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Abstract
Partial order time expresses issues central to many problems in asynchronous distributed systems,
but suffers from inherent security and privacy risks. Secure partial order clocks provide a general
method to develop application protocols that transparently protect against these risks. Our previous
Signed Vector Timestamp protocol provides a partial order time service with some security: no one
can forge dependence on an honest process. However, that protocol still permits some forgery of
dependence, permits all denial of precedence, and leaks private information. This paper uses secure
coprocessors to improve the vector protocol: our new Sealed Vector Timestamp protocol detects
both the presence and absence of causal paths even in the presense of malicious processes, and
protects against some privacy risks as well. By solving these previously open security problems,
our new protocol provides a foundation for incorporating security and privacy into distributed
application protocols based on partial order time.
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1. Introduction

Motivation Partial order time is central to solving application problems in asynchronous dis-
tributed systems. Since protocols for these applications require examining an underlying partial
order, explicitly providing a partial order time service simplifies and clarifies the task of protocol
design.

However, while the passage of real time can be determined from examining an independent
physical device, partial order time cannot be maintained in isolation. Tracking partial order
time requires collecting and sharing information. Thus dealing with partial order time—even
implicitly—exposes protocols to security risks. Is the information a process receives correct? Is
the information a process shares being used for dishonest purposes?

Encapsulating a system’s dealings with partial order time into a single time service provides
another benefit: a single arena in which to examine and resolve these security issues.

Previous Work In earlier work [SmTy91], we recognized the central role of partial order clocks,
catalogued some of the security and privacy risks, and presented the Signed Vector Timestamp
protocol,1 which protects against some of these risks. While this protocol prevents prevents dis-
honest processes from forging causal dependence on honest events, it suffers from some drawbacks:

� The Signed Vector protocol cannot guarantee detection of causal paths touching dishon-
est processes. Consequently, Signed Vectors cannot be used to build secure protocols for
problems such as distributed snapshots requiring accurate detection of non-precedence.

� The Signed Vector protocol leaks private information, since vector entries are publically
readable.

� The Signed Vector protocol requires that the temporal relation being tracked express all paths
of information flow; thus the protocol does not extend to more general relations.

This Paper In this paper, we use new developments in inexpensive tamper-proof hardware to
build the Sealed Vector protocol, which provides stronger security and privacy protection than any
previous protocol. In particular, our new protocol prevents dishonest processes from forging causal
dependence on any events, and (if malicious processes cannot communicate covertly) prevents
dishonest processes from denying causal dependence. (Even with covert communciation, Sealed
Vectors provide some protection against denying causal dependence.) Thus this work solves
previously open problems [ReGo93].

Section 2 reviews partial order time. Section 3 discusses the inherent security and privacy
attacks. Section 4 surveys the defenses, and presents our new protocol. Section 5 considers some
directions for future research.

1See also [ReGo93].
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2. Partial Order Clocks

Time organizes experience. Traditionally we use real time to organize experience into a linear
sequence of events. However, in asynchronous distributed systems, linear time is often inappro-
priate [La78, Pr86]. Application problems decompose into questions about more general temporal
relations; clocks for these relations would provide building blocks for application solutions. These
applications include the following:

� snapshots and global states [MaNe91, MaSa91, Ma93, Sm94]

� deadlock detection [KsSi90, Ma87, TaLo91]

� immediate ordered service [KeKo89]

� optimistic rollback recovery [Jo89, JoZw90, PeKe93, SJT94, StYe85]

2.1. Partial Order Time

Partial order time (POT) is the major alternative time model to global sequential time. Suppose
our system consists of a collection of n processes, each of which experiences a linear sequence of
events. Suppose further that these processes are asynchronous: real time clocks do not exist, and
the duration between consecutive events at a process is unpredictable. The processes communicate
by passing messages, which arrive either once after an unpredictable positive delay, or never.

We can represent the behavior of this system as a directed graph: construct a node for each
event, and draw edges connecting consecutive events at each process and from the send of a
message to its receive. We call this the POT graph of the computation; its transitive closure POT
determines a partial order on the events. We writeA��B to indicate that eventA precedes event
B in this order; we write A �� B when A precedes B, or A and B are the same event. We write
A ���B to indicate that A and B are incomparable under the order. Incomparable events are
concurrent: neither event could have influenced the other.

2.2. Clocks

Clocks for partial order time should be devices that allow processes to determine the precedence
(or concurrency) of events during a computation. That is, at some event C, process p should be
able to send the query Precedes�A�B� to its clock to learn whether or not eventA precedes event
B in the partial order.

This sketch raises some issues. How do processes refer to events? At event C , what events A
and B should process p be able to ask about? Will the clock at process p have enough information
to answer? Will the answer ever change?
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To answer the first questions, we assume event names include the process at which they occur
and their index in the local sequence there. Further, we assume that a process p is allowed to
ask about anything it knows about and that the POT model captures the flow of knowledge. At
event C, the clock at process p better be able to handle queries for all A�B such thatA �� C and
B �� C.

The POT model possesses a convenient monotonicity that answers the final question. When
an event occurs in a computation, it is added to the POT graph along with some incoming edges,
but no more incoming edges are added after that point. Thus once events A and B exist, either
A��B always or A ���B always.

2.3. Vector Timestamps

The assumption that POT edges are the only channels for information flow, along with the mono-
tonicity of POT graphs, suggest a timestamp approach: when an event A occurs, a packet of data
is generated comprising the timestamp T �A� of event A. The timestamp is passed along with the
event name, and carries sufficient information to sort the event relative to other events.

A well-known timestamp method for partial orders is the Vector Clock approach [StYe85, Ma87,
Fi88]. Each process maintains a local event counter, and timestamps each event A with a vector
V�A� consisting of the local index of the maximal event at each process that precedes or equals A.
That is, the process q entry of V�A� is the q-index of the event B at q such that:

� B �� A

� For any C at q, if C �� A then C �� B

This definition fails when no event at some q precedes an event A. To handle this case, we adopt
the convention of that a global event � is the initial event at each process.

The linear ordering of events at a process suggests a natural ordering on vector timestamps: for
vectors V and W , we say that V precedes W

V � W

when for each process p, the process p entry of V precedes or equals the p entry ofW in the linear
order at p, but for some process p, this inequality is strict.

Establishing that vector timestamps function as clocks follows directly.

Theorem 1 For events A and B, V�A� � V�B� �� A��B.

Implementing Vector Timestamps Implementation of vector timestamps also follows easily.
Each process pmaintains a vector V for its most recent event. When a new event occurs, process p
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increments the p entry of V to obtain the new current value V �. If this new event is a send, process
p appends the new value V � to the message. If this new event is a receive, process p strips off the
timestamp W from the message and replaces V � with the entry-wise maximum of V � and W .

3. Security and Privacy Attacks

Partial order time draws on data distributed throughout the system. Consequently, building partial
order clocks requires that processes share private information, and trust the private informa-
tion shared with them. This sharing and trusting creates opportunities for Byzantine (malicious)
processes to manipulate the clock protocols, and consequently to manipulate application protocols
built on these clock protocols.

We sketch four such attacks on vector clocks.

Nonsense Attacks Malicious processes can send arbitrary vector entries. Since honest
processes will dutifully copy and pass on these values, a single act by a single malicious process can
destroy the validity of many vectors throughout the system. Simple sanity checks fail to combat
this problem: if honest processes refuse to accept vector entries that have increased more than N ,
a dishonest process can repeatedly increase an entry by N � 1. The honest victim may then be
mistakenly identified as corrupt by the next honest process it talks to.

Malicious Backdating Malicious processes can selectively reduce vector entries, and thus
fool honest processes into thinking events happened earlier than they really did. Consider the
application of trading options on a public network. Figure 1 shows how this technique permits
the crime of options frontrunning, which occurs in the (physical) Chicago commodities exchange,
where brokers can trade both for themselves and their clients. If a broker happens to buy a small
quantity of shares for himself before his client requests a large number of shares, then the broker
will make a tidy sum. This profit provides incentive for a dishonest broker, upon receiving a client
request, to issue a request of his own that appears not to have followed the client request. In an
electronic exchange using vector clocks, a malicious broker can do this merely by using an old
vector on his purchase request.2

Malicious Postdating Malicious proceses can selectively inflate vector entries, and thus fool
honest processes into thinking events happened later than they really did. Figure 2 shows how
this technique permits insider trading. A malicious process can send a cohort an advance copy
of an announcement along with an advanced vector. The cohort can act on this data, but use the
advanced vector to hide her headstart. (The cohort could even be unwitting; the malicious process
might frame her now, in order to spread the blame should the ruse be discovered.)

2Such time forgery is even easier in the physical environment of the Chicago exchange; currently, the only defense the
FBI has against options frontrunning is placing undercover agents in the pit to look for unusually lucky brokers.
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C does not
precede B

"Buy 10
shares for

me"

"Buy 1000
shares for

Cathy"

"The price
went up"

I'll save
my vector

I'll use my
saved vector

I'll sell my
shares now

I want to buy a lot of orange
futures---I'll tell my broker

Commodities
Exchange

Bad Bob

Client Cathy

B

C

Figure 1 Malicious processes can selectively backdate events. Here, Bob com-
mits the crime of options frontrunning by making his own puchase appear not to
follow his client’s request.
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I'll use a
future vector

Stock
Exchange

Bad Bob

Cathy

B

C

I''d better
buy!

Must be OK,
since B

precedes C

Public
announce-

ment

Advance
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ment

Figure 2 Malicious processes can selectively postdate events. Here, Bob leaks
an advance copy of his public announcement to Cathy in such a way that allows
her to act on the data first, without appearing to have had a headstart.
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Compromised Privacy Malicious processes can correctly perform the vector clock protocol,
but use the vector entries to gain illicit knowledge. Figure 3 shows how this technique leads to
compromising the identify of whistleblowers. The changes in subsequent timestamp vectors sent
from Alice to Bob betrays to whom Alice has been talking in the interim.

4. Defending Against These Attacks

Ideally, the clock at an honest process should report “A��B” iff A��B, while confining
private information, no matter what actions malicious processes take. This standard provides a
scheme for evaluating clock protocols: against decreasing amounts of honesty, how well do they
perform?

Many application protocols use forms of partial order time and vector clocks. If a clock system
meets this ideal, then installing these clocks into these higher-level application protocols will
transparently protect these protocols against the security and privacy attacks of Section 3.

4.1. Previous Work

If all proceses are honest, then the process p entry in anyone’s vector timestamp orignated at process
p. Our Signed Vector Timestamp protocol [SmTy91] builds on this observation by requiring each
process to digitally “sign” its entries in outgoing timstamp vectors. This scheme prevents malicious
processes from advancing the vector entries belonging to honest processes. If the process where
an event A occurs is honest, and our time model expresses all paths of information flow, then
possession of a signed entry for eventA is proof of dependence onA. Thus Signed Vectors provide
A��B whenever an honest clock reports “A��B”; if everyone along a causal path fromA to
B is honest, the protocol also provides the converse: A��B �� “A��B.”

However, since malicious processes can use old values in the entries for honest processes
(all that’s required is a signature-value pair), any causal path touching a malicious process may
not necessarily be detected. Consequently, Signed Vectors still permit Malicious Backdating,
Malicious Postdating, and Compromised Privacy. Further, the inability of Signed Vectors to
reliably report non-precedence makes it difficult to transfer their security to protocols for higher-
level problems that require detection of non-precedence. The consequences of this inability can
range from inefficiency (in optimistic rollback recovery, processes may mistakenly believe they
depend on failed states) to complete incorrectness (in global state protocols, processes may make
incorrect decisions regarding “concurrent” events).

Reiter and Gong [ReGo93] also present the Signed Vector protocol, and propose three additional
protocols for the special case of a process sorting the send events of two messages it has received.
Their Piggybacking protocol generalizes the vector timestamp protocol by passing around a con-
densed version of the history of an event. It provides the same properties as Signed Vectors, and
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Manager Alice

Bad Bob

Honest Cathy

boss of

boss of Secret tip
about Bob

"I caught you!"

"You're
fired!"

The Cathy entry
in Alice's vector
has changed!

Figure 3 Malicious processes can exploit vector data for illicit purposes. Here,
Bob uses the timestamp vectors from Alice to learn the identity of whistle-blower
Cathy.
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provides some additional power in the case of complete dishonesty. The Piggbybacking protocol
extends to handle the general case of sorting arbitrary events.

Their other two protocols alter the order in which messages are received. Thus, these protocols
“solve” the problem of detecting the partial order by changing the partial order; further, they do not
accurately report non-precedence. The Conservative protocol requires that before sending a new
message, a process wait for acknowledgements of any previous messages it sent. The Causality
Server protocol assumes secure FIFO channels, and relies on a trusted central intermediary to
impose a total order on all message traffic.

Our New Results The challenge remains of building a protocol that can accurately report
“A��B” or “A ���B” even when A’s process is corrupt, and that can do so without leaking
information. Our new Sealed Vector Timestamp protocol solves these open problems, satisfies the
ideal (assuming no covert channels), and protects privacy of vector entries as well. Further, this
protocol will extend to more general time models as well—since we do not really need to have our
time model express all paths of information flow. Figure 4 summarizes these protocols.

4.2. The Sealed Vector Protocol

This section presents our new protocol. Section 4.2.1 discusses the physical tools; Section 4.2.2
presents an overview of the protocol; and Section 4.2.3 reviews the cryptographic tools. Section 4.2.4
presents the details of protocoloperations; Section4.2.5 presents the security results; and Section 4.2.6
discusses some drawbacks.

who’s honest? “A��B” ��
A��B

“A��B”��
A��B

“A��B”��
A��B

privacy of
entries

A�B and path
between them

Signed, PB,
Sealed

Signed, PB,
Sealed

Signed, PB,
Sealed

Sealed

only A Signed, PB,
Sealed

Sealed Sealed Sealed

no one (but
querying
process)

Sealed Sealed Sealed Sealed

Figure 4 This table compares how partial order clock protocols meet the ideal
of “A��B” �� A��B while protecting the privacy of vector entries, against
decreasing amounts of honesty. Signed denotes the Signed Vector protocol; Sealed
denotes the Sealed Vector protocol; PB denotes Piggybacking.
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4.2.1. Secure Coprocessors

Our new protocol rests on the the technology of secure coprocessors [TyYe93, Yee94]: inexpensive
physically secure devices with a limited amount of computational power, ROM, and non-volatile
RAM. A process interacts with its secure coprocessor through formal I/O channels. Any other
method of determining the internal state of the coprocessor—including physically penetrating the
hardware—results in the resetting of RAM and CPU registers to null values.

A key notion here is that a secure coprocessor only possesses a limited amount of power. We
cannot secure an entire workstation—even if we could, we could not secure the user!

Secure coprocessors are being rapidly deployed; there are now several commercial secure
coprocessor procucts available from IBM ( �ABYSS [Wein87], Citadel [WWAP91]) and other
vendors. Transforming this small amount of physical security into a larger secure protocol raises
some subtle issues. For example, malicious processes might attempt to bypass their coprocessors,
or to attack the communication lines between. (See [TyYe93, Yee94] for information on how to
protect against these attacks.)

4.2.2. Overview

The main idea for Sealed Vectors is to grant each process a secure coprocessor that creates timestamp
vectors, and seals them so that processes cannot read them. Processes can store and pass around
timestamps, but need to query a secure coprocessor in order to compare them.

This scheme requires a number of properties:

� No one (except a secure coprocessor) can obtain information about the contents of any vector
entry from an encrypted timestamp, even if they know the other entries.

� All processes must route a message from an incoming process through the secure coprocessor.

� All processes must route a message to an outgoing process through the secure coprocessor—
and once routed, must not be able to forever suppress this message.

� A secure coprocessor must be able to verify that a timestamp given to it was produced by
another secure coprocessor.

Thinking about how processes will use timestamps raises another question. Process p at event
C may want to determine whether two events A and B (with A �� C and B �� C) satisfy
A��B. Thus process p needs to know the timestamps of A and B, so it can feed them to its
secure coprocessor. Presumably process p trusts itself, so if either of these events occurred at p,
then p knows its timestamp. However, suppose A occurs at process q 	� p. According to the
timestamp clock model, process p obtains the A timestamp the same way it obtains the name
of the A—through information passed along POT graph edges. How can process p be sure that
somewhere along this route, a malicious process did not substitute a different timestamp for A?
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This problem illustrates the need for another property.

� It must be possible to verify that a given timestamp belongs to a given event.

4.2.3. Cryptographic Tools

We build a timestamp scheme meeting this description using two common cryptographic tools.

Digital Signatures A digital signature scheme is a function S from a value space to a signature
space such that:

� Given a value v and a signature s, anyone can tell whether or not s is a valid signature of v:
whether or not the signature function S maps s to v.

� However, with high probability, no one except a privileged agent can take a set of value-
signature pairs and efficiently produce a pair not in this set.

Bit-Secure Encryption A public key encryption scheme consists of a function E (from the
value space to the cipherpace) and a function D (from the cipherspace to the value space) such
that:

� For any value v, anyone can calculate E�v�.

� For any value v, D�E�v�� � v.

Ordinary public key encryption requires only that inversion of E is difficult (without the privilege
of knowing D). We require an additional level of security [Gold89]. From a given ciphertext, a
malicious process should gain no information about the plaintext that it did not know a priori. Some
popular cryptosystems (like [RSA78] and [Ra79]) are known to leak number-theoretic properties of
the plaintexts and thus fail to meet this condition [ACGS88, Li81]. For the Sealed Vector protocol
to attain its full security potential, it should be implemented using strong cryptosystems such as
[GoMi82] or [BlGo84].

Our scheme requires encryption and signatures for messages and timestamps. For the initial
presentation of the protocol, we assume a a single global scheme for messages (Emsg�Dmsg and
Smsg), and another for timestamps (Etst�Dtst and Stst).

(In practice, giving each process its own key scheme adds flexibility and another level of
security; Section 4.2.6 discusses these issues.)
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4.2.4. Details

By definition, the functions Emsg and Etst are public. Each process p has a secure coprocessor pSC.
The coprocessor pSC knows that it belongs to process p, and has the ability to calculate Dmsg, Dtst,
Smsg, and Stst. The coprocessor pSC also maintains the timestamp vector Vp (and thus maintains an
official “event count” for process p).

Obtaining Timestamps Suppose process p wants to obtain a timestamp for its current event
A. It submits the request to pSC, which increments the p entry of Vp, so it then equals V�A�, and
returns the sealed timestamp

T �A� � Etst
�
A�V�A�� Stst�A�V�A��

�

Figure 5 illustrates the structure of sealed timestamps.

The signature plays two roles here. First, it proves that this vector really belongs to this event.
Secondly, its presence inside the plaintext protects against plaintext attacks. A malicious process
must break the signature function in order to to verify that a particular encrypted timestamp contains
a particular vector value. Section 4.2.5 discusses this issue further.

Comparing Timestamps When process p wants to compare events A and B, it sends T �A�
and T �B� to pSC. The coprocessor applies Dtst to extract the event names, vectors and signatures.
If the signatures are valid, the coprocessor then compares V�A� and V�B�, and reports the result:
either “A��B,” “B ��A” or “A ���B.”

Sending Messages Suppose process p wants to execute a send event S, sending a message
with text M to process q. Process p submits M and q to the secure coprocessor pSC, which

E tst

vectorname of event signature of timestamp

Stst

Figure 5 A sealed timestamp consists of the encryption of the name of an event,
its timestamp vector, and a signature on this pair. The signature certifies that
this vector belongs to this event, and also protects against guessing the plaintext:
verifying a guessed vector requires guessing the correct signature.

12



calculates the timestamp T �S�, and returns the ciphertext

M � � Emsg
�
p� q�M� T �S�� Smsg�p� q�M� T �S��

�

Figure 6 illustrates the structure of this ciphertext. Process p then transmits the message (alterna-
tively, the coprocessor itself could send the message directly.)

(Since messages are tagged with a signature before encrypting, using the unsealed timestamp
V�S� would suffice here.)

A malicious process—either p, or anyone along the network—could still suppress this message
M . (For example, in Figure 1, Bob could have his purchase order sealed, but only introduce it
into the network if he receives an order from his client.) We can protect against such deliberate
loss by having pSC expect a signed acknowledgement from qSC. If the acknowledgement does not
arrive, pSC can retransmit the message—perhaps incrementally, as part of other sealed packets. A
malicious process can suppress a message only by forever separating from the network.

Receiving Messages Suppose a process p receives a ciphertext message M �. To read M �,
process p needs to send it to the secure coprocessor pSC. The coprocessor applies Dmsg to obtain
the source and destination process, the plaintextM , the timestamp T �S� of the send event, and the
Smsg signature of this data. The coprocessor verifies that this signature is valid and that p is the
destination process. The coprocessor then applies Dtst to the timestamp, checks its signature, and
obtains the vector V�S�. The coprocessor then performs the vector timestamp protocol: replacing
its current vector Vp with the entry-wise maxima of Vp and V�S�. Finally, the coprocessor returns
the source process name, the plaintext M , and (optionally) the timestamp V�S� to the process p.

Smsg

source destination message text timestamp of 
send event

signature of 
message

Emsg

Figure 6 The message ciphertext consists of encrypting the message information
(source and destination processes, message text), along with the sealed timestamp
of the send and a signature of these values. The presence of the signature makes
the encrypted package invulnerable to plaintext attacks, so the receiver must con-
sult a secure coprocessor. Since the name of the receiving process is included in
the package, decryption will only be performed by the secure coprocessor of this
process.
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4.2.5. Results

Establishing the security and correctness of the sealed vector protocol requires some observations.

The coprocessors carry out the vector timestamp protocol This follows directly from
the description. (However, the only events that officially occur in the partial order time framework
are those for which a process requests timestamps.)

Messages and timestamps are invulnerable to plaintext attacks A process may be
able to guess some or all of the entries of a given timestamp vector. If timestamps were merely
vectors encrypted with a public key, then a malicious process could use its knowledge about
possible vectors to obtain actual vector entries by guesssing a possible vector, encrypting the guess,
and comparing the result to the ciphertext. However, in our scheme, timestamps are the encryption
of a vector along with a signature of that vector: thus even if a process knows the value of a vector
V , it cannot verify that V is indeed the vector encoded in the timestamp E tst�A�V�Stst�A�V ��.
Timestamps are truly sealed.

Similarly, a process cannot decrypt an encrypted message by making some lucky guesses, since
that would require breaking the message signature Smsg.

Coprocessors must examine messages to honest processes Sending a message to
an honest process requires obtaining both a valid timestamp and a valid signature on the message
and the timestamp together.

Coprocessors must examine messages from honest processes Receiving a message
from an honest process requires decryption in order to understand it. Since (by above) encrypted
messages are invulnerable to plaintext attacks, a process must consult a coprocessor; since the
encrypted message includes the name of the receiving process, a process must consult its own
coprocessor. (However, a malicious process can receive and discard an encrypted message without
consulting its coprocessor. Section 4.2.6 considers this avenue.)

Together, these assertions imply the following result.

Theorem 2 Suppose all messages to or from honest processes are routed through
through secure coprocessors, the encryption and signature functions are not breakable,
and the secure coprocessors are not compromised. Then Sealed Vectors guarantee the
following:

� If a clock reports “A��B” then A��B.

� If event A precedes event B along a path where each message edge touches an
honest process, then clocks will report “A��B.”
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� IfA��B along any path, and malicious processes cannot communicate without
using the sealed message protocol, then clocks will report “A��B.”

(Since secure coprocessors handle clock queries, all clocks are honest.)

We discuss some advantages of this protocol over prior work:

� Complete Results If a clock reports “A��B,” then A��B. If a clock reports
“A ���B” (and malicious processes cannot communicate using covert channels) then
A ���B.

� No Spoofing Even with covert channels, a malicious process cannot pretend not to have
received a message from an honest process.

� Privacy The private information shared in timestamps cannot be exploited for improper use,
since it is not readable.

In particular, the Sealed Vector protocol protects against all the attacks catalogued in Section 3.

The Sealed Vector protocol also improves on Signed Vectors in terms of scalability: the number
of decryptions required on incoming messages decreases from linear to constant.

4.2.6. Drawbacks

Theorem 2 establishes the security properties of Sealed Vectors, but incorporates three hypotheses
open to challenge. We discuss these challenges.

Covert Channels Precedence corresponds to paths through the POT graph. The Sealed Vector
protocol prevents a single malicious process from masking its presence in such paths. However, if
malicious processes can communicate without using official (that is, coprocessor-sealed) messages,
then they can cooperatively hide their presence in paths—since communication outside of the
coprocessors is invisible to the clocks.

One approach to this problem is to make such communication very difficult: for example,
by having the secure coprocessors handle net traffic (and perhaps snoop on Ethernet packets),
malicious proceses would be forced to run a separate cable. Nevertheless, a coterie of covert
communicators essentially becomes one process. How can two secure coprocessors tell they are
attached with the same process? Alternatively, what precedence information can honest processes
obtain despite covert channels? These remain research questions.

In-band Signaling The encryption tools prevent forging sealed messages: sending a message
to an honest process requires consulting one’s secure coprocessor. The protocol seals messages
in order to force a malicious process to consult its coprocessor before extracting any information
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from an incoming message. However, it may be possible to extract information without such
consultation—by using the existence of the message, the length of the message (real encryption
usually breaks long text into blocks and encrypts each block separately) or the frequency of
multiple messages. One way to suppress this style of attack is to hide network activity; perhaps
by connecting the network directly to the secure coprocessors or by more careful structuring of
network packets.

Compromised Integrity The protocol depends on the physical security of the coprocessors.
In practice, secure coprocessors are extremely difficult to penetrate. However, as with any security
mechanism (physical or computational), it may be possible to compromise the system if the attacker
is willing to pay tremendous amounts of money. (For a detailed analysis of the cost, see [Wein91].)
What do we do if the exception case occurs—if a coprocessor is compromised?

One way to limit the damage is to use separate Smsg, Stst and Emsg functions for each process.
This technique prevents a compromised coprocessor from impersonating someone else or perform-
ing message decryption for someone else. Using separate Etst functions prevents the compromised
coprocessor from doing comparisions for someone else, but requires re-encrypting forwarded
timestamps.

(Section 5.1 considers some further defenses.)

Key Management Giving each coprocessor its own keys raises the issue of key management: a
new coprocessor must somehow announce its public keys. A straightforward technique to prevent
dishonest processes from impersonating a “new coprocessor” is to have new coprocessors obtain
certificates, signed by a universally trusted agent, listing their identity and public keys.

5. Future Work

5.1. Limiting Potential Damage from Penetration

What can we do if the integrity of a coprocessor is compromised?

Give and Forget Penetration exposes any data that a coprocessor has saved. However, an
uncompromised coprocessor can securely forget data. This observation suggests an alternative
timestamping scheme. Suppose process p, at event S, sends a message to process q, who receives
at event R. Process p generates a key pair K1�S , K2�S . Process p signs a certificate asserting that
K2�S is its public ket for event S, and sends this certificate along with the private key K1�S to
process q with the message. Process q uses the private key K1�S to encrypt an identifier for R and
then erases the key. Process q then has a universally verifiable certificate that it knew about S when
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R occurred. However, examining this certificate allows no one—not event process q—to forge a
certificate of knowledge of S (without the cooperation of process p).

This technique allows a secure coprocessor to generate certificates showing the last message
it received from each honest process. However, should the coprocessor later be compromised,
it cannot produce new certificates for these messages. To prevent a compromised coprocessor
from rolling back timestamp entries, we can require coprocessors to use these certificates to prove
the validity of their vector entries. (The transitivity of dependence makes this task somewhat
non-trivial.)

Independently Tracking Progress Other approaches for pre-compromised coprocessors to
limit the forging power of their compromised versions include the distributed trust and digital
timestamping techniques of [BHS92, HaSt91], as well using data on acknowledgement packets.

5.2. Improving Performance

A serious performance problem with vector clocks is size: timestamps have n entries; comparing
timestamps requires n comparisons. Reducing these bounds provides some grounds for future
work.

Charron-Bost’s result [ChBo91] that partial order timestamps must be linear suggests two
approaches: implementing vector clocks more carefully (to reduce the actual data transmitted), and
trading timestamp size for comparison time.

Efficient Vector Clocks Singhal and Kshemkalyani [SiKs90] present a vector clock imple-
mentation where processes refrain from transmitting redudnant data in vectors. Incorporating this
technique with our Sealed Vectors would yield increased efficiency. Another interesting approach
would be to give processes more latitude in choosing which entries to transmit and which to with-
hold. Some entries in timestamp vectors would be marked with flags indicating that that value is
merely a lower bound. This lower bound may suffice for many comparisons; when or where it
doesn’t, a secure coprocessor needs to consult other secure coprocessors to obtain the missing data.

Developing good heuristics to use in deciding which entries to withhold and determining when
the expense of a “miss” outweighs the benefits of withholding will provide the basis for some
interesting experiments.

Centralized Vector Clocks Another approach is implementing the vector clock protocol in a
more centralized fashion. For the extreme case, suppose we had a single trusted logging site. When
a process receives a message, its secure coprocessor sends a note to the logging site indicating the
sending process, the receiving process, and the local indices of the send and receive events. The
logging site then has sufficient information to maintain the timestamp vectors for each process. We
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obtain constant size timestamp data on messages—at the price of doubling the number of messages,
and having processes need to consult a remote site to perform comparisons.

This approach still requires coprocessor sealing in order to force a process not only to acknowl-
edge receiving a message, but also to file a logging note. (This approach differs from the Causality
Server protocol [ReGo93] in that messages are not routed through an an intermediary, but logged
after the fact, that no FIFO nor secure channel assumptions are needed, and that the logging site
protocol preserves the actual partial order, not just a consistent total order.)

Hierarchies of Vector Clocks Another technique (e.g., [ACGS91]) is to use vector clocks to
track a coarser partial order—thus trading timestamp size for false positives in precedence detection.
However, adapting these techniques or (or the linear timestamping techniques of [BHS92, HaSt91])
creates the problem of proving the absence of a causal path. Developing a hierarchical approach—
to indicate the most “likely” causal path, and then verify its correctness—is one path of future
research.

5.3. Improving Security and Privacy

The Sealed Vector protocol improves on our earlier work [SmTy91] by preventing the processes
from being fully conscious of all local computation. One direction for future work lies in exploring
the potential of this technique. We briefly discuss two such areas.

Suppressing Traffic Analysis The Sealed Vector protocol prevents malicious processes from
reading actual vector entries. However, malicious proceses may obtain private information by other
means, such as analyzing network traffic. Since processes cannot read any packets sent by secure
coprocessors, secure coprocessors can transmit random packets—that malicious processes cannot
suppress without detection.

More General Confinement Models Coprocessor sealing provides control over the infor-
mation a timestamp provides to a process. This control may provide more benefits than just
suppressing vector entries—in particular, it may allow for anonymous or hidden causality.
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