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Abstract

A major goal in the parallel computing community has been to transfer results from the theory
of parallel computing to the practice of developing efficient implementations of general-purpose
parallel algorithms. However, the most widely-used theoretical model, the Parallel Random
Access Machine (PRAM), is an impractical model of real parallel machines. Thus, much current
research centers on redesigning algorithms for models that account for the communication bot-
tlenecks present on most distributed memory machines, a task that is feasible for certain classes
of algorithms, but is fundamentally difficult for algorithms that use irregular data structures

and access patterns.

Instead, this thesis considers whether it is feasible to map PRAM algorithms onto a class of
realistic parallel machines with only a subset of the features of an ideal PRAM. Our goal is to
show that general-purpose PRAM algorithms can be implemented efficiently and systematically
on a class of high-bandwidth shared-memory parallel machines that

1. have a high-bandwidth network between the processors and memory banks,
2. allow for fine-grained memory accesses,

3. can tolerate latency to the memory from processors by allowing for multiple outstanding

memory requests, and

4. have memory banks that are slower than the processors and compensate by having more

memory banks than processors.

These features are currently provided on vector multiprocessors, and might be provided in fu-
ture parallel architectures. To model these machines, we extend Valiant’s Bulk Synchronous
Parallel (Bsp) model to include machines that compensate for slow memory banks by having
more memory banks than processors. We evaluate this extended model on the crAY €9 and
CRAY J90 and explore experimentally how various PRAM variants can be emulated in this model,
with particular emphasis on the Queued-Read Queued-Write PRAM.

The major focus of the thesis is a practical study of techniques for implementing and modeling
irregular PRAM algorithms on vector multiprocessors. The thesis describes a set of case studies
on fundamental PRAM algorithms, including sorting, merging, sparse matrix multiplication, and
graph connectivity. Each case study describes the selection of a practical PRAM algorithm, the
process of mapping the algorithm onto the machine model, a performance model for predicting
running time, and practical issues and tradeoffs in developing fast, general-purpose implemen-
tations for the CRAY C90 and CRAY J90.
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Chapter 1
Introduction

A major goal in the parallel computing community has been to transfer results from the theory
of parallel computing to the practice of developing efficient implementations of general-purpose
parallel algorithms. However, the most widely-used theoretical model, the Parallel Random
Access Machine (PRAM) [112, 166, 117], is an impractical model of real parallel machines because
it assumes a number of idealistic characteristics, including a high bandwidth global memory,
and no penalties for latency, communication overhead, and synchronization. Some researchers
view the discrepancy between the PRAM model and current parallel machines as an incentive
to discard the PRAM model and to redesign algorithms for a model that accounts for limited
communication (e.g., LOGP [62]).

Redesigning algorithms is feasible for certain classes of algorithms, but is fundamentally dif-
ficult for algorithms that use irregular data structures and access patterns. Thus, we reexamine
the question of whether the PRAM could be used effectively in practice. We consider whether it
is feasible to map PRAM algorithms onto a class of realistic parallel machines with only a subset
of the features of an ideal PRAM. In particular we consider a class of shared-memory machines

that

1. have a high-bandwidth network between the processors and memory banks,

2. allow for fine-grained memory accesses,

3. can tolerate latency to the memory from processors by allowing for multiple outstanding

memory requests, and

4. have memory banks that are slower than the processors and compensate by having more

memory banks than processors.

These features are currently provided on vector multiprocessors, and might be provided in
future parallel architectures. We refer to a machine with these features as a high-bandwidth

1



2 CHAPTER 1. INTRODUCTION

pipelined-memory multiprocessor (or simply a high-bandwidth multiprocessor). There are three
main reasons for assuming high bandwidth:

performance: to use architectures that provide highest absolute performance on irregular al-
gorithms, including algorithms that use frequent pointer chasing and permutation. Anal-
ysis of industry-standard benchmarks suggests that there is a strong correlation between
global bandwidth and performance, particularly for irregular algorithms [35].

generality: to use general-purpose algorithms, rather than specializing algorithms to accom-
modate limited communication. For example, we want to sort arbitrary distributions of

keys, and label connected components of arbitrary irregular graphs.

algorithm design effort: to explore the limits of what is possible using PRAM algorithms
without expending the programming effort to redesign algorithms [35]. Instead, we focus
on systematic implementation of PRAM algorithms on high-bandwidth multiprocessors.

Our thesis is that practical, irregular, PRAM algorithms can be used for implementing high-
performance irregular computation on high-bandwidth multiprocessors. By “practical”, we
mean that the algorithms have small constant factors in their running time for problem sizes
and machine sizes of practical interest. By “irregular”, we mean algorithms that require a
large amount of input-dependent information to describe their memory reference patterns, for
example, algorithms using pointer-based data structures such as graphs and trees. By “PRAM
algorithms”, we mean that the algorithms assume a high-throughput fine-grained shared mem-
ory. (However, implementations of the algorithms do not assume unit-time latency.) For several
irregular problems, our approach to programming high-bandwidth vector multiprocessors using
PRAM algorithms has lead to the fastest implementations on vector machines, and the fastest
general-purpose implementations for any machine.

In exploring this thesis, we use an experimental approach toward addressing several research

questions:
e What is an appropriate machine model for high-bandwidth multiprocessors?

e What is an appropriate high-level programming model that balances accuracy, simplicity,
and generality?

e What techniques are the most effective for developing fast general-purpose implementa-
tions of irregular PRAM algorithms?

The thesis first introduces a machine model for high-bandwidth pipelined-memory multi-
processors. The model is an extension of Valiant’s Bulk Synchronous Parallel (Bsp) [201, 181]
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model that includes machines that compensate for slow memory banks by having more mem-
ory banks than processors. -(Although we have chosen to extend the BSP model, it should be
straightforward to extend other related models, e.g., the LoGP [62] or DMM [141] models, with
the d and x parameters.) We evaluate this extended model on the CRAY C90 and CRAY J90
vector multiprocessors, and we explore experimentally how various PRAM variants can be em-
ulated in this model, with particular emphasis on the Queued-Read Queued-Write PRAM. The
bulk of the thesis describes a set of case studies, which are used for exploring modeling and
implementation techniques. The algorithms studied are sorting, merging, sparse matrix mul-
tiplication, and connected components. Each case study describes the selection of a practical
PRAM algorithm, the process of mapping the algorithm onto the machine model, a performance
model for predicting running time (which accounts for latency and contention), and practical
issues and tradeoffs in developing fast implementations. In particular, we describe techniques
for efficiently hiding latency on the CRAY C90 and CRAY J90 using vectorization. The experi-
mental results in the thesis show that many irregular PRAM algorithms can be systematically
implemented on high-bandwidth multiprocessors, resulting in fast and predictable performance.

In the remainder of this introduction, we motivate and describe our machine model, outline
how PRAM algorithms are mapped to this model, describe our algorithm case studies, summarize

the thesis contributions, and describe related work.

| I | | | I I I processors

interconnection
network

IJ__I H_—‘ memories

Figure 1.1: Machine model studied in the thesis.

1.1 Machine model: the Deluxe BSP

In recent years several models have been designed with the goal of hiding many details of
parallel machines while still providing guidance in developing efficient algorithms. Examples of
such models include the Bulk Synchronous Parallel (Bsp) [201] and LoGP [62] models, which
both aim to serve as high-level performance models of message-passing machines. These models
provide a simple abstraction of the machine’s interconnection network that ignores many details
of the network, such as topology, while still capturing important aspects such as bandwidth and
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latency. The models help in optimizing algorithms, aid in understanding how algorithms scale,
and guide choices among algorithms. They are often used in conjunction with experimentation
to account for aspects that are not considered by the models, such as local computation times.
As such, they have been quite successful, leading to practical designs of many algorithms [12,
21, 49, 62, 63, 83, 89, 98, 144].

We introduce and evaluate a model with similar goals, but for high-bandwidth shared-
memory machines. Such machines include both vector multiprocessors, such as the CRAY C90
and 790, and multithreaded machines, such as the TERA MTA [6]. This work was motivated by the
study of algorithms with irregular memory access patterns. In our analysis we found previous
models either quite detailed, or inadequate for describing the key performance characteristics
of the algorithms. For example, we found that a straightforward shared-memory variant of the
BSP does not properly account for contention at the banks since there is no way to account
for the relative speed of memory banks and processors. On the other hand, previous models
of multibank memory systems [13, 17, 38, 41, 43, 47, 52, 66, 96, 152, 184, 185, 186, 199] are
highly detailed, and the studies have considered only regular or random access patterns. We are
interested in modeling algorithms with irregular, but not necessarily random, access patterns
without requiring a complicated model. We are particularly concerned with capturing the
effect of memory contention in these algorithms. We assume that the parts of applications with

regular memory access patterns can be analyzed with more traditional approaches [52, 96].

The model we consider, a shared-memory variant of the BSP, assumes that a set of pro-
cessors are connected through a pipelined interconnection network to a set of memory banks.
(See Figure 1.1.) In addition to the three parameters of the BsP—the number of processors
p, a throughput (bandwidth) parameter g, and the periodicity (latency and synchronization)
parameter L—our model has two additional parameters: the bank delay d, and the ezpansion
factor x. We refer to this model as the (d,x)-BsP (the “deluxe” Bsp). The bank delay models
the throughput at a memory bank, and the expansion factor is the ratio of the number of
memory banks to the number of processors. Table 1.1 lists several machines along with their
expansion factors. Our experiments show that these additional parameters are necessary for
taking account of high contention on the CRAY C90 and CRAY J90, machines for which the best
sustainable gap, g, between memory requests issued by each individual processor is less than
the best sustainable delay, d, between accesses to each individual memory bank. Chapter 2
shows experimentally that the (d,x)-BsP is a fairly accurate performance model for irregular
access patterns on the CRAY C90 and J90, even though the model ignores details of the machines.



1.2. MAPPING PRAM ALGORITHMS TO THE DELUXE BSP 5

Procs | Banks | Expansion

Machine (p) (B) (x)
NEC SX-3 4 1024 256
Tera MTA 256 | 512 x 64 128
Cray C90 16 1024 64
Cray J90 16 256 x 2 32
NEC SX-4 32 1024 32
Convex C4 4 128 32
Meiko CS-2 node 2 16 8

Table 1.1: Expansion in the number of memory banks for various machines. In the current
TERA design, memory banks are organized into memory modules containing 64 memory banks.
The CRAY J90 memory banks are organized in pairs that share address and data paths. The
Meiko CS-2 node contains two Fujitsu u-VP vector processors.

1.2 Mapping PRAM algorithms to the Deluxe BSP

As we show in Chapter 2, the (d,x)-BSP is useful for modeling a class of high-bandwidth
multiprocessors. It can also be used as a programming model. That is, an algorithm designer
can explicitly determine how computation and memory accesses are mapped to processors and
memory modules. However the primary goal of introducing the (d,x)-BSP was to understand
the relationship of these machines to PRAMs, both in theory and in practice [31].

Instead of targeting the (d,x)-BSP directly, and thus incorporating latency and memory
bank effects into algorithm design, we would like to use a higher level model that abstracts
away some of the details, but still leaves us with the ability to reason about the performance
on the (d,x)-BsP. In particular, we would like to find a systematic way of mapping a PRAM
model onto the (d, x)-BSP.

Our approach to emulating PRAM algorithms is adopted from the Bsp [201]. Latency is
hidden by taking advantage of additional parallelism, or parallel slackness. Each physical pro-
cessor simulates multiple virtual processors, which allows the global memory requests made by
each physical processor to be pipelined. The simulation of virtual processors can be imple-
mented with a number of hardware latency-hiding mechanisms including vectorization (as on
the CRAY C90 and J90), multithreading, and prefetching.

In emulating memory access in a PRAM algorithm, there are two potential cause of contention
at a memory bank: module map contention, that is, contention caused by the assignment of
multiple PRAM memory locations to the same memory bank, and memory location contention,
that is, simultaneous accesses to a particular memory location in the PRAM algorithm. -

Module map contention can be addressed by using random mappings of locations to memory
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banks. (In special cases, we can use a regular distribution of locations to banks that minimizes
contention, when such a distribution is known.) Chapter 2 quantifies the effect of random map-
pings on memory bank contention and shows that fairly accurate performance predictions can
be made without considering module map contention, given sufficient memory bank expansion.

Memory location contention is addressed by selecting algorithms designed for an appropriate
variant of the PRAM. Various PRAM models differ in their rules for simultaneous memory
access; the Concurrent-Read Concurrent-Write (CRCW) model allows an arbitrary number of
simultaneous accesses to any one memory location without penalty, whereas the Exclusive-
Read Exclusive-Write (EREW) allows only one access at a time to a memory location. The
Queued-Read Queued-Write (QrRQW) PRAM allows for concurrent reading and writing to shared
memory locations, but at cost proportional to the number of readers/writers to any one memory
location.

In the thesis we consider algorithms designed for several variants, but the QRQW model
is ideal for targeting the (d,x)-BSP in several respects. First, the QRQW accurately reflects
the contention properties of most commercial machines [86]. In particular, the effect of bank
delay in the (d,x)-BSP can be captured in the QRQW model by making the cost of simultaneous
access proportional to the memory bank delay. Second, the QRQW PRAM is less restrictive than
the EREW PRAM. From a theoretical standpoint, the QRQW is more powerful than EREW [86]
and from a practical standpoint, some QRQW algorithms have lower constant factors than the
corresponding EREW algorithms. And third, the QRQW PRAM can be efficiently emulated on
the (d,x)-BSP, both in theory [31] and in practice.

Chapter 3 discusses a number of practical techniques for implementing PRAM algorithms, in-
cluding techniques for implementing processor virtualization for various machine architectures,

and for reducing memory contention and module map contention.

1.3 Algorithm case studies

The bulk of the thesis consists of a set of algorithm case studies. This section describes a
common set of issues addressed in each case study and justifies the choices of algorithms studied.
There are five key elements explored in each of algorithm experiment:

algorithm selection: We compare different algorithms for each of the problems and determine
which algorithms are likely to be fast in practice, considering both asymptotic efficiency
and constant factors.

mapping: We describe how the costs of latency and contention can be minimized when map-
ping the algorithm onto a pipelined-memory multiprocessor.
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modeling: We derive performance equations in terms of machine and algorithm parameters,

and analyze tradeoffs between latency, contention, and work.

implementation: We develop aggressive implementations, describe the key implementation
issues, measure constants in each kernel, and compare measured performance with our

predictions.

comparison: We compare our implementations to previous implementations, primarily in

terms of generality and performance.

The irregular algorithms studied in this thesis include merging, sorting, sparse matrix mul-
tiplication, and graph connectivity. These algorithms, each of which is described in a separate
chapter, are intended to serve as representative of the most basic irregular problems. Such core
problems arise in a number of irregular applications and are often the bottlenecks in such ap-
plications. In addition, timings of optimized implementations exist for many machines, which
allows us to draw informed quantitative and qualitative conclusions from the performance re-

sults.- The specific algorithms studied in the thesis were selected for various reasons:

merging: Merging is a fundamental algorithm used in several applications, including merge
sort, database join, set intersection, and divide-and-conquer computational geometry al-
gorithms. Merging is an interesting case study because it is simple to describe, yet exposes
several key issues. Issues explored include the choice between variants designed for various
PRAM models, and tradeoffs between work-efficient algorithms and simpler, less efficient
algorithms that have been previously used on vector and distributed memory machines.

sorting: Sorting has many applications in serial computing, and is arguably even more im-
portant in parallel computing. Sorting is a key substep in many parallel algorithms,
including scientific applications such as particle simulation [64], as well as a variety of
database and combinatorial algorithms. In addition, sorting can be used for simulat-
ing a variety of collective operations, including concurrent memory access, and sorting
primitives are supplied in several parallel languages, including High Performance Fortran
(upF) [101] and NEsL [24].

sparse matrix multiplication: The solution of sparse linear systems is an essential compu-
tational component in scientific computing. In particular, the solution of unstructured
sparse linear systems is important in computational fluid dynamics, circuit and device
simulation, structural analysis, and many other application areas. The most important
kernel in many iterative solvers is sparse-matrix multiplication. In the case of unstructured
problems, this kernel is difficult to optimize and typically dominates the computing time.
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In addition to linear system solvers, other applications, including molecular dynamics and

linear programming, can be formulated as sparse matrix multiplication [21].

connected components: Graph algorithms are fundamental to a variety of scientific and
combinatorial applications. We focus on connected component labeling because it is a
fundamental graph algorithm used as a substep in a variety of applications. For example,
the graph connectivity problem is the dominant cost in simulating Ising Spin models using
the Swendsen Wang algorithm [191]. In addition, graph connectivity is representative of
a broad class of graph algorithms. Efficient PRAM parallel algorithms for connected com-
ponents use many common primitive operations on graphs, such as neighbor operations,

pointer shortcutting, nodes and edge deletion, and graph contraction and expansion.

The set of case studies covers a range of PRAM models: EREW for radix sorting, CREW and
EREW for merging and for sparse matrix multiplication, and cRcw for connected component
labeling. For algorithms that use concurrent memory access, we also consider variants for a
queuned access model.

The experimental work in this thesis was performed on the CRAY J90 and CRAY C90 [151].
We chose these machines because they provide a platform for exploring the benefits of having
latency-hiding in combination with a high-bandwidth memory system with multiple memory
banks. Perhaps the most important reason for choosing the CRAY vector machines is that
they provide a platform for studying architectural characteristics that are likely to appear
in future parallel architectures. In particular, future parallel machines are likely to supply
much higher bandwidth communication, and recent commodity processor designs are starting
to provide better support for hiding latency, via mechanisms such as prefetching. In addition,
vector microprocessor architectures are an area of active research [131, 9, 205]. Although vector
supercomputers are becoming less common, the results in this thesis are not strongly tied to
the particular mechanisms used for hiding latency and could be applied to other machines that
match our assumptions, such as the TERA MTA [6], a scalable, multithreaded shared-memory
multiprocessor.

1.4 Contributions

This thesis makes several contributions:

o A systematic approach to algorithm design and implementation for high bandwidth mul-
tiprocessors, based on the QRQW PRAM. The thesis describes techniques for programming
vector multiprocessors as PRAMS, using the concept of virtual processors for vectorization.

The techniques apply to a broad class of regular and irregular PRAM algorithms.
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| Problem Problem Size Performance l
sorting an array of keys 32M 64-bit keys 110 M keys/sec
merging two sorted arrays 16M 64-bit output keys | 500 M keys/sec
sparse matrix-vector multiplication 9M nonzero elements 3800 M flops/sec
labeling connected components of a graph | 40M nodes 115 M nodes/sec

Table 1.2: Performance summary of thesis case studies, indicating approximate throughput on
a 16-processor CRAY C90. Detailed timings are given in Chapters 4-7.

e Fast, predictable, general-purpose implementations of sorting, merging, sparse matrix
multiplication, and connected components PRAM algorithms for the CRAY C90 and CRAY J90.
Table 1.2 presents a brief summary of timings for the algorithm implementations, several

of which are fastest than all previous implementations.

e A model for high bandwidth pipelined-memory multiprocessors, that augments the BSp
model with delay and expansion parameters. The model is detailed enough to make ac-
curate performance predictions, yet abstract enough to include a broad class of current
and future architectures using a variety of memory technologies and latency-hiding mech-
anisms. The thesis shows experimentally that that accounting for memory bank delay is
necessary when contention is high, that the (d,x)-BsP is accurate on the cRAY J90 and
CRAY C90, and that the QRQW PRAM is a good approximation to (d,x)-BsP.

1.5 Related work on implementing irregular algorithms

Our work differs from previous research in two basic areas: the model of parallel computation,
as discussed in Section 1.1, and the approach toward implementing irregular algorithms. This
section presents a high-level comparison to related work in implementing irregular parallel
computation. Detailed discussion of related work on machines models is described in Chapter 2,
and discussion of work related to the specific case studies (sorting, merging, sparse matrix

multiplication, and connected components) is deferred to the relevant chapters.

1.5.1 BSP and LOGP implementations

Several irregular algorithms have been implemented using the Bsp model, in areas such as
computational geometry [65, 82], discrete-event simulation [44], plasma simulation [149], and
sparse matrix computation [20]. In comparing our work to implementations of Bsp algorithms,
it is important to distinguish between the BsP model, and implementations based on Bsp li-
braries [144, 89, 181]. The BSP model uses the gap parameter (g) parameter to quantify band-
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width limitations. In theoretical work describing emulations of PRAM algorithms on the Bsp,
sometimes the gap is assumed to have the ideal value, g = O(1) [201]. In practical research
using the BSP and LOGP models, the implementations and libraries target portability to a wide
variety of machines [89, 61], from tightly-coupled MPPs with a moderate gap, to networks
of workstations [149], with an extremely high gap. The limited bandwidth of these machines
motivates practical work on design of new algorithms in which the primary focus is increasing
locality [82, 65, 139, 63]. In contrast, by sacrificing portability and focusing on high-bandwidth
machines, we are able to explore issues closer to one of the primary motivating factors for BsP,

that is, practical implementation of PRAM algorithms.

1.5.2 Vector implementations

High bandwidth vector machines have been used for implementing a wide variety of irregular
algorithms. Implementations on a single vector processor range from fundamental algorithms
and data structures for garbage collection [8], dictionary operations [113], hashing [115], and
matching primitives [177], to applications in areas such as symbolic circuit simulation [18], logic
verification [104], computational geometry [189], n-body simulation [140], and particle simula-
tion [137, 42]. A few parallel irregular algorithms have been parallelized for vector computers,
including implementations of a sparse direct solver [206], a tree search algorithm for playing
chess [111], and a randomized list-ranking algorithm [164].

There are three key differences between our implementation approach and most previous
vector implementation studies. First, several implementations use an ad hoc approach to vec-
torization that is based on restricting the class of inputs or modifying inherently serial algo-
rithms. (Two notable exceptions are the implementations of matching primitives [177] and
list-ranking [164], both of which are based on simulating PRAM algorithms.) Second, most of
the implementations use only a single vector processor. And third, nearly all ignore memory
contention caused by irregular access patterns. In short, this thesis focuses more on systematic
implementation and on scalability—not only in using multiple processors, but also in tolerat-
ing memory latency and avoiding memory bank contention, both of which become increasingly

important as the number of processors is increased.

1.6 Thesis organization

The remainder of the thesis is organized as follows. Chapter 2 defines the (d,x)-Bsp and de-
scribes a number of experiments that evaluate the accuracy of the model. Chapter 3 describes
techniques for hiding latency and reducing contention, and also describes several basic algo-
rithms and primitives. In Chapters 4-7, we describe a set algorithm experiments. Chapter 4
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describes a mapping of an EREW PRAM radix sort onto pipelined-memory multiprocessors and
highlights two issues: how to hide latency by simulating virtual processors and how to minimize
module map contention by carefully distributing locations among banks. Chapter 5 compares
several parallel merging algorithms and illustrates tradeoffs between work and latency. In ad-
dition, it quantifies the effect of concurrent reads in merging algorithms and demonstrates the
importance of using a work-efficient algorithm. Chapter 6 describes a sparse matrix multipli-
cation algorithm that fully hides latency for arbitrary sparse matrices. Chapter 7 describes
algorithms for finding the connected components of a graph. The chapter emphasizes the im-
portance of accounting for memory contention and demonstrates that a general-purpose PRAM
algorithm performs well on regular and irregular graphs. Chapter 8 presents conclusions of the

thesis.
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Chapter 2

Modeling Pipelined-Memory

Multiprocessors

The goal of this chapter is to provide a simple model for the design and analysis of irregular
parallel algorithms on shared-memory multiprocessors with more memory banks than proces-
sors. For this purpose we extend Valiant’s bulk-synchronous parallel (Bsp) model with two
parameters: a parameter for memory bank delay, the minimum time for servicing requests at
a bank, and a parameter for memory bank ezpansion, the ratio of the number of banks to the
number of processors. We show experimentally that the (d, x)-BsP captures the impact of bank
contention and delay on the CRAY C90 and J90 for irregular access patterns, without modeling
machine-specific details of these machines.

This chapter represents joint work with Guy Blelloch, Phil Gibbons, and Yossi Matias [31].
The chapter focuses on the definition of the model and experimental results. Theoretical re-
sults on PRAM emulations are presented in the published papers [31], and are summarized in
Section 2.5.1.

2.1 Overview

In this chapter, we first show experimentally that the (d, x)-BSP model accurately characterizes
the performance of the CRAY vector multiprocessors on irregular access patterns, even though
the model ignores details of the machines.! We show this both for the crRAY €9, which uses
static RAM (SRAM) and has a bank delay of 6 clock cycles, and for the more modestly priced
CRAY J90, which uses dynamic RAM (DRAM) and has a bank delay of 14 clock cycles. The (d, x)-

1We assume, however, that the code is mostly or fully vectorized so that memory traffic is high. We do not
claim that the model applies to programs that have large scalar components.

13
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BSP has made it easier to analyze several algorithms and has allowed us to predict various
effects that cannot be predicted without taking into account the bank delay. Although the
(d,x)-BsP does not model the time exactly, due mostly to ignoring effects of the network, it
more accurately captures the effect of high contention. Furthermore, the discrepancy between
the BsP and (d,x)-BSP becomes larger as either the bank delay or the number of processors
increases.

Second, we study to what extent the effects of multiple memory locations residing in a single
bank can be ignored, when using random mappings of memory locations to memory banks.
Many researchers have studied the effect of randomly mapping memory to banks (e.g., [6, 97,
116, 132, 141, 161, 162, 163, 201]). If there is sufficient parallel “slackness” (extra parallelism)
so that each bank is receiving multiple requests, it has been shown [116, 141, 162, 201] that with
high probability the memory references will be reasonably balanced across the banks. These
results, however, assume that there is no contention at individual memory locations.? If we
allow for contention at memory locations, then ignoring the mapping of memory locations to
banks can significantly underpredict the running time even for unbounded slackness. This is
because even when the number of memory requests is large, the number of accessed locations
could be small and not well balanced across the memory banks. We study the impact of the
expansion factor on the balance of requests, when only a small number of memory locations
are accessed, and show that increasing the expansion factor reduces the effect of ignoring the
mapping of memory locations to banks. For the CRAY €90, which has a high expansion factor,
we show both experimentally and analytically that ignoring the mapping will underpredict
running time by a factor of approximately 2.0 for a worst-case reference pattern and typically
by much less. The effect of expansion for the CRAY C90 and CRAY J90 is shown in Figure 2.1.

Finally, we summarize results that explore scenarios under which two high-level models
for algorithm design, the EREW PRAM (e.g., [112]) and the stronger QRQW PRAM [86] can
be effectively mapped onto high-bandwidth machines (small g) when properly accounting for
memory bank delay [31].

2.2 Accounting for memory bank contention and delay

Our model is an extension of Valiant’s BSP model [201]. The BSP model was introduced to
be a “bridging” model between software and hardware in parallel machines: software would be
designed for this model and parallel machines would implement it. Such a standardized interface
would allow software to be more easily ported to various hardware platforms. The BSP model

2In the case of Ranade’s work [162] it is assumed that references to a single location are combined in the
network.
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Figure 2.1: The ratio of the time that includes the effect of multiple memory locations being
mapped to the same bank to the time that excludes the effect, when using random mapping.
This is given as a function of expansion and is for a worst-case reference pattern. For both the
CRAY C90 and J90 the actual expansion is 64 and the other data points are taken by using a
subset of the banks. This shows the advantage of having an expansion greater than the d/g
(shown with the dotted vertical lines) that is needed to match the servicing bandwidth at the
banks with the issuing bandwidth at the processors.

consists of p processor/memory components communicating by sending point-to-point messages.
The interconnection network supporting this communication is characterized by a throughput
parameter g and a periodicity parameter L, where L is the sum of the global memory latency
£, and the cost of synchronization. The particular topology of the network is ignored and the
cost to communicate among processors is assumed to be uniform, independent of the identity
of the processors. A BSP computation consists of a sequence of “supersteps” separated by
bulk synchronizations (typically, a barrier synchronization among all the processors). In each
superstep the processors can perform local computations and send and receive a set of messages.
Messages are sent in a pipelined fashion (i.e., each processor may issue messages and continue
with its computation prior to the receipt of those messages). Messages sent in one superstep will
arrive prior to the start of the next superstep. The time charged for a superstep is calculated
as follows. Let W; be the amount of local work performed by processor i in a given superstep.
Let S; (R;) be the number of messages sent (received) by processor i. Let W = max?_, W,
S = maxi_, S;, and R = max’_, R;. Then the cost, T, of a superstep is defined to be

T:ma’X(Wa g'Sa g'R) L)

Intuitively the communication throughput parameter, g, is the best sustainable gap between
message sends issued by each individual processor; therefore 1/g represents the available band-
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width per processor. Intuitively the communication latency parameter, L, called the “period-
icity factor” in [201], is the worst case time to deliver a message between two processors in an

otherwise unloaded network plus the time to perform a barrier synchronization.

2.2.1 The (d,x)-BSP model

The (d, x)-Bsp differs from the BsP described above as follows. The (d,x)-BsP is an explicit
shared-memory model. Memory components (banks) are considered as separate from the pro-
cessors, and their number is accounted for in the model. Instead of sending and receiving
messages, processors make global memory requests that are serviced directly by the memory
banks. To account for differences in the speed of memory requests by processors and responses
by memory banks the (d, x)-BsP also assigns a distinct throughput parameter for the memory
banks.

The (d,x)-Bsp is depicted in Figure 2.2. It consists of p processors communicating by
reading and writing memory words from a separate set of B memory banks; these memory
banks are used as a shared memory by the processors. In practice these memory banks might
be physically located next to the processors, but it is assumed that the processors are not
involved in handling incoming memory requests. Processors also have local memory for use
with local operations; this accounts for registers, cache memory, and main memory in each
processor’s local environment.

A {d,x)-BsP computation consists of a sequence of supersteps separated by barrier synchro-
nizations. In each superstep the processors can perform local computations and make a set
of pipelined, global memory requests. Requests made in one superstep will complete prior to
the start of the next superstep. We include the same parameters as included in the BSP model
but add two more: the memory delay and the bank expansion factor. The parameters of the

(d,x)-Bsp are summarized as follows:

number of processors

communication throughput parameter (gap)

the periodicity parameter (latency + synchronization)
memory bank throughput parameter (delay)

EE =T o B S S

memory bank expansion factor (assumed to be > 1)

where the number of memory banks, denoted as B, is x - p. We refer to a machine as (d, x)-
balancedif x = d/g. This is the point where the total bandwidth available at the processors and
network for random access patterns matches the total bandwidth available at the memories.
Intuitively, the gap parameter g is the best sustainable gap between memory requests (either
reads or writes) issued by each individual processor. Intuitively, the periodicity parameter, L,
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Figure 2.2: The (d, x)-BSP model.
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is the worst case time to complete a single memory read in an otherwise unloaded memory
system plus the time to perform a barrier synchronization. Intuitively, the delay parameter d
is the best sustainable gap between memory requests serviced by an individual memory bank.

The time charged for a superstep is calculated as follows. Similar to the BsP, let W be the
maximum amount of local work performed by any one processor in the superstep, and let .S be
the maximum number of global memory requests made (the maximum memory request load)
by any one processor Let R; be the number of requests handled by memory bank 7, and let
R = max;”, R;. Then the cost, T, of a (d, x)-BSP superstep is defined to be

T=max(W, g-S,d-R, L) .

In our algorithm experiments, sometimes it is more appropriate to analyze algorithms in
terms of the memory latency, without considering synchronization costs. In these cases, the
parameter £ is used for the memory latency alone. Also, sometimes it is more appropriate to
sum the costs of computation and memory contention, instead of using the maximum of these
two costs. Summing can be more convenient for analyzing algorithms, and in some cases, for
increasing the accuracy of performance predictions.

The contention at a memory bank can be due to not only the contention at a particular
location in the bank, but also due to accesses to multiple locations within the bank. In the
basic model we make no assumptions about how the memory locations are mapped onto the
memory banks. This allows us to consider scenarios where the mapping is under user.control
and scenarios where the mapping is random. To separate the two types of contention we make
the following definitions, each of which is defined relative to a single superstep. Let the memory
request contention, k;, to a location 7 be the number of requests to ¢, and let £ = max; k;. Let
M ; be the set of locations mapped to memory bank j. The size of this set is the module map
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Figure 2.3: Memory request contention (k1, k2, k3), module map contention (u), and module
load contention (R).

contention, p; = |Mj|, of bank j, and let g = max; p;. Then
=Y ki
tEM;

is the module load contention of bank j (see Figure 2.3).

2.2.2 Applicability of the model

The model assumes several properties of a machine. We now discuss the scope and limitations
of the model.

First, the model assumes that each processor has enough outstanding memory requests to
compensate for both network latency and bank delays. Allowing for multiple outstanding re-
quests is relatively easy for memory writes, but more difficult for memory reads. Techniques for
allowing multiple outstanding reads, often called latency hiding techniques, include vectoriza-
tion, multithreading, prefetching, non-blocking caches, and other methods for decoupling the
request for the memory from its use. Vectorization has been used for over 20 years to hide
memory latency and has the advantage that it is simple to implement. On the other hand it re-
stricts the kinds of programs that can be used. Multithreading was suggested and implemented
for hiding latency on the HEP [182] and was later used in the design of the TERA MTA [6] and
Sparcle [2]. Multithreading is more complicated to implement than vectorization but permits
the use of a wider class of programs. Prefetching and non-blocking caches are becoming com-
mon on commodity processors, although the number of outstanding requests currently allowed
(typically between 2 and 8 words or cache lines) probably cannot compensate for the latency
to a large shared memory. If processors evolve so that they permit additional outstanding read
requests, then it is quite possible that the model will apply to commodity processors attached
to fast multi-bank memory systems.
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Second, although the model accounts for contention at the processors and memory banks,
it does not account for contention within the network. The BsP and LOGP models make similar
assumptions. The definition of the g parameter accounts for network bandwidth under normal
conditions, but for many networks, it is possible to construct particularly bad permutations.?
In fact, in the next two sections we show that for the CRAY C90 and J90, the model breaks down
under certain contrived conditions; however, under a random mapping of memory locations to
banks, these conditions are very unlikely to occur.

Third, the model assumes that the memory banks are slower than the rate at which proces-
sors can issue memory requests into the network (i.e., d > g). With today’s memory technology
and processor speeds, the d parameter is typically on the order of 10 clock cycles. For the g
parameter to be less than that, the bandwidth per processor into the network needs to be quite
high.

Fourth, we assume that in each superstep of the (d, x)-BsP, each processor injects its memory
requests into the network in a random order (although in practice we find this is not necessary).
This assumption is made since even if the requests are reasonably distributed among the banks
within the whole superstep, they might be badly distributed over time during the superstep.
If we assume infinite buffering in the network and at the banks and assume that requests can
overtake each other, then this may not be a problem, but most networks have only limited
buffering. The limited buffering can cause congestion that will back up future requests even
though they are going to a non-congested destination. Processor-memory feedback effects can
compound the problem [184]. Our experiments on the CRAY J90 have shown slowdowns of over
a factor of 20 using bad injection orders as compared to random injection. We note, however,
that in practice it is often not necessary to spend extra time randomly ordering requests since
it is known that the requests are well distributed.

Fifth, the (d,x)-BsP does not explicitly model the processors’ local environments, including
cache behavior and local arithmetic operations. As with the Bsp and LOGP models, the (d, x)-
BSP focuses on the interprocessor communication aspects of parallel machines, as these are
presumed to be the primary bottlenecks of parallel programs. Since the (d,x)-BsP can model
the local work only within a rough estimate, experiments are needed to get an accurate measure
of this component. Typically a small experiment will suffice to get an accurate prediction of
work over a range of problem sizes and number of processors [34, 62].

Another consideration regarding the local environment is in accounting for the use of caches.
In cache-based symmetric multiprocessors (smps), understanding the cache behavior is often

necessary in order to obtain reasonably accurate performance prediction. In the (d,x)-BsP it is

8 As discussed in the next section, we derive the g parameter assuming a random permutation of addresses.
For certain regular permutations, the time through the network could be better than predicted.
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up to the user to determine, for each shared memory reference, whether the value is present in
its local cache or must be retrieved from the memory (or some other processor’s cache). A local
cache hit is accounted as a local operation; a cache miss is accounted as a global operation.
Different machines have different cache policies, and the accuracy of the (d,x)-Bsp prediction
depends in part on the extent to which operations can be properly accounted as local or global.
Furthermore, it might be necessary to account for memory traffic caused by the cache coherence
protocol itself. Considerations of cache behavior or other uses for the local memory provided
by the (d, x)-BsP do not arise in our experiments on the CRAY €90 and J90, since these machines
have adequate memory bandwidth, limited local memory, and no caches for vector data.
Finally, the model does not take account of the possibility of caching at the memory banks,
as available in the design of the TERA MTA [6], and as suggested by Hsu and Smith [110].
Extending the model to account for caching at the bank is an interesting area of future work.

2.3 Case study: modeling the Cray C90 and J90

This section presents a qualitative and quantitative comparison of the CRAY C90 and CRAY J90
to the (d,x)-BsP. The experiments in this section provide evidence that the abstract model can
produce realistic predictions of running times despite ignoring many architectural details, such
as the use of vector processors, the topology of the interconnection network, the flow control
for the network, and the priority scheme on the banks. The experiments also show some cases
where the model breaks down. The features of the CRAY vector machines that make them

suitable for the model are the following:

1. The use of vector gather and scatter instructions to allow for multiple outstanding memory

requests to an arbitrary set of addresses.

2. A high bandwidth interconnection network between the processors and the memory banks

that supports fine-grained memory references.

3. Memory banks that are significantly slower than the rate at which processors can issue
memory requests. The ratio d/g is 5 on the €90 and 7.7 on the J90.

However, to use the (d,x)-BsP model for the CRAY vector machines we need to separate the
costs of regular versus irregular accesses. In particular on the CRAY since the bandwidth for
unit stride accesses is very high (the bandwidth for two loads and a store is the same as for
an add) and the load across the banks is perfectly distributed for such accesses, we count such
unit stride accesses as part of the work W.

Here we discuss the features of the CRAY €90 and J90 in more detail. The instruction set

supports vector load and store instructions, which load or store up to 128 words per instruction
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Figure 2.4: Cray Y-MP interconnection network (adapted from Smith and Taylor [184]).

(64 on the CRAY J90). These instructions can either be strided for regular access patterns, or can
be based on a vector of addresses for indirect addressing. In the indirect loads and stores, often
called gather and scatter, each address specifies the location of a single 64-bit word allowing
for fine-grained memory accesses. The processors are connected to the memory banks with
a multistage network (see Figure 2.4). In the largest memory configuration of the CRAY C90,
banks are divided into 8 “sections” at the first level, which are each further subdivided into 8
“subsections”, each of which contains 16 memory banks. Each processor has independent paths
through the section and subsection, but processors can interfere with each other due to bank
conflicts. Sequential memory locations are interleaved across memory banks, making regular,

strided memory access fast (except on strides that are large powers of two).

The latency through the network is approximately 9 clock cycles each way. When added to
the access time at the memory bank, the total latency for a load is between 23 and 35 clock
cycles, depending on the CRAY model and assuming no contention at the memory bank. This
latency is usually hidden when using vector loads and stores since each load or store requests
multiple locations that are pipelined through the network. Furthermore, vector memory ref-
erences can overlap so that one batch of 128 loads or stores can start before the previous has
finished.

The CRAY has multiple memory ports per processor (2 on the J%0 and 6 ports on the C90).
These ports have different functions. Some are for reading and some are for writing, and only
a subset of the ports can be used for gathers and scatters (1 on the J90 and 2 on the C90).
This means that the bandwidth for irregular access patterns is not as high as for regular access

patterns.
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C90 C90* J9o
Processors 16 16 16
Banks 1024 512 1024
Memory SRAM SRAM DRAM
Clock period || 4.2 nsec | 4.2 nsec | 10.0 nsec
g 1.2 2.5 1.8
d 6 6 14

Table 2.1: The parameters for the CRAY C90 and CRAY J90. The gap and delay are measured
in clock periods. The C90* is the configuration of the C90 available to us at the Pittsburgh
Supercomputing Center, which has only half the memory banks, memory ports and network of
a full configuration.

Table 2.1 shows the (d,x)-Bsp parameters for the CRAY C90 and CRAY J90. The gap g is
measured experimentally and the other values are available from the machine specifications. We
are interested in the gap for irregular access patterns, in particular ones that require gathers
and scatters. As mentioned earlier the regular accesses can be counted in the work term.? We
‘base the gap on the time for a scatter to random locations using all the processors, where the
destination addresses are loaded from memory. The time for a gather is almost the same (within
10 percent). Our measured gap is somewhat lower than the theoretical peak performance for
gather or scatter operations due to the fact that the memory system is fairly saturated. Bucher
and Simmons have also noted this saturation effect [41]. Our experiments show that the gap
measured for random access patterns reasonably model other irregular patterns.

We performed several experiments of memory access patterns to quantitatively compare
the predictions given by the (d,x)-BSP with running times on the CRAY C90 and CRAY J90.
The experiments were selected to test various aspects and extremes of the model. Figure 2.5
summarizes the experiments. For most experiments the measured times closely match the
predicted times. For one of the experiments, 4c, the measurements differ by up to a factor of
2.5 due to the effects of the network. In all our synthetic experiments we assume that the work
term W can be ignored since on the CRAY it is typically subsumed by the g+ S term. In the
algorithm experiments described in Chapters 3-7, the work term is measured experimentally.

For all experiments we randomize the injection of memory requests within the processors.
All the experiments are based on using the scatter operation, although experiments with the
gather operation have given almost identical results. The patterns we are interested in can-
not be created with strided access—timings for various strided access patterns can be found

“In our experiments all regular loads and stores are unit stride.
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Figure 2.5: Summary of the experiments. Each bar represents the load on one memory bank.
A shaded bar (leftmost bar in Exp. 2) represents multiple different locations being written to
the bank while a clear bar (all others) represents a single location being written.

elsewhere [52, 186]. All experiments were run on a dedicated 8-processor system. All graphs
are for the CRAY J90 except where noted—CRAY C90 results are qualitatively similar. For all
experiments S = 64K and the periodicity parameter L is negligible.

Experiment 1: The first of the experiments is used to verify the (d,x)-BsP time equation
T =max(g-S,d- R) over a range of R. The experiment consisted of writing one location with
load R; the remaining work is spread across B — 1 memory locations, one memory location per
remaining bank. R is varied and S is kept constant. For this experiment, the model is accurate
over a range of contentions, as shown in Figure 2.6. However, at the knee of the curve, the
measurements for the CRAY J90 are slightly higher than predictions due to small additive effects

of the memory and processor terms.

Experiment 2: The second experiment is used to verify that the time is determined by the
maximum contention at a bank, independent of whether all the contention is to one location
within the bank or is to many locations. The experiment consisted of sending a single request
to R different locations within a single bank; the remaining work is spread across B—1 memory
locations, one memory location per remaining bank. Again, R is varied and S is kept constant.
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Figure 2.6:  Experiment 1: Measured and predicted times on (a) the cRAY J90 and (b) the
CRAY C90 over a range of contentions (log-log scale). The measured time (shown with a solid
curve) is close to the maximum of the time spent at the processors and memory. The knee in
the curve is where the dominant term switches.
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Figure 2.7: Comparison on the CRAY J90 of experiment 1, experiment 2, and experiment
3: one measuring the time where each bank contains at most one active memory location,
one where the accesses to each bank are spread over many memory locations, and one using
successive ANDings of random keys. As expected, the curves are nearly identical.
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Figure 2.8: Time on (a) the cRAY J90 and (b) the CRAY C90 as a function of the number of
hot banks when R is constant (R = .S - p/8) The three curves are for different distributions of
hot banks across the network and show the effect of network contention.

This differs from the previous experiment only in that the load on the “hot” bank is due to
multiple memory locations rather than multiple elements to the same location. The results
shown in Figure 2.7 verify that the performance is not affected by whether the R term is

dominated by location contention or module map contention.

Experiment 3: To verify that the running time can be accurately predicted for less regular
distributions of memory accesses, we constructed an experiment using the entropy distributions
suggested by Thearling and Smith [194]. The distributions are generated by starting with a
set of random keys and then bitwise ANDing together each key with another key selected at
random. Iterating this process generates a family of distributions each with a higher contention
than the previous and eventually all keys become 0. The experiment was run over the whole
family. Figure 2.7 shows the time as a function of this maximum contention. The predictions
are slightly less accurate than those in Experiments 1 and 2, but are still within 30 percent of

the measurements.

Experiment 4: To verify that the running time is determined by the maximum contention
R, independent of the average contention and distribution of contention, we send R requests
to one location within each of & banks and send an equal portion of the remaining work to
B — b locations all in different banks. R and S are kept constant, while b is varied. We tried
three versions of this experiments differing in how the high-contention banks are distributed
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across the network: (a) evenly distributed across the network, (b) randomly distributed across
the banks, and (c) all within the same section of the network. Figure 2.8 shows the results of
the experiment using the worst-case value for R. Versions (a) and (b) are quite close to the
predicted performance. Version (c), however, is up to a factor of 2.5 off from the prediction
because of congestion at one of the subsections of the network. A more refined model would be
needed to take account of this [184, 185], but the experiment shows that even in what we expect
to be the worst case the predictions are not catastrophic. Note that when memory is mapped
at random into banks, an issue that is discussed in the next section, the situation described in

version (c) is unlikely.

2.4 Using random memory mappings

Randomly mapping memory locations to memory banks is a standard technique to reduce
module map contention (contention due to multiple memory locations being mapped to the same
bank) in emulations of shared memory on machines with a fixed set of memory modules (see,
e.g., [6, 86, 97, 116, 132, 141, 161, 162, 163, 201]). The primary advantage of random mapping
is that it ensures that concurrently requested mémory locations will likely be distributed evenly
across the banks. In this section we study to what extent we can ignore the module map
contention (u) when randomly mapping memory to banks. In particular we consider the ratio
of the time including module map contention to the time excluding it. We call this ratio the
map contention ratio (C), and in the (d, x)-BSP it can be expressed as

_ max(W, g-5, d R, L)
¢ = max(W, ¢g-S, d-k, L) (2.1)

We are interested in how bad this ratio is for various machine parameters (p, g, d, x) and
memory access patterns. We show that for the cRAY, which has a reasonably high expansion
factor, C is small. The results in this section are generalized in the context of the QRQW PRAM
emulation in the next section.

To derive an equation that bounds the map contention ratio we consider the memory access
pattern in which all memory locations that are being accessed have the same contention. This
pattern seems to maximize the map contention ratio for a given & (maximum contention at any
memory location). We call this a uniform distribution of requests, and assuming each processor
is making S requests, then a total of m = Sp/k locations are being accessed. We are interested
in the map contention ratio as a function of m—the worst ratio over m will give us the worst

overall ratio. If we assume the cost is dominated by the send and contention terms we can
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simplify equation 2.1 to
max(mz, p)
max{mz, 1)

C(m) =

where 2 = g/dp; 2 is a constant of the machine. The module map contention u can be expressed
in terms of the function Urn(m,n), which is the expected maximum number of balls in an urn
when throwing m balls into n urns at random. More specifically, let m balls be thrown inde-
pendently at random into n urns, and let y be the random variable representing the maximum
number of balls in any one urn; then, Urn(m,n) = E (y), the expected value of y. We can
estimate:

max(mz, Urn(m, B))

max(mz, 1) (22)

C(m) =

Figure 2.9 shows both the predicted and measured values of C' as a function of m for
the CRAY C90 and the CRAY J90. The measured ratio is based on the average over 20 trials.
The results show that for all m, C'(m) is at most 2.0 on the C90 and 2.5 on the J90, and for
most patterns it is close to 1. This suggests that for many practical purposes we can ignore the
module map contention when using random mappings on the CRAY—inaccuracies in predictions
from other sources are likely to dominate. Intuitively, the reason for the peak in the graph is
that as we increase the number of “hot” locations (m) past the peak, the load at each location
decreases and eventually the first term in the equation max(g-.S, d- k) dominates. As we
decrease m below the peak, it becomes less likely that multiple locations will be mapped to the
same bank. In particular when m < +/B it becomes less likely that more than one location will
be mapped to a single bank. The slight difference between the predicted and measured times is
due to effects in the network as discussed in the previous section. In particular, at these small
m it is reasonably likely that the locations are not only imbalanced across the banks, but are
also imbalanced across the sections in the network, causing backup at the source due to section
conflicts.

It is more interesting to consider the effect of the machine parameters on the worst case

map contention ratio. Equation 2.2 is maximized when mz = 1 (i.e., m = dp/g), giving
1 d
Chax =Urn (;,B) =Urn (—p,px)
g

Figure 2.1 shows Chax as a function of x for d and ¢ set to the parameters of the CRAY C90 and
CRAY J90 and p set to 16. As can be seen, it is helpful to have an expansion factor beyond the
(d,x)-balanced ratio (x = d/g) in order to minimize the impact on the running time of module

map contention.
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Figure 2.9: The measured and predicted map contention ratio C for (a) J90 and (b) C90. The
measured ratio (solid curves) is taken as the ratio of the measured running time on the crAY
to the equation max(g - S, d - k), which ignores module map contention. The predicted ratio
(dotted curves) is given by Equation 2.2. This is for a uniform distribution to m locations using
random mappings from locations to banks. .S is kept constant; p = 8.

2.5 High-level programming model: the QRQW PRAM

In this section we explore scenarios under which a high-level model for algorithm design, the
QRQW PRAM, can be effectively mapped onto a (d,x)-BSP and hence onto high-bandwidth

machines.

The QRQW PRAM [86] is a variant of the well-studied PRAM model (see, e.g., [112, 117])
that allows for concurrent reading and writing to shared memory locations, but assumes that
multiple reads/writes to a location queue up and are serviced one at a time (named the “queue-
read queue-write (QRQW)” contention rule in [86]). Specifically, the QRQW PRAM consists of
p processors communicating by reading and writing words from a shared memory. Processors
also have local memory for use with local operations. A QRQW PRAM computation consists of
a series of supersteps separated by barrier synchronizations. In each superstep the processors
can perform local computations and make a set of pipelined, global memory requests. Requests
made in one superstep will complete prior to the start of the next superstep. The time charged
for a superstep is calculated as follows. Let W be the maximum amount of local work performed
by any one processor in the superstep, let S be the maximum number of global memory requests
made by any one processor, and let k£ be the maximum number of requests to any one location.
Then the time for the superstep is max(W, S, k).

The QRQW PRAM is an even simpler model than the (d,x)-Bsp. Unlike the BsP or (d,x)-

BSP models, the QRQW PRAM memory is not explicitly partitioned into memory banks—each
processor has equal access to each memory location. Furthermore the QRQW PRAM has no
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g or L parameters. The emulation of the QRQW PRAM on the (d,x)-BsP hides the latency
and synchronization cost L by using a factor of at least L more “virtual processors” on the
QRQW PRAM than are available on the (d, x)-BsP. The QRQW PRAM is more powerful than the
well-studied EREW PRAM (which requires ¥ = 1 at each step) but less powerful than the well-
studied CRCW PRAM (which permits arbitrary & without charge). It was argued in [86] that
the QRQW contention rule more accurately reflects the contention capabilities of most machines
than the EREW or CRCW contention rules. An interesting question is under what conditions
can one use the simpler QRQW PRAM instead of the (d, x)-Bsp for modeling algorithms.

2.5.1 Overview of theoretical emulation results

Two goals motivated the development of the (d, x)-Bsp. One goal, modeling irregular algorithms
and implementations, is explored in the thesis. A second goal is to understand and formally
prove the relationship between PRAM models, such as the QRQw and EREW PRAMs, and high
bandwidth multiprocessors. Here, we give a brief overview of theoretical emulation results, in
order to provide more context for our experimental study of PRAM algorithms.

Recall that a machine is (d, x)-balanced if x = d/g, that is, the total bandwidth available at
the processors and network matches the total bandwidth available at the memory banks. Let
dy be the bank delay normalized to the gap parameter, i.e., d, = d/g. In [31], we present two
emulations of the QRQW PRAM on the (d,x)-Bsp, one for the case where x > d, and one for
the case where x < dy. In the former case, we observe that any step-by-step emulation must
incur an overhead of ¢ in the work performed, and we provide an emulation of the QRQW PRAM
on the (d,x)-Bsp that matches this work overhead. Thus, when g is a small constant, as
when modeling high-bandwidth machines, the emulation is work-optimal. The slowdown in the
emulation is a nonlinear function of the parameters of the (d, x)-BsP; the slowdown is minimized
when x > d, .29 in which case d, is only an additive term in the slowdown. As for the case
when x < dg, we observe that any emulation must also incur overhead due to the insufficient
bandwidth at the memory banks, and we provide an emulation whose work bounds match the
lower bound that we prove.

The emulation results (upper and lower bounds) apply as well to the EREW PRAM. These
results extend the previous results in [201] and [86] that showed that when g is a small constant,
there is a work-optimal emulation of the EREW PRAM and QRQW PRAM, respectively, on the
original BsP model in which the slowdown in'the emulation is ©(lg p+ L). The new emulations,
like these previous emulations, are randomized emulations, where the emulation is always correct
and the upper bound on the slowdown in the emulation is achieved with high probability
(w.h.p.), i.e., for any prespecified constant ¢ > 0, the bound is achieved with probability at
least 1 — p~°.
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More recently, the high-level Queuing Shared Memory (QsM) model was shown to have a
work-preserving emulation on the (d,x)-BsP as long as x > d/g (without restrictions on g) [88].

2.6 Discussion

This chapter studies the effectiveness of using the (d,x)-BsP as a simple model for shared-
memory machines to analyze the memory performance of algorithms. The model accounts for
memory bandwidth, memory latency, memory bank delay, and memory bank expansion. We
verified that the (d,x)-BSP reasonably explains the memory performance of the CRAY C90 and
J90 on irregular access patterns. We have focused on modeling the effect of these features on
unstructured computations, where the memory access patterns are irregular and the lack of
locality of memory reference stresses the bandwidth limitations of the shared memory machine.
Although the (d, x)-BSP abstraction hides many machine-specific details, our results show that
it still gives useful guidance to algorithm designers by providing performance predictions that

are reasonably accurate.



Chapter 3

Techniques and Basic Algorithms

This chapter describes an approach to implementing PRAM algorithms on high-bandwidth
pipelined-memory multiprocessors. It brings together useful techniques and basic algorithms
from several contexts and adapts them to a common framework that is used in later chapters
describing algorithm experiments. Section 3.1 describes implementation issues, in particular,
techniques and tradeoffs for hiding latency on various categories of architectures. Section 3.2
describes our approach to developing practical low-contention algorithms and describes various
techniques for reducing contention. Section 3.3 presents algorithms for binary search, scan
primitives, and random permutation. These algorithms illustrate the techniques described in
this chapter and serve as building blocks for designing more complicated algorithms. Finally,
Section 3.4 highlights the application of various techniques discussed in this chapter to the

algorithm case studies in the remainder of the thesis.

3.1 Implementing latency-hiding with virtual processors

In order to hide latency when implementing PRAM algorithms, we use a general approach based
on the BsP model [201]. We use pamﬂel slackness, that is, algorithms are implemented using
more virtual processors than physical processors. Parallel slackness allows memory access to
be scheduled and pipelined. Specifically, when simulating a parallel algorithm with v virtual
processors per physical processor, there are v memory addresses available at the beginning of
each parallel step. The memory operations can be issued in a pipelined fashion, thus amortizing
the memory latency over v memory operations.

For some classes of algorithms and programs, latency can be hidden automatically with a
combination of compiler optimizations (such as vectorization and compiler-directed prefetching)
and transparent hardware mechanisms (such as nonblocking caches and write buffers). Auto-
matic techniques are effective with many regular algorithms, but are less effective on irregular

31
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algorithms. The main advantage of hiding latency explicitly with virtual processors is that this
technique can be applied to a wide variety of regular and irregular algorithms and can be im-
plemented with a variety of latency-hiding mechanisms, including multithreading, prefetching,
and vectorization.

There are many variations of pipelined-memory architectures. (See Lenoski and Weber [134]
for a general overview of scalable shared-memory machines.) Our presentation classifies pipelined-
memory architectures into three categories: multithreaded processors, pipelined microproces-
sors, and vector processors. In the following subsections, general issues in latency-hiding are
described for each of these categories. (An example of mapping a histogram algorithm onto each
type of machine is given later in Section 4.3.1.) To provide background for the experimental
results on vector computers presented in later chapters, vector architectures will be discussed

in more detail than other architectures.

3.1.1 Mapping to multithreaded processors

With multithreading, memory latency is hidden by switching context to another thread. Highly-
parallel PRAM algorithms can be executed efficiently on a multithreaded machine by simulating
multiple PRAM processors and assigning a thread to each virtual PRAM processor. There are,
however, many variations in the implementation of multithreaded architectures [1, 37, 134],
and these variations lead to subtle implementation tradeoffs. (Boothe and Ranade classify
several variations of multithreading [37], and Agarwal considers various performance tradeoffs
in multithread processors [1].) From the standpoint of the implementing PRAM algorithms, the

key issues are:

context-switch granularity: Some machines, such as the TERA [6, 5] (which is based on
HEP [182] and Horizon [128]), can switch context on every clock cycle, whereas some
multithreaded architectures delay context switching until a memory access is issued, or
until the result of a memory load is unavailable. The context-switch granularity will

influence the amount of parallel slackness needed for efficient execution.

synchronization costs: The amount of slackness needed will also be influenced by synchro-
nization costs. Some multithreaded machines provided hardware support for synchroniza-
tion (e.g., with fetch-and-add [6]). The synchronization costs will also be affected by the
mechanisms for thread scheduling. Depending on the system, the scheduling and map-
ping of threads to processors can be handled automatically by the compiler and run-time

system [5], or scheduled explicitly by the programmer.

local memory: In contrast to custom multithreaded processors, some multithreaded processor

implementations are based on augmenting microprocessor designs. Examples include
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Sparcle [2] and simultaneous multithreading [198], a technique for permitting several
independent threads to issue instructions to a superscalar processor. With microprocessor-

based designs, several other issues are raised, as discussed in the next section.

3.1.2 Mapping to pipelined microprocessors

A few of the general implementation issues to be considered for microprocessors are:

locality: With microprocessor-based designs, caches can be used both to reduce global band-
width requirements and to reduce memory latency. When simulating virtual PRAM pro-
cessors on cache-based memory architectures, two key issues are the global memory band-
width, and the characteristics of caches or local memories. While latency-hiding mech-
anisms such as multithreading and prefetching can hide memory latency, they cannot
overcome global bandwidth limitations, and in fact, can increase the bandwidth require-
ments due to cache interference between virtual processors. If global bandwidth is limited
(i.e., if the gap is high), then a direct implementation of a PRAM algorithm will be inef-
ficient, unless the algorithm has a high degree of inherent locality. A second important
issue is the memory latency to cache or local memory. In particular, if this latency is
sufficiently small, it may not be necessary to use parallel slackness for embarrassingly

parallel local computation.

memory granularity: The (d, x)-Bsp model assumes fine-grained (e.g., single word) memory
granularity, but most microprocessors use larger cache lines (typically 32 to 128 bytes).
For algorithms that use fine-grained memory access, bandwidth might be wasted when
only part of a cache line is used. More importantly, fine-grained random access can cause
additional inter-processor communication for maintaining cache coherence if the size of

items being written to memory is smaller than the unit of sharing.

large address spaces: Support for large address spaces is important for executing many
PRAM algorithms, e.g., for algorithms with pointer-jumping. On some microprocessors,
random accesses to virtual memory can cause significant TLB miss penalties. We assume
that these can be avoided, for example, with hardware and operating system software

support for large page sizes [80, 125].

latency-hiding mechanisms: There are a variety a mechanisms for latency hiding, including
prefetching, nonblocking caches, write buffers, and pipelined uncached accesses. When
non-blocking caches are combined with speculative execution, some degree of prefetching
can be performed automatically. The particular latency-hiding mechanism will influence
the amount of parallel slackness needed for efficient execution. Note that quantifying
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the benefits and costs of latency-hiding can be beneficial even for implementing PRAM
algorithms on a single pipelined processor [203].

memory semantics: The implementation of parallel slackness is also influenced by the mem-
ory access semantics. With a non-binding memory request, the request has no effect on
the semantics. For example, if the value in a memory location is modified between a
prefetch instruction and a load instruction, the load instruction will retrieve the updated
value. With a binding request, the value read is determined at request time; for example
with a non-blocking cache, the value is determined at the time of the load instruction,
rather than the time the value is used. Some architectures leave the binding undefined:
the value read can be any value held in the memory between the initiation and completion
of a read, for example, in some vector architectures and decoupled execute/access archi-
tectures [183]. Implementing algorithms by simulating virtual processors avoids many of
the issues about memory semantics because, typically, there are no dependences between

operations executed by the virtual processors in an algorithm step.

Of commercial microprocessor-based machines, the best match to the (d, x)-BsP is the Cray
T3E [175], which efficiently supports pipelined global access to a large address space. Pro-
cessors are augmented with external FE-registers, a set of 512 memory-mapped registers for
highly-pipelined, fine-grained access to global memory. Dozens of requests per processor can

be simultaneously outstanding.

3.1.3 Mapping to vector processors

We begin by briefly describing the key features of a typical register-based vector multiprocessor
architecture. (See [107, 99] for additional background material.) A typical vector processor
contains a scalar processor augmented with several vector registers (each holding up to Vmax
elements, where Vinax = 128 on the CRAY C90) and vector instructions for operating on the
vector registers (e.g., to add two vector registers). Vector instructions are implemented using
highly-pipelined functional units. Typically, there are multiple independent functional units,
and these units can be chained together in order to provide the output of one functional unit di-
rectly to the input of another. Memory instructions are provided for loading and storing strided
vectors of up to Vinax elements, and for indirectly loading and storing vectors. On some vector
processors, the memory ports act as functional units and allow vector memory instructions to
be chained with other vector instructions, including other vector memory instructions.

A few of the key issues to be considered for simulating PRAM algorithms on vector multi-

Pprocessors are:

latency tolerance: The pipelined implementation of the functional units and memory system
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imposes a latency for vector instructions. Functional unit latencies for vector arithmetic
operations are typically in the range of 5-20 clock periods, and memory latencies for
vector memory operations are typically 20-100 clock periods. These latencies can be
hidden by issuing vector instructions with long vector lengths (as close to Vipax as pos-
sible). Tolerating hardware latencies is becoming more important because recent vector
multiprocessor designs (such as the crAY J90 and Fujitsu VPP300) have reduced hard-
ware costs by using DRAM rather than SRAM memory, and others (such as Fujitsu and
NEC vector computers) have boosted arithmetic throughput by increasing functional unit
parallelism, for example, by dividing the operations of a single vector instruction among
multiple identical functional units. Our approach to hiding latency is to simulate many
virtual PRAM processors per physical vector processor, such that each vector instruction

simulates one step of the PRAM algorithm for up to Vipax virtual processors.

support for irregular computation: On a single step of a PRAM algorithm, each processor

can make a memory reference to an arbitrary location. Thus, simulating a single step
of the algorithm requires vector instructions that can access memory using a vector of
arbitrary addresses. In many-cases, regular access patterns can be simulated with vector
instructions that access a set of memory locations with a constant stride. But for simu-
lating irregular accesses, it is critical to have hardware support for indirect vector loads
and stores with gather and scatter instructions that generate addresses from an index
vector. Gather and scatter instructions were not available on early vector machines such
as the Cray-1 and TI ASC, nor on early models of the Cray X-MP, but were available in
some memory-to-memory vector computers such as the CDC Star 100, Cyber-203, and
ETA-10. These instructions have since become standard features in virtually all vector
computers, including machines from Cray, Convex, Hitachi, Fujitsu, and NEC. Indirect
addressing with gather and scatter is typically more expensive than with vector load and

store, but far cheaper than scalar memory operations.

support for conditional computation: On a single step of a PRAM algorithm, a processor

can perform conditional computation, such as finding the maximum of two elements. On
a vector machine, conditional computation is performed using a vector mask, a special
register with Vinax bits. Vector test instructions set each bit based on a boolean test
of each element of a vector register. The vector mask is used for a collection of instruc-
tions, including vector merge, an instruction that uses the vector mask to select operands
from one of two vector registers on an element-by-element basis, and compress-index,
an instruction that returns the index of each element of a vector register that passes a
boolean test. Some machines also support conditional memory and arithmetic operations

controlled by the vector mask.
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simulating virtual processors with loop raking: A particular type of strided access fre-
quently arises when using virtual processors. When simulating parallel algorithms that
have sequential access patterns, we use a technique called loop raking [29] in order to
preserve the order in which data elements are processed in parallel algorithms. This is
essentially a vectorization technique, but the same technique is applicable to a pipelined
microprocessor. The typical way to vectorize an array operation uses strip mining [156]
to process a vector in contiguous blocks of v elements. In this method, each element of a
vector-register, that is, each virtual processor, processes every vth element in the array.
In order to give each virtual processor a contiguous block of elements, loop-raking uses a
constant stride to access a set of elements evenly distributed across the input vector—as
if a rake was placed over the vector, where each prong of the rake is a virtual processor.
Since we are using a non-unit stride of s = n/v to access an n-element array, we have to
be careful about bank conflicts. On interleaved memory systems that use a cyclic distri-
bution of consecutive words to memory banks, conflicts can be avoided by using a stride
that is relatively prime to the number of banks. For example, if the number of banks is a
power of two, v can be adjusted so that the stride, s, is odd. In a previous paper [48], we
show how to handle cases when the array size n is not evenly divisible by v. To simplify

the presentation, we omit these details in the remainder of the thesis.

3.2 Low-contention algorithms: a pragmatic approach

In this section, we first describe our goals in designing and adapting low-contention algorithms
and contrast them with goals of theoretical work on contention. We then discuss three tech-
niques for managing contention: randomization, replication, and direct data distribution for
the (d, x)-BsP.

Theoretical work related to memory contention falls into two main areas: developing or
adapting algorithms for low-contention models, and showing the relationships among models
with different contention rules. Theoretical work on PRAM algorithms and simulations tends
to emphasize asymptotic analysis, typically for arbitrary numbers of processors (and thus little
data per processor). In contrast, we typically analyze constant factors, and we focus on modest
numbers of processors and high slackness (typically between one and a few hundred processors,
each with data set sizes in the thousands or millions).

For many fundamental problems, EREW (or QRQW) algorithms have been developed that
match the asymptotic running time of the best CRCw algorithms. In some cases these algorithms
are practical. Blelloch [23] showed several examples of converting CRCW algorithms to EREW
algorithms using scan operations. However, for a given task, the best EREW algorithm is often
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more complicated than an equivalent CRCW algorithm, which can lead to higher constant factors

as well as additional programming time.

More generally, CRCW algorithms can be optimally simulated on a BSP when there is suffi-
cient slackness [85]. Unfortunately, general techniques for emulating arbitrary CRCW algorithms
use expensive collective operations (such as integer sorting) on each step, and the existence of
these general, yet somewhat impractical, simulation results removes much of the incentive for
developing algorithms for cases where there is high slackness. Thus, most theoretical work on
reducing contention focuses on cases where there are few elements per processor. In contrast,
we typically consider cases with high slackness in which there is no need to incur the costs of

general emulations.

The QrRQW model helps bridge the gap between practical and theoretical concerns. Several
algorithms and data structures (e.g., the binary search fat-tree described in Section 3.3.1)
designed for the QRQW are fast in practice. The QRQW model itself gives us a way of reanalyzing
CRCW algorithms, and in some cases we can determine that existing algorithms have tolerable
contention (e.g., the dart-throwing random permutation algorithm described in Section 3.3.2).
However, despite the practicality of the QRQW model, our goals are still somewhat different
from those of theoretical studies. One distinction is that theoretical work is focused on very
low contention algorithms (typically logarithmic in problem parameters), whereas, in practice,
it is often possible to tolerate contention that is polynomial in problem size, for example, O(,/n)

or even linear in the problem size with a sufficiently small constant.

In the absence of a practical algorithm designed for the QRQW or EREW model, several
heuristic techniques can be used to reduce contention. The approach we take in design is to
analyze the constant factors and, in the implementation, to optimize for common cases. For
example in using replication to reduce contention, we can tune the constant factors based on
machine parameters (typically p and d) rather than developing an algorithm that eliminates
contention entirely. If we are using a CRCW algorithm, we can be selective about using expensive
emulation techniques. For example, it might be advantageous to sample memory access patterns
to estimate an upper bound on the maximum contention in order to select an appropriate

emulation method.

In our experience, designing programs using the QRQW is adequate for avoiding bank con-
tention. However, when tuning an application, it can be beneficial to look at a more detailed
model, for both regular and irregular access patterns. In these cases we can implement algo-
rithms or portions of algorithms (e.g., accesses to particular data structures) directly for the

(d,x)-BspP.
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3.2.1 Randomization

Randomization is useful for designing low-contention algorithms [87], and as discussed in Chap-
ter 2, for reducing module map contention and network contention. As with previous work,
we assumed in Chapter 2 that the memory locations are hashed to memory banks using a
truly random mapping. In practice, however, the mapping cannot be truly random, since it
should be efficiently computable for every memory address. Thus, it is important to consider
the implementation of randomization, in hardware or software.

Hardware support for fast computation of pseudo-random hashing is provided on some
machines, including the TERA MTA and the Fujitsu u-VP (used on nodes of the Meiko CS-
2). On machines that do not provide hardware-supported hashing (such as the CRAY vector
machines), general PRAM simulation using random hashing could incur significant overheads,
including the cost of computing hash functions, the cost of additional indirection, and increased
temporary memory requirements. For some algorithms, however, it is possible to approximate
the effect of randomization by randomly permuting the input and some of the intermediate
results. (A QRQW algorithm for random permutation is described later in Section 3.3.2.) In
others, the nature of the algorithm results in random mapping without any additional steps.
Even for algorithms that require randomization, computing a pseudo-random hash in software
is not prohibitive, particularly if applied only to data structures that are likely to be sources of
contention. The evaluation costs for a variety of hash functions on the CRAY C90 are given in
Table 3.1.

When hash functions are used for pseudo-random mapping of memory locations to memory

banks, it is important that they exhibit favorable properties for any given input (i.e., that they

1

L which is called the multiplicative hashing scheme in [121,

are “universal”). The function h
p. 509], was recently shown by Dietzfelbinger et al. [69] to be 2-universal in the sense of Carter
and Wegman [46]: for any two distinct numbers 2,y € [0..2% — 1], Prob (hl(z) = Ay (y)) <
1/2™~1; i.e., the collision probability is approximately the same as for a random mapping. The
actual choice of a hash function may be influenced by several factors, including its degree of
universality, its evaluation cost, and its congestion behavior, both theoretically (see [68]) and

experimentally (see [73]).

3.2.2 Replication

Replication is a well-known strategy for reducing contention. In the context of implementing
PRAM algorithms for the (d, x)-BsP, replication is useful primarily for implementing CRCW algo-
rithms, and secondarily for reducing module map contention. General techniques for emulating
cRCW algorithms have been developed [85], but in some cases, replication is a more practical

alternative than general emulations based on sorting. Replication can be applied in a variety
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[ Hash Function |T/n]|
Linear
ATL(@) = ((as + b) mod 2%) div 257 18
hl(z) = (az mod 2%) div 24—™ 1.8
Quadratic
h, () = ((az” + bz + ) mod 2%) div 2%~ 3.4
hZ (z) = ((az?+ bz) mod 2¥) div 2¢—™ 3.4
Cubic
Ry b.c,a(2)= ((az” + ba” + cz + d) mod 2) div 2“~™ [ 6.7
3 b.c(2) = ((az®+ be® + cz) mod 2¥) div 2“~™ 6.7

Table 3.1: The evaluation cost of software implementations of various hash functions in terms
of clock cycles per element (for each CRAY C90 processor). The functions map items z from the
domain [0..2%] into the range [0..2™], and a, b, ¢, and d are odd numbers selected at random

from [1..2% — 1].

of ways, ranging from simple schemes that replicate an entire data structure to more intricate
schemes that replicate portions of a data structure based on expected access patterns.

In designing a strategy for replication, there are tradeoffs among three components: the
time to measure or estimate the contention, the time to replicate data and combine updated
data, and the time lost due to contention. In some applications, there is no need to measure
the contention because it is a known property of the algorithm, whereas in other applications,
the cost of estimating contention would be prohibitive.

To illustrate these tradeoffs, we consider the task of simulating a single step of a CRCwW
algorithm, where there are n elements accessed from an array of size m, and where the location
of the n elements is unknown. We first analyze the running time using a simplified version of
the (d,x)-Bsp model, where module map contention is ignored, the gap g is 1, and the delay d
is normalized to the gap. This formulation is equivalent to a QRQW model where the penalty
for memory contention & is f(k) =k-d.

We describe a read step that gathers elements from a source array. (Simulating a write
step has the same complexity.) The worst-case performance can be reduced by replicating the
source array. The cost of replicating the entire array r times is simply O(r - m/p). If the
gather is executed by randomly selecting among copies, and if the contention is high enough to
spread accesses among copies fairly evenly, then the cost of the gather will be approximately
O(max(n/p,k/r - d)), where k = n in the worst case.

The tradeoff between the cost of the replication and the cost of the gather is illustrated in
Figure 3.1. Note that most of the benefit comes from the first few copies; if the replicated array
is relatively small (i.e., if the ratio n/m is high), the first n/m copies are fairly inexpensive.
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Figure 3.1:  Tradeoff between replication and contention. The curves show predictions of the
worst-case time per memory access where the ratio of memory accesses to source array elements
(n/m) is 4. The lighter shaded area represents the replication cost, and the darker shaded area
represents the memory access cost. The top curve represents the sum of these components.
The machine parameters used to generate the predictions were measured on an 8-processor
CRAY J90.

3.2.3 Data distribution

On machines without random hashing in hardware, we need to account for the module con-
tention in the mapping of locations to memory banks. One way to avoid module contention
is to design algorithms for the (d,x)-BSP memory organization. This approach is similar to
designing direct BSP algorithms [85], in which portions of data structures are explicitly assigned
to memory modules rather than randomly mapped to modules. It is also similar to the notion of
data distribution used in parallel languages such as High Performance Fortran (HPF). Although
direct BsP algorithms and HPF data distributions are both distributed memory models, many
of the same concepts can be applied to a model based on a shared memory composed of many
memory banks.

On vector multiprocessors, low-order interleaving of addresses to memory banks is com-
monly used. The resulting cyclic distributions work well for one-dimensional vectors, but do
not always work well for multi-dimensional or irregular data. Several techniques are com-
monly used for avoiding bank conflicts on regular data structures, including padding leading
dimensions of multi-dimensional arrays, accessing multi-dimensional arrays along diagonals,
and redistributing data across banks (e.g., in an FFT [14]).

Distributing irregular data is more difficult, primarily because the reference patterns are
not known (in general) until run-time. HPF extensions to accommodate irregular data have

been proposed [190, 160], and data distribution for irregular data structures is an area of active
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research [102, 118, 123, 136, 174, 176]. However, data distribution techniques for irregular
data structures have not been used widely on interleaved memory systems. In the (d,x)-Bsp,
even when there is no memory location contention, data-dependent addresses can still cluster
into particular banks. In some cases this type of memory bank conflict can be avoided using
appropriate data distributions. In particular, if each processor (or virtual processor) issues
irregular accesses to disjoint portions of a data structure, these portions can be distributed
across banks. This technique is illustrated in Chapter 4 in the context of a histogram operation,

in which the “local” memory used by each virtual processor is assigned to a different bank, or

small set of banks.

3.3 Basic algorithms

This section describes algorithms for binary search, random permutation, and scan primitives.
These basic algorithms serve as building blocks for designing other algorithms and demonstrate

several concepts and techniques described in this chapter.

3.3.1 Binary search

We consider a simple QrQW binary search algorithm for looking up n keys in an ordered collec-
tion of m elements [87]. Such binary searching is an important substep in several algorithms for
sorting and merging (e.g., [1:8]). A natural data structure for the CRCw PRAM is a balanced
binary search tree. However, this data structure is inadequate when accounting for contention,
since simultaneous searches in a binary tree will cause high contention near the root.

The contention can be reduced in several ways. One way is to use an EREW algorithm
for the scan-vector model [23]. The algorithm works by maintaining a vector of pointers into
the search tree. Initially there is a single vector of elements pointing to the root, and at each
level of the search, vectors of pointers are partitioned according the direction followed in the
search tree. Concurrent reads are replaced with segmented broadcast operations (also called
segmented copy scans). A second option is to perform the binary searches in a sorted array,
beginning the binary search for each processor at a randomly selected starting location. This
will avoid contention in the early iterations of the binary searches. A third option, which we
describe in more detail, is to use a data structure with inherent replication, a binary search fat
tree, as depicted in Figure 3.2.

The search algorithm replicates nodes of the search tree to avoid contention, and at each
level, selects one of the replicated nodes at random. This data structure is interesting from
the point of view of the QRQW PRAM and the (d, x)-BsP since the amount of replication needed
will depend on the contribution of the contention term to the running time, and in general will

fi
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Figure 3.2: A binary search tree and a “fattened” binary search tree.

present a tradeoff.

The (d, x)-BsP model can predict the running time of the binary search for different amounts
of replication. In our implementation experiment, the root is replicated f times (the “fatness”),
and each level below the root is replicated half as many times as the level above. Thus, there
are max(2*, f) nodes at level 7 of the fattened tree. For simplicity, we consider the case where
the number of nodes at each level is less than the number of banks. Assuming an equal number

of lookups to each key, the expected time per lookup is:

[lgm]—1 [lgm]—-1
cg-S d-E(R))_ (% d )
igzo max < — = E max > max@. )

ks i=0

where the implementation-dependent constant ¢ is approximately 3.9 on the CRAY J90 and 1.4
on the C90*. (Recall that S is the maximum number of requests made by any processor and
R maximum number of requests at any memory. E (R) denotes the expected value of R.)
Figure 3.3 shows that the predictions are accurate, underestimating the running time by at
most 20 percent.

3.3.2 Random permutation

Another example of a QRQW algorithm is a “dart-throwing” algorithm for generating random
permutations. This algorithm first generates n random indices in the range [0..cn] for some
constant ¢ (¢ = 2 in our experiments). Each element 7 then writes its self-index into a destination
array at the location specified by the ith random index. Elements for which there are collisions
repeat another round. The rounds continue until no elements remain. At this point, the values
written into the destination array are packed into contiguous locations, producing the index for
the random permutation. The algorithm runs in O(n/p + lgn) time on a QRQW PRAM.

The predicted running time for the QrQW dart throwing algorithm can be derived from
experimentally measured arithmetic computation costs, the number of global references (using
gather or scatter) and the expected total number of darts thrown. The time is linear in the
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Figure 3.3: Predicted and measured times for a binary search fat-tree algorithm, as a function
of the “fatness” of the tree. (Each search tree has 256 unique elements.) The dotted curves
show predicted times and the solid curves show measured times on 8 processors of the (a)
CRAY J90 and (b) CRAY C90.

problem size and is given by:

torgw = 200000+ (18.74+4-g+w-(5-g+12.3))-n/p
= 200000+ (37.8+ 11.8-¢) - n/p (3.1)

where w = 1.55 is the ratio of total darts thrown to the permutation size. There is less than 1
percent variation in w as n is varied.

It is interesting to compare the running time of this algorithm to that of an EREW algorithm
(a sorting-based algorithm, which is the most practical EREW algorithm in the literature, to the
best of our knowledge). The EREW algorithm is based on a radix sort (described in Chapter 4)
that ranks 2.5-lgn bits and checks for duplicate keys. Using a performance model for radix-sort
adapted from Chapter 4, the predicted running time for the EREW algorithm is given by:

tgrew = 400000+ [%] (35+7-9) n/p (3.2)

where the 2.5 comes from the number of bits, 8 comes from latency hiding (Ig(128) + 1), 3.5
comes from arithmetic on buckets, and 7 comes from indirect operations for histogram and
permutation.

Results of the experiments are shown in Figure 3.4. (A similar experiment, on the MasPar
MP-1, was reported in [87]; for the EREW algorithm, the system sort was used.) This experiment
illustrates that allowing a controlled amount of contention enables the use of a more practical

algorithm.
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Figure 3.4: Performance on an 8-processor CRAY J90 for two algorithms that generate a random
permutation: a QRQW dart-throwing algorithm and an EREW sorting-based algorithm. The
dart-throwing algorithm generates large permutations in under 10 clock periods per element.
The predicted times, shown with dotted curves, are given by equations 3.1 and 3.2. (The
timings do not include the time for random number generation; however, the two algorithms
require approximately the same number of random bits.)

3.3.3 Scan primitives

Scans are powerful primitives for designing parallel algorithms [22, 126], particularly for solv-
ing problems that require load-balancing or manipulating irregular data structures. They are
also useful for converting concurrent memory access to exclusive memory access [23]. Several
collection-oriented languages, including NESL, APL, and HPF, provide scan primitives.

The implementation of scans provides a simple example of the techniques used for hid-
ing memory (and functional unit) latency. In this section, we describe the implementation
and applications of scan operations. The implementation techniques for vector machines were
developed jointly with Sid Chatterjee and Guy Blelloch [48, 29].

The scan operation, also called the all-prefix-sums computation, takes a binary operator @,

and an array [a1,az,. .., a,] of n elements, and calculates the values z; such that

ay, =1
T; =
ri1Da;, 1<i<n

If & is associative, the scan can be calculated efficiently in parallel in O(lgn) time [122, 129].
We first describe a parallel algorithm for a simple plus-scan operation (i.e., where @ is integer
addition) and describe the implementation and analysis for pipelined-memory multiprocessors.

Section 3.3.3.2 describes several extensions to this scan algorithm.
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3.3.3.1 Scan implementation

We first review a simple parallel algorithm for performing a plus scan on an array of length n

on p processors. It has three phases:

1. Local sum: Processor i sums elements #s through (¢ + 1)s — 1, where s = n/p. (For

simplicity, we assume that » is a multiple of p.) Call this result Sumli].
2. Cross-processor scan: The Sum array is now scanned.

3. Local scan: Processor ¢ sums its portion of the array, starting with Suml[i] as the initial

value, and accumulating the desired partial sums.

In a PRAM model, the running time of the first and third steps is simply O(n/p). The second
step, the scan across processors, runs in O(Igp) for a tree-summing algorithm [129], or O(p)
for a serial algorithm. The scan algorithm is work-efficient for n = O(plgp), or if the serial
cross-processor scan is used, for n = O(p?).

To implement a scan on a pipelined-memory multiprocessor, we simulate the algorithm for
p-v virtual processors. On a vector machine, we use loop raking (as described in Section 3.1.3)
to simulate the access pattern of the virtual processors. The second step, the cross-processor
scan, can be implemented in several ways, for example, with a serial scan, with a parallel tree-
reduction, or with a hierarchical implementation that combines a serial scan within processors
with a tree-reduction across processors. The selection of the best implementation depends on

the synchronization cost L, as well as the number of the processors and input size.

3.3.3.2 Generalizations

This section describes three generalizations of the scan algorithm in Section 3.3.3.1.

segmented scans: The segmented scan operations take an array of values and a data struc-
ture specifying how this array is partitioned into segments [22]. A scan is executed indepen-
dently within each segment. As with the unsegmented version, the segmented scans can also be
implemented in parallel in O(lgn) time [22]. Segmented scans can be implemented efficiently
on vector computers [48] using vector merge instructions to handle segment boundaries and
loop raking to access the data [29].

Segmented scans were originally introduced to solve problems with irregular data struc-
tures on the Connection Machine CM-2. Segmented scans can be used to implement many
data-parallel algorithms for problems with irregular data structures, including sparse matrix
routines [22, 23], parallel quicksort [22], and machine learning [36], computer graphics [60], ob-
ject recognition [197], processing image contours [50], and network optimization [150]. Because
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of their usefulness for such problems, hardware support for segmented scans was included in
the Connection Machine CM-5 [133], and scan intrinsics are included in HPF.

Segmented scans can be implemented in several ways, due to three sources of parallelism:
the scans over different segments are independent; each scan over each segment is parallelizable;
and a segmented scan can be expressed as a single parallelizable linear recurrence [25]. The
main benefit of implementing segmented scans in terms of recurrences is that latency is hidden
regardless of the segmentation. Other approaches, such as parallelizing only within segments, or
only across segments, are more sensitive to the locations of the segment boundaries. Chapter 6

compares several of these alternatives in the context of sparse matrix multiplication.

linear recurrences: An m‘*-order linear recurrence is a set of equations of the form:

Ci, 1Sz$m
r; =
(2ic1R6,1) P B (2icm ®aim) Db, Mm<i<n

where @ and @ are binary associative operators, and ® distributes over @. Such linear recur-
rences are used in scientific applications [127], in the design of parallel algorithms [126, 22], and
in solving a broader class of recurrences [122, 79].

In [29], we present a variation of the partition method for solving linear recurrences. The
algorithm is based on the scan algorithm presented earlier and uses loop raking. As compared
to the more commonly used version of the partition method for linear recurrences, the algorithm
reduces the number of memory accesses and temporary memory requirements, and it is better
suited for a multiprocessor implementation because it uses less synchronization and is less

sensitive to latency.

compaction: Given a vector of values a vector of boolean flags, a linear compaction {also
referred to as a pack operation) produces a vector the input values with corresponding true flags.
Compaction can be expressed in terms of scan operations as a straightforward combination of
a scan to enumerate the final location of the true elements, followed by a permutation to place
the true elements in these locations.

The pack operation has a number of applications, including reducing work, load-balancing,
implementing conditionals, and flattening nested parallelism [23]. Compaction is also useful
for implementing parallel while loops, for example, by extracting the active elements after each
iteration. This technique has been used for vectorizing several classes of algorithms including
particle codes [137, 42], tree traversals [140], hashing [115], and list ranking [164].

An example of an algorithm that uses packing for both theoretical and practical improve-
ments is the quickselect algorithm [105]. This algorithm finds the kth smallest element of a
set by recursively partitioning the set based on a pivot value and retaining only the subset
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primitive t. unsegmented | ¢. segmented
vector add 1.1 N/A
first-order linear recurrence | 1.8 N/A

gather 1.8 2.1

scatter 2.1 2.6
plus-reduce 0.6 1.3
plus-scan 14 1.9

pack 1.7 2.6

Table 3.2: Times for vector primitives, expressed in clock cycles per data element, on a single
processor of the CRAY €90, Gather and scatter operations were timed with random permutations.
Segmented reduction was timed on a segmented vector with an average segment length of 10.
Pack was timed on a vector of elements in which elements to be compacted were selected

independently with a 50 percent probability.

that contains the pivot. The pack operation implicitly balances the load after each iteration,
in addition to reducing the amount of work. (Timings for quickselect on various machines are

given in an evaluation of the implementation of NESL [27].)

3.3.3.3 Scans in language implementation

Many of the applications of scans mentioned so far can be generalized and applied automatically
by a compiler. To explore this idea, we implemented the back end support for running NESL
on one processor of the CRAY €90 and J90. The NESL compiler makes extensive use of scan and
pack operations in the code it generates. In addition to supporting explicit scan operations
with NESL operators, the compiler uses scans and packing when performing transformations to
flatten nested parallelism [23].

The back end support consists of a C Vector Library (cvL) [26], with a variety of elemen-
twise operations and segmented vector operations (e.g., sum, scan, permute, pack, split). The
CVL operations are implemented in Cray Assembly Language using a custom macro-assembler
that includes a set of macros for programming with virtual processors. The ¢VvL library is
used a back end for NESL [24] via an interpreter for the vCODE [28] intermediate language.
The cRAY implementation runs nested primitives well (typically at less than twice the cost of
the corresponding unsegmented primitives) and supports EREW PRAM algorithms well (with
permutation operations that are only a factor of two slower than elementwise instructions on
the CRAY C90 and CRAY J90). Table 3.2 summarizes the performance on the CRAY C90 of sev-
eral types of reductions, scans, recurrences, and compares their performance to other vector
operations. The performance of this system on a few benchmarks is reported in [27].
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3.4 Discussion

This chapter presented several techniques and basic algorithms for developing efficient imple-
mentation of irregular algorithms on pipelined-memory multiprocessors. These techniques will
be applied in algorithm experiments described in later chapters. In particular, tradeoffs be-
tween work and slackness are explored in the chapters on sorting and merging. Contention is
discussed in all the algorithm experiments, with explicit data distribution highlighted in the
context of radix sorting, and with randomization techniques highlighted in the context of con-
nected components. Binary search is discussed for merging, and scan primitives are used in
several chapters: unsegmented scans for radix sort, segmented scans for sparse matrix multi-

plication, and compaction for connected components.



Chapter 4
Sorting

This chapter describes the eflicient implementation of a parallel radix sort algorithm for high-
bandwidth pipelined-memory multiprocessors. As with all the algorithms described in the
thesis, latency is tolerated by simulating multiple PRAM virtual processors on each physical
processor. In contrast to most of the algorithms described in the thesis, all the simultaneous
memory accesses in the radix sorting algorithm are exclusive. Thus, we use this case study as
an opportunity to explore the issue of module map contention, that is, the performance impact
of various mappings of memory locations in the PRAM algorithm to physical memory modules
of the (d, x)-BsP.

The chapter is organized as follows: Section 4.1 explains the advantages of radix sort over
other sorting algorithms and describes previous work on vectorized sorting. Section 4.2 intro-
duces serial and parallel algorithms for radix sort. Section 4.3 describes implementation issues
for radix sort on high bandwidth multiprocessors. In particular, it describes techniques for
tolerating latency on pipelined-memory multiprocessors and it describes how to select an ap-
propriate mapping of memory locations in the PRAM algorithm to memory modules. Section 4.4
introduces a performance model for the CRAY C90 relating the running time of the radix sort to
various machine and problem parameters. The model is used to select an optimal radix, analyze
latency hiding, and accurately predict running times over a range of data sizes and numbers of
processors. Section 4.5 summarizes the implementation results. The CRAY €90 implementation
of a PRAM radix sort algorithm is stable, predictable, insensitive to the distribution of keys, and
fast over a wide range of problem parameters. The implementation for a 16-processor CRAY C90

sorts at a rate of over 100 million 64-bit keys per second.

This work was performed jointly with Guy Blelloch and was originally published in a con-
ference paper that reported performance on the CRAY Y-MP [207].

49
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4.1 Background and previous work

In order to justify our choice of radix sort, we briefly present some background material on
practical parallel sorting and review previous vectorized and parallelized sorting implementa-
tions. Further background can be found in surveys of parallel sorting [4, 169], in comparisons
of practical sorting algorithms [34, 30, 103, 67], and in studies of sorting algorithms for the BsP
model [85, 83, 180, 84].

Several issues guide the choice of an algorithm for a practical sorting implementation [30].
In most cases, the key issue is speed, which is determined primarily by the amount of work
performed and the match of the algorithm to the architecture. Other significant issues include
space efficiency, the ability to handle arbitrary distributions of keys, determinism, stability (i.e.,
control of the output order for equal keys), and generality of the interface (i.e., the ability to
sort complex records and the ability to both rank and sort keys).

Radix sorting is an attractive alternative to comparison-based sorts, such as quicksort [106],
since for n fixed-length keys, its running time is O(n) instead of O(nlgn) time. This is a
significant savings in theory, and because of small constant factors in the running time of radix
sort, a significant savings in practice.

However, there are two potential disadvantages of radix sort. One potential disadvantage
is that radix sort cannot use arbitrary comparison functions. To use a radix sort, it must
be possible to break the key into digits. As a practical matter, this does not appear to be
a drawback. Sorting of common types of keys, such as floating-point numbers, integers, or
character strings (based on lexical order), can be implemented efficiently with radix-based
sorts. Furthermore, the fastest implementations of comparison-based sorts are often coded such
that they cannot take a user supplied comparison function, and typically sort only integers or
floating-point numbers.

Another potential disadvantage is that radix sort accesses memory in an arbitrary order.
Therefore, on a machine with a cache, many memory references will cause cache misses and,
potentially, TLB misses and page faults. Studies have shown that on serial machines, when
the problem fits into physical memory but not into the cache, radix sort performs no faster,
or only marginally faster, than optimized implementations of quicksort (for 32-bit and 64-bit
integers) [146, Chapter 8]. The random access patterns in radix sort, while clearly an important
issue on cache-based machines, are not a concern for high-bandwidth multiprocessors with
efficient support for fine-grained memory access.

However, the choice of an algorithm for a high-bandwidth pipelined-memory multiprocessor
is guided by two additional issues, namely the ability to hide latency and minimize memory
bank contention—without introducing an excessive amount of additional work. Previous work

on sorting for vector computers has failed to meet these objectives simultaneously. Several im-
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plementations have used highly inefficient algorithms that perform O(n?) work, including imple-
mentations of bubble sort [170], insertion sort [53], and odd-even transposition sort [170, 154].
Implementations of O(nlg? n) work parallel algorithms, including implementations of merge-
exchange sort [187, 170, 45], bitonic sort [155], diamond sort [39, 170, 45, 147], and shellsort [53],
are considerably faster than the O(n?) algorithms, but typically are not competitive with an ef-
ficient serial algorithm. On the other hand, most implementations of O(nlg n) work algorithms,
including several implementations of quicksort[187, 170, 45, 70, 154] and an implementation of
heapsort [170] have sacrificed latency-hiding (i.e., vectorization) in order to use an efficient algo-
rithm. Latency-tolerant implementations of quicksort [187, 135, 170, 70] have been developed,
although, to our knowledge, no implementation of quicksort has been effectively vectorized
and parallelized. There have been other implementations of radix sort for vector computers
including an implementation of scalar radix sort [53], and implementations of binary radix
sort [70, 48]. The latter implementations are vectorized, but at the expense of requiring one
pass over the data for each bit of the sort key, an increase in work that negates the advantage
of radix sort.

Our conclusion in reviewing previous work is that radix sort is likely to be the fastest

algorithm if we can find an effective implementation strategy for high-bandwidth machines.

4.2 Radix sort

4.2.1 Serial radix sort

We first review the serial radix sort algorithm since our parallel algorithm will include the same
phases (see [56, Section 9.3] for more details). Radix-based sorting algorithms treat b-bit keys
as multidigit numbers in which each digit is an integer with a value in the range (0..(m — 1)),
where m is the radix. A 32-bit integer, for example, could be treated as a 4-digit number with
radix m = 232/ = 28 = 256. The radix m is usually chosen to minimize the running time and
is highly dependent on the implementation and the number of keys being sorted.

Radix sort works by breaking keys into digits and sorting one digit at a time, starting with
the least significant digit. A counting sort (sometimes called distribution sort or bucket sort) is
used to sort each digit. Since radix sort starts from the least significant digit, the sort works
only if the ordering generated in previous passes is preserved. Each counting sort therefore
must be stable.

The counting sort is implemented as follows. We assume that each digit consists of r bits.
The basic idea is to determine, for each input digit D[é], the number of keys with a digit less
than D[:], and the number of keys with a digit equal to D[i] appearing earlier in the input
sequence. To do this, the sort uses m = 2" buckets, one for each possible digit value.



52 CHAPTER 4. SORTING

The following pseudo-code sorts an array of keys K, based on an array of r-bit digits D and
places the result in RB. The counting sort algorithm is divided into 3 phases:

HisTOGRAM-KEYS
doi+0to2" -1
Bucket[i] + 0
doj+0ton-1
Bucket[D[4]] + Bucket[D[j]] +1
SCcAN-BUCKETS
Sum + 0
doi+0to2 -1
Val « Bucket[i]
Bucket[i] + Sum
Sum + Sum + Val
RANK-AND-PERMUTE
doj+0ton—-1
A + Bucket[D[j]]
R[A] + K[j]
Bucket[D[j]] + A+ 1
The first loop of HISTOGRAM-KEYS clears the buckets. The second loop, at iteration 7, uses
the jt* element of the digit array as an offset into the buckets, and increments the count in
that bucket. At the end of HisToGRAM-KEYS, Bucket[i] contains the number of digits having
value i. SCAN-BUCKETS performs a scan operation on the buckets, returning to each element
the sum of all previous elements. After the scan, Bucket[i] contains the number of digits with
a value j such that j < i. This quantity is the position in the output in which the first key
with digit i belongs. In the final phase, RANK-AND-PERMUTE, each key with a digit of value 3
is placed in its final location by getting the offset from Bucket[:] and incrementing the bucket
so that the next key with digit 4 gets placed in the next location. Since the keys are processed
in increasing order, COUNTING-SORT is stable.

4.2.2 Parallel radix sort

The serial algorithm cannot be directly parallelized (or vectorized) because of loop dependences
in all three phases. If an attempt is made to parallelize over the iterations of the histogram
computation, several processors could attempt to increment the same bucket simultaneously. If
the bucket is not locked by each processor to gain exclusive access, only one of the increments
would take effect. On the other hand, if the bucket is locked, the bucket would act as a serial
bottleneck and would greatly degrade performance if many keys had the same digit. It is
possible to parallelize the algorithm without requiring a lock on the buckets by using a separate
set of buckets for each processor. Each processor processes n/p of the keys and tabulates their
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distribution in its own set of buckets.
In this parallel version of radix sort for an EREW PRAM, the buckets can be viewed as a

two-dimensional matrix Buckets[z, j]:

Buckets (j)
0 1 2 . m—1

Processors (2)

p—-1

where 7 is the processor number and j is the bucket number. In the first and third phases of
the parallel radix sort (HIsSTOGRAM-KEYS and RANK-AND-PERMUTE) each processor works
on its own set of keys with its own set of buckets, thereby removing all dependences. The
bucket scan, however, must be modified to combine the buckets from the different processors.
If each processor scanned only its own buckets, the digits would be sorted within the processor
but not across the whole input data. After the scan, Buckets[i, ] should contain the position
in the output where the first key from processor ¢ with digit j belongs. This condition can be
expressed as:

p—1 j—1 i—1

Buckets(i, jlafer < Z Z Buckets[k, m] + Z Buckets[k, 7] .
k=0 m=0 k=0

That is, the offset is the total number of digits less than j over all the processors (0 < & < p),
plus the number of digits equal to j in processors less than 7. This sum can be calculated by
flattening the matrix into column-major order and executing a scan on the flattened matrix.
The scan operation can be parallelized using a tree-summing or similar algorithm; as discussed
in Section 3.3.3. The parallel version generates the same permutation as the serial algorithm,
thus preserving stability.

A similar sorting algorithm was described by Johnnson [114], and a restricted version of this
algorithm was described by Cole and Vishkin as pa,rf, of an optimal 2-ruling set algorithm [54].
The full algorithm was also implemented on the Connection Machines CM-2 [34] and CM-

5 [195].

4.3 Implementation for high bandwidth multiprocessors

In order to use the EREW PRAM radix sort algorithm for developing an efficient implementation,
we need to find an efficient mapping of the algorithm onto high-bandwidth multiprocessors.
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Since this is the first detailed case study in the thesis, we use it to make latency tolerating
techniques more concrete. We first describe how the concept of virtual processors is used to
implement a latency-tolerant histogram operation for various types of architectures. We then
describe avoiding contention, and in particular, the performance impact of various mappings of

buckets in the radix sort algorithm to memory banks on an interleaved memory system.

4.3.1 Hiding latency

As discussed in Section 3.1, we use the concept of virtual processors to hide latency. That is
we simulate multiple PRAM processors per physical processor in order to pipeline the global
memory access. In our parallel radix sort algorithm, there are two basic types of global random
access: permutations of keys, and histogram (and ranking) operations that update buckets.
For large sets of keys, hiding latency on the key permutation operations is straightforward, but
efficiently hiding latency for the bucket update operations is slightly more complicated. In this
section, we describe how to hide latency on random accesses to buckets. Later, Section 4.4
discusses some tradeoffs between algorithm and machine parameters.

We now describe the mapping of a parallel histogram onto various classes of pipelined-
memory architectures. For each architecture, we show pseudo-code for a parallel histogram
algorithm that hides memory latency. The structure of the code varies somewhat with the
architecture, but in each case, we use the same algorithm and the same basic approach to
hiding latency.

In the pseudo-code segments below, n is the number of keys, p is the number of physical
processors, and v is a slackness parameter that denotes the ratio of virtual to physical processors
(i.e., there are v - p virtual processors). The key array holds n keys and the two-dimensional
bucket array holds one set of keys per virtual processor. The pseudo-code assumes that buckets
have been initialized to zero and that all integer divisions have no remainder. The variables
self and index are local to each processor; self identifies a (virtual) processor index and

index identifies the key currently being examined by a processor.
A EREW PRAM algorithm for histogram using p sets of buckets can be expressed as follows:

s = n/p

do parallel j = 0, p-1
self = j
do i=0, s-1

index = j * s + 1
bucket (key(index), self) += 1
end do
end do parallel
Each iteration of the outer loop is assigned to a different processor, and the inner loop

tabulates a histogram of a contiguous block of n/p keys.
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On a multithreaded machine that automatically assigns parallel loop iterations to processors,
latency would be hidden simply by using v virtual processors per physical processor. The code
would be nearly identical to the PRAM pseudo-code above, except that the number of processors,

p, would be replaced by the number of virtual processors p’ = p - v.
If the iterations were statically scheduled in a block fashion for a multithreaded machine,
the code could be structured as follows:

s = n/(v¥p)
do parallel j = 0, p-1
do multithread k = 0, v-1
self = j*v + k
do i=0, s-1
index = s * (k + v*j) + i
bucket (key(index), self) += 1
end do
end do multithread
end do parallel

The do multithread block loops over the virtual processors assigned to a given physical

processor. Notice that the total amount of work is still n bucket increments.
Interestingly, the vector code is similar to the above code for multithreading. A simple loop
interchange enables a compiler to vectorize the innermost loop over virtual processors:

s = n/(v*p)
do parallel j =0, p -1
doi=90,s8-1
do vector k = 0, v-1
index = s * (k + v¥j) + i
self = j*v + k
bucket (key(index),self) += 1
end do vector
end do
end do parallel

A vectorizing compiler converts the inner loop to vector instructions, namely a vector load
of v keys, a gather of v bucket values, an increment of the v values, and a scatter of the
incremented values. Notice that access pattern to the keys uses loop raking (introduced in
Section 3.1.3), ensuring that each virtual processor operates on a contiguous block of keys.
(This is not important for a simple histogram operation since the result is independent of the
order of bucket increments, but is critical for the related RANK-AND-PERMUTE operation,
which must preserve a stable ordering in order to implement radix sort correctly.)

Techniques similar to vectorization can be used for implementing the histogram on a pipelined-
memory microprocessor, and in fact, the code structure would be similar to that of the vector
code. With an appropriate choice of the number of virtual processors, the inner (vector) loop



56 CHAPTER 4. SORTING

could be fully unrolled, and the memory accesses could be scheduled to allow for latency toler-
ance. For example, with a non-blocking cache, all the bucket loads could be issued in a burst
(rather than issuing sequential load-increment-store sequences), so that cache misses to the
buckets would be overlapped.

For a simple histogram, using virtual processors might not be necessary on some micro-
processor architectures, depending on the specific mechanisms used for latency hiding. In
particular, prefetching of buckets could be used without virtual processors if the prefetching is
non-binding. Nevertheless, the technique of simulating virtual processors is still applicable to
these machines, and in fact, would be necessary on other machines that use a binding prefetch.
For example, E-registers [175] on the Cray T3E could be used for simulating virtual processors
with vector-like gather and scatter operations to buckets.

4.3.2 Reducing contention

We now consider how to avoid memory bank contention when mapping memory locations in
the PRAM algorithm to memory modules in the (d,x)-Bsp. In particular, contention can occur
when permuting keys and when accessing buckets.

For sequential accesses to keys, it is practical to use a regular distribution of keys to memory
banks, such as a cyclic distribution, which will naturally avoid any (significant) module map
contention. However, regular distributions introduce the possibility of memory bank delays
caused by patterns in the order messages are injected into the network. These delays could be
reduced by randomizing the injection order of each processor. In practice, however, we have
not found this to be necessary. Loop raking tends to break up common patterns that would
cause the worst case permutations, and our implementation performs well on random inputs
and on many regular inputs, such as a pre-sorted array.

Accesses to buckets pose a somewhat different, and more challenging problem than permu-
tation of keys, because the number of accesses to each bucket depends on the distribution of
values in the input keys. Since virtual processors are typically emulated on physical processors
in a round-robin fashion, the key issue becomes the potential for bank conflicts among different
virtual processors.

As discussed in Section 4.2, the buckets logically form a two-dimensional array in which the
two indices identify the set of buckets for a virtual processor and the bucket within a set. One
natural way to lay out the buckets would be to assign the buckets for each virtual processor to
contiguous memory locations. This simplifies bucket addressing but can cause data-dependent
bank conflicts on machines that cyclically distribute memory locations to memory banks. For
example, with a radix of 28 = 256, 256 virtual processors, and 256 memory banks, a virtual

processor with a value of ¢ will access memory bank ¢ (assuming the buckets start at bank 0).
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If several virtual processors handle keys with the same value, they will access the same memory
bank and introduce a delay. In fact, the worst case is common, since some applications sort
sets of keys in which all the keys have an identical digit. (A subtle example occurs when radix
sorting an array of floating-point numbers in a small range. Even if the values are distinct,
many of them will have the same exponent.)

This problem with cyclic distributions of bucket sets can be avoided by starting each set
of buckets at a random offset. However, there is a better solution that both simplifies that
address calculations and improves performance on the CRAY C90. Instead of using a randomized
distribution, we distribute the buckets such that the buckets used by each virtual processor are
in a separate memory bank (or a small set of memory banks). For example, virtual processor
0 might access only bank 0, whereas virtual processor 1 would access only banks 1.

Figure 4.1 quantifies the sensitivity to the distribution of key values for various choices of
the module mapping. The graph indicates the time per key for generating a histogram of a
single digit as the key entropy [194] is varied. In each graph, the key distribution consists of
uniformly random numbers at the left and a single repeated value on the right. The naive
module mapping is an order of magnitude slower for some key distributions. The worst-case
histogram time is slightly above twice the bank delay, where the delay d is 14 clock periods on
the CRAY J90 and 6 clock periods on the CRAY C90. Note that, for random key distributions
(when the entropy per bit is 1.0), the CRAY €90 is more sensitive to network conflicts at the
processor and thus benefits from the optimal mapping in which messages are injected in perfect
cyclic order. However, there is no benefit to the conflict-free module mapping on the CRAY J90
for random keys because the network ports have sufficient buffering to avoid section conflicts.
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Figure 4.1:  Histogram time for two different module mappings on a single processor of the
(a) crAY J90 and (b) crAY Co0.
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4.4 Analysis of Cray implementation

This section presents an analysis of our sorting implementation for the CRAY C90. The anal-
ysis includes constant factors, which are critical for predicting the running times of sorting
algorithms [148]. We first develop equations that predict the running time in terms of various
parameters. These equations allow us to calculate the optimal values of free parameters, such
as the radix and vector length, and allow us to predict the running time on any number of
processors. The equations also allow us to factor out parameters specific to our implementation
and to provide a degree of machine independence to our analysis. This section also describes
the space used by the implementation and presents performance measurements, including a
comparison with the CRAY library implementation and performance measurements on multiple
processors of the CRAY C90. Except where noted, all timings were taken on random 64-bit keys.
The timings in this section are based on Cray Assembly Language (CAL) [58] code generated
from our own macro assembler.

We first consider the asymptotic running time for sorting b-bit keys with a radix size of r.

The serial running time is
b
The running time on an EREW PRAM (with unit-time scans) is:
b -2
- o)
T \P p
°:5+2))
r\p
The optimal value of r is O(lg(n/p)), making the running time
b n
° (garm )
lg(n/p) \p

After noting the constant factors in our implementation, we describe how to choose the optimal

radix, taking into account latency and constant factors.

4.4.1 Constant factors in the implementation

This section quantifies the costs for the three phases of the counting sort algorithm, filling in
implementation details as necessary. All constants are reported in units of CRAY C90 clock
periods (4.167 nsec). (Constants for the CRAY Y-MP are reported in [207].)

Histogram keys: The first step to building the histogram consists of clearing the buckets.

Because each physical processor simulates v virtual processors, there are 2" - v - p buckets, and
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we expect a speedup of p, yielding the equation:

TClear-Buckets = 06-2"-v- g =06-2"-v

To produce counts of the digits, each digit is converted to a bucket index, and the counts
are gathered from the buckets, incremented, and scattered back to the buckets. The execution

time for the histogram is:

THistogram-Keys = 13-

S

Scan buckets: As discussed in Section 4.2, the bucket scan in the parallel algorithm is equiv-
alent to executing a scan on the bucket matrix in column major order. In our implementation,
the buckets are already arranged in column-major order, so we can simply use the plus-scan

algorithm described in Section 3.3.3. The execution time is:

TSca.n-Buckets =17-2"-v- % =17-2".v

Rank and permute keys: This phase is similar to HISTOGRAM-KEYS, except that the keys
are also loaded and permuted (scattered) using the offsets gathered from the buckets. Assuming
a non-pathological permutation, the time for this step is approximately:
TRank-And-Perrnute =29- %
The total sorting time can be characterized by two main parameters of the implementation,
the time per bucket, Thycket, and the time per key, Tkey (expressed in clock periods per element

per processor):

Tbucket = TClear-Buckets + TSca.n-Buckets
2.3
Tkey = THistogram-Keys + TRank—And—Pennute
= 4.2

Since there are v - 2" buckets per processor and n/p keys per processor, the time for one call to

TCounting—Sort is:

n
TCounting-Sort = v-2". Tbucket + ; : Tkey (41)
Sorting b-bit keys requires [b/r] passes of counting sort:

b n
TRadix-Sort = [;.I ('U A Tbucket + 5 : Tkey) (42)
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Figure 4.2: Time per key for a 64-bit sort on one processor of the CRAY C90 as the number of
bits per pass (r) is varied. As the number of keys is increased, the optimal value for r increases.

4.4.2 Choosing the radix

As Figure 4.2 indicates, the optimal value for the digit size r increases with the number of
elements per processor. For a given problem size, choosing r below the optimal value will cause
too much work on keys, whereas choosing r above the optimal value will cause too much work
on buckets, as illustrated in Figure 4.3. We can determine the value for r that minimizes the
total time by differentiating Equation 4.2 with respect to r and setting the derivative equal to
zero. The value for r that we obtain satisfies:

n Tke
r o= 1 <—-7y)—1 rln2-1 4.3
8 p 1-"Tbucket g( ) ( )

~ g (%) —lg(v) -1 (4.4)

where we approximate Tkey With 2 - Thycket and approximate the second term of Equation 4.3
with the constant 2, which is derived from setting r to a moderate value of 7.

For n = 32K, as in Figure 4.3, the optimal value for r predicted by Equation 4.4 is r = 8,
which, in fact, minimizes the total time.

When we substitute the approximation for » back into Equation 4.2, we obtain the following

approximation for the total sort time:

T b- (n/p) (Tbucket
Radix-Sort

+ Tk ) 4.5

g(n/r) —lg) 1\ 2 )
Figure 4.4 compares this equation with the actual running time of our implementation of

radix sort in which the best experimental values for r are used. As the figure indicates, this

equation accurately predicts the running time.
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Figure 4.3: Breakdown of the total running time of radix sort into the time spent on buckets
and the time spent on keys. Times are derived from two terms of Equation 4.5 for a one-
processor 64-bit sort of 32K elements. As r is increased, the work per bucket increases and
the work per element decreases. For the parameters chosen, the optimal value for r is 8, as
indicated by the top curve representing the total time.

‘Note that the time per key decreases as the number of keys increases, because we can increase
the radix. In contrast, the time per key for comparison-based sorts is typically proportional
to lgn, and thus increases for larger sorting problems. Furthermore, the time for radix sort
is proportional to the number of passes of counting sort, i.e., the number of digits. Thus, we
can sort 32-bit keys approximately twice as fast as 64-bit keys, and 20-bit keys approximately
three times as fast. In contrast, comparison-based sorts typically take the same amount of time
for shorter keys. Shorter keys are important because some applications sort indices or pointers

that are significantly shorter than 64 bits.

4.4.3 Latency tradeoffs

In the previous analysis, we assumed that latency was fully hidden with the use a large number
of virtual processors. In particular, we used the maximum allowable vector length (128 for the
CRAY C90) and accounted for the relatively small cost of latency by including the cost in the
measured constants, rather than modeling latency as separate component of the running time.
This section analyzes tradeoffs between latency and work using the (d,x)-BsP framework to
model the cost of latency.

One superstep corresponds to one step of the algorithm for each virtual processor (e.g.,
incrementing a histogram bucket on each virtual processor) and is implemented with a series of
vector operations (e.g., gather, add, scatter). The overhead for a superstep is amortized over
the virtual processors simulated in the algorithm. Note that the following analysis models the
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Figure 4.4: Predicted and measured performance of radix sorting 64-bit keys on one processor
of the cRAY C90. Measured performance uses the empirically determined optimal values for r.
The predicted performance was calculated using Equation 4.5.

overhead using the memory latency parameter (£), rather than the periodicity parameter (L),
because the histogram and ranking operations performed on each processor are independent.
Synchronization is necessary only between phases of the algorithm (e.g., after completing the
histogram and before starting the scan), and is not required between supersteps. (On some
machines, a memory barrier might be required between supersteps, but global synchronization
is not necessarily required.) A refinement of Equation 4.1 includes an additional term for each

of the n/(v - p) supersteps:

n n-l
TCounting-Sort = v-2" - Thucket + E ' Tkey + n (4'6)

By using fewer virtual processors (and thus fewer buckets), the amount of work can be
reduced. This decreases the time for clearing and scanning the buckets, Thycket; at the expense
of increasing the cost per element for performing the histogram, Tiey, due the increased cost
of latency. Figure 4.5 shows the effect of varying the vector length. Figure 4.6(a) shows the
optimal vector length, and Figure 4.6(b) shows how the optimal radix is affected by the selection
of the vector length. In practice, it works well to use Equation 4.4 for r, but with a minimum
value of r = 4, and to set the vector length to v = min(2.0 - \/T—l/— , Vmax), where Vimax = 128
on the CRAY C90. (We always use a power-of-two vector length in order to compute bucket
indices with shift instructions rather than multiply instructions.)
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Figure 4.5:  Predicted effect of varying the vector length for a 64-bit sort on the CrRAY C90.
For small problem sizes, varying the vector length leads to significant improvements over using
the maximum vector-register length of 128.
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Figure 4.6:  Optimal vector length and radix on the CRAY C90 based on Equation 4.6. (a)
shows the optimal vector length as a function of the number of keys per processor. For large
problems, the optimal vector length is 128. (b) shows that the optimal radix is affected by
whether the vector length is fixed at the maximum vector-register length or varied with the
problem size.



64 CHAPTER 4. SORTING

4.4.4 Space

An important concern for designing a practical sorting routine is to minimize the space required
by the implementation, as well as the running time. To sort an array of size n, our sort requires
an array of size n for the destination of the permute and an array of size v - p - 2" for the
buckets. Since the optimal value of r is approximately lg(n/p) — 7, the amount of memory for
the buckets will be approximately v-p-2/(*/P)=7 which is simply 2. Thus, the total amount of
memory used besides the source is approximately 1.5n. Memory could be saved at the expense

of increased execution time by using a lower radix or by reducing the vector length.

4.4.5 Sorting interface

In practice, a sorting routine that can carry additional data with keys or can sort records is
more useful than one that can only sort keys. A clean way to provide a more general sorting
interface is to implement a routine that returns a permutation that can be used to sort data.
Such an interface is useful for implementing a multipass routine for sorting records, since the
permutations returned from sorting on each field of the record may be composed. It also makes
sorting large data items with small keys more efficient, since only the keys are manipulated
internally.

There are two common variants of sorting routines that return permutations: RANK and
ORDERS. RANK takes a m-element input array Key and returns an n-element permutation
Perm, such that Perm[i] is the rank of Key[]. This permutation can be used for “scattering”
the keys into sorted order. ORDERS returns the inverse permutation, an n-element permutation
Perm, such that Perm][i] is the index of the ¢th smallest key. This permutation can be used for
“cathering” the keys into sorted order. RANK is standard in HPF and ORDERS is the standard
library routine callable from Fortran on the CRAY [57].

We implemented both ORDERS and RANK routines and will describe ORDERS (RANK is sim-
ilar). To transform our sorting implementation into an ORDERS routine, a current permutation
is stored and is permuted on each pass rather than permuting the keys. We start by initializing
the current permutation Perm to the identity permutation, such that Perm[i] = . We mod-
ify the histogram phase to gather the source data using the current permutation, rather than
loading it directly, and we modify the permutation phase to permute the Perm array rather
than the keys.

4.4.6 Running time

This section discusses absolute performance and scalability, by comparing our results to timings
of the NAS Parallel Benchmarks and the library sorting routine from Cray Research.
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Figure 4.7: Comparison of CRAY library ORDERS and our implementation of ORDERS on 64-bit
random keys using one processor of the CRAY C90. ORDERS is a version of sort that returns the
positions of the sorted keys rather than permuting the keys. Our implementation of SORT is
about 10 percent faster than our implementation of ORDERS. (The discontinuity in the library
version is due to a change in radix from 22 to 216.)

We begin by comparing our implementation of ORDERS to the CRAY optimized library
routine, which is also a radix sort, to demonstrate that the results we obtain are due to an
algorithmic improvement, rather than tighter code. The library routine uses either r = 8 or
r = 16 as determined by the caller, and judging from the temporary memory requirements, it
does not use multiple sets of buckets. Figure 4.7 graphs the performance of our implementation
and the library implementation. The timings use random keys. (Interesting, the CRAY library
sort is approximately 1.8 times slower when sorting all zeros.) As the figure indicates, our

implementation is 2 to 5 times faster for sorting more than 2K items.

Equations 4.4 and 4.5 predict the theoretical speedup on p processors. Note that Equa-
tion 4.5 expresses the total time as a function of the number of elements per processor; the
radix is chosen based on n/p and the total time is proportional to n/p. These relationships
imply that speedup will be linear when increasing the number of processors, if n/p is held con-
stant, that is, if the problem size grows with the number of processors. However, if the problem
size, n, is fixed as we increase the number of processors, the speedup is not linear, because the
optimal radix is lower. For example, with n = 256K, the optimal value for r on 1 processor
is lg(n/1) — 7 = 11, whereas the optimal value on 8 processors is lg(n/8) — 7 = 8. Thus,
with 1 processor, we need 6 passes of counting sort to sort 64-bit keys, but with 8 processors,
we need 8 passes, yielding a maximum speedup of 6 on 8 processors. Using 16 processors on
the NAS Integer Sort benchmark, we achieve a speedup of approximately 13 on 16 processors.
For this benchmark, the same problem size and radix is used for all processor counts, which
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Machine Processors | IS (C90 equiv.)
Cray T3E 256 16.15
NEC SX-4 16 14.42
Cray C90 16 13.18
Cray T3D 1024 10.59
Cray T90 8 9.16
IBM SP2/P2SC 64 7.38
Fujitsu VPP 300 16 4.74
Cray J90 16 2.63
SGI Origin 2000 32 2.24
Convex SPP1000 8 0.30

Table 4.1: Performance on the NAS Class B Integer Sort (IS) benchmark [16, 172, 173]. The
performance is expressed as a throughput measure normalized to the performance of a single-
processor CRAY C90.

indicates that the speedup is limited primarily by saturating the memory system. In general,
linear speedup is not achieved due to two effects: saturating the memory system causes a small
degradation in effective memory bandwidth, and using a separate set of buckets for each virtual
processor forces us to use a slightly lower radix.

Table 4.1 presents timings on the NAS Integer Sort benchmark {Class B, version 1.0) for
various machines. The benchmark measures the time to rank 10 sets of 32 million 21-bit integer
keys. Our implementation (used on the CRAY J90, CRAY C90, and CRAY T90) is a Fortran
implementation of the algorithm described in this chapter. (Other timings in thistchapter refer
to the assembly language implementation.) In contrast to several of the microprocessor-based
implementations, our implementation is not specialized to the specific key distribution used in
the benchmark. Accurate pricing data is more difficult to obtain, but pricing estimates reported
by NAS [172, 173] suggest that the CRAY 190 is the leader in price-performance, closely followed
by the NEC SX-4.

4.5 Discussion

The chapter described an efficient mapping of an EREW PRAM algorithm to (d,x)-Bsp. A
straightforward use of virtual processors gives excellent latency tolerance, and careful selec-
tion of module mapping avoids memory bank contention. The implementation has reasonable
memory usage, supports two types of ranking primitives in addition to simple sorting, pro-
duces stable orderings of equal keys, and has predictable running time. The implementation

is fast over wide range of problem and machine parameters, both in comparison to previous
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vector sorting implementations and sorting implementations on other architectures. These re-
sults show that the combination of high-bandwidth pipelined memory and effective mapping

techniques leads to high performance on a general-purpose sorting algorithm.



68

CHAPTER 4. SORTING



Chapter 5
Merging

This chapter studies the problem of merging two sorted arrays. We consider variants of merging
algorithms designed for the CREW and EREW PRAM models, and compare the performance of
work-efficient, irregular PRAM algorithms to simpler, less efficient algorithms that have been
previously used on vector and distributed memory machines. Cost models are presented for
accurately predicting running times and for exploring tradeoffs between latency hiding and
work. The impact of contention is studied by experimenting with a set of test cases. Tech-
niques for hiding latency lead to significant performance improvements over previous work on
vector multiprocessors. For large lists, an implementation for a single CRAY €90 processor per-
forms approximately 8 times faster than a serial merge and nearly a factor of lgn faster than
bitonic merge. On a 16-processor CRAY C90, absolute performance is approximately 500 million
elements per second, which to our knowledge is the fastest implementation ever reported.

The chapter is organized as follows. Section 5.1 reviews previous work on merging. Sec-
tion 5.2 describes several practical PRAM merging algorithms. Section 5.3 describes techniques
for hiding latency and analyzes trade-offs between latency and work. Section 5.4 quantifies
the effect of concurrent reads using the (d, x)-BsP and describes several approaches to reducing

contention, and Section 5.5 discusses our results.

5.1 Background and previous work

This section presents an overview of previous work in parallel merging. (See Table 5.1). We
consider both theoretical and practical issues, with the goal of identifying algorithms that
are both work-efficient and practical. Parallel algorithms for merging can be classified into
two categories: merging networks and PRAM algorithms. Merging networks, such as Batcher’s
bitonic merging network [19], consist of two-element comparators that output the minimum
and maximum of their two inputs. One advantage to algorithms based on simulating a merging

69
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Algorithm Model | PRAM Running Time
serial RAM | O(n)

bitonic network | EREW | O((n/p)lgn)
bitonic hybrid | EREW | O((n/p)(Igp + 1))
CR-split CrREW | O(n/p+lgn)
CR-block-split | cREW | O(n/p+lgn)
ER-block-split | BREW | O(n/p+lgn)

Table 5.1: Summary of merging algorithms discussed in this chapter.

network is that the data access patterns are oblivious (also called non-contingent), that is, the
control flow does not depend on the input values. Oblivious algorithms tend to have simpler
implementations, lower constants, and greater predictability. However, these benefits come at
the expense of additional work compared to a work-efficient algorithm. For example, simulating
an n-input bitonic merging network, which has a size of O(n lg n) and a depth of O(lg n), requires

an additional factor of lgn work.

- The inefficiencies in using merging networks motivate the use of work-efficient merging
algorithms designed for the PRAM. There are a number of similar PRAM merging algorithms
that work by partitioning the merging problem into independent merging subproblems. This
partitioning requires finding a number of splitter elements that split the input values into ranges
containing approximately the same number of values. The algorithms differ in how they select
the number of subproblems, how the ranges are identified, and how balanced the subproblem

sizes are.

Valiant [200] presented an efficient parallel merge that runs in O(n/p +lglgn) on a CREW
PRAM [112]. Valiant’s algorithm is complicated to implement because of its use of recursive
merging. Handling the recursive calls of uneven sizes requires dynamic processor allocation
(as described by Shiloach and Vishkin [178]), which would lead to large constant factors in
an implementation. For a practical implementation, we would like an algorithm that performs
only a single complete pass over the input lists, provides an optimal load balance for an arbi-
trary number of processors (with a small amount of bookkeeping), uses a minimal amount of
temporary memory (beyond having a separate output list), and has low memory contention.
Several studies have presented practical merging algorithms that are close to this ideal. For
example, Varman et al. [202] and Francis and Mathieson [78] implemented practical mergesort
algorithms for Sequent bus-based, shared-memory multiprocessors [138]. The implementations
achieve near-linear speedups over the sequential algorithm, but both studies use algorithms

with concurrent reads.
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Despite the success in developing practical implementations for small shared memory ma-
chines, several implementations of merging for massively parallel processors and vector proces-
sors have not used work-efficient algorithms. For example, studies of sorting algorithms for the
CM-2 [34] and the CMU/Intel iWarp [188] both made use of bitonic merge, an algorithm that
performs a logarithmic factor more work than optimal. Previous implementations of vectorized
merging include an implementation of bitonic sort on the Cray X-MP and Fujitsu VP-200 by
Overill [155] and an implementation of Batcher’s merge-exchange sort [19] on Cray and Amdahl
machines by Ronsch and Strauss [170].

Interestingly, practical optimal merging algorithms for shared memory models have not
been applied to vector computers. In fact, Torii et al. [196] proposed special-purpose hardware
extensions for the Hitachi for vectorized merging (and searching). One contribution of this
chapter is to describe how parallel merging can be implemented by applying general techniques

for mapping PRAM algorithms onto pipelined processors.

5.2 Practical PRAM merging algorithms

We describe algorithms for merging two ordered arrays, A and B, of size n, and n; into an
ordered output array, C, of size n = n, + np. Ordering is defined by a comparison function
denoted by the symbol <. Throughout the following discussion, we assume n is an exact

multiple of p.

Bitonic network merging: A bitonic merge [19, 56] uses a comparison network that outputs
a sorted sequence given a bitonic sequence, a sequence that monotonically increases and then
monotonically decreases (or can be circularly shifted to become so). The bitonic merging
network (see Figure 5.1) has n levels of g n comparators, and thus the running time on a PRAM

for simulating the network is O(n/p - lgn).

Hybrid bitonic merging: In Figure 5.1, note that the bitonic merging has a divide-and-
conquer structure. This structure is used in hybrid bitonic merge in order to replace a simulation
of the last lg(n/p) levels of the bitonic merging network with p independent sequential merges
of n/p elements. For large problem sizes, the resulting algorithm is a significant improvement
over straight bitonic merging, but still performs a factor of lg p more work than a work-efficient
algorithm. The running time on a PRAM is O(n/p- (Igp+ 1)).

CR-split: First, we consider a simple yet efficient parallel merging algorithm described by
Francis and Mathieson [78]. The running time on a CREW PRAM is O(n/p + lgn), and from a
practical standpoint, the algorithm has very small constant factors. The algorithm finds optimal
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-

Figure 5.1: A bitonic merging network. The merging network accepts n = 32 elements at
the left, comprising an ascending sequence and a descending sequence, each of size n/2. Each
of the lg(n) levels of the merge has n/2 comparison elements.

“splitters” that divide the merging problem into p merging problems that can be solved using
a conventional serial merging algorithm. We refer to this algorithm as “CR-split”. For large
lists, the expected speedup is exactly p because the total number of elements assigned to each
subproblem is optimally load-balanced.

Finding splitters requires identifying where the kth smallest element in the result C' appears
in A and B, for each k¥ = (n/p) -[0,1,2,...,p — 1]. These elements can be located using dual
binary search, a search that probes both A and B simultaneously, and on each iteration halves
the candidate range of one of the lists [78]. Given the set of splitters, the merging task is
embarrassingly parallel on a PRAM, and there is no “cleanup phase” needed for concatenating

results, as with more complicated merging algorithms.

CR-block-split and ER-block-split: Shiloach and Vishkin [178] and Varman et al. [202]
described a similar, slightly more complicated algorithm with some significant advantages for
reducing memory contention. We refer to this algorithm as “CR-block-split”, because it divides
the input lists into blocks before finding splitters.

The algorithm performs the following steps:

1. find block pairs: Conceptually divide the input lists into blocks of approximately n/p
elements. Determine the blocks where partitions are located by merging representatives
of each block; representatives are the smallest element of each block of A and the largest
element of each block of B. The result is a list of p pairs of block numbers that indicate

which blocks contain the desired partition indices.

2. find splitters: For each pair of overlapping blocks (one block from A, and the other from

B) use binary search to find the crossover point. The crossover point is the point at which
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the values from A begin to exceed the values from the corresponding block of B in reverse

order. The crossover points can be used to find the splitter elements in the input lists.

3. parallel merge: Merge pairs of lists starting at the splitter elements. The merging step
performs only exclusive reads and writes, is embarrassingly parallel, and is optimally
load-balanced.

If the splitter-finding is performed serially, the entire merging algorithm runs in O{p +
plg% + %), which is optimal for p = \/lgIn' If the splitter-finding is parallelized using bitonic
merge, the entire merging algorithm runs in O(n/p+ lgn), which is optimal for p = Y

This algorithm has two main advantages over the simpler CR-split PRAM algorithm. First,
contention is reduced because the binary searches do not all start at the same index (except in
pathological corner cases). Second, the pairing of block provides distribution information that
can be used to estimate the contention in the splitter finding and parallel merge phases. This
distribution information can be used in an EREW version that broadcasts any input blocks read’

by multiple processors [202]. We refer to this variant as “ER-block-split”.

5.3 Modeling latency hiding in merging algorithms

This section describes latency hiding for merging algorithms using virtual processors. We
analyze several merging algorithms, including two variants of bitonic merge, and two variants-
of a work-efficient PRAM merging algorithm. For each algorithm, we describe tradeoffs between
latency and work. We then compare the predicted and measured performance of the algorithms
on the CRAY C90.

In the equations below, the key parameters are: the problem size (n), the number of proces-
sors (p), the number of virtual PRAM processors simulated per physical processor (v), and the
memory latency (£). Note that v is essentially a “slackness” parameter. Also note that memory
latency parameter £ includes only the memory latency, in contrast to the BSP parameter L
which also includes the time for global synchronization. The calculations for the CRAY C90 use
a value of 50.0 for the latency £. (This is somewhat higher than the hardware memory latency
because it includes software overhead.)

Constant factors are given for the CRAY C9 implementations. The implementations are
conceptually straightforward, but in both the serial and parallel implementations of merging,
conditional computation is simplified by adding guard elements at the end of each of the input
lists.

The equations for parallel algorithms model latency by expressing running times as a product
of two terms: the time per virtnal processor and the slowdown of simulating v virtual processors
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per physical processor. For example, an embarrassingly parallel PRAM algorithm with a running

time of O(n/p) will have a running time of:

O((n/(v-p))- (£®v))
where @ denotes either a maximum or addition operator. (We use addition because it produces
more accurate predictions for our CRAY implementation.) Note that the running time is simply

O(n/p) for large values of v relative to £. For small values of v, the slowdown term will cause

an increase in the running time.

Serial: Serial merging serves as a baseline for comparison with other algorithms. It is quite
fast in practice because it requires only one pass over the input data, performing a single
comparison for each output element. However, in a straightforward implementation with no
overlap of memory accesses, each access must incur the cost of the memory latency £, yielding
a running time of O(n - £). (If the memory accesses can be fully overlapped, for example, with
prefetching or long cache lines, then the running time is simply O(n).) Our serial implementa-
tion was optimized using manual loop unrolling and is approximately twice as fast as a naive

implementation. The running time is:
T(n) = cgerial £ -

where cg,5,] is approximately 1.0 on the CRAY C90.

Bitonic network merging: If we assign one virtual processor per row of comparators in the
bitonic merging network (Figure 5.1), the asymptotic running time is the product of the time
per virtual processor (O(lgn)) and the slowdown for simulating v virtual processors:

T(n,p)=0O(lgn-(£+v))
The number of virtual processors v is simply n/p, yielding the following equation for the running
time:
T(n, p) = chitonic " 187 - (£+n/p)
where cpiionic 1S approximately 3.5 on the CRAY C90.

For all but the smallest problems, latency is trivial to hide for bitonic merge. For small
problem sizes, the optimal number of virtual processors is simply .

Hybrid bitonic merge: In the hybrid bitonic merge algorithm, the network simulation phase
has O(lg(p-v)) steps with O(n/p) slackness and the independent merging phase has O(n/(p-v))
steps with O(v) slackness. Thus, the asymptotic running time is

O(lg(p-v) - (€+n/p) + (n/(p-v)) - (£+v))
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In more detail, the running time is:
T(n,p,v) = chitonic - (18(v-p) — 1) - (€+ n/p) + cmerge - n/(v - p) - (£ + )

where emerge is approximately 4.5 on the CRAY C90.

For small n (i.e., n/p < £), the optimal value of v is simply O(n/p), which indicates that
there is no benefit over the bitonic network merge algorithm. For larger n, the optimal value of
v is O(£), i.e., proportional to the memory latency. Since the optimal slackness is based on the
latency, rather than the maximum slackness, an optimal implementation for a vector computer

will not necessarily use the maximum vector register length, even for large n.

CR-split: The asymptotic time for the CR-split algorithm is the sum of the time for searching:
O (Ig(n/p) - max(£ + v))
and the time for independent parallel merges:
o)
Thus, the total running time is:
T(n,p,v) = (csearch * 18(n) + cmerge - n/(p - v)) - (v+1)

where ¢go, 10, 18 approximately 20.0 on the CRAY Coo.
Small problem sizes present a tradeoff between the time for finding the splitters and the

time for merging. The selection of an optimal v is explored shortly.

CR-block-split: The analysis for CR-block-split is similar to that of CR-split. The analysis
is based on the CRAY implementation, which uses a serial implementation to find block pairs
and find splitters. The merging time is the same as that of CR-split, and the time for serial
finding block pairs and finding splitters is:

0 (p-v-f- (1+lg£))
p
The total running time is:

T(n,p,v) = p-v- £+ (Csearch - 18(n/ (P v)) + cmerge - n/(p - v)) - (v +)
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Figure 5.3: Predicted breakdown of running time as a function of vector lengths (with a fixed
problem size, n=2048) for (a) hybrid bitonic merge, and {(b) CR-split.

Analysis of algorithm parameters: The performance equations can be used to understand
how performance is affected by various parameters, such as problem size, number of processors,
and the memory latency. We can examine the running times (as shown in Figure 5.2), the effect
of varying the vector length (as shown in Figure 5.3}, the optimal vector length as a function
of problem size (as shown in Figure 5.4(a)), and the sensitivity of the algorithms to memory
latency (as shown in Figure 5.4(b)).

Figure 5.2 compares the performance of several merging algorithms on one vector processor

using parameters for the CRAY C90. The input lists are generated randomly. (Other test cases



5.4. MODELING AND REDUCING CONTENTION 77

are considered in Section 5.4.) At small problem sizes, there are discrepancies due to fixed
overheads, but we get a clear picture of the relative performance of algorithms, particularly for
large problem sizes. For large problem sizes, the PRAM algorithms are approximately eight times
faster than the serial algorithm and over ten times faster than the bitonic network algorithm.

Figure 5.3 shows a breakdown of running time for a small problem size of n=2048 elements.
Figure 5.3(a) shows that the running time is minimized for hybrid bitonic merge when the
vector length is 32. (With a vector length of 64, the time is within one percent of optimal.)
Figure 5.3(b) shows that the running time is minimized for the CR-split algorithm when the
vector length is near 45.

Figure 5.4(a) shows that the optimal vector length for the PRAM algorithms gradually in-
creases with the problem size. At small problem sizes, the cost of searching is significant and
thus the optimal vector length is small. At larger problem sizes, the cost of merging dominates,
and the optimal vector length is large in order to hide latency in the merging. For the bitonic
merge, the amount of work is independent of the problem size (for problem sizes that are greater
than the maximum vector length, 128), and thus the optimal vector length is always 128. For
hybrid bitonic merge, there is a tradeoff between the time for the partial bitonic merge and
the sequence merges. Note that the optimal vector length is 64 even for large problem sizes,-
because using a higher vector length would increase the amount of work in the partial bitonic
merge. _

Figure 5.4(b) shows that the serial algorithm is the most sensitive to memory latency, as
expected. In contrast, bitonic merge is independent of the memory latency, (for all but the
smallest problem sizes) because the amount of inherent parallelism grows linearly with the
problem size. The PRAM algorithms and hybrid bitonic algorithms are somewhat sensitive to

memory latency.

5.4 Modeling and reducing contention

In this section, we identify a number of sources of contention, outline several methods for

reducing contention, and present experimental measurements of contention.

5.4.1 Sources of contention

Memory location contention: There are two potential sources of contention in the find-
splitters and merge algorithm. One is memory contention when beginning the binary searches:
each virtual processor begins searching at the same positions in the input lists, which leads to
worst-case contention. (See Figure 5.5(a).) This contention can be reduced by using a binary
search fat-tree algorithm for the QREW model (see Section 3.3.1). Alternatively, the starting
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Figure 5.4: Parameter variations for various merging algorithms. (a) Optimal vector length
as a function of problem size. (b) Time as a function of memory latency (for a fixed problem
size, n=65536).

points can be skewed by picking a random starting point in one list and a corresponding starting
point in the other list that makes the sum of the starting offsets n/2.

Empty sub-lists are a second potential source of contention. Techniques such as the binary
search fat-tree reduce the contention early in the search and work well for many inputs, but can
in some cases still lead to high contention towards the end of the search. For example, when
all the elements of one input list are smaller than all the elements of the other list, the result of
the partitioning will cause half the sublist pointers to point to the first element in one list and
the other half to point to the last element in the other list. When merging in this case, there
will be nearly worst-case contention on each step of the merge. In general, read contention is a
problem whenever there are large blocks of the output that will be coming from a single input
list. Possible solutions including treating empty input sub-lists as a special case, reloading
elements from input lists only when pointers are advanced, and replicating guard elements on
sub-lists used by multiple virtual processors.

Bank and network contention: For machines that support pseudo-random mappings of
memory locations to banks, minimizing memory contention is sufficient for avoiding bank and
network contention. However, for machines with regular mappings, such as the Cray vector
machines, there are some pathological inputs that can cause bank and network contention,
despite having low memory contention.

One source of bank and network contention is locality in adjacent virtual processors. If we
distribute virtual processors to physical processors using the typical block distribution and also
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Figure 5.5:  Sources of contention in merging. (a) depicts memory contention in the binary
search, in which all searches beginning at middle element of the input lists. (b) and (c) depict
two other cases that can cause contention. The arrows indicate positions where parallel merges
will begin in the two input lists. In (b), memory contention in merging is caused by when
one list contains elements that are all larger elements of the other list. In (c), regular input
patterns cause regular strided accesses. If the stride is a power of two, bank contention could
be high on an interleaved memory system.

allow a modest amount of contention, this will cause network contention because the requests
to the same location will be made in sequence. This problem can be alleviated by using a
random or cyclic assignment of virtual processors to physical processors. The motivation for
using a cyclic distribution is that with processors running asynchronously, it is more important
to break up regularity within a processor, than across processors. Reordering virtual processors
is fairly inexpensive to implement, although in some cases it can increase the amount of indirect
addressing.

A second source of contention is due to regular access with bad strides. To avoid regular
accesses with large power-of-two strides, we can adjust the number of virtual processors. Loop
raking (described in Section 3.1.3) is used for strided vector operations, for example, when
accessing the output array C'. A more subtle problem arises when regular patterns in the input
data cause contention during the merging. (See Figure 5.5(c).) Although this is uncommon,
it could be solved by simulating random hashing, or by inserting “bubbles” with random sizes
between input sub-lists. Another possibility is to program directly for the (d,x)-Bsp and ex-
plicitly assign memory locations to specific modules. The two source arrays for each virtual
processor can be assigned to a module to get conflict-free merging with optimal injection. (A
similar technique is used for sorting in Chapter 4.) This redistribution could be implemented
by moving the elements to their destinations in random order, or by carefully orchestrating the
ordering to avoid network conflicts, possibly by extending Bailey’s conflict-free matrix transpose
algorithm [14] to ragged arrays.

An alternative to modifying one of the CREW algorithms is to use the ER-block-split [202]
algorithm. The algorithm broadcasts input blocks that are read by multiple (virtual) processors.
Figure 5.7(b) shows the effect of replication in the ER-block-split algorithm for block cyclic test
cases. For these experiments, each block of both input lists is copied to a temporary array.
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Figure 5.6:  Test set for merging. Each row represents the elements of the output for one test
case. The shaded squares are assigned to one input list and the blank squares to the other list.
Block sizes tested include all powers of two between 1 and n.

The replication is effective at preventing the worst-case contention, but adds approximately 20
percent to the best-case running time. A more efficient way to implement the replication is
to use segmented plus scans to determine where to place copies and segmented copy scans to
distribute the data. (These scan operations are described in Section 3.3.3.) In the worst case,
p blocks must be replicated. To reduce the replication cost, the amount of replication can be

determined using the (d, x)-BSP model, as discussed in Section 3.2.2.

5.4.2 Measuring contention

We designed a test set to capture two classes of inputs for merging algorithms: random test
cases and regular cases that can be used for varying the contention. In the random test cases,
half of the elements of the destination list C, chosen at random, are assigned to input list A
and the remaining elements are assigned to input list B. We generate the regular test cases
using block cyclic distributions. Two notable special cases are a block size of n, in which all
elements of A are less than all elements of B, and a block size of one in which the elements
of C are “shuffled” to A and B. See Figure 5.6. Large block sizes can cause high contention
because several virtual processors may point to the same element of an input list during parallel
merging. In the worst case (one block of size n, as depicted in Figure 5.5(b)), the expected time
per element is d/2. If we predict the running time based on the QRQW model (i.e., ignoring
network contention and module map contention), increasing the number of blocks is expected
to reduce the time linearly until contention is insignificant. As indicated in Figure 5.7(a) the
actual performance is slightly worse than the predictions because the injection order is not

randomized.
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on block-cyclic test inputs. Predictions, shown with dotted curves, do not account for module
map contention. The curve labeled plus is the sum of the computation term and contention
term, whereas the maz curve is the maximum of these two terms. For b blocks, the predicted
memory contention is 7/(2b) and the cost per element for contention is d/(2b) (7.0/b on the
CRAY J90). (b) Effect of replication in merging on 8 processors of the CRAY C90 using block
cyclic test inputs. With replication, the time is independent of the number of blocks.
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5.5 Discussion

Qur results can be summarized as follows:

o The running time can be accurately modeled in terms of machine and problem parameters,

and the performance model can be used to optimize latency-hiding parameters.

Contention is not expected to be significant for most input sets, but measurements of the
worst-case contention can be predicted fairly accurately, and various replication strategies

can be used to avoid slowdowns from contention.

For large problem sizes, the PRAM merging algorithms are significantly faster than serial
merging and variants of bitonic merging. In addition, the PRAM algorithms require less
memory. The implementation of bitonic merge requires n words of temporary memory,
whereas the PRAM merging algorithms require only O(vp) words of temporary memory.
That is, for a fixed set of machine parameters, the amount of temporary memory required

is independent of the problem size.

Implementations of the PRAM algorithms achieve good absolute performance and speedup.
Figure 5.8 shows the multiprocessor merging performance on the CRAY C90. For small
problem sizes (up to a few thousand elements), there is no benefit from using multiple
processors. As the problem size is increased, the speedup improves, and when the problem
size reaches millions of elements, the speedup is approximately linear in the number of
processors. Using 12 processors, the peak performance on the CRAY €90 is over 450 million

elements per second.



Chapter 6

Sparse Matrix Multiplication

This chapter considers the problem of multiplying an arbitrary sparse matrix by a dense vector.
More precisely, the problem is to compute y = Az, the product of a matrix A = (a;;,0 < i <
m,0 < j < n) and a vector z = (z;,0 < j < n) yielding the vector y = (v;,0 < ¢ < m). The
number of nonzero elements in the matrix is denoted e, and in the problems of interest, e is
only a small fraction of m - n. Using a compact representation of the matrix, sparse matrix
multiplication requires O(e + m) work.

In addition to having many practical applications, sparse matrix multiplication also serves
as a vehicle for studying irregular computation on high-bandwidth multiprocessors. Sparse
matrix multiplication can be formulated as a graph algorithm, in which graph edges correspond
to matrix elements, graph nodes correspond to vector elements, and the computation consists of
weighted neighbor summing. Sparse matrix multiplication is an irregular computation, because
access memory access patterns will depend on the sparsity pattern, i.e., the underlying graph
structure. For large matrices, there is abundant parallelism inherent in the problem, but the
irregularity of the computation, particularly for handling arbitrary sparsity patterns, requires
high-bandwidth fine-grained memory access and poses several implementation challenges.

The main focus of this chapter is the implementation of latency-tolerance for arbitrary
sparse matrices. We introduce a technique for sparse matrix multiplication called SEGMV,
which is based on an efficient implementation of segmented sums. A segmented sum treats
an array as a vector partitioned into contiguous segments, each potentially of a different size,
and sums the values within each segment [23]. We compare the performance on the CRAYof
the SEGMV algorithm to that of various other algorithms, using a test suite of sparse matrices
from the Harwell-Boeing collection and industrial application codes. The performance results
show that the implementation of a general-purpose PRAM algorithm is predictable and fast
regardless of the underlying structure of the matrix. In addition to measuring times for matrix
multiplication on the test matrices, we used SEGMV as the core of the NAS Conjugate Gradient

83
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benchmark [15, 16]. On 16 processors of the CRAY €90, an implementation of the benchmark
using SEGMV achieves 3.5 Gflops.

The remainder of the chapter is organized as follows. Section 6.1 presents a brief overview
of commonly used sparse matrix data structures and algorithms, with an emphasis on work and
latency. Section 6.2 quantifies the effect of concurrent reads using the (d, x)-Bsp and describes
several methods of reducing contention using replication, and Section 6.3 describes the sEGMV
algorithm, and Section 6.4 compares the performance of SEGMV to other techniques, using a
collection of real-life test problems run on a CRAY C90, and Section 6.5 discusses applications
and generalizations.

. This research was performed jointly with Guy Blelloch and Mike Heroux and was originally
published as a technical report [33].

6.1 Background and previous work

In comparing various approaches for implementing sparse matrix-vector multiplication, there
are a number of practical issues to consider including the running time for sparse matrix multi-
plication, the generality of the approach, the preprocessing time for creating the data structures,
the convenience of the data structures for performing other sparse matrix computations, the
memory required for representing the sparse matrix, and the temporary memory used during
the sparse matrix multiplication.

The key focus of most work on sparse matrix multiplication is running time, which for
many machines places the focus on reducing the memory bandwidth requirements. For exam-
ple, previous work on sparse matrix multiplication in the Bsp model [21] shows that structure
independent computation requires extremely high communication performance and that ex-
ploiting the underlying structure of the matrix is of primary importance for achieving efficient
implementations.

The generality of an implementation is determined primarily by its ability to hide latency
for arbitrary irregular matrices. In the BSP model, hiding the memory latency is conceptu-
ally straightforward, since each processor has the addresses of all vector elements that will be
accessed in a superstep. However, in addition to hiding memory latency, an efficient imple-
mentation must pipeline arithmetic operations in the presence of differing, and potentially very
short, row and column lengths. Depending on the type of pipelined-memory machine, it may
be important to make use of long vector instructions, to reduce the number of branches exe-
cuted, or to reduce thread scheduling overhead. Previous techniques for vector computers have
optimal latency hiding and work complexity only for restricted classes of matrices. In contrast,

SEGMYV is insensitive to the matrix structure and therefore hides memory and arithmetic unit
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latency for matrices that are very irregular.

In the following discussion, we separate previous techniques into specialized techniques
(techniques that work best for structured matrices), general techniques (techniques that work
for sparse matrices with any structure), and hardware techniques (techniques that have been

suggested for direct implementation in hardware).

6.1.1 Specialized techniques

Sparse diagonal systems: Standard discretizations of partial differential equations typically
generate matrices that have only a few non-zero diagonals. An appropriate data structure for
this type of structured sparse matrix stores only these non-zero diagonals together with offset

values to indicate where each diagonal belongs in the matrix (see the DIA data structure

in [171, 100]).

Feature extraction: Another approach to optimizing sparse matrix operations is to decom-
pose the matrix into additive submatrices and store each submatrix in a separate data structure.
For example, the Feature Extraction Based Algorithm (FEBA) presented by Agarwal et al. [3]
recursively extracts structural features from a given sparse matrix structure and uses the ad-
ditive property of matrix multiplication to compute the matrix-vector product as a sequence
of operations. The FEBA scheme first attempts to extract nearly dense blocks. From the
remainder of entries, it then attempts to extract nearly dense diagonals and so on. This is
a powerful technique, especially on machines where the performance of dense computations is
substantially better than that of general sparse computations. However, one is required to have
an extra copy of the original matrix with the potential for a non-trivial amount of fill-in. In

addition, pre-processing time can be significant.

6.1.2 General techniques

General-purpose sparse matrix data structures for are appropriate in cases where the matrix
has no known regular sparsity pattern or where a general-purpose data structure is needed
in order to handle a variety of sparse matrix patterns. We review only a few of the many
general-purpose sparse data structures [3, 71, 74, 76, 100, 119, 142, 153, 157, 158, 171, 177].

Compressed sparse row: One of the most commonly used data structures is the compressed
sparse row (CSR) format. The CsR format stores the entries of the matrix row-by-row in a scalar-
valued array VAL. A corresponding integer array INDX holds the column index of each entry,
and another integer array PNTR points to the first entry of each row in VAL and INDX. For

example, for a sparse matrix
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the CSR representation of A consists of the following three arrays:

vAL =( 11 13 14 23 24 31 32 33 34 36 42 44 51 52 55 61 62 64 65 66),
wpx =( 1 3 4 3 4 1 2 3 4 6 2 4 1 2 5 1 2 4 5 6)
PNTR =( 1 4 6 11 13 16 21 ).

Using this csr format, the sparse matrix-vector product operation, y = Az, can be written
as a loop over the rows of A in which each iteration computes an inner product of row ; with

the vector z:

DOI=1,M
Y(I) = 0.0
DO K = PNTR(I), PNTR(I+1)-1
Y(I) = Y(I) + VAL(K)*X(INDX(K))
END DO
END DO

Note that the trip counts on the inner loop are determined by the number of entries in each
row, which is typically small and does not grow with the problem size. Thus, the performance
of this kernel on vector machines is usually poor, due to limited latency-hiding on the inner
loop.

The csr format and its Compressed Sparse Column (csc) analogue are the most common
general-purpose data structures. They are flexible and easy to use for many matrix operations.
However, for most matrix operations, their performance on vector multiprocessors is subop-
timal because of limited tolerance to memory latency. To achieve higher performance, loop
interchange can be used in a variety of forms to operate on several rows at once. Because each
row can be a different length, special data structures are often used to make the computation
more regular. Two examples are the Ellpack/Itpack data structure and the Jagged Diagonal

data structure.

Ellpack/Ttpack: The Ellpack/Itpack (ELL) storage format [120] forces all rows to have the
same length as the longest row by padding with zeros. Since the number of rows is typically
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much larger than the average row length, the sparse matrix-vector multiplication can be ef-
ficiently vectorized by expressing it as a series of operations on the columns of the modified
matrix. The ELL format is efficient for matrices with a maximum row size close to the average
row size, but the effective computational rate can be arbitrarily bad for matrices with general
sparsity patterns because of wasted computation. In addition, memory space is wasted by stor-
ing extra zeros, and, in some applications, by having to maintain an unmodified version of the

matrix.

Jagged diagonal: The Jagged Diagonal (JAD) format [7] is also designed to exploit vectoriz-
able column operations, but without performing unnecessary computation. In the JaD format,
rows are permuted into order of decreasing length. The leftmost elements of each row (with
their column indices) are stored as a dense vector, followed by the elements second from the
left in each row stored as a (possibly shorter) dense vector, and so on. Sparse matrix-vector
multiplication. proceeds by operating on each column in turn, decreasing the vector length as
the length of the current column decreases. Sparse matrix-vector multiplication using the JAD
format performs well on vector multiprocessors for most matrices. However, performance can
be suboptimal in some cases, for example, when there are only a few long rows. The main dis-
advantage of the JAD representation is that constructing the data structure requires permuting
the rows of the matrix. Thus, it is difficult to construct and difficult to modify, and in addition,

makes expressing a standard forward /back solve or other operations difficult.

6.1.3 Hardware techniques

Taylor et al. [193] proposed a modification to the compressed sparse column (¢s5¢C) data structure
that stores the non-zero elements of each column with an additional zero value placed between
each set of column values. With this data structure, sparse matrix-vector multiplication can be
expressed as a single loop over all non-zero elements, rather than a nested loop over columns
and rows. Each iteration of the long vector loop tests the current matrix value for equality with
zero and either continues accumulating or updates the current column index. The authors note
that the conditional statement “cannot be executed efficiently on conventional vector machines
because the vector length is not given explicitly” and propose special-purpose zero-detection

hardware to overcome this problem.
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6.2 Contention

6.2.1 Measuring and modeling contention

We constructed an experiment to measure the effect of contention when multiplying a sparse
matrix by a dense vector using SEGMV. For the purposes of analyzing contention, the most
important characteristic of the implementation is that elements from the input vector are gath-
ered based on the column indices of the nonzero matrix elements. Elements of the input vector
are typically read multiple times. Thus, our formulation of sparse matrix multiplication can be
viewed as a CREW algorithm or viewed as a QREW algorithm in which the maximum contention
is equal to the number of elements in the densest column. A dense column can arise in practice
from having a global constraint or bias, such as a circuit with many connections to ground.

In the experiment, we constructed a set of test matrices with one dense column and an
average row length of seven. The number of rows and the total amount of work are held
constant, while the number of elements in the dense column is varied. Except for elements in
the dense column, column indices are selected at random.

The predicted running time for sparse matrix multiplication on the {d, x)-BsP is:

max (E,d-R) ,
p

where w is a constant that accounts for the combined effect of the work and the gap, and the
total contention R is equal to the maximum column length emax. Figure 6.1 shows measured
and predicted times as a function of the length of the dense column, using the measured value
w = 4.8 for the CRAY J90. The figure demonstrates the importance of accounting for the memory
bank delay and clearly shows that worst-case contention is significant. Most matrices used in
practice will not cause significant contention. However, as described later in Section 6.4.4, we

did observe significant degradation from contention on one matrix in our test suite (FIFE1Q).

6.2.2 Reducing contention

The cost of memory contention can be reduced using a variety of replication strategies:

input vector replication: The entire input vector can be replicated a fixed number of times,
as described in Section 3.2.2. This strategy is simple to implement and avoids worst-case
contention, but requires additional work for each sparse matrix multiplication, requires

additional memory, and does not eliminate contention costs.

segmented scan replication: Concurrent reads can be eliminated entirely by using seg-

mented scans [36]. Each vector element, z;, is replicated ¢; times, where ¢; is the number
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Figure 6.1:  Time per nonzero element for sparse matrix vector multiplication, on matrices
with one dense column and an average row size of seven. All matrices have 256K rows. Measured
times are given for an 8-processor CRAY J90, and predicted times are given for the (d, x)-Bsp,
BSP, and CRCW.

of nonzero elements in the 7th column. This approach eliminates contention and is asymp-
totically optimal, but is approximately a factor of two slower than the CREW algorithm

when the contention is insignificant.

(d,x)-Bsp replication: In the (d,x)-BSP model, when the contention & for e memory requests
satisfies the condition e < z%’ the contention term will not affect the running time. For
example, in Figure 6.1, the contention does not contribute to the running time until the
maximum contention reaches tens of thousands, at the “knee” of the curve. Using the
(d, x)-BSP, replication parameters can be determined such that there is just enough repli-
cation for each element to avoid any penalties from memory contention. In applications
of sparse matrix multiplication in linear system solvers, the elements of the input vector
change each iteration, but the same matrix is used multiple times. Thus, determining the
optimal replication parameters is essentially an “off-line” computation, and the cost can

be amortized over many sparse matrix multiplications.

6.3 Cray implementation

Our approach to sparse matrix multiplication combines several of the advantages of the previous
approaches discussed in Section 6.1. The data structure we use is an augmented form of
the csr format. The computational structure of our algorithm is similar to ELL and JAD
in that we get parallelism from operating on many rows at once. But rather than using a
heuristic approach to making the computation more regular, we reformulate sparse matrix-
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vector multiplication in terms of segmented vector operations. This approach is similar to the
technique proposed by Taylor et al., since their data structure is one method for representing
segmented vectors, and their algorithm for sparse matrix-vector multiplication using a single
loop is essentially a segmented vector operation. However, our approach does not require
special-purpose hardware because we are able to express the conditional computation in terms
of standard vector merge instructions. By combining features of previous approaches in this
way, we obtain an algorithm for vector multiprocessors that is insensitive to matrix structure,
uses a convenient format, requires minimal preprocessing, exposes a large degree of parallelism
(without performing unnecessary computation) and does not require special-purpose hardware.
Section 6.3.1 explains how segmented scans can be used for sparse matrix multiplication, and

our algorithm is described in detail beginning in Section 6.3.2.

6.3.1 Using segmented scans for sparse matrix multiplication

Chapter 3 provides background on segmented scans. Here we consider how to use segmented
scans for sparse matrix multiplication. A sparse matrix can be represented as a segmented
vector by treating each row of the matrix as a segment. Since the CSR (compressed sparse row)
format is already organized in such segments, the only additional structure required an array
of flags, which can be generated from pointers to the start of each row (PNTR). For example,

the matrix in Section 6.1.2 the flags would be organized as:

VAL = (11 13 14 23 24 31 32 33 34 36 42 44 51 52 55 61 62 64 65 66 ),
FLAG=( T F F T F T F F F F T F T F F T F F F F).

Using these flags, sparse matrix multiplication can be expressed in HPF as follows:

PRODUCTS = VAL * X(INDX)
SUMS = SUM_SUFFIX(PRODUCTS,SEGMENT=PARITY_PREFIX(FLAG))
Y = SUMS(PNTR)

This code first calculates all the products by indirectly accessing the values of X using INDX
and multiplying them by vAL. The second line uses the SUM_SUFFIX function.! The SUFFIX
functions in HPF execute the scan backwards, such that each element receives the sum of values
that follow it, rather than precede it. The result of the SUM_SUFFIX on the PRODUCTS array
leaves the sum of each segment in the first element of the segment.

For example:

'HpPF defines segments using an “edge-triggered” representation that marks segment boundaries by transitions
from TRUE to FALSE or from FALSE to TRUE in the FLAG array. The conversion to HPF segments is performed
with the PARITY PREFIX intrinsic, which executes a scan using exclusive-or as the binary operator.
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Finally, the sums are gathered from the first element of each segments using the PNTR array.

Using an implementation based on segmented scans gives reasonable running times on vector

SUM_SUFFIX(PRODUCTS, SEGMENT)

multiprocessors and massively parallel machines [195]. Our experiments show that on the
CRAY C90, an implementation of this algorithm based on optimized segmented scans [48] is
between 1.2 and 2.0 times slower than the Jagged Diagonal method (JAD). Because of the
simplicity of the code, the use of CSR format rather than a permuted data structure, and the
much lower cost of setup, this might warrant using the scan-based method in many cases.
However, as described in Section 6.3.2, we can modify this algorithm such that it is almost
always as fast or faster than JAD but still maintains these advantages.

The scan-based algorithm is slower than JAD mainly because it performs unnecessary work;
the scan generates all the partial sums within each segment, but only the sums at the beginning
of each segment are used. Both the parallel and vector scan algorithms must pass over the data
twice and execute a total of 2(e — 1) additions instead of the e — 1 required by a serial algorithm.
However, if only the sum of each segment is needed, only one pass over the data is required,
executing a total of only e additions. To enable this optimization, we need to generate some
additional information in a setup phase and pass this extra data to our segmented summing
operation. We generate a segment descriptor from the PNTR array of length M and the total
number of non-zero elements N. It returns an array of integers; the format of this array will be

described in the next section.

6.3.2 Segmented sum algorithm

The intuition behind the segmented summing algorithm is that segmented vectors can be broken
into equally sized blocks, independent of where segment boundaries are located. Then, working
on each block simultaneously, the algorithm find the sum of each segment that is completely
contained within a block, or the partial sums of each segment that spans multiple blocks.
Finally, in a post-processing step, partial sums are added for each piece of the segment that
spans multiple blocks.

To parallelize this algorithm, we treat one-dimensional arrays as two-dimensional arrays,
where the notion of “block” corresponds to a column in the two-dimensional representation.
Specifically, we treat the VAL and FLAG arrays of size e as two-dimensional arrays (in column-
major order) with v columns and s = e/v rows. (This conceptual layout is used to simplify the
presentation and does not require any data motion.) The parameter v, the number of virtual

processors, is chosen to be approximately equal to the product of the number of processors and
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Figure 6.2: (a) The values in the segmented vector VAL in two-dimensional form with v = 5
columns and s = 6 rows. (b) The elements of the FLAG array are TRUE at the beginning of
a segment and FALSE elsewhere. Each column has a logical variable PRESENT that indicates
whether any segments start within the column and an index LAST pointing to the last TRUE
flag in the column.

the hardware vector length so that we can express the algorithm in terms of vectorizable row
operations. Figure 6.2 shows an example of a segmented vector in this form. Note that some
segments, which we call spanning segments, span multiple columns.

To implement SETUP_SEG we need to pre-compute some information about the structure of

the segments. The preprocessing consists of the following steps (depicted in Figure 6.2(b)):

1. As with the setup for segmented scans, set the FLAG elements to TRUE at the beginning

of each segment, and FALSE elsewhere.

2. Determine for each column whether any segments start in that column and place the result
in the logical array PRESENT(1:v). Place the row index of the last segment beginning
in each column (if any) in LAST(1:v).

The result of SEG_SUM is a segment descriptor containing the LAST, PRESENT, and FLAG arrays.
(To save memory, the flags can be represented using packed bit fields stored in an integer array.)
Once we have this information, the SEG_SUM algorithm works in three stages:
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Figure 6.3: (a) The representation of the sparse matrix VAL with v = 5 columns and s = 6
rows. (b) The result of performing a backwards segmented scan in each column. For segments
contained entirely within a column, the value at the beginning of each segment holds the sum

of the segment.

1. Perform a backwards segmented scan within each column. Place the sum of the first
partial segment in each column into suM. (See Figure 6.3.) For all segments that are
contained within a single column, the sum of the segment will be in the first element of

the segment.
2. Find the sum of spanning segments by adding the sum of each piece (See Figure 6.4):

(a) Perform a backwards segmented scan on SUM into SCANSUM in order to compute the

adjustment that must be made to each spanning segment.

(b) For each spanning segment, increment the first element in the segment by the value

of SCANSUM in its columun.

3. Gather the sum of each segment from its first element.

6.3.3 Sparse matrix-vector multiplication

As discussed in Section 6.3.1, sparse matrix multiplication can be expressed in terms of a
segmented sum primitive. However, we can build a direct implementation of sparse matrix
multiplication by replacing all uses of the source array (vAL) in the columnwise scan with
VAL * X(INDX), which first multiplies the matrix element by the corresponding vector element.
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Figure 6.4: In Figure (a) the SCANSUM array is computed by performing a backwards segmented
scan on SUM using the PRESENT flags as segment boundaries. Figures (b) and (c) show how
in each column, the first value in the last segment is incremented by SCANSUM to produce the
sum of the segment.

On many machines, a direct implementation of sparse matrix multiplication is more efficient be-
cause of reduced memory traffic and greater opportunities for chaining memory and arithmetic

operations.

6.3.4 Implementation details

The structure of the SEGMV column scan is similar to the Ellpack/Itpack and Jagged Diagonal
kernels, except that the accumulated sums are reset to zero when a segmented boundary is
encountered. This conditional operation can be vectorized using a vector merge instruction.
To reduce the memory-bandwidth and storage requirements, the flags are represented using
packed bit-masks {(up to 64 per word) stored in the form used by the vector mask register. By
using packed flags we are able to implement the conditional instruction in the columnwise scan
at almost no additional cost, since loading the flags is virtually free, and the merge instruction
chains with the multiplication and addition in the hardware pipeline.

We implemented sEGMV for the cRAY €90 in Cray Assembly Language [58] (CAL) using
microtasking [59] from C to take advantage of multiple processors. We coded in assembly
language to get maximal chaining and reuse of operands. However, to enhance portability and
to reduce the time for program development, we used a macro-assembler (written in LISP) with
support for register naming, loop unrolling, and handling packed masks. We also implemented
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a version of SEGMV in Fortran (using packed flags) that performs approximately a factor of two
slower than the CAL version for large matrices. The Fortran version was used for experimenting
with the extensions to the algorithm mentioned in Section 6.5.1. Further implementation details

are described in a technical report [33].

6.4 Performance analysis

In this section we present performance results for sparse matrix multiplication using a 16-
processor 1024-bank CRAY C90 at Cray Research Inc. in dedicated mode. The test suite
(provided by Mike Heroux at Cray Research), contains sample problems from the Harwell-
Boeing test set [72] and industrial application codes. We also present a performance model for

the SEGMV implementation that accurately predicts its running time.

6.4.1 Test suite

Table 6.1 presents statistics and descriptions of our test problems, and Figure 6.5 shows the
distribution of problem sizes and row sizes in the test suite. We chose a representative collection
of matrices from several important application areas. Most of them are from the standard
Harwell-Boeing collection [72] and will facilitate comparison with other results. We also included
several large nonsymmetric matrices, because the Harwell-Boeing collection does not contain a

large set of nonsymmetric matrices.

6.4.2 Results for matrix multiplication

Table 6.2 and Figure 6.6 report timing information comparing our implementation to sev-
eral other implementations on the set of test matrices. The JAD implementation is a highly-
optimized Cray Research library routine implemented in Cray Assembly Language (CAL). The
ELL, CSR, and CSC implementations are based on optimized Fortran kernels. Qur SEGMV routine
is coded in CAL. In all cases, even if the matrix is symmetric, all non-zero elements are stored.
(Symmetric storage is not used in this study because efficient methods have not been developed
for processing symmetric matrices with the Ellpack/Itpack, Jagged Diagonal, or SEGMV data
structures.) The Flop rate is computed based on the running time ¢ for one sparse matrix-
vector multiplication (not including the setup computation), the number of equations m, and
the total number of non-zero elements e. Matrix-vector multiplication requires e multiplications
and e — m additions, yielding 64-bit Mflop rate of (2e — m)/t.

On one processor, SEGMV outperforms all other implementations on large, irregular test
matrices, as shown in Figure 6.6. On multiple processors, SEGMV outperforms the other im-
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|Problem H Entries‘ Dim | Ave‘ Max‘Sym‘Description [

Structures Problems (Finite Element)
BCSSTK15 || 117816 3948| 29.8| 44| /|Stiffness matrix for module of an Off-shore
Platform
BCSSTK30 |[2043492| 28924| 70.7| 219| +/|Stiffness matrix for Off-shore Generator
Platform (MSC NASTRAN)
NASASRB ||2677324| 54870| 48.8| 276/ +/|Structure from NASA Langley, Shuttle
Rocket Booster
Standard Finite Difference Operators
GR-30x30 7744 900| 8.6 9| +/|Symmetric matrix from nine point start on
a 30 by 30 grid
CUBE12 982600 8640(113.7| 135| +/|Symmetric pattern, 27 point operator on 12
by 12 by 12 grid
Oil Reservoir Problem
SHERMAN2|| 23094| 1080| 21.4 34 Thermal Simulation, Steam injection, 6 by
6 by 5 grid, five unknowns
Computational Fluid Dynamics Problems
BBMAT 1771722| 38744| 45.7| 132 Beam + Bailey 2D Airfoil Exact Jacobian:
mach = 0.08, angle = 2.0
3DEXT1 9045076(118564| 76.3| 108 3D Fully-coupled Incompressible NS Poly-
mer Extrusion Problem
Chemical Process Simulation Problem
FIFE1Q 392188| 47640| 8.2|44085 Chemical Process Simulation Test Matrix
(Permuted)

Table 6.1: Statistics for the test matrices: number of nonzero entries (e), the dimension (m),
average row size, maximum row size, and a brief description of each problem. For those matrices
that are symmetric (indicated by the Sym column), the matrix statistics describe the full
nonsymmetric representation.

plementations by a greater margin, with an absolute performance on 16 processors of over 3.7
Gflops.

6.4.3 Performance model

One advantage of the SEGMV algorithm is that its running time algorithm is predictable. This
section presents a performance model for the SEGMV algorithm with equations broken down into
components for columnwise loops over the e matrix values, loops over each of the m segments,
loops over each of the p processors, and contention costs. All constants were measured on the

CRAY C90 and are expressed in 4.167 nsec clock periods:
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Figure 6.5:  Statistics for the test matrices. Each test matrix is represented by a vertical line.
The horizontal position of the line indicates the number of non-zero entries in the matrix. The
bottom point indicates the average row length and the top point indicates the maximum row
length. (The FIFE1Q matrix has a maximum row length of 44085, which is represented as an
arrow.) The test suite includes a wide variety of row sizes and matrix sizes (ranging from under
10* nonzeros to nearly 107 nonzeros).

1 CPU 4 CPU 16 CPU

Matrix CSR|CSC|ELL[JAD [SEG|[[CSR|CSC[ELL|[JAD| SEG| CcsR| csc| ELL| JAD| SEG
GR-30x30 || 15| 26|333|336|278| 48| 86|784|784| 471|| 163| 141| 927| 900| 205
SHERMAN2| 34| 65|117|248|288| 121|216|386| 501| 795| 419| 364 (1017(1314| 488
BCSSTK15 || 45| 84|205| 312|304 | 164|293| 746| 8931056 | 617| 551 |2303(2792|2479

FIFELQ 14| 25 165]| 249|| 50| 88 284 | 577|| 199| 164 436 | 611
CUBE12 126 | 182|153 | 163 | 322|( 476 | 645| 579| 540 (1166 |[1816 |1715|2042|1954 | 3758
BBMAT 63| 118|103| 255| 311 || 235| 422(396| 389 (1115 932| 910|1270|1191|3639

BCSSTK30 || 86| 157| 90| 168 312|323 | 561| 335| 446 |1162|/1246|1260 (1157|1411 | 3749
NASASRB 67123 | 65| 224|311| 249|444 (241| 739(1192| 986| 907| 789|2117|3740
3DEXT1 92| 165|187 | 244 | 314|| 345|590 | 709| 616 | 1165 || 1357 | 1297 | 2433|2260 | 3797

Table 6.2: Performance results (Mflops) on the CRAY C90 comparing five implementations
of sparse matrix multiplication: Compressed Sparse Row (csRr), Compressed Sparse Column
(csc), Ellpack/Itpack (ELL), Jagged Diagonal (3AD), and SEGMV (SEG). The test matrices are
listed in order of increasing number of non-zero entries. Figure 6.6 shows this data using bar
charts. (On the FIFE1Q matrix, no results are given for ELL because the data structure would
require over 2 Gwords.)
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Figure 6.6: Performance results on a CRAY C9 comparing implementations of sparse matrix
multiplication. The test matrices are shown in order of increasing number of non-zero entries.
The sSEGMV implementation outperforms all other implementations on the large irregular test
madtrices.
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The setup time is given by the following equation:

tr-et+its-m
p

tsetup = + o

where the constants £y, ¢,, and ¢, are defined as follows:

t; = time per element for columnwise loops ~ 1.7
ts = time per element to mark segment starts ~ 1.3
t, = constant overhead = 1000

The time to perform one matrix-vector multiplication is given by the following equation:

teret+t,-m

» +tp'P+to,d‘Cma.x>

{mymult = Max (
where the constants ., t,, and ¢, are defined as follows:

t. = time per element for columnwise segmented scan loop = 1.5
t; = time per element to gather result from SCANVAL =~ 1.5

tp, = time per element for across-processor serial scan loop =~ 110

and where d - cqmax is a contention term computed from the bank delay and the length of the
longest column. These equations accurately model the running time from the problem size (e,
m, and cmax) without additional information about the matrix structure. Predictions for a
single CRAY C90 processor are within 15 percent of the measured running times for each matrix

in the test suite.

6.4.4 Comparison with other vector implementations

This section compares the running time, setup time, and memory usage of SEG and other

algorithms for vectorized sparse matrix multiplication.

Latency tolerance: The performance of previous methods for sparse matrix multiplication
can vary greatly with the structure of the matrix, as shown by the results on the test suite. In
order to explain some of the underlying reasons for this variation, we generated two sets of test
matrices: one set for measuring the dependence on average row size and one set for measuring
the dependence on maximum row size. Figure 6.7(a) measures the performance on matrices
that contain the same number of elements in each row. As expected, CSR is very sensitive to row
size because the row size determines the amount of latency tolerance (i.e., the vector register
length). On the other hand, ELL, JAD, and SEG all perform equally well independent of the
row size, because their computational structure is nearly identical for matrices with a fixed row
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Figure 6.7:  (a) Performance on one processor of the CRAY C90 as the average row size is

varied. Each row contains the same number of non-zero entries, and the total number of non-
zero entries is fixed at 10°. Column indices are generated randomly. The cSR performance
varies with the average row length, whereas the other formats are independent of the average
row length when all rows are close to the same length. (b) Performance as the maximum row
size is varied. The number of non-zero entries is fixed at 10° and the average row size is fixed
at 10. Column indices are generated randomly. As the maximum row size is increased, the ELL
performance degrades quickly and the JAD performance degrades slightly.

size. Figure 6.7(b) measures the performance on matrices where all rows are the same length
except for one long row. The performance of CSR is insensitive to the maximum row length.
The performance with the ELL data structure degrades severely as the maximum row size is
increased, because all rows must be padded with zeros to the maximum row size. The JAD
data structure exhibits a slight dependence on the maximum row size. Note that the SEGMV
performance is independent of the maximum row size and nearly independent of the average
row size.

The effects of matrix structure can be seen from the performance results on the test suite.
The csr and csc implementations perform fairly well on matrices with long rows and columns
(such as cuBE12) and poorly on matrices with short rows and columns (such as GrR-30x30).
The ELL and JAD implementations perform quite well on matrices that have a maximum row
length near the average row length (such as GR-30x30 and BCsSTK15).

Contention: One of the most interesting performance results is that ELL, JAD, and SEG all
perform poorly on the FIFE1Q matrix. This matrix contains one very dense row and column,
which occurs in some application areas, such as chemical process simulation. Because the dense

column accounts for over 10 percent of the non-zero matrix elements, a substantial fraction
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[ Matrix [ 3aD | sEG | ratio |
GR-30x30 31 0.1 23
SHERMAN2Z2 4| 0.2 16
BCSSTK15 14 | 0.9 15
FIFE1Q 124 | 3.1 41
CUBE12 50 | 7.0 7
BBMAT 161 | 13.0 12
BCSSTK30 141 | 14.5 10
NASASRB 219 | 19.1 11
3DEXT1 606 | 65.0 9

Table 6.3: Setup times (in msec) for Jagged Diagonal and SEGMV on one processor.

of all memory fetches are made to the same element of the input vector. Without account-
ing for contention, the expected performance on 16 processors is approximately 3 Gflops. A
straightforward calculation using the contention term of the performance model predicts that
the performance cannot exceed 670 Mflops, which is consistent with the actual performance of

577 Mflops on 4 processors and 611 Mflops on 16 processors.

Setup time: Execution time for matrix-vector multiplication is not the only important con-
sideration. Large setup times can be significant for certain applications, such as adaptive mesh
algorithms. Table 6.3 lists setup times on one processor for SEGMv and Jagged Diagonal. The
setup time for SEGMV is approximately the same as the time for a single matrix-vector multipli-
cation. The setup time for Jagged Diagonal is an order of magnitude higher, because generating

the data structures requires integer sorting.

Memory usage: The csr and ¢sc implementations do not require scratch space. In practice,
the JAD and ELL data structures consume additional memory when the user must maintain the
original matrix in addition to the permuted or padded version. The SEGMV data structure
requires only approximately e/64 words for the data structure (in addition to the space for the
CSR data structure). The SEGMV algorithm requires e words of scratch space for the SCANVAL
temporary array, but we can greatly reduce this requirement by breaking the matrix into a
number of strips and processing one strip at a time. This stripmining, which can be hidden
from the user, reduces the scratch space required from the size of the matrix to the size of
a single strip. The strip size should be chosen to balance the memory consumption with the
startup time incurred for processing each strip. For the large matrices in which scratch space

is an issue, the stripmining would not significantly affect performance.
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| Machine | Procs | CG (C90 Equiv.) | Gflops |
Cray C90 1 1.0 0.45
Cray C90 16 11.6 5.17
Cray T90 1 1.7 0.74
Cray T90 16 10.8 4.80
Cray J90 1 02| 0.10
Cray J90 16 2.9 1.28
Fujitsu VPPT00 30 9.1 4.08
NEC 5X-4 1 1.5 0.67
NEC SX-4 4 4.7 2.09
Cray T3E 1 0.2 0.07
Cray T3E 256 5.5 2.47
IBM RS/6000 SP (P25C) 8 11| 047
IBM RS/6000 SP (P25C) 64 54 2.42
SGI Origin2000 1 0.1 0.04
SGI Origin2000 31 1.5 0.69

Table 6.4: Performance on the NAS Conjugate Gradient (CG) benchmark (Class B, ver-
sion 1.0) [173]. The performance is expressed as a throughput measure normalized to the
performance of a single-processor CRAY C9 and also converted to Gflops. The CrAY €90,
CRAY T90, and CRAY J90 results use our Fortran implementation.

6.4.5 NAS benchmark results

An implementation of the NAS Conjugate Gradient benchmark using our CAL implementation
of SEGMV runs at a rate of 325 Mflops on a single CRAY C90 processor, and at 3.5 Gflops on 16
processors. (However, our implementation uses assembly language, which is not permitted for
official NAS results.)

We also implemented a Fortran version of the NAS CG benchmark in order to experiment
with different aspects of the memory system behavior. We implemented a variant of the Jagged
Diagonal method, because it is easier to code in Fortran than SEGMV and is quite effective for
the matrix used in the CG benchmark. The matrix is generated with a random structure, has an
average row length of well over one hundred, and has a smooth distribution of row lengths. Our
implementation makes two optimizations to improve memory system behavior. First, column
indices are packed two to a word to reduce the bandwidth demands. Second, the elements within
each row are reordered to reduce network and bank contention. Recall from our experiments
with the histogram operation used in radix sort (Figure 4.1) that the CRAY C90 is sensitive to
the injection order; for the histogram, the CRAY C90 performs approximately twice as fast with
a perfect injection order compared to a random order. In the CG benchmark, before beginning

the conjugate gradient iterations, the elements in each row of the matrix are reordered using
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a greedy algorithm, such that the indirect references in each vector gather instruction tend to
refer sequentially to different sections in the interleaved memory system. This reordering pro-
cedure improves performance by approximately 20 percent. The Fortran CG implementation is
faster and more scalable than the previous CRAY €90 implementation [16}, with single processor
performance 1.3 times better and 16-processor performance 1.7 times better than the previous
implementation. Our 16-processor CRAY C90 implementation is the fastest ever reported on the
NAS CG benchmark. Results for a variety of vector and microprocessor-base multiprocessors

are presented in Table 6.4.

6.5 Applications

6.5.1 Generalized sparse matrix primitives

In a technical report [33], we consider generalizations of the SEGMV algorithm. Two specific
generalizations, block entry matrices and multiple right-hand sides, can be implemented in
terms of sparse matrix-vector multiplication, but offer the potential for improved performance
if implemented  directly. We also consider the application of other segmented operations to
sparse matrix computation and outline a column-oriented algorithm that is useful for symmetric

matrices.

6.5.2 Support tree conjugate gradient

We also applied our sparse matrix multiplication algorithm to a new variant of the precondi-
tioned conjugate gradient algorithm. The linear systems associated with large, sparse, sym-
metric, positive definite matrices are often solved iteratively using the preconditioned conjugate

gradient method. Gremban developed a new class of preconditioners, called support tree precon-

Figure 6.8: Leaf Raking in the Support Tree Conjugate Gradient algorithm. A lower trian-
gular linear system corresponding to a tree directed from leaves to root is shown at the left. In
the first parallel step, the solutions at the leaves are computed, and the right hand side values
at the parents are updated. In succeeding parallel steps, the process is repeated at the leaves
obtained when the previous set of leaves is removed. At the last step (not shown) the solution
at the root is computed. Sparse matrix multiplication is used in each step of the algorithm.
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ditioners [95], which are based on the connectivity of the graphs corresponding to the matrices
and are well-structured for parallel implementation. In a previous study [94], we evaluated the
performance of support tree preconditioners by comparing them against two common types of
preconditioners: diagonal scaling, and incomplete Cholesky. Support tree preconditioners re-
quire less overall storage and less work per iteration than incomplete Cholesky preconditioners.
In terms of total execution time on the CRAY C90, support tree preconditioners outperform both
diagonal scaling and incomplete Cholesky preconditioners.

The performance of support tree conjugate gradient (STCG) is dominated by two opera-
tions: sparse matrix multiplication and preconditioning using a tree-based preconditioner. In
fact, the summing operation performed at each level of the support tree is essentially a sparse
matrix multiplication. (See Figure 6.8.) Thus, the bulk of the computation in STCG can be
implemented with a single general-purpose sparse matrix multiplication subroutine. On the
CRAY C90, our SEGMV-based implementation achieves high performance on both regular and

irregular meshes, as described in the performance study [94].



Chapter 7
Graph Connectivity

This chapter considers the problem of finding the connected components of a graph, that is,
obtaining a labeling of each node in an undirected graph with n nodes and m edges, such
that all nodes in a connected component have the same label distinct from that of any other
connected component.

Section 7.1 reviews previous theoretical and practical work on connected components. Sec-
tion 7.2 uses a pointer-jumping algorithm to explain how contention is modeled and how con-
tention can be reduced. We demonstrate that accounting for contention is important for graph
algorithms, and show that the (d, x)-BSP is accurate for predicting performance. Section 7.3 de-
scribes a CRCW PRAM algorithm for labeling connected components adopted from a previous ex-
perimental study [92]. We describe several practical improvements and discuss trade-offs among
several variants of the algorithm. Section 7.4 reports our performance results and compares
performance results for a variety of architectures. We show that an efficient, general-purpose
PRAM connected components algorithm can achieve consistently high performance across a wide
variety of graphs. In particular, the implementation for a 16-processor CRAY C90 achieves a

rate of over 100 million nodes per second.

7.1 Background and previous work

This section considers previous work on serial algorithms, PRAM algorithms, and implementa-
tions of graph connectivity algorithms. Efficient serial algorithms for finding connected com-
ponents include depth first search, which runs in O(n + m) time for n nodes and m edges, and
union-find on a disjoint forest (with path compression) [192], which runs in O(ma(m, n)(m+n))
time, a complexity that is effectively linear in the graph size. Efficient serial algorithms are
difficult to parallelize because parallel versions of the algorithms would require simultaneous

updates to shared pointer-based data structures.

105
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Figure 7.1:  Steps in graph connectivity algorithms.

We present a brief overview of parallel algorithms for connected components (following the
presentation by Greiner [92]) and highlight basic techniques that are used for connectivity and
other similar graph algorithms (e.g., minimal spanning tree or network flows).

Graph connectivity algorithms are typically constructed from a number of basic primitives

depicted in Figure 7.1:
1. Hooking: combining trees of vertices.
2. Shortcutting: reducing the length of pointer chains using pointer jumping.

3. Graph contraction (and expansion): combining multiple nodes into a single supernode.

The Shiloach-Vishkin [179] and Awerbuch-Shiloach [10] algorithms are similar, and both
find the connected components of a graph by forming and combining (hooking) trees of ver-
tices, maintaining the invariant that all vertices in a given tree belong to the same connected
component. Initially, each vertex is in a separate tree, and the trees are combined to find
the maximal trees subject to the invariant. The roots serve as representative elements of the
trees, and the algorithms return the sequence of the roots corresponding to each vertex. Both
algorithms require O(lg n) steps and O(mlgn) work. Thus, they are not work-efficient, since a
serial depth-first search requires only O(m) work. However, the algorithms are relatively simple
to implement.

Another practical algorithm is a combination of Reif’s random mating [167] (a randomized
form of hooking) and Phillips’ graph contraction [159]. With high probability, it also requires
O(lgn) steps and O(mlgn) work. However, for some graphs, including planar graphs, only
O(m) work is needed. Much of the advantage of this algorithm over the previous algorithms is
that it contracts both the edges and nodes of the graph. Edge contraction is easily incorporated
into the previous algorithms, resulting in increased performance on some classes of graphs.

The Greiner-Blelloch hybrid algorithm [93] also blends the features of the previous algo-
rithms. It combines graph contraction with shortcutting, which is used by the first two al-
gorithms for flattening trees and improving the efficiency of repeatedly hooking. The hybrid
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algorithm hooks nodes together to form a forest, fully shortcuts each tree to a single node,
contracts the graph to form a new graph that is processed recursively; and expands the graph
to propagate the new labels. The main advantage of this algorithm is that its use of mazimal
shortcutting contracts most graphs very quickly. This algorithm performs O(lg?n) steps and
O((m + n) lg n) work (possibly only O(m + nlgn) work for special classes of graphs [92]).
Gazit’s optimal algorithm [81] runs in O(Ign) time and performs O(m + n) work. The
algorithm appears to be too complicated for developing a practical implementation, but it
might be possible to incorporate aspects of the algorithm into other algorithms, in particular,
the technique of processing only an O(n) sized subset of edges in each iteration rather than the

entire set of edges.

7.1.1 Previous implementations

This section briefly describes previous implementations of graph connectivity algorithms. (Per-
formance comparisons are presented in Section 7.4.3.) Previous work on parallel graph con-
nectivity implementations falls into three basic categories: implementations based on serial
algorithms, algorithms redesigned to take advantage of locality, and direct implementations of
fine-grained algorithms (such as the PRAM algorithms described earlier).

Early work on vector computers was based on serial algorithms and focused on specialized
single-processor code without considering contention. For example, a CRAY Y-MP implemen-
tation by Evertz for regular grids [75] vectorizes serial breadth first search, serially -looping
both over levels of the graph and over the grid dimensions within a level. Mino implemented a
vectorized version of serial union-find for grids [145).

Connected components algorithms have been implemented on several distributed memory
machines. This work includes implementations for the Intel Paragon [77], the Connection
Machines CM-2 and CM-5 [55, 40], a portable implementation for the Meiko CS-2, TMC CM-5,
and IBM SP-2 [11], and a fast implementation for the Cray T3D [124, 139]. For distributed
memory computers, performance on general graph algorithms is limited by communication.
Thus, the approach typically used on distributed memory MIMD machines is to minimize global
communication by separating the algorithm into local and global phases, where the local phase
uses optimized sequential algorithms, and the global phase is optimized for communication
using a model such as LoGP [62]. We discuss this approach further in Section 7.4.3.

Hsu et al. implemented a number of fine-grained graph algorithms for the MasPar MP-1,
including connected components, minimum cost spanning forest, and ear decomposition [108,
109]. Their implementations are based on a library of primitives including list ranking, Euler
tour construction, and graph renumbering. The generality of their approach is very appealing,
but the performance on most algorithms is limited by the slow communication primitives of the
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MasPar. In particular, speedup on most algorithms was limited to a factor of 5 over a Sparc 11
workstation.

Greiner compared the performance of several data-parallel PRAM algorithms for finding
connected components, using implementations coded in the portable data-parallel language
NESL and timed on the CM-2 and a single-processor CRAY C90 [92]. (NESL code for several
algorithms including the hybrid algorithm is available in a technical report [91].) Greiner
analyzed many pragmatic issues and concluded that the most practical algorithm of those
studied is Blelloch’s hybrid algorithm [93], an algorithm that combines features of the Shiloach-
Vishkin [179] and Awerbuch-Shiloach [10] algorithms, Reif’s random mating [167] algorithm,
and Phillips’ graph contraction [159]. This hybrid algorithm, described in Section 7.3, is the
basis for our implementation study.

7.2 Modeling and reducing contention

Greiner’s study used CRCW algorithms, which is not unreasonable for a single processor CRAY C90
{(where the bank delay is only approximately 3 times the gap), or for a Connection Machine
CM-2, which supports hardware combining. Nevertheless, in order to scale the implementation
to multiple CRAY processors, we need to consider the impact of memory contention.

There are several potential sources of contention in graph algorithms. In the steps of a
typical graph algorithm, the memory contention is proportional to the maximum degree of the
graphs being manipulated. Note that some graph algorithms create and manipulate relatively
dense graphs, even for sparse input graphs. For these algorithms, the memory contention can
be arbitrarily high.

Module map contention is also a concern. The mapping of graph elements to memory banks
is especially important for regular grids. For example, vision applications commonly use grid
sizes that are powers of two and contain sub-images with regular patterns. Module map con-
tention (and network contention) can be avoided by using randomization. A general technique
is to use random mappings of nodes and edges to banks and to inject memory references from
each processor in a random order. In practice, an inexpensive heuristic for reducing module
map contention is to randomize the initial ordering and numbering of nodes and edges in the

input graph.

7.2.1 Case study: maximal shortcutting

In order to illustrate the importance of memory contention in graph algorithms, we consider
the problem of maximal shortcutting, a key substep of the connected components algorithm we

describe later in Section 7.3. A maximal shortcutting operation transforms a forest of directed
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trees by shrinking each tree to a tree of height one (sometimes called a “star”). That is, each
node’s parent pointer is replaced with a pointer to the root of its tree. In general, the parallel
complexity is a function of both the total number of nodes, n, and the height of the tallest
tree in the forest, h. The serial complexity for maximal shortcutting is simply O(n), which
can be obtained with a recursive depth-first traversal that assigns each non-root node the label
obtained from traversing the node’s parent. Table 7.1 summarizes asymptotic running times
for three maximal shortcutting algorithms: repeated pointer jumping, tree contraction, and a

variant of pointer jumping that we refer to as label propagation.

Repeated pointer jumping performs a number of iterations of shortcutting in which the
parent of each vertex v, Parent(v) is replaced with Parent(Parent(v)). This algorithm performs
O(lg k) parallel steps and O(nlgh) work. It is easy to implement, but it performs O(Ig k) more
work than an optimal algorithm, and furthermore, has worst-case contention linear in the size
of the largest tree.

Tree contraction [143, 165] is a general technique for evaluating expression trees. One
advantage of using tree contraction is that work-efficient EREW tree contraction perform less
work asymptotically than repeated shortcutting. In practice, however, the constant factors in
the amount of work might offset the theoretical improvements due to several costs, including
the costs of symmetry breaking, compacting active vertices, eliminating fewer than half of the

vertices per iteration, and executing both contraction and expansion phases.

These costs lead us to consider variations on simple shortcutting to reduce contention. One
simple candidate is to terminate shortcutting for vertices as they reach the root, but this does
not improve the asymptotic complexity since the maximum number of pointers reaching the root
at each step increases geometrically. However, a subtle variation does reduce the asymptotic
amount of contention for several common cases. If roots are labeled before starting as done,
and the done labels are propagated during shortcutting, the maximum contention is reduced.
Figure 7.2 illustrates the difference between these two approaches. For most types of trees, the
labeling algorithm keeps the contention low. The maximum contention is O(1) for a linked list,
O(lgn) for a binary tree, and more generally, O((lgn/1gc)'8¢) for a c-ary tree.

However, label propagation does not solve contention problems in general. The worst case,
which we call a “palm tree” graph, is a tall tree with high connectivity near the leaves. (See
Figure 7.3.) Intuitively, the labels at the roots cannot propagate fast enough to prevent the
contention building from the leaves. Note that the worst-case contention, even for bounded-
degree graphs, is linear in the number of nodes.

It is straightforward to analyze the predicted performance of various shortcutting algorithms

for special cases, such as binary trees. In order to verify our predictions and to understand
more about contention in the general case, we performed a number of experiments on random
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Figure 7.2: Two methods of avoiding contention in shortcutting: (a) quitting when reaching
a root pointer, which reduces the worst-case contention from n to n/2, and (b) propagating
done labels (indicated by an X), and quitting when reaching one, which makes no concurrent
accesses for a linked list. Each row represents one iteration of shortcutting, and arrows indicate
the memory accesses made during the iteration.
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Figure 7.3:  Different cases for contention on shortcutting: a list of height n, a binary tree of
height lgn, and a “palm tree” of height n.
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‘contention
algorithm work || list | binary tree | palm tree
pointer jumping | nigh | » n n
tree contraction n 1 1 1
label propagation | nlgh | 1 lgn 7

Table 7.1: Asymptotic upper bounds for memory contention when fully shortcutting a tree with
n nodes.

forests. The random forests are generated by choosing ¢ root nodes and hooking new nodes one
at a time to a random node in the forest. Figure 7.4 shows a sample forest with five trees. In
our experiments, each forest has one million nodes. We first look at the performance of simple
shortcutting. Figure 7.5, which compares the predictions using the (d, x)-Bsp with measured
running times, shows that the predictions are accurate and that the contention indeed reaches
the worst-case value. Figure 7.6 indicates that, for random trees, label propagation reduces
the maximum memory contention by an order of magnitude. Label propagation is used in the

connected components algorithm described in Section 7.3 and evaluated in Section 7.4.
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Sample test forest with 5 trees and 300 nodes.

Figure 7.4:
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Figure 7.5: ©~ Running time on the CRAY J90 (p = 4) while contracting random trees using
simple iterated pointer jumping. Points represent the time for each step up the shortcutting
for a variety of random forests. The dotted curves show (d, x)-BSP predictions. The top curve
represents the sum of the components for processor work and memory contention, whereas the
bottom curve represents the maximum of these components.
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Figure 7.6: Memory contention after each shortcutting step, with and without label propaga-
tion for random forests. The dotted curves show the contention with simple iterated shortcut-
ting and the solid curves show the contention with a variation that labels the roots, propagates
the labels, and omits pointer-jumping for any node with a root label. The random forests, each
with one million nodes, are generated by choosing ¢ root nodes (for ¢ = 1, 10, and 100) and
hooking new nodes one at a time to a random node in the forest. In these test cases, label
propagation cuts the maximum contention by a factor of 9-16.
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7.3 Connected components hybrid algorithm

This section describes the connected components algorithm used in our implementation ex-
periments. As a starting point for developing a highly-optimized implementation, we selected
Blelloch’s hybrid algorithm [93], which was the fastest algorithm in Greiner’s comparison of
practical connected components algorithms [92].

The algorithm initializes each node to point to itself, and then repeats the following until

no edges remain:

1. flip edges (tail, head) from “larger” tail to “smaller” head (where larger and smaller are

defined by an ordering function),
2. hook edges, writing the head label of each edge into the node pointed to by its tail,
3. maximally shortcut the graph into a collection of stars,

4. relabel edges, replacing the endpoints of each edge with the labels of the root of its star,

5. remove self-edges.

Flipping and hooking break symmetry and create a forest. In the case of multiple outgoing
edges from a node, only the last node pointer written will remain in the forest. To ensure
termination during maximal shortcutting, the forest must be an acyclic graph, which can be
implemented by simply using the node number to orient edges. Maximal shortcutting can be
implemented using pointer jumping, as discussed in Section 7.2.1. Self-edges can be removed
by compacting remaining edges into a new array. At the termination of the algorithm, the
nodes of each connected component have the label of one node in the component and labels in
different components are distinct.

This algorithm executes O(lgn) iterations and each iteration performs O(m + nlgn) work,
giving a total of O(mlgn + nlg®n) work. The number of parallel steps is dominated by
shortcutting, which performs O(lg?n) steps. Thus, the running time on CRCW PRAM with
unit-time scans is O((mlgn + nlg? n)/p + 1g2 n).

For practical applications on large datasets, the number of steps in the hybrid algorithm is
tolerable, but the benefits of parallelization could be offset by the additional work compared to
an optimal serial algorithm. In addition, the cRcw hybrid algorithm can cause high contention.
Even for bounded-degree graphs, if the graph is highly connected, there can be O(n) contention
for shortcutting and O(m) contention for hooking and edge relabeling.

In order to reduce the amount of work and the amount of contention, we experimented with
three improvements to the basic algorithm: contraction, randomization, and faster shortcutting.
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7.3.1 Contraction

The first improvement we consider is the use of graph contraction [159], as used in the hy-
brid algorithm described by Greiner and Blelloch [92]. Rather than processing all the nodes
throughout the algorithm, we contract the graph after each iteration, process the smaller graph
recursively, and propagate the labels generated in the recursive call. Most steps of the algo-
rithm remain the same, but after removing self-edges, we also remove inactive nodes. This
modification requires a series of bookkeeping operations: renumbering the active nodes (using
a scan operation), renumbering the head and tail of each active edge, and saving the parent of
each compressed node. In our implementation, the graph is optimally load-balanced at each
iteration.

Using graph contraction leads to savings in both work and contention. First, consider the
work, and let v and e be the number of remaining nodes and edges, respectively, in an iteration.
Let v; be the number of remaining nodes in the ith connected component and let d; be its
diameter. The number of parallel steps for the iteration is O(max;lgd;), and the work for the
iteration is O(e + 3; v; g d;). The complexity of the entire algorithm depends on how fast the
number of edges and number of nodes decrease. The number of nodes decreases by at least
a factor of two every other iteration [92], which reduces the work from O(mlgn + nlg?n) to
O((m + n)lgn). In the worst case, the number of edges decreases very slowly, but for some
graphs, the number of edges decreases by a constant factor on each iteration [93]. For our
experiments on grids, the number of edges and nodes decrease by a substantial constant factor
_each iteration, as discussed in Section 7.3.2. When both the number of nodes and number of
edges contract by a constant factor each iteration, the work is reduced to O(m + nlgn). If, in
addition, tree shortcutting is implemented in linear time, the complexity is further reduced to
O(m + n).

Another benefit of contraction, in addition to the savings in work, is a reduction in con-
tention. Without contraction, the contention increases each iteration as the size of each tree
grows. With contraction, each tree is reduced to a single supernode before starting the next
iteration. Thus the contention is determined by the size of the trees formed in each iteration,
rather than the size of the largest connected component.

7.3.2 Randomization

In Section 7.2.1, we showed that memory contention during maximal shortcutting can be re-
duced in some cases by propagating labels. A more general solution is to reduce the size of
any tree created during the hooking step. This will reduce the amount of contention in maxi-
mal shortcutting and in node- and edge-renaming operations used in graph contraction. One
way of reducing the size of trees is to randomize the graph, which we implement by randomly
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permuting the node numbers, relabeling the edges accordingly, and randomly reordering the
edges.

Experimentally, the length of the longest chain for fully connected one- and two-dimensional
grids appears to be approximately logarithmic in the number of nodes. If the longest chain in
each iteration is in fact O(lgv), and if both the number of nodes and number of edges contract
by a constant factor each iteration, then the work for finding connected components is reduced
to O(m + nlglgn).

Note that we are striking a compromise between two extremes. Some algorithms create
forests with trees of constant size, whereas the original hybrid algorithm creates forests poten-
tially with very long chains. Randomization in combination with maximal shortcutting exploits
the savings in work from maximal shortcutting, while avoiding the worst-case contention from
long chains.

Randomization also reduces module map and network contention, which is particularly
important for graphs based on regular grids. Random node numberings lead to well-balanced
module mappings of nodes and edges to banks, and random reordering of edges breaks up
regular patterns in the ordering of memory requests.

However, there are two minor drawbacks to randomization. First, a randomized node num-
bering can lead to a slight increase in work over a natural numbering for grid graphs. In our
experiments, grid-based graphs contract by approximately a factor of three per iteration with
randomization, compared to a factor of five per iteration without randomization. The total
amount of work for grid-based graphs is typically 20 percent higher when using randomization.
Second, the randomization itself can be somewhat expensive, depending on the application.
In some applications, however, the graph can be maintained in random order, or the cost of

randomization can be amortized over multiple uses of the graph.

7.3.3 Shortcutting improvements

Shortcutting a forest with simple pointer-jumping has two shortcomings: high memory con-
tention, and a logarithmic factor more work than a serial algorithm. Memory contention can
be reduced using label propagation (as described in Section 7.2.1) or with randomization (as
described in Section 7.3.2). The work can also be reduced using improvements to the shortcut-
ting algorithm. Reducing the work is particularly important when randomization is not used,
since the size of the trees formed by hooking, in the worst case, is proportional to the size of
the input graph.

~ One possibility is to compact the active nodes (i.e., those not pointing to a root) after each
pointer-jumping step. Compaction does not help in theory on an individual tree, although it
helps for certain types of forests. In particular, when there are O(n) trees and the largest tree
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has o(n) nodes, the amount of work is O(n). Compaction can help in practice when the forest
contains trees that are short or bushy near the root. Compacting nodes, however, is not a

general solution.

We can exploit property of the hybrid connected components algorithm to design a general,
work-efficient maximal shortcutting algorithm. In particular, we now describe an optimization
for ordered links, which result from hooking higher numbered vertices to lowered numbered
vertices. (The ordering is reversed in alternate iterations [92], but for the following discussion,
assume hooking from higher to lower numbered vertices.) First, we observe that this ordering
simplifies a serial implementation of maximal shortcutting when a tree of n nodes is represented
as an array of n pointers, stored in an arbitrary order. Without ordered links, maximal short-
cutting requires chasing pointers (e.g., with depth-first search) or performing multiple passes
over the array of nodes. With ordered links, however, the tree can be traversed in a top-down
ordering simply by processing the elements of the array sequentially. This permits maximal
shortcutting with a single pass of in-place shortcutting.

To incorporate the advantages of this serial algorithm into a parallel algorithm, we concep-
tually divide the n nodes into p blocks of contiguous nodes, one block for each of p processors.
In parallel, each processor performs one pass of in-place serial shortcutting over its block of
elements. This single pass ensures that all pointers within a block point to root nodes, which
implies that the longest chain of pointers has a length of at most p. Thus, maximal shortcutting
can be finished with at most [lgp] iterations of pointer jumping.

If the data set is large relative to the number of virtual processors, O(lgp) iterations is
a significant improvement over O(lgn) iterations, but the algorithm is not work-efficient. It
can be improved to a work-efficient algorithm that performs only two passes over the nodes by
adapting a technique from the partition method for solving linear recurrences [51, 79, 204]. As
before, in the first pass, each processor performs in-place serial shortcutting over a contiguous
block of elements. Then, in the second pass, instead of parallelizing across blocks, each block is
processed in parallel. The blocks are processed one at a time starting from the first block (with
an implicit synchronization before proceeding to the next block), performing a single in-place
pointer jump on each node. This second pass effectively processes the trees top down, and fully
shortcuts the forest because the first phase eliminates all dependences within a block.

This parallel algorithm performs O(n) work and O(n/p) parallel steps, and thus is work-
efficient for n = O(p?). The algorithm is practical for a single vector processor, but does not
have enough parallelism to use on a large number of vector processors. We conjecture that
the algorithm can be generalized to one with more parallelism that runs in O(nl/ %) steps and
performs O(én) work for 2 < é§ < lgn.

Our implementation of maximal shortcutting uses a heuristic approach. It first performs
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Class Average Degree | Separator Size | Diameter
2D: 40%, 60% | 1.6, 2.4 O(n'/?) O(nt/?)
3D: 20%, 40% | 1.2, 2.4 O(n?/3) O(n1/3)
AD3 3.0 O(n) O(lgn)

Table 7.2: Characteristics of classes of graphs used in the test suite.

two inplace shortcuts with label propagation. Loop raking is used during the shortcutting to
implement the memory access for virtual processors, in order to take advantage of ordered links.
Without graph randomization, the two inplace shortcuts typically fully shortcut over 75 percent
of the nodes. With randomization, the two shortcutting steps typically fully shortcut over 99
percent of the nodes. After the two shortcutting steps, all of the active nodes (those without
a root label) are compacted into a new array. The implementation then alternates between

shortcutting the remaining active nodes and compacting an index of active nodes.

7.4 Evaluation

7.4.1 Test suite

The implementations were evaluated using a test suite adopted from previous studies of
connection component implementations [92, 124]. The test suite contains grid-based graphs,
which are commonly used in computer vision and computational physics, and random graphs,

which represent the most general, and frequently worst, case. Specifically, the following classes
of graphs are used:
e 2D: Subsets of two-dimensional toroidal grids. Each vertex has a subset of the four

neighbors of such a grid.

e 3D: Subsets of three-dimensional toroidal grids. Each vertex has a subset of the six

neighbors of such a grid.

e AD3: Average degree 3 graphs. Each node 7 picks ¢; random neighbors where ¢; is chosen

uniformly from the range 0-3.

Subsets of grids are obtained by selecting to include each edge from the complete grid with a

given probability. Table 7.4.1 summarizes the properties of the graphs used in the test suite.

7.4.2 Implementations

We present results for an efficient serial algorithm, a simple implementation of the hybrid

algorithm, and an optimized version of the hybrid algorithm:
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Hybrid+
graph || union single-page 1 2 4 8 15
2D 40% 0.55 6.8 || 15.8 | 30.6 | 53.9 | 104.1 | 165.7
2D 60% 0.49 6.6 || 15.7 | 30.4 | 52.6 | 99.4 | 161.3
3D 20% 0.60 5.2 |[ 15.0 | 29.9 | 55.0 | 107.2 | 162.0
3D 40% 0.49 74 | 14.6 | 28.3 | 48.9 | 94.1 | 1445
AD3 0.47 6.4 || 10.8 | 20.6 | 36.0 | 65.5 | 90.6

Table 7.3: Connected component performance on the CRAY C90. Performance is measured in
millions of graph elements (nodes + edges) per second on a fixed graph size of four million
graph elements. The Hybrid+ algorithm uses compression and label propagation.

union: aserial (scalar) implementation of union-find operations on a disjoint forest with path

compression [192], coded in C.

single-page: a simple single vector processor implementation of hybrid algorithm that fits
on one page of text (approximately 50 lines of compact C code). See Figure 7.7. (If Cray
compilers had better support for parallelizing packs and recurrences, it would run fairly

well on multiple processors.)

Hybrid+: a parallelized, vectorized, optimized implementation of the hybrid algorithm, in-
cluding algorithmic optimizations to reduce contention and to reduce shortcutting time.
For the Hybrid+ implementation, we converted the original NESL implementation to vec-
torizable Fortran and C. (A few routines for packing vectors were coded in assembly
language because the Fortran compiler generated inefficient code.) Recursion in the NESL
was simulated with a stack of vectors. On a single processor, the native Cray implementa-
tion runs 2-3 times faster than the original NESL implementation, primarily due to using
the improved shortcutting algorithm described earlier, and secondarily due to reducing
the number of memory operations, for example, by fusing loops that were separate in the

NESL version, and by storing both from and to pointers of an edge in a single 64-bit word.

7.4.3 Performance results

Figure 7.8 shows the performance of variants of the hybrid algorithm. For the graphs
tested, compression and label propagation always improve performance, and randomization
usually reduces performance. However, the benefit of randomization is apparent in Figure 7.9,
which compares the performance of hybrid variants on a set of highly connected 2D graphs. For
these graphs, randomization prevents performance from degrading on graphs that are highly
connected
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static int shrink(int #*parents, int *from, int #*to, int m) {
int j, £, t, pack=0;
#pragma ivdep
for (j = 0; j < m; j++)
if ((t = parents[to[jl]) != (£ =
to[pack] = t; from[pack++] = f;
¥

return pack;

parents[from[j11)) {

¥
static int compress(int *rename, int *new, int *from, int *to, int n, int m) {
int j, t, £, pack=0;
for (j = 0; j < m; j++) if (newl[jl==j) rename[pack++] = j;
for (j = 0; j < pack; j++) new[rename[jl] = j;
#pragma ivdep
for (j = 0; j <m; j++) {
to[j] = new[tol[jl]; from[jl = newlfrom[jl1];
}
return pack;
}
static void shortcut_max(int *node, int n) {
int j, done=0, old, new;
while (done != n)
#pragma ivdep
for (done=0, j = 0; j < n; j++) {
old = nodel[j];
new = nodeflold];
node[j] = new;
done += (new == old);

}

}
void miniCC(int *nodes, int *map, int *index, int *from, int *to, int #*ren,
int n, int big_n, int m) {
int j, t, £;
for (j = 0; j < n; j++) index[j] = map[jl = j;
while ((n > 0) && (m > 0)) {

for (j = 0; j < m; j++)
if ((£ = from[j1) < (t = to[j1)) {to[jl = £; from[jl = ;}
for (j = 0; j < n; j++) nodes[j]l = j;

for (j = 0; j < m; j++) nodes[from[jl] = tol[jl;
shortcut_max(nodes, n);
m = shrink(nodes, from, to, m);
for (j = 0; j < n; j++) maplindex[j1] = index[nodes[jl]1;
n = compress(ren, nodes, from, to, n, m);
#pragma ivdep

for (j = 0; j < n; j++) index[j] = index[ren[jl];

}

shortcut_max(map, big_n);

b

Figure 7.7: Single-page hybrid algorithm implementation with vectorization directives.
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The effect of contention optimizations on the CRAY C90 for a set of highly connected

2D graphs. The percentage of edges selected from the complete 2D graph is varied from 80% to
100%. Performance is shown for implementations without contraction and for implementations
with contraction(C), optionally with randomization (R) and root label propagation (L). The
number of processors is fixed at 12 and the graph size is fixed at 4 million elements (nodes +

edges).
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Figure 7.10: Hybrid algorithm performance on the test suite using 15 processors of the
CRAY C90.

Figure 7.10 shows performance of the hybrid algorithm (with contraction and label propa-
gation) on the CRAY €90 as a function of graph size. Table 7.3 lists performance results of serial
algorithms and the hybrid algorithm for various numbers of processors. Note that the single-
page implementation is an order of magnitude faster than the scalar union implementation and
nearly half as fast as the optimized hybrid algorithm implementation on one processor.

All crRAY C90 measurements were performed at the Pittsburgh Supercomputing Center on
a CRAY C90 that has only half the number of memory banks of a full configuration. Multipro-
cessor performance would be significantly better on a full configuration, as suggested by the

measurements in Chapter 2.

7.4.4 Performance comparisons

Connected components algorithms have been implemented on a wide variety of machines, as
discussed in Section 7.1.1. (Bader summarizes timings of many previous implementations [11].)
We focus on two related studies using the Cray T3D [124, 139], which report the best per-
formance to date. As indicated in Figure 7.11, the Cray T3D implementation exhibits higher
peak performance than that of our CRAY C90 implementation. However, the Cray T3D imple-
mentation, and other locality-based implementations, achieve high performance by relying on
particular properties of the input graph, and thus have several limitations.
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Figure 7.11:  Performance comparison of implementations on the Meiko CS-2, TMC CM-5,
Cray T3D, and Cray C90. Performance numbers from previous studies [11, 139] have been
converted to millions of graph elements (nodes + edges) per second. T3D performance on the
AD?3 graphs is not known, but we expect it to be considerably lower than 3D40 because very
little of the pointer chasing can be performed locally on a processor.

Performance of locality-based implementations depends on the amount of work that can be
eliminated in an initial local phase using efficient serial algorithms. In the worst case—random
graphs—there are very few edges between nodes on the same processor, and thus virtually all
of the work requires global communication. For example, an implementation for the Cray T3D
gets no speedup on multiple processors for random (AD3) graphs [124]. Even with grid-based
graphs, performance is sensitive to the connectivity of the graph (as indicated in Figure 7.11)
and to the size of the graph. For example, the performance on a 256-processor T3D flattens
out at a speedup of approximately 30 for the 3D40 graphs, even when the input size is scaled
with the number of processors [139].

In addition, the locality-based implementations require the input graph to be partitioned. In
some cases, the input graph has a natural partitioning, and in other cases, a graph partitioning
algorithm must be used. (This can present a bootstrapping problem when using a graph
partitioning algorithm that finds connected components.) When incorporating a connected
components algorithm into a complete application, the programmer must find a partitioning
that accommodates the entire application in order to avoid additional global communication

costs from reorganizing the graph.
In contrast, the CRAY C90 implementation processes random graphs at well over half of

peak performance, processes highly connected grids at only slightly less the peak performance,

achieves half of peak performance on graphs that have under one million nodes, and accepts
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nodes and edges in arbitrary order. In short, locality-based implementations have high peak
performance on large grids with moderate connectivity, and are well suited for applications that
generate only these types of graphs. The PRAM-based CRAY €90 implementation is much less
sensitive to the properties of the input graph, significantly faster on random graphs, and better

suited for use in a general-purpose subroutine library.
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Chapter 8
Conclusions

This thesis considered the efficient implementation of irregular PRAM algorithms on machines
with high-bandwidth, fine-grained shared-memory systems and support for latency-hiding. We
described techniques for implementing and analyzing PRAM algorithms on high-bandwidth mul-
tiprocessors, presented a number of experiments on irregular algorithms, and introduced and

experimentally evaluated an extension of the BsP model. We present conclusions in each of

these areas.

Techniques for implementing PRAM algorithms on vector multiprocessors:

e The technique of simulating multiple virtual processors per physical processor is useful in
practice for hiding latency on high-bandwidth shared-memory machines. In particular, we
showed that the concept of virtual processors can be systematically used for vectorizing

irregular PRAM algorithms.

¢ Pseudo-random mappings of memory locations to memory banks are useful for balancing
the load among memory banks. When pseudo-random mappings of memory locations to
memory banks are used, the QRQW model is adequate for making rough predictions of

running times.

e Heuristics for reducing contention are useful in practice. In particular, reducing the
amount of contention by a constant factor is useful, even though there is no benefit in
asymptotic complexity; and heuristics for reducing randomization costs (e.g., randomly
permuting selected data structures only once at the beginning of an algorithm) are useful

even when these heuristics are not provably effective at randomization.
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Algorithm experiments:

o Careful selection of a practical PRAM algorithm is important. The key factors are work-
efficiency for large problem sizes, low constant factors, and the use of a low-contention

model (e.g., the QRQW PRAM).

e Performance models for the algorithms based on the (d, x)-BsP are accurate, clarify trade-

offs between algorithm and machine parameters, and guide the optimization process.

e The PrAM-like character of algorithms is retained in the implementation; optimizing the
implementation centers on finding an appropriate mapping of the algorithm to the (d, x)-
BSP rather than redesigning the algorithm.

e The implementations for the CRAY J90 and CRAY C90 are predictable and perform well on
a wide range of data sets. For several irregular problems, our approach to programming
high-bandwidth vector multiprocessors using PRAM algorithms has lead to the fastest
implementations on vector machines, and the fastest general-purpose implementations

for any machine.

Modeling memory bank contention and delay:

e Modeling memory bank delay is important in analyzing the performance of algorithms

with high contention.

e The (d,x)-BSP reasonably explains the memory performance of the CRAY C90 and J90 on

irregular access patterns, despite abstracting many machine-specific details.

e When using random mappings, additional memory bank expansion is useful, even beyond
the point where the total bandwidth of the memory banks matches the total bandwidth

at the processors.

e With low memory contention, high parallel slackness, and random mapping of memory
locations to banks, the effect of the bank delay can typically be ignored.

8.1 Future work

There are several extensions of the thesis that could be explored.
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Experiments on other architectures: It would be valuable to reimplement the modeling
experiments and algorithm experiments studied in this thesis on other pipelined-memory ma-
chines, such as the TERA MTA [6], the Cray T3E [175], and vector microprocessors [131, 9, 205].
There is some evidence that the general trends identified in the (d,x)-BsP model would apply to
other machines (including some preliminary contention experiments at TERA), but many ques-
tions remain about the specifics. Is module map contention noticeable on a machine like the
TERA? In current systems with prefetch instructions, how well are the details of the architecture

(e.g., multilevel caches, TLBs) hidden by prefetching?

Extensions to the Deluxe BSP: One extension of the (d, x)-BSP model motivated by recent
technology trends would be the addition of caches to the memory banks, as available in the
design of the TERA MTA [6], and as suggested by Hsu and Smith [110]. How much cache is

needed at each memory bank to reduce the effects of module map contention?

Low-contention algorithms: For the algorithms considered in this thesis, we have found
that the QRQW model leads to algorithms that are simpler and more efficient in practice than
existing EREW and CRCW algorithms. It would be interesting to continue exploring the practical
benefits of QRQW algorithms by developing improvements for algorithms explored in this thesis
(in particular, for connected components), and by considering a wider class of applications.

Programming interfaces for PRAM algorithms: In addition to experimenting with the
modeling and implementation of algorithms, a valuable area of further research is to experiment
with different languages and systems for expressing algorithms. One could implement a BSp
library [90, 144] for vector multiprocessors and compare performance results, both qualitatively
and quantitatively, with those obtained on other architectures. Another direction would be to
incorporate a cost model for contention in a higher level model, such as the NEsL language
and cost-model, or a BsP library [90, 144]. In addition, profiling tools could be supplied for
measuring contention (e.g., in the NESL profiling system [32]) in order to aid in the process of

designing low-contention algorithms.

Analysis of NUMA architectures, for fun and profit: I am currently studying perfor-
mance characteristics and performance tools for scalable microprocessor-based shared-memory
multiprocessors, including the Silicon Graphics Origin 2000 [130].
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