this is the
correct arena for comparing the differentmethods. In higher dimensions, all methods perform
so poorly that comparison is difficult.

Sample size and noise. The values of the sample size and noise factors are typical of previous
simulation studies. Qualitatively, these two effects are similar, since a large sample with
large noise is informationally comparable to a smaller sample with smaller noise.

Model sparseness. Variable selection is a key concern, both in practice and in theory. Including
the model sparseness factor enables users to assess the regression methods with respect to
this. But the automatic selection rules may not be comparable across implementations, and
thus our results compare default performances, rather than the best that an expert might coax
by tuning.

The guiding principle behind the choice of these factor levels is to explore the range of situations
that arise in applications, and thereby assist practitioners who have some prior sense of the kinds
of regression structures they face.

4. Results

The results of the study consist of the estimated MISE and its variance for 10� 5� 34 different
situations (less a few, since (1) when model sparseness sets all variables to be spurious, the function
level becomes irrelevant, and (2) some programs took several days to run, or exhausted the available
memory on the computer, with large dimensions and/or sample sizes). These data are complex,
and are reported in several ways.
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Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

MOD SMALL ALL MLR (27.95) 7.02 (3.00) .26 (.09) .01
MOD SMALL ALL SLR (32.14) 10.65 (3.00) .26 (.09) .01
MOD SMALL ALL ACE 53.12 7.36 15.06 1.14 .41 .02
MOD SMALL ALL AM (27.91) 7.01 (3.00) .26 (.09) .01
MOD SMALL ALL MARS 158.23 35.32 18.36 1.88 .30 .02
MOD SMALL ALL RPR 1248.37 307.78 176.32 10.89 61.53 .78
MOD SMALL ALL PPR 55.08 13.14 19.24 8.68 .11 .01
MOD SMALL ALL LOESS 59.50 9.12 9.14 .52 * *
MOD SMALL ALL AVAS 79.40 18.14 14.73 .95 .38 .02
MOD SMALL ALL NN 124.03 13.05 100.42 2.43 * *
MOD SMALL HALF MLR 27.95 7.02 3.00 .26 (.09) .01
MOD SMALL HALF SLR (23.23) 6.75 (2.39) .30 (.08) .01
MOD SMALL HALF ACE 42.42 5.92 14.58 1.12 .40 .02
MOD SMALL HALF AM 27.68 7.00 3.00 .26 (.09) .01
MOD SMALL HALF MARS (17.99) 3.24 11.00 1.68 .40 .02
MOD SMALL HALF RPR 1821.76 64.32 239.41 4.50 100.04 2.47
MOD SMALL HALF PPR 35.31 5.61 13.95 8.09 .11 .01
MOD SMALL HALF LOESS 59.50 9.12 9.14 .52 * *
MOD SMALL HALF AVAS 74.93 14.13 15.02 1.08 .36 .01
MOD SMALL HALF NN 103.08 8.41 94.92 2.65 * *

Table 2: A subset of the results for the case where function is Linear, sample size
is small (k = 4), and noise is moderate (� = 0:1). Dimension level is indicated by p.
All numbers have been multiplied by 10,000. Asterisks denote cases in which no
data were available. The parenthesized MISE values were not significantly different
from the best regression method under a two-sample t-test with � = :05.

Table 2 gives a subset of the results for the case where function is Linear, sample size is small
(k = 4), and noise is moderate (� = 0:1); the MISE values have been multiplied by 10,000 for
ease of reading. Much of this information is later expressed in Figure 3, where these MISE values
are the data points in each of the six graphs for the case where sample size is small. (The complete
set of results is reported in Appendix A; the subset shown in Table 2 appears on page 30.)

A more powerful comparison could be made by taking account of the variance reduction induced by
the sample reuse; in that case, most of the MISE values are significantly different, and the method
with minimum MISE is strongly favored. But that degree of scrutiny ensures that “Le mieux est
l’ennemi du bien;” it seems better service to highlight all methods that work well, rather than to
emphasize one that is marginally best.

When one has little information about the application, a method that never does badly may be pre-
ferred to one that is sometimes the best, but sometimes among the worst. The overall performance
of the competing regression methods can be ascertained by taking the ratio of the MISE for a given
method to the MISE for the best method, for each combination of factor levels, and then averaging
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Method p = 2 p = 6 p = 12
MLR 2.40 3.21 15.03
SLR 1.77 1.70 8.35
ACE 7.49 30.43 165.70
AM 2.49 4.68 29.58

MARS 1.08 15.86 72.58
RPR 39.38 21.92 1.00
PPR 6.71 14.53 41.20

LOESS 4.85 9.74 *
AVAS 7.77 26.83 97.07

NN 28.46 644.08 *

Table 3: Averages of the MISE ratios for each regression method, broken out
by dimension level (indicated by p), for the case where model sparseness sets all
variables to be spurious (i.e., the Constant function was used regardless of function
level). Averages were taken over the noise and sample size levels. Asterisks
denote cases in which no data were available.

Method All Explanatory Half Explanatory
p = 2 p = 6 p = 12 p = 2 p = 6 p = 12

MLR 1.00 1.00 1.00 1.19 1.27 1.08
SLR 1.12 1.10 1.13 1.04 1.00 1.00
ACE 5.07 5.95 5.35 4.20 7.17 5.71
AM 1.00 1.01 1.00 1.22 1.29 2.19

MARS 2.57 5.57 8162.43 1.73 6.92 300.42
RPR 782.77 1053.40 22217.08 2536.65 3049.21 36891.63
PPR 4.11 3.59 1.45 3.13 4.11 1.55

LOESS 1.94 2.98 * 2.29 3.80 *
AVAS 11.25 5.95 4.51 6.67 7.02 4.70

NN 22.11 96.85 * 44.95 157.34 *

Table 4: Averages of the MISE ratios for each regression method, broken out
by dimension (indicated by p) and model sparseness levels, for the case where
function is Linear. Averages were taken over the noise and sample size levels.
Asterisks denote cases in which no data were available.

14



Method All Explanatory Half Explanatory
p = 2 p = 6 p = 12 p = 2 p = 6 p = 12

MLR 4.10 2.02 7.51 2.66 9.43 4.95
SLR 4.15 1.91 4.40 2.58 9.40 9.00
ACE 2.84 6.73 75.19 2.20 3.20 2.41
AM 4.10 2.02 7.51 2.66 9.42 4.95

MARS 1.91 4.82 34.71 1.64 1.81 4.80
RPR 49.37 12.31 1.01 395.90 42.71 9.34
PPR 2.89 3.56 19.16 1.94 4.01 1.96

LOESS 1.27 2.43 * 2.73 2.38 *
AVAS 3.71 6.25 17.39 2.48 3.09 1.25

NN 8.06 92.55 * 12.77 26.50 *

Table 5: Averages of the MISE ratios for each regression method, broken out
by dimension (indicated by p) and model sparseness levels, for the case where
function is Gaussian. Averages were taken over the noise and sample size levels.
Asterisks denote cases in which no data were available.

Method All Explanatory Half Explanatory
p = 2 p = 6 p = 12 p = 2 p = 6 p = 12

MLR 4.59 2.29 1.51 2.66 7.04 1.75
SLR 4.69 2.30 1.62 2.58 7.02 1.86
ACE 4.41 1.63 1.00 2.20 6.24 1.01
AM 4.59 2.29 1.51 2.66 7.03 1.75

MARS 2.39 2.12 1.44 1.64 2.17 1.36
RPR 15.53 2.68 1.52 395.90 10.63 1.62
PPR 4.55 2.16 1.46 1.94 6.44 1.48

LOESS 1.18 1.78 * 2.73 3.23 *
AVAS 4.05 1.65 1.03 2.48 5.18 1.06

NN 3.56 1.62 * 12.80 3.19 *

Table 6: Averages of the MISE ratios for each regression method, broken out
by dimension (indicated by p) and model sparseness levels, for the case where
function is Correlated Gaussian. Averages were taken over the noise and sample
size levels. Asterisks denote cases in which no data were available.
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Method All Explanatory Half Explanatory
p = 2 p = 6 p = 12 p = 2 p = 6 p = 12

MLR 8.94 2.53 5.07 3.99 6.99 3.17
SLR 8.61 2.33 3.13 3.61 6.91 3.14
ACE 10.47 6.39 45.69 4.13 8.21 3.61
AM 8.94 2.52 5.07 3.99 6.98 3.17

MARS 1.70 4.28 22.43 1.14 1.60 2.42
RPR 27.66 12.98 1.00 27.62 11.18 3.12
PPR 3.07 2.88 12.74 4.25 1.96 1.10

LOESS 1.35 1.97 * 3.36 1.37 *
AVAS 10.88 5.99 13.05 4.05 8.51 3.07

NN 7.67 57.26 * 16.53 15.84 *

Table 7: Averages of the MISE ratios for each regression method, broken out
by dimension (indicated by p) and model sparseness levels, for the case where
function is Mixture. Averages were taken over the noise and sample size levels.
Asterisks denote cases in which no data were available.

Method All Explanatory Half Explanatory
p = 2 p = 6 p = 12 p = 2 p = 6 p = 12

MLR 2.69 8.96 16.66 1.19 12.32 23.81
SLR 2.78 9.02 16.67 1.04 12.26 31.36
ACE 2.13 1.74 1.01 4.20 1.70 1.00
AM 2.69 8.96 16.67 1.22 12.31 23.81

MARS 1.81 4.70 57.66 1.73 2.20 15.32
RPR 36.30 31.70 61.11 2536.65 70.23 85.83
PPR 3.27 9.39 16.24 3.13 11.87 22.58

LOESS 1.20 7.14 * 2.29 6.61 *
AVAS 3.81 3.35 5.25 6.67 5.58 7.06

NN 6.40 20.96 * 43.39 17.79 *

Table 8: Averages of the MISE ratios for each regression method, broken out
by dimension (indicated by p) and model sparseness levels, for the case where
function is Product. Averages were taken over the noise and sample size levels.
Asterisks denote cases in which no data were available.
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these ratios over the levels of noise and sample size. Table 3 shows this analysis for the case
where model sparseness sets all variables to be spurious (i.e., the Constant function was used
regardless of function level); the results are broken out by dimension levels. Tables 4, 5, 6, 7, and 8
show this analysis for the cases where function is set, respectively, to Linear, Gaussian, Correlated
Gaussian, Mixture, and Product; the results are broken out by dimension and model sparseness
levels. Asterisks denote cases in which no data were available.

This tabular information is difficult to apprehend; graphs enable a stronger sense of comparison.
To that end, two figures are shown, all for the moderate level of noise (� = 0:1), that describe the
performance of the methods across dimension and sample size levels. The figures do not include
error bars, since (1) this would complicate the images, and (2) the error bars could not take account
of the variance reduction attained by sample reuse. The correlation between most methods is very
high, and thus visually distinct curves may safely be regarded as statistically distinct.

First consider the case when all explanatory variables are spurious. Here the best predictive rule is
IE[y], but many methods overfit. Figure 2 shows the relationship among the methods that attained
the smallest MISE. Again, to simplify the graph labels, the MISE has been multiplied by 10,000.
Table 9 provides a key for associating regression techniques with the lines on the graphs in Figure 2:
the regression techniques are ordered in the table for each graph according to their position when
sample size is small. For example, the graph lines in the middle graph of Figure 2, from better to
worse MISE (i.e., from smaller to larger MISE values) for the small sample size, are associated
with the regression methods are SLR, MLR and AM (i.e., the graph lines for MLR and AM are
indistinguishable), LOESS, PPR, MARS, AVAS, ACE, and RPR. Methods not shown have such
large MISEs that their inclusion would compress the scale among the good performers, making
visual distinctions difficult.

Note that the MISE values typically decrease with dimension, suggesting that the increase in sample
size to match the level of dimension is too generous. But cross-dimensional comparisons are not
straightforward,since MISE is not a dimensionless quantity (cf. Scott, 1992). Within the dimension
levels, RPR does very well when dimension is high (p = 12), and badly otherwise; MARS does
well when dimension is low (p = 2), and degrades for larger values of dimension. SLR, MLR, and
AM are consistently competitive. The theoretical minimum that the optimal procedure could be
expected to attain is 104�2=2pk, where� = :1 andp andk are determined by the dimension and
sample size levels. For low dimension (p = 2), some methods come close to this bound; for larger
p, the curse of dimensionality is apparent.

Figure 3 shows six graphs for the case where function is Linear: the lefthand column pertains to the
case where model sparseness sets all variables to be explanatory, and the righthand column pertains
to the case where model sparseness sets half the variables to be explanatory. As before, all MISE
values are multiplied by 10,000. Table 10 provides a key for associating regression techniques
with the lines on the graphs in Figure 3: the regression techniques are ordered in the table for each
graph according to their position when sample size is small. For example, the graphs lines in the
top left of Figure 3, from better to worse MISE (i.e., from smaller to larger MISE values) for the
small sample size, are associated with the regression methods MLR and AM (i.e., the graph lines
for MLR and AM are indistinguishable), SLR, PPR, AVAS, ACE. As before, methods with very
large MISEs are not included, to enhance visual resolution of comparative performance.
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Figure 2: Graphs of MISE values for the case where model sparseness sets
all variables to be spurious (i.e., the Constant function was used regardless of
function level), broken out by dimension and sample size levels. Each line connects
the MISE values for a particular regression method. All MISE values have been
multiplied by 10,000. The key to associate regression techniques with graph lines
is in Table 9.

ACE Larger MISE RPR Larger MISE

AVAS ACE LOESS
MARS AVAS ACE
PPR MARS AVAS
AM PPR PPR

MLR LOESS MLR,AM
SLR MLR,AM SLR
RPR Smaller MISE SLR Smaller MISE MARS

High Dimension Medium Dimension Low Dimension

6

?

6

?

Table 9: The key to associate regression techniques with lines on the graphs in
Figure 2. This table is laid out in blocks, similar to the graphs in the figure. Each
block in the table lists the regression techniques associated with the lines of the
corresponding graph for the case of small sample size.
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Figure 3: Graphs of MISE values for the cases where model sparseness sets all
variables to be explanatory (lefthand column) and half the variables to be explana-
tory (righthand column), broken out by dimension and sample size levels. Each
line connects the MISE values for a particular regression method. All MISE values
have been multiplied by 10,000. The key to associate regression techniques with
graph lines is in Table 10.
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High ACE Larger MISE ACE
Dimension AVAS AVAS

PPR PPR
SLR MLR,AM
MLR,AM Smaller MISE SLR

Larger MISE AVAS
Medium PPR ACE
Dimension MARS PPR

ACE MARS
AVAS LOESS
LOESS MLR,AM
MLR,SLR,AM Smaller MISE SLR

Larger MISE AVAS
Low AVAS LOESS
Dimension LOESS ACE

PPR PPR
ACE MLR,AM
SLR SLR
MLR,AM Smaller MISE MARS

None Half
Proportion of Spurious Variables

6

?

6

?

6

?

Table 10: The key to associate regression techniques with lines on the graphs in
Figure 3. This table is laid out in blocks, similar to the graphs in the figure. Each
block in the table lists the regression techniques associated with the lines of the
corresponding graph for the case of small sample size.
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Unsurprisingly, MLR excels in the left column, and SLR in the right. The overall shapes of the
lines within graphs are consistent with increasing sample size, except for the the odd performance
of MARS in the lower right graph. It appears MARS has been tuned, during its design, to handle
this paradigm situation when dimension is low (p = 2). More generally, the tables indicate that
MARS shows marked variability in performance for linear functions; this is reasonable, since its
design employs local linear fits. When all knots are removed, one supposes that MARS acts like
SLR; but when some knots, by chance, persist, then MARS cannot employ the global information
available to SLR, MLR, AM, PPR, ACE, or AVAS.

Within dimension, the graphs for the two levels of model sparseness are quite similar. This suggests
that the variable-selection overhead roughly cancels the advantage from fitting a simpler model.
Presumably this correspondence would weaken if the numbers of independent variables or the
levels of dimension were changed.

Similar figures (not shown here) for the other function levels typically have larger MISE values,
and show pronounced differences between the two levels of model sparseness. The insights drawn
from these other figures are reflected in the discussion in Section 5.

5. Conclusions

The tables and figures shown or alluded to in Section 4 describe, for different types of functions,
the performance of the regression methods under examination. A reverse index is now presented:
the performance of each method in different situations is summarized.

� MLR, SLR, and AM perform similarly over all situations considered, and represent broadly
safe choices. They are never disastrous, though rarely the best (except for MLR when
the function is Linear and all variables are explanatory). For the Constant function, SLR
shows less overfit than MLR, which is better than AM; however, it is easy to find functions
for which AM would outperform both MLR and SLR. SLR is usually slightly better with
spurious variables, but its strategy becomes notably less effective as the number of spurious
variables increases, especially for non-linear functions. All three methods have greatest
relative difficulty with the Product function, which has substantial curvature.

� On theoretical grounds ACE and AVAS should be similar, but this is not always borne out.
ACE is decisively better for the Product function, and AVAS for the Constant function. ACE
and AVAS are the best methods for the Product function (as expected—the log transformation
produces a linear relationship), but among the worst for the Constant function and for the
Mixture function; in other cases, their performance is not remarkable. Both methods are
fairly robust to spurious variables.

� Contrary to expectation, MARS does not show well in higher dimensions, especially when
all variables are explanatory, and especially for the Linear function. However, for lower
levels of dimension, MARS shows adequate performance across the different function levels.
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p = 2 p = 6 p = 12
All Explanatory

Linear MLR,SLR MLR,SLR MLR,SLR
Gaussian LOESS,MARS SLR RPR

Correlated Gaussian LOESS LOESS,NN ACE,AVAS
Mixture LOESS LOESS RPR
Product ACE ACE ACE

Half Explanatory
Linear MLR,SLR MLR,SLR MLR,SLR

Gaussian MARS,PPR MARS,PPR MARS,PPR
Correlated Gaussian MARS MARS MARS

Mixture MARS MARS MARS
Product ACE ACE ACE

None Explanatory MARS SLR RPR

Table 11: The most effective regression technique(s) for each combination of
dimension (indicated by p), number of explanatory variables, and underlying func-
tional relationship.

MARS is well-calibrated for the Constant function whenp = 2, but finds spurious structure
for larger values, which may account for some of its failures.

� RPR was consistently bad in low levels of dimension, but sometimes stunningly successful
in high levels of dimension, especially when all variables were explanatory. Surprisingly, its
variable-selection capability was not very successful (MARS’s implementation clearly out-
performs it). Perhaps the CART program, with its flexible pruning, would surpass RPR, but
previous experience with CART suggests such an improvement is dubious. Unsurprisingly,
RPR’s design made it uncompetitive on the Linear function.

� PPR and NN are theoretically similar methods, but PPR was clearly superior in all cases
except for the Correlated Gaussian function. This may reflect peculiarities of the Cascor
implementation of neural nets. PPR was often among the best when the function was
Gaussian, Correlated Gaussian, or Mixture, but among the worst with the Product function
and when all variables were spurious. PPR’s variable selection was generally good. In
contrast, NN was generally poor, except for the Correlated Gaussian function whenp = 2;6
and all variables are explanatory and whenp = 6 and half the variables are explanatory. The
Correlated Gaussian function lends itself to approximation by a small number of sigmoidal
functions whose orientations are determined by the data.

� LOESS does well in low levels of dimension with the Gaussian, Correlated Gaussian, and
Mixture function. It is not as successful with the other function levels, especially the Constant
function. Often, it is not bad in higher levels of dimension, though its relative performance
tends to deteriorate.
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Additional comparative observations on performance are:

� For the Constant function, MARS is good whenp = 2, SLR is good whenp = 6, and RPR is
good whenp = 12. For the Linear function, MLR and SLR are consistently strong. For the
Gaussian function, with all variables explanatory, LOESS and MARS are good whenp = 2,
SLR is good whenp = 6, and RPR is good whenp = 12; when half of the variables are
explanatory, MARS and PPR perform well. For the Correlated Gaussian function, with all
variables explanatory, LOESS works well forp = 2, LOESS and NN forp = 6, and ACE
or AVAS for p = 12; with half the variables explanatory, MARS is reliably good. For the
Mixture function, with all variables explanatory, LOESS works well forp � 6, and RPR
for p = 12; with half of the variables explanatory, MARS is consistently good. There is
considerable variability for the product function, but ACE is broadly superior. Table 11
summarizes these observations.

� Two kinds of variable-selection strategies were used by the methods: global variable selec-
tion, as practiced by SLR, ACE, AVAS, and PPR, and local variable reduction, as practiced by
MARS and RPR. Generally, the latter does best in high levels of dimension, but performance
depends on the level of function.

� LOESS, NN, and sometimes AVAS proved infeasible in high levels of dimension. The
number of local minimizations in LOESS grew exponentially withp. Cascor’s demands
were high because of the cross-validated selection of the hidden nodes; alternative NN
methods fix these a priori, making fewer computational demands, but this is equivalent to
imposing strong, though complex, modeling assumptions. Typically, fitting a single high-
dimensional dataset with either LOESS or NN took more than two hours. AVAS was faster,
but the combination of high dimension and large sample size also required substantial time.

These findings are broadly consistent with those of previous authors, but perhaps more compre-
hensive.

6. Summary

To restate the most important conclusions, MLR, SLR, and AM are blue-chip methods, that rarely
do badly. When the response function is rough, they tend to fit the average, which is often a sensible
default. Obviously, a method that in the same circumstances tended to fit the median might have
more attractive robustness properties.

NN is unreliable; it can do well, but most often has very large MISE compared to other methods.
(Part of this may be that Cascor is not an effective implementation of neural net strategy.) The
only cases in which NN was decently competitive were the Correlated Gaussian function with
p = 2;6 and all variables explanatory, andp = 6 with half of the variables explanatory. However,
in practice, NN methods are reported to be very effective. One conjecture is that this is because
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for many applications, the response function has a sigmoidal shape over the domain of interest, as
happened in the example with the Correlated Gaussian function.

MARS is less able in higher dimensions than recent enthusiasm suggests, but it handles a broad
range of cases well, and rarely has relatively large MISE. Insofar as MARS combines PPR and
RPR strategies, it appears to have protected itself against the worst failures of both, but not attained
the best performances of either; such compromise is probably unavoidable. A further hybrid that
employs the ACE transformation strategy would potentially be effective.

As a final recommendation for practice, analysts are urged to set aside a portion of the original
data, and use each of the reasonable methods to predict the holdouts. The method which does
the best job in this test ought to be the method of choice for the unknown situation in hand.
This obviates the need for strong prior knowledge about the form of the function, and reduces the
inclination to engage in philosophical disputes on the merits of competing strategies for multivariate
nonparametric regression.
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A. Complete results of the simulation experiment

The following tables contain the complete results from the simulation experiment, broken out by
levels of function, noise, sample size (indicated byn), model sparseness, regression method, and
dimension (indicated byp). For each combination of factor levels, the MISE and its standard error
are reported. All MISE values have been multiplied by 10,000. Asterisks denote cases in which
no data were available (the methods took too long to run or had excessive memory demands).

When model sparseness sets all variables to be spurious, the Constant function is used regardless
of function level. To eliminate redundancy, the results for the case where all variables are spurious
appear as their own set of tables for the Constant function, and these results are omitted from the
tables for each function level.
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Function: Constant

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

LOW SMALL NONE MLR 1.12 .28 .12 .01 .00 .00
LOW SMALL NONE SLR .83 .28 .07 .01 .00 .00
LOW SMALL NONE ACE 2.18 .35 .96 .06 .04 .00
LOW SMALL NONE AM 1.12 .28 .14 .02 .01 .00
LOW SMALL NONE MARS .26 .07 .51 .09 .02 .00
LOW SMALL NONE RPR 7.17 1.68 3.27 .36 .00 .00
LOW SMALL NONE PPR 2.03 .27 .47 .05 .01 .00
LOW SMALL NONE LOESS 2.38 .36 .37 .02 * *
LOW SMALL NONE AVAS 2.20 .28 .90 .06 .02 .00
LOW SMALL NONE NN 4.57 .49 4.21 .12 * *
LOW MED NONE MLR .34 .06 .05 .01 .00 .00
LOW MED NONE SLR .24 .06 .04 .01 .00 .00
LOW MED NONE ACE 1.31 .19 .41 .02 .01 .00
LOW MED NONE AM .37 .07 .10 .02 .00 .00
LOW MED NONE MARS .21 .08 .20 .04 .01 .00
LOW MED NONE RPR 7.30 1.62 .58 .20 .00 .00
LOW MED NONE PPR 1.27 .14 .19 .02 .00 .00
LOW MED NONE LOESS .71 .13 .14 .00 * *
LOW MED NONE AVAS 1.46 .19 .37 .03 .01 .00
LOW MED NONE NN 4.32 .30 4.20 .08 * *
LOW LARGE NONE MLR .13 .02 .02 .00 .00 .00
LOW LARGE NONE SLR .10 .02 .01 .00 .00 .00
LOW LARGE NONE ACE .79 .08 .16 .01 .01 .00
LOW LARGE NONE AM .21 .04 .04 .01 .00 .00
LOW LARGE NONE MARS .12 .08 .08 .01 .00 .00
LOW LARGE NONE RPR 5.36 1.49 .00 .00 .00 .00
LOW LARGE NONE PPR .60 .05 .08 .01 .00 .00
LOW LARGE NONE LOESS .21 .02 .05 .00 * *
LOW LARGE NONE AVAS .79 .10 .14 .01 .00 .00
LOW LARGE NONE NN 4.52 .16 4.19 .04 * *
MOD SMALL NONE MLR 27.95 7.02 3.00 .26 .09 .01
MOD SMALL NONE SLR 20.81 6.93 1.68 .30 .05 .01
MOD SMALL NONE ACE 54.54 8.83 23.91 1.46 .87 .05
MOD SMALL NONE AM 27.75 6.99 3.08 .29 .11 .02
MOD SMALL NONE MARS 6.62 1.74 12.77 2.25 .48 .03
MOD SMALL NONE RPR 178.52 42.19 81.75 8.87 .00 .00
MOD SMALL NONE PPR 51.49 6.54 9.91 1.17 .23 .02
MOD SMALL NONE LOESS 59.50 9.12 9.14 .52 * *
MOD SMALL NONE AVAS 53.41 6.95 23.02 1.47 .63 .02
MOD SMALL NONE NN 117.30 11.59 102.09 2.33 * *
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Function: Constant (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

MOD MED NONE MLR 8.48 1.38 1.28 .13 .03 .00
MOD MED NONE SLR 6.03 1.52 .90 .14 .02 .00
MOD MED NONE ACE 32.70 4.69 10.31 .63 .35 .01
MOD MED NONE AM 8.36 1.43 1.30 .14 .05 .01
MOD MED NONE MARS 5.21 2.05 5.03 1.12 .16 .02
MOD MED NONE RPR 181.89 40.63 14.42 5.12 .00 .00
MOD MED NONE PPR 31.38 3.46 4.80 .54 .09 .01
MOD MED NONE LOESS 17.67 3.21 3.56 .12 * *
MOD MED NONE AVAS 37.31 4.85 9.19 .65 .25 .01
MOD MED NONE NN 112.31 7.98 105.34 2.31 * *
MOD LARGE NONE MLR 3.36 .53 .38 .03 .01 .00
MOD LARGE NONE SLR 2.47 .59 .19 .04 .01 .00
MOD LARGE NONE ACE 19.65 2.00 3.93 .24 .13 .01
MOD LARGE NONE AM 3.32 .55 .45 .04 .03 .01
MOD LARGE NONE MARS 3.04 1.99 2.06 .25 .04 .00
MOD LARGE NONE RPR 140.70 37.26 .06 .02 .00 .00
MOD LARGE NONE PPR 16.26 1.46 1.96 .18 .03 .00
MOD LARGE NONE LOESS 5.34 .53 1.19 .06 * *
MOD LARGE NONE AVAS 19.26 2.52 3.44 .21 .04 .00
MOD LARGE NONE NN 113.65 4.70 104.47 1.25 * *
HIGH SMALL NONE MLR 698.86 175.55 75.12 6.58 2.13 .25
HIGH SMALL NONE SLR 520.34 173.18 42.09 7.45 1.16 .26
HIGH SMALL NONE ACE 1363.56 220.85 597.75 36.47 21.80 1.17
HIGH SMALL NONE AM 699.52 175.67 75.38 6.58 2.15 .25
HIGH SMALL NONE MARS 165.58 43.50 319.15 56.27 11.88 .79
HIGH SMALL NONE RPR 4582.92 1043.68 2060.34 233.91 .11 .03
HIGH SMALL NONE PPR 1287.09 163.50 262.36 19.06 5.46 .57
HIGH SMALL NONE LOESS 1487.55 227.92 228.57 13.02 * *
HIGH SMALL NONE AVAS 1365.34 187.20 567.22 38.60 15.53 .54
HIGH SMALL NONE NN 2979.35 318.09 2656.58 63.22 * *
HIGH MED NONE MLR 212.10 34.48 31.89 3.37 .76 .06
HIGH MED NONE SLR 150.78 38.06 22.44 3.58 .45 .07
HIGH MED NONE ACE 817.43 117.19 257.85 15.66 8.75 .29
HIGH MED NONE AM 212.00 34.66 32.06 3.42 .79 .07
HIGH MED NONE MARS 130.19 51.14 125.72 27.96 3.91 .46
HIGH MED NONE RPR 4518.82 1022.41 360.48 128.12 .07 .03
HIGH MED NONE PPR 787.15 86.64 104.46 10.07 2.11 .16
HIGH MED NONE LOESS 441.64 80.37 89.01 3.11 * *
HIGH MED NONE AVAS 905.29 115.21 229.53 16.12 6.41 .34
HIGH MED NONE NN 2774.71 203.46 2635.23 55.04 * *
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Function: Constant (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

HIGH LARGE NONE MLR 84.07 13.20 9.62 .75 .29 .02
HIGH LARGE NONE SLR 61.66 14.73 4.67 1.02 .16 .03
HIGH LARGE NONE ACE 491.16 50.03 98.28 5.85 3.35 .15
HIGH LARGE NONE AM 83.76 13.33 9.70 .73 .33 .03
HIGH LARGE NONE MARS 75.95 49.77 51.58 6.14 1.05 .08
HIGH LARGE NONE RPR 3496.65 933.24 1.50 .52 .03 .01
HIGH LARGE NONE PPR 388.70 33.36 43.99 2.66 .83 .06
HIGH LARGE NONE LOESS 133.52 13.29 29.72 1.49 * *
HIGH LARGE NONE AVAS 514.20 62.38 83.33 4.78 .68 .05
HIGH LARGE NONE NN 2933.91 104.83 2658.15 27.90 * *
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Function: Linear

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

LOW SMALL ALL MLR 1.12 .28 .12 .01 .00 .00
LOW SMALL ALL SLR 1.12 .28 .12 .01 .00 .00
LOW SMALL ALL ACE 11.08 1.95 .68 .05 .02 .00
LOW SMALL ALL AM 1.11 .28 .12 .01 .00 .00
LOW SMALL ALL MARS 2.19 .43 .48 .05 .01 .00
LOW SMALL ALL RPR 602.38 85.66 113.45 6.13 57.80 .52
LOW SMALL ALL PPR 9.66 1.82 .30 .03 .00 .00
LOW SMALL ALL LOESS 2.38 .36 .37 .02 * *
LOW SMALL ALL AVAS 29.48 4.91 1.11 .39 .02 .00
LOW SMALL ALL NN 21.51 3.15 1.76 .11 * *
LOW SMALL HALF MLR 1.12 .28 .12 .01 .00 .00
LOW SMALL HALF SLR .93 .27 .10 .01 .00 .00
LOW SMALL HALF ACE 4.57 1.05 .66 .04 .02 .00
LOW SMALL HALF AM 1.13 .29 .12 .01 .00 .00
LOW SMALL HALF MARS 2.11 .65 .46 .08 .02 .00
LOW SMALL HALF RPR 1651.73 26.01 214.46 3.36 93.15 1.54
LOW SMALL HALF PPR 3.86 .98 .29 .02 .00 .00
LOW SMALL HALF LOESS 2.38 .36 .37 .02 * *
LOW SMALL HALF AVAS 16.83 5.73 .86 .05 .02 .00
LOW SMALL HALF NN 29.71 2.04 5.19 .45 * *
LOW MED ALL MLR .34 .06 .05 .01 .00 .00
LOW MED ALL SLR .34 .06 .05 .01 .00 .00
LOW MED ALL ACE 3.18 .67 .28 .01 .01 .00
LOW MED ALL AM .34 .05 .05 .01 .00 .00
LOW MED ALL MARS .64 .13 .20 .02 13.82 1.57
LOW MED ALL RPR 627.72 71.44 98.72 2.75 58.43 .81
LOW MED ALL PPR 2.37 .56 .12 .01 .00 .00
LOW MED ALL LOESS .71 .13 .14 .00 * *
LOW MED ALL AVAS 10.88 2.53 .28 .02 .01 .00
LOW MED ALL NN 9.93 1.22 1.41 .06 * *
LOW MED HALF MLR .34 .06 .05 .01 .00 .00
LOW MED HALF SLR .30 .06 .04 .01 .00 .00
LOW MED HALF ACE 1.75 .33 .26 .02 .01 .00
LOW MED HALF AM .41 .07 .05 .01 .00 .00
LOW MED HALF MARS .64 .13 .20 .02 .00 .00
LOW MED HALF RPR 1636.55 12.22 209.65 2.44 90.57 1.90
LOW MED HALF PPR 1.18 .28 .11 .01 .00 .00
LOW MED HALF LOESS .71 .13 .14 .00 * *
LOW MED HALF AVAS 2.79 .65 .28 .02 .01 .00
LOW MED HALF NN 24.22 1.80 3.74 .31 * *
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Function: Linear (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

LOW LARGE ALL MLR .13 .02 .02 .00 .00 .00
LOW LARGE ALL SLR .13 .02 .02 .00 .00 .00
LOW LARGE ALL ACE .74 .11 .10 .00 .00 .00
LOW LARGE ALL AM .14 .02 .02 .00 .00 .00
LOW LARGE ALL MARS .44 .23 .07 .01 27.14 1.51
LOW LARGE ALL RPR 560.75 20.64 93.19 1.77 58.02 .62
LOW LARGE ALL PPR .52 .09 .04 .00 .00 .00
LOW LARGE ALL LOESS .21 .02 .05 .00 * *
LOW LARGE ALL AVAS 2.76 .67 .09 .01 .00 .00
LOW LARGE ALL NN 7.34 .60 1.09 .07 * *
LOW LARGE HALF MLR .13 .02 .02 .00 .00 .00
LOW LARGE HALF SLR .11 .02 .01 .00 .00 .00
LOW LARGE HALF ACE .52 .06 .09 .00 .00 .00
LOW LARGE HALF AM .14 .02 .02 .00 .00 .00
LOW LARGE HALF MARS .16 .04 .10 .01 1.16 1.16
LOW LARGE HALF RPR 1645.60 8.02 207.54 1.21 91.64 1.45
LOW LARGE HALF PPR .31 .04 .03 .00 .00 .00
LOW LARGE HALF LOESS .21 .02 .05 .00 * *
LOW LARGE HALF AVAS .92 .37 .09 .01 .00 .00
LOW LARGE HALF NN 20.97 1.41 3.00 .28 * *
MOD SMALL ALL MLR 27.95 7.02 3.00 .26 .09 .01
MOD SMALL ALL SLR 32.14 10.65 3.00 .26 .09 .01
MOD SMALL ALL ACE 53.12 7.36 15.06 1.14 .41 .02
MOD SMALL ALL AM 27.91 7.01 3.00 .26 .09 .01
MOD SMALL ALL MARS 158.23 35.32 18.36 1.88 .30 .02
MOD SMALL ALL RPR 1248.37 307.78 176.32 10.89 61.53 .78
MOD SMALL ALL PPR 55.08 13.14 19.24 8.68 .11 .01
MOD SMALL ALL LOESS 59.50 9.12 9.14 .52 * *
MOD SMALL ALL AVAS 79.40 18.14 14.73 .95 .38 .02
MOD SMALL ALL NN 124.03 13.05 100.42 2.43 * *
MOD SMALL HALF MLR 27.95 7.02 3.00 .26 .09 .01
MOD SMALL HALF SLR 23.23 6.75 2.39 .30 .08 .01
MOD SMALL HALF ACE 42.42 5.92 14.58 1.12 .40 .02
MOD SMALL HALF AM 27.68 7.00 3.00 .26 .09 .01
MOD SMALL HALF MARS 17.99 3.24 11.00 1.68 .40 .02
MOD SMALL HALF RPR 1821.76 64.32 239.41 4.50 100.04 2.47
MOD SMALL HALF PPR 35.31 5.61 13.95 8.09 .11 .01
MOD SMALL HALF LOESS 59.50 9.12 9.14 .52 * *
MOD SMALL HALF AVAS 74.93 14.13 15.02 1.08 .36 .01
MOD SMALL HALF NN 103.08 8.41 94.92 2.65 * *
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Function: Linear (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

MOD MED ALL MLR 8.48 1.38 1.28 .13 .03 .00
MOD MED ALL SLR 8.48 1.38 1.28 .13 .03 .00
MOD MED ALL ACE 33.98 3.92 5.94 .23 .16 .01
MOD MED ALL AM 8.47 1.37 1.28 .13 .03 .00
MOD MED ALL MARS 19.60 4.13 5.54 .52 14.45 1.47
MOD MED ALL RPR 869.96 103.93 124.07 4.45 62.80 .75
MOD MED ALL PPR 26.71 4.34 2.24 .26 .04 .00
MOD MED ALL LOESS 17.67 3.21 3.56 .12 * *
MOD MED ALL AVAS 36.89 4.44 5.61 .29 .16 .01
MOD MED ALL NN 99.61 8.50 99.59 2.03 * *
MOD MED HALF MLR 8.48 1.38 1.28 .13 .03 .00
MOD MED HALF SLR 7.38 1.44 1.08 .13 .03 .00
MOD MED HALF ACE 29.42 4.45 5.79 .22 .16 .01
MOD MED HALF AM 8.52 1.42 1.27 .13 .03 .00
MOD MED HALF MARS 16.73 3.84 5.67 .53 .10 .01
MOD MED HALF RPR 1708.05 41.80 219.15 3.15 97.91 2.56
MOD MED HALF PPR 18.07 3.28 2.14 .22 .04 .00
MOD MED HALF LOESS 17.67 3.21 3.56 .12 * *
MOD MED HALF AVAS 33.71 4.57 5.51 .32 .14 .01
MOD MED HALF NN 97.55 11.51 94.53 1.76 * *
MOD LARGE ALL MLR 3.36 .53 .38 .03 .01 .00
MOD LARGE ALL SLR 3.36 .53 .38 .03 .01 .00
MOD LARGE ALL ACE 13.88 1.15 2.16 .09 .06 .00
MOD LARGE ALL AM 3.37 .53 .39 .03 .01 .00
MOD LARGE ALL MARS 4.35 .67 2.16 .20 26.11 1.37
MOD LARGE ALL RPR 828.79 60.61 106.04 3.90 61.95 .57
MOD LARGE ALL PPR 8.31 .90 .82 .07 .02 .00
MOD LARGE ALL LOESS 5.34 .53 1.19 .06 * *
MOD LARGE ALL AVAS 14.87 1.57 1.92 .11 .03 .00
MOD LARGE ALL NN 93.48 4.39 99.50 1.05 * *
MOD LARGE HALF MLR 3.36 .53 .38 .03 .01 .00
MOD LARGE HALF SLR 2.84 .56 .27 .04 .01 .00
MOD LARGE HALF ACE 15.45 1.64 2.17 .08 .06 .00
MOD LARGE HALF AM 3.38 .52 .38 .03 .01 .00
MOD LARGE HALF MARS 5.26 1.54 2.41 .34 1.19 1.17
MOD LARGE HALF RPR 1671.40 30.36 211.66 2.36 101.42 2.14
MOD LARGE HALF PPR 10.49 1.78 .63 .05 .02 .00
MOD LARGE HALF LOESS 5.34 .53 1.19 .06 * *
MOD LARGE HALF AVAS 14.09 1.65 1.91 .10 .03 .00
MOD LARGE HALF NN 86.01 5.20 92.99 1.07 * *
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Function: Linear (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

HIGH SMALL ALL MLR 698.86 175.55 75.12 6.58 2.13 .25
HIGH SMALL ALL SLR 853.34 167.67 106.59 5.29 2.37 .21
HIGH SMALL ALL ACE 1149.79 161.82 517.59 33.79 11.98 .68
HIGH SMALL ALL AM 700.48 176.17 75.06 6.58 2.13 .25
HIGH SMALL ALL MARS 701.76 76.61 458.09 81.63 14.58 1.06
HIGH SMALL ALL RPR 7167.58 1568.85 2020.65 161.21 69.49 .18
HIGH SMALL ALL PPR 1437.90 244.03 337.96 24.76 3.64 .39
HIGH SMALL ALL LOESS 1487.55 227.92 228.57 13.02 * *
HIGH SMALL ALL AVAS 1269.11 184.66 488.20 34.53 10.27 .52
HIGH SMALL ALL NN 2874.32 273.84 2533.64 55.51 * *
HIGH SMALL HALF MLR 698.86 175.55 75.12 6.58 2.13 .25
HIGH SMALL HALF SLR 659.82 169.01 65.97 10.33 1.95 .22
HIGH SMALL HALF ACE 1306.61 209.63 534.01 38.54 10.67 .52
HIGH SMALL HALF AM 700.57 176.14 75.03 6.56 2.14 .25
HIGH SMALL HALF MARS 980.79 99.23 545.75 154.81 11.99 .47
HIGH SMALL HALF RPR 6120.10 1335.74 2477.94 304.14 137.36 1.87
HIGH SMALL HALF PPR 1285.05 255.48 442.21 32.85 3.04 .46
HIGH SMALL HALF LOESS 1487.55 227.92 228.57 13.02 * *
HIGH SMALL HALF AVAS 1243.75 181.84 475.59 37.67 9.62 .36
HIGH SMALL HALF NN 2806.13 347.00 2636.77 69.95 * *
HIGH MED ALL MLR 212.10 34.48 31.89 3.37 .76 .06
HIGH MED ALL SLR 316.35 40.70 43.89 5.53 .83 .08
HIGH MED ALL ACE 870.34 121.43 198.99 10.42 4.26 .18
HIGH MED ALL AM 211.72 34.35 31.88 3.37 .75 .06
HIGH MED ALL MARS 533.57 40.58 187.33 17.19 143.64 127.11
HIGH MED ALL RPR 5910.82 974.39 720.56 167.88 69.47 .19
HIGH MED ALL PPR 880.51 125.50 184.61 15.33 1.29 .13
HIGH MED ALL LOESS 441.64 80.37 89.01 3.11 * *
HIGH MED ALL AVAS 870.12 122.10 178.82 11.76 4.05 .22
HIGH MED ALL NN 2919.89 185.31 2585.78 33.27 * *
HIGH MED HALF MLR 212.10 34.48 31.89 3.37 .76 .06
HIGH MED HALF SLR 231.02 59.73 26.97 3.13 .67 .08
HIGH MED HALF ACE 816.30 136.00 180.50 6.83 4.25 .21
HIGH MED HALF AM 211.16 34.40 31.89 3.37 .75 .06
HIGH MED HALF MARS 406.73 74.99 146.96 20.75 2.63 .17
HIGH MED HALF RPR 6062.59 941.35 767.26 130.32 138.27 .36
HIGH MED HALF PPR 674.30 131.88 218.03 27.72 1.23 .10
HIGH MED HALF LOESS 441.64 80.37 89.01 3.11 * *
HIGH MED HALF AVAS 847.22 128.02 160.28 11.18 3.71 .21
HIGH MED HALF NN 2814.44 165.28 2634.68 47.74 * *
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Function: Linear (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

HIGH LARGE ALL MLR 84.07 13.20 9.62 .75 .29 .02
HIGH LARGE ALL SLR 104.18 18.84 10.10 1.08 .34 .03
HIGH LARGE ALL ACE 416.96 46.59 72.52 3.60 1.67 .06
HIGH LARGE ALL AM 84.05 13.21 9.60 .74 .29 .02
HIGH LARGE ALL MARS 270.37 35.99 92.97 9.55 25.72 1.20
HIGH LARGE ALL RPR 4472.38 777.70 169.59 11.66 69.43 .18
HIGH LARGE ALL PPR 310.89 39.82 41.44 7.12 .42 .03
HIGH LARGE ALL LOESS 133.52 13.29 29.72 1.49 * *
HIGH LARGE ALL AVAS 385.59 40.45 59.32 4.16 .85 .05
HIGH LARGE ALL NN 2849.57 94.08 2622.47 21.95 * *
HIGH LARGE HALF MLR 84.07 13.20 9.62 .75 .29 .02
HIGH LARGE HALF SLR 70.99 13.89 6.77 .90 .28 .03
HIGH LARGE HALF ACE 335.56 43.33 62.65 2.91 1.62 .08
HIGH LARGE HALF AM 84.00 13.21 9.61 .74 .29 .02
HIGH LARGE HALF MARS 81.51 17.81 74.02 7.58 .52 .05
HIGH LARGE HALF RPR 4230.49 550.92 268.37 15.27 138.23 .35
HIGH LARGE HALF PPR 286.81 24.59 25.29 2.35 .42 .03
HIGH LARGE HALF LOESS 133.52 13.29 29.72 1.49 * *
HIGH LARGE HALF AVAS 341.80 34.96 52.74 3.40 .79 .05
HIGH LARGE HALF NN 2771.59 119.81 2641.75 29.16 * *
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Function: Gaussian

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

LOW SMALL ALL MLR 45.54 2.85 1.73 .02 .01 .00
LOW SMALL ALL SLR 45.54 2.85 1.73 .02 .00 .00
LOW SMALL ALL ACE 29.18 4.93 1.75 .06 .03 .00
LOW SMALL ALL AM 45.52 2.84 1.72 .02 .01 .00
LOW SMALL ALL MARS 27.65 5.31 2.30 .14 .02 .00
LOW SMALL ALL RPR 368.20 25.80 5.54 .39 .00 .00
LOW SMALL ALL PPR 25.57 2.90 2.29 .32 .01 .00
LOW SMALL ALL LOESS 9.64 1.17 .76 .05 * *
LOW SMALL ALL AVAS 39.62 9.01 1.94 .09 .01 .00
LOW SMALL ALL NN 34.29 5.35 5.24 .16 * *
LOW SMALL HALF MLR 6.83 .35 22.15 .10 1.56 .02
LOW SMALL HALF SLR 6.57 .35 22.06 .11 3.89 .93
LOW SMALL HALF ACE 3.42 .46 5.07 .33 .25 .01
LOW SMALL HALF AM 6.85 .36 22.14 .10 1.56 .02
LOW SMALL HALF MARS 5.03 .32 1.47 .07 1.00 .05
LOW SMALL HALF RPR 1060.87 15.00 88.00 1.44 2.82 .07
LOW SMALL HALF PPR 3.11 .52 7.26 .08 .34 .00
LOW SMALL HALF LOESS 6.70 .79 4.82 .15 * *
LOW SMALL HALF AVAS 9.82 3.48 5.62 .47 .16 .01
LOW SMALL HALF NN 18.53 1.75 8.72 .50 * *
LOW MED ALL MLR 34.51 .64 1.66 .02 .00 .00
LOW MED ALL SLR 34.51 .64 1.66 .02 .00 .00
LOW MED ALL ACE 9.60 1.48 .98 .05 .01 .00
LOW MED ALL AM 34.52 .64 1.65 .02 .00 .00
LOW MED ALL MARS 3.73 .34 1.58 .06 .01 .00
LOW MED ALL RPR 378.44 11.40 3.24 .12 .00 .00
LOW MED ALL PPR 14.78 .65 .50 .01 .00 .00
LOW MED ALL LOESS 4.06 .41 .52 .02 * *
LOW MED ALL AVAS 21.99 2.71 1.14 .06 .00 .00
LOW MED ALL NN 11.52 1.31 5.00 .10 * *
LOW MED HALF MLR 5.78 .18 21.70 .10 1.56 .02
LOW MED HALF SLR 5.68 .18 21.65 .10 2.53 .66
LOW MED HALF ACE 1.58 .23 2.32 .10 .22 .00
LOW MED HALF AM 5.78 .18 21.68 .09 1.56 .02
LOW MED HALF MARS 1.97 .25 .91 .04 1.45 .03
LOW MED HALF RPR 1046.53 10.33 87.21 .69 2.84 .06
LOW MED HALF PPR 1.24 .17 6.53 .05 .33 .00
LOW MED HALF LOESS 4.46 .24 3.80 .06 * *
LOW MED HALF AVAS 1.71 .23 2.68 .15 .13 .00
LOW MED HALF NN 13.19 1.47 3.87 .35 * *

34



Function: Gaussian (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

LOW LARGE ALL MLR 31.61 .21 1.60 .02 .00 .00
LOW LARGE ALL SLR 31.61 .21 1.60 .02 .00 .00
LOW LARGE ALL ACE 5.45 .99 .53 .03 .01 .00
LOW LARGE ALL AM 31.60 .21 1.61 .02 .00 .00
LOW LARGE ALL MARS 2.69 .12 1.35 .03 .00 .00
LOW LARGE ALL RPR 401.10 13.03 2.93 .09 .00 .00
LOW LARGE ALL PPR 12.68 .23 .39 .01 .00 .00
LOW LARGE ALL LOESS 2.91 .13 .39 .01 * *
LOW LARGE ALL AVAS 15.42 2.78 .60 .03 * *
LOW LARGE ALL NN 8.49 .51 4.48 .06 * *
LOW LARGE HALF MLR 5.38 .10 21.50 .09 1.56 .02
LOW LARGE HALF SLR 5.33 .10 21.49 .09 2.55 .68
LOW LARGE HALF ACE .59 .06 1.29 .05 .21 .00
LOW LARGE HALF AM 5.38 .10 21.51 .10 1.56 .02
LOW LARGE HALF MARS .72 .08 .69 .03 1.87 .02
LOW LARGE HALF RPR 1050.93 4.86 87.90 .75 2.78 .06
LOW LARGE HALF PPR .52 .05 6.34 .03 1.31 .45
LOW LARGE HALF LOESS 3.91 .16 3.51 .05 * *
LOW LARGE HALF AVAS .70 .09 1.63 .07 * *
LOW LARGE HALF NN 10.49 .95 1.72 .10 * *
MOD SMALL ALL MLR 76.27 10.85 4.55 .27 .09 .01
MOD SMALL ALL SLR 93.10 15.16 4.45 .23 .05 .01
MOD SMALL ALL ACE 88.49 10.47 25.75 1.62 .81 .03
MOD SMALL ALL AM 76.30 10.86 4.42 .27 .09 .01
MOD SMALL ALL MARS 234.11 20.54 13.75 2.08 .45 .03
MOD SMALL ALL RPR 522.56 59.84 101.45 16.08 .01 .00
MOD SMALL ALL PPR 73.44 11.71 12.04 .76 .22 .02
MOD SMALL ALL LOESS 63.58 9.91 9.50 .60 * *
MOD SMALL ALL AVAS 91.04 10.89 23.52 1.76 .21 .01
MOD SMALL ALL NN 140.16 15.37 104.60 2.35 * *
MOD SMALL HALF MLR 31.92 5.37 25.02 .35 1.64 .02
MOD SMALL HALF SLR 27.75 4.95 24.23 .36 3.45 .77
MOD SMALL HALF ACE 41.55 5.82 28.20 1.89 1.18 .03
MOD SMALL HALF AM 31.90 5.37 24.83 .32 1.64 .02
MOD SMALL HALF MARS 69.51 27.58 23.01 3.09 1.10 .07
MOD SMALL HALF RPR 1154.00 60.09 149.73 6.72 3.50 .04
MOD SMALL HALF PPR 45.70 7.57 30.25 5.86 .47 .01
MOD SMALL HALF LOESS 59.41 8.10 13.70 .82 * *
MOD SMALL HALF AVAS 50.06 6.95 26.80 1.54 .68 .03
MOD SMALL HALF NN 109.50 13.47 109.00 3.23 * *
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Function: Gaussian (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

MOD MED ALL MLR 43.17 2.13 2.88 .14 .03 .00
MOD MED ALL SLR 43.17 2.13 3.22 .12 .02 .00
MOD MED ALL ACE 57.24 6.72 11.36 .70 .31 .02
MOD MED ALL AM 43.16 2.12 2.78 .12 .03 .00
MOD MED ALL MARS 46.88 5.87 13.34 4.95 .16 .02
MOD MED ALL RPR 599.96 100.59 15.93 3.01 .01 .00
MOD MED ALL PPR 44.22 6.96 6.69 .62 .08 .01
MOD MED ALL LOESS 20.76 3.29 3.93 .16 * *
MOD MED ALL AVAS 59.59 7.17 9.77 .61 .07 .00
MOD MED ALL NN 124.75 9.66 106.70 2.20 * *
MOD MED HALF MLR 14.33 1.65 22.93 .19 1.59 .02
MOD MED HALF SLR 13.28 1.68 22.72 .20 2.86 .69
MOD MED HALF ACE 30.05 4.08 15.00 .45 .62 .02
MOD MED HALF AM 14.32 1.65 22.75 .15 1.59 .02
MOD MED HALF MARS 16.38 2.91 7.42 .71 1.10 .07
MOD MED HALF RPR 1189.13 46.66 101.11 2.02 3.50 .04
MOD MED HALF PPR 19.41 3.19 11.04 1.57 .38 .01
MOD MED HALF LOESS 20.93 3.06 7.12 .21 * *
MOD MED HALF AVAS 28.94 4.26 13.51 .55 .40 .02
MOD MED HALF NN 94.25 8.45 106.44 2.09 * *
MOD LARGE ALL MLR 34.85 .61 1.97 .03 .01 .00
MOD LARGE ALL SLR 34.85 .61 2.22 .06 .01 .00
MOD LARGE ALL ACE 28.25 2.36 4.64 .27 .14 .01
MOD LARGE ALL AM 34.84 .61 2.01 .05 .01 .00
MOD LARGE ALL MARS 9.01 .84 4.18 .23 .04 .00
MOD LARGE ALL RPR 450.43 21.62 3.85 .08 .00 .00
MOD LARGE ALL PPR 21.93 1.31 2.55 .27 .03 .00
MOD LARGE ALL LOESS 7.53 .61 1.51 .06 * *
MOD LARGE ALL AVAS 29.83 3.09 4.15 .20 * *
MOD LARGE ALL NN 101.40 3.85 107.99 1.35 * *
MOD LARGE HALF MLR 8.72 .56 21.84 .10 1.57 .02
MOD LARGE HALF SLR 8.37 .59 21.74 .09 2.43 .60
MOD LARGE HALF ACE 13.30 1.28 8.11 .47 .39 .01
MOD LARGE HALF AM 8.68 .55 21.89 .11 1.57 .02
MOD LARGE HALF MARS 7.49 .89 3.31 .27 1.31 .05
MOD LARGE HALF RPR 1073.66 18.64 91.82 1.15 3.50 .04
MOD LARGE HALF PPR 9.41 .81 7.23 .10 .35 .00
MOD LARGE HALF LOESS 9.09 .62 4.65 .13 * *
MOD LARGE HALF AVAS 12.32 1.34 6.91 .35 * *
MOD LARGE HALF NN 89.33 4.48 103.93 1.14 * *
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Function: Gaussian (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

HIGH SMALL ALL MLR 766.65 188.43 76.32 6.59 2.13 .25
HIGH SMALL ALL SLR 647.82 169.75 46.23 7.66 1.15 .26
HIGH SMALL ALL ACE 1551.57 232.27 614.53 33.03 20.23 .76
HIGH SMALL ALL AM 766.34 188.18 73.15 6.57 2.13 .25
HIGH SMALL ALL MARS 622.15 167.11 285.07 81.80 10.51 .90
HIGH SMALL ALL RPR 4158.61 849.36 2220.23 221.85 .11 .03
HIGH SMALL ALL PPR 1303.87 200.92 254.14 26.07 5.11 .43
HIGH SMALL ALL LOESS 1475.68 227.83 228.76 13.36 * *
HIGH SMALL ALL AVAS 1408.40 191.68 571.39 38.97 5.11 .21
HIGH SMALL ALL NN 2860.39 311.03 2589.91 69.50 * *
HIGH SMALL HALF MLR 694.06 165.60 97.05 6.79 3.68 .25
HIGH SMALL HALF SLR 562.98 170.48 103.87 8.89 3.74 .22
HIGH SMALL HALF ACE 1175.59 172.64 592.49 38.10 20.58 .78
HIGH SMALL HALF AM 693.05 165.24 93.73 6.64 3.67 .25
HIGH SMALL HALF MARS 798.05 81.37 327.89 41.84 15.04 1.14
HIGH SMALL HALF RPR 5265.97 815.08 2447.36 402.99 3.60 .05
HIGH SMALL HALF PPR 1209.30 177.62 335.56 32.97 6.58 .43
HIGH SMALL HALF LOESS 1465.39 220.76 233.65 14.05 * *
HIGH SMALL HALF AVAS 1211.21 181.22 554.94 40.69 6.33 .21
HIGH SMALL HALF NN 2804.79 235.82 2621.24 61.22 * *
HIGH MED ALL MLR 249.39 35.10 33.47 3.39 .76 .06
HIGH MED ALL SLR 301.51 33.65 26.39 3.55 .45 .07
HIGH MED ALL ACE 867.83 122.72 266.16 15.42 8.11 .43
HIGH MED ALL AM 249.56 35.23 31.25 3.13 .76 .06
HIGH MED ALL MARS 443.10 61.51 142.83 30.28 3.93 .47
HIGH MED ALL RPR 5102.35 1289.80 242.47 50.55 .08 .03
HIGH MED ALL PPR 761.53 106.34 113.54 9.12 2.04 .14
HIGH MED ALL LOESS 443.40 79.12 89.36 3.30 * *
HIGH MED ALL AVAS 908.21 139.91 229.17 15.91 1.72 .09
HIGH MED ALL NN 2977.07 235.48 2635.09 50.56 * *
HIGH MED HALF MLR 219.98 35.41 53.56 3.44 2.31 .07
HIGH MED HALF SLR 254.58 53.36 53.90 4.02 2.37 .09
HIGH MED HALF ACE 778.16 116.41 241.67 15.31 8.05 .40
HIGH MED HALF AM 219.35 35.37 50.89 3.02 2.31 .07
HIGH MED HALF MARS 439.34 69.47 191.43 18.12 5.76 .34
HIGH MED HALF RPR 5845.81 1013.19 914.35 227.30 3.57 .05
HIGH MED HALF PPR 683.83 103.67 185.04 9.44 2.32 .12
HIGH MED HALF LOESS 442.44 79.10 92.09 3.15 * *
HIGH MED HALF AVAS 815.80 115.49 203.72 12.81 2.98 .10
HIGH MED HALF NN 2848.33 229.72 2635.57 47.00 * *
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Function: Gaussian (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

HIGH LARGE ALL MLR 115.59 12.58 11.16 .74 .29 .02
HIGH LARGE ALL SLR 140.94 14.34 9.05 .97 .16 .03
HIGH LARGE ALL ACE 466.63 51.21 93.81 6.36 3.81 .07
HIGH LARGE ALL AM 115.59 12.60 11.98 1.06 .29 .02
HIGH LARGE ALL MARS 273.54 24.77 57.97 11.17 1.05 .08
HIGH LARGE ALL RPR 3625.81 565.99 5.05 .53 .03 .01
HIGH LARGE ALL PPR 381.91 50.82 52.60 3.80 .90 .07
HIGH LARGE ALL LOESS 133.17 13.02 29.93 1.47 * *
HIGH LARGE ALL AVAS 407.17 46.38 87.12 5.50 * *
HIGH LARGE ALL NN 2831.63 127.99 2602.72 22.35 * *
HIGH LARGE HALF MLR 89.99 13.18 30.93 .78 1.85 .04
HIGH LARGE HALF SLR 77.50 13.81 28.35 .88 2.35 .56
HIGH LARGE HALF ACE 397.87 38.43 90.92 4.97 3.85 .10
HIGH LARGE HALF AM 89.62 13.12 31.75 1.10 1.85 .04
HIGH LARGE HALF MARS 153.39 39.29 65.84 6.74 2.01 .11
HIGH LARGE HALF RPR 4073.16 573.28 126.83 6.94 3.52 .04
HIGH LARGE HALF PPR 374.01 33.02 46.97 6.31 1.28 .31
HIGH LARGE HALF LOESS 137.53 13.49 33.20 1.42 * *
HIGH LARGE HALF AVAS 382.00 46.42 79.45 4.42 * *
HIGH LARGE HALF NN 2887.99 98.16 2602.01 23.92 * *
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Function: Correlated Gaussian

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

LOW SMALL ALL MLR 598.41 31.62 1622.14 19.62 4043.74 264.05
LOW SMALL ALL SLR 658.00 40.19 1653.15 19.41 4294.16 258.44
LOW SMALL ALL ACE 584.82 47.84 1178.51 20.45 2749.71 228.44
LOW SMALL ALL AM 598.48 31.74 1622.00 19.64 4043.73 264.05
LOW SMALL ALL MARS 562.44 74.47 1723.48 206.00 3763.94 258.38
LOW SMALL ALL RPR 1257.14 77.28 1938.70 53.01 4079.39 266.34
LOW SMALL ALL PPR 570.85 41.47 1626.69 31.40 3915.18 257.59
LOW SMALL ALL LOESS 154.81 16.25 1288.97 34.28 * *
LOW SMALL ALL AVAS 620.15 51.36 1150.57 20.77 2772.06 228.44
LOW SMALL ALL NN 346.36 65.32 1247.36 56.60 * *
LOW SMALL HALF MLR 6.83 .35 766.05 2.53 1577.24 21.30
LOW SMALL HALF SLR 6.57 .35 761.93 2.71 1679.06 50.17
LOW SMALL HALF ACE 3.42 .46 690.31 16.30 1027.14 23.50
LOW SMALL HALF AM 6.85 .36 765.93 2.50 1577.25 21.30
LOW SMALL HALF MARS 5.03 .32 219.33 10.44 1122.25 20.03
LOW SMALL HALF RPR 1060.87 15.00 1108.85 11.41 1463.01 14.99
LOW SMALL HALF PPR 3.11 .52 757.46 16.10 1325.45 18.67
LOW SMALL HALF LOESS 6.70 .79 374.55 8.33 * *
LOW SMALL HALF AVAS 9.82 3.48 592.37 15.20 997.33 23.60
LOW SMALL HALF NN 21.18 2.37 107.92 4.27 * *
LOW MED ALL MLR 478.19 8.69 1606.58 20.87 4042.17 263.75
LOW MED ALL SLR 478.19 8.69 1612.55 21.91 4287.93 263.05
LOW MED ALL ACE 435.68 28.83 1113.04 20.88 2729.60 225.76
LOW MED ALL AM 478.16 8.69 1606.33 20.88 4042.17 263.75
LOW MED ALL MARS 142.45 13.77 1604.37 175.31 3879.00 259.65
LOW MED ALL RPR 1320.84 38.73 1788.81 36.49 4079.03 266.18
LOW MED ALL PPR 435.06 16.59 1497.57 26.33 3910.41 256.76
LOW MED ALL LOESS 88.15 5.77 1219.76 29.07 * *
LOW MED ALL AVAS 367.85 27.55 1079.09 26.08 2751.82 226.22
LOW MED ALL NN 69.18 10.26 597.25 21.41 * *
LOW MED HALF MLR 5.78 .18 751.27 2.05 1576.74 21.16
LOW MED HALF SLR 5.68 .18 749.50 2.13 1705.44 55.19
LOW MED HALF ACE 1.58 .23 703.26 12.79 1027.25 23.59
LOW MED HALF AM 5.78 .18 751.15 1.99 1576.75 21.17
LOW MED HALF MARS 1.97 .25 203.99 5.73 1219.29 21.51
LOW MED HALF RPR 1046.53 10.33 1076.28 9.25 1470.91 17.89
LOW MED HALF PPR 1.24 .17 693.45 15.16 1301.80 7.75
LOW MED HALF LOESS 4.46 .24 332.70 5.92 * *
LOW MED HALF AVAS 1.71 .23 543.76 12.48 997.15 23.84
LOW MED HALF NN 11.02 1.60 51.27 1.35 * *
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Function: Correlated Gaussian (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

LOW LARGE ALL MLR 450.12 2.93 1592.70 18.31 4041.97 263.88
LOW LARGE ALL SLR 450.12 2.93 1592.70 18.31 4301.33 258.64
LOW LARGE ALL ACE 366.84 29.71 1064.20 20.12 2725.90 225.52
LOW LARGE ALL AM 450.16 2.93 1592.75 18.31 4041.97 263.88
LOW LARGE ALL MARS 135.24 13.93 1312.92 38.80 3920.50 261.50
LOW LARGE ALL RPR 1340.71 29.41 1761.54 26.19 4079.17 266.21
LOW LARGE ALL PPR 411.03 18.23 1431.86 29.08 3907.11 257.10
LOW LARGE ALL LOESS 79.81 2.83 1210.05 16.15 * *
LOW LARGE ALL AVAS 293.48 14.69 1031.11 21.07 * *
LOW LARGE ALL NN 38.77 1.97 297.34 7.45 * *
LOW LARGE HALF MLR 5.38 .10 745.41 2.04 1576.48 21.14
LOW LARGE HALF SLR 5.33 .10 744.65 2.00 1692.56 52.27
LOW LARGE HALF ACE .59 .06 707.41 7.60 1026.09 23.82
LOW LARGE HALF AM 5.38 .10 745.42 2.03 1576.49 21.14
LOW LARGE HALF MARS .72 .08 209.46 8.09 1317.54 22.46
LOW LARGE HALF RPR 1050.93 4.86 1050.16 8.19 1461.56 14.03
LOW LARGE HALF PPR .52 .05 624.12 15.18 1375.47 31.18
LOW LARGE HALF LOESS 3.91 .16 322.92 2.71 * *
LOW LARGE HALF AVAS .70 .09 529.66 7.14 * *
LOW LARGE HALF NN 11.20 .88 39.73 .58 * *
MOD SMALL ALL MLR 638.37 40.57 1622.09 18.92 4043.89 264.07
MOD SMALL ALL SLR 684.88 44.17 1656.90 20.09 4292.36 258.15
MOD SMALL ALL ACE 618.46 46.52 1257.78 23.49 2711.47 227.18
MOD SMALL ALL AM 639.25 40.86 1621.22 19.20 4043.90 264.07
MOD SMALL ALL MARS 690.32 59.93 1637.32 62.72 3764.32 258.11
MOD SMALL ALL RPR 1317.69 127.37 1961.95 57.79 4079.42 266.36
MOD SMALL ALL PPR 573.28 44.07 1656.19 30.81 3915.74 257.56
MOD SMALL ALL LOESS 195.62 19.40 1304.09 40.17 * *
MOD SMALL ALL AVAS 641.36 53.20 1260.74 21.45 2780.78 230.59
MOD SMALL ALL NN 395.23 37.44 1289.73 53.39 * *
MOD SMALL HALF MLR 31.92 5.37 768.98 2.83 1577.31 21.30
MOD SMALL HALF SLR 27.75 4.95 765.72 3.03 1705.83 54.65
MOD SMALL HALF ACE 41.55 5.82 636.98 17.17 955.92 22.92
MOD SMALL HALF AM 31.90 5.37 768.26 2.63 1577.31 21.30
MOD SMALL HALF MARS 69.51 27.58 229.96 8.37 1122.89 20.09
MOD SMALL HALF RPR 1154.00 60.09 1155.97 16.79 1473.54 16.21
MOD SMALL HALF PPR 45.70 7.57 726.79 19.27 1324.93 18.80
MOD SMALL HALF LOESS 59.41 8.10 386.10 9.73 * *
MOD SMALL HALF AVAS 50.06 6.95 609.56 14.01 992.03 22.85
MOD SMALL HALF NN 109.11 15.60 226.01 6.92 * *
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Function: Correlated Gaussian (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

MOD MED ALL MLR 485.34 10.37 1607.58 20.64 4042.19 263.76
MOD MED ALL SLR 485.34 10.37 1615.91 21.57 4286.95 263.37
MOD MED ALL ACE 445.56 23.11 1130.62 25.75 2690.31 223.15
MOD MED ALL AM 485.26 10.36 1606.40 20.65 4042.18 263.76
MOD MED ALL MARS 183.40 12.20 1503.30 91.00 3881.47 259.66
MOD MED ALL RPR 1545.33 86.44 1789.52 39.30 4079.01 266.17
MOD MED ALL PPR 447.66 21.64 1494.76 24.95 3910.77 256.76
MOD MED ALL LOESS 98.25 8.50 1226.51 28.33 * *
MOD MED ALL AVAS 438.87 34.77 1165.97 21.43 2746.67 225.33
MOD MED ALL NN 155.38 16.01 758.49 23.05 * *
MOD MED HALF MLR 14.33 1.65 752.21 2.50 1576.76 21.17
MOD MED HALF SLR 13.28 1.68 750.28 2.52 1670.26 48.67
MOD MED HALF ACE 30.05 4.08 573.58 11.55 954.23 22.91
MOD MED HALF AM 14.32 1.65 751.59 2.21 1576.76 21.16
MOD MED HALF MARS 16.38 2.91 215.66 6.27 1219.49 21.47
MOD MED HALF RPR 1189.13 46.66 1089.25 11.09 1472.17 18.27
MOD MED HALF PPR 19.41 3.19 691.13 19.61 1352.03 22.24
MOD MED HALF LOESS 20.93 3.06 336.67 5.54 * *
MOD MED HALF AVAS 28.94 4.26 520.15 10.63 989.88 23.61
MOD MED HALF NN 95.18 9.40 138.85 4.24 * *
MOD LARGE ALL MLR 452.68 3.50 1592.87 18.32 4042.00 263.88
MOD LARGE ALL SLR 452.68 3.50 1592.87 18.32 4300.50 258.69
MOD LARGE ALL ACE 346.26 19.41 1053.04 18.21 2686.97 223.45
MOD LARGE ALL AM 452.72 3.52 1593.18 18.30 4041.99 263.88
MOD LARGE ALL MARS 146.53 10.16 1437.32 166.77 3919.90 261.60
MOD LARGE ALL RPR 1461.81 46.98 1765.35 20.55 4079.18 266.20
MOD LARGE ALL PPR 403.53 10.87 1439.26 30.93 3907.42 257.10
MOD LARGE ALL LOESS 82.19 3.57 1211.01 16.38 * *
MOD LARGE ALL AVAS 317.48 21.87 1082.54 19.33 * *
MOD LARGE ALL NN 95.77 7.32 417.64 10.15 * *
MOD LARGE HALF MLR 8.72 .56 745.69 2.05 1576.49 21.15
MOD LARGE HALF SLR 8.37 .59 745.04 2.06 1604.09 29.61
MOD LARGE HALF ACE 13.30 1.28 553.39 8.00 952.57 23.14
MOD LARGE HALF AM 8.68 .55 745.73 2.04 1576.47 21.15
MOD LARGE HALF MARS 7.49 .89 208.41 6.13 1318.48 22.36
MOD LARGE HALF RPR 1073.66 18.64 1060.30 9.46 1464.13 13.60
MOD LARGE HALF PPR 9.41 .81 671.39 17.22 1394.31 36.16
MOD LARGE HALF LOESS 9.09 .62 324.35 2.64 * *
MOD LARGE HALF AVAS 12.32 1.34 505.61 6.73 * *
MOD LARGE HALF NN 90.34 4.55 98.21 1.24 * *
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Function: Correlated Gaussian (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

HIGH SMALL ALL MLR 1374.89 243.50 1679.52 17.75 4046.28 264.18
HIGH SMALL ALL SLR 1254.59 218.73 1709.14 18.82 4599.13 304.67
HIGH SMALL ALL ACE 2052.25 245.68 1903.08 51.69 2642.32 222.89
HIGH SMALL ALL AM 1375.59 243.10 1672.77 20.09 4046.29 264.18
HIGH SMALL ALL MARS 1200.72 214.84 1848.00 32.85 3772.80 258.11
HIGH SMALL ALL RPR 5376.83 1185.31 3591.36 227.02 4079.62 266.44
HIGH SMALL ALL PPR 1894.11 247.50 1878.26 26.86 3919.92 257.42
HIGH SMALL ALL LOESS 1542.14 220.89 1555.21 85.94 * *
HIGH SMALL ALL AVAS 1906.05 231.13 1911.42 51.53 2843.05 237.35
HIGH SMALL ALL NN 2964.48 290.53 4017.83 196.86 * *
HIGH SMALL HALF MLR 694.06 165.60 841.30 10.56 1579.29 21.26
HIGH SMALL HALF SLR 562.98 170.48 855.92 12.89 1663.22 52.21
HIGH SMALL HALF ACE 1175.59 172.64 1113.79 48.60 800.72 19.38
HIGH SMALL HALF AM 693.05 165.24 835.09 9.61 1579.32 21.27
HIGH SMALL HALF MARS 798.05 81.37 946.28 115.36 1132.30 20.26
HIGH SMALL HALF RPR 5265.97 815.08 3773.11 351.06 1471.88 18.48
HIGH SMALL HALF PPR 1209.30 177.62 1135.67 34.90 1316.34 14.46
HIGH SMALL HALF LOESS 1465.39 220.76 619.38 36.72 * *
HIGH SMALL HALF AVAS 1211.21 181.22 1120.12 50.12 915.10 19.57
HIGH SMALL HALF NN 2980.87 329.27 2865.79 60.43 * *
HIGH MED ALL MLR 683.98 46.59 1637.11 21.39 4042.84 263.79
HIGH MED ALL SLR 737.86 34.60 1656.57 21.81 4282.89 265.11
HIGH MED ALL ACE 1310.41 136.27 1286.18 29.32 2586.70 212.92
HIGH MED ALL AM 683.49 46.55 1629.46 20.54 4042.84 263.79
HIGH MED ALL MARS 969.53 101.47 1539.72 17.93 3885.77 259.04
HIGH MED ALL RPR 6894.90 1436.55 1882.34 67.58 4078.99 266.16
HIGH MED ALL PPR 1218.27 128.68 1707.35 23.33 3911.49 256.38
HIGH MED ALL LOESS 487.90 81.60 1328.66 34.14 * *
HIGH MED ALL AVAS 1277.44 148.94 1363.79 21.99 2723.64 221.82
HIGH MED ALL NN 3040.78 254.25 3483.62 78.60 * *
HIGH MED HALF MLR 219.98 35.41 781.37 6.28 1577.40 21.19
HIGH MED HALF SLR 254.58 53.36 776.36 7.92 1677.74 50.29
HIGH MED HALF ACE 778.16 116.41 706.57 16.52 774.30 19.85
HIGH MED HALF AM 219.35 35.37 776.72 4.14 1577.40 21.20
HIGH MED HALF MARS 439.34 69.47 387.07 16.53 1221.02 21.25
HIGH MED HALF RPR 5845.81 1013.19 1439.59 89.39 1445.29 20.23
HIGH MED HALF PPR 683.83 103.67 853.65 28.32 1311.27 13.76
HIGH MED HALF LOESS 442.44 79.10 424.85 11.39 * *
HIGH MED HALF AVAS 815.80 115.49 687.80 19.66 889.81 9.80
HIGH MED HALF NN 2887.43 213.70 2784.16 55.70 * *
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Function: Correlated Gaussian (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

HIGH LARGE ALL MLR 530.07 10.67 1601.13 18.37 4042.36 263.92
HIGH LARGE ALL SLR 569.40 17.79 1609.15 18.53 4296.64 258.93
HIGH LARGE ALL ACE 757.42 51.40 1023.01 25.47 2567.29 217.05
HIGH LARGE ALL AM 529.65 10.66 1603.19 18.54 4042.36 263.92
HIGH LARGE ALL MARS 433.62 45.75 1382.16 24.07 3919.93 262.06
HIGH LARGE ALL RPR 3760.96 462.71 1675.16 29.92 4079.25 266.20
HIGH LARGE ALL PPR 762.97 46.53 1505.06 33.32 3907.78 256.91
HIGH LARGE ALL LOESS 196.60 16.78 1238.65 19.75 * *
HIGH LARGE ALL AVAS 735.05 60.12 1168.67 30.34 * *
HIGH LARGE ALL NN 2820.19 129.41 3242.85 48.54 * *
HIGH LARGE HALF MLR 89.99 13.18 754.45 2.52 1576.76 21.17
HIGH LARGE HALF SLR 77.50 13.81 751.97 2.45 1718.31 65.68
HIGH LARGE HALF ACE 397.87 38.43 495.18 7.91 760.21 20.40
HIGH LARGE HALF AM 89.62 13.12 755.20 2.69 1576.74 21.17
HIGH LARGE HALF MARS 153.39 39.29 248.03 8.93 1319.75 22.27
HIGH LARGE HALF RPR 4073.16 573.28 1101.52 15.99 1452.50 14.76
HIGH LARGE HALF PPR 374.01 33.02 654.27 16.69 1309.09 13.53
HIGH LARGE HALF LOESS 137.53 13.49 354.33 4.82 * *
HIGH LARGE HALF AVAS 382.00 46.42 503.87 7.47 * *
HIGH LARGE HALF NN 2821.98 85.91 2692.19 26.89 * *
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Function: Mixture

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

LOW SMALL ALL MLR 177.73 11.28 7.69 .10 .02 .00
LOW SMALL ALL SLR 168.65 10.96 7.55 .11 .02 .00
LOW SMALL ALL ACE 169.83 9.74 9.65 .24 .05 .00
LOW SMALL ALL AM 177.80 11.32 7.69 .11 .02 .00
LOW SMALL ALL MARS 90.99 12.85 13.88 4.36 .04 .00
LOW SMALL ALL RPR 339.45 39.62 32.01 12.49 .02 .00
LOW SMALL ALL PPR 50.46 6.90 6.37 .59 .02 .00
LOW SMALL ALL LOESS 28.81 4.97 2.51 .14 * *
LOW SMALL ALL AVAS 157.17 10.09 9.31 .21 .02 .00
LOW SMALL ALL NN 108.23 13.73 10.28 .53 * *
LOW SMALL HALF MLR 8.81 .68 89.08 .61 7.33 .10
LOW SMALL HALF SLR 8.31 .74 88.17 .62 7.32 .10
LOW SMALL HALF ACE 3.40 .55 92.48 1.06 7.27 .10
LOW SMALL HALF AM 8.80 .68 89.07 .61 7.33 .10
LOW SMALL HALF MARS 7.06 .34 8.48 2.43 4.16 .15
LOW SMALL HALF RPR 20.60 3.05 157.96 24.11 7.32 .10
LOW SMALL HALF PPR 4.53 1.07 11.36 .13 1.09 .02
LOW SMALL HALF LOESS 6.10 .61 14.08 .49 * *
LOW SMALL HALF AVAS 3.42 .54 103.06 .96 7.17 .11
LOW SMALL HALF NN 7.41 .92 20.41 .64 * *
LOW MED ALL MLR 133.93 1.84 7.60 .13 .02 .00
LOW MED ALL SLR 128.46 1.65 7.56 .13 .02 .00
LOW MED ALL ACE 141.80 6.27 7.95 .15 .03 .00
LOW MED ALL AM 133.97 1.85 7.58 .13 .02 .00
LOW MED ALL MARS 6.84 .57 6.97 .95 .02 .00
LOW MED ALL RPR 303.08 27.62 27.80 12.83 .02 .00
LOW MED ALL PPR 23.60 .82 2.43 .50 .02 .00
LOW MED ALL LOESS 8.02 .48 2.12 .10 * *
LOW MED ALL AVAS 156.47 5.45 8.26 .13 .02 .00
LOW MED ALL NN 27.89 2.47 7.42 .19 * *
LOW MED HALF MLR 7.10 .11 87.65 .56 7.32 .10
LOW MED HALF SLR 6.76 .12 87.22 .54 7.32 .10
LOW MED HALF ACE 1.36 .17 88.64 1.01 7.29 .10
LOW MED HALF AM 7.10 .11 87.57 .55 7.32 .10
LOW MED HALF MARS 1.04 .24 7.78 2.45 4.65 .12
LOW MED HALF RPR 19.22 1.58 106.15 1.67 7.32 .10
LOW MED HALF PPR 1.95 .48 10.50 .06 1.38 .30
LOW MED HALF LOESS 2.95 .23 11.67 .21 * *
LOW MED HALF AVAS 1.39 .18 92.45 .86 7.21 .12
LOW MED HALF NN 4.88 .36 10.18 .51 * *
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Function: Mixture (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

LOW LARGE ALL MLR 124.38 .90 7.47 .11 .02 .00
LOW LARGE ALL SLR 123.32 1.01 7.45 .11 .02 .00
LOW LARGE ALL ACE 128.19 1.66 7.63 .10 .02 .00
LOW LARGE ALL AM 124.38 .90 7.48 .11 .02 .00
LOW LARGE ALL MARS 4.29 .12 7.06 1.45 .02 .00
LOW LARGE ALL RPR 303.68 11.54 18.19 10.47 .02 .00
LOW LARGE ALL PPR 20.01 .32 1.25 .02 .02 .00
LOW LARGE ALL LOESS 5.79 .34 1.91 .06 * *
LOW LARGE ALL AVAS 132.87 5.95 7.69 .09 * *
LOW LARGE ALL NN 10.25 .68 6.04 .10 * *
LOW LARGE HALF MLR 6.62 .06 87.01 .53 7.32 .10
LOW LARGE HALF SLR 6.55 .07 86.86 .53 7.32 .10
LOW LARGE HALF ACE .61 .06 86.33 .48 7.29 .10
LOW LARGE HALF AM 6.63 .06 87.01 .53 7.32 .10
LOW LARGE HALF MARS .46 .04 7.46 .81 5.64 .11
LOW LARGE HALF RPR 15.68 1.07 97.18 2.44 7.32 .10
LOW LARGE HALF PPR 1.45 .48 13.11 2.93 1.07 .01
LOW LARGE HALF LOESS 2.12 .14 10.83 .18 * *
LOW LARGE HALF AVAS .67 .06 89.40 .58 * *
LOW LARGE HALF NN 4.54 .21 4.79 .21 * *
MOD SMALL ALL MLR 213.82 21.48 10.31 .29 .10 .01
MOD SMALL ALL SLR 188.81 20.00 9.10 .31 .06 .01
MOD SMALL ALL ACE 251.83 20.99 31.37 1.66 .82 .03
MOD SMALL ALL AM 213.84 21.48 10.18 .29 .10 .01
MOD SMALL ALL MARS 156.58 18.39 19.52 2.25 .47 .03
MOD SMALL ALL RPR 681.04 151.76 107.05 7.76 .02 .00
MOD SMALL ALL PPR 132.58 14.39 18.11 .82 .25 .02
MOD SMALL ALL LOESS 83.66 12.37 11.08 .69 * *
MOD SMALL ALL AVAS 256.47 18.67 31.42 1.61 .22 .01
MOD SMALL ALL NN 229.76 28.70 111.57 3.11 * *
MOD SMALL HALF MLR 36.10 7.55 91.72 .65 7.40 .10
MOD SMALL HALF SLR 28.06 7.13 89.87 .64 7.37 .10
MOD SMALL HALF ACE 58.03 7.62 123.11 2.84 8.12 .09
MOD SMALL HALF AM 36.07 7.55 91.54 .56 7.40 .10
MOD SMALL HALF MARS 20.04 6.86 36.33 6.86 3.92 .31
MOD SMALL HALF RPR 190.43 52.48 240.31 26.34 7.32 .10
MOD SMALL HALF PPR 70.84 10.07 57.97 7.67 4.39 .39
MOD SMALL HALF LOESS 66.33 9.72 22.71 1.22 * *
MOD SMALL HALF AVAS 59.22 8.27 126.63 3.06 7.41 .11
MOD SMALL HALF NN 133.53 13.19 129.33 3.77 * *
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Function: Mixture (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

MOD MED ALL MLR 141.58 3.33 8.79 .20 .05 .00
MOD MED ALL SLR 134.43 2.78 8.36 .21 .03 .00
MOD MED ALL ACE 188.59 13.14 18.17 .69 .33 .02
MOD MED ALL AM 141.58 3.34 8.61 .16 .05 .00
MOD MED ALL MARS 66.56 12.66 13.11 1.23 .18 .02
MOD MED ALL RPR 471.57 54.75 23.95 5.68 .02 .00
MOD MED ALL PPR 70.98 9.21 10.64 .75 .10 .00
MOD MED ALL LOESS 24.98 3.50 5.48 .18 * *
MOD MED ALL AVAS 191.14 11.51 17.62 .64 .08 .00
MOD MED ALL NN 146.08 12.71 109.82 2.08 * *
MOD MED HALF MLR 15.01 1.21 88.82 .60 7.35 .10
MOD MED HALF SLR 11.78 1.39 88.15 .58 7.34 .10
MOD MED HALF ACE 32.16 3.94 97.04 2.03 7.49 .10
MOD MED HALF AM 15.01 1.20 88.42 .53 7.35 .10
MOD MED HALF MARS 11.65 2.06 14.07 3.62 4.85 .21
MOD MED HALF RPR 170.25 52.52 110.48 3.29 7.32 .10
MOD MED HALF PPR 40.78 6.00 25.59 5.70 4.09 .48
MOD MED HALF LOESS 20.74 3.27 14.63 .45 * *
MOD MED HALF AVAS 35.81 5.20 102.38 1.33 7.34 .10
MOD MED HALF NN 119.83 10.51 117.16 1.98 * *
MOD LARGE ALL MLR 127.45 1.29 7.82 .11 .03 .00
MOD LARGE ALL SLR 125.63 1.44 7.63 .12 .02 .00
MOD LARGE ALL ACE 155.51 5.67 11.46 .36 .15 .01
MOD LARGE ALL AM 127.43 1.28 7.89 .13 .03 .00
MOD LARGE ALL MARS 19.18 5.78 8.80 .29 .05 .00
MOD LARGE ALL RPR 429.72 38.26 7.53 .11 .02 .00
MOD LARGE ALL PPR 35.36 2.95 7.01 .75 .05 .00
MOD LARGE ALL LOESS 9.98 .96 3.02 .11 * *
MOD LARGE ALL AVAS 160.58 7.14 11.17 .27 * *
MOD LARGE ALL NN 113.34 5.22 108.51 .81 * *
MOD LARGE HALF MLR 9.87 .67 87.34 .51 7.33 .10
MOD LARGE HALF SLR 8.96 .74 87.10 .50 7.33 .10
MOD LARGE HALF ACE 19.16 1.94 87.86 .54 7.31 .10
MOD LARGE HALF AM 9.87 .67 87.36 .52 7.33 .10
MOD LARGE HALF MARS 8.65 .96 13.94 3.83 5.70 .13
MOD LARGE HALF RPR 148.95 19.54 90.70 2.22 7.32 .10
MOD LARGE HALF PPR 19.75 1.52 11.24 .14 3.17 .40
MOD LARGE HALF LOESS 7.33 .68 11.92 .29 * *
MOD LARGE HALF AVAS 19.53 1.88 92.51 .57 * *
MOD LARGE HALF NN 115.13 4.76 110.22 .87 * *
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Function: Mixture (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

HIGH SMALL ALL MLR 930.98 214.06 81.11 6.57 2.15 .25
HIGH SMALL ALL SLR 776.82 226.72 50.84 7.00 1.18 .26
HIGH SMALL ALL ACE 1585.47 236.76 611.84 36.43 20.39 .79
HIGH SMALL ALL AM 931.64 214.30 78.08 6.53 2.15 .25
HIGH SMALL ALL MARS 515.47 206.26 290.54 61.96 11.52 .79
HIGH SMALL ALL RPR 5392.70 1305.79 2398.97 232.29 .12 .03
HIGH SMALL ALL PPR 1526.85 221.79 267.18 22.81 5.88 .48
HIGH SMALL ALL LOESS 1500.36 231.67 229.46 13.60 * *
HIGH SMALL ALL AVAS 1627.60 202.14 570.32 36.10 5.13 .21
HIGH SMALL ALL NN 2887.25 284.15 2664.36 59.03 * *
HIGH SMALL HALF MLR 709.26 177.14 162.57 7.14 9.44 .28
HIGH SMALL HALF SLR 526.85 174.12 131.30 7.30 8.47 .29
HIGH SMALL HALF ACE 1527.01 262.11 684.15 45.30 27.05 .76
HIGH SMALL HALF AM 709.69 177.35 159.16 6.64 9.44 .28
HIGH SMALL HALF MARS 172.50 43.30 382.14 54.02 19.46 .51
HIGH SMALL HALF RPR 4488.50 1076.89 2061.83 148.46 7.42 .10
HIGH SMALL HALF PPR 1378.45 202.11 332.15 25.24 12.51 .54
HIGH SMALL HALF LOESS 1509.97 230.64 241.42 14.56 * *
HIGH SMALL HALF AVAS 1297.72 170.05 655.83 43.02 12.53 .33
HIGH SMALL HALF NN 2793.76 282.68 2643.98 65.20 * *
HIGH MED ALL MLR 342.68 34.75 39.22 3.41 .77 .06
HIGH MED ALL SLR 255.28 37.51 30.61 3.62 .47 .07
HIGH MED ALL ACE 1098.36 163.18 267.46 16.30 8.11 .44
HIGH MED ALL AM 342.77 34.74 36.60 3.13 .77 .06
HIGH MED ALL MARS 277.60 56.34 150.07 31.21 3.94 .46
HIGH MED ALL RPR 4573.85 1095.03 293.49 117.92 .09 .03
HIGH MED ALL PPR 917.05 95.23 127.88 11.09 2.12 .12
HIGH MED ALL LOESS 448.96 78.71 90.68 3.37 * *
HIGH MED ALL AVAS 1120.93 163.88 239.97 17.96 1.71 .09
HIGH MED ALL NN 2922.62 209.02 2644.17 51.73 * *
HIGH MED HALF MLR 217.45 32.97 119.18 3.54 8.07 .12
HIGH MED HALF SLR 147.54 37.62 109.46 3.83 7.77 .13
HIGH MED HALF ACE 890.10 122.50 343.70 12.48 15.01 .39
HIGH MED HALF AM 217.41 32.99 115.43 2.88 8.07 .12
HIGH MED HALF MARS 137.80 50.96 193.82 27.47 10.67 .57
HIGH MED HALF RPR 4524.86 1080.86 359.60 66.56 7.39 .10
HIGH MED HALF PPR 819.49 121.93 184.90 9.31 8.10 .51
HIGH MED HALF LOESS 448.90 80.38 97.82 3.34 * *
HIGH MED HALF AVAS 896.06 115.02 335.54 14.02 9.04 .14
HIGH MED HALF NN 2888.37 199.72 2724.56 54.13 * *
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Function: Mixture (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

HIGH LARGE ALL MLR 207.38 12.51 16.99 .75 .31 .02
HIGH LARGE ALL SLR 185.60 14.44 12.05 1.00 .17 .03
HIGH LARGE ALL ACE 553.94 56.01 110.91 6.52 3.49 .15
HIGH LARGE ALL AM 207.34 12.52 17.90 1.10 .31 .02
HIGH LARGE ALL MARS 213.76 49.95 53.12 11.16 1.02 .09
HIGH LARGE ALL RPR 3142.94 577.07 8.89 .53 .04 .01
HIGH LARGE ALL PPR 429.75 44.17 49.26 3.85 .83 .04
HIGH LARGE ALL LOESS 133.44 12.78 31.42 1.53 * *
HIGH LARGE ALL AVAS 561.32 49.81 95.66 4.91 * *
HIGH LARGE ALL NN 2905.53 128.48 2631.35 23.63 * *
HIGH LARGE HALF MLR 90.64 13.88 96.36 .85 7.61 .11
HIGH LARGE HALF SLR 70.84 15.33 92.50 .96 7.48 .11
HIGH LARGE HALF ACE 462.59 54.24 187.64 8.48 10.79 .19
HIGH LARGE HALF AM 90.58 13.85 97.07 1.24 7.61 .11
HIGH LARGE HALF MARS 46.67 15.17 84.37 10.76 7.53 .28
HIGH LARGE HALF RPR 4039.17 1072.73 87.98 .71 7.35 .10
HIGH LARGE HALF PPR 381.34 22.63 98.79 9.01 5.84 .53
HIGH LARGE HALF LOESS 135.94 13.57 40.19 1.60 * *
HIGH LARGE HALF AVAS 463.60 53.29 174.34 5.47 * *
HIGH LARGE HALF NN 2901.43 120.27 2652.75 26.74 * *
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Function: Product

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

LOW SMALL ALL MLR 71.88 3.97 40.41 .22 23.64 .10
LOW SMALL ALL SLR 71.88 3.97 40.41 .22 23.64 .10
LOW SMALL ALL ACE 53.06 4.52 4.06 .27 .84 .01
LOW SMALL ALL AM 71.87 3.97 40.40 .22 23.64 .10
LOW SMALL ALL MARS 57.09 4.88 20.11 .59 23.85 .15
LOW SMALL ALL RPR 838.57 116.55 151.48 4.82 83.06 .60
LOW SMALL ALL PPR 77.38 6.31 39.39 .30 22.99 .10
LOW SMALL ALL LOESS 19.97 2.01 31.19 .63 * *
LOW SMALL ALL AVAS 111.98 15.20 18.44 1.06 7.55 .06
LOW SMALL ALL NN 69.56 5.84 39.71 1.31 * *
LOW SMALL HALF MLR 1.12 .28 54.73 .30 39.38 .21
LOW SMALL HALF SLR .93 .27 54.52 .31 39.38 .21
LOW SMALL HALF ACE 4.57 1.05 5.35 .39 .88 .02
LOW SMALL HALF AM 1.13 .29 54.72 .30 39.39 .21
LOW SMALL HALF MARS 2.11 .65 7.80 .47 10.60 .13
LOW SMALL HALF RPR 1651.73 26.01 298.87 5.45 132.57 1.88
LOW SMALL HALF PPR 3.86 .98 50.38 .33 37.32 .20
LOW SMALL HALF LOESS 2.38 .36 29.68 .70 * *
LOW SMALL HALF AVAS 16.83 5.73 38.09 2.43 12.37 .10
LOW SMALL HALF NN 30.98 2.69 27.35 .87 * *
LOW MED ALL MLR 57.09 1.33 39.75 .20 23.63 .10
LOW MED ALL SLR 57.09 1.33 39.75 .20 23.63 .10
LOW MED ALL ACE 23.31 2.34 1.80 .07 .81 .01
LOW MED ALL AM 57.10 1.33 39.76 .20 23.63 .10
LOW MED ALL MARS 12.14 1.62 16.09 .19 50.27 .19
LOW MED ALL RPR 709.84 73.70 125.23 1.81 83.40 .57
LOW MED ALL PPR 53.49 1.55 38.01 .20 22.97 .10
LOW MED ALL LOESS 13.25 .73 29.89 .40 * *
LOW MED ALL AVAS 72.12 6.74 12.00 1.00 7.52 .05
LOW MED ALL NN 38.11 1.84 25.89 .67 * *
LOW MED HALF MLR .34 .06 53.76 .30 39.36 .22
LOW MED HALF SLR .30 .06 53.68 .30 39.36 .22
LOW MED HALF ACE 1.75 .33 1.79 .11 .84 .02
LOW MED HALF AM .41 .07 53.76 .30 39.37 .22
LOW MED HALF MARS .64 .13 5.61 .14 14.38 .09
LOW MED HALF RPR 1636.55 12.22 297.78 4.54 130.91 2.32
LOW MED HALF PPR 1.18 .28 48.87 .27 37.30 .20
LOW MED HALF LOESS .71 .13 27.04 .30 * *
LOW MED HALF AVAS 2.79 .65 23.50 1.46 12.28 .12
LOW MED HALF NN 21.54 1.44 16.67 .49 * *
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Function: Product (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

LOW LARGE ALL MLR 53.12 .61 39.43 .18 23.62 .10
LOW LARGE ALL SLR 53.12 .61 39.43 .18 23.63 .10
LOW LARGE ALL ACE 9.95 1.31 1.15 .02 .80 .01
LOW LARGE ALL AM 53.11 .61 39.44 .18 23.63 .10
LOW LARGE ALL MARS 9.57 .89 14.70 .09 66.20 .19
LOW LARGE ALL RPR 578.02 14.77 115.89 1.49 83.31 .52
LOW LARGE ALL PPR 46.98 .81 37.49 .18 22.97 .10
LOW LARGE ALL LOESS 11.42 .41 29.43 .19 * *
LOW LARGE ALL AVAS 69.50 7.38 8.67 .35 * *
LOW LARGE ALL NN 25.74 1.38 17.15 .26 * *
LOW LARGE HALF MLR .13 .02 53.46 .27 39.35 .22
LOW LARGE HALF SLR .11 .02 53.41 .27 81.34 41.88
LOW LARGE HALF ACE .52 .06 1.01 .03 .83 .02
LOW LARGE HALF AM .14 .02 53.46 .27 39.36 .22
LOW LARGE HALF MARS .16 .04 5.24 .19 46.49 .23
LOW LARGE HALF RPR 1645.60 8.02 296.95 2.95 130.09 2.60
LOW LARGE HALF PPR .31 .04 48.46 .24 37.29 .20
LOW LARGE HALF LOESS .21 .02 26.44 .13 * *
LOW LARGE HALF AVAS .92 .37 17.66 .75 * *
LOW LARGE HALF NN 20.13 1.30 13.38 .30 * *
MOD SMALL ALL MLR 100.90 11.42 43.12 .47 23.71 .10
MOD SMALL ALL SLR 103.57 13.27 43.12 .47 23.73 .11
MOD SMALL ALL ACE 95.44 11.77 25.84 1.57 1.81 .03
MOD SMALL ALL AM 100.92 11.44 43.12 .47 23.71 .10
MOD SMALL ALL MARS 188.31 38.04 37.58 1.80 24.14 .10
MOD SMALL ALL RPR 1343.09 254.31 210.89 10.25 87.34 .81
MOD SMALL ALL PPR 123.21 14.00 66.18 10.74 23.11 .11
MOD SMALL ALL LOESS 67.66 10.54 40.57 1.97 * *
MOD SMALL ALL AVAS 116.75 14.17 26.72 1.59 8.35 .06
MOD SMALL ALL NN 164.98 21.19 138.00 3.97 * *
MOD SMALL HALF MLR 27.95 7.02 57.53 .61 39.46 .21
MOD SMALL HALF SLR 23.23 6.75 56.90 .64 82.06 42.62
MOD SMALL HALF ACE 42.42 5.92 28.81 1.87 2.47 .06
MOD SMALL HALF AM 27.68 7.00 57.54 .60 39.46 .21
MOD SMALL HALF MARS 17.99 3.24 27.86 1.51 10.88 .18
MOD SMALL HALF RPR 1821.76 64.32 322.14 6.40 139.62 2.72
MOD SMALL HALF PPR 35.31 5.61 56.39 1.03 37.43 .20
MOD SMALL HALF LOESS 59.50 9.12 39.24 2.02 * *
MOD SMALL HALF AVAS 74.93 14.13 32.94 1.87 11.55 .12
MOD SMALL HALF NN 105.95 10.85 123.74 3.94 * *
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Function: Product (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

MOD MED ALL MLR 66.02 3.20 41.01 .28 23.66 .10
MOD MED ALL SLR 66.02 3.20 41.01 .28 23.65 .10
MOD MED ALL ACE 64.93 8.59 12.93 .41 1.35 .02
MOD MED ALL AM 66.00 3.20 40.99 .28 23.66 .10
MOD MED ALL MARS 53.83 5.32 23.49 .75 50.35 .15
MOD MED ALL RPR 935.97 113.40 149.67 4.94 88.12 .67
MOD MED ALL PPR 77.98 6.14 39.99 .39 23.02 .11
MOD MED ALL LOESS 28.58 3.82 33.91 .94 * *
MOD MED ALL AVAS 80.66 11.65 12.58 .46 8.20 .04
MOD MED ALL NN 121.31 11.58 127.91 2.33 * *
MOD MED HALF MLR 8.48 1.38 55.00 .37 39.39 .22
MOD MED HALF SLR 7.38 1.44 54.65 .40 39.38 .22
MOD MED HALF ACE 29.42 4.45 15.99 .45 1.90 .04
MOD MED HALF AM 8.52 1.42 54.99 .37 39.39 .22
MOD MED HALF MARS 16.73 3.84 11.32 .58 14.50 .09
MOD MED HALF RPR 1708.05 41.80 309.07 5.08 142.02 2.84
MOD MED HALF PPR 18.07 3.28 50.89 .30 37.33 .20
MOD MED HALF LOESS 17.67 3.21 30.71 .74 * *
MOD MED HALF AVAS 33.71 4.57 19.18 .73 11.40 .11
MOD MED HALF NN 100.45 9.21 114.59 2.22 * *
MOD LARGE ALL MLR 56.31 .83 39.80 .20 23.64 .10
MOD LARGE ALL SLR 56.31 .83 39.80 .20 23.64 .10
MOD LARGE ALL ACE 32.12 2.16 6.26 .19 1.14 .02
MOD LARGE ALL AM 56.32 .84 39.82 .20 23.64 .10
MOD LARGE ALL MARS 21.13 2.48 17.17 .30 66.08 .18
MOD LARGE ALL RPR 836.93 53.83 126.06 1.45 89.00 .69
MOD LARGE ALL PPR 55.26 1.33 38.29 .19 22.99 .10
MOD LARGE ALL LOESS 15.89 1.03 30.53 .39 * *
MOD LARGE ALL AVAS 43.47 2.62 7.46 .29 * *
MOD LARGE ALL NN 103.61 4.91 120.83 1.61 * *
MOD LARGE HALF MLR 3.36 .53 53.85 .29 39.37 .22
MOD LARGE HALF SLR 2.84 .56 53.69 .28 39.37 .22
MOD LARGE HALF ACE 15.45 1.64 8.51 .33 1.72 .03
MOD LARGE HALF AM 3.38 .52 53.85 .29 39.37 .22
MOD LARGE HALF MARS 5.26 1.54 7.26 .25 46.54 .21
MOD LARGE HALF RPR 1671.40 30.36 298.77 3.47 141.37 2.18
MOD LARGE HALF PPR 10.49 1.78 49.12 .28 37.31 .20
MOD LARGE HALF LOESS 5.34 .53 27.63 .26 * *
MOD LARGE HALF AVAS 14.09 1.65 13.87 .67 * *
MOD LARGE HALF NN 80.32 5.59 107.00 1.52 * *
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Function: Product (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

HIGH SMALL ALL MLR 782.71 187.67 114.38 6.86 25.71 .28
HIGH SMALL ALL SLR 971.83 179.85 153.10 6.91 26.01 .21
HIGH SMALL ALL ACE 1305.65 210.77 560.80 40.88 15.69 .61
HIGH SMALL ALL AM 782.31 187.22 114.44 6.85 25.71 .28
HIGH SMALL ALL MARS 779.90 76.07 507.79 42.72 33.72 .89
HIGH SMALL ALL RPR 7371.20 1669.68 2707.78 300.11 108.27 .32
HIGH SMALL ALL PPR 1476.85 194.41 398.97 25.05 26.52 .45
HIGH SMALL ALL LOESS 1448.58 223.28 263.06 18.32 * *
HIGH SMALL ALL AVAS 1295.49 174.28 465.34 34.34 14.34 .31
HIGH SMALL ALL NN 2819.40 260.57 2687.31 61.70 * *
HIGH SMALL HALF MLR 698.86 175.55 129.25 7.33 41.45 .35
HIGH SMALL HALF SLR 659.82 169.01 114.20 7.87 41.29 .27
HIGH SMALL HALF ACE 1306.61 209.63 526.24 36.84 17.03 .56
HIGH SMALL HALF AM 700.57 176.14 129.23 7.33 41.47 .36
HIGH SMALL HALF MARS 980.79 99.23 334.45 30.12 22.57 .63
HIGH SMALL HALF RPR 6120.10 1335.74 2310.32 273.92 191.22 4.08
HIGH SMALL HALF PPR 1285.05 255.48 472.08 34.03 40.25 .37
HIGH SMALL HALF LOESS 1487.55 227.92 262.61 18.38 * *
HIGH SMALL HALF AVAS 1243.75 181.84 483.22 36.49 19.47 .38
HIGH SMALL HALF NN 3039.75 329.04 2657.71 59.48 * *
HIGH MED ALL MLR 273.57 37.01 71.79 3.58 24.39 .14
HIGH MED ALL SLR 394.80 46.34 83.78 5.51 24.42 .15
HIGH MED ALL ACE 846.36 109.96 224.10 10.84 7.30 .22
HIGH MED ALL AM 273.52 36.96 71.77 3.59 24.40 .14
HIGH MED ALL MARS 643.89 95.39 210.45 13.74 1577.79 .00
HIGH MED ALL RPR 5893.80 843.44 662.97 154.52 108.25 .32
HIGH MED ALL PPR 989.77 136.33 217.71 20.30 24.38 .19
HIGH MED ALL LOESS 444.41 78.75 122.34 5.84 * *
HIGH MED ALL AVAS 971.14 133.62 192.52 10.93 11.36 .14
HIGH MED ALL NN 2926.93 190.67 2648.25 38.39 * *
HIGH MED HALF MLR 212.10 34.48 85.65 3.56 40.12 .25
HIGH MED HALF SLR 231.02 59.73 79.98 3.73 40.01 .24
HIGH MED HALF ACE 816.30 136.00 209.48 7.45 8.41 .30
HIGH MED HALF AM 211.16 34.40 85.64 3.57 40.13 .25
HIGH MED HALF MARS 406.73 74.99 197.53 23.20 17.12 .21
HIGH MED HALF RPR 6062.59 941.35 753.35 123.34 199.10 3.17
HIGH MED HALF PPR 674.30 131.88 265.69 30.94 38.40 .24
HIGH MED HALF LOESS 441.64 80.37 117.41 5.19 * *
HIGH MED HALF AVAS 847.22 128.02 182.39 8.70 16.26 .19
HIGH MED HALF NN 2900.10 206.36 2666.66 45.04 * *
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Function: Product (Cont.)

Noise n Var. Expl. Method MISE St. Err. MISE St. Err. MISE St. Err.
p = 2 p = 6 p = 12

HIGH LARGE ALL MLR 136.84 11.75 49.04 .81 23.92 .10
HIGH LARGE ALL SLR 152.20 17.55 49.77 1.34 23.98 .11
HIGH LARGE ALL ACE 419.14 42.06 78.62 3.73 3.63 .11
HIGH LARGE ALL AM 136.81 11.75 49.01 .79 23.92 .10
HIGH LARGE ALL MARS 284.24 47.30 106.30 5.55 66.72 .22
HIGH LARGE ALL RPR 4044.88 689.21 216.21 13.36 108.20 .31
HIGH LARGE ALL PPR 372.50 54.94 130.13 15.93 23.49 .10
HIGH LARGE ALL LOESS 140.80 13.47 58.81 2.25 * *
HIGH LARGE ALL AVAS 408.95 39.24 70.31 3.47 * *
HIGH LARGE ALL NN 2843.91 106.97 2660.98 25.75 * *
HIGH LARGE HALF MLR 84.07 13.20 63.21 .97 39.65 .22
HIGH LARGE HALF SLR 70.99 13.89 60.32 1.10 39.64 .22
HIGH LARGE HALF ACE 335.56 43.33 81.34 3.43 4.69 .13
HIGH LARGE HALF AM 84.00 13.21 63.18 .95 39.66 .21
HIGH LARGE HALF MARS 81.51 17.81 93.46 5.69 47.40 .17
HIGH LARGE HALF RPR 4230.49 550.92 355.19 9.94 285.83 79.69
HIGH LARGE HALF PPR 286.81 24.59 77.85 9.29 37.76 .20
HIGH LARGE HALF LOESS 133.52 13.29 56.39 1.87 * *
HIGH LARGE HALF AVAS 341.80 34.96 69.51 4.01 * *
HIGH LARGE HALF NN 2902.25 95.07 2624.17 29.90 * *
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