
Core-Stateless Fair Queueing: Achieving Approximately Fair

Bandwidth Allocations in High Speed Networks

Ion Stoica Scott Shenker Hui Zhang

June 1998

CMU-CS-98-136

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

An shorter version of this paper appeared in Proceedings of ACM SIGCOMM'98.

This research was sponsored by DARPA under contract numbers N66001-96-C-8528, E30602-97-2-0287,

and DABT63-94-C-0073, and by a NSF Career Award under grant number NCR-9624979. Additional

support was provided by Intel Corp., MCI, and Sun Microsystems.

Views and conclusions contained in this document are those of the authors and should no be interpreted

as representing the o�cial policies, either expressed or implied, of DARPA, NSF, Intel, MCI, Sun, or the

U.S. government.

Keywords: Congestion control, fair queueing, scheduling

Abstract

Router mechanisms designed to achieve fair bandwidth allocations, like Fair Queueing, have

many desirable properties for congestion control in the Internet. However, such mechanisms

usually need to maintain state, manage bu�ers, and/or perform packet scheduling on a per

ow basis, and this complexity may prevent them from being cost-e�ectively implemented

and widely deployed. In this paper, we propose an architecture that signi�cantly reduces

this implementation complexity yet still achieves approximately fair bandwidth allocations.

We apply this approach to an island of routers { that is, a contiguous region of the network

{ and we distinguish between edge routers and core routers. Edge routers maintain per

ow state; they estimate the incoming rate of each
ow and insert a label into each packet

header based on this estimate. Core routers maintain no per
ow state; they use FIFO

packet scheduling augmented by a probabilistic dropping algorithm that uses the packet

labels and an estimate of the aggregate tra�c at the router. We call the scheme Core-

Stateless Fair Queueing. We present simulations and analysis on the performance of this

approach, and discuss an alternate approach.

1 Introduction

A central tenet of the Internet architecture is that congestion control is achieved mainly

through end-host algorithms. However, starting with Nagle [16], many researchers observed

that such end-to-end congestion control solutions are greatly improved when routers have

mechanisms that allocate bandwidth in a fair manner. Fair bandwidth allocation protects

well-behaved
ows from ill-behaved ones, and allows a diverse set of end-to-end congestion

control policies to co-exist in the network [7]. As we discuss in Section 4, some maintain

that fair bandwidth allocation1 plays a necessary, not just bene�cial, role in congestion

control [7, 19].

Until now, fair allocations were typically achieved by using per-
ow queueing mecha-

nisms { such as Fair Queueing [7, 18] and its many variants [2, 10, 20] { or per-
ow dropping

mechanisms such as Flow Random Early Drop (FRED) [14]. These mechanisms are more

complex to implement than traditional FIFO queueing with drop-tail, which is the most

widely implemented and deployed mechanism in routers today. In particular, fair allocation

mechanisms inherently require the routers to maintain state and perform operations on a

per
ow basis. For each packet that arrives at the router, the routers needs to classify the

packet into a
ow, update per
ow state variables, and perform certain operations based

on the per
ow state. The operations can be as simple as deciding whether to drop or

queue the packet (e.g., FRED), or as complex as manipulation of priority queues (e.g., Fair

Queueing). While a number of techniques have been proposed to reduce the complexity

of the per packet operations [1, 20, 21], and commercial implementations are available in

some intermediate class routers, it is still unclear whether these algorithms can be cost-

e�ectively implemented in high-speed backbone routers because all these algorithms still

require packet classi�cation and per
ow state management.

In this paper we start with the assumption that (1) fair allocation mechanisms play an

important, perhaps even necessary, role in congestion control, and (2) the complexity of

existing fair allocation mechanisms is a substantial hindrance to their adoption. Both of

these points are debatable; developments in router technology may make such algorithms

rather inexpensive to implement, and there may be solutions to congestion control that

1We use the max-min de�nition of fairness [12] which, while not the only possible candidate for fairness,

is certainly a reasonable one and, moreover, can be implemented with only local information.

1

do not require fair allocation (we discuss this point more fully in Section 4). By using

these two assumptions as our starting points we are not claiming that they are true, but

rather are only looking at the implications if indeed they were true. If one starts with these

assumptions then overcoming the complexity problem in achieving fair allocation becomes

a vitally important problem.

To this end, we propose and examine an architecture and a set of algorithms that allocate

bandwidth in an approximately fair manner while allowing the routers on high-speed links

to use FIFO queueing and maintain no per-
ow state. In this approach, we identify an

island of routers2 and distinguish between the edge and the core of the island. Edge routers

compute per-
ow rate estimates and label the packets passing through them by inserting

these estimates into each packet header. Core routers use FIFO queueing and keep no

per-
ow state. They employ a probabilistic dropping algorithm that uses the information

in the packet labels along with the router's own measurement of the aggregate tra�c.

The bandwidth allocations within this island of routers are approximately fair. Thus, if

this approach were adopted within the high speed interiors of ISP's, and fair allocation

mechanisms were adopted for the slower links outside of these high-speed interiors, then

approximately fair allocations could be achieved everywhere. However, this approach, like

Fair Queueing [7] or RED [9], still provides bene�t if adopted in an incremental fashion,

although the incremental adoption must be done on an island-by-island basis, not on a

router-by-router basis.

We call this approach Core-Stateless Fair Queueing (CSFQ) since the core routers keep

no per-
ow state but instead use the state that is carried in the packet labels.3 We describe

the details of this approach { such as the rate estimation algorithm and the packet dropping

algorithm { in Section 2.

Such a scheme cannot hope to achieve the nearly-perfect levels of fairness obtained by

Fair Queueing and other sophisticated and stateful queueing algorithms. However, our

interest is not in perfection, but only in obtaining reasonable approximations to the fair

bandwidth allocations. We derive a worst-case bound for the performance of this algorithm

2By island we mean a contiguous portion of the network, with well-de�ned interior and edges.
3Obviously these core routers keep some state, but none of it is per-
ow state, so when we say \stateless"

we are referring to the absence of per-
ow state.

2

in an idealized setting. This bound is presented in Section 2.

This worst-case analysis does not give an adequate guide to the typical functioning

of CSFQ. In Section 3 we present results from simulation experiments to illustrate the

performance of our approach and to compare it to several other schemes: DRR (a variant of

Fair Queueing), FRED, RED, and FIFO. We also discuss, therein, the relative mechanistic

complexities of these approaches.

The �rst 3 sections of the paper are narrowly focussed on the details of the mechanism

and its performance (both absolute and relative), with the need for such a mechanism taken

for granted. In Section 4 we return to the basic question of why fair allocations are relevant

to congestion control. Allocating bandwidth fairly is one way to address what we call the

unfriendly
ow problem; we also discuss an alternate approach to addressing this problem,

the identi�cation approach as described in [8]. We conclude with a summary in Section 5.

A longer version of this paper, containing proofs of the theoretical results as well as more

complete pseudocode, can be found at http://www.cs.cmu.edu/~isto

ica/csfq.

2 Core-Stateless Fair Queueing (CSFQ)

In this section, we propose an architecture that approximates the service provided by an

island of Fair Queueing routers, but has a much lower complexity in the core routers. The

architecture has two key aspects. First, to avoid maintaining per
ow state at each router,

we use a distributed algorithm in which only edge routers maintain per
ow state, while

core (non-edge) routers do not maintain per
ow state but instead utilize the per-
ow

information carried via a label in each packet's header. This label contains an estimate of

the
ow's rate; it is initialized by the edge router based on per-
ow information, and then

updated at each router along the path based only on aggregate information at that router.

Second, to avoid per
ow bu�ering and scheduling, as required by Fair Queueing, we use

FIFO queueing with probabilistic dropping on input. The probability of dropping a packet

as it arrives to the queue is a function of the rate estimate carried in the label and of the

fair share rate at that router, which is estimated based on measurements of the aggregate

tra�c.

3

Thus, our approach avoids both the need to maintain per-
ow state and the need to use

complicated packet scheduling and bu�ering algorithms at core routers. To give a better

intuition about how this works, we �rst present the idealized bit-by-bit or
uid version of

the probabilistic dropping algorithm, and then extend the algorithm to a practical packet-

by-packet version.

2.1 Fluid Model Algorithm

We �rst consider a bu�erless
uid model of a router with output link speed C, where the

ows are modelled as a continuous stream of bits. We assume each
ow's arrival rate ri(t)

is known precisely. Max-min fair bandwidth allocations are characterized by the fact that

all
ows that are bottlenecked (i.e., have bits dropped) by this router have the same output

rate. We call this rate the fair share rate of the server; let �(t) be the fair share rate at time

t. In general, if max-min bandwidth allocations are achieved, each
ow i receives service at

a rate given by min(ri(t); �(t)). Let A(t) denote the total arrival rate: A(t) =
P

n

i=1 ri(t).

If A(t) > C then the fair share �(t) is the unique solution to

C =
nX
i=1

min(ri(t); �(t)); (1)

If A(t) � C then no bits are dropped and we will, by convention, set �(t) = maxi ri(t).

If ri(t) � �(t), i.e.,
ow i sends no more than the server's fair share rate, all of its

tra�c will be forwarded. If ri(t) > �(t), then a fraction ri(t)��(t)
ri(t)

of its bits will be dropped,

so it will have an output rate of exactly �(t). This suggests a very simple probabilistic

forwarding algorithm that achieves fair allocation of bandwidth: each incoming bit of
ow

i is dropped with the probability

max

0; 1 �

�(t)

ri(t)

!
(2)

When these dropping probabilities are used, the arrival rate of
ow i at the next hop is

given by min[ri(t); �(t)].

2.2 Packet Algorithm

The above algorithm is de�ned for a bu�erless
uid system in which the arrival rates are

known exactly. Our task now is to extend this approach to the situation in real routers

4

.

.

.

Packet
Dropping

Rate Estimator +
Packet Labeling

Rate Estimator +
Packet Labeling

Flow n

Flow 1

Edge Router

Core Router

Estimator

buffer occupancy

Figure 1: The architecture of the output port of an edge router, and a core router, respec-

tively.

where transmission is packetized, there is substantial bu�ering, and the arrival rates are

not known.

We still employ a drop-on-input scheme, except that now we drop packets rather than

bits. Because the rate estimation (described below) incorporates the packet size, the drop-

ping probability is independent of the packet size and depends only, as above, on the rate

ri(t) and fair share rate �(t).

We are left with two remaining challenges: estimating the rates ri(t) and the fair share

�(t). We address these two issues in turn in the next two subsections, and then discuss the

rewriting of the labels. Pseudocode re
ecting this algorithm is described in Figures 2 and 3.

We should note, however, that the main point of our paper is the overall architecture and

that the detailed algorithm presented below represents only an initial prototype. While it

serves adequately as a proof-of-concept of our architecture, we fully expect that the details

of this design will continue to evolve.

2.2.1 Computation of Flow Arrival Rate

Recall that in our architecture, the rates ri(t) are estimated at the edge routers and then

these rates are inserted into the packet labels. At each edge router, we use exponential

averaging to estimate the rate of a
ow. Let tk
i
and lk

i
be the arrival time and length of the

kth packet of
ow i. The estimated rate of
ow i, ri, is updated every time a new packet is

received:

5

rnew
i

= (1 � e�T
k

i
=K)

lk
i

T k

i

+ e�T
k

i
=Krold

i
; (3)

where T k

i
= tk

i
� tk�1

i
and K is a constant. We discuss the rationale for using the form

e�T
k

i
=K for the exponential weight in Section 2.7.

2.2.2 Link Fair Rate Estimation

In this section, we present an estimation algorithm for �(t). To give intuition, consider

again the
uid model in Section 2.1 where the arrival rates are known exactly, and assume

the system performs the probabilistic dropping algorithm according to Eq. (2). Then, the

rate with which the algorithm accepts packets is a function of the current estimate of the

fair share rate, which we denote by b�(t). Letting F (b�(t)) denote this acceptance rate, we
have

F (b�(t)) = nX
i=1

min (ri(t); b�(t)) : (4)

Note that F (�) is a continuous, nondecreasing, concave, and piecewise-linear function of b�.
If the link is congested (A(t) > C) we choose b�(t) to be the unique solution to F (x) = C.

If the link is not congested (A(t) < C) we take b�(t) to be the largest rate among the

ows that traverse the link, i.e., b�(t) = max1�i�n(ri(t)). From Eq (4) note that if we

knew the arrival rates ri(t) we could then compute �(t) directly. To avoid having to keep

such per-
ow state, we seek instead to implicitly compute b�(t) by using only aggregate

measurements of F and A.

We use the following heuristic algorithm with three aggregate state variables: b�, the
estimate for the fair share rate; bA, the estimated aggregate arrival rate; bF , the estimated

rate of the accepted tra�c. The last two variables are updated upon the arrival of each

packet. For bA we use exponential averaging with a parameter e�T=K� where T is the

inter-arrival time between the current and the previous packet:

bAnew = (1� e�T=K�)
l

T
+ e�T=K� bAold (5)

where bAold is the value of bA before the updating. We use an analogous formula to update

bF .
6

on receiving packet p
if (edge router)
i =classify(p);
p:label = estimate rate(ri; p); =� use Eq. (3) �=

prob =max(0; 1� �=p:label);
if (prob >unif rand(0, 1))
� =estimate � (p; 1);
drop(p);

else

� =estimate � (p; 0);
enqueue(p);

if (prob > 0)
p:label = �; =� relabel p �=

Figure 2: The pseudocode of CSFQ.

The updating rule for b� depends on whether the link is congested or not. To �lter out

the estimation inaccuracies due to exponential smoothing we use a window of size Kc. A

link is assumed to be congested, if bA � C at all times during an interval of length Kc.

Conversely, a link is assumed to be uncongested, if bA � C at all times during an interval of

length Kc. The value b� is updated only at the end of an interval in which the link is either

congested or uncongested according to these de�nitions. If the link is congested then b� is

updated based on the equation F (b�) = C. We approximate F (�) by a linear function that

intersects the origin and has slope bF=b�old. This yields

b�new = b�oldCbF (6)

If the link is not congested, b�new is set to the largest rate of any active
ow (i.e., the

largest label seen) during the last Kc time units. The value of b�new is then used to compute

dropping probabilities, according to Eq. (2). For completeness, we give the pseudocode of

the CSFQ algorithm in Figure 3.

We now describe two minor amendments to this algorithm related to how the bu�ers

are managed. The goal of estimating the fair share b� is to match the accepted rate to the

link bandwidth. Due to estimation inaccuracies, load
uctuations between b�'s updates,
7

estimate � (p; dropped)
estimate rate(bA; p); =� est. arrival rate (use Eq. (5)) �=

if (dropped == FALSE)
estimate rate(bF; p); =� est. accepted tra�c rate �=

if (bA � C)
if (congested == FALSE)
congested = TRUE;
start time = crt time;

else

if (crt time > start time+Kc)b� = b� � C= bF ;
start time = crt time;

else =� bA < C �=

if (congested == TRUE)
congested = FALSE;
start time = crt time;
tmp � = 0; =� use to compute new � �=

else

if (crt time < start time+Kc)
tmp � =max(tmp �; p:label);

elseb� = tmp �;
start time = crt time;
tmp � = 0;

return b�;

Figure 3: The pseudocode of CSFQ (fair rate estimation).

and the probabilistic nature of our algorithm, the accepted rate may occasionally exceed

the link capacity. While ideally the router's bu�ers can accommodate the extra packets,

occasionally the router may be forced to drop the incoming packet due to lack of bu�er

space. Since drop-tail behavior will defeat the purpose of our algorithm, and may exhibit

undesirable properties in the case of adaptive
ows such as TCP [9], it is important to

limit its e�ect. To do so, we use a simple heuristic: every time the bu�er over
ows, b� is

decreased by a small �xed percentage (taken to be 1% in our simulations). Moreover, to

avoid overcorrection, we make sure that during consecutive updates b� does not decrease

by more than 25%.

8

In addition, since there is little reason to consider a link congested if the bu�er is almost

empty, we apply the following rule. If the link becomes uncongested by the test in Figure 3,

then we assume that it remains uncongested as long as the bu�er occupancy is less than

some prede�ned threshold. In this paper we use a threshold that is half of the total bu�er

capacity.

2.2.3 Label Rewriting

Our rate estimation algorithm in Section 2.2.1 allows us to label packets with their
ow's

rate as they enter the island. Our packet dropping algorithm described in Section 2.2.2

allows us to limit
ows to their fair share of the bandwidth. After a
ow experiences

signi�cant losses at a congested link inside the island, however, the packet labels are no

longer an accurate estimate of its rate. We cannot rerun our estimation algorithm, because

it involves per-
ow state. Fortunately, as note in Section 2.1 the outgoing rate is merely

the minimum between the incoming rate and the fair rate �. Therefore, we rewrite the the

packet label L as

Lnew = min(Lold; �); (7)

By doing so, the outgoing
ow rates will be properly represented by the packet labels.

2.3 Weighted CSFQ

The CSFQ algorithm can be extended to support
ows with di�erent weights. Let wi

denote the weight of
ow i. Returning to our
uid model, the meaning of these weights

is that we say a fair allocation is one in which all bottlenecked
ows have the same value

for ri

wi
. Then, if A(t) > C, the normalized fair rate �(t) is the unique value such thatP

n

i=1wimin
�
�; ri

wi

�
= C. The expression for the dropping probabilities in the weighted

case is max
�
0; 1 � �wi

ri

�
. The only other major change is that the label is now ri=wi,

instead simply ri. Finally, without going into details we note that the weighted packet-

by-packet version is virtually identical to the corresponding version of the plain CSFQ

algorithm.

9

It is important to note that with weighted CSFQ we can only approximate islands in

which each
ow has the same weight at all routers in an island. That is, our algorithm

cannot accommodate situations where the relative weights of
ows di�er from router to

router within an island. However, even with this limitation, weighted CSFQ may prove a

valuable mechanism in implementing di�erential services, such as the one proposed in [24].

2.4 Performance Bounds

We now present the main theoretical result of the paper. For generality, this result is given

for weighted CSFQ. The proof is given in the Appendix.

Our algorithm is built around several estimation procedures, and thus is inherently

inexact. One natural concern is whether a
ow can purposely \exploit" these inaccuracies

to get more than its fair share of bandwidth. We cannot answer this question in full

generality, but we can analyze a simpli�ed situation where the normalized fair share rate

� is held �xed and there is no bu�ering, so the drop probabilities are precisely given by

Eq. (2). In addition, we assume that when a packet arrives a fraction of that packet equal to

the
ow's forwarding probability is transmitted. Note that during any time interval [t1; t2)

a
ow with weight w is entitled to receive at most w�(t2 � t1) service time; we call any

amount above this the excess service. We can bound this excess service, and the bounds

are independent of both the arrival process and the length of the time interval during which

the
ow is active. The bound does depend crucially on the maximal rate R at which a

ows packets can arrive at a router (limited, for example, by the speed of the
ow's access

link); the smaller this rate R the tighter the bound.

Theorem 1 Consider a link with a constant normalized fair rate �, and a
ow with weight

w. Then, the excess service received by a
ow with weight w, that sends at a rate no larger

than R is bounded above by

r�K

�
1 + ln

R

r�

�
+ lmax; (8)

where r� = �w, and lmax represents the maximum length of a packet.

By bounding the excess service, we have shown that in this idealized setting the asymp-

totic throughput cannot exceed the fair share rate. Thus,
ows can only exploit the system

10

over short time scales; they are limited to their fair share over long time scales.

2.5 Implementation Complexity

At core routers, both the time and space complexity of our algorithm are constant with

respect to the number of competing
ows, and thus we think CSFQ could be implemented

in very high speed core routers. At each edge router CSFQ needs to maintain per
ow

state. Upon each arrival of each packet, the edge router needs to (1) classify the packet to

a
ow, (2) update the fair share rate estimation for the corresponding outgoing link, (3)

update the
ow rate estimation, and (4) label the packet. All these operations with the

exception of packet classi�cation can be e�ciently implemented today.

E�cient and general-purpose packet classi�cation algorithms are still under active re-

search. We expect to leverage these results. We also note that packet classi�cation at

ingress nodes is needed for a number of other purposes, such as in the context of Multipro-

tocol Label Switching (MPLS) [4] or for accounting purposes; therefore, the classi�cation

required for CSFQ may not be an extra cost. In addition, if the edge routers are typically

not on the high-speed backbone links then there is no problem as classi�cation at moderate

speeds is quite practical.

2.6 Architectural Considerations

We have used the term
ow without de�ning what we mean. This was intentional, as

the CSFQ approach can be applied to varying degrees of
ow granularity; that is, what

constitutes a
ow is arbitrary as long as all packets in the
ow follow the same path within

the core. In this paper, for convenience, a
ow is implicitly de�ned as a source-destination

pair, but one could easily assign fair rates to many other granularities such as source-

destination-ports. Moreover, the unit of \
ow" can vary from island to island as long as

the rates are re-estimated when entering a new island.

Similarly, we have not been precise about the size of these CSFQ islands. In one extreme,

we could take each router as an island and estimate rates at every router; this would allow

us to avoid the use of complicated per-
ow scheduling and dropping algorithms, but would

require per-
ow classi�cation. Another possibility is that ISP's could extend their island

11

of CSFQ routers to the very edge of their network, having their edge routers at the points

where customer's packets enter the ISP's network. Building on the previous scenario,

multiple ISP's could combine their islands so that classi�cation and estimation did not

have to be performed at ISP-ISP boundaries. The key obstacle here is one of trust between

ISPs.

2.7 Miscellaneous Details

Having presented the basic CSFQ algorithm, we now return to discuss a few aspects in

more detail.

We have used exponential averaging to estimate the arrival rate in Eq. (3). However,

instead of using a constant exponential weight we used e�T=K where T is the inter-packet

arrival time and K is a constant. Our motivation was that e�T=K more closely re
ects a

uid averaging process which is independent of the packetizing structure. More speci�cally,

it can be shown that if a constant weight is used, the estimated rate will be sensitive to

the packet length distribution and there are pathological cases where the estimated rate

di�ers from the real arrival rate by a factor; this would allow
ows to exploit the estimation

process and obtain more than their fair share. In contrast, by using a parameter of e�T=K,

the estimated rate will asymptotically converge to the real rate, and this allows us to bound

the excess service that can be achieved (as in Theorem 1). We used a similar averaging

process in Eq. (5) to estimate the total arrival rate A.

The choice of K in the above expression e�T=K presents us with several tradeo�s. First,

while a smaller K increases the system responsiveness to rapid rate
uctuations, a larger

K better �lters the noise and avoids potential system instability. Second, K should be

large enough such that the estimated rate, calculated at the edge of the network, remains

reasonably accurate after a packet traverses multiple links. This is because the delay-jitter

changes the packets' inter-arrival pattern, which may result in an increased discrepancy

between the estimated rate (received in the packets' labels) and the real rate. To counteract

this e�ect, as a rule of thumb, K should be one order of magnitude larger that the delay-

jitter experienced by a
ow over a time interval of the same size, K. Third, K should be

no larger than the average duration of a
ow. Based on this constraints, an appropriate

value for K would be between 100 and 500 ms.

12

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

B
an

dw
id

th
 (

M
bp

s)

Flow Number

DRR
CSFQ

FRED-1
FRED-2

RED
FIFO

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

5 10 15 20 25 30

B
an

dw
id

th
 (

M
bp

s)

Flow Number

DRR
CSFQ
FRED

RED
FIFO

(b)

Figure 4: Simulation results for a 10 Mbps link shared by N
ows. (a) The average

throughput over 10 sec when N = 32, and all
ows are UDPs. The arrival rate for
ow i is

(i + 1) times larger than its fair share. The
ows are indexed from 0. (b) The throughputs

of one UDP
ow (indexed 0) sending at 10 Mbps, and of 31 TCP
ows sharing a 10 Mbps

link.

A second issue relates to the requirement of CSFQ for a label to be carried in each packet.

One possibility is to use the Type Of Service byte in the IP header. For example, by using

a
oating point representation with four bits for mantissa and four bits for exponent we

can represents any rate between 1 Kbps and 65 Mbps with an accuracy of 6.25%. Another

possibility is to de�ne an IP option in the case of IPv4, or a hop-by-hop extension header

in the case of IPv6.

3 Simulations

In this section we evaluate our algorithm by simulation. To provide some context, we

compare CSFQ's performance to four additional algorithms. Two of these, FIFO and

RED, represent baseline cases where routers do not attempt to achieve fair bandwidth

allocations. The other two algorithms, FRED and DRR, represent di�erent approaches to

achieving fairness.

� FIFO (First In First Out) - Packets are served in a �rst-in �rst-out order, and the

bu�ers are managed using a simple drop-tail strategy; i.e., incoming packets are

13

dropped when the bu�er is full.

� RED (Random Early Detection) - Packets are served in a �rst-in �rst-out order, but

the bu�er management is signi�cantly more sophisticated than drop-tail. RED [9]

starts to probabilistically drop packets long before the bu�er is full, providing early

congestion indication to
ows which can then gracefully back-o� before the bu�er

over
ows. RED maintains two bu�er thresholds. When the exponentially averaged

bu�er occupancy is smaller than the �rst threshold, no packet is dropped, and when

the exponentially averaged bu�er occupancy is larger than the second threshold all

packets are dropped. When the exponentially averaged bu�er occupancy is between

the two thresholds, the packet dropping probability increases linearly with bu�er

occupancy.

� FRED (Flow Random Early Drop) - This algorithm extends RED to provide some

degree of fair bandwidth allocation [14]. To achieve fairness, FRED maintains state

for all
ows that have at least one packet in the bu�er. Unlike RED where the

dropping decision is based only on the bu�er state, in FRED dropping decisions are

based on this
ow state. Speci�cally, FRED preferentially drops a packet of a
ow

that has either (1) had many packets dropped in the past, or (2) a queue larger than

the average queue size. FRED has two variants, which we will call FRED-1 and

FRED-2. The main di�erence between the two is that FRED-2 guarantees to each

ow a minimum number of bu�ers. As a general rule, FRED-2 performs better than

FRED-1 only when the number of
ows is large. In the following data, when we do

not distinguish between the two, we are quoting the results from the version of FRED

which performed better.

� DRR (De�cit Round Robin) - This algorithm [20] represents an e�cient implementa-

tion of the well-known weighted fair queueing (WFQ) discipline. The bu�er manage-

ment scheme assumes that when the bu�er is full the packet from the longest queue

is dropped. DRR is the only one of the four to use a sophisticated per-
ow queueing

algorithm, and thus achieves the highest degree of fairness.

These four algorithms represent four di�erent levels of complexity. DRR and FRED

have to classify incoming
ows, whereas FIFO and RED do not. DRR in addition has

14

to implement its packet scheduling algorithm, whereas the rest all use �rst-in-�rst-out

scheduling. CSFQ edge routers have complexity comparable to FRED, and CSFQ core

routers have complexity comparable to RED.

We have examined the behavior of CSFQ under a variety of conditions. We use an

assortment of tra�c sources (mainly TCP sources and constant bit rate UDP sources,4 but

also some on-o� sources) and topologies. Due to space limitations, we only report on a

small sampling of the simulations we have run.5 All simulations were performed in ns-2 [17],

which provide accurate packet-level implementation for various network protocols, such as

TCP and RLM [15] (Receiver-driven Layered Multicast), and various bu�er management

and scheduling algorithms, such as RED and DRR. All algorithms used in the simulation,

except CSFQ and FRED, were part of the standard ns-2 distribution.

Unless otherwise speci�ed, we use the following parameters for the simulations in this

section. Each output link has a capacity of 10 Mbps, a latency of 1 ms, and a bu�er of

64 KB. In the RED and FRED cases the �rst threshold is set to 16 KB, while the second

one is set to 32 KB. The averaging constants K (used in estimating the
ow rate), K�

(used in estimating the fair rate), and Kc (used in making the decision of whether a link is

congested or not) are all set to 100 ms unless speci�ed otherwise. The general rule of thumb

we follow in this paper is to choose these constants to be roughly two times larger than

the maximum queueing delay (i.e., 64KB=10Mbps = 51.2 ms).6 Finally, in all topologies

the �rst router on the path of each
ow is always assumed to be an edge router; all other

routers are assumed without exception to be core routers.

We simulated the other four algorithms to give us benchmarks against which to assess

these results. We use DRR as our model of fairness and use the baseline cases, FIFO

and RED, as representing the (unfair) status quo. The goal of these experiments is to

determine where CSFQ sits between these two extremes. FRED is a more ambiguous

4This source, referred to as UDP in the remainder of the paper, has �xed size packets and the packet in-

terarrival times are uniformly distributed between [0:5�avg; 1:5�avg), where avg is the average interarrival

time.
5A fuller set of tests, and the scripts used to run them, is available at

http://www.cs.cmu.edu/~istoica/csfq
6It can be shown that by using this rule an idle link that becomes suddenly congested by a set of

identical UDP sources will not experience bu�er over
ow before the algorithm detects the congestion, as

long as the aggregate arrival rate is less than 10 times the link capacity.

15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30

A
llo

ca
te

d
B

w
dt

h.
 /

Id
ea

l B
w

dt
h.

Total Number of Flows

DRR
CSFQ
FRED

RED
FIFO

Figure 5: The normalized bandwidth of a TCP
ow that competes with N � 1 UDP
ows

sending at twice their allocated rates, as a function of N .

benchmark, being somewhat more complex than CSFQ but not as complex as DRR.

In general, we �nd that CSFQ achieves a reasonable degree of fairness, signi�cantly

closer to DRR than to FIFO or RED. CSFQ's performance is typically comparable to

FRED's, although there are several situations where CSFQ signi�cantly outperforms FRED.

There are a large number of experiments and each experiment involves rather complex dy-

namics. Due to space limitations, in the sections that follow we will merely highlight a few

important points and omit detailed explanations of the dynamics.

3.1 A Single Congested Link

We �rst consider a single 10 Mbps congested link shared by N
ows. The propagation

delay along the link is 1 ms. We performed three related experiments.

In the �rst experiment, we have 32 UDP
ows, indexed from 0, where
ow i sends i+1

times more than its fair share of 0.3125 Mbps. Thus
ow 0 sends 0.3125 Mbps,
ow 1

sends 0.625 Mbps, and so on. Figure 4(a) shows the average throughput of each
ow over

a 10 sec interval; FIFO, RED, and FRED-1 fail to ensure fairness, with each
ow getting

a share proportional to its incoming rate, while DRR is extremely e�ective in achieving a

fair bandwidth distribution. CSFQ and FRED-2 achieve a less precise degree of fairness;

for CSFQ the throughputs of all
ows are between �11% and +5% of the ideal value.

In the second experiment we consider the impact of an ill-behaved UDP
ow on a set

of TCP
ows. More precisely, the tra�c of
ow 0 comes from a UDP source that sends

16

Sources

. . .

. . .

UDP-11 UDP-K1UDP-1

Gateway GatewayGateway Gateway

UDP-10 UDP-20 UDP-K10

UDP-K1 - UDP-K10UDP-1 - UDP-10

SinkSource
TCP/UDP-0 TCP/UDP-0

Sinks

Figure 6: Topology for analyzing the e�ects of multiple congested links on the throughput

of a
ow. Each link has ten cross
ows (all UDPs). All links have 10 Mbps capacities. The

sending rates of all UDPs, excepting UDP-0, are 2 Mbps, which leads to all links between

routers being congested.

at 10 Mbps, while all the other
ows (from 1 to 31) are TCPs. Figure 4(b) shows the

throughput of each
ow averaged over a 10 sec interval. The only two algorithms that can

most e�ectively contain the UDP
ow are DRR and CSFQ. Under FRED the UDP
ow

gets almost 1.8 Mbps { close to six times more than its fair share { while the UDP only

gets 0.396 Mbps and 0.361 Mbps under DRR and CSFQ, respectively. As expected FIFO

and RED perform poorly, with the UDP
ow getting over 8 Mbps in both cases.

In the �nal experiment, we measure how well the algorithms can protect a single TCP

ow against multiple ill-behaved
ows. We perform 31 simulations, each for a di�erent

value of N , N = 2 � � � 32. In each simulation we take one TCP
ow and N � 1 UDP
ows;

each UDP sends at twice its fair share rate of 10
N
Mbps. Figure 5 plots the ratio between

the average throughput of the TCP
ow over 10 seconds and the fair share bandwidth

it should receive as a function of the total number of
ows in the system N . There are

three points of interest. First, DRR performs very well when there are less than 22
ows,

but its performances decreases afterwards. This is because the TCP
ow's bu�er share is

less than three bu�ers, which signi�cantly a�ects its throughput. Second, CSFQ performs

better than DRR when the number of
ows is large. This is because CSFQ is able to cope

better with the TCP burstiness by allowing the TCP
ow to have several packets bu�ered

for short time intervals. Finally, across the entire range, CSFQ provides similar or better

performance as compared to FRED.

17

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 1.5 2 2.5 3 3.5 4 4.5 5

A
llo

ca
te

d
B

w
dt

h.
 /

Id
ea

l B
w

dt
h.

Number of Congested Links

DRR
CSFQ
FRED

RED
FIFO

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 1.5 2 2.5 3 3.5 4 4.5 5

A
llo

ca
te

d
B

w
dt

h.
 /

Id
ea

l B
w

dt
h.

Number of Congested Links

DRR
CSFQ
FRED

RED
FIFO

(b)

Figure 7: (a) The normalized throughput of UDP-0 as a function of the number of congested

links. (b) The same plot when UDP-0 is replaced by a TCP
ow.

3.2 Multiple Congested Links

We now analyze how the throughput of a well-behaved
ow is a�ected when the
ow

traverses more than one congested link. We performed two experiments based on the

topology shown in Figure 6. All UDPs, except UDP-0, send at 2 Mbps. Since each link

in the system has 10 Mbps capacity, this will result in all links between routers being

congested.

In the �rst experiment, we have a UDP
ow (denoted UDP-0) sending at its fair share

rate of 0.909 Mbps. Figure 7(a) shows the fraction of UDP-0's tra�c that is forwarded

versus the number of congested links. CSFQ and FRED perform reasonably well, although

not quite as well as DRR.

In the second experiment we replace UDP-0 with a TCP
ow. Similarly, Figure 7(b)

plots the normalized TCP throughput against the number of congested links. Again, DRR

and CSFQ prove to be e�ective. In comparison, FRED performs signi�cantly worse though

still much better than RED and FIFO. The reason is that while DRR and CSFQ try to

allocate bandwidth fairly among competing
ows during congestion, FRED tries to allocate

bu�ers fairly. Flows with di�erent end-to-end congestion control algorithms will achieve

di�erent throughputs even if routers try to fairly allocate bu�er.

18

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400 450

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

TCP
RLM1
RLM2
RLM3

(a) DRR

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400 450

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

TCP
RLM1
RLM2
RLM3

(b) CSFQ

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400 450

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

TCP
RLM1
RLM2
RLM3

(c) RED

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400 450

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

TCP
RLM1
RLM2
RLM3

(d) FRED

Figure 8: The throughput of three RLM
ows and one TCP
ow along a 4 Mbps link under

DRR, CSFQ, RED, and FRED, respectively..

3.3 Coexistence of Di�erent Adaptation Schemes

In this experiment we investigate the extent to which CSFQ can deal with
ows that

employ di�erent adaptation schemes. Receiver-driven Layered Multicast (RLM) [15] is an

adaptive scheme in which the source sends the information encoded into a number of layers

(each to its own multicast group) and the receiver joins or leaves the groups associated

with the layers based on how many packet drops it is experiencing. We consider a 4 Mbps

link traversed by one TCP and three RLM
ows. Each source uses a seven layer encoding,

where layer i sends 2i+4 Kbps; each layer is modeled by a UDP tra�c source. The fair share

of each
ow is 1Mbps. In the RLM case this will correspond to each receiver subscribing

to the �rst �ve layers7.

The receiving rates averaged over 1 second interval for each algorithm are plotted in

7More precisely, we have
P5

i=1
2i+4 Kbps = 0:992 Mbps.

19

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400 450
T

hr
ou

gh
pu

t (
M

bp
s)

Time (sec)

TCP
RLM1
RLM2
RLM3

FIFO

Figure 9: The throughput of three RLM
ows and one TCP
ow along a 4 Mbps link under

FIFO.

Algorithm delivered dropped

DRR 601 6157

CSFQ 1680 5078

FRED 1714 5044

RED 5322 1436

FIFO 5452 1306

Table 1: Statistics for an ON-OFF
ow with 19 competing TCPs
ows (all numbers are in

packets).

Figures 8 and 9. Since in this experiment the link bandwidth is 4 Mbps and the router

bu�er size is 64 KB, we set constants K, K�, and Kc to be 250 ms, i.e., about two times

larger than the maximum queue delay. An interesting point to notice is that, unlike DRR

and CSFQ, FRED does not provide fair bandwidth allocation in this scenario. Again, as

discussed in Section 3.2, this is due to the fact that RLM and TCP use di�erent end-to-end

congestion control algorithms.

3.4 Di�erent Tra�c Models

So far we have only considered UDP, TCP and layered multicast tra�c sources. We now

look at two additional source models with greater degrees of burstiness. We again consider

20

Algorithm mean time std. dev

DRR 25 99

CSFQ 62 142

FRED 40 174

RED 592 1274

FIFO 840 1695

Table 2: The mean transfer times (in ms) and the corresponding standard deviations for

60 short TCPs in the presence of a UDP
ow that sends at the link capacity, i.e., 10 Mbps.

Algorithm mean std. dev

DRR 6080 64

CSFQ 5761 220

FRED 4974 190

RED 628 80

FIFO 378 69

Table 3: The mean throughputs (in packets) and standard deviations for 19 TCPs in the

presence of a UDP
ow along a link with propagation delay of 100 ms. The UDP sends at

the link capacity of 10 Mbps.

a single 10 Mbps congested link. In the �rst experiment, this link is shared by one ON-OFF

source and 19 TCPs. The ON and OFF periods of the ON-OFF source are both drawn

from exponential distributions with means of 100 ms and 1900 ms respectively. During the

ON period the ON-OFF source sends at 10 Mbps. Note that the ON-time is on the same

order as the averaging intervals K, K�, and Kc which are all 100 ms, so this experiment is

designed to test to what extent CSFQ can react over short timescales.

The ON-OFF source sent 6758 packets over the course of the experiment. Table 1 shows

the number of packets from the ON-OFF source dropped at the congested link. The DRR

results show what happens when the ON-OFF source is restricted to its fair share at all

times. FRED and CSFQ also are able to achieve a high degree of fairness.

21

Our next experiment simulates Web tra�c. There are 60 TCP transfers whose inter-

arrival times are exponentially distributed with the mean of 0.05 ms, and the length of

each transfer is drawn from a Pareto distribution with a mean of 20 packets (1 packet = 1

KB) and a shaping parameter of 1.06. These values are consistent with those presented in

the [5]. In addition, there is a single 10 Mbps UDP
ow.

Table 2 presents the mean transfer time and the corresponding standard deviations.

Here, CSFQ performs worse than FRED, mainly because it has a larger average queue size,

but still almost one order of magnitude better than FIFO and RED.

3.5 Large Latency

All of our experiments so far have had small link delays (1 ms). In this experiment we

again consider a single 10 Mbps congested link, but now with a propagation delay of 100

ms. The load is comprised of one UDP
ow that sends at the link speed and 19 TCP
ows.

Due to the large propagation delay, in this experiment we set the bu�er size to be 256 KB,

and K, K�, and Kc to be 400 ms. Table 3 shows the average number of packets of a TCP

ow during a 100 seconds interval. Both CSFQ and FRED perform reasonably well.

3.6 Packet Relabeling

Recall that when the dropping probability of a packet is non-zero we relabel it with the

fair rate � so that the label of the packet will re
ect the new rate of the
ow. To test

how well this works in practice, we consider the topology in Figure 10, where each link is

10 Mbps. Note that as long as all three
ows attempt to use their full fair share, the fair

shares of
ows 1 and 2 are less on link 2 (3.33 Mbps) than on link 1 (5 Mbps), so there will

be dropping on both links. This will test the relabelling function to make sure that the

incoming rates are accurately re
ected on the second link. We perform two experiments

(only looking at CSFQ's performance). In the �rst, there are three UDPs sending data at

10 Mbps each. Table 4 shows the average throughputs over 10 sec of the three UDP
ows.

As expected these rates are closed to 3.33 Mbps. In the second experiment, we replace

the three UDPs by three TCPs. Again, despite the TCP burstiness which may negatively

a�ect the rate estimation and relabeling accuracy, each TCP gets close to its fair share.

22

Flow 3

10 Mbps

10 Mbps

10 Mbps

10 Mbps

10 Mbps

Sources

(10 Mbps)

(10 Mbps)

(10 Mbps)

Sink

Gateway

Gateway

(Link 1)

(Link 2)Flow 2

Flow 1

Figure 10: Simulation scenario for the packet relabeling experiment. Each link has 10 Mbps

capacity, and a propagation delay of 1 ms.

Tra�c Flow 1 Flow 2 Flow 3

UDP 3.36 3.32 3.28

TCP 3.43 3.13 3.43

Table 4: The throughputs resulting from CSFQ averaged over 10 seconds for the three

ows in Figure 10 along link 2.

3.7 Discussion of Simulation Results

We have tested CSFQ under a wide range of conditions, conditions purposely designed to

stress its ability to achieve fair allocations. These tests, and the others we have run but

cannot show here because of space limitations, suggest that CSFQ achieves a reasonable

approximation of fair bandwidth allocations in most conditions. Certainly CSFQ is far

superior in this regard to the status quo (FIFO or RED). Moreover, in all situations CSFQ

is roughly comparable with FRED, and in some cases it achieves signi�cantly fairer alloca-

tions. Recall that FRED requires per-packet
ow classi�cation while CSFQ does not, so we

are achieving these levels of fairness in a more scalable manner. However, there is clearly

room for improvement in CSFQ, as there are cases where its performance is signi�cantly

below that of its benchmark, DRR. We do not yet know if these are due to our particular

choices for the estimation algorithms, or are inherent properties of the CSFQ architecture.

23

4 Why Are Fair Allocations Important?

In the Introduction we stated that one of the underlying assumptions of this work is that

fairly allocating bandwidth was bene�cial, and perhaps even crucial, for congestion control.

In this section we motivate the role of fair allocations in congestion control by discussing

the problem of unfriendly
ows, and then presenting two approaches to this problem; we

end this section with a discussion of the role of punishment. In what follows we borrow

heavily from [7], [3], and [8], and have bene�ted greatly from conversations with Steve

Deering and Sally Floyd. We should note that the matters addressed in this section are

rather controversial and this overview unavoidably re
ects our prejudices. This section,

however, is merely intended to provide some perspective on our motivation for this work,

and any biases in this overview should not undercut the technical aspects of the CSFQ

proposal that are the main focus of the previous sections.

4.1 The Unfriendly Flow Problem

Data networks such as the Internet, because of their reliance on statistical multiplexing,

must provide some mechanism to control congestion. The current Internet, which has

mostly FIFO queueing and drop-tail mechanisms in its routers, relies on end-to-end con-

gestion control in which hosts curtail their transmission rates when they detect that the

network is congested. The most widely utilized form of end-to-end congestion control is that

embodied in TCP [11], which has been tremendously successful in preventing congestion

collapse.

The e�cacy of this approach depends on two fundamental assumptions: (1) all (or

almost all)
ows are cooperative in that they implement congestion control algorithms,

and (2) these algorithms are homogeneous { or roughly equivalent { in that they produce

similar bandwidth allocations if used in similar circumstances. In particular, assumption

(2) requires, in the language of [8], that all
ows are TCP-friendly.8

8Actually, the term TCP-friendly in [8] means that \their arrival rate does not exceed that of any TCP

connection in the same circumstances." Here we use it to mean that the arrival rates are roughly compa-

rable, a property that should be more precisely called TCP-equivalent. We blur the distinction between

TCP-friendly and TCP-equivalent to avoid an overly unwieldy set of terms in this short overview. However,

we think the distinction may be rendered moot since it is unlikely that congestion control algorithms that

24

The assumption of universal cooperation can be violated in three general ways. First,

some applications are unresponsive in that they don't implement any congestion control

algorithms at all. Most of the early multimedia and multicast applications, like vat, nv,

vic, wb and RealAudio fall into this category. Second, some applications use congestion

control algorithms that, while responsive, are not TCP-friendly. RLM is such an algorithm.9

Third, some users will cheat and use a non-TCP congestion control algorithm to get more

bandwidth. An example of this would be using a modi�ed form of TCP with, for instance,

a larger initial window and window opening constants.

Each of these forms of noncooperation can have a signi�cant negative impact on the

performance obtained by cooperating
ows. At present, we do not yet know how widespread

noncooperation will be, and thus cannot assess the level of harm it will cause. However, in

lieu of more solid evidence that noncooperation will not be a problem, it seems unsound to

base the Internet's congestion control paradigm on the assumption of universal cooperation.

We therefore started this paper with the fundamental assumption that one needs to deal

with the problem of unfriendly
ows.

4.2 Two Approaches

There are, in the literature, two general approaches to addressing the problem of unfriendly

ows. The �rst is the allocation approach. Here, the router itself ensures that bandwidth

is allocated fairly, isolating
ows from each other so that unfriendly
ows can only have a

very limited impact on other
ows. Thus, the allocation approach need not demand that all

ows adopt some universally standard end-to-end congestion control algorithm;
ows can

choose to respond to the congestion in whatever manner best suits them without unduly

harming other
ows. Assuming that
ows prefer to not have signi�cant levels of packet

drops, these allocation approaches give an incentive for
ows to use end-to-end congestion

control, because being unresponsive hurts their own performance. Note that the allocation

are not TCP-equivalent but are TCP-friendly { i.e., they get much less than their fare share { will be

widely deployed.
9Although our data in Section 3.3 showed RLM receiving less than its fair share, when we change the

simulation scenario so that the TCP
ow starts after all the RLM
ows then it receives less than half

of its fair share. This hysteresis in the RLM versus TCP behavior was �rst pointed out to us by Steve

McCanne [15].

25

approach does not provide an incentive for
ows to be TCP-friendly (an example of an

alternative end-to-end congestion control algorithm is described in [13]), but does provide

strong incentives for drop-intolerant applications to use some form of end-to-end congestion

control.10 Of course, the canonical implementations of the allocation approach, such as Fair

Queueing, all require signi�cant complexity in routers. Our goal in this paper was to present

a more scalable realization of the allocation approach.

The problem of unfriendly
ows can be addressed in another manner. In the identi�-

cation approach, as best exempli�ed by [8], routers use a lightweight detection algorithm

to identify unfriendly
ows, and then explicitly manage the bandwidth of these unfriendly

ows. This bandwidth management can range from merely restricting unfriendly
ows

to no more than the currently highest friendly
ow's share11 to the extreme of severely

punishing unfriendly
ows by dropping all of their packets.

This approach relies on the ability to accurately identify unfriendly
ows with relatively

lightweight router mechanisms. This is a daunting task. Below we discuss the process

of identifying unfriendly
ows, and then present simulation results of the identi�cation

algorithm in [8]; we are not aware of other realizations of the identi�cation approach.

One can think of the process of identifying unfriendly
ows as occurring in two logically

distinct stages. The �rst, and relatively easy, step is to estimate the arrival rate of a
ow.

The second, and harder, step is to use this arrival rate information (along with the dropping

rate and other aggregate measurements) to decide if the
ow is unfriendly. Assuming that

friendly
ows use a TCP-like adjustment method of increase-by-one and decrease-by-half,

one can derive an expression (see [8] for details) for the bandwidth share S as a function

of the dropping rate p, round-trip time R, and packet size B: S �

B

R
p
p
for some constant

. Routers do not know the round trip time R of
ows, so must use the lower bound of

double the propagation delay of the attached link; this allows
ows further away from the

link to behave more aggressively without being identi�ed as being unfriendly.12

10As we discuss later, if
ows can tolerate signi�cant levels of loss, the situation changes somewhat.
11If identi�cation were perfect, and this management goal achieved, all
ows would get their max-min

fair allocations. However, we are not aware of any algorithm that can achieve this management goal.
12We are not delving into some of the details of the approach layed out in [8] where
ows can also

be classi�ed as very-high-bandwidth but not necessarily unfriendly, and as unresponsive (and therefore

unfriendly).

26

Simulation 1 Simulation 2
Algorithm

UDP TCP-1 TCP-2 TCP-1 TCP-2

REDI 0.906 0.280 0.278 0.565 0.891

CSFQ 0.554 0.468 0.478 0.729 0.747

Table 5: (Simulation 1) The throughputs in Mbps of one UDP and two TCP
ows along

a 1.5 Mbps link under REDI [8], and CSFQ, respectively. (Simulation 2) The throughputs

of two TCPs (where TCP-2 opens its congestion window three times faster than TCP-1),

under REDI, and CSFQ, respectively.

To see how this occurs in practice, consider the following two experiments using the

identi�cation algorithm described in [8], which we call RED with Identi�cation (REDI).13

In each case there are multiple
ows traversing a 1.5 Mbps link with a latency of 3 ms;

the output bu�er size is 32 KB and all constants K, K�, and Kc, respectively, are set to

400 ms. Table 5 shows the bandwidth allocations under REDI and CSFQ averaged over

100 sec. In the �rst experiment (Simulation 1), we consider a 1 Mbps UDP
ow and two

TCP
ows; in the second experiment (Simulation 2) we have a standard TCP (TCP-1) and

a modi�ed TCP (TCP-2) that opens the congestion window three times faster. In both

cases REDI fails to identify the unfriendly
ow, allowing it to obtain almost two-thirds of

the bandwidth. As we increase the latency of the congested link, REDI starts to identify

unfriendly
ows. However, for some values as high as 18 ms, it still fails to identify such

ows. Thus, the identi�cation approach still awaits a viable realization and, as of now, the

allocation approach is the only demonstrated method to deal with the problem of unfriendly

ows.

13We are grateful to Sally Floyd who provided us her script implementing the REDI algorithm. We used a

similar script in our simulation, with the understanding that this is a preliminary design of the identi�cation

algorithm. Our contention is that the design of such an identi�cation algorithm is fundamentally di�cult

due to the uncertainty of RTT.

27

4.3 Punishment

Earlier in this section we argued that the allocation approach gave drop-intolerant
ows an

incentive to adopt end-to-end congestion control. What about drop-tolerant
ows?

We consider, for illustration, �re-hose applications that have complete drop-tolerance:

they send at some high rate � and get as much value out of the fraction of arriving pack-

ets, call it x, as if they originally just sent a stream of rate x�. That is, these �re-hose

applications care only about the ultimate throughput rate, not the dropping rate.14 In a

completely static world where bandwidth shares were constant such \�re-hose" protocols

would not provide any advantage over just sending at the fair share rate. However, if the fair

shares along the path were
uctuating signi�cantly, then �re-hose protocols might better

utilize instantaneous
uctuations in the available bandwidth. Moreover, �re-hose protocols

relieve applications of the burden of trying to adapt to their fair share. Thus, even when

restrained to their fair share there is some incentive for
ows to send at signi�cantly more

than the current fair share.15 In addition, such �re-hoses decrease the bandwidth available

to other
ows because packets destined to be dropped at a congested link represent an un-

necessary load on upstream links. With universal deployment of the allocation approach,

every other
ow would still obtain their fair share at each link, but that share may be

smaller than it would have been if the �re-hose had been using responsive end-to-end con-

gestion control. It is impossible to know now whether this will become a serious problem.

Certainly, though, the problem of �re-hoses in a world with fair bandwidth allocation is

far less dire than the problem of unfriendly
ows in our current FIFO Internet, since the

incentive to be unfriendly and the harmful impact on others are considerably greater in the

latter case. As a consequence, our paper emphasizes the problem of unfriendly
ows in our

current FIFO Internet, and is less concerned with �re-hose
ows in an Internet with fair

bandwidth allocation.

Nonetheless, the �re-hose problem should not be ignored;
ows should be given an in-

14Approximations to complete drop-tolerance can be reached in video transport using certain coding

schemes or �le transport using selective acknowledgements.
15These �re-hose coding and �le transfer methods also have some overhead associated with them, and it

isn't clear whether, in practice, the overheads are greater or less than the advantages gained. However, one

can certainly not claim, as we did above for drop-intolerant applications, that the allocation approach gives

drop-tolerant applications a strong incentive to use responsive end-to-end congestion control algorithms.

28

centive to adopt responsive end-to-end congestion. One possible method is to explicitly

punish unresponsive
ows by denying them their fair share.16 Punishment is discussed

as one possible bandwidth management approach in [8] (the approach described there is

informally referred to as RED-with-a-penalty-box). Accurately identifying
ows as unre-

sponsive may be far easier than identifying them as unfriendly. However, as we saw in

our simulations, doing so in the context of the identi�cation approach is far from a solved

problem; the challenge is to determine if a
ow has decreased usage in response to increases

in overall packet drop rates [8].

Identifying unresponsive
ows is more straightforward in the allocation approach, since

here one need only determine if a
ow has had signi�cantly high drop rates over a long

period of time. As a proof of concept we have implemented a simple identi�cation and

punishment mechanism. First, we examine o�-line the last n dropped packets and then

monitor the
ows with the most dropped packets. Second, we estimate the rate of each of

these monitored
ows; when a
ow's rate is larger than a�� (a > 1), we start dropping all

of its packets. Third, we continue to monitor penalized
ows, continuing punishment until

their arrival rate decreases below b�� (b < 1). Using the parameters a = 1:2, b = 0:6, and

n = 100, we applied this algorithm to Simulation 1 in Table 5; the UDP
ow was identi�ed

and penalized in less than 3 seconds. Our task was easy because the identi�cation of

unresponsive
ows can be based on the result (packet drops over long periods of time)

rather than on trying to examine the algorithm (detecting whether it actually decreased

its rate in response to an increase in the drop rate). Note also that the allocation approach

need only distinguish between responsive and unresponsive in the punishment phase, an

inherently easier task than distinguishing friendly from unfriendly.

In summary, to provide incentives for drop-tolerant
ows to use responsive end-to-

end congestion control, it may be necessary to identify, and then punish, unresponsive

ows. CSFQ with this punishment extension may be seen as a marriage of the allocation

and identi�cation approaches; the di�erence between [8] and our approach is largely one

of the relative importance of identi�cation and allocation. We start with allocation as

16Another possible method, used in ATM ABR, is to have network provide explicit per
ow feedback to

ingress nodes and have edge nodes police the tra�c on a per
ow basis. We assume this is a too heavyweight

a mechanism for the Internet.

29

fundamental, and then do identi�cation only when necessary; [8] starts with identi�cation,

and then considers allocation only in the context of managing the bandwidth of identi�ed

ows.

5 Summary

This paper presents an architecture for achieving reasonably fair bandwidth allocations

while not requiring per-
ow state in core routers. Edge routers estimate
ow rates and

insert them into the packet labels. Core routers merely perform probabilistic dropping on

input based on these labels and an estimate of the fair share rate, the computation of which

requires only aggregate measurements. Packet labels are rewritten by the core routers to

re
ect output rates, so this approach can handle multihop situations.

We tested CSFQ, and several other algorithms, on a wide variety of conditions. We

�nd that CSFQ achieve a signi�cant degree of fairness in all of these circumstances. While

not matching the fairness benchmark of DRR, it is comparable or superior to FRED, and

vastly better than the baseline cases of RED and FIFO. We know of no other approach

that can achieve comparable levels of fairness without any per-
ow operations in the core

routers.

The main thrust of CSFQ is to use rate estimation at the edge routers and packet labels

to carry rate estimates to core routers. The details of our proposal, such as the estimation

algorithms, are still very much the subject of active research. However, the results of our

initial experiments with a rather untuned algorithm are quite encouraging.

One open question is the e�ect of large latencies. The logical extreme of the CSFQ ap-

proach would be to do rate estimation at the entrance to the network (at the customer/ISP

boundary), and then consider everything else the core. This introduces signi�cant latencies

between the point of estimation and the points of congestion; while our initial simulations

with large latencies did not reveal any signi�cant problems, we do not yet understand CSFQ

well enough to be con�dent in the viability of this \all-core" design. However, if viable,

this \all-core" design would allow all interior routers to have only very simple forwarding

and dropping mechanisms, without any need to classify packets into
ows.

In addition, we should note that it is possible to use a CSFQ-like architecture to provide

30

service guarantees. A possible approach would be to use the route pinning mechanisms

described in [23], and to shape the aggregate guaranteed tra�c at each output link of core

routers [6].

One of the initial assumptions of this paper was that the more traditional mechanisms

used to achieve fair allocations, such as Fair Queueing or FRED, were too complex to

implement cost-e�ectively at su�ciently high speeds. If this is the case, then a more

scalable approach like CSFQ is necessary to achieve fair allocations. The CSFQ islands

would be comprised of high-speed backbones, and the edge routers would be at lower speeds

where classi�cation and other per-
ow operations were not a problem. However, CSFQ may

still play a role even if router technology advances to the stage where the more traditional

mechanisms can reach su�ciently high speeds. Because the core-version of CSFQ could

presumably be retro�t on a sizable fraction of the installed router base (since its complexity

is roughly comparable to RED and can be implemented in software), it may be that CSFQ

islands are not high-speed backbones but rather are comprised of legacy routers.

Lastly, we should note that the CSFQ approach requires some con�guration, with edge

routers distinguished from core routers. Moreover, CSFQ must be adopted an island at a

time rather than router-by-router. We do not know if this presents a serious impediment

to CSFQ's adoption.

References

[1] J.C.R. Bennett, D.C. Stephens, and H. Zhang. High speed, scalable, and accurate implemen-

tation of packet fair queueing algorithms in ATM networks. In Proceedings of IEEE ICNP

'97, pages 7{14, Atlanta, GA, October 1997.

[2] J.C.R. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair queueing. In Proceedings

of IEEE INFOCOM'96, pages 120{128, San Francisco, CA, March 1996.

[3] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson,

G. Minshall, C. Partridge, L. Peterson, K. K. Ramakrishnan, S. Shenker, and J. Wroclawski.

Recommendations on queue management and congestion avoidance in the internet, January

1998. Internet Draft.

31

[4] R. Callon, P. Doolan, N. Feldman, A. Fredette, G. Swallow, and A. Viswanathan. A Frame-

work for Multiprotocol Label Switching, November 1997. Internet Draft.

[5] M. E. Crovella and A. Bestavros. Self-similarity in world wide web tra�c evidence and

possible causes. In Proceedings of the ACM SIGMETRICS 96, pages 160{169, Philadelphia,

PA, May 1996.

[6] R. L. Cruz. SCED+: E�cient Management of Quality of Service Guarantees. In Proceedings

of INFOCOM'98, pages 625{642, San Francisco, CA, 1998.

[7] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm.

In Journal of Internetworking Research and Experience, pages 3{26, October 1990. Also in

Proceedings of ACM SIGCOMM'89, pp 3-12.

[8] S. Floyd and K. Fall. Router mechanisms to support end-to-end congestion control, February

1997. LBL Technical Report.

[9] S. Floyd and V. Jacobson. Random early detection for congestion avoidance. IEEE/ACM

Transactions on Networking, 1(4):397{413, July 1993.

[10] S. Golestani. A self-clocked fair queueing scheme for broadband applications. In Proceedings

of IEEE INFOCOM'94, pages 636{646, Toronto, CA, June 1994.

[11] V. Jacobson. Congestion avoidance and control. In Proceedings of ACM SIGCOMM'88,

pages 314{329, August 1988.

[12] J. Ja�e. Bottleneck
ow control. IEEE Transactions on Communications, 7(29):954{962,

July 1980.

[13] S. Keshav. A control-theoretic approach to
ow control. In Proceedings of ACM SIG-

COMM'91, pages 3{15, Zurich, Switzerland, September 1991.

[14] D. Lin and R. Morris. Dynamics of random early detection. In Proceedings of ACM SIG-

COMM '97, pages 127{137, Cannes, France, October 1997.

[15] S. McCanne. Scalable Compression and Transmission of Internet Multicast Video. PhD

dissertation, University of California Berkeley, December 1996.

[16] J Nagle. On packet switches with in�nite storage. IEEE Trans. On Communications,

35(4):435{438, April 1987.

32

[17] Ucb/lbnl/vint network simulator - ns (version 2).

[18] A. Parekh and R. Gallager. A generalized processor sharing approach to
ow control - the

single node case. In Proceedings of the INFOCOM'92, 1992.

[19] S. Shenker. Making greed work in networks: A game theoretical analysis of switch service

disciplines. In Proceedings of ACM SIGCOMM'94, pages 47{57, London, UK, August 1994.

[20] M. Shreedhar and G. Varghese. E�cient fair queueing using de�cit round robin. In Proceed-

ings of SIGCOMM'95, pages 231{243, Boston, MA, September 1995.

[21] D. Stilliadis and A. Varma. E�cient fair queueing algorithms for packet-switched networks.

IEEE/ACM Transactions on Networking, 6(2):175{185, April 1998.

[22] I. Stoica and H. Zhang. LIRA: A model for service di�erentiation in the internet. In Pro-

ceedings of NOSSDAV'98, London, UK, July 1998.

[23] Z. Wang. User-share di�erentiation (USD) scalable bandwidth allocation for di�erentiated

services, May 1998. Internet Draft.

A Performance Bounds

Lemma 1 gives the upper bound for the excess service received by a
ow which does not experience

any loss during an interval [t0; t00), i.e., r(t) � w�u, 8t 2 [t0; t00). Lemma 2 gives a similar result

for the case in which r(t) � w�u, 8t 2 [t0; t00). Finally, Theorem 1 gives the upper bound for the

excess service received by a
ow during an arbitrary time interval.

Lemma 1 Consider a link with a normalized fair rate �u, and a
ow with weight w. The excess

service received by the
ow during any interval I = [t0; t00), when its rate estimator r is smaller or

equal to r�, i.e., r(t) � r� 8t 2 I, is bounded above by

r�K + lmax; (9)

where r� = �uw, and lmax represents the maximum length of a packet.

Proof. Without loss of generality assume that exactly n packets of the
ow are received during

the interval I . Let ti 2 I , (1 � i � n) be the arrival time of the i-th packet, and let li denote its

length. According to Eq (3), we have

33

ri = (1� e�Ti=K)
li

Ti
+ e�Ti=Kri�1; 1 < i � n; (10)

where Ti = ti � ti�1, and r0 represents the initial estimated rate. If r0 > 0, t0 is assumed to be

the time when the last packet was received before t0. Otherwise, if r0 = 0 then we take t0 = �1.

Since ri � r� (1 � i � n) it follows that all packets are forwarded and therefore the total

number of bits sent during the interval I is
P

n

i=1 li. Thus, our problem can be reformulated as to

max

nX
i=1

li

!
; (11)

subject to

ri � r�; 1 � i � n: (12)

From Eq. (10) it follows that

li =
ri � ri�1e�Ti=K

1� e�Ti=K
Ti; 2 � i � n: (13)

Note that the above equation does not apply for i = 1, as T1 =1 for r0 = 0.

Let us de�ne

F (r1; r2; : : : ; rn) =
nX
i=1

li; 2 � i < n: (14)

Then we have

@F (r1; r2; : : : ; rn)

@ri
=

Ti

1� e�Ti=K
�

Ti+1e
�Ti+1=K

1� e�Ti+1=K
; 2 � i < n: (15)

Since x=(1� e�x) � 1 and xe�x=(1� e�x) � 1 for any x � 0, we have

@F (r1; r2; : : : ; rn)

@ri
� 0; 2 � i < n: (16)

In addition we have

@F (r1; r2; : : : ; rn)

@rn
=

Tn

1� e�Tn=K
> 0: (17)

As a result function F (r1; r2; � � � ; rn) is maximized when each of its arguments achieves its maximul

value, which in our case is r�.

Consequently Eq. (11) is maximized when

34

li =
ri � ri�1e�Ti=K

1� e�Ti=K
Ti =

r� � r�e
�Ti=K

1� e�Ti=K
Ti = r�Ti; 2 � i < n: (18)

Thus, we obtain

nX
i=1

li = l1 + l2 +
nX
i=3

li (19)

� lmax +Kr� +
nX
i=3

r�Ti

< lmax +Kr� + (t00 � t0)r�:

Since (t00 � t0)r� represents exactly the service at which the
ow is entitled during the interval I ,

it follows that the excess service is bounded by lmax + r�K.

Lemma 2 Consider a link with a normalized fair rate �u, and a
ow with weight w that sends

at a rate no larger than R, where R > r�. Next consider an interval I = [t0; t00) such that t0

represents the time just after a packet has arrived, and during which the rate estimator r is never

smaller than r�, i.e., r(t) � r�, 8t 2 I. Then, the excess service received by the
ow during I is

bounded above by

r�Kln
R

r
; (20)

where r� = �uw.

Proof. The proof is similar to the one of the previous lemma. Again, assume that during the

interval I the
ow sends exactly n packets. Similarly, let ti be the arrival time of the i-th packet,

and let li denote its length. Since in this case, i.e., when the estimated rate is larger than r�, the

i-th packet is forwarded with the probability r�=ri, the problem can be reformulated as to �nd

max

nX
i=1

li
r�

ri

!
; (21)

subject to

r� � ri � R; 1 � i � n: (22)

Next, from Eq. (10), we obtain

35

li

ri
=

ri � ri�1e�Ti=K

ri(1� e�Ti=K)
Ti (23)

= Ti +

�
1�

ri�1
ri

�
e�Ti=K

1� e�Ti=K
Ti; 1 � i � n:

Note that unlike Eq. (13), the above equation also applies to i = 1. This because we are

guaranteed that there is at least one packet received before t0 and therefore Ti is well de�ned.

More precisely, from the hypothesis we have T1 = t1 � t0 = t1 � t0. By assuming that the packets

arrival times are �xed, maximizing (21) reduces to

max

nX
i=1

�
1�

ri�1
ri

�
�i

!
; (24)

where �i = e�Ti=KTi=(1� e�Ti=K). Further, by assuming K � Ti (1 � i � n) we obtain �i ' K,

and therefore (24) reduces to

max
nX
i=1

�
1�

ri�1
ri

�
; (25)

Since the arithmetic mean is always larger or equal to the geometric mean, we have

nX
i=1

�
1�

ri�1
ri

�
� n � n

nY
i=1

ri�1
ri

!1=n

(26)

= n

1�

�
r0

rn

�1=n!

� n

1�

�
r�

R

�1=n!

where the last inequality follows from the hypothesis, i.e., r� � ri � R (1 � i � n). Further, it

can be easily shown that k(1 � (r�=R)
1=k) � ln(r=r�), 8 k � 1. More precisely, �rst show that

ln(x) � 1� 1=x, 8 x � 1, and then simply replace x = (R=r�)
1=k. Thus, Ineq. (26) becomes

nX
i=1

�
1�

ri�1
ri

�
� ln

R

r�
: (27)

Finally, by using Eqs. (23) and (27) we obtain

nX
i=1

li
r�

ri
� r�

X
i=1

Ti + r�Kln
R

r�
(28)

� r�(t
00
� t0) + r�Kln

R

r�

36

Since (t00� t0)r� represents exactly the number of bits that the
ow is entitled to send during the

interval I , the proof follows.

Theorem 1 Consider a link with a normalized fair rate �u, and a
ow with weight w. Then, the

excess service received by a
ow with weight w, that sends at a rate no larger than R is bounded

above by

r�K

�
1 + ln

R

r�

�
+ lmax; (29)

where r� = �uw, and lmax represents the maximum length of the packet.

Proof. Assume the
ow becomes active for the �rst time at t0. Let t1 be the time when its rate

estimator exceeds for the the �rst time r�, i.e., r(t1) > r� and r(t) � r�, 8t < t1. If such time t1

does not exist, according to Lemma 1 the excess service received by the
ow is bounded by r�K,

which concludes the proof for this case. In the followings we consider the case when t1 exists.

Next, we show that the service received by the
ow is maximized when r(t) � r�, 8t > t1.

The proof goes by contradiction. Assume there is an interval I 0 = [t0; t00) � I , such that t0 � t1,

and that r(t) < r�, (t
0
� t < t00). Then using an identical argument as in Lemma 1, it can be

easily shown that the service is maximized when r(t) = r�, 8 t 2 Ik. By proceeding in the same

manner for every subinterval I 0 in which the estimated rate is smaller than r� we obtain a new

arrival process17 under which the
ow gets more service. But then, according to Lemma 2, the

excess service received by the
ow after t1 is bounded by18

r�Kln
R

r�
: (30)

Similarly, from Lemma 1 it follows that the excess service received by the
ow during the

interval [t0; t1) is bounded above by

r�K + lmax; (31)

and therefore by combining (30) and (31) the total excess service is bounded by

r�K

�
1 + ln

R

r�

�
+ lmax; (32)

17The new process has the same arrival pattern as the original one, but di�erent packet lengths.
18Without loss of generality here we assume that t1 represents the time just after r was evaluated as

being smaller than r� for the last time. Since this coincides with a packet arrival Lemma 2 applies.

37

