
Adjoint Logic with Applications

Klaas Pruiksma

CMU-CS-24-103

May 7, 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Frank Pfenning, Chair

Stephanie Balzer
Henry DeYoung
Robert Harper
Andrew Pitts

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2024 Klaas Pruiksma

This research was partially funded by the National Science Foundation under grant number CCF1718267.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Proof Theory, Programming Languages, Adjoint Logic, Program Equivalence

To my partner Al and cat Ackermann.
Most of all, to those who will read this in the future — may you find the information within

helpful.

iv

Abstract
Many different systems of logic, such as linear logic, lax logic, and various

modal logics have been studied extensively and find applications in diverse domains.
Likewise, in the context of programming languages, many different language fea-
tures have been explored fruitfully. In both cases, however, these different features
are often studied in isolation, or in the context of some simple base language. As
such, it can be unclear how these features interact, if we want to work with a pro-
gramming language combining different features, or a logic that allows us to model
behavior from several different base logics.

Adjoint logic is a framework or schema for defining logics based on a set of
modes, each of which represents a single base logic. These base logics are then
combined uniformly and coherently into a single instance of adjoint logic. In this
document, we will develop a form of adjoint logic that forms a suitable basis for con-
current programming languages. We first develop the proof theory of adjoint logic,
proving generically useful logical results such as cut elimination, identity expansion,
and focusing. This ensures that our approach to adjoint logic yields a sensible proof
system, and means that we can get these results for free for a given logic by showing
that it is an instance of adjoint logic.

Interpreting proof reduction as communication between concurrent processes,
particularly using a semi-axiomatic sequent calculus formulation to model asyn-
chronous communication, we can convert the framework of adjoint logic into a
similar adjoint framework for programming languages. By making use of differ-
ent modes, we can model a range of communication behavior, notably including
multicast, where a message is sent to multiple recipients. We also see that with a dif-
ferent interpretation, we can model communication via shared memory, which then
also lends itself well to reconstructing sequential computation within this concurrent
language. Additionally, the uniformity of this framework means that as we add fea-
tures to (or encode features into) these languages, we will naturally also be able to
work with multi-featural languages, perhaps restricted by mode.

Further building on these languages, we then explore notions of program equiv-
alence in the adjoint setting, which may be useful both for the development of de-
pendent adjoint types, as well as for reasoning about programs, particularly in the
context of optimization. A first handling of a uniformly defined equivalence across
all modes provides a blueprint for how to work with equivalence in the adjoint set-
ting, particularly handling situations where some, but not all data may be reused, and
addressing the intuitive idea of equivalence when communication is limited to a spe-
cific interface, which may consist of multiple channels/memory addresses, each with
their own specification for communication behavior. Using this, we can then exam-
ine several examples of mode-dependent equivalence, where we combine multiple
different notions of equivalence coherently into one.

vi

Acknowledgments
I would like to express my deepest gratitude to my advisor, Frank Pfenning, who

has been an influence on my research since my very first semester of undergrad,
when I was directed to him with naive questions about garbage collection. The work
presented in this document would not have been possible without all of his guidance,
feedback, and support over the past seven years or more. I also want to thank my
committee, Stephanie Balzer, Henry DeYoung, Bob Harper, and Andy Pitts, for their
feedback and willingness to take the time to serve on a committee, with all that
entails. I would particularly like to thank Stephanie for all of her guidance in how to
navigate an academic conference — without that advice, I would likely have never
met Prof. Pitts, and would have had a very different committee.

Beyond my committee, there are several other people with whom I have had
fruitful discussions about this work, or gotten feedback on some portion of it from.
Three of these people have had an especially large impact — Wiliam Chargin, with
whom I collaborated on some of the earliest parts of this work, developing several
earlier drafts of the proof theory of adjoint logic; and Ryan Kavanagh and Siva
Somayyajula, both of whom, I believe, have read and commented on more versions
of my papers, drafts, and working notes than anyone else. Though less extensive, I
appreciate no less the discussions I have had about my work with others, including
Joelle Dionne, Hannah Gommerstadt, Danny Gratzer, Jon Sterling, Yong Kiam Tan,
and Jennifer Wang.

A few sources of reference material have been especially helpful. I greatly ap-
preciate the aid of the Bibliothèque Nationale de France in making it possible to find
old papers that seemingly appear nowhere else. Bob Harper’s excellent book on pro-
gramming language theory was also incredibly useful throughout this work, serving
as an excellent reference on many different aspects of the field.

Several of my undergraduate professors have also had a large impact on this
work, if more indirectly. Po-Shen Loh and John Mackey were both extremely influ-
ential in reinforcing my decision to pursue research in mathematics to begin with.
Rami Grossberg helped a great deal in building my interest in and understanding
of logic, and also was heavily influential in my decision to study mathematics in a
computer science department, leading me to the line of research I have followed. I
credit Dave Eckhardt’s mentorship for (among other things) a substantial amount of
my understanding of and opinions on concurrent computation.

Beyond the academic side of things, my friends and family members have pro-
vided a great deal of support, distractions when things are difficult, and just gener-
ally company throughout the process. I want to particularly thank my partner, Al,
for putting up with all of the time that research, papers, and a thesis take, and all
the associated long nights of writing, and my parents, for encouraging me both to
get to the point of starting my graduate studies, and throughout those studies. I also
appreciate all of the non-working time spent with my fellow students, including (but
surely not limited to) Sol Boucher, Kristy Gardner, Isaac Grosof, and Ziv Scully.

viii

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Background on Substructural Logic . 4
1.3 Outline of Structure . 6

2 Proof Theory of Adjoint Logic 9
2.1 ADJE: Adjoint Logic with Explicit Structural Rules 12

2.1.1 Cut Elimination . 15
2.1.2 Identity expansion . 22

2.2 ADJI : Making Structural Rules Implicit . 22
2.2.1 Equivalence of ADJI and ADJE . 23
2.2.2 Cut elimination and identity expansion for ADJI , directly 25

2.3 ADJF : Focused Adjoint Logic . 28
2.3.1 Soundness and Completeness . 30

2.4 Embeddings of example logics . 39

3 The Semi-Axiomatic Sequent Calculus 41
3.1 Recovering Asynchrony via Cut . 41
3.2 The Semi-Axiomatic Sequent Calculus SAX . 43
3.3 Cut Elimination for SAX . 44

4 Languages 53
4.1 Process Calculi . 55
4.2 Common Features . 57

4.2.1 Asynchronous Communication . 57
4.2.2 Variables, Symbols, and their Meanings 58
4.2.3 Processes, Values, and Continuations 58
4.2.4 Configurations and (Multi)set Rewriting 61
4.2.5 Typing for Processes and Configurations 62
4.2.6 Recursion . 65

4.3 Message-Passing Semantics . 68
4.3.1 Static Semantics . 68
4.3.2 Dynamic Semantics . 71
4.3.3 Results . 75

ix

4.4 Shared-Memory Semantics . 82
4.4.1 Configuration Typing and Results . 87
4.4.2 Sequentiality . 92

5 Program Equivalence 99
5.1 Introduction and Background . 99

5.1.1 Background . 100
5.1.2 Outline . 102

5.2 Quantified Types . 102
5.3 Renaming . 103
5.4 Observations and Observational Equivalence . 110

5.4.1 Observation and Renaming . 112
5.4.2 From Observations to Observational Equivalence 113
5.4.3 Typed Equivalence . 116

5.5 Logical Equivalence . 116
5.5.1 Equivalence at Variable Types . 118
5.5.2 Formalizing Logical Equivalence . 121
5.5.3 Open Configurations . 123
5.5.4 Ill-typed configurations . 124
5.5.5 Counterexample for looking at single variables 124
5.5.6 Results on Logical Equivalence . 125

5.6 Mode-dependent Equivalence . 148
5.6.1 A strongly isolating equivalence . 148
5.6.2 Upwards-Closed Sets of Modes and Erasure 154

6 Conclusion 161
6.1 Proof Theory and Logic . 162
6.2 Programming Language Specification . 163
6.3 Program Reasoning . 163

Bibliography 165

x

List of Figures

1.1 A sequent calculus presentation of intuitionistic purely linear logic (IMALL) . . 5

2.1 Adjoint Logic with Explicit Structural Rules (ADJE) 13
2.2 Adjoint Logic with Implicit Structural Properties (ADJI) 24
2.3 Focused Adjoint Logic (ADJF) . 31

3.1 A semi-axiomatic presentation of ADJE . 43

4.1 Message-passing typing rules based on a semi-axiomatic presentation of ADJI . . 69
4.2 Reduction rules for message-passing . 72
4.3 Typing rules for shared memory . 84
4.4 Reduction rules for shared memory . 85

5.1 Rules for quantified types . 103

xi

xii

List of Tables

4.1 Grammar for processes, values, and continuations 60
4.2 Meanings of process terms in a message-passing setting 68
4.3 Meanings of process terms (shared memory) . 83

xiii

xiv

Chapter 1

Introduction

Linear Logic [35], in both its intuitionistic and classical forms, has seen use in various parts of
the computer science literature. Other substructural logics, 1 particularly affine logic, likewise
have broad applications. In programming language design, Rust 2 makes use of affine types in
its borrow checker for memory, to ensure that at most one piece of code at a time has permission
to modify a given piece of memory. Linear types also appear in models of quantum computation
such as the quantum lambda calculus [97, 106], where they prevent quantum bits from being
reused in a manner inconsistent with physical reality. For reasoning about program behavior,
there is the example of separation logic [11, 68, 69, 90], which is used for reasoning about
programs with a pointer-based memory heap, and is partially substructural. 3 Reasoning about
logic and deductive systems likewise can be done in a substructural setting, as with the linear
logical framework LLF [15], or the related concurrent logical framework CLF [17, 96, 108].

In order to retain the expressive power of standard structural logic, and to work with both
linear and nonlinear (or non-affine, etc) portions of a system, linear logic as initially presented
by Girard [35] makes use of the exponential modality ! to mark propositions as non-linear, and
therefore freely reusable. This approach to mixing linear and non-linear propositions has two
main disadvantages. Firstly, in such systems, linearity (or affinity, etc) is the default, and so
working nonlinearly can require a fair amount of indirection and working through encodings.
Second, and relatedly, while this approach allows for use of both linear and structural/non-linear
components of a system fairly simply, if we want to mix more systems, for instance combining
linear, affine, and structural components, a more complex system is needed, with more complex
encoding work.

Several different systems for combining substructural (and structural) logics have also been
developed, addressing these disadvantages in varied ways. A first of these is Benton’s mixed lin-
ear and non-linear logic LNL [7], which combines linear and structural logic in a more uniform
way, not biasing towards linearity as Girard’s linear logic does. There are also several systems
of subexponential logic [18, 24, 49, 66, 67], which provide more complex ways to combine sub-

1The details of linear and substructural logics are not necessary to understand this section, but the curious reader
may jump ahead to Section 1.2 for a brief overview of these systems

2As formalized after the fact in several different ways, see, e.g., [48, 109]
3The separating conjunction ∗ is a form of linear conjunction, requiring that its conjuncts hold in disjoint parts

of the heap

1

structural logics, using differently tagged exponentials !c, which behave largely like the standard
exponential !, but are not inherently related to one another. Adjoint logic, which has been ex-
plored in some previous forms [58, 59, 88], builds on both of these lines of work, attempting
to provide both a uniform, unbiased approach to combining logics (as in LNL), while also al-
lowing for more general and complex combinations of logics as in systems of subexponential
linear logic. For instance, adjoint logic can be used to model a variety of modal logics that do
not inherently relate to its substructural origins, such as Lax Logic [31], or the �-free fragment
of modal S4 [75].

Beyond pure proof theory, adjoint logic also has several applications, both in the more theo-
retical direction of logical frameworks, and the more applied direction of programming language
semantics. Our contributions in the direction of logical frameworks are modest — a first step
towards providing a logical framework is to simplify proof search via a focused calculus, which
we explore in a few steps. Caires and Pfenning observed that the purely linear (i.e. without the
exponential !) sequent calculus4 can be used as the basis for a concurrent (session-typed) pro-
gramming language via a proofs-as-programs interpretation [12]. In the purely linear case, each
message has exactly one recipient (and dually, every provider of a service has exactly one client).
A process with an open communication channel also cannot exit without first concluding the pro-
tocol used on that channel, because otherwise some messages might be sent along that channel
with no receiver. With the addition of !, some of this expressive power can be regained, but with
limited precision, as any channel with session type !A can be used for any number of repetitions
of the protocol specified by A. However, while this allows for replicable services, it still does not
provide multicast functionality, where one message can be sent to multiple recipients. Recursive
types also allow us to achieve similar results to !, with a channel being able to produce multiple
copies of an A (either arbitrarily many or some bounded number), but do not allow for channels
to be used by multiple processes. By making use of recursion, it is also possible to copy some
values (e.g. natural numbers represented in unary, or bit streams) to be used multiple times, but
again, this reuse is within a single process. As such this approach also does not provide support
for multicast, nor for sharing of a service between multiple processes, as ! does. Similarly, while
both approaches allow for services to be discarded as necessary, neither allows for messages to
be discarded.

Building on this work in a different direction, SILL [77, 104] combines a fully-featured
functional language with a concurrent linear language, embedding linear computations into the
functional language via a (contextual) monad. This approach allows both the linear and non-
linear portions of the language to be handled “naturally”, resembling a form of π-calculus and
λ-calculus, respectively. However, the concurrent portion of SILL is still limited in similar ways
to Caires and Pfenning’s πDILL, as described above. The addition of the functional layer (which
can be called into from the concurrent layer) makes it possible to invoke computations which
use data non-linearly from within the concurrent layer, but then these computations, living in the
functional layer, are not themselves concurrent. As SILL’s approach is non-uniform, with the
two layers using different syntax (and different logical underpinnings, as the functional layer is
based on natural deduction, while the concurrent layer is based on the sequent calculus), it is also
not entirely obvious how to extend this approach to additionally handle, for instance, an affine

4Often called MALL, or Multiplicative-Additive Linear Logic

2

portion of the language.
Adjoint logic, with its uniform handling of logics with varied structural properties, including

linear logic, can also serve as a basis for a more uniform and more expressive framework for
programming language that make use of substructural features. By extending the work of Caires
and Pfenning [12] to adjoint logic, we can provide a concurrent programming language with
more natural, uniform support for concurrency patterns involving reuse, sharing, or non-use of
channels, including multicast and termination of channels which may already have messages sent
along them.

An adjoint programming language makes it easier to write more complex concurrent pro-
grams, but a major difficulty in programming, particularly in concurrent programming, is with
reasoning about the behavior of programs. Program behavior is, in general, quite complex, and
there are many different aspects to consider, but we will focus in particular on program equiv-
alence. A key application of this is in program transformations, particularly when it comes to
optimization. To optimize a program, we generally want to apply some transformation that im-
proves efficiency (by some measure, such as time, space, energy consumption, and so on), while
ensuring that the transformation does not change the meaning of the program. A suitable notion
of program equivalence then lets us evaluate whether a given transformation affects meaning, ei-
ther in general, or in some restricted cases (for instance, if we know that some piece of memory is
used linearly, after it is read from, it can safely be reallocated, but this optimization is not sound
for memory that might be accessed more than once. This also means, interestingly, that some
optimizations may be sound (in the sense of preserving program meaning) in some parts (e.g.
the linear portion) of an adjoint programming language, but not on the language as a whole. By
considering how equivalence interacts between different layers of an adjoint language (or how
it does not), we can justify applying this type of locally sound optimization, without needing
to consider what impact it may have outside of the layer or portion of the language where it is
sound, or where its necessary constraints are met.

With this thesis, we seek to develop a more full theory of adjoint logic, build on this to develop
adjoint programming languages, and explore equivalence for programs in these languages. In
doing so, we will support the following:

Thesis Statement: Adjoint logic provides a suitably general framework for combin-
ing diverse components of deductive systems, not just in pure logic, but also when
applied to both the specification of and reasoning about programming languages.

1.1 Contributions
There are several major components to the contributions of this thesis. Firstly (Chapter 2), we
present a sequent calculus for adjoint logic in three different formulations — one with explicit
structural rules, one with implicit structural rules, and a focused system. We also develop some of
the proof theory of adjoint logic, proving cut elimination for each of these systems, and proving
that the three systems are equivalent in terms of what they can prove, so they do indeed describe
the same logic. Our work on the proof theory of adjoint logic is not yet published, though it
is referenced as an unpublished manuscript ([86]) in our later published work that builds on it.
While investigating this logic, we developed a new way to present logics in general, the Semi-

3

Axiomatic Sequent Calculus (Chapter 3), which is not inherently related to adjoint logic, but was
useful in much of the following work. The adjoint form of the semi-axiomatic sequent calculus
presented in this thesis extends our prior published work ([26]) on semi-axiomatic sequent cal-
culus for standard, structural logic, as well as an earlier semi-axiomatic system of adjoint logic
used as the basis for programming languages [83], prior to a full theoretical understanding of
the semi-axiomatic sequent calculus in general. Building on a proofs-as-programs interpreta-
tion of adjoint logic, we then reinterpret the proof theory of adjoint logic (specifically, a semi-
axiomatic presentation with implicit structural rules) as the basis for the semantics of several
related programming languages. These languages (Chapter 4) interpret proofs as concurrently
running processes, which may communicate either via asynchronous message passing, or via a
form of shared memory which serves as an implementation of typed substructural futures [39].
For both languages, we prove type-safety via progress and preservation theorems, as well as a
confluence result, since the semantics are naturally nondeterministic. The presentation of adjoint
programming languages given here builds on both our prior work on message-passing [83, 84]
and that on shared memory [85]. The latter appears almost unchanged here, while the message-
passing system we present in this thesis, while related to our earlier system, has been revised to
fit better into the same framework as the shared-memory language we work with more exten-
sively. We then explore notions of equivalence for these programs (Chapter 5), presenting both
a general notion of observational equivalence, which is parameterized by what is observable and
a notion of logical equivalence which agrees with an extensional form of observational equiva-
lence. Finally, we seek to lift this notion of logical equivalence into the adjoint setting, allowing
for different modes to have different equalities, which can then be combined into a coherent
whole. As with the proof theory of adjoint logic, the development of equivalence in the adjoint
setting is not yet published.

1.2 Background on Substructural Logic

We present here a brief overview of intuitionistic purely linear logic (i.e linear logic without
!, often called IMALL), as well as other substructural logics. The key distinguishing feature
of linear logic is that hypotheses must be used exactly once, as opposed to the more familiar
structural logic, where hypotheses may be reused (e.g. (A ⊃ (B ⊃ C)) ⊃ (A ⊃ B) ⊃ A ⊃ C5

is provable, using A twice) or discarded (e.g. A ⊃ (B ⊃ A) is provable, discarding B).
This restriction means that the familiar ∧ of structural logic splits into two different connec-

tives in linear logic — ⊗, from which both conjuncts can be extracted, and N, from which only
a single conjunct can be extracted (but either may be chosen, unlike with ∨ or ⊕, which only
contain a single disjunct). A proof of the multiplicative conjunction A ⊗ B consists of separate
proofs of A and B, which use disjoint sets of hypotheses, while a proof of A N B consists of a
proof of A and a proof of B, which use the same set of hypotheses. The other connectives of
linear logic correspond more clearly to their structural counterparts. The linear implication(
is much the same as a structural implication, in that a proof of A(B is given by a proof of B
which depends on A (or, equivalently, a transformation from proofs of A to proofs of B). The

5The type of the S combinator Sxyz = xz(yz)

4

A ` A id
∆1 ` A ∆2, A ` C

∆1,∆2 ` C
cut

i ∈ J ∆ ` Ai
∆ ` ⊕j∈JAj

⊕Ri
∆, Aj ` C for all j ∈ J

∆,⊕j∈JAj ` C
⊕L

∆ ` Aj for all j ∈ J
∆ ` Nj∈JA

j NR
i ∈ J ∆, Ai ` C
∆,Nj∈JA

j ` C NLi

∆1 ` A ∆2 ` B
∆1,∆2 ` A⊗B

⊗R
∆, A,B ` C

∆, A⊗B ` C ⊗L

∆, A ` B
∆ ` A(B

(R
∆1 ` A ∆2, B ` C
∆1,∆2, A(B ` C (L

· ` 1
1R

∆ ` C
∆,1 ` C 1L

Figure 1.1: A sequent calculus presentation of intuitionistic purely linear logic (IMALL)

difference here is that the proof of B must use A exactly once, whereas a proof of the structural
implication A ⊃ B may discard or reuse A in proving B. Finally, while there are in principle
two distinct linear disjunctions, in the intuitionistic setting, only one of these, ⊕, is present. A
proof of A⊕B consists of either a proof of A or a proof of B, much like in the structural setting.

In Figure 1.1, we present a sequent calculus for linear logic. Here, the objects we work
with and manipulate are sequents, written ∆ ` A, where ∆, the context, stands for a multiset
or unordered list of propositions (so, for instance, a context might be something like the list
A,A,B,C, containing two copies of the propositionA and one each ofB andC). When we write
a comma between two contexts (e.g., ∆1,∆2), we mean the multiset union of these contexts, or,
more simply, the list formed by first writing out all of the entries of ∆1, followed by all of
the entries of ∆2. Note that as multisets are unordered, ∆1,∆2 and ∆2,∆1 both represent the
same multiset, something which we will often use without further comment. Because it will be
convenient through the rest of this thesis to work with n-ary N and ⊕ rather than just the binary
form, we will do so here as well, but of course the two are equivalent (as long as we provide a
nullary form along with the binary one). The index set J here is an arbitrary finite set, as we are
not interested in infinitary connectives in this work.

The key point that ensures that hypotheses are used exactly once from these rules is that the
identity rule only allows us to prove A if the context is exactly A — no further hypotheses can
exist in the context to be ignored. Secondarily, we ensure that hypotheses are never reused in a
proof by consuming them in each of the left rules, and by splitting up the context into disjoint
pieces in the cut, ⊗R, and(L rules, where we need to prove multiple subgoals, all of which
are used in the overall proof (NR and ⊕L provide all hypotheses in each subgoal rather than
splitting them up because only a single subgoal can actually be extracted from the N/⊕, and so
there is no actual reuse of hypotheses).

5

We can then recover structural logic by adding explicit rules for reuse or non-use of hypothe-
ses, called contraction and weakening, respectively:

Γ, A,A ` B
Γ, A ` B contract Γ ` B

Γ, A ` B weaken

The other substructural logics that we will consider then arise by taking one, but not both of
these rules — with only weakening, we get affine logic, in which hypotheses must be used at
most once — reuse is still not possible, but not all hypotheses need to be used. Taking instead
only contraction, we get strict logic, in which every hypothesis must be used at least once — hy-
potheses may be freely reused, but they must be relevant to the goal that is proven, as they cannot
just be discarded. Other substructural logics exist, particularly ordered logics, which reject a rule
called exchange, which allows for reordering the context of hypotheses, and which we have left
implicit here, as we will always assume it throughout the work that follows. However, we will
restrict our focus here to linear, affine, strict, and structural logic.

1.3 Outline of Structure

The structure of this thesis largely follows the breakdown of the contributions of the thesis into
distinct themes.

We will begin in Chapter 2 by exploring the prior work that adjoint logic builds on, giving
context to define the core concepts of adjoint logic itself. With a first presentation of adjoint
logic, we develop some results (in particular, cut elimination and identity expansion), ensuring
that adjoint logic is a sensible logic, in a technical sense. Sections 2.2 and 2.3 cover our de-
velopment (in two steps) of a focused system of adjoint logic, in which proof search is more
deterministic, with many of the “non-essential” choices to be made when deciding how to prove
a given statement taken away, along with results that ensure that all of our systems of adjoint
logic have the same expressive power, in that they can prove the same statements. Finally, in
Section 2.4, we show how some examples of logics from the computer science literature can be
represented as instances of adjoint logic.

The proof theory in Chapter 2 is presented using the sequent calculus, but the program-
ming languages that we will build in Chapter 4 will make use of the semi-axiomatic sequent
calculus, and so we bridge the gap with Chapter 3, where we give a brief overview of what
the semi-axiomatic sequent calculus is, and what it looks like in the adjoint case. We also, for
completeness, extend the cut elimination result from our prior work [26], which applied to a
semi-axiomatic sequent calculus presentation of standard structural intuitionistic logic, to one of
our calculi for adjoint logic.

In Chapter 4, we present two programming languages, capturing two different notions of
asynchronous communication between concurrently running processes. Since the two languages
we work with share much of their theory, and, indeed, their syntax, we first present the shared
aspects of these languages (Section 4.2). In Sections 4.3 and 4.4, we first provide a way of un-
derstanding this syntax as a language where communication occurs via asynchronous message
passing, and then a second interpretation where communication instead occurs via writing to and

6

reading from memory, each of which is presented with associated type safety and confluence re-
sults. The latter interpretation, via memory, also allows us to make some interesting observations
about how these naturally parallel computations can be sequentialized, as well as how they relate
to futures, which make up the remainder of this chapter (Section 4.4.2).

Chapter 5 is the final main chapter of this work, and covers notions of program equivalence,
focusing on the shared-memory language from Section 4.4. We first examine some background,
both on the use cases for and some technical details of handling equivalence, before moving
on to define notions of both observational (Section 5.4) and logical (Section 5.5) equivalence,
which we show agree for well-typed programs. As a final technical portion of this work, in
Section 5.6 we examine a few possible ways to define equivalences that make more use of the
adjoint framework, combining multiple different notions of equivalence into one.

In Chapter 6, we conclude, summarizing again the results of the thesis as a whole, and pro-
viding an outlook on possible directions for future work.

7

8

Chapter 2

Proof Theory of Adjoint Logic

Adjoint logic is a schema for describing logics with a wide variety of features, providing a
unifying framework for several common modal and substructural logics, including lax logic [30],
the � fragment of S4 [75], and linear logic (including !) [35].

The two lines of work that most directly feed into adjoint logic are Benton’s mixed linear
and non-linear logic LNL [7], and various systems of work on subexponential logics [18, 49,
66, 67]. Both systems generalize linear logic in different ways — LNL is a logic with fully-
featured linear and structural layers, connected by an adjoint pair of operators F and G which
transport propositions between the layers. Its key generalization from linear logic lies in allowing
connectives to be applied directly to propositions in the structural layer, where standard linear
logic encodes structural connectives (e.g. the structural implication ⊃ or→) as combinations of
linear connectives with the exponential !. In this way, LNL treats the linear and non-linear parts
of the logic on an equal footing, rather than privileging one or the other as the primary “working
area” of the logic. Subexponential logics generalize linear logic in a different direction, retaining
the idea of a privileged layer (or zone, or mode, depending on the terminology used) of the logic,
which all connectives operate on, but extending beyond linear logic’s single exponential !1 to a
family of subexponentials !z, labelled with what layer (zone, mode, ...) they correspond to, the
idea being that two propositions !aA and !bA may be distinct, and not provably equivalent, even
with the same underlying proposition A. Some examples of subexponential logic (e.g. [66]) also
allow different subexponentials to provide different structural properties (e.g., one may have an
affine !a that allows propositions of the form !aA to go unused, but not to be duplicated, while
also having a structural !b, which allows propositions to be both duplicated and to go unused).

Our system of adjoint logic attempts to build on both of these generalizations of linear logic,
giving a general system for working with more than two distinct layers of logic, which may have
a variety of different structural properties and interpretations, as with subexponential logics, but
treating these different layers in a uniform fashion, as in LNL. We also find that this generality
allows for layers to be related to each other in more varied ways than either LNL (with its fixed
two layers) or subexponentials (with a fixed “working zone”, through which a proposition must
transit to get from one layer to another) provide. However, many of the core concepts and ideas
that underlie adjoint logic arise as generalizations of concepts in LNL, subexponentials, or modal

1Or, in the more commonly presented classical case, pair of exponentials ! and ?.

9

logics in general.
The first key idea of adjoint logic, based on the multi-context presentations commonly used

in modal logic, is to treat propositions non-uniformly, giving each proposition a mode of truth
(or just mode) m. We think of each mode as representing a separate “base” logic, which may
have different ways of proving or using propositions than other modes. Adjoint logic allows us to
combine the base logics into a coherent larger logic in which different portions may behave dif-
ferently. For instance, to model linear logic’s ! in adjoint logic, we work with two modes, one of
which behaves just as linear logic (without !), and the other of which (representing propositions
prefixed with !) is treated structurally (albeit restricted to only allow certain forms of proposi-
tions, to ensure that the structural layer only represents propositions of the form !A), allowing
propositions to be reused freely.

To enable us to join different modes together, we need to describe how the modes are allowed
to interact. Letting propositions freely move between modes immediately leads to chaos — for
instance, in the example of linear logic with !, it would be possible to duplicate or delete linear
propositions by simply lifting them to the mode of !-prefixed propositions. The natural idea
that comes from modal and substructural logics is to restrict what modes m hypotheses in a
proof of a proposition at mode k can have. For each instance of adjoint logic, we will treat the
modes as being drawn from a preordered set, i.e., a set equipped with a transitive and reflexive
relation ≤. We think of k ≤ m as expressing exactly the idea that a proof of a proposition
at mode k may depend on hypotheses at mode m (or, dually, k � m means that a proof of a
proposition at mode m may not depend on hypotheses at mode k). There does not appear to
be any fundamental obstacle to working with some more general structure (and indeed, other
approaches to adjoint logic have used more complex structures such as 2-categories [58, 59]),
but a preorder is sufficient for the applications that we work with.

The restriction on hypotheses can then be simply described by the following principle, which
we call the declaration of independence:

A proof of a proposition Ak may only depend on hypotheses Bm for which m ≥ k.

We will enforce this condition globally, and this means that a well-formed sequent of adjoint
logic has the form

Ψ ` Ak where Ψ ≥ k.

Here, Ψ is a context, treated for now in the linear manner, so that it represents a multiset of
propositions (rather than just a set), and we write Ψ ≥ k to mean that each antecedent Bm in Ψ
satisfies m ≥ k. This type of sequent generalizes a common dyadic [2] or two-zone presentation
of logics with modal operators [6], where proofs of one type of judgment may be restricted to
only depend on a certain type of hypotheses. For instance, proofs of validity may be forbidden to
depend on hypotheses dealing with truth [75], or proofs of unrestricted (structural) propositions
may be forbidden to depend on linear hypotheses [7].

Just as in these more specific examples, this restriction is not arbitrary, but rather is necessary
to ensure that our logic is properly constructed — for instance, to prove cut elimination. This is
most simply illustrated with an example with a mode L whose propositions are treated linearly
and a mode U > L whose propositions are treated structurally, able to be reused.

10

Example 1 (Necessity of Independence). Suppose we have propositions AL and BU, and that
AL ` BU. We can then construct the following proof (using natural rules for cut and identity —
see Section 2.1 for some of the rules that we will actually work with in adjoint logic):

AL ` BU AL, BU ` AL

id

AL, AL ` AL

cut

With cut, this sequent is easily provable, but it has no cut-free proof unless AL ` 1L.
For a second example, albeit one which relies on rules for at least a few connectives, consider

the following (invalid) proof:

AL ` AL

id

AL ` ↑ULAL

↑R
C ∈ σ(U)

AL ` AL

id

↑ULAL ` AL

↑L AL ` AL

id

↑ULAL ` AL

↑L

↑ULAL, ↑ULAL ` AL ⊗ AL

⊗R

↑ULAL ` AL ⊗ AL

contract

AL ` AL ⊗ AL

cut

Of course, we expect that we should not be able to prove the sequent AL ` AL⊗AL if the mode L
is to reasonably be considered linear. The problem here arises with the first (left) premise of cut,
AL ` ↑ULAL, highlighted in red — this sequent does not satisfy independence. Reading the proof
bottom-up, this is the fault of the cut rule, for not enforcing that its premises are well-formed,
even though its conclusion is, and we will see later on that our eventual cut rule will have a
constraint to enforce this property, ruling out this example proof.

Now, to bring propositions from one mode to another, we introduce new connectives, called
shifts ↑mk and ↓`m, pronounced up from k to m and down from ` to m, or just up and down when
the modes are either clear from context or unimportant. These are unary connectives, requiring
k ≤ m and m ≤ `, respectively, and allow us to embed propositions from a lower mode k or a
higher mode ` into the mode m. The shifts are a generalization of Benton’s operators F and G.
In several closely related systems, including LNL [7] itself as well as other systems of adjoint
logic, [58, 59, 88] these operators (or their equivalents) form an adjunction, with F a G (or,
in our notation, ↓km a ↑km), which is the basis for the name adjoint logic. These results suggest
that our formulation of adjoint logic, too, can be given a categorical semantics for which we can
prove (possibly immediately from the definition) that ↓ a ↑, but such a categorical semantics is
out of scope of this work.

As a final piece of our definition of adjoint logic, we restrict what structural rules are available
at certain modes. To do this, we make use of a monotone map σ that takes modes to subsets of
the two-element set {W,C}, with W representing weakening and C contraction. If W ∈ σ(m),
we say that m admits weakening, and allow weakening of propositions at mode m. Likewise, if
C ∈ σ(m), then m admits contraction. While we always allow the structural rule of exchange,
we see no inherent obstacle to a system that restricts exchange as well, as in the system of Licata
et al. [59], or that of Kanovich et al. [49].

The propositions at each mode are constructed uniformly, using the syntax of linear logic
for connectives, other than the newly added shifts ↑mk Ak and ↓`mA`. We then have the following

11

syntax for propositions of adjoint logic:

Am, Bm ::= pm | Am(Bm | Am ⊗Bm | 1m | ⊕j∈JAjm | Nj∈JA
j
m | ↑mk Ak | ↓`mA`

Here, pm stands for atomic m-propositions. We also generalize internal and external choice
(⊕ and N) from their usual binary forms to n-ary forms, parameterized by a finite index set
J , as this will be more practical from an operational perspective (Chapter 4). With J = ∅
we recover > = Nj∈∅() and 0 = ⊕j∈∅() in any mode, and it is similarly clear that with a
two-element index set, we recover the standard binary ⊕ and N. Each mode has access to the
same connectives (though we may, in some examples, restrict which connectives are available
at specific modes), and the left and right rules for these connectives are uniform across different
modes. The differences between modes arise only in which structural rules are permissible 2 and
in the rules for the shifts, which have side conditions dealing with the modes. Also note that
while technically, we have distinct (but related!) connectives(m and(k at each mode, with
(m only operating on m-propositions, for instance, which version of a connective is being used
can always be determined from the modes of the propositions to which it is applied, and so we
do not explicitly label the connectives.

At this point, we are equipped to present our calculi for adjoint logic.

2.1 ADJE: Adjoint Logic with Explicit Structural Rules
The first calculus we examine has explicit structural rules of weakening and contraction. This
calculus closely matches the calculi used for intuitionistic linear logic with the exponential !3,
where the rules for weakening and contraction of replicated formulae are explicit, and makes it
easy to see what the rules look like at any given mode, and so what rules we have for the restric-
tion of the instance of adjoint logic to a specific mode. For instance, if we have modes L ≤ U,
with L being linear (σ(L) = ∅) and U being structural or unrestricted (σ(U) = {W,C}), the rules,
when restricted to L, are exactly the rules of purely linear logic (augmented with shifts, which,
when restricted to a single mode, are logical no-op connectives). Similarly, when restricting to U,
we get the rules of structural logic (as both weakening and contraction will always be allowable
at U).

This calculus, which we call ADJE , can be found in Figure 2.1. As is common for the sequent
calculus, we read the rules in the direction of bottom-up proof construction, and so for each rule,
we assume that the conclusion is well-formed (satisfies independence), and add side conditions
to enforce that the premises are well-formed as well.

We begin with the judgmental rules of identity and cut, which express the connection between
antecedents and succedents. Identity says that given Am as a hypothesis, we may conclude Am.
Cut says the opposite: if we can concludeAm, then we are entitled to assumeAm as a hypothesis.

In the cut rule, independence comes into play: if we only assume that the conclusion satisfies
independence, we get that Ψ1 Ψ2 ≥ k, but in order for the premise Ψ1 ` Am to be well-formed,

2When we develop a system in which structural rules are implicit, this will lead to some mode-related side
conditions on some of the left and right rules, but these conditions are still stated in a uniform fashion.

3Often written as ILL

12

Am ` Am id
Ψ1 ≥ m ≥ k Ψ1 ` Am Ψ2, Am ` Ck

Ψ1,Ψ2 ` Ck
cut

W ∈ σ(m) Ψ ` Ck
Ψ, Am ` Ck weaken

C ∈ σ(m) Ψ, Am, Am ` Ck
Ψ, Am ` Ck

contract

i ∈ J Ψ ` Aim
Ψ ` ⊕j∈JAjm

⊕Ri
Ψ, Ajm ` Ck for all j ∈ J

Ψ,⊕j∈JAjm ` Ck
⊕L

Ψ ` Ajm for all j ∈ J
Ψ ` Nj∈JA

j
m

NR
i ∈ J Ψ, Aim ` Ck

Ψ,Nj∈JA
j
m ` Ck

NLi

Ψ1 ` Am Ψ2 ` Bm

Ψ1,Ψ2 ` Am ⊗Bm
⊗R

Ψ, Am, Bm ` Ck
Ψ, Am ⊗Bm ` Ck

⊗L

Ψ, Am ` Bm

Ψ ` Am(Bm
(R

Ψ1 ≥ m Ψ1 ` Am Ψ2, Bm ` Ck
Ψ1,Ψ2, Am(Bm ` Ck (L

· ` 1m
1R

Ψ ` Ck
Ψ,1m ` Ck 1L

Ψ ≥ ` Ψ ` A`
Ψ ` ↓`mA`

↓R Ψ, A` ` Ck
Ψ, ↓`mA` ` Ck

↓L

Ψ ` Ak
Ψ ` ↑mk Ak

↑R k ≥ ` Ψ, Ak ` C`
Ψ, ↑mk Ak ` C`

↑L

Figure 2.1: Adjoint Logic with Explicit Structural Rules (ADJE).
We presuppose that the conclusion of each rule satisfies the declaration of independence and
ensure, with conditions on modes, that the premises will, too.

we need Ψ1 ≥ m, and likewise, for Ψ2, Am ` Ck to be well-formed, we need m ≥ k. We
combine these into the single premise Ψ1 ≥ m ≥ k.

The structural rules of weakening and contraction are straightforward — they simply need to
check that the mode of the principal formula allows the rule to be used.

The logical rules defining the standard multiplicative and additive connectives are the linear
rules for those connectives, regardless of what mode they are at, since we have separated out
the structural rules. In all but one case — that of(L — the well-formedness of the conclusion
implies the well-formedness of all premises. As for(L, we know from the well-formedness of
the conclusion that Ψ1 ≥ k, Ψ2 ≥ k, and m ≥ k. These facts by themselves already imply the
well-formedness of the second premise, but we need to check that Ψ1 ≥ m in order for the first
premise (Ψ1 ` Am) to be well-formed.

Finally, we reach the rules for the new shift connectives. Recall that in ↑mk Ak and ↓`mA` we
require that k ≤ m and m ≤ `, which provides additional information for well-formedness. We
first consider the two rules for ↑. We know from the conclusion of ↑R that Ψ ≥ m and from

13

the requirement of the shift that m ≥ k. Therefore, as ≥ is transitive, Ψ ≥ k and the premise is
always well-formed. This also means that this rule is invertible, an observation integrated into
the focusing rules for the system ADJF presented in Section 2.3.

From the conclusion of ↑L, we know Ψ ≥ `, m ≥ `, and m ≥ k. This does not imply that
k ≥ `, which we need for the premise Ψ, Ak ` C` to be well-formed. As such, we need to add
k ≥ ` as a premise to the rule, and the rule is non-invertible.

The downshift rules are constructed analogously, taking only the declaration of independence
and properties of the preorder≤ as guidance. Note that in this case the left rule is invertible, while
the right rule is non-invertible.

At this point we can prove some simple properties of the shifts as illustrative examples. For
instance, shifts distribute over implication — given modes k ≤ m, we can construct the following
proof:

Am(m Bm, Am ≥ m
Am ≥ m Am ` Am id

Bm ` Bm
id

Am(m Bm, Am ` Bm
(L

Am(m Bm, Am ` ↓mk Bm
↓R

Am(m Bm, ↓mk Am ` ↓mk Bm
↓L

↓mk (Am(m Bm), ↓mk Am ` ↓mk Bm
↓L

↓mk (Am(m Bm) ` ↓mk Am(k ↓mk Bm
(R

A similar proof shows that the upshift also distributes over implication. We can likewise show
that the shifts distribute over the other connectives — for instance, the following proof shows
that ↑mk distributes over Nj∈J . Note that the premises of NR (and likewise ⊕L) need not all have
proofs of the same form, but in this example they do (and so we show a generic case):

k ≥ k

` ∈ J A`k ` A`k
id

Nj∈JA
j
k ` A`k

NL`

↑mk Nj∈J A
j
k ` A`k

↑L

↑mk Nj∈J A
j
k ` ↑

m
k A

`
k for all ` ∈ J

↑R

↑mk Nj∈J A
j
k ` Nj∈J↑mk A

j
k

NR

Another useful property of shifts (which we make heavy use of in Section 2.3 when working
with focusing) is that shifts within a single mode do not affect provability — that is, ↓mmAm a`
Am a` ↑mmAm. This can be seen by the following four proofs:

Am ` Am id

↓mmAm ` Am
↓L Am ≥ m Am ` Am id

Am ` ↓mmAm
↓R

m ≥ m Am ` Am id

↑mmAm ` Am
↑L Am ` Am id

Am ` ↑mmAm
↑R

14

Two of these proofs require no checking of mode conditions, while in the other two, the mode
conditions are trivially satisfied, because the only mode involved is m.

For a final simple example, we show that shifts compose, as long as they are all in the same
direction. For instance, if k ≤ m ≤ `, then ↑`m↑mk Ak a` ↑`kAk — an upshift may make stops
in between its start and end point without affecting the provability of the proposition. This also
means that in a mode structure where there are multiple routes upwards from k to `, following
any such route yields an equivalent proposition. Of course, the same applies for downshifts
as well. The following two proofs demonstrate this for upshifts (and those for downshifts are
similar):

m ≥ k
k ≥ k Ak ` Ak id

↑mk Ak ` Ak
↑L

↑`m↑mk Ak ` Ak
↑L

↑`m↑mk Ak ` ↑`kAk
↑R

k ≥ k Ak ` Ak id

↑`kAk ` Ak
↑L

↑`kAk ` ↑mk Ak
↑R

↑`kAk ` ↑`m↑mk Ak
↑R

2.1.1 Cut Elimination

We now set out to prove that this calculus satisfies cut elimination — that is, that any sequent
provable in the calculus also has a proof that does not use the cut rule. This has several use-
ful consequences — in the pure proof theory, it gives that ADJE has the subformula property
(any provable sequent has a proof mentioning only subformulae of the formulae in the original
sequent) and that ADJE is consistent (that is, that we cannot prove falsehood ⊕j∈{}Ajm, as we
can easily see that no cut-free proof of this formula exists). Operationally, we can also take the
steps of the cut elimination algorithm as computation steps in a programming language based on
adjoint logic (chapter 4).

Because we have an explicit rule of contraction, cut elimination does not follow by a simple
structural induction. However, we can follow Gentzen’s approach [34] and allow multiple copies
of the same proposition to be removed by the cut, which then allows a structural induction argu-
ment. To do this, we generalize the rule of cut to a multicut,4 which can remove n ≥ 0 copies of
a proposition provided that the structural properties of the mode of that proposition allow it.

To simplify the presentation of this rule, we define the multiplicities of a mode m (µ(m) ⊆
N), specifying what numbers of copies of a proposition at mode m can be cut out by a multicut.
This is defined as:

µ(m) = {n | (n = 0 ∧W ∈ σ(m)) ∨ n = 1 ∨ (n ≥ 2 ∧ C ∈ σ(m))}

With this notation, we can write down a simple rule of multicut (where Anm denotes n copies of

4The term “multicut” has been used in the literature for several different rules We follow here the proof theory
literature [65, Section 5.1], where it refers to a rule that cuts out some number of copies of the same proposition A,
as in Gentzen’s original proof of cut elimination [34], where he calls it “Mischung”, rather than one of the variants
that cuts out several propositions together, for instance.

15

Am — that is, the context Am, . . . , Am︸ ︷︷ ︸
n times

):

Ψ1 ≥ m ≥ k n ∈ µ(m) Ψ1 ` Am Ψ2, A
n
m ` Ck

Ψ1,Ψ2 ` Ck
cut(n)

As 1 ∈ µ(m) always, the cut rule that we presented earlier is simply the n = 1 case of the cut(n)
rule. As such, proving that the multicut rule is admissible from ADJE (without using cut) also
proves that cut is admissible, and likewise, if we can eliminate all multicuts from ADJE proofs,
we can also eliminate standard cuts.

Beyond this, we also observe that weakening and contraction can be derived as instances
of multicut where the first premise always holds (by well-formedness of the conclusion of the
multicut), the second premise is exactly the check that weakening or contraction is admissible,
as in the weakening or contraction rule, the third premise is proven by an identity, and the fourth
premise is the main premise of the weakening (or contraction) rule.

Am ≥ m ≥ k W ∈ σ(m) Am ` Am id
Ψ ` Ck

Am,Ψ ` Ck
cut(0)

Am ≥ m ≥ k C ∈ σ(m) Am ` Am id
Ψ, Am, Am ` Ck

Ψ, Am ` Ck
cut(2)

Moreover, each instance of multicut can be derived from cut, along with weakening or contrac-
tion, depending on the choice of n — we show here the n = 0 and n = 2 examples. If n = 1,
multicut is just the usual cut, and for n > 2, we need to apply contraction multiple (n− 1) times,
rather than the single application we see when n = 2.

Ψ1 ≥ m ≥ k Ψ1 ` Am
W ∈ σ(m) Ψ2 ` Ck

Ψ2, Am ` Ck weaken

Ψ1,Ψ2 ` Ck
cut

Ψ1 ≥ m ≥ k Ψ1 ` Am
C ∈ σ(m) Ψ2, Am, Am ` Ck

Ψ2, Am ` Ck
contract

Ψ1,Ψ2 ` Ck
cut

Exchanging cut for multicut therefore does not affect provability (in the presence of weakening
and contraction). Moreover, we can replace cut, weakening, and contraction all with multicut,
giving a system which can prove the same sequents as the original (albeit which no longer sat-
isfies cut elimination — a multicut implementing weakening, for instance, cannot necessarily be
eliminated).

We now move on to prove admissibility of multicut, writing Ψ `̀ E Am to mean that there is
an ADJE proof of Ψ ` Am that uses neither cut nor multicut (but which may use weakening or
contraction):
Theorem 1 (Admissibility of multicut in ADJE). If Ψ1 ≥ m ≥ k, n ∈ µ(m), Ψ1 `̀ E Am, and
Ψ2, A

n
m `̀ E Ck, then Ψ1,Ψ2 `̀ E Ck.

16

Proof. This follows by induction on the (lexicographically ordered) triple (Am,D, E), where D
is the proof that Ψ1 `̀ E Am and E is the proof that Ψ2, A

n
m `̀ E Ck. The cases of this induction

fall into 4 main groups, depending on the last rule used in each ofD and E , and whetherAm is the
principal formula (where we view the proposition being dropped or duplicated as the principal
formula of weakening and contraction, respectively) of these last rules.

Identity Cases The simplest cases are the identity cases, where the last rule used in one of D
or E is an identity. In these cases, the desired proof is simply the non-identity one of D and E .
For example, if E ends in an identity, then, because the context must contain only the principal
formula of that identity, E must be the following proof:

Am `E Am id

with Ψ2 being empty, n = 1, and Ck = Am. This then means that D, being a proof that
Ψ1 `̀ E Am, is already exactly a proof that Ψ1,Ψ2 `̀ E Ck. The case where D ends in an identity
is similarly simple.

Commuting Cases The next group of cases are the commuting cases, where Am is not the
principal formula of at least one of the last rules of D and E . In these cases, we can, intuitively,
“commute” the multicut we are trying to prove admissible past this rule for which Am is not
principal, and our proof that Ψ1,Ψ2 `̀ E Ck will consist of applying this rule to reach a state
where we can apply our inductive hypothesis (potentially multiple times) with the same Am, but
one of D and E being smaller. Note that these cases include several where either D or E end in
a structural rule (weakening or contraction), but Am is not the principal formula of that rule. We
consider two examples of these cases, one in which the rule we commute past is for a connective,
and one in which the rule we commute past is a structural rule.

First, consider the case where D is arbitrary, and

E =

Ψ3, A
i
m ≥ `

E1
Ψ3, A

i
m `̀ E B`

E2
Ψ4, A

j
m, D` `̀ E Ck

Ψ3,Ψ4, A
n
m, B`(D` `̀ E Ck

(L

In this case, Ψ2 = Ψ3,Ψ4, B`(D`, and i, j are some natural numbers such that i+ j = n.
We can then construct the following proof (using our inductive hypothesis once for each of

i, j that is non-zero):

(Ψ1 if i > 0),Ψ3 ≥ `
i.h.(Am,D, E2)

(Ψ1 if i > 0),Ψ3 `̀ E B`

i.h.(Am,D, E2)
(Ψ1 if j > 0),Ψ4, D` `̀ E Ck

Ψ1,Ψ3,Ψ4, B`(D` `̀ E Ck
(L

That Ψ3 ≥ ` follows immediately from Ψ3, A
i
m ≥ ` in E . If i > 0, we can also conclude from

this that m ≥ `, and since Ψ1 ≥ m, we then also have that Ψ1 ≥ ` in this case. The other two
premises of this(L rule are either exactly E1 or E2 if i or j are zero, respectively, or the result
of applying the inductive hypothesis to these smaller proofs (as shown above). In either case, we
have the desired proof.

17

Now, consider the case where E is arbitrary, and

D =

W ∈ σ(`)
D1

Ψ3 `̀ E Am
Ψ3, B` `̀ E Am

weaken

In this case, Ψ1 = Ψ3, B`, and we can construct the following proof:

W ∈ σ(`)
i.h.(Am,D1, E)

Ψ3 `̀ E Ck
Ψ3, B`,Ψ2 `̀ E Ck

weaken

Despite the fact that the rule we are commuting our cut past is a structural rule, we can treat it
identically to one of the rules for a connective.

The other commuting cases, which make up the bulk of the cases of this induction, are similar
to those shown, without any substantial proof needed.

Principal Structural Cases The first set of cases we consider where Am is the principal for-
mula of the rule we are examining are those where E ends in a structural rule which has Am as
its principal formula. In these cases, we are able to combine this structural rule into the multicut
we are attempting to show admissible, changing the number of copies of Am that the cut creates,
and allowing us to conclude by our induction hypothesis, applied to (Am,D, E1), where E1 is a
subproof of E .

First, we examine the case of weakening, where D is arbitrary and

E =

W ∈ σ(m)
E1

Ψ2 `̀ E Ck
Ψ2, Am `̀ E Ck

weaken

In this case, we know that Ψ1 ≥ m ≥ k (by assumption), that 0 ∈ µ(m) (since W ∈ σ(m)),
that Ψ `̀ E Am (from D), and that Ψ2 `̀ E Ck (from E1), and can therefore apply our inductive
hypothesis with n = 0 to (Am,D, E1) to get that Ψ1,Ψ2 `̀ E Ck, as desired.

Now, consider the case of contraction, where D is again arbitrary, and

E =

C ∈ σ(m)
E1

Ψ2, Am, Am `̀ E Ck
Ψ2, Am `̀ E Ck

contract

As in the previous case, our assumptions,D, and E1 give us all that we need to apply our inductive
hypothesis with the same n, but E1 uses one more copy ofAm than E did, and so we need to know
that n+ 1 ∈ µ(m). However, since C ∈ σ(m), we know that µ(m) contains all natural numbers
greater than 0 — in particular, it contains n + 1, which cannot be 0. We again reach the desired
result immediately from applying the inductive hypothesis.

While these cases would present difficulty were we working only with a normal cut, our use
of multicut makes them not only provable, but almost immediate.

18

Principal Connective Cases The final cases we need to consider are those where both D and
E end in connective rules for which Am is a principal formula. If either D or E end in an identity
or structural rule, one of the previous three cases applies, and if both end in connective rules,
but Am is not principal in one of these rules, then a commuting case applies. These cases are
therefore exhaustive, covering all possible Am, D and E .

The principal connective cases contain the bulk of the actual content of the cut admissibility
proof. Here, rather than simply moving upwards in the structure of D or E and applying the
inductive hypothesis at the same Am but with smaller proofs, we will break down Am into some
number of smaller propositions, at which we may then apply the inductive hypothesis, even with
proofs that are not subproofs of or structurally smaller than D or E .

We will examine here several cases — first ⊕ as a simple example to illustrate the general
structure of these proofs, then both shifts, to examine what impact the modes have on the proof,
and finally(, whose left rule also has a condition on modes, and which also illustrates how the
proof structure works when rules have multiple (non-uniform, unlike for ⊕ and N) premises.

We begin with the case of ⊕, where

D =

i ∈ J
D1

Ψ1 `̀ E Aim
Ψ1 `̀ E ⊕j∈JAjm

⊕Ri
and E =

Ej
Ψ2,

(
⊕j∈JAjm

)n−1
, Ajm `̀ E Ck for all j ∈ J

Ψ2,
(
⊕j∈JAjm

)n−1
,⊕j∈JAjm `̀ E Ck

⊕L

Note that we cannot have n = 0 in this case, as then the principal formula of E would (even if it
were also an instance of⊕j∈JAjm) not be the cut formula, and this can be handled as a commuting
case. We therefore only consider n ≥ 1 here.

If n = 1, then we can apply the inductive hypothesis to (Aim,D1, Ei), and this immediately
gives our desired result.

If n > 1, since we know by assumption that n ∈ µ(m), it must be the case that C ∈ σ(m), and
also that n − 1 ∈ µ(m). We may therefore apply the inductive hypothesis to (⊕j∈JAjm,D, Ei),
giving us the following proof, which we call E ′:

Ψ1 ≥ m ≥ k n− 1 ∈ µ(m)
D

Ψ1 `̀ E ⊕j∈JAjm

Ei
Ψ2,

(
⊕j∈JAjm

)n−1
, Aim `̀ E Ck

Ψ1,Ψ2, A
i
m `̀ E Ck

i.h.(
(
⊕j∈JAjm

)
,D, Ei)

Now, applying the inductive hypothesis again, at (Aim,D1, E ′), we get the following proof:

Ψ1 ≥ m ≥ k 1 ∈ µ(m)
D1

Ψ1 `̀ E A
i
m

E ′
Ψ1,Ψ2, A

i
m `̀ E Ck

Ψ1,Ψ1,Ψ2 `̀ E Ck
i.h.(Aim,D1, E ′)

This is almost the desired result, but has two copies of Ψ1, as a result of our two uses of the
inductive hypothesis. To resolve this, we note that Ψ1 ≥ m and C ∈ σ(m), so it must also be the
case that C ∈ σ(Ψ1), and so we can apply the contraction rule repeatedly to propositions in Ψ1

to remove the extra copies, giving the desired proof that Ψ1,Ψ2 `̀ E Ck.

19

In the remaining cases, we will elide the details of handling of this multiplicity n, but all
are similar, involving multiple invocations of the inductive hypothesis, and then contracting to
remove excess copies of Ψ1 from the resulting proof.

We now examine the shifts, first taking Am = ↓`mA`. In this principal case, we have

D =

Ψ1 ≥ `
D1

Ψ1 `̀ E A`

Ψ1 `̀ E ↓`mA`
↓R

and E =

E1
Ψ2,

(
↓`mA`

)n−1
, A` `̀ E Ck

Ψ2,
(
↓`mA`

)n−1
, ↓`mA` `̀ E Ck

↓L

From D, we have Ψ1 ≥ `, and since ↓`mA` is well-formed, ` ≥ m. Thus, Ψ1 ≥ ` ≥ k, and so we
may apply the inductive hypothesis to A`,D1, E1 to reach the desired result: 5

Ψ1 ≥ ` ≥ k 1 ∈ µ(`)
D1

Ψ1, `̀ E A`
E1

Ψ2, A` `̀ E Ck
Ψ1,Ψ2, `̀ E Ck

i.h.(A`,D1, E1)

In the principal case where Am = ↑m` A`, we have

D =

D1

Ψ1 `̀ E A`
Ψ1 `̀ E ↑m` A`

↑R
and E =

` ≥ k
E1

Ψ2, (↑m` A`)
n−1 , A` `̀ E Ck

Ψ2, (↑m` A`)
n−1 , ↑m` A` `̀ E Ck

↑L

Since ↑m` A` is well-formed, we have m ≥ `, which, combined with the assumption that Ψ1 ≥
m ≥ k, gives us that Ψ1 ≥ m ≥ `. Adding also that ` ≥ k (from E), we can conclude that
Ψ1 ≥ ` ≥ k, enabling us to apply the inductive hypothesis to A`,D1, E1 to get the desired result:

Ψ1 ≥ ` ≥ k 1 ∈ µ(`)
D1

Ψ1 `̀ E A`
E1

Ψ2, A` `̀ E Ck
Ψ1,Ψ2 `̀ E Ck

i.h.(A`,D1, E1)

We now examine our final example case, where Am = Bm(Dm. In this case, we have

D =

D1

Ψ1, Bm `̀ E Dm

Ψ1 `̀ E Bm(Dm
(R

and, writing Ψ2 = Ψ3,Ψ4 and taking i, j to be natural numbers with i+ j = n− 1,

E =

Ψ3, (Bm(Dm)i ≥ m
E1

Ψ3, (Bm(Dm)i `̀ E Bm

E2
Ψ4, (Bm(Dm)j , Dm `̀ E Ck

Ψ3,Ψ4, (Bm(Dm)n−1 , Bm(Dm `̀ E Ck
(L

If n = 1, then i, j must both be zero, and we can build the following proof:

Ψ1,Ψ3 ≥ m ≥ k F
E2

Ψ4, Dm `̀ E Ck
Ψ1,Ψ3,Ψ4 `̀ E Ck

i.h.(Dm, . . . , E2)

5In the case where n = 1 — for n > 1, we first need to apply the inductive hypothesis to remove the extra copies
of ↓`mA`, and our resulting proof will require us to contract repeatedly to remove excess copies of Ψ1, as with ⊕.

20

where

F =

Ψ3 ≥ m
E1

Ψ3 `̀ E Bm

D1

Ψ1, Bm `̀ E Dm

Ψ1,Ψ3 `̀ E Dm
i.h.(Bm, E1,D1)

Both uses of the inductive hypothesis here are justified, as they are on Bm and Dm, which are
both subformulae of Am = Bm (Dm, and so the proofs to which they are applied need not be
smaller than D and E . For space reasons we have omitted several side conditions on these uses
of the inductive hypothesis which are trivially true — e.g., that m ≥ m in the first usage on Bm,
and that 1 ∈ µ(m) in both cases. We get that Ψ3 ≥ m from E , which is sufficient to give the
conditions on modes needed for the inductive hypothesis in this case.

As in the previous cases, if n > 1, then we need to do some extra work to deal with the extra
copies of Bm (Dm. Since n ∈ µ(m) by assumption, we know that C ∈ σ(m), and so µ(m)
contains all positive natural numbers.

If i > 0, then we can use the inductive hypothesis at (Bm (Dm,D, E1) to get a proof E ′1
that Ψ1,Ψ3 `̀ E Bm. Likewise, if j > 0, we get a proof E ′2 that Ψ1,Ψ4, Dm `̀ E Ck. There are
several case distinctions depending on the values of i and j, but regardless, we are able to create
a proof with the same structure as in the n = 1 case, but with two or three copies of Ψ1. As with
⊕, we can apply contraction repeatedly to remove these excess copies, leaving the desired result.

The cases for the remaining connectives follow the pattern of those shown here.

Admissibility of multicut then yields cut elimination in its usual form, by tracing through the
given proof and using the admissibility of multicut to remove cuts wherever necessary.
Theorem 2 (Cut elimination for ADJE). If Ψ `E Am, then Ψ `̀ E Am.

These proofs, like many others involving deductive systems, involves many cases, only a
few of which are shown here, and many of which follow similar patterns. While we endeavor
to make sure that enough cases of such proofs are shown to be convincing, there is always
a risk of omitting a case that readers might find useful or interesting, or, even worse, failing
to prove a case and never noticing. Proof assistants, also called interactive theorem provers
(e.g., Coq [8, 103], Lean [21], Twelf [78], among many other examples), provide computer
support for these problems, by mechanically checking that a given proof is complete. This gives a
guarantee both to the proof-writer and the proof-reader that the proof is indeed correct (although
both need to ensure that they are careful to check exactly what statement was proven, as the
translation from a natural-language theorem to a formalization in one of these systems is often
not straightforward).

Formalizing theorems in these tools is, however, often nontrivial, especially as the theorem
statements become more complex. Moreover, some pieces of reasoning that can be simple in the
pen-and-paper world (or, at least, whose fine details are often ignored), such as α-equivalence
and substitution can be challenging to deal with in proof assistants. In particular, trying to ex-
plicitly manage a context, particularly a substructural context, in a proof assistant often leads to
difficulties proving seemingly basic results about concepts such as substitution. Higher-order ab-
stract syntax (HOAS) [76] provides one solution to this, avoiding explicit handling of variables,
binding, and context management by representing each of these in the object language being
reasoned about (adjoint logic, in the context of the theorem above) with the same concept in the
metalanguage being used for the proof (for our purposes, a proof assistant’s internal language, or

21

a logical framework). However, in its initial form, the ideas of higher-order abstract syntax are
insufficient to handle substructural logics or languages, since, for instance, the object language’s
context is identified with that of the metalanguage, and as such, if the metalanguage’s context
is treated structurally (i.e., as a set), then so too will that in the object language. There is some
existing work [19, 95] addressing this, using alternate methods to track the usage of hypotheses
in a context and enforce substructural constraints such as linearity. This last approach seems
particularly promising for reasoning about adjoint logic, particularly as Crary [19] notes that
affine and strict logics may be handled equally well as the linear logic that his paper focuses on.
We believe that a formalization in such a system of the results in this thesis (not only the above
theorem, but the many others of similar complexity) would be a valuable piece of future work,
but one that is potentially quite large in scope.

2.1.2 Identity expansion
Identity expansion for ADJE is standard in its statement and proof.
Theorem 3 (Identity Expansion). If Ψ `E Am, then there exists a proof that Ψ `E Am using
identity rules only at atomic propositions pm, which is cut-free if the original proof is.

Proof. We begin by proving that for any formula Am, there is a cut-free proof that Am `E Am
using identity rules only at atomic propositions. This follows easily from an induction on Am.
Now, we arrive at the theorem by induction over the structure of the given proof that Ψ `E Am,
applying the above result to remove any identities on non-atomic propositions.

2.2 ADJI: Making Structural Rules Implicit
In order to move towards an eventual focused system (Section 2.3), we loosely follow the ap-
proach of Andreoli [2], eliminating some of the nondeterminism in proof search by removing the
structural rules, instead building weakening and contraction into the other rules. A side benefit of
this intermediate system ADJI , whose rules can be found in Figure 2.2, is that it is well-suited to
embedding logics whose standard presentations similarly leave structural rules implicit, as many
structural modal logics do.

In several rules, we would like to know that a whole context of propositions satisfies some
structural property, to either implicitly weaken or contract several times at once. To describe
these conditions, we define for contexts Ψ the set σ(Ψ) of structural properties shared by all
propositions in Ψ. Intuitively, W is a member of σ(Ψ) if and only iff all propositions in Ψ are
weakenable, and likewise for contraction.
Definition 1. We define σ(Ψ) inductively as follows:

σ(·) = {W,C}
σ(Am) = σ(m)

σ(Ψ1,Ψ2) = σ(Ψ1) ∩ σ(Ψ2)

There are a few key differences between ADJE and Andreoli’s Σ1. First, we allow for modes
to have weakening without contraction and vice versa, whereas Σ1 allows either neither (for

22

normal propositions) or both (for propositions of the form ?A). Second, we have the additional
shift connectives to consider. Most of the shift rules are straightforward to turn into this implicit
form, but ↓R requires some thought because of its restriction on the modes allowed in its context.
In ADJE , we can weaken away any Am with W ∈ σ(m) before applying ↓R in order to satisfy
that restriction. In order to match that behavior, in the ↓R rule of ADJI , we split the context into
two pieces, Ψ1 and Ψ2, and require that Ψ1 ≥ m, while W ∈ σ(Ψ2). This rule then corresponds
to the ADJE proof which weakens everything in Ψ2 and then applies ↓R. Weakening is otherwise
easily handled at the leaves of the proof (id and 1R) in a similar manner.

Contraction without weakening leads to most of the complication in this system. Were con-
traction to always imply weakening, we could simply propagate contractible propositions to all
branches of the proof and weaken them if they are not needed, as is done in standard intuitionis-
tic logic, or as with Andreoli’s second context Θ. Instead, for each multiplicative rule with two
premises (⊗R and(L), as well as for the cut rule, we split the context into three parts, sending
Ψ1 to the first premise only, Ψ3 to the second premise only, and Ψ2 to both. Of course, this also
requires that all C ∈ σ(Ψ2), so all propositions in Ψ2 can safely be duplicated to both premises.
The nondeterminism in how Ψ2 is chosen allows us to propagate contractible propositions to
precisely those premises where they will be needed. Similarly, we allow (but do not require)
the principal formula to be preserved in the premises after applying a left rule. To this end, we
split each left rule into two versions, labelled with α ∈ {0, 1} (or four versions, labelled with
α, β ∈ {0, 1} in one case). Each has (Am)α in its premise, where (Am)1 is Am and (Am)0 is the
empty context. The rule with α = 1 thus preserves the principal formula, while the rule with
α = 0 consumes it. In order for this preservation of the principal formula Am to be allowed, we
must have C ∈ σ(m), and so a side condition of each α = 1 rule variant is that C ∈ σ(m) (in the
case of(Lα,β , we need this side condition for the three cases where either α or β is 1). These
changes, along with the removal of the explicit weakening and contraction rules, give us ADJI ,
as shown in Figure 2.2.

2.2.1 Equivalence of ADJI and ADJE

In order to justify that ADJI and ADJE are different presentations of the same logic, we want to
show that ADJI is sound and complete with respect to ADJE . That it is sound is nearly immedi-
ate, as each rule of ADJI is derivable in ADJE . Completeness follows from Lemma 1, as all rules
of ADJE other than the structural rules of weakening and contraction are derivable in ADJI . One
interesting (though unsurprising) feature of the translations from the proofs of soundness and
completeness is that both take cut-free proofs to cut-free proofs, as well as translating identities
at Am to identities at Am. As such, we get cut elimination and identity expansion for ADJI for
free via these translations and our results for ADJE .
Theorem 4 (Soundness of ADJI). If Ψ `I Am, then Ψ `E Am. Moreover, if Ψ `̀ I Am, then
Ψ `̀ E Am, and if the proof in ADJI uses identity only at atomic propositions, then so does the
resulting ADJE proof.

Proof. By induction over the proof of Ψ `I Am. At each step, we replace an ADJI rule with its
ADJE equivalent, potentially also using some number of weakenings or contractions.

23

W ∈ σ(Ψ)

Ψ, Am ` Am id
Ψ1,Ψ2 ≥ m ≥ k C ∈ σ(Ψ2) Ψ1,Ψ2 ` Am Ψ2,Ψ3, Am ` Ck

Ψ1,Ψ2,Ψ3 ` Ck
cut

i ∈ J Ψ ` Aim
Ψ ` ⊕j∈JAjm

⊕Ri
Ψ, (⊕j∈JAjm)α, Ajm ` Ck for all j ∈ J

Ψ,⊕j∈JAjm ` Ck
⊕Lα

Ψ ` Ajm for all j ∈ J
Ψ ` Nj∈JA

j
m

NR
i ∈ J Ψ, (Nj∈JA

j
m)α, Aim ` Ck

Ψ,Nj∈JA
j
m ` Ck

NLi,α

C ∈ σ(Ψ2) Ψ1,Ψ2 ` Am Ψ2,Ψ3 ` Bm
Ψ1,Ψ2,Ψ3 ` Am ⊗Bm

⊗R
Ψ, (Am ⊗Bm)α, Am, Bm ` Ck

Ψ, Am ⊗Bm ` Ck
⊗Lα

Ψ, Am ` Bm
Ψ ` Am(Bm

(R

Ψ1,Ψ2 ≥ m C ∈ σ(Ψ2) Ψ1,Ψ2, (Am(Bm)α ` Am Ψ2,Ψ3, (Am(Bm)β, Bm ` Ck
Ψ1,Ψ2,Ψ3, Am(Bm ` Ck (Lα,β

W ∈ σ(Ψ)

Ψ ` 1m
1R

Ψ, (1m)α ` Ck
Ψ,1m ` Ck

1Lα

Ψ1 ≥ m W ∈ σ(Ψ2) Ψ1 ` Am
Ψ1,Ψ2 ` ↓mk Am

↓R
Ψ, (↓mk Am)α, Am ` C`

Ψ, ↓mk Am ` C`
↓Lα

Ψ ` Ak
Ψ ` ↑mk Ak

↑R
k ≥ ` Ψ, (↑mk Ak)α, Ak ` C`

Ψ, ↑mk Ak ` C`
↑Lα

Figure 2.2: Adjoint Logic with Implicit Structural Properties (ADJI).
We presuppose that the conclusion of each rule satisfies the declaration of independence and
ensure, with conditions on modes, that the premises will, too.
α and β range over {0, 1}. (Am)0 always denotes the empty context, while (Am)1 denotes Am.
If α or β are 1, then C ∈ σ(m) should be treated as an additional premise of the rule.

Lemma 1 (Admissibility of weakening and contraction for ADJI).
1. If Ψ `I Ck and W ∈ σ(m), then Ψ, Am `I Ck.
2. If Ψ, Am, Am `I Ck and C ∈ σ(m), then Ψ, Am `I Ck.

Moreover, the resulting proof is structurally identical to the original proof in both cases — that
is, it uses the same sequence of rules, applied to the same propositions at each step.

Proof. For weakening, it nearly suffices to just add Am to every context in the proof, deferring
weakening to the leaves, where it is accomplished by either id or 1R allowing arbitrary weak-
enable contexts. However, ↓R complicates this slightly — Am may not be permitted in Ψ1. We
can solve this problem by placing Am in the Ψ2 context of ↓R, or we can defer weakening by
placing Am in Ψ1 if the mode restrictions allow, and placing it in Ψ2 otherwise. Either way, we
end up with the desired structurally identical proof.

Contraction presents additional challenges — the usual strategy is to simply preserve Am

24

whenever it is used (by a left rule, for instance), and to propagate it to all premises of multi-
premise rules. However, this leaves an extra copy of Am at each leaf of the proof, and if σ(m) =
{C}, we are unable to weaken away this extra copy. We therefore must instead be more precise,
only propagating Am to the premises which actually use it.

Theorem 5 (Completeness of ADJI). If Ψ `E Am then Ψ `I Am. Moreover, if Ψ `̀ E Am, then
Ψ `̀ I Am, and if the proof in ADJE uses identity only at atomic propositions, then so does the
resulting ADJI proof.

Proof. By induction over the proof of Ψ `E Am. Each rule of ADJE other than weakening
and contraction is already an instance of a corresponding rule of ADJI , and weakening and
contraction can be replaced using lemma 1.

2.2.2 Cut elimination and identity expansion for ADJI , directly
While we get cut elimination and identity expansion for free in ADJI from the details of sound-
ness and completeness, these results are not very enlightening, due to their indirectness. We will
briefly note here that we can provide direct proofs of both cut elimination and identity expansion
for ADJI . Both follow standard methods, and so we will not dwell on them.
Theorem 6 (Identity Expansion). If Ψ `I Am, then there exists a proof that Ψ `I Am using
identity rules only at atomic propositions pm, which is cut-free if the original proof is.

Proof. This follows in a standard way by induction over Am, using paired left and right rules to
push the identity up to subformulae of Am.

Theorem 7 (Admissibility of cut in ADJI). Suppose that Ψ1,Ψ2 ≥ m ≥ k, and C ∈ σ(Ψ2). If
Ψ1,Ψ2 `̀ I Am and Ψ2,Ψ3, Am `̀ I Ck, then also Ψ1,Ψ2,Ψ3 `̀ I Ck.

Proof. Let D be the given proof that Ψ1,Ψ2 `̀ I Am, and E the proof that Ψ2,Ψ3, Am `̀ I Ck.
As with ADJE , admissibility of cut for ADJI follows from an induction on the (lexicographi-

cally ordered) triple (Am,D, E), in much the standard manner used to prove admissibility of cut
in intuitionistic logic, using cross-cuts to handle implicit contraction if necessary.

We recall the split into identity, commuting, and principal cases (noting that the structural
cases of ADJE do not appear here, because we do not have explicit structural rules).

Identity Cases We examine one identity case, noting that the three-way split of the context for
cut means we have to distinguish some additional subcases, depending on which of Ψ1,Ψ2,Ψ3

the identity rule pulls Am from, but that these subcases all have a similar structure, relying on
admissibility of structural rules for ADJI (Lemma 1).

Suppose E is arbitrary and

D =

W ∈ σ(Ψ′1,Ψ
′
2)

Ψ′1,Ψ
′
2, Am `̀ I Am

id

where either Ψ1 = Ψ′1, Am and Ψ2 = Ψ′2 or Ψ1 = Ψ′1 and Ψ2 = Ψ′2, Am.

25

Then, we wish to prove Ψ1,Ψ2,Ψ3 `̀ Ck. If Ψ1 = Ψ′1, Am, we may use admissibility of
weakening for ADJI to weaken away all of Ψ′1, and we are left with Ψ2,Ψ3, Am `̀ I Ck as a goal,
which is given exactly by E . If, instead, Ψ2 = Ψ′2, Am, we again use admissibility of weakening
to weaken away all of Ψ1, and are left with Ψ′2,Ψ3, Am `̀ I Ck as a goal. Applying admissibility
of contraction to duplicate Am (permissible because Am was in Ψ2, all of which is contractible),
we get a goal of Ψ2,Ψ3, Am `̀ I Ck, which again is exactly E .

Commuting Cases We also examine a single commuting case for illustration.
Suppose E is arbitrary and

D =

` ≥ m
D1

Ψ′1,Ψ
′
2, (↑

p
`B`)

α, B` `̀ I Am

Ψ′1,Ψ
′
2, ↑

p
`B` `̀ I Am

↑Lα

As in the example identity case, either Ψ1 = Ψ′1, ↑
p
`B` or Ψ2 = Ψ′2, ↑

p
`B`. If ↑p`B` was taken

from Ψ1, then Ψ2 = Ψ′2 and we can construct the following proof:

` ≥ k

D1

Ψ′1,Ψ2, (↑p`B`)
α, B` `̀ I Am

E
Ψ2,Ψ3, Am `̀ I Ck

Ψ′1,Ψ2,Ψ3, (↑p`B`)
α, B` `̀ I Ck

i.h.(Am,D1, E)

Ψ′1,Ψ2,Ψ3, ↑p`B` `̀ I Ck
↑Lα

The use of the inductive hypothesis here also has as side conditions that C ∈ σ(Ψ2) and that
Ψ′1,Ψ2, (↑p`B`)

α, B` ≥ m ≥ k. The former is an assumption, and the latter follows from ` ≥ m,
which we learn from D, and Ψ1,Ψ2 ≥ m ≥ k, which is another assumption of the theorem.

Alternately, if ↑p`B` was taken from Ψ2, then Ψ1 = Ψ′1 and we also know that C ∈ σ(`).
We can construct the following (slightly different) proof:

` ≥ k

D1

Ψ1,Ψ
′
2, (↑

p
`B`)

α, B` `̀ I Am
E

Ψ2,Ψ3, Am `̀ I Ck

Ψ1,Ψ
′
2,Ψ3, ↑p`B`, B` `̀ I Ck

i.h.(Am,D1, E)

Ψ1,Ψ
′
2,Ψ3, ↑p`B` `̀ I Ck

↑L1

Note that here, since E will need to use ↑p`B`, we apply ↑L1 regardless of the value of α. We then
propagate this formula to E unconditionally, and to D1 only if α = 1, and so it is actually needed
in D1.

This type of careful management of contraction to ensure that formulae occur exactly in the
branches of proofs where they are needed is characteristic of ADJI . Since contraction does not
always come with weakening, if we are not careful in this way, we run the risk of inadvertently
contracting too aggressively, and ending up with excess copies of a proposition that we are unable
to use. Other commuting cases require similar care, but are structurally much the same as this
one.

26

Principal Cases As for ADJE , we examine both shift cases, with others following similarly.
First, we consider Am = ↓`mA`, with

D =

Ψa ≥ ` W ∈ σ(Ψb)
D1

Ψa `̀ I A`

Ψa,Ψb `̀ I ↓`mA`
↓R

and E =

E1
Ψ2,Ψ3, (↓`mA`)α, A` `̀ I Ck

Ψ2,Ψ3, ↓`mA` `̀ I Ck
↓Lα

Here, Ψ1,Ψ2 = Ψa,Ψb, but the split into Ψ1 and Ψ2 may be different from the split into Ψa and
Ψb.

If α = 1, we can perform a cross-cut, applying the inductive hypothesis to (↓`mA`,D, E1),
giving a proof E ′1 of Ψ1,Ψ2,Ψ3, A` `̀ I Ck.

The inductive hypothesis can then be applied to (A`,D1, E ′1) to get a proof witnessing that
Ψa,Ψ1,Ψ2,Ψ3 `̀ I Ck. Applying admissibility of contraction to remove the extra copy of Ψa

then gives the desired result. This is possible because we know that Ψa ≥ `, and since α = 1, it
must be the case that C ∈ σ(`).

Now, if α = 0, we avoid the need for this cross-cut, and can instead directly apply the
inductive hypothesis to (A`,D1, E1) to get a proof of Ψa,Ψ2,Ψ3 `̀ I Ck. We may then apply
admissibility of weakening to Ψb, all of which is weakenable, to get Ψa,Ψb,Ψ2,Ψ3 `̀ I Ck. Since
Ψa,Ψb = Ψ1,Ψ2, this is equivalent to Ψ1,Ψ2,Ψ2,Ψ3 `̀ I Ck, and admissibility of contraction
applied to Ψ2 then gives the desired result.

Next, consider the case of Am = ↑m` A`, with

D =

D1

Ψ1,Ψ2 `̀ I A`
Ψ1,Ψ2 `̀ I ↑m` A`

↑R
and E =

` ≥ k
E1

Ψ2,Ψ3, (↑m` A`)α, A` `̀ I Ck
Ψ2,Ψ3, ↑m` A` `̀ I Ck

↑Lα

If α = 1, we construct the following proof:

D1

Ψ1,Ψ2 `̀ I A`

D
Ψ1,Ψ2 `̀ I ↑m` A`

E1
Ψ2,Ψ3, ↑m` A`, A` `̀ I Ck

Ψ1,Ψ2,Ψ3, A` `̀ I Ck
i.h.(↑m` A`,D, E1)

Ψ1,Ψ1,Ψ2,Ψ3 `̀ I Ck
i.h.(A`,D1, . . .)

.... contract∗

Ψ1,Ψ2,Ψ3 `̀ I Ck

This relies on the fact that if α = 1, C ∈ σ(`), so since Ψ1,Ψ2 ≥ ` by assumption, both Ψ1

and Ψ2 are contractible. For both applications of the inductive hypothesis, the side conditions
Ψ1,Ψ2 ≥ ` ≥ k and C ∈ σ(Ψ2) are needed, but these both follow from the assumptions of the
theorem, ` ≥ k (from E), and m ≥ ` (from well-formedness of ↑m` A`).

Finally, if α = 0, we construct the following (simpler) proof:

Ψ1,Ψ2 ≥ ` ≥ k C ∈ σ(Ψ2)
D1

Ψ1,Ψ1 `̀ I A`
E1

Ψ2,Ψ3, A` `̀ I Ck
Ψ1,Ψ2,Ψ3 `̀ I Ck

i.h.(A`,D1, E1)

Again, the side conditions on this use of the induction hypothesis follow from assumptions of
the theorem, ` ≥ k, and m ≥ k.

27

As in the case of ADJE , cut elimination follows immediately from an induction on the (po-
tentially cut-containing) proof that Ψ `I Am, using admissibility of cut to remove each cut as it
is reached.
Theorem 8 (Cut elimination for ADJI). If Ψ `I Am, then Ψ `̀ I Am.

2.3 ADJF : Focused Adjoint Logic
In ADJI , we were able to reduce the non-determinism involved in proof search by limiting struc-
tural rules to where they are essential, as in the dyadic system Σ2 of Andreoli [2]. In addition to
this source of non-determinism, Andreoli also identifies that certain pairs of inference rules can
be permuted past each other without affecting the overall structure of the proof. For example, the
following two proof fragments6 have the same premises and conclusion, and so may be freely
substituted for one another, but differ only in the order that we have chosen to apply the rules:

Am, Bm, Cm ` Dm

Am, Bm, ↓mk Cm ` Dm
↓L0

Am ⊗Bm, ↓mk Cm ` Dm
⊗L0

and

Am, Bm, Cm ` Dm

Am ⊗Bm, Cm ` Dm
⊗L0

Am ⊗Bm, ↓mk Cm ` Dm
↓L0

In order to eliminate this kind of “don’t-care non-determinism”, where rules may be applied
in either order, Andreoli splits connectives (and thus formulae, by their top-level connective)
into “synchronous” and “asynchronous”, where asynchronous formulae may be eagerly decom-
posed without fear of missing a proof. His final, triadic system Σ3 then proceeds in alternating
phases. In the asynchronous phase, all asynchronous formulae are decomposed as far as pos-
sible, stopping once a synchronous connective is reached (here, the order does not matter, so
it may be treated as if all such formulae are decomposed in parallel, or some ordering may be
enforced to make the process truly deterministic). In the synchronous phase, one (synchronous)
formula in particular is chosen non-deterministically to “focus” on, and it and its subformulae
are then decomposed as far as possible, until all remaining such subformulae are asynchronous,
at which point the next asynchronous phase begins. The somewhat remarkable result of [2] is
that this structured approach to proof is sound and complete with respect to the much more non-
deterministic calculus Σ1 for linear logic. In Σ3, the only non-determinism lies in the choice of
which synchronous formula to focus on in each synchronous phase.

Since Andreoli’s work is in the context of classical linear logic, our approach will differ
slightly — while asynchronous formulae may be freely broken down on the right of a sequent, on
the left, this is reversed, with synchronous formulae being freely broken down, and asynchronous
formulae needing to be focused on. Howe [45], in his treatment of focusing for intuitionistic
linear logic, labels connectives positive or negative based on whether they occur on the left or
on the right of the sequent, and modifies his use of the terms synchronous and asynchronous
accordingly so that, for instance, ⊗−, occurring on the right, is asynchronous, but ⊗+, occurring
on the left of the sequent, is not. We find this use of terminology confusing, and so will prefer
to talk about the polarity of connectives, as used by Liang and Miller [56, 57], for instance,
both to classify atomic propositions in a similar manner to Andreoli’s synchrony, as well as

6Note that we write `I here to emphasize that this is a proof in ADJI

28

to clarify the distinction between the conjunctions ⊗ and N, which, in structural intuitionistic
logic, both reduce to ∧. This distinction by polarity is also similar to the separation in call-by-
push-value [54, 55] between value types and computation types, with value types corresponding
closely to positive formulae, and computation types to negative formulae.

We now begin to set up the calculus ADJF as a focused calculus for adjoint logic, following
the ideas of Andreoli, although we will use the more recent approach of Simmons [98], using
cut elimination and identity expansion for the focused calculus in order to prove focalization
(completeness).

We begin by assigning polarities (following prior systems in that positive propositions should
be those which are “asynchronous on the right”, to use Andreoli’s terminology) to the proposi-
tions of ADJ, giving us the following syntax:

Negative propositions A−m, B
−
m ::= p−m | A+

m(B−m | Nj∈JA
j
m
− | ↑mk A+

k

Positive propositions A+
m, B

+
m ::= p+m | A+

m ⊗B+
m | 1+

m | ⊕j∈JAjm
+ | ↓`mA−`

Here, p+m and p−m are positive and negative atomic propositions, respectively.
In this polarization, we have chosen to make both ↓ and ↑ shifts reverse polarity. We believe

that other polarizations are possible, which may streamline some encodings, but as the polarity-
reversing shifts are sufficient here, we leave the polarity-preserving shifts to potential future
work.

Again closely following Simmons [98], we use the following grammar for the components
of our sequents:

Stable antecedents Ψ ::= · | A−m | 〈A+
m〉 | Ψ,Ψ′

Inversion antecedents Ω ::= · | A+
m • Ω

Succedents Um ::= [A+
m] | A+

m | A−m | 〈A−m〉
Ordered antecedents L ::= Ω | [A−m]

Note that despite our reuse of Ψ, in the context of ADJF , this refers specifically to a stable
antecedent, following the grammar above, with all positive propositions being suspended (of the
form 〈A+

m〉). We use a large centered dot • rather than a comma to separate propositions in the
(ordered) inversion context Ω to emphasize that those contexts are to be treated as lists rather
than as multisets.

Just as we distinguish stable and inversion antecedents, we will refer to the succedents A+
m

and 〈A−m〉 as stable succedents.
We use square brackets to denote propositions in focus (e.g. [A+

m], [A−m]). Likewise, we use
angle brackets to denote suspended propositions (〈A+

m〉, 〈A−m〉). As atomic propositions are in-
tended to represent arbitrary formulae, we cannot break them down in the inversion phase (as
doing so would require knowing more than just their polarity). Instead, in our focused system
(Figure 2.3), we suspend atomic propositions, making it possible for them to appear in stable
sequents as antecedents with otherwise positive propositions and in succedents with otherwise
negative propositions, respectively. The use of arbitrary suspended propositions is a technical
device introduced by Simmons [98] that allows for a structural proof of identity expansion for
the focused system, and so we allow for such non-atomic suspended propositions in sequents,

29

although our rules provide no way to introduce such a suspension, as the susp± rules only al-
low for suspending atomic propositions. Moreover, allowing our sequents to contain arbitrary
suspended propositions means that we can substitute an arbitrary proposition A±m for an atomic
proposition p±m while staying within the confines of the system.

Using these parts, we have the following four types of sequents:

Right focus Ψ `F [A+
m]

Right inversion Ψ ; Ω `F A±m
Left inversion Ψ ; Ω `F 〈A−m〉
Left focus Ψ ; [A−m] `F U` (where U` is stable)

Each of these sequents is a special case of the general form Ψ ; L `F U , but it is useful to
separate these cases for some theorem statements and proofs. We will also often combine the
two inversion cases into a single Ψ ; Ω `F Um, where Um is not [A+

m], as they can generally
be treated together in proofs. The constraints on what form Um may take in each sequent are
standard for intuitionistic focused systems [57, 98], and serve to ensure that at most one formula
is in focus at a time, and that if a formula is in focus, then there are no formulae in inversion. We
also note that it is sometimes useful to distinguish stable sequents, which are those where both the
antecedents and succedent are entirely stable — that is, sequents of the form Ψ ; · `F Um, with
Um stable. We will see when we come to the rules for ADJF that these stable sequents are exactly
those which allow us to make a choice of how to proceed by focusing on a proposition, while if
we have a proposition in focus or in inversion, we are restricted to have only one applicable rule
at a time.

Most of the rules of ADJF (Figure 2.3) arise straightfowardly from their ADJI counterparts
by having the principal formula either in focus or in inversion (depending on its polarity and
whether it is on the left or the right — we focus on positive formulae on the right and negative
formulae on the left, and likewise, we invert negative formulae on the right, and positive formulae
on the left). We also add the focus± rules, which allow us to bring formulae into focus. The susp±

rules likewise allow us to suspend atomic formulae that we can no longer break down. Finally,
the id± rules bring suspended and focused formulae together, using one to prove the other.

2.3.1 Soundness and Completeness

As before, this calculus is sound and complete with respect to the prior two. In particular, it is
easiest to show that it is sound and complete with respect to ADJI . In order to state the soundness
and completeness theorems (or defocalization and focalization), we must first give a concept of
erasure. Informally, we think of (·)• as removing all focusing and suspension brackets, as well
as all polarity information from the proposition or context being erased. We can then apply this
erasure to each portion of a sequent to convert from an ADJF sequent to a corresponding ADJE

or ADJI sequent (as both systems use the same syntax of sequents, other than the labelling of the
turnstile). Unlike in many prior focused systems, where new connectives are added to change
polarity (without affecting provability), we have reused the existing shift connectives to change
polarities. As such, when we are presented with a polarized formula, we cannot just remove all
shifts and hope to be left with a sensible unpolarized formula in the end. Instead, we observe that

30

W ∈ σ(Ψ)

Ψ, 〈A+
m〉 ` [A+

m]
id+

Ψ1 ≥ m W ∈ σ(Ψ2) Ψ1 ; · ` A−m
Ψ1,Ψ2 ` [↓mk A−m]

↓R
i ∈ J Ψ `

[
Aim

+]
Ψ `

[
⊕j∈JAjm

+] ⊕Ri

C ∈ σ(Ψ2) Ψ1,Ψ2 ` [A+
m] Ψ2,Ψ3 ` [B+

m]

Ψ1,Ψ2,Ψ3 ` [A+
m ⊗B+

m]
⊗R

W ∈ σ(Ψ)

Ψ ` [1+
m]

1R

Ψ ` [A+
m]

Ψ ; · ` A+
m

focus+
U` stable Ψ, (A−m)α ; [A−m] ` U`

Ψ, A−m ; · ` U`
(focus−)α

Ψ, 〈p+〉 ; Ω ` U`
Ψ ; p+ • Ω ` U`

susp+
Ψ ; · ` 〈p−〉
Ψ ; · ` p− susp−

Ψ, A−m ; Ω ` U`
Ψ ; ↓mk A−m • Ω ` U`

↓L
Ψ ; Ajm

+ • Ω ` U` for all j ∈ J
Ψ ; ⊕j∈JAjm

+ • Ω ` U`
⊕L

Ψ ; A+
m •B+

m • Ω ` U`
Ψ ; A+

m ⊗B+
m • Ω ` U`

⊗L
Ψ ; Ω ` U`

Ψ ; 1+
m • Ω ` U`

1L

Ψ ; · ` A+
k

Ψ ; · ` ↑mk A+
k

↑R
Ψ ; · ` Ajm

− for all j ∈ J
Ψ ; · ` Nj∈JA

j
m
− NR

Ψ ; A+
m ` B−m

Ψ ; · ` A+
m(B−m

(R

W ∈ σ(Ψ)

Ψ ; [A−m] ` 〈A−m〉
id−

k ≥ ` Ψ ; A+
k ` U`

Ψ ; [↑mk A+
k] ` U`

↑L
i ∈ J Ψ ;

[
Aim
−] ` U`

Ψ ;
[
Nj∈JA

j
m
−] ` U` NLi

Ψ1,Ψ2 ≥ m C ∈ σ(Ψ2) Ψ1,Ψ2 ` [A+
m] Ψ2,Ψ3 ; [B−m] ` U`

Ψ1,Ψ2,Ψ3 ; [A+
m(B−m] ` U`

(L

Figure 2.3: Focused Adjoint Logic (ADJF).
“U stable” means that U is either A+

m or 〈p−m〉.
Note also that each ` in this figure should formally be `F , but we omit the subscript for simplicity
of presentation.

31

shifts from a mode to itself (i.e. ↓mm and ↑mm) do not affect provability, while shifts that do change
mode may. As such, we allow our erasure process to remove these shifts, but do not require it to
do so, giving us an erasure relation, rather than function. One polarized formula may be a valid
polarization of several different unpolarized formulae, just as an unpolarized formula may have
several different polarizations.
Definition 2 (Focusing Erasure). For single propositions, we have a straightforward inductive
(but non-deterministic, thus defining a relation rather than a function) definition of erasure,
removing polarity information throughout the proposition:

(p±m)• ::= pm (1+
m)• ::= 1m

(A+
m ⊗B+

m)• ::= (A+
m)• ⊗ (B+

m)• (A+
m(B−m)• ::= (A+

m)•((B−m)•

(⊕j∈JAjm
+

)• ::= ⊕j∈J(Ajm
+

)• (Nj∈JA
j
m
−

)• ::= Nj∈J(Ajm
−

)•

(↓`mA−`)• ::= ↓`m(A−`)• (↑mk A+
k)• ::= ↑mk (A+

k)•

(↓mmA−m)• ::= (A−m)• (↑mmA+
m)• ::= (A+

m)•

Note that the last four rules overlap, but that they are the only such overlapping rules.
We can then extend this to propositions which are suspended or in focus, stripping away the

suspension or focusing brackets:

([A±m])• ::= (A±m)• (〈A±m〉)• ::= (A±m)•

At this point, we know how to erase all succedents U , but still need to extend erasure to contexts
Ψ and Ω, which we do pointwise:

(·)• ::= ·
(Ψ,Ψ′)• ::= (Ψ)•, (Ψ′)•

(A+
m • Ω)• ::= (A+

m)•, (Ω)•

With this definition of erasure potentially yielding multiple results, we would like to ensure
that it interacts sensibly with provability — in particular, two erasures of the same polarized
sequent should be equiprovable (in ADJI). Since we have admissibility of cut in ADJI , it will
suffice to show that if (A±m)• yields both Bm and Cm, then Bm `I Cm and Cm `I Bm.
Lemma 2 (Equiprovability of erasures). Suppose A±m, Bm, Cm are such that (A±m)• yields both
Bm and Cm. Then, Bm `I Cm and Cm `I Bm.

Proof. We proceed by induction on the structure of A±m. In all cases but shifts from a mode m to
itself, there is only one possible erasure, and so Bm and Cm have the same top-level connective.
We can then (using the same approach as for proving identity expansion) apply the left and right
rule for this connective (first left, then right for positive connectives, and vice versa for negative
connectives), and apply the inductive hypothesis.

If A±m = ↓mmD−m, we note that if (D−m)• yields both Bm and Cm, or if ↓mm(D−m)• yields both
Bm and Cm, we can follow the same approach as for other connectives. We therefore assume
without loss of generality that Bm = (D−m)• while Cm = ↓mm(D−m)•, and construct the following
two proofs:

(D−m)• ≥ m (D−m)• `I (D−m)•
i.h.(D−m)

(D−m)• `I ↓mm(D−m)•
↓R

(D−m)• `I (D−m)•
i.h.(D−m)

↓mm(D−m)• `I (D−m)•
↓L0

32

The cases where A±m = ↑mmD+
m are similar.

With this erasure operation, we are now equipped to give our defocalization (or soundness)
theorem. Since all erasures of a given polarized sequent are equiprovable, we do not need to be
precise about which one we refer to in the theorem statement.
Theorem 9 (Defocalization). If Ψ ; L `F Um, then (Ψ)•, (L)• `I (Um)•.

Proof. We prove this by noting that each (erased) rule of the focused system is either a rule of
ADJI or (in the case of the focus± and susp± rules) a no-op. As such, we translate the ADJF

proof into an ADJI proof rule-by-rule, removing the no-op rules.

Focalization (or completeness of ADJF with respect to ADJI) is much more involved, and
we begin by proving versions of the cut admissibility and identity expansion theorems for ADJF .
One technical condition that we will make use of in cut admissibility is that the only suspended
propositions in a given sequent are atomic. We refer to such a sequent as suspension-normal, fol-
lowing Simmons’ terminology, and we will also refer to propositions and contexts as suspension-
normal if likewise, all suspended propositions they contain are atomic. Recall that while our
syntax of propositions allow for arbitrary suspended propositions, and indeed our id± rules allow
us to use these arbitrary suspended propositions in proofs, the susp± rules only let us suspend
atomic propositions. As such, if we begin with a suspension-normal sequent, any sequence of
rules we apply (in a bottom-up direction) will leave us with another suspension-normal sequent.
Theorem 10 (Cut admissibility for ADJF). Assuming C ∈ σ(Ψ2), Ψ1,Ψ2 ≥ m ≥ `, and that
Ψ1, Ψ2, Ψ3, and U` are suspension-normal:

1. If Ψ1,Ψ2 `F [A+
m] and Ψ2,Ψ3 ; A+

m • Ω `F U`, then Ψ1,Ψ2,Ψ3 ; Ω `F U`.
2. If Ψ1,Ψ2 ; · `F A−m and Ψ2,Ψ3 ; [A−m] `F U` and U` stable, then Ψ1,Ψ2,Ψ3 ; · `F U`.
3. If Ψ1,Ψ2 ; L `F A+

m and Ψ2,Ψ3 ; A+
m `F U` and U` stable, then Ψ1,Ψ2,Ψ3 ; L `F U`.

4. If Ψ1,Ψ2 ; · `F A−m and Ψ2,Ψ3, A
−
m ; L `F U`, then Ψ1,Ψ2,Ψ3 ; L `F U`.

Proof. This proceeds in a relatively standard nested induction, except that cases (3) and (4)
depend on cases (1) and (2), respectively. As such, we prove this by induction over the (lexi-
cographically ordered) quadruple (A±m, i,D, E), where A±m is the formula cut out, i is the case
number in the theorem statement, D is the left-hand proof of the cut, and E is the right-hand
proof of the cut.

This proof relies critically on admissibility of weakening and contraction (where permitted
by the mode) in ADJF , both of which follow from standard structural inductions on the proofs in
question.

Theorem 11 (Admissibility of Identity for ADJF). If W ∈ σ(Ψ), then:
1. For any A+

m, Ψ ; A+
m `F A+

m.
2. For any A−m, Ψ, A−m ; · `F A−m.

Proof. This result proceeds by first showing that suspension of arbitrary propositions (rather than
only atomic propositions) is admissible, again via a standard induction, here over the structure
of A±m. We write η± for these admissible general suspension rules where we use them.

Once we are able to suspend arbitrary propositions, combining this with the focus± rules and
the id± rules gives the desired result immediately.

33

One problem with erasure is that, in general, many propositions have the same erasures. With
the aid of cut and identity, we can simplify this somewhat, by proving the following two lemmas,
which allow us to remove double shifts. Of course, not all double shifts can be removed while
preserving erasure, if those shifts appear in the erased proposition as well, but we can, in a sense,
turn an A±m which erases to Cm into a form with as few extraneous shifts as possible via these
lemmas.
Lemma 3 (Double shift removal (positive)). Suppose we have some A+

m. Then, there exists B+
m

not of the form ↓mm↑mmC+
m such that (B+

m)• = (A+
m)• (in the sense that they share at least one

possible erasure) and for all stable antecedents Ψ, Ψ ; · `F B+
m iff Ψ ; · `F A+

m.

Proof. By induction on the structure of A+
m. If A+

m does not have the form ↓mm↑mmC+
m, we may

take B+
m = A+

m and are done.
Suppose therefore that A+

m = ↓mm↑mmC+
m. Applying the inductive hypothesis to C+

m, we get
B+
m such that Ψ ; · `F B+

m iff Ψ ; · `F C+
m. It therefore remains to show that Ψ ; · `F C+

m iff
Ψ ; · `F ↓mm↑mmC+

m. We construct the following two proofs as witnesses:

Ψ ; · `F C+
m

Ψ ; · `F ↑mmC+
m

↑R

Ψ `F [↓mm↑mmC+
m]
↓R

Ψ ; · `F ↓mm↑mmC+
m

focus+ and
Ψ ; · `F ↓mm↑mmC+

m

〈C+
m〉 `F [C+

m]
id+

〈C+
m〉 ; · `F C+

m
focus+

· ; C+
m `F C+

m

η+

· ; [↑mmC+
m] `F C+

m

↑L

↑mmC+
m ; · `F C+

m

(focus−)0

· ; ↓mm↑mmC+
m `F C+

m

↓L

Ψ ; · `F C+
m

cut(3)

Lemma 4 (Double shift removal (negative)). GivenA−m, there existsB−m not of the form ↑mm↓mmC−m
such that (B−m)• = (A−m)• and for all stable Ψ and U`, Ψ, B−m ; · `F U` iff Ψ, A−m ; · `F U`.

Proof. By induction on the structure of A−m. If A−m does not have the form ↑mm↓mmC−m, we may
take B−m = A−m and are done.

Suppose therefore thatA−m = ↑mm↓mmC−m. Applying the inductive hypothesis toC−m, we getB−m
such that Ψ, B−m ; · `F U` iff Ψ, C−m ; · `F U`. We therefore need only show that Ψ, C−m ; · `F U`
iff Ψ, ↑mm↓mmC−m ; · `F U`, which is witnessed by the following two proofs:

Ψ, C−m ; · `F U`
Ψ, ↓mmC−m ; · `F U`

↓L

Ψ ; [↑mm↓mmC−m] `F U`
↑L

Ψ, ↑mm↓mmC−m ; · `F U`
(focus−)0

34

and

· ; [C−m] `F 〈C−m〉
id−

C−m ; · `F 〈C−m〉
(focus−)0

C−m ; · `F C−m
η−

C−m ; · `F [↓mmC−m]
↓R

C−m ; · `F ↓mmC−m
focus+

C−m ; · `F ↑mm↓mmC−m
↑R

Ψ, ↑mm↓mmC−m ; · `F U`
Ψ, C−m ; · `F U`

cut(4)

Admissibility of cut and identity also together allow us to prove admissible “unfocused”
versions of the rules of ADJI within ADJF , which can then be used to reconstruct an ADJI proof
as a whole in ADJF for our focalization result.
Theorem 12 (Focalization). Suppose U` is stable and Ψ, U` are both suspension-normal. If
(Ψ)• `I (U`)

•, then Ψ ; · `F U`.

Proof. We first note that cut elimination for ADJI allows us to only consider cut-free proofs of
(Ψ)• `I (U`)

•, and likewise, identity expansion for ADJI allows us to assume that any applica-
tions of identity in this proof are at atomic propositions.

We then proceed by induction over this proof of (Ψ)• `I (Am)•.
If the last rule used in this proof is an identity, we know that Um must erase to an atom

pm, and so (since Um is suspension-normal and stable), it must be either a suspended negative
atom 〈p−m〉 or a proposition of the form ↓mm↑mm . . . ↓mm↑mmp+m. Similarly, we know that either Ψ =
Ψ′, ↑mm↓mm . . . ↑mm↓mmp−m or Ψ = Ψ′, 〈p+m〉, and that in either case, W ∈ σ(Ψ′). Double shift removal
allows us to assume that Um is either 〈p−m〉 or p+m, without any shifts, and likewise allows us to
simplify Ψ. With this simplification, we can construct one of the following two proofs, depending
on the polarity of pm:

W ∈ σ(Ψ′)

Ψ′, 〈p+m〉 `F [p+m]
id+

Ψ′, 〈p+m〉 ; · `F p+m
focus+ or

〈p−m〉 stable
W ∈ σ(Ψ′)

Ψ′ ; [p−m] `F 〈p−m〉
id−

Ψ′, p−m ; · `F 〈p−m〉
(focus−)0

For each of the remaining rules, we will apply the inductive hypothesis to each premise of
the last rule used, and then make use of admissibility of cut and general identity for ADJF (along
with possibly weakening and contraction) to combine these premises with the focused equivalent
of the ADJI rule that was used to produce the desired focused proof.

We show here a few sample cases, but note that all have similar constructions. In each case,
we use a cut to replace the proposition being broken down with one that interrupts focusing at a
suitable point (via additional shifts), which can then be broken down to yield a premise matching
the result of the inductive hypothesis.

First, we examine the cases for ⊗, as a simple example that is not affected by modes.

35

If the last rule used in the ADJI proof was ⊗L0, 7 then (Ψ)• = (Ψ′)•, (A+
m)• ⊗ (B+

m)• for
some Ψ′, A+

m, B
+
m. As such, Ψ = Ψ′, C±m for some C±m which erases to (A+

m)• ⊗ (B+
m)•. Since

Ψ is suspension-normal and this C±m cannot be atomic, C±m must in fact be negative. Combining
this with (C−m)• = (A+

m)• ⊗ (B+
m)•, we conclude that C−m = ↑mm↓mm . . . ↑mm(A+

m ⊗ B+
m). Double

shift removal then allows us to assume that C−m = ↑mm(A+
m ⊗B+

m).

Now, we also note that the premise of this last rule is a proof that (Ψ′)•, (A+
m)•, (B+

m)• `I
(U`)

•. This is also a proof of (Ψ′)•, (↑mmA+
m)•, (↑mmB+

m)• `I (U`)
•, and so we may apply the

inductive hypothesis to get a proof of Ψ′, ↑mmA+
m, ↑mmB+

m ; · `F U`.

We can then construct the following proof. Note that to reduce visual clutter, we write ↑ and
↓ to denote ↑mm and ↓mm, respectively:

〈A+
m〉 `F [A+

m]
id+

〈A+
m〉 ; · `F A+

m
focus+

〈A+
m〉 ; · `F ↑A+

m

↑R

〈A+
m〉 `F [↓↑A+

m]
↓R

〈B+
m〉 `F [B+

m]
id+

〈B+
m〉 ; · `F B+

m
focus+

〈B+
m〉 ; · `F ↑B+

m

↑R

〈B+
m〉 `F [↓↑B+

m]
↓R

〈A+
m〉, 〈B+

m〉 `F [(↓↑A+
m)⊗ (↓↑B+

m)]
⊗R

〈A+
m〉, 〈B+

m〉 ; · `F (↓↑A+
m)⊗ (↓↑B+

m)
focus+

〈A+
m〉 ; B+

m `F (↓↑A+
m)⊗ (↓↑B+

m)
η+

· ; A+
m •B+

m `F (↓↑A+
m)⊗ (↓↑B+

m)
η+

· ; A+
m ⊗B+

m `F (↓↑A+
m)⊗ (↓↑B+

m)
⊗L

· ; [↑(A+
m ⊗B+

m)] `F (↓↑A+
m)⊗ (↓↑B+

m)
↑L

↑(A+
m ⊗B+

m) ; · `F (↓↑A+
m)⊗ (↓↑B+

m)
(focus−)0

Ψ′, ↑A+
m, ↑B+

m ; · `F U`
Ψ′, ↑A+

m ; ↓↑B+
m `F U`

↓L

Ψ′ ; ↓↑A+
m • ↓↑B+

m `F U`
↓L

Ψ′ ; (↓↑A+
m)⊗ (↓↑B+

m) `F U`
⊗L

Ψ′, ↑(A+
m ⊗B+

m) ; · `F U`
cut(3)

If the last rule used was ⊗R, then (Um)• = (A+
m)• ⊗ (B+

m)• for some A+
m, B

+
m. Since Um

is suspension-normal and stable, we can conclude that Um = ↓mm↑mm . . . ↓mm↑mm(A+
m ⊗ B+

m), from
which double shift removal allows us to assume that Um = A+

m ⊗B+
m.

We also note that the premises of this rule are proofs that (Ψ1,Ψ2)
• `I (A+

m)• and (Ψ2,Ψ3)
• `I

(B+
m)•, where Ψ = Ψ1,Ψ2,Ψ3 and C ∈ σ(Ψ2). Applying the inductive hypothesis to both yields

proofs of Ψ1,Ψ2 ; · `F A+
m and Ψ2,Ψ3 ; · `F B+

m. These can then be combined to give the

7The case for ⊗L1 is similar, with the only difference being that in our cut, we propagate ↑(A+
m ⊗ B+

m) to both
sides of the cut, and adjust our application of the inductive hypothesis. In general, to reduce the size of proofs, we
will only look at the L0 rule variants in what is shown here, but the L1 variants all follow similarly from their L0

versions, either propagating a proposition to both sides of a multi-premise rule, or keeping a copy on the left when
applying the (focus−)α rule.

36

following proof:

Ψ1,Ψ2 ; · `F A+
m

Ψ1,Ψ2 ; · `F ↑A+
m

↑R

Ψ1,Ψ2 `F [↓↑A+
m]
↓R

Ψ1,Ψ2 ; · `F B+
m

Ψ1,Ψ2 ; · `F ↑B+
m

↑R

Ψ1,Ψ2 `F [↓↑B+
m]
↓R

Ψ1,Ψ2,Ψ3 `F [(↓↑A+
m)⊗ (↓↑B+

m)]
⊗R

Ψ1,Ψ2,Ψ3 ; · `F (↓↑A+
m)⊗ (↓↑B+

m)
focus+

〈A+
m〉 `F [A+

m]
id+

〈B+
m〉 `F [B+

m]
id+

〈A+
m〉, 〈B+

m〉 `F [A+
m ⊗B+

m]
⊗R

〈A+
m〉, 〈B+

m〉 ; · `F A+
m ⊗B+

m
focus+

〈A+
m〉 ; B+

m `F A+
m ⊗B+

m

η+

〈A+
m〉 ; [↑B+

m] `F A+
m ⊗B+

m

↑L

〈A+
m〉, ↑B+

m ; · `F A+
m ⊗B+

m

(focus−)0

↑B+
m ; A+

m `F A+
m ⊗B+

m

η+

↑B+
m ; [↑A+

m] `F A+
m ⊗B+

m

↑L

↑A+
m, ↑B+

m ; · `F A+
m ⊗B+

m

(focus−)0

↑A+
m ; ↓↑B+

m `F A+
m ⊗B+

m

↓L

· ; ↓↑A+
m • ↓↑B+

m `F A+
m ⊗B+

m

↓L

· ; (↓↑A+
m)⊗ (↓↑B+

m) `F A+
m ⊗B+

m

⊗L

Ψ1,Ψ2,Ψ3 ; · `F A+
m ⊗B+

m

cut(3)

Here, C ∈ σ(Ψ2) is used to apply ⊗R in the left branch of the cut — we have omitted this in the
proof tree for space reasons.

We now move on to the rules that explicitly mention modes — ↑L, ↓R, and(L.
If the last rule used in the ADJI proof was ↑L0, then (Ψ)• = (Ψ′)•, ↑mk (A+

k)• for some Ψ′, A+
k .

Since Ψ is suspension-normal, we can conclude that Ψ = Ψ′, ↑mm↓mm . . . ↑mm↓mm↑mk A+
k , and double

shift removal allows us to assume that Ψ = Ψ′, ↑mk A+
k . We also get as premises of the ↑L0 rule

that if U is at mode `, 8 then k ≥ `, along with a proof that (Ψ′)•, (A+
k)• `I (U`)

•. This is also
a proof that (Ψ′)•, (↑kkA+

k)• `I (U`)
•, to which we can apply the inductive hypothesis to get that

Ψ′, ↑kkA+
k ; · `F U`. We can then build the following focused proof:

↑mk A+
k ≥ k ≥ `

k ≥ k

〈A+
k 〉 ; · `F [A+

k]
id+

〈A+
k 〉 ; · `F A+

k

focus+

· ; A+
k `F A

+
k

η+

· ; [↑mk A+
k] `F A+

k

↑L

↑mk A+
k ; · `F A+

k

(focus−)0

↑mk A+
k ; · `F ↑kkA+

k

↑R
Ψ′, ↑kkA+

k ; · `F U`
Ψ′, ↑mk A+

k ; · `F U`
cut(4)

Here, the condition on modes in ↑L0 of ADJI appears as a condition on the cut.
If the last rule used in the ADJI proof was ↓R, then (Um)• = ↓`m(A−`)•. The same reasoning

as in previous cases allows us to assume that Um = ↓`mA−` . We also get from the premises of the
rule that Ψ = Ψ1,Ψ2 with Ψ1 ≥ ` and W ∈ σ(Ψ2), along with a proof that (Ψ1)

• `I (A−`)•.

8Technically, this requires that (U)• is at mode `, but this is equivalent to U being at mode `.

37

Applying the inductive hypothesis (to a slightly modified form of the proof), we get that Ψ1 ;
· `F ↓−``A−` . We can then construct the following:

Ψ1 ≥ ` ≥ m Ψ1 ; · `F ↓``A−`

A−` ≥ ` W ∈ σ(Ψ2)

· ; [A−`] `F 〈A−` 〉
id−

A−` ; · `F 〈A−` 〉
(focus−)0

A−` ; · `F A−`
η−

Ψ2, A
−
` `F [↓`mA−`]

↓R

Ψ2, A
−
` ; · `F ↓`mA−`

focus+

Ψ2 ; ↓``A−` `F ↓
`
mA
−
`

↓L

Ψ1,Ψ2 ; · `F ↓`mA−`
cut(3)

Again, the condition on modes from the ADJI proof’s ↓R appears as a condition on the cut in
the focused proof.

As a final example case, we consider (L0,0. In this case (via similar reasoning to the
previous cases), we may assume that Ψ = Ψ1,Ψ2,Ψ3, A

+
m(B−m. The premises of the rule give

us that Ψ1,Ψ2 ≥ m, C ∈ σ(Ψ2), and, after applying the inductive hypothesis to the premises,
that Ψ1,Ψ2 ; · `F A+

m and Ψ2,Ψ3, B
−
m `F U`. Combining all this together, we construct the

following two proofs that A+
m (B−m ; · `F (↓↑A+

m) ((↑↓B−m) and Ψ1,Ψ2,Ψ3, (↓↑A+
m) (

(↑↓B−m) ; · `F U`, which can be cut together with the fourth case of Theorem 10 to give the
desired result:

〈A+
m〉 ≥ m C ∈ σ(·) 〈A+

m〉 `F [A+
m]

id+

· ; [B−m] `F 〈B−m〉
id−

〈A+
m〉 ; [A+

m(B−m] `F 〈B−m〉
(L

A+
m(B−m, 〈A+

m〉 ; · `F 〈B−m〉
(focus−)0

A+
m(B−m ; A+

m `F 〈B−m〉
η−

A+
m(B−m ; [↑A+

m] `F 〈B−m〉
↑L

A+
m(B−m, ↑A+

m ; · `F 〈B−m〉
(focus−)0

A+
m(B−m, ↑A+

m ; · `F B−m
η+

A+
m(B−m, ↑A+

m `F [↓B−m]
↓R

A+
m(B−m, ↑A+

m ; · `F ↓B−m
focus+

A+
m(B−m, ↑A+

m ; · `F ↑↓B−m
↑R

A+
m(B−m ; ↓↑A+

m `F ↑↓B−m
↓L

A+
m(B−m ; · `F (↓↑A+

m)((↑↓B−m)
(R

Ψ1,Ψ2 ≥ m C ∈ σ(Ψ2)

Ψ1,Ψ2 ; · `F A+
m

Ψ1,Ψ2 ; · `F ↑A+
m

↑R

Ψ1,Ψ2 `F [↓↑A+
m]
↓R

Ψ2,Ψ3, B
−
m ; · `F U`

Ψ2,Ψ3 ; ↓B−m `F U`
↓L

Ψ2,Ψ3 ; [↑↓B−m] `F U`
↑L

Ψ1,Ψ2,Ψ3 ; [(↓↑A+
m)((↑↓B−m)] `F U`

(L

Ψ1,Ψ2,Ψ3, (↓↑A+
m)((↑↓B−m) ; · `F U` focus−

38

At face value, our focalization theorem only applies to certain sequents — those which are
the erasure of some stable, suspension-normal sequent Ψ ; · `F U . In order to have a proper
focalization result, that every provable ADJI sequent has a provable focused counterpart, we
need to also show that every ADJI sequent can be polarized into a stable, suspension-normal
sequent, solely by the addition of shifts from a mode to itself. Since negative propositions are
stable on the left and positive propositions are positive on the right, it will suffice to show that
we can polarize every Ψ `I Bm such that Ψ is negative and Bm is positive.
Lemma 5 (Existence of Polarizations). Suppose Ψ `I Bm. Then, there exists a polarized sequent
Ψ− `I B+

m which differs from the original sequent only by the addition of shifts from a mode to
itself (i.e. of the form ↑mm or ↓mm).

Proof. It will suffice to show that any given proposition Bm can be given a valid polarization —
if this yields a positive B+

m, we can construct the negative proposition ↑mmB+
m, and likewise, if

it yields a negative B−m, we can construct ↓mmB−m. In either case, whether this Bm occurs in the
antecedents or the succedent, we can give it the appropriate polarity.

That each Bm can be given a valid polarization follows by induction on the structure of Bm.
If Bm is an atom pm, we will arbitrarily take this atom to be negative.9

Otherwise, we apply the inductive hypothesis to each direct subformula of Bm, insert shifts
as necessary, and then use the top-level connective of Bm to build up a new B±m.

We consider two example cases here, first Nj∈JB
j
m, and then ↓`mB`.

IfBm = Nj∈JB
j
m, we apply the inductive hypothesis to eachBj

m to get a polarization (Bj
m)±.

For each (Bj
m)−, let (Bj

m)− = (Bj
m)−, and for each (Bj

m)+, let (Bj
m)− = ↑mm(Bj

m)+. Then, define
B−m = Nj∈J(Bj

m)−.
If Bm = ↓`mB`, we apply the inductive hypothesis to B` to get a polarization B±` . If this

polarization is already negative, we take B+
m = ↓`mB−` . Otherwise, we take B+

m = ↓`m(↑``B+
`).

The other cases are similar.

Combining the existence of polarizations with our focalization result gives us that any prov-
able ADJI sequent has a provable focused counterpart.10

2.4 Embeddings of example logics
A variety of logics from the computer science literature can be represented as instances of adjoint
logic, potentially with some restrictions on which propositions are allowed at each mode.
Example 2 (Linear logic). We obtain intuitionistic linear logic [6, 35, 36] by using two modes,
U (for unrestricted or structural) and L (for linear) with U > L. Moreover, σ(U) = {W,C} and
σ(L) = { }, and the structural layer U contains only propositions of the form ↑ULAL.

9Polarizations where all atoms are positive are, of course, also possible, as are those where atoms have varying
polarity. For simplicity, however, we consider only this single case, as we are currently primarily concerned with
existence of polarizations.

10Indeed, many such counterparts exist — as we have seen, both polarization and erasure are non-deterministic.

39

In this representation the exponential modality is decomposed into shift modalities !AL =
↓UL ↑ULAL, while all other connectives are represented as (the L-version of) themselves.
Example 3 (LNL). We obtain Benton’s LNL [7] much like linear logic with two modes U > L,
but here, rather than only allowing ↑ULAL in the structural layer, here, we allow the full set of
(multiplicative) connectives, where we write × = ⊗U and → = (U. Of course, we can work
with additive connectives as well, but LNL avoids them for technical reasons, and so we omit
them here.

Benton’s notation for shifts uses F and G for down and up, respectively, and his first for-
mulation of LNL uses two separate contexts for linear and unrestricted propositions, whereas
we mix both types of propositions into a single context, as in the “parsimonious” presentation
of LNL [7, Technical Report]. We then rely on the declaration of independence to force that
unrestricted succedents depend only on unrestricted antecedents, which, in Benton’s work, is
accomplished via a lemma stating that any provable sequent satisfies this condition.

As we have mentioned before, some further examples embed more naturally into ADJI , be-
cause they are primarily structural in nature, and so are generally also presented with implicit
structural rules.
Example 4 (Judgmental S4). The modal logic S4 adds two modal operators 2 and ♦ to a struc-
tural logic. To model 2, we look to a judgmental presentation of S4 with separate contexts for
valid and true propositions [75]. The fragment of S4 without ♦ then arises from two modes V
(validity) and U (truth) with V > U and σ(V) = σ(U) = {W,C}. The declaration of indepen-
dence here expresses that validity is categorical with respect to truth—that is, a proof of AV must
not depend on any hypotheses of the form BU. Previous calculi enforced this instead by sepa-
rating the antecedents into two zones, much like the linear and unrestricted contexts of linear
logic.

Analogous to the encoding of linear logic, we only need to allow ↑VUAU in the validity layer.
Under that interpretation, we encode 2AU = ↓VU ↑VUAU, which is entirely analogous to the repre-
sentation of !A in linear logic. This type of double shift, first up, then down, allows us to model
comonads.

Note that we cannot easily model ♦A, which is not a normal modality in the technical sense
that it does not satisfy ♦(A (B) ((♦A (♦B). Reed [88] provides a less direct, but
adequate encoding, while Licata et al. [59] use the 2-categorical structure that generalizes our
preorder to provide a more elegant representation, so this is expressible in an adjoint framework,
if not in our presentation of it.
Example 5 (Lax logic). Lax logic [31, 75] encodes a weaker form of truth called lax truth. We
can represent it as a substructural adjoint logic with two modes, U > X, and σ(U) = σ(X) =
{W,C}. As in the previous examples, we restrict the lax layer X to a single form of proposition
↓UXAU, which is sufficient for us to define the lax modality©AU = ↑UX ↓UXAU. All other connectives
are straightforwardly encoded as themselves.

The double shift ↑UX↓UX that we use to represent the lax modality is an example of a (strong)
monad. In fact, such double shifts will always form strong monads.

40

Chapter 3

The Semi-Axiomatic Sequent Calculus

The proof theory that we present in chapter 2 is based on the sequent calculus, which is well-
suited to giving several different presentations of adjoint logic, and to reasoning about the struc-
ture of proofs. Sequent calculus presentations of logic can be directly used as a basis for pro-
gramming languages, with a notable example given by Caires and Pfenning’s interpretation of
the linear sequent calculus as a form of concurrent programming language [12]. However, this
approach yields a language where all communication is synchronous — a process cannot send a
message unless its intended recipient is already waiting to receive that message. This presents a
few problems in our adjoint setting — firstly, that we may simply wish to model asynchronous
communication (for instance, if we want to model shared memory, rather than message-passing),
and secondly and more critically, there are circumstances where synchronous communication
simply does not make sense. For instance, consider a multicast message with multiple recipi-
ents — do all recipients of the message need to be waiting at the same time in order for this
message to be sent? How would all of these participants synchronize? In our attempts to re-
solve these issues and provide a firm semantics for a language based on adjoint logic, but which
supports asynchronous communication, we incidentally also developed a new presentation of
logic, the semi-axiomatic sequent calculus [26], which we will examine in this chapter. This
prior publication focuses on the proof theory of the structural semi-axiomatic calculus. Here, we
will examine the adjoint case, which adds some additional complexities (but is also simpler in
other aspects — working with explicit structural rules, which we will do here, can be convenient
proof-theoretically). While the semi-axiomatic sequent calculus is not inherently related to ad-
joint logic, it is nevertheless a contribution of this thesis, and is used extensively in the following
chapters as the basis for programming languages.

3.1 Recovering Asynchrony via Cut

In the usual interpretation of the linear sequent calculus as a basis for programming [12], we
interepret cut reductions as computation steps — a message is sent (and received) via a principal
cut reduction, between a right rule and a corresponding left rule. For instance, consider the

41

following cut between ⊕Ri and ⊕L (using the system ADJE):

Γ1 ≥ m ≥ k

i ∈ J
D

Γ1 ` Aim
Γ1 ` ⊕j∈JAjm

⊕Ri

Ej
Γ2, A

j
m ` Ck for all j ∈ J
Γ2,⊕j∈JAjm ` Ck

⊕L

Γ1,Γ2 ` Ck
cut

This cut reduces to the following proof, using that i ∈ J to conclude that Ei must exist:

Γ1 ≥ m ≥ k
D

Γ1 ` Aim
Ei

Γ2, A
i
m ` Ck

Γ1,Γ2 ` Ck
cut

Here, the rule ⊕L, being a positive left rule, is invertible, with its premises being provable from
its conclusion, and so contains no information. It is therefore natural to view this reduction as a
transfer of information (the single label i) from the process represented by the⊕Ri to the process
represented by the ⊕L, selecting a branch in the latter.

This is synchronous in that both processes evolve at once. To make it asynchronous, we
would like for the sending process and the receiving process to be able to take their send/receive
steps separately. One approach to this, which is often taken in the π-calculus, is to make sending
a message a terminal action. For a process to send a message and continue, then, it must spawn
a separate process whose sole role is to send that message. We may even identify this short-lived
process with the message itself, so that the spawning of this process is a message send. If we
want our message (containing the label i) to disappear upon receipt, then the corresponding rule
should have no premises — that is, it should be an axiom. If we assume that the premise of
the ⊕Ri rule is an identity (which then has no further premises), we get the following (ADJE)
sequent calculus proof, which we take as the basis for the axiomatic rule ⊕R0

i :

i ∈ J Aim ` Aim
id

Aim ` ⊕j∈JAjm
⊕Ri

becomes
i ∈ J

Aim ` ⊕j∈JAjm
⊕R0

i

In order to prove ⊕j∈JAjm, all we need is to have some i ∈ J for which we can establish Aim.
Now, if we examine a cut reduction between ⊕R0

i and ⊕L, we see that the message (represented
by ⊕R0

i) disappears, while still selecting the i branch in ⊕L:

m ≥ k
i ∈ J

Aim ` ⊕j∈JAjm
⊕R0

i

Ej
Γ2, A

j
m ` Ck for all j ∈ J
Γ2,⊕j∈JAjm ` Ck

⊕L

Aim,Γ2 ` Ck
cut

reduces to
Ei

Γ2, A
i
m ` Ck

Similarly, if we replace the other non-invertible rules of the sequent calculus with axiomatic
forms, we have, at least at an intuitive level, made it possible to work with asynchronous com-
munication. Sending a message is accomplished via a cut with one of these new axioms, and
receiving a message behaves much the same as in the synchronous case, except that the message
is made explicit as a process represented by an axiom.

42

Am ` Am id
Γ1 ≥ m ≥ k Γ1 ` Am Γ2, Am ` Ck

Γ1,Γ2 ` Ck
cut

W ∈ σ(m) Γ ` Ck
Γ, Am ` Ck weaken

C ∈ σ(m) Γ, Am, Am ` Ck
Γ, Am ` Ck

contract

i ∈ J
Aim ` ⊕j∈JAjm

⊕R0
i

Γ, Ajm ` Ck for all j ∈ J
Γ,⊕j∈JAjm ` Ck

⊕L

Γ ` Ajm for all j ∈ J
Γ ` Nj∈JA

j
m

NR i ∈ J
Nj∈JA

j
m ` Aim

NL0
i

Am, Bm ` Am ⊗Bm
⊗R0

Γ, Am, Bm ` Ck
Γ, Am ⊗Bm ` Ck

⊗L

Γ, Am ` Bm

Γ ` Am(Bm
(R

Am, Am(Bm ` Bm
(L0

· ` 1m
1R0

Γ ` Ck
Γ,1m ` Ck 1L

A` ` ↓`mA`
↓R0 Γ, A` ` Ck

Γ, ↓`mA` ` Ck
↓L

Γ ` Ak
Γ ` ↑mk Ak

↑R ↑mk Ak ` Ak
↑L0

Figure 3.1: A semi-axiomatic presentation of ADJE

3.2 The Semi-Axiomatic Sequent Calculus SAX

With the motivation of the previous section in mind, we will now show a full semi-axiomatic pre-
sentation of ADJE . Note that while we use ADJE as an example here, we can likewise transform
ADJI to a semi-axiomatic form, and this will serve as a basis for several of the programming
languages in Chapter 4.

One interesting side-effect of presenting adjoint logic in a semi-axiomatic form is that nearly
all of the side conditions on modes disappear — ↓R, ↑L, and(L all have conditions on the
modes of their components in a sequent calculus presentation, but these conditions are all trivially
satisfied in their axiomatic forms, and so do not appear explicitly in the rules. In essence, the
conditions needed to use these rules in a more general context are subsumed by the conditions
on cut.

A natural question about this semi-axiomatic calculus is whether it can derive the same se-
quents as the usual sequent calculus — after all, we have severely restricted the contexts in which

43

the non-invertible rules may be used. In fact, these two calculi derive (in the presence of cut)
exactly the same sequents, and, moreover, the rules of the semi-axomatic calculus can be used to
prove the rules of the regular sequent calculus, and vice versa. We express this as the following
theorem (which, while only described here for ADJE , can be generalized to ADJI , and to other
logics):
Theorem 13. Each rule of the semi-axiomatic form of ADJE (Figure 3.1) is derivable in a se-
quent calculus presentation of ADJE , and vice versa.

Consequently, a sequent Γ ` Am is provable in the sequent calculus presentation of ADJE if
and only if it is provable in the semi-axiomatic presentation of ADJE .

Proof. Each axiom of the semi-axiomatic calculus is derivable (as our method of constructing
the axioms suggests) from the corresponding non-axiom rule, by constructing a proof where all
premises of that rule are applications of the identity. For instance, consider the left implication
rule ((R is already the same in both calculi):

Am ≥ m Am ` Am id
Bm ` Bm

id

Am, Am(Bm ` Bm
(L

We see that this proof gives exactly(L0.
In the other direction, we make use of cut to apply an axiom in a more general setting. Again

examining the left implication case, we see that by cutting together(L0 with the premises of
the(L rule, we recover(L:

Γ1 ≥ m ≥ k Γ1 ` Am
Am, Am(Bm ≥ m ≥ k Am, Am(Bm ` Bm (L0

Γ2, Bm ` Ck
Γ2, Am, Am(Bm ` Ck

cut

Γ1,Γ2, Am(Bm ` Ck
cut

Note that when read bottom-up, several of the side conditions on modes are automatically sat-
isfied (assuming the conclusion Γ1,Γ2, Am (Bm ` Ck is well-formed). Only that Γ1 ≥ m
(highlighted in red) still needs to be proven, since we can infer m ≥ k from well-formedness of
the bottom sequent, and Am, Am (Bm ≥ m is trivially true. Thus, despite the more compli-
cated side conditions, only the one that occurs in(L to begin with needs to be proven.

The other axioms can be shown to be interderivable with their non-axiomatic counterparts
in a similar manner, making use of cut and identity, and so for a given logic, we can directly
translate between SAX proofs and sequent calculus proofs.

3.3 Cut Elimination for SAX
One immediate observation from the translations above is that cut elimination is no longer obvi-
ous for SAX — we need to use cuts to recover the original sequent calculus rules, so we cannot
simply rely on cut elimination in the sequent calculus to get cut elimination in SAX. In fact, full
cut elimination is not possible in SAX. We can, however, still prove a form of normalization,
where only certain types of cuts are allowed. In our recovery of the(L rule from(L0 (and

44

indeed in the other such derivations of the original sequent calculus rules from their axiomatic
counterparts), all of the cuts that we use are analytic — that is, the cut formula is a subformula
of some other part of the conclusion of the cut. If we allow only analytic cuts, while we do
not have full cut elimination, we do still retain the subformula property, as these cuts do not
introduce any new formulae. Because we only use analytic cuts in translating from SAX to the
sequent calculus, we can use cut elimination for the sequent calculus along with our translations
between sequent calculus and SAX to prove the subformula property, simply by translating to
sequent calculus, eliminating cuts, and translating back, producing only analytic cuts. However,
this approach is too imprecise to provide a clear relation to computational behavior, and so we
work instead with a more limited form of cut which we call a snip, allowed to be used only if the
snip formula is used as a sub-principal formula in an axiom in one or both of the premises of the
snip.

To be precise, we label each occurrence of a formula with a variable, so that we can distin-
guish between two different copies of the same formula Am. For each axiom, some number of
immediate sub-formulae of the principal formula appear. Consider for example(L0:

x : A∗m, y : Am(Bm ` z : B∗m
(L0

Here, the principal formula is Am(Bm, and the sub-principal formulae are Am and Bm, which
we mark with a ∗ to denote that they are eligible to be used in a snip. This information can then
be propagated downwards through a derivation to determine whether a given cut is a snip or not.
For each rule, we mark variables as eligible in the conclusion if they are eligible in at least one
premise of the rule.

Snips are then cuts with one of the following forms:1

Γ1 ≥ m ≥ k Γ1 ` x : A∗m Γ2, x : Am ` z : Ck
Γ1,Γ2 ` z : Ck

Snip1

Γ1 ≥ m ≥ k Γ1 ` x : Am Γ2, x : A∗m ` z : Ck
Γ1,Γ2 ` z : Ck

Snip2

Just as we can make use of cut elimination in the sequent calculus to prove that we can
eliminate all non-analytic cuts in SAX, we can likewise show that we can eliminate all non-
snip cuts in SAX by the same method, showing that the cuts introduced by translating from the
sequent calculus to SAX are in fact snips. It is also possible to directly prove admissibility of cut
in SAX with snips, and thereby eliminate non-snip cuts directly, and this approach and its cut
reductions will form the basis of computational behavior of SAX-based programming languages.
We will first present in detail cut elimination for the semi-axiomatic presentation of ADJE , but
note that (as for the sequent calculus), implicit and explicit structural rules require different proof
strategies to handle them.

As is typical, and as in our previous cut elimination results, we first show that cut is admis-
sible, and this result comprises the bulk of the proof. Note that in what follows, we will write
“cut-free” to describe proofs in which all cuts are snips, rather than proofs which contain no cuts
whatsoever.

1If the cut formula Am is eligible in both premises of the snip, we may freely label it as either Snip1 or Snip2.

45

Since we are working with explicit structural rules, we will need to generalize our cut admis-
sibility result to work with multicut, as in Section 2.1.1.
Theorem 14 (Multicut admissibility for SAX). Suppose we have cut-free proofs D of Γ1 ` Am
and E of Γ2, A

n
m ` z : Ck in SAX, and that Γ1 ≥ m ≥ k and n ∈ µ(m).

Then, there is a cut-free SAX proof F of Γ1,Γ2 ` z : Ck.

Proof. We will prove a slightly stronger statement in order to simplify our induction, adding the
following condition on formulae in Γ1,Γ2. Each y : B` in Γ1,Γ2 which is eligible in D or E
must either also be eligible in F , or B` must be a strict subformula of Am. This is necessary in
the cases where either D or E ends in a snip (which is possible due to our relaxed definition of
“cut-free’).

To avoid a need for “multisnips” and the associated question of what needs to be eligible
for a multisnip to be used, we will take a slightly different approach here than in proving cut
admissible in the sequent calculus presentation of ADJE , in which we first reduce all multicuts
to ordinary cuts, and then can handle all remaining cases assuming that n = 1.

We then proceed by induction on the (lexicographically ordered) quadruple (Am,D, E , n).
Here, n is necessary to allow us to reduce multicuts on n > 1 to simple cuts (with n = 1).

Reducing Multicut to Cut There are two cases to consider here, where n = 0, and where
n > 1.

If n = 0, then, since n ∈ µ(m), we know that W ∈ σ(m). We also know that Γ1 ≥ m,
so W ∈ σ(Γ1) as well, meaning that we can freely weaken (in several steps) all of Γ1. We then
construct the following proof:

W ∈ σ(Γ1)
E

Γ2 ` z : Ck.... weaken∗

Γ1,Γ2 ` z : Ck

If n > 1, since n ∈ µ(m), we know that C ∈ σ(m), and so also, since Γ1 ≥ m, C ∈ σ(Γ1).
This means that we may repeatedly apply contraction to duplicate all of Γ1. We then choose
i, j ≥ 1 such that i + j = n, and construct the following proof, noting that i, j < n, and so we
may apply the inductive hypothesis:

C ∈ σ(Γ1)

i ∈ µ(m) Γ1 ` Am
j ∈ µ(m) Γ1 ` Am Γ2, A

i
m, A

j
m ` z : Ck

Γ1,Γ2, A
i
m ` z : Ck

i.h.(Am,D, E , j)

Γ1,Γ1,Γ2 ` z : Ck
i.h.(Am,D, E , i)

.... contract∗

Γ1,Γ2 ` z : Ck

We omit the condition Γ1 ≥ m ≥ k from the uses of the inductive hypothesis for space reasons,
but it holds by assumption in both cases. That i, j ∈ µ(m) follows from the fact that C ∈ σ(m),
and so µ(m) contains all positive integers.

At this point, we have covered all cases where n 6= 1, and so in what remains, we may freely
assume that n = 1. We will, however, make use of the inductive hypothesis at n 6= 1 in cases
involving the structural rules, and it is for this reason that we needed to strengthen our result to
eliminate multicut rather than working directly with cut.

46

Eligible Cases In the next two cases we consider, x : Am is already eligible in either D or E ,
and we can construct a snip between D and E to give the desired result, noting that any variable
eligible inD or E (besides x : Am itself, which disappears from F) will also be eligible in F . We
note that these cases cover all instances where a right axiom (⊕R0

i ,⊗R0,1R0, ↓R0) is the last
rule used in E or a left axiom (NL0

i ,(L0, ↑L0) is the last rule used inD, as the cut formula must
necessarily be eligible in these cases. We also cover the case where(L0 is the last rule used in
E and the cut formula is the left-hand side of the implication, rather than the whole implication
itself.

Identity Cases The identity cases are similar to a typical proof of cut admissibility. If D ends
in an identity, then E is almost exactly the proof we need. Substituting to replace x gives the
desired proof, as shown in the reduction below:

(y : Am) ≥ m ≥ k y : Am ` x : Am
id E

Γ2, x : Am ` z : Ck
Γ2, y : Am ` z : Ck

cut
=⇒

E [y/x]
Γ2, y : Am ` z : Ck

Symmetrically, if E ends in an identity, we can substitute in D to give the desired proof:

Γ1 ≥ k ≥ k
D

Γ1 ` x : Ck x : Ck ` z : Ck
id

Γ1 ` z : Ck
cut

=⇒
D[z/x]

Γ1 ` z : Ck

Structural Cases The next set of cases, which involve a structural rule as the last rule used in
either D or E , are those that are most distinctly different from any cases in the proof of cut for
structural SAX. In several of these cases, where the structural rule was the last rule in D or was
the last rule in E , but does not have the cut formula as its principal formula, we can exchange
the cut and the structural rule in the proof, allowing us to apply the inductive hypothesis (with
the same cut formula Am, but a smaller proof for either D or E). We show one example of these
cases, where D is arbitrary, and E ends in a contraction applied to a formula B` other than the
cut formula, reducing the following proof:

Γ1 ≥ m ≥ k
D

Γ1 ` x : Am

C ∈ σ(`)
E1

Γ2, x : Am, y : B`, w : B` ` z : Ck
Γ2, x : Am, y : B` ` z : Ck

contract

Γ1,Γ2, y : B` ` z : Ck
cut

to this proof, relying on the inductive hypothesis:

C ∈ σ(`)

Γ1 ≥ m ≥ k
D

Γ1 ` x : Am
E1

Γ2, x : Am, y : B`, w : B` ` z : Ck
Γ1,Γ2, y : B`, w : B` ` z : Ck

i.h.(Am,D, E1)

Γ1,Γ2, y : B` ` z : Ck
contract

We observe here that if any formula is eligible in E , it must also be eligible in E1, as E1 is a
premise of the last rule used in E . As such, any formula eligible in D or E is also eligible in

47

the resulting proof F , since it will be (by the inductive hypothesis) eligible in the premise of the
contraction rule.

If, instead, the cut formula is also the principal formula of the structural rule, we may con-
clude almost immediately by applying our inductive hypothesis. For example, we look at the
case where E ends in a weakening of the cut formula:

Γ1 ≥ m ≥ k
D

Γ1 ` x : Am

W ∈ σ(m)
E1

Γ2 ` z : Ck
Γ2, x : Am ` z : Ck

weaken

Γ1,Γ2 ` z : Ck
cut

In this case, applying the inductive hypothesis to (Am,D, E1) gives the desired result, using
W ∈ σ(m) from E to justify that we may perform a multicut with 0 copies of Am. Here, our
desired eligibility condition comes immediately from the inductive hypothesis.

The remaining structural cases (three more commuting cases, and the principal case for con-
traction) behave similarly to those shown already.

Commuting Cases For non-axiom connective rules, commuting cases are identical to those
for cut admissibility in the sequent calculus, needing only to verify that our eligibility condition
holds. We show one example of such a case, where the last rule in D is ⊕L:

Γ1, y : ⊕j∈JBj
` ≥ m ≥ k

Di
Γ1, w : Bi

` ` x : Am for all i ∈ J
Γ1, y : ⊕j∈JBj

` ` x : Am
⊕L E

Γ2, x : Am ` z : Ck

Γ1,Γ2, y : ⊕j∈JBj
` ` z : Ck

cut

We note that if any formula (other than y : ⊕j∈JBj
` , which cannot be eligible in D to begin

with) is eligible in D, it is also eligible in Di, by definition of eligibility. We then construct the
following proof:

Γ1, w : Bi
` ≥ m ≥ k

Di
Γ1, w : Bi

` ` x : Am
E

Γ2, x : Am ` z : Ck

Γ1,Γ2, w : Bi
` ` z : Ck

i.h.(Am,Di, E)
for all i ∈ J

Γ1,Γ2, y : ⊕j∈JBj
` ` z : Ck

⊕L

We can see that by the inductive hypothesis, any formula which is eligible in either Di or E is
also eligible in the premise of ⊕L, and therefore also in F (other than w : Bi

`, which, while it
may be eligible in Di, cannot have been eligible in D), giving our desired eligibility condition.
The other commuting cases behave similarly.

For axioms, commuting cases do not exist — this is because the side formulae of axioms are
always eligible, and so we fall back to the eligible cases presented above.

However, we have a third class of commuting cases as well, which did not occur in the
sequent calculus case. Since our cut-free proofs may contain snips, we must also consider these
snips as possible last rules forD and E , and since the snip formula of a snip does not appear in its

48

conclusion, all cases involving snips are commuting cases. There are four such cases, depending
on whether D or E ends with a snip, and whether it is a Snip1 or a Snip2, but all are similar.

We examine first the case where D ends with a Snip1:

Γ1,Γ2 ≥ m ≥ k
Γ1 ≥ ` ≥ m

D1
Γ1 ` y : D∗`

D2
Γ2, y : D` ` x : Am

Γ1,Γ2 ` x : Am
Snip1 E

Γ3, x : Am ` z : Ck
Γ1,Γ2,Γ3 ` z : Ck

cut

Switching the order of the snip and the cut, we get the following proof:

Γ1 ≥ ` ≥ k
D1

Γ1 ` y : D∗`

Γ2, y : D` ≥ m ≥ k
D2

Γ2, y : D` ` x : Am
E

Γ3, x : Am ` z : Ck
Γ2,Γ3, y : D` ` z : Ck

i.h.(Ck,D2, E)

Γ1,Γ2,Γ3 ` z : Ck
Snip1

By the inductive hypothesis, any formula that is eligible in E (or in D2) is either eligible in
the second premise of the snip, or is a strict subformula of Am. In the former case, it remains
eligible in F , and in the latter, it need not be eligible. Formulae which are eligible in D must,
by definition, be eligible in one of D1 and D2, and if they are eligible in D1, then they are also
eligible in F , and so the eligibility condition is again satisfied.

Now, if E ends with a Snip1, there are two subcases, depending on which branch of the snip
x : Am goes to. We show one of these cases (where x : Am is used in E1) below:

Γ1 ≥ m ≥ k
D

Γ1 ` x : Am

Γ2 ≥ ` ≥ k
E1

Γ2, x : Am ` y : D∗`

E2
Γ3, y : D` ` z : Ck

Γ2,Γ3, x : Am ` z : Ck
Snip1

Γ1,Γ2,Γ3 ` z : Ck
cut

By applying the inductive hypothesis to (Am,D, E1) (using well-formedness of E1 to get the side
condition thatm ≥ `), we get a proofF1 that Γ1,Γ2 ` y : D`. Critically, the inductive hypothesis
also gives us that either y : D` is eligible in F1, or D` is a strict subformula of Am. In the former
case, we can construct F as a Snip1 between F1 and E2, since y : D` is eligible:

Γ1,Γ2 ≥ ` ≥ k
F1

Γ1,Γ2 ` y : D∗`

E2
Γ3, y : D` ` z : Ck

Γ1,Γ2,Γ3 ` z : Ck
Snip1

Here, we use well-formedness of E1 again to get that m ≥ `, and so (combined with Γ1 ≥ m and
Γ2 ≥ ` ≥ k), we get the side condition Γ1,Γ2 ≥ ` ≥ k.

If y : D` is not eligible in F1, then D` must be a strict subformula of Am, and so we may
apply the inductive hypothesis a second time, now with the smaller formula D`, despite that F1

is a larger proof than D. This gives us the following proof:

Γ1,Γ2 ≥ ` ≥ k
F1

Γ1,Γ2 ` y : D`

E2
Γ3, y : D` ` z : Ck

Γ1,Γ2,Γ3 ` z : Ck
i.h.(D`,F1, E2)

49

In both cases, the usual reasoning applies to show that any formula eligible in D or E1 is eligible
inF1 or is a strict subformula ofAm, and thus that the same applies forF . Likewise, any formula
eligible in E2 is either eligible in F or (in the case where D` is a strict subformula of Am) is a
strict subformula of D`, and therefore also of Am.

The case where x : Am is used in E2, rather than E1, is similar, using the inductive hypothesis
to combine D with E2, and then snipping E1 with the resulting proof. Since E1 is not affected by
the inductive hypothesis, y : D` is guaranteed to be eligible, and so this snip is always possible.

In the case where D ends with a Snip2, we have the following proof to reduce:

Γ1,Γ2 ≥ m ≥ k

Γ1 ≥ ` ≥ m
D1

Γ1 ` y : D`

D2

Γ2, y : D∗` ` x : Am
Γ1,Γ2 ` x : Am

Snip2 E
Γ3, x : Am ` z : Ck

Γ1,Γ2,Γ3 ` z : Ck
cut

By applying the inductive hypothesis to (Am,D2, E), we get a proofF2 of Γ2,Γ3, y : D` ` z : Ck.
If y : D` remains eligible in F2, we can use a snip to construct the following proof:

Γ1 ≥ ` ≥ k
D1

Γ1 ` y : D`

F2

Γ2,Γ3, y : D∗` ` z : Ck
Γ1,Γ2,Γ3 ` z : Ck

Snip2

Otherwise, D` must be a strict subformula of Am, and so we may apply the inductive hypothesis
a second time, giving us the following:

Γ1 ≥ ` ≥ k
D1

Γ1 ` y : D`

F2

Γ2,Γ3, y : D` ` z : Ck
Γ1,Γ2,Γ3 ` z : Ck

i.h.(D`,D1,F2)

The eligibility condition in this case follows from similar reasoning to the previous case.
Finally, consider the cases where E ends with a Snip2. As when E ends with Snip1, there are

two similar cases, depending on which branch of the snip x : Am is used in. We show here the
case where x : Am is used in E1:

Γ1 ≥ m ≥ k
D

Γ1 ` x : Am

Γ2, x : Am ≥ ` ≥ k
E1

Γ2, x : Am ` y : D`

E2
Γ3, y : D∗` ` z : Ck

Γ2,Γ3, x : Am ` z : Ck
Snip2

Γ1,Γ2,Γ3 ` z : Ck
cut

As in the previous cases, we begin by applying the inductive hypothesis to (Am,D, E1) to give
F1 a proof of Γ1,Γ2 ` y : D`. Since y : D` is eligible in E2, we can use a Snip2 to combine F1

with E2, giving the desired proof:

Γ1,Γ2 ≥ ` ≥ k
F1

Γ1,Γ2 ` y : D`

E2
Γ3, y : D∗` ` z : Ck

Γ1,Γ2,Γ3 ` z : Ck
Snip2

The case where x : Am is used in E2 is similar to the earlier case where E ends with a Snip1

and x : Am is used in E1 — the inductive hypothesis gives us two cases for the eligibility of
y : D`, and allows us to either use a snip or to use the inductive hypothesis a second time to
construct the desired proof.

50

Principal Cases Finally, we examine some of the principal cases, where the cut formula is
principal in both D and E . In particular, we will look at the cases for shifts, as they are the main
feature distinguishing adjoint logic from other logics, and we will take (as an example of a
more usual connective.

First, we consider the case where D ends in(R and E in(L (with the principal formula
in both cases being the cut formula), giving us the following proof to reduce:

Γ1 ≥ m ≥ m

D1

Γ1, v : Am ` w : Bm

Γ1 ` x : Am(Bm
(R

y : Am, x : Am(Bm ` z : Bm
(L0

Γ1, y : Am ` z : Bm
cut

From this, we construct the following proof via substitution:

D1[y/v, z/w]
Γ1, y : Am ` z : Bm

Any formula in Γ1 which is eligible in D is also eligible here (via D1), and, while y : Am and
z : Bm are both eligible in E , they are strict subformulae of the cut formula Am (Bm, and so
need not be eligible in F (although they may be, depending on D1).

Now, we examine the shift cases, first that for ↓:

y : A` ≥ m ≥ k y : A` ` x : ↓`mA`
↓R0

E1
Γ2, w : A` ` z : Ck

Γ2, x : ↓`mA` ` z : Ck
↓L

Γ2, y : A` ` z : Ck
cut

As in the previous case, a substitution gives us the desired proof:

E1[y/w]
Γ2, y : A` ` z : Ck

Any formula in Γ2, z : Ck which is eligible in E is also eligible in E1, and so also in F , and while
y : A` was eligible in D but may not be in F , it is (as in the previous case) a strict subformula of
the cut formula ↓`mA`, and so need not be eligible in F .

Finally, we examine the principal case for ↑:

Γ1 ≥ m ≥ k

D1

Γ1 ` y : Ak
Γ1 ` x : ↑mk Ak

↑R
x : ↑mk Ak ` z : Ak

↓L0

Γ1 ` z : Ak
cut

This proof reduces (again via substitution) to the following:

D1[z/y]
Γ1 ` z : Ak

Here, any formula (besides x : ↑mk Ak, which is not eligible in D to begin with) which is eligible
in D is also eligible in D1, and so is again eligible in F . The formula z : Ak is eligible in E , and

51

while it may not be eligible in F , it is a strict subformula of the cut formula ↑mk Ak, and so our
eligibility property is still satisfied.

The remaining principal cases are similar to one of the above examples, with positive con-
nectives resembling ↓ and negative connectives resembling ↑.

Cut elimination for SAX then follows from admissibility of cut in the usual way.
Theorem 15 (Cut elimination for SAX, directly). Suppose Γ ` Am in SAX. Then, there is a proof
of Γ ` Am in SAX for which all cuts are snips.

Proof. This proof is by induction on the derivation of Γ ` Am, using admissibility of cut to
remove each cut as we come across it.

52

Chapter 4

Languages

Having developed the proof theory of adjoint logic, we now seek to apply it as the semantics of
a programming language (or family of such languages). We will largely follow the usual proofs-
as-programs approach, viewing propositions of the logic as types, proofs (or proof terms) as
programs, and extracting computation steps from steps of proof normalization (or cut reduction,
in the sequent calculus). We will see that several different languages, each with useful properties,
can be extracted from different presentations of adjoint logic, or from different interpretations of
proofs in adjoint logic. By starting from adjoint logic, with its uniform handling of modes with
different structural properties, we can also expect to develop resulting programming languages
with similarly uniform support for programming with mixtures of structural properties.

In some sense, it is straightforward to build a type system and programming language from a
logic, by reinterpreting the propositions as types, writing down some proof terms, and providing
an operational semantics for the terms, often based on some form of proof reduction. However,
there are a variety of choices to be made here. The logic on its own does not fully determine
a programming language — in the case of intuitionistic logic, for instance, a natural deduction
presentation serves as the basis for the lambda calculus, while a Hilbert-style deduction system
yields a combinator calculus. Moreover, some of the finer details of the presentation, such as
whether we choose to make structural rules explicit or implicit, will affect the resulting language
— at minimum, if structural rules are made explicit, they must have some operational interpreta-
tion, which is unnecessary when they are implicit. Finally, even once we have settled on a set of
logical rules which we would like to develop further into a programming language, the choice of
reduction strategy and the choice of how to interpret computation steps will affect the resulting
programming language.

As a starting point for our development of adjoint programming languages, we look to prior
work in a similar space. The work of Caires and Pfenning on the session-typed π-calculus
πDILL [12, 14] is doubly relevant here — firstly, because it provides an example of how to
interpret a (linear) sequent calculus as the basis for a concurrent programming language, and
secondly, because, with its use of the exponential !, it is a first example of a “mixed-mode”
language, in which some parts of the language behave linearly, while others do not. In πDILL,
programs consist of a collection of concurrently running processes, which communicate with
one another via (synchronous) message-passing along communication channels shared between
processes, where the communications that can occur across a given channel are governed by

53

session types. [42, 43] In the purely linear fragment (i.e., without the exponential !), each channel
is shared between exactly two processes, one of which provides that channel (or provides a
service along that channel), while the other uses that channel, or is a client of it, analogous to
how, for instance, a function in a functional language has one definition but may be called in
many different places. Note that this provider/client distinction says nothing about the direction
that messages are sent — indeed, messages are often sent in both directions over the same channel
at different times. By using the exponential !, πDILL also supports channels shared between more
than two processes, where one provider provides a (shared) service to multiple clients. However,
this service is only loosely shared, with the only operation possible on it being to create a private
copy of the service, which can then be interacted with as usual for a one-client purely linear
service. This sharing-via-copying approach enables modelling of replicable services, but not of
some other interesting patterns of concurrent communication, such as multicast, where a single
message is sent to multiple recipients, or cancellation, where the (a) client of a channel, upon
deciding it no longer has need of that channel, is able to close it unilaterally, without first finishing
the protocol specified by the channel type.

SILL [77, 104] builds on πDILL, and provides a different approach for combining structural
and linear computations, where a structural functional language is augmented with a contextual
monad within which concurrent, linearly-typed (including the exponential !) computations can
be built up. This split into a separate language per mode, each of which is fully-featured, allows
for programs to be written with components living entirely in the layer to which they are best-
suited, without needing to go through extra encoding steps (e.g., to represent a structural function
type A ⊃ B as !(!A(B)). Despite this, however, the concurrent layer of SILL is still much the
same as πDILL, and as such does not model multicast or cancellation of channels, and the non-
uniformity of the approach, with a fully distinct language at each mode, makes it not immediately
clear how it can be generalized, for instance to also include an affine layer.

In this chapter, we will develop two examples of languages based on adjoint logic, although
we stress that these are by no means exhaustive — many other choices can be made in the
logic-to-language development process, and other such languages may well be of interest. We
begin by giving a brief overview of process calculi, of which our languages are examples (Sec-
tion 4.1). Then, as our two languages have some substantial overlap in their syntax and some of
their theory, we present these shared elements (Section 4.2), before moving on to the languages
themselves. Our first language (Section 4.3) is a message-passing concurrent language, based on
the ideas of πDILL for interpreting sequent calculus proofs as programs. However, rather than a
standard sequent calculus, we work with a semi-axiomatic1 presentation of adjoint logic, which,
as we will see, allows us to work naturally with asynchronous communication. Because of the
uniformity of adjoint logic as a framework, the resulting language is similarly uniform, able to
use the same syntax (and even much of the same semantics) across different modes. Moreover,
the shift to asynchronous communication and the semi-axiomatic sequent calculus enables us to
model multicast and cancellation, even for channels along which messages have already been
sent (but not yet received). Another benefit of working in an asynchronous setting is that it en-
ables us to shift perspective, and develop our second example language (Section 4.4), in which
communication occurs via access to shared memory cells, rather than via messages. We can

1See Chapter 3 for details

54

then take advantage of the different perspective of shared memory, where communication occurs
entirely in one direction, to give a sequential semantics to the language, which we then further
refine to allow for mixed sequential-concurrent programs. This then lets us interpret the origi-
nal shared-memory semantics as a form of (substructural) futures. Various restrictions on where
concurrent computation is allowed enable us to also model other schemes for mixed concurrent-
sequential computation. Notably, the fact that double shifts ↑↓ between a given pair of modes
form a monad means that we can model a concurrency monad in the style of SILL [77, 104]
by taking two modes, the higher of which only allows sequential computation and the lower
of which allows concurrent computation. The shift upwards from concurrent to sequential then
embeds concurrent computation safely into an otherwise sequential (although, in our setting, not
functional) language, giving a similar effect to the concurrency monad of SILL.

In both languages that we present, the ability to work with modes with different structural
properties allows us to model a wider range of features. For instance, in a message-passing
setting, working with a mode that admits contraction enables us to model multicast, while modes
that admit weakening provide support for cancelling channels. In the context of shared memory,
a linear mode can give some guarantees relating to garbage collection, as a linear cell must be
read from (and thus deallocated) by some thread, while modes which do not admit weakening
can be used for strictness checking. More notable, however, is the fact that adjoint logic provides
a framework where all of these features can coexist uniformly in the same language, as we
are not restricted to only a single mode, and to model behavior that depends on the relations
between multiple modes. Independence between modes captures several related concepts in a
programming setting, even with modes which have the same structural properties. For instance,
a preorder of labels in the context of information flow security can be thought of as an (inverted)
preorder of modes — information can flow from low security to high security programs, but not
vice versa, exactly a statement of independence, with a high-security mode being strictly less than
a low-security mode in the preorder. Several other possibilities include ghost or proof-irrelevant
data, as represented by a mode below the main mode of interest, upon which this main mode
therefore cannot depend. This also captures a type-driven concept of dead code elimination,
as explored in [74], for instance. Similarly, higher modes than the primary mode of interest
may be used for staged computation, with an up-shift serving as quotation, and a down-shift as
antiquotation. For a final, more concrete example, which we explore in Section 4.4.2, we can use
modes with different structural properties to model a language with both linear and non-linear
futures. Linear futures have been shown to increase efficiency, even asymptotically, in some
cases [10], but in practice, it is often useful for some futures to be non-linear, so that their results
may be reused. These examples, while by no means exhaustive, illustrate the expressive power
of programming languages based on adjoint logic. Languages which are defined in a mode-
dependent way provide an interesting avenue for future work, and may be used to model even
more complex behavior, at the expense of taking more work to define.

4.1 Process Calculi
The two adjoint languages that we will develop are both forms of process calculi, systems for
modelling concurrent computation, with a running program represented by a collection of run-

55

ning processes, which may communicate with one another as part of the computation. We will
give here a brief overview of the process calculus literature, focusing on the systems most similar
to ours, and describe how the adjoint languages fit in. The ideas of process calculi were initially
developed in parallel2 by Hoare [41] and Milner [62]. Milner’s calculus CCS is a very minimal
system, focused on capturing all psosible concurrency behavior with as simple as possible a set
of primitives, and therefore, for instance, does not include sequential composition of processes
(as this can be derived from parallel composition and appropriate use of synchronization), and
restricts communication between processes to a given set of actions or events. Hoare’s CSP
provides a broader range of features, including sequential composition and support for commu-
nicating more complex values between processes.

Each of these early calculi has given rise to many successors, of which the most relevant
family here are forms of π-calculus [63], which extends the ideas of CCS with the treatment of
communication channels as first-class data, so that, for instance, a process may send a channel
to another process. The use of channels allows for modeling concurrent systems where not all
processes are in communication with one another (unlike the original forms of both CCS and
CSP, where communication was global). By allowing channels to be sent as part of messages,
the π-calculus also enables modeling systems whose network topology changes dynamically
over the course of a computation, as processes gain or lose links between each other.

Much like the initial forms of the λ-calculus, this early π-calculus was untyped, and all com-
munication was synchronous. Various type systems have been proposed and worked with for the
π-calculus or fragments thereof (See, for example, [12, 14, 38, 44, 46, 51, 94]). πDILL [12, 14],
mentioned in the introduction to this chapter as a starting point for our adjoint languages, is such
a type system, assigning session types based on propositions of linear logic to π-calculus. An-
other example of such a language comes from Qian et al. [87], which makes use of a different
approach, in terms of so-called coexponentials, allowing for modeling of a client-server archi-
tecture, where a single server interacts with a pool of multiple clients, encompassing multicast
communication as a special case. Another approach for mixing linearity with non-linearity in the
context of process calculi is that of manifest sharing [4], which is also closely related to the work
presented here, making use of a similar mode stratification, restricted to two modes, one linear
and one structural. In a similar vein, systems for modeling shared state such as that of Rocha
and Caires [93] have also been used to broaden the range of possible communication behavior
with some limited nonlinearity. Our adjoint type systems are similar in some respects to each of
these, as all share similar roots in linear logic, but it is the non-linear portions that lead to most
of the differences, as each system handles the concept of shared channels differently.

One drawback of the π-calculus, which is apparent in some of this prior and concurrent work,
and also affects us, is that its notation is, in a sense, too expressive. Once we begin to impose type
systems onto the π-calculus, we rapidly find that it is possible to write syntactically well-formed
process terms that are not well-typed, and so, as in several of these other session-typed systems,
we will diverge from the syntax of the π-calculus.3 In particular, while the π-calculus allows

2Fittingly for the subject matter
3A side benefit of this is that, without ties to the π-calculus, we can adopt a “neutral” syntax that is not biased

towards one or the other of the two languages that we develop, and this divergence also may have helped in the
development of our shared-memory language, as we were less tied to the message-passing interpretation common
for the π-calculus.

56

for arbitrary parallel composition of processes, we do not take this as a first-class operation,
instead only allowing particular types of parallel composition in process terms. In the dynamic
semantics, when we reason about broader collections of processes, we will again allow for more
general parallel composition, but this should be thought of as separate processes running on the
same system, rather than components of a single process term.

4.2 Common Features
The two languages that we will develop from adjoint logic share many concepts in their seman-
tics. In this section, we present these shared components, including how we handle asynchronous
communication logically, some syntax and syntactic operations that are common between the
languages, and the overlap in their static semantics.

4.2.1 Asynchronous Communication
Thus far, we have looked at several different sequent calculus formulations of adjoint logic,
and demonstrated that each has a cut elimination procedure. The work by Caires and Pfenning
on πDILL provides a way to interpret sequent calculus proofs as (session-typed) concurrent pro-
grams, with computation being given by cut reduction steps. In this interpretation, a cut reduction
is a form of synchronous communication: two processes, one trying to send a message and the
other trying to receive that message along the same channel, can interact via cut reduction, but
only when both procesess are ready to communicate. Many real-world communication protocols
involve asynchronous communication, where messages are sent regardless of whether the recip-
ient is currently ready to receive the message, and we would like to also be able to model this
behavior.

Indeed, in the non-linear setting where a channel may be shared between multiple clients
(along with its one provider), it is not clear a priori what synchronous communication would
mean. Do all of the clients of a channel need to be ready to receive a message in order for the
provider to send that message? Dually, is it possible for one of these clients to send a message
along the channel without the other clients doing so as well? By working with an asynchronous
system of semantics, we will avoid these considerations, allowing one message to be sent to mul-
tiple recipients, each of whom can receive it separately, without needing to coordinate amongst
themselves. This means that the computation step where a message is received can take place
locally, without needing to consider what other clients for that message may exist.

In the context of πDILL, DeYoung et al. developed an asynchronous interpretation of the
same logic DILL [25]. This interpretation makes use of fresh continuation channels to replace
the usual synchronous approach to session types, where a channel changes type upon a mes-
sage being sent (and simultaneously received) along that channel. Instead of this evolution of
types for a single channel, each subsequent message sent along “the same channel” uses a fresh
channel name, thought of as the continuation of the previous channel. This avoids any possible
conflicts resulting from multiple messages being sent along a channel x before any have been
received, leading the recipient to be unsure which message it should read first. We will make use
of this idea of continuation channels, although our approach to asynchrony is slightly different,

57

being based on a semi-axiomatic presentation of logic, rather than a sequent calculus presen-
tation. As explored in Chapter 3, the semi-axiomatic sequent calculus lends itself naturally to
a system of semantics based on asynchronous communication, where, using a message-passing
interpretation, messages are explicit objects, represented by axioms in proofs.

4.2.2 Variables, Symbols, and their Meanings

Before presenting semantics for our several languages, we need to be precise about the distinction
between several similar parts of the language: variables, symbols, and the runtime concepts that
they represent. Variables, which we will generally write x, y, z, using letters near the end of the
alphabet, are a part of the syntax of programs, and are given meaning at runtime by substitution.
Unlike in functional languages where expressions are substituted for variables, however, here,
we substitute symbols for variables. A symbol, which we will write a, b, c, using letters near the
beginning of the alphabet, is just an atom which represents a concept in the semantics, and which
is opaque to the language using it. In particular, this means that we forbid testing symbols for
equality within the languages we will define, just as in many common programming languages
we cannot test variables for equality, only their contents. It is possible to make a different choice
here, allowing for equality tests on symbols, just as, for instance, C allows equality checks on
pointers. However, in such a system, programs can make more fine-grained distinctions about
memory layout, such as distinguishing whether two copies of the same data are stored in the
same or different locations. This may be desirable under some circumstances, such as for ana-
lyzing the memory footprint of programs, but we prefer here to take a higher-level, more abstract
approach, where we cannot make these distinctions. Note that the concept represented by a sym-
bol may be different in different systems of semantics for the same syntax: for instance, symbols
may represent addresses in memory, or they may represent channels for communication between
processes. The details of what a symbol represents will become relevant as we begin to look at
specific languages, but we are able to develop much of the syntax for our languages in terms of
symbols, without needing to make reference to the interpretation of those symbols. This allows
us to unify large portions of the presentation of these two languages, and also illustrates the ease
(in this semi-axiomatic setting) of recasting message-passing as shared memory and vice versa.

4.2.3 Processes, Values, and Continuations

The three main objects that will appear (albeit with different meanings) throughout the various
systems of semantics we will present are processes, values, and continuations. Processes or
process terms represent the state of a concurrent program (or portion of a program) as it executes,
analogous to expressions in functional programming. Values and continuations represent two
different kinds of data, and can both appear in process terms, serving a similar role to functional
values. Values are small (fixed-size) pieces of data, while continuations are pieces of data that
contain an entire process term, analogous to a closure. Comparing to the functional setting, one
example of a value might be a pair of symbols 〈a, b〉, while a function abstraction λx. e would be
a continuation. We will see more clearly the syntactic distinction between these types of object
shortly.

58

Formally, processes, values, and continuations have grammar given in table 4.1, where alpha-
equivalent terms are identified, as usual.
Example 6 (Some basic program syntax examples). With the syntax from Table 4.1, we can write
and examine some example programs, for which we will give intuition using a message-passing
interpretation, where symbols represent channels, and communication along a channel consists
of sending and receiving values V as messages.

Our first simple program receives a message containing a pair of symbols along a channel z,
and then outputs the reverse of that pair along the channel w.

case z (〈x, y〉 ⇒ w.〈y, x〉)

Once we have typing rules for message-passing, we can see that this will be a proof term for the
sequent z : A⊗B ` w : B ⊗ A, expressing the commutativity of ⊗.

For a second example, we consider a process term for currying — given typing rules, we will
see that the following is a process term for the sequent z : (A⊗B)(C ` w1 : A((B(C).

case w1 (〈x,w2〉 ⇒ case w2 (〈y, w3〉 ⇒ p← (p.〈x, y〉) ; z.〈p, w3〉)))

Intuitively, this process receives a pair along w1, consisting of an x of type A (the first argument
to the function) and w2 of type B(C, along which it must implement the function. The portion
case w1 (〈x,w2〉 ⇒ . . .) captures this — the case construct receives a message from a channel,
and binds the variables x and w2 within the remainder of the term, using them to refer to the
entries of the pair that it expects to receive. It then receives a second message, this time along
w2, consisting of the second function argument y and a channel w3 along which the protocol C
should be implemented. Analogously, this is implemented by the portion case w2 (〈y, w3〉 ⇒ . . .)
of the process term. Now, to send the two arguments x and y to the function z, they must first
be wrapped up into a pair p. The construct p ← . . . ; . . . spawns a new channel p, which we
intend to use for this pair, and a new process that will communicate along p. This new process,
represented by the term p.〈x, y〉, sends the pair 〈x, y〉 along this new channel p, terminating as
it does so. Now, we have a channel p along which the pair of arguments x and y have been sent,
and so we are able to provide this to the function z. The construct z.〈p, w3〉 similarly sends a
pair of channels, this time p and w3, to the function z, which will use the first channel p as its
input (receiving the message 〈x, y〉 that we sent earlier), and provide the output of the function
on channel w3.

In the languages that follow, we will interpret these objects slightly differently, especially
the process terms, whose meaning is closely tied to the meaning of symbols and the details of
communication. However, the core distinction of processes as terms that can be executed, values
as observable data, and continuations as data containing encapsulated, paused processes will be
used throughout.

One key operation that is used throughout these languages is that of passing a value to a
continuation, producing a process. A continuation provides a process term (or a choice of sev-
eral process terms) with some variables bound in the continuation, and a value can both select
an appropriate process term and provide symbols to substitute for those values. Note that this
operation is agnostic to the meaning of symbols.

59

Value V Meaning

〈〉 The terminal value, containing no information

`(c) A symbol c, tagged with the label `

〈a, b〉 A pair of symbols a and b

shift(ck) A symbol ck at mode k, tagged with a shift

Continuation K Meaning

(〈〉 ⇒ P) Given a terminal value 〈〉, continue as P

(j(xj)⇒ Pj)j∈J Given the value `(c) for some ` ∈ J , continue as P`[c/xj]. This binds
the variable xj in Pj for each j ∈ J .

(〈x, y〉 ⇒ P) Given the value 〈a, b〉, continue as P [a/x, b/y]. This binds the variables
x and y in P .

(shift(xk)⇒ P) Given the value shift(ck), continue as P [ck/xk]. This binds the variable
xk in P .

Process term P Meaning

c← a Connect symbols a and c

x← P ; Q Allocate a new symbol with some fresh name a, spawn a process
P [a/x], and continue as Q[a/x]. These two procesess may communi-
cate using the newly allocated symbol a. Note that this construct binds
the variable x in both P and Q, analogously to the π-calculus term
(νx)(P |Q). This is also more restrictive than the π-calculus, in that this
is our only form of parallel composition, rather than allowing arbitrary
process terms to be composed.

c.V Communicate value V to symbol c. This can be thought of as a “neutral”
version of π-calculus terms of the form c!V and c?V , which send and
receive data across channels.

case cK Communicate continuation K to symbol c.

a← p b1 b2 . . . bn Call the named process p with arguments a and b1 b2 . . . bn (see Sec-
tion 4.2.6)

Table 4.1: Grammar for processes, values and continuations.
Here, x, y, and xj range over variables, while a, b, c, b1, b2, . . . range over symbols. k ranges over
modes, which (for a given instance of this grammar) are drawn from a fixed, preordered setM.
Strictly speaking, variables and symbols do not need to be labelled with modes, but we find it
useful to indicate which mode is being shifted to/from in the constructs that deal with shifts, and
so include it when relevant.

60

We write this operation as V . K, and define it formally as follows:

〈 〉 . (〈 〉 ⇒ P) , P

`(c) . (j(xj)⇒ Pj)j∈J , P`[c/x`]

〈a, b〉 . (〈x, y〉 ⇒ P) , P [a/x, b/y]

shift(ck) . (shift(xk)⇒ P) , P [ck/xk]

For other combinations of V and K, V . K is left undefined — for example, we cannot pass a
pair 〈a, b〉 to a continuation (〈〉 ⇒ P) expecting the terminal value. However, this will suffice for
defining the dynamic semantics of well-typed processes, where such mismatches are enforced
to not occur by typing. In each case of the definition, we extract the encapsulated process out
of the continuation K, and substitute symbols from the value V for the variables bound in K,
producing a process term that can then be run. This operation will serve as the key computation
step for communication in all of its forms.

4.2.4 Configurations and (Multi)set Rewriting
While we can express a wide range of programs using the process terms described in sec-
tion 4.2.3, they are not sufficient on their own to describe the dynamic semantics of any of
the programming languages we will examine. The issue is most obvious with the spawn con-
struct x ← P ; Q — a process evaluating this construct will become two processes, and is no
longer so neatly represented by a single process term. 4 Instead, we will represent the state of
a running program as a collection of semantic objects, representing some portion of the state
(running processes, artifacts of the communication between processes, and so on). We call this
collection (which, in general, is a multiset of semantic objects, potentially restricted to satisfy
some conditions) a process configuration, or just a configuration, for short.

We will often work with a grammar of the following form for configurations:

Configurations C ::= · | φ | !φ | C1, C2

A configuration is either empty, a single ephemeral semantic object φ (of course, in specific
cases, we can be more precise about what the objects are, and we may have more than one class
of objects), a single persistent semantic object !φ, or the join C1, C2 of two smaller configura-
tions. We think of this join operation as being associative and commutative, so that the grammar
defines a multiset, rather than a list or a tree. Note also that while this grammar allows us to
build up arbitrary multisets of semantic objects, we may have some further constraints on which
multisets are valid configurations. In particular, we will generally say that a configuration C
has an interface, consisting of a set S of symbols which it uses, and another set T of symbols
which it provides. We then restrict the join of configurations, so that C1, C2 can only be formed
if the sets of symbols provided by C1 and C2 are disjoint, ensuring that we can always identify

4This is in contrast to the π-calculus, where process terms include the parallel composition of two separate
processes P | Q. While x ← P ; Q may be thought of as an analog to this, we prefer to treat this as a construct
that spawns a new, separate process, rather than just expressing the composition of two already running processes.
In this way, each process on its own executes sequentially, although it may spawn subprocesses with which it can
interact, and which run concurrently with the main process.

61

uniquely the provider of a given symbol. No such restriction is needed on the sets of symbols
used by the configurations, because, in general, a symbol may be used by several processes (al-
though typing may restrict this further). We will leave the definitions of interfaces abstract for
now, to be specialized when we specialize configurations and objects to the particular languages
we will work with. Since this grammar contains every valid configuration even without these
constraints, it may also at times be useful to prove results about all configurations by induction
over this grammar — such results may also apply to some invalid configurations, but this is not
a problem.

Now, to describe the dynamic semantics of a programming language whose states are con-
figurations, we need to give a set of rules for what state transitions are allowable. We think of
a configuration as representing a collection of concurrently running processes, along with some
other data such as messages between processes or memory cells. By treating processes as distinct
semantic objects, we are able to describe state transitions “locally” — that is, only modifying the
few objects in the configuration that are directly involved in a given computation step, rather
than needing to examine and modify the entire state. Multiset rewriting rules [16] provide us
with a compact way of describing these sorts of local state changes. A multiset rewriting rule
φ1, . . . , φn 7→ ψ1, . . . , ψm can only be applied to a configuration C which contains φ1, . . . , φn. It
consumes these objects, and replaces them with ψ1, . . . , ψm, leaving the rest of the configuration
unchanged. That is, this rule would transform a configuration C, φ1, . . . , φn into C, ψ1, . . . , ψm.
Some objects in a configuration may be persistent, marked with a ! (and we refer to the other
objects, without a !, as ephemeral). These objects are not consumed by rule applications. For
instance, a rule !φ 7→ ψ could turn the configuration C, !φ into C, !φ, ψ. Likewise, some rules
may introduce new persistent objects. For instance, φ 7→ !ψ will consume a φ and replace it with
a persistent ψ.

4.2.5 Typing for Processes and Configurations
In each of our languages, we will take a sequent A1

m1
, . . . , Anmn

` Bk, attach to each proposition
a distinct variable xi. 5 We then add a process term, in order to get the typing judgement
x1 : A1

m1
, . . . , xn : Anmn

` P :: (z : Bk). In each case, this represents that the process P
may use variables (or symbols) x1, . . . , xn for communication with other processes, with the
protocol for each communication determined by the type Aimi

, and provides a variable or symbol
z which other processes may use in turn. What exactly this looks like computationally depends
on how we interpret the symbols that will replace variables at runtime, as well as what sort of
communication steps can occur using those symbols.

We can then turn the rules of the logic (in a suitable presentation) into typing rules by ap-
plying this same transformation to each sequent and specifying what proof term/process term
corresponds to each rule. The exact details of this will vary across the different languages, but
the core design remains the same.

While typing for single processes is sufficient to restrict what programs can be written, in or-
der to describe properties of running programs, including the key type-safety results of progress

5When examining the state of a running process, some or all of these variables may be already instantiated as
symbols. Because this does not affect our typing rules, which are agnostic to whether variables or symbols are used,
we do not syntactically distinguish this “variable-or-symbol” class from variables.

62

and preservation, we need to extend our notions of typing for process terms to typing for config-
urations consisting of many semantic objects. The key difference here is that while a process can
only provide a single symbol, a configuration, as it consists of potentially many processes, may
provide any number of symbols. The judgement for configuration typing will therefore have the
form Γ � C :: ∆, where Γ,∆ are contexts consisting of mutually distinct symbols along with
their types. Note that here, we only allow symbols, not variables, because configurations are a
run-time concept, and as such, any exposed variables in a configuration must be instantiated. A
first intuition suggests that this judgement means that C may use symbols in Γ, and provides the
symbols in ∆, although we will see as we develop typing rules that this intuition needs to be
refined slightly. As with typing for individual processes, the details of how this judgement is de-
fined will vary between the different languages we examine, particularly as the semantic objects
that make up configurations will be different as well. However, we can already give some basic
rules for the empty configuration and the join of two configurations, independent of the choice of
semantic objects. When defining configurations, we thought of the join and empty as being the
operation and unit of a commutative monoid. In the context of typed configurations, however,
the typing rules will impose the further constraint that the provider of a symbol occurs before
(i.e., to the left of) every user of that symbol. This ordering causes typed configurations to only
form a non-commutative monoid, as we cannot commute the provider of a symbol a past any of
the users of that symbol.

For the join of two configurations to be well-typed, we need each of the two initial configu-
rations to be well-typed, and then we should be able to combine their types. A first attempt at
a typing rule following this intuition might say that the join of C1 and C2 uses all symbols that
either configuration uses, and provides all symbols that either provides:

Γ1 � C1 :: ∆1 Γ2 � C2 :: ∆2

Γ1,Γ2 � C1, C2 :: ∆1,∆2
join?

This rule has a key issue, however. In a substructural setting, it may allow for configurations to
be well-typed even if they illegally reuse symbols. If some (a : Am) occurs in both Γ1 and Γ2,
while it does appear twice in the resulting type, we may not want to allow both C1 and C2 to use
a. To resolve this, we adjust the meaning of the typing judgement Γ � C :: ∆ from our initial
intuition — rather than C necessarily providing all of ∆, we instead allow some symbols from Γ
to be “passed through” C, so that ∆ is a collection of symbols which are either provided by C, or
available to use in Γ, but not “used up” in C. We will make this intuition more formal when we
come to defining configuration typing for the individual languages we work with. In this abstract
setting, however, this shift in perspective gives us a solution to the problem of avoiding illegal
reuse. For C1, C2 to be well-typed, C1 and C2 must be compatible — that is, we must be able to
find some context Γ2 that C1 can provide, possibly with some additional symbols coming from
the input Γ1 to C1, and where Γ2 is sufficient input to type C2. This gives us the following rule:

Γ1 � C1 :: Γ2 Γ2 � C2 :: Γ3

Γ1 � C1, C2 :: Γ3
join

This rule now ensures that C2 does not illegally reuse symbols already taken by C1, provided the
typing derivation for C1 does not place symbols used by C1 into Γ2.

63

In order to match this intuition for the empty configuration, we need to ensure that it can pass
symbols through unchanged, giving the following rule:

Γ � (·) :: Γ
empty

Since we now have the rules for join and the empty configuration, we can prove some prop-
erties generically, allowing us to rearrange configurations without changing their type. A few
of the results will, however, require some constraints on the typing rules for individual objects,
which each of the languages we study will satisfy.
Theorem 16 (Associativity of Configuration Typing). Typing of configurations is associative.
That is, Γ1 � (C1, C2), C3 :: Γ4 if and only if Γ1 � C1, (C2, C3) :: Γ4.

Proof. Suppose that Γ1 � (C1, C2), C3 :: Γ4 — the reverse direction is symmetric. Now, by
inversion (presuming that the only additional rules we have are those for typing individual objects
or indivisible collections of objects), we can find Γ3 such that Γ1 � (C1, C2) :: Γ3 and Γ3 � C3 ::
Γ4. Again applying inversion, we find Γ2 with Γ1 � C1 :: Γ2 and Γ2 � C2 :: Γ3. Composing these
in a different order, we can easily prove Γ1 � C1, (C2, C3) :: Γ4.

Associativity allows us to treat configurations as lists of objects for the purpose of typing,
ignoring the fine details of how exactly portions of the list are appended together. We now
observe that the typing rule for the empty configuration allows it to have many different types —
one for each context Γ. We would like to generalize this to all configurations, giving us a theorem
that allows us to pass arbitrary symbols through any configuration unchanged, not only the empty
one. This theorem will constrain any additional rules we introduce for typing individual objects,
but only a little, and we will note in the proof where we make assumptions about these rules.
Theorem 17 (Type Extension). Suppose that for each atomic object φ, if Γ � φ :: ∆ and Θ
shares no symbols with Γ,∆, or φ, then Γ,Θ � φ :: ∆,Θ. Suppose also that typing for atomic
objects does not create fresh symbols — that is, if Γ � φ :: ∆, then ∆ contains only symbols which
occur already either in Γ or in φ. Then, these properties can be extended to all configurations:
If Γ � C :: ∆, then, given Θ which shares no symbols with Γ, ∆, or any of the objects in C,
Γ,Θ � C :: ∆,Θ, and additionally typing for configurations does not generate fresh symbols.

Proof. By induction on the structure of C.
If C = (·), this is immediate from the typing rule for the empty configuration — Γ must be

equal to ∆, and so Γ,Θ = ∆,Θ as well. Similarly, every symbol in ∆ = Γ already occurs in Γ.
If C is a singleton φ, this follows by assumption.
If C = C1, C2, by inversion, we can find Ξ such that Γ � C1 :: Ξ and Ξ � C2 :: ∆. Applying

the inductive hypothesis to each of these, we get that Ξ consists only of symbols from C1 and
Γ, and ∆ consists only of symbols from Ξ and C2, so ∆ consists only of symbols from Γ and
C = C1, C2. Also from the inductive hypothesis, we see that as long as Θ shares no symbols with
Γ, ∆, Ξ, C1, or C2, we can extend the types of both C1 and C2, and apply the rule for join to get the
desired result. Since Θ does not share symbols with Γ, ∆, and C, it also does not share symbols
with Ξ (as Ξ consists only of symbols from Γ and C1).

64

4.2.6 Recursion
While we will already be able to work with some basic examples once we begin defining our
systems of semantics, many interesting examples have a recursive nature. In this section, we
will briefly present our handling of recursion, which, while basic, is sufficient to write more
complex example programs. As is common for session types, we will work with equirecursive
types, which we collect in a signature Σ, along with type definitions, process declarations (which
specify the type of a named process), and process definitions (which give the behavior of a
named process). While the motivation for this signature is to be able to write recursive types and
processes, we note that it can also be used to name non-recursive types and processes, which can
be useful in presenting examples succinctly.

We first consider type declarations t = Ak, which state that t is a name for the type Ak. In
such a declaration, we require that Ak is contractive, [33] with t only allowed to occur in Ak
underneath some type constructor. This rules out the definition t = t, and ensures that each such
recursive type definition actually uniquely defines a particular type. From the perspective of func-
tional languages, which often work with inductive types, given as least fixed points of arbitrary
recursive definitions, the choice to restrict to contractive type definitions is unusual. However, in
a message-passing setting, it is often natural to interpret recursive types coinductively, while in a
shared-memory setting, we may find cause to interpret them either inductively or coinductively,
and the restriction to contractive type definitions avoids any possible confusion between the two.
Named process declarations B1

m1
, B2

m2
, . . . Bn

mn
` p :: Ak are needed for typechecking named

processes, and specify the types of the arguments needed to call p — Bi
mi

, in order, as inputs,
and Ak as an output. Independence still applies here, as in the pure logic, and dictates that we
should require m1, . . . ,mn ≥ k in order for this declaration to be well-formed. Process defini-
tions then provide variables to this type declaration — we write x ← p y1 y2 . . . yn, with the
yi being the input arguments, of type Bi

mi
, respectively, x the output argument of type Ak, and

P the body of the process definition. We will generally abbreviate these sequences of types and
variables as B and y, respectively, noting that B may be a sequence of types at multiple modes
m = m1, . . . ,mn.

With this, we can give the formal grammar of signatures:

Signatures Σ ::= · | Σ, t = Ak | Σ, Bm ` p :: Ak | Σ, x← p y = P

A signature may be empty, or may be another signature extended with a type definition, a process
declaration, or a process definition.

Now, we briefly consider typing and computation for these named types and processes, noting
that the details will vary depending on our choice of semantics. For a signature to be valid, we
require that each process declaration Bm ` p :: Ak has a corresponding definition x← p y = P
such that Σ ; y : Bm ` P :: (x : Ak) (whatever typing rules we take for a given system).
Likewise, each process definition should have a corresponding declaration. This ensures that all
named processes can (in principle) be mutually recursive, as they have sufficient information to
invoke all other named processes. To call a named process p, we provide it with symbols to
replace its variables, using the syntax a ← p b (with which we augment our existing syntax
for process terms). We type this process term with the following rules (designed to work with
implicit structural rules, as in ADJI — explicit structural rules remove the need for two separate

65

call var rules, but since the languages we will work with are based on ADJI , this system fits
better with them):

x← p y = P ∈ Σ Bm ` p :: Ak ∈ Σ Γ ` b : Bm

Σ ; Γ ` a← p b :: (a : Ak)
call

Γ, (b : Bm)α ` ∆

Γ, (b : Bm) ` ∆, b : Bm
call varα

W ∈ σ(Γ)

Γ ` (·) call empty

A process call is well-typed with respect to Σ and Γ if it has both a matching declaration and
definition, and Γ provides the necessary input for the process. The call varα and call empty
rules define what it means for Γ to provide the input to p. As in ADJI , we tag the call var rule
with a variable α, which may be 1 if C ∈ σ(m), allowing for a symbol b : Bm to be used
as more than one argument to a process call if m admits contraction. Note that these typing
rules are not dependent on typing for the underlying system of semantics, and so can be reused
unchanged. However, the definition of validity for signatures does depend on the typing of
the underlying system, as we require that each process declaration has a correspondingly typed
process definition, using the typing rules of the particular language we are working in, and so a
signature that is valid in one context may not necessarily be so in another.

If p is defined by x ← p y = P , then the process call a ← p b should step to a process
executing P [a/x, b/y]. The exact details of how this works may vary slightly in different systems
of semantics, but this is the underlying intuition behind all of them.

While the rules for typing and evaluating process calls depend on Σ, no typing rule modifies
Σ, and so we will generally assume that we are working with a fixed signature Σ, which we then
omit from rules unless explicitly necessary. Likewise, we will generally not work directly with
the call var and call empty rules.
Example 7 (Examples of recursive types and programs). Recursive type definitions look much
the same here as in other languages. We show here some examples which are generally useful,
beginning with the type of infinite bit streams, using the notation⊕{i : Ai} for an internal choice
across an index set of illustrative names:

bits = ⊕{b0 : bits, b1 : bits}

In this case, a bit stream consists of a bit, either b0 or b1, followed by another bit stream. We
can enable these streams to be finite by adding a third case, marking the end of the stream:

may end bits = ⊕{b0 : may end bits, b1 : may end bits, $: 1}

These potentially finite bit streams look much the same as infinite bit streams — when read-
ing/receiving data from one, it is possible to receive either a zero or one bit, followed by another
(potentially finite) bit stream, or the token $, indicating the end of the stream, which can then be
closed via trivial communication at the unit type 1.

A type (or family of types) that we will regularly use in our examples is that of lists. Given a
type A, we can define listA, the type of lists with elements from A, in roughly the usual way:

listA = ⊕{nil : 1, cons : A⊗ listA}

66

A list is either empty, and so communication can terminate via the unit type 1, or contains a cons
cell, containing an element of type A and the tail of the list.

For a first, basic recursive process, we will examine a process that inverts a (potentially finite)
bit stream.

may end bits ` flip :: may end bits
y ← flip x = case x (b0(x′)⇒ y′ ← (y′ ← flip x′) ;

y.b1(y′)
| b1(x′)⇒ y′ ← (y′ ← flip x′) ;

y.b0(y′)
| $(u)⇒ y.$(u)
)

We first attempt to read a bit from x, and if we receive instead the end-of-stream symbol $, we
also close the stream y. When receiving an actual bit, we spawn a new process which flips the
tail x′ of the bit stream, communicating the result along y′, and then send the inverse bit of what
we read, as well as this tail y′, along the channel y.

A more complex program, which we will use as a running example, because it illustrates also
the effect of working with different modes, is a standard map function. While mapping a function
over a list, the function may be used any natural number of times, depending on the length of
the list. As such, regardless of the mode of the type of elements in the list (which, in principle,
may be linear, as map uses each element of the list exactly once), the function being mapped
over them needs to be structural. To resolve this conflict, that the function must be structural,
but must also match the mode of its argument, we will use a shift, marking the function as
reuseable, regardless of its base mode. We write the program below generically in the mode k of
list elements, but using a fixed mode U with σ(U) = {W,C} for the function. In practice, this
is a program schema, rather than a program, and needs to be separately instantiated for each
mode k that we want to use it at, as we do not handle mode polymorphism.

listAk
, ↑UkAk (Bk ` map :: listBk

ys← map xs f =
case xs (nil(u)⇒ ys.nil(u)

| cons(p)⇒ case p (〈x, xs′〉 ⇒
ys′ ← (ys′ ← map xs′ f)
f ′ ← f.shift(f ′) ;
y ← f ′.〈x, y〉 ;
p′ ← (p′.〈y, ys′〉)
ys.cons(p′)
)

)

This process is largely familiar, but takes some additional low-level steps that are often not made
explicit. We begin by matching on the input list xs, and if it is empty, we output another empty
list along ys. If xs is not empty, then we break down the contents p of its cons cell to get the
first element x and the tail xs′ of the list. We then spawn a new process to make a recursive call
to construct ys′, the result of mapping f over xs′. In order to call f , we first need to extract a
copy f ′ at mode k from the shifted function f . We can then create a new channel y, which we

67

pass along with x to f ′, so that f ′ will run the function on x, and provide its output along y.
Combining y and ys′ into a pair p′ takes another step (and another newly created channel for
p′), after which we can construct ys by sending a cons cell containing p′.

Of the extra steps in this process compared to a typical functional map, most consist of
explicitly naming intermediate results of computation, such as the pair p of elements in a cons
cell, and constructing/destructing these intermediate values in their own steps. The remaining
step that is not of this form is f ′ ← f.shift(f ′), where we extract (a copy of) the underlying
function f ′ from the shifted (and therefore replicable) function f . In the sections that follow, we
will return to this example, seeing how it can be typed and run

4.3 Message-Passing Semantics
The first system we will examine interprets symbols as private channels between processes, along
which messages can be passed. Processes can send messages along a channel, and those mes-
sages will be received by the process(es) at the other end of the channel. Under this interpreta-
tion, the messages being sent are exactly the values V , while continuationsK represent processes
waiting to receive messages. A message V can be sent along the channel a using the construct
a.V . This message is then received by a process case a K, which passes the received message
V to the continuation K to decide how to proceed.

4.3.1 Static Semantics
With this model in mind for computation, we can clarify the meanings of process terms for this
system of semantics, as described in table 4.2.

We can then present typing rules for our language, assigning process terms to a semi-axiomatic
sequent calculus [26] presentation of ADJI ,6 as seen in fig. 4.1.
Example 8 (Typing of example processes). We now return to examine how some of the example
processes we have looked at can be typed, beginning with non-recursive examples.

6More discussion of the semi-axiomatic sequent calculus can be found in chapter 3.

Process term P Meaning

c← a Forward messages between channels a and c.

x← P ; Q Allocate a new channel a, spawn a process P [a/x], and continue as
Q[a/x]. These two procesess may communicate using the channel a.

c.V Send message V along channel c.

case cK Receive a message V from channel c, then pass V to K.

a← p b Call the named process p, which may communicate along channels a
and b.

Table 4.2: Meanings of process terms in a message-passing setting

68

(ΓC ,∆ ≥ m ≥ r) ΓC ,∆ ` P :: (x : Am) ΓC ,∆
′, x : Am ` Q :: (z : Cr)

ΓC ,∆,∆
′ ` (x← P ; Q) :: (z : Cr)

cut

ΓW , y : Am ` x← y :: (x : Am)
id

(i ∈ L)

ΓW , y : Aim ` x.i(y) :: (x : ⊕{` : A`m}`∈L)
⊕R0

Γ, (x : ⊕{` : A`m}`∈L)α, y : A`m ` Q` :: (z : Cr) (for all ` ∈ L)

Γ, x : ⊕{` : A`m}`∈L ` casex (`(y)⇒ Q`)`∈L :: (z : Cr)
⊕Lα

Γ ` P` :: (y : A`m) (for all ` ∈ L)

Γ ` casex (`(y)⇒ P`)`∈L :: (x : N{` : A`m}`∈L)
NR

(i ∈ L)

ΓW , x : N{` : A`m}`∈L ` x.i(y) :: (y : Aim)
NL0

· ` x.〈 〉 :: (x : 1m)
1R0

Γ, (x : 1)α ` P :: (z : Cr)

Γ, x : 1 ` casex (〈 〉 ⇒ P) :: (z : Cr)
1Lα

Γ, w : Am ` P :: (y : Bm)

Γ ` casex (〈w, y〉 ⇒ P) :: (x : Am(Bm)
(R

ΓW , w : Am, x : Am(Bm ` x.〈w, y〉 :: (y : Bm)
(L0

ΓW , w : Am, y : Bm ` x.〈w, y〉 :: (x : Am ⊗Bm)
⊗R0

Γ, (x : Am ⊗Bm)α, w : Am, y : Bm ` P :: (z : Cr)

Γ, x : Am ⊗Bm ` casex (〈w, y〉 ⇒ P) :: (z : Cr)
⊗Lα

ΓW , y : Am ` xk.shift(ym) :: (x : ↓mk Am)
↓R0

Γ, (x : ↓mk Am)α, y : Am ` Q :: (z : Cr)

Γ, x : ↓mk Am ` casexk (shift(ym)⇒ Q) :: (z :: Cr)
↓Lα

Γ ` P :: (y : Ak)

Γ ` casexm (shift(yk)⇒ P) :: (x : ↑mk Ak)
↑R

ΓW , x : ↑mk Ak ` xm.shift(yk) :: (y : Ak)
↑L0

Figure 4.1: Message-passing typing rules based on a semi-axiomatic presentation of ADJI . We
label some rules with an index α ∈ {0, 1} to condense two rules, one which has α = 1, requires
C ∈ σ(m), and preserves the principal formula of the rule in the premise(s), and one which has
α = 0 and does not preserve the principal formula.

69

With the below typing derivation, we can see that indeed our process for reversing a pair has
the expected type Am ⊗Bm ` Bm ⊗ Am:

x : Am, y : Bm ` w.〈y, x〉 :: w : Bm ⊗ Am
⊗R0

z : Am ⊗Bm ` case z (〈x, y〉 ⇒ w.〈y, x〉) :: w : Bm ⊗ Am
⊗L0

Likewise, currying can be assigned the expected type. In this derivation, we abbreviate the
process terms, and omit the modem (which is the same on all types) for space reasons. Similarly,
the mode condition on the cut does not need to be checked, because all modes are m, and as no
types are shared between the two branches of the cut, we also do not need to check that any
portion of the context admits contraction.

x : A, y : B ` p.〈x, y〉 :: p : A⊗B ⊗R
0

z : (A⊗B)(C, p : A⊗B ` z.〈p, w3〉 :: w3 : C
(L0

z : (A⊗B)(C, x : A, y : B ` p← . . . ; . . . :: w3 : C
cut

z : (A⊗B)(C, x : A ` case w2 (〈y, w3〉 ⇒ . . .) :: w2 : B(C
(R

z : (A⊗B)(C ` case w1 (〈x,w2〉 ⇒ . . .) :: w1 : A((B(C)
(R

For larger processes, such as our example of map, the fully written out typing derivation
becomes impractically large to work with. Instead, after each line, we will write the current
typing context, prefixing these comment lines with # and highlighting them for clarity.
listAk

, ↑UkAk (Bk ` map :: listBk

ys← map xs f =
#xs : listAk

, f : ↑Uk(Ak (Bk) ` ys : listBk

case xs (nil(u)⇒
#u : 1k, f : ↑Uk(Ak (Bk) ` ys : listBk

ys.nil(u)
f : ↑Uk(Ak (Bk) ` ·

| cons(p)⇒
p : Ak ⊗ listAk

, f : ↑Uk(Ak (Bk) ` ys : listBk

case p (〈x, xs′〉 ⇒
#x : Ak, xs

′ : listAk
, f : ↑Uk(Ak (Bk) ` ys : listBk

ys′ ← (ys′ ← map xs′ f)
#x : Ak, ys

′ : listBk
, f : ↑Uk(Ak (Bk) ` ys : listBk

f ′ ← f.shift(f ′) ;
#x : Ak, ys

′ : listBk
, f ′ : Ak (Bk ` ys : listBk

y ← f ′.〈x, y〉 ;
y : Bk, ys

′ : listBk
` ys : listBk

p′ ← (p′.〈y, ys′〉)
p′ : Bk ⊗ listBk

` ys : listBk

ys.cons(p′)
· ` ·

)
)

70

When moving from the first line to the second line, using the ⊕L0 rule, we replace the list xs
with the unit u contained in its nil. After the third line, we have already implemented ys, and so
nothing remains to prove. However, we still have f in our typing context, as it was not yet used,
and so it is critical here that f is at a mode that admits weakening — otherwise, we could not type
this case. Likewise, when moving from the first to the fourth line, also using ⊕L0, but examining
a different premise of the rule, we replace xs with the contents p of its cons cell. We then break
down p further with the ⊗L0 rule, replacing it with the head x and tail xs′ of the original list
xs. The remainder of the program is typed with a sequence of cuts. The left-hand branch of the
first cut makes a recursive call to map, which is typed using the call rules of Section 4.2.6. Note
that here, we use that f has a mode that admits contraction in order to use f in both branches
of the cut. We also use that U ≥ k in order for the newly created channel ys′, which has mode
k, to depend on f , which as mode U. Subsequently, we extract the underlying function f ′ from f ,
noting that as we have already duplicated f to be used in the recursive call, we no longer need it,
and so this next step can be typed using ↑L0. We can then apply f ′ to x, giving a result y, using
the(L0 rule, construct a pair p′ of y and ys′ using the ⊗R rule, and use this to implement ys,
using the ⊕R rule.

4.3.2 Dynamic Semantics

To represent the dynamic semantics of this language, we will use three types of semantic objects:
• proc(P), representing a running process executing the process term P .
• !+mmsg(am, V), representing a message V being sent on channel am. The !+m denotes that

this object is persistent in the configuration if C ∈ σ(m) and also the type of am is positive
(⊗,1,⊕, ↓).

• !−msrv(am, K), representing a service K listening on channel am. Similarly to !+m, !−m de-
notes that this object is persistent if C ∈ σ(m) and also the type of am is negative ((,N, ↑).

Our configurations for this language then have the following grammar:

Configurations C ::= · | proc(P) | !+mmsg(am, V) | !−msrv(am, K) | C1, C2

We would also like to enforce statically that configurations are only valid when no two objects
are attempting to provide the same channel. This is easily checked when typing configurations by
rejecting types where the same channel occurs more than once in the type, but we can also specify
the interface of configurations, and rely on the generic constraint that configurations can only be
joined if their sets of provided symbols (here, channels) do not overlap. Since we are working
in this chapter only with well-typed configurations, we will, for now, rely on typing to ensure
our configurations are well-formed. Of course, a real implementation may find it useful to track
information about provided and used channels more precisely, as it may simplify the process
of type checking. As in the general case, we will treat the join C1, C2 of two configurations as a
commutative and associative operation so that this grammar defines a (multi)set rather than a tree.
Additionally, for clarity, when writing configurations, we will adopt the convention (consistent
with the typing rule for the join of configurations) that the provider of a channel appears to the
left of any clients of that channel.

71

proc(x← P ; Q) 7→ proc([a/x]P), proc([a/x]Q) (a fresh) cut: allocate channel & spawn

proc(d+m ← c+m) 7→ !+mmsg(d+m, c
+
m) id: forward+

proc(d−m ← c−m) 7→ !−msrv(d−m, c
−
m) id: forward−

proc(cm.V) 7→ !+mmsg(cm, V) Positive right/negative left rules: send

proc(case cmK) 7→ !−msrv(cm,K) Negative right/positive left rules: listen

!+mmsg(cm, V), !−msrv(cm,K) 7→ proc(V . K) Communication

proc(a← p b) 7→ proc(P [a/x, b/y]) (x← p y = P ∈ Σ) Process call

Figure 4.2: Reduction rules for message-passing

We can then present the dynamic semantics of this language as a collection of (multi)set
rewriting rules, shown in in Figure 4.2.

In these rules, we have slightly modified the syntax of values and continuations discussed in
section 4.2.3 in order to handle forwarding. To forward one channel to another, we either set up a
service forwarding messages (if the type of the channel is negative), or send a message along the
channel to tell the service provided along that channel of its new client (if the type of the channel
is positive). This service or message will be persistent, enabling it to continue forwarding any
future messages or services on the same channel as necessary. To implement this, we allow a
single channel name cm to be either a value or a continuation, and extend the operation V . K
with the following two cases:

cm . K , case cmK

V . cm , cm.V

In either case, a forward to cm interacts with either a value or a continuation to change the channel
it is operating on to cm.
Example 9 (Examples of evaluation of processes). We now examine how some sample processes
evaluate, first with a short example that illustrates how forwarding works:

In this example, we work with channel of positive type 1m. One process sends a message
along cm, while another waits to receive a message on dm, and a third process in the middle
forwards to connect cm and dm. We highlight in red the semantic object(s) that are involved in
taking each given step.

proc(cm.〈〉), proc(d+m ← c+m), proc(case dm (〈〉 ⇒ P))

7→ !+mmsg(cm, 〈〉), proc(d+m ← c+m), proc(case dm (〈〉 ⇒ P))

7→ !mmsg(cm, 〈〉), proc(d+m ← c+m), srv(dm, 〈〉 ⇒ P)

7→ !mmsg(cm, 〈〉), !mmsg(d+m, c
+
m), srv(dm, 〈〉 ⇒ P)

7→ !mmsg(cm, 〈〉), !mmsg(d+m, c
+
m), proc(case cm (〈〉 ⇒ P))

7→ !mmsg(cm, 〈〉), !mmsg(d+m, c
+
m), srv(cm.〈〉 ⇒ P)

7→ !mmsg(cm, 〈〉), !mmsg(d+m, c
+
m), proc(P)

72

We can see in the fourth line of this example how the forwarding message interacts with a service
listening on dm to redirect it to listen on cm (after one additional step from line 5 to line 6, for the
newly running process to begin listening again). Note that the forwarding message is persistent
if m admits contraction, so that in case dm has multiple clients, they can each individually be
forwarded to cm.

We then move to look at a larger example, seeing how the flip process shown in Section 4.2.6
executes to actually invert a (linear) bit stream. In the initial state of this configuration, we have
the bit stream 01$, represented by a sequence of messages, each of which refers to the next, as
well as the flip process. We abbreviate the body of the running process and its continuations as
necessary.

msg(u, 〈〉),msg(x2, $(u)),msg(x1, b1(x2)),msg(x0, b0(x1)), proc(y0 ← flip x0)

7→ msg(u, 〈〉),msg(x2, $(u)),msg(x1, b1(x2)),msg(x0, b0(x1)), proc(case x0(. . .))

7→ msg(u, 〈〉),msg(x2, $(u)),msg(x1, b1(x2)),msg(x0, b0(x1)), srv(x0, . . .)

7→ msg(u, 〈〉),msg(x2, $(u)),msg(x1, b1(x2)), proc(y1 ← (y1 ← flip x1 ; y0.b1(y1)))

7→ msg(u, 〈〉),msg(x2, $(u)),msg(x1, b1(x2)), proc(y1 ← flip x1), proc(y0.b1(y1)))

7→ msg(u, 〈〉),msg(x2, $(u)),msg(x1, b1(x2)), proc(y1 ← flip x1),msg(y0, b1(y1))

...
7→ msg(u, 〈〉),msg(x2, $(u)), proc(y2 ← flip x2),msg(y1, b0(y2)),msg(y0, b1(y1))

...
7→ msg(u, 〈〉),msg(x2, $(u)), srv(x2, . . .),msg(y1, b0(y2)),msg(y0, b1(y1))

7→ msg(u, 〈〉), proc(y2.$(u)),msg(y1, b0(y2)),msg(y0, b1(y1))

7→ msg(u, 〈〉),msg(y2, $(u)),msg(y1, b0(y2)),msg(y0, b1(y1))

Much of this execution trace is unsurprising, and so we omit some repetitive steps after showing
them in the first iteration. However, it is interesting to note that the message being sent along
channel u is never actually received, instead being reused in implementing y2. Eventually, a
process reading this flipped bit stream may need to read from u in order to fully consume the bit
stream (at least in the context of a linear or strict mode), but even then, if such a process has use
for a message of type 1, it can again reuse u for this purpose.

To present and prove type safety and other results for this language, we need to give rules
for typing configurations. In particular, we need to describe how each individual object is
typed, which we can then combine with the generic rules for combining configurations from
section 4.2.5. Moreover, as shown in that section, as long as our typing rules for individual ob-
jects satisfy type extension and don’t generate fresh symbols, we are able to get associativity
and type extension for the typing of full configurations, which will be invaluable in proving both
progress and preservation.

The rules for typing these objects rely on typing for processes. Messages and services are

73

treated as the processes which, in one step, produce them.

ΓC ,Γ1 ≥ m C ∈ σ(ΓC) ΓC ,Γ1 ` P :: (c : Am)

ΓC ,Γ1,Γ2 � proc(P) :: ΓC ,Γ2, (c : Am)
proc

ΓC ,Γ1 ≥ m C ∈ σ(ΓC) ΓC ,Γ1 ` a.V :: (c : Am)

ΓC ,Γ1,Γ2 � !+mmsg(am, V) :: ΓC ,Γ2, (c : Am)
msg

ΓC ,Γ1 ≥ m C ∈ σ(ΓC) ΓC ,Γ1 ` case aK :: (c : Am)

ΓC ,Γ1,Γ2 � !−msrv(am, K) :: ΓC ,Γ2, (c : Am)
srv

Γ � (·) :: Γ
empty Γ1 � C1 :: Γ2 Γ2 � C2 :: Γ3

Γ1 � C1, C2 :: Γ3
join

Note that in each of the singleton object rules, we need that ΓC ,Γ1 ≥ m, in order for inde-
pendence to be satisfied when typing processes, and we also need to ensure that C ∈ σ(ΓC),
allowing it to both be used for typing a process (resp. message, service) and to be passed on for
further objects in the configuration to use. However, in the empty and join rules, there are no
such restrictions, because configurations can freely pass through any channels unused, even if no
process in that configuration is permitted by independence to use the channel.

For handling forwarding, we treat a.c and case a c as synonymous with a ← c, allowing
msg(am, cm) and srv(am, cm) to be typed without additional rules. Note that in the msg and srv
rules, the channel c that the message or service provides need not be the channel a that it is
communicating along, but nor need it be different. We can distinguish these cases based on the
polarity (positive or negative) of the channel a, and tracking this information explicitly in the
syntax may simplify type-checking in practice, but complicates the presentation of the rules. As
such, we prefer the more succinct form.

We can see immediately from these rules that the preconditions of Theorem 17 on type ex-
tension hold — the Γ2 in each singleton rule allows us to add any additional context (not sharing
channels with ΓC ,Γ1 or the object being typed) to be passed through a single object. Moreover,
our general results in section 4.2.5 tell us that we may freely reassociate configurations without
affecting their types. This ability to reassociate, in particular, will be convenient when proving
type safety.

We will also make use of the following lemma, which allows us to invert typing to find the
provider of a given channel that occurs in the type of a configuration.
Lemma 6 (Every channel has a unique provider). Suppose Γ � C :: ∆, (a : Am).

Then, either (a : Am) occurs in Γ (a is an externally-visible channel on the left), or we can
find contexts Γ′,∆′ and a unique object φ such that:

• (a : Am) does not occur in Γ′

• φ occurs in C
• Γ′ � φ :: ∆′, (a : Am). Note that in particular, this means that a occurs in φ, as can be

seen by inversion.
We say that this object φ is a provider of a. Moreover, these two cases are mutually exclusive —
it cannot be the case that (a : Am) occurs in Γ and C contains a provider of a.

Proof. This proof proceeds by induction on the derivation of Γ � C :: ∆, (a : Am).

74

If the derivation ends with the empty rule, then Γ = ∆, (a : Am), and so we are in the first
case, where a is externally visible on the left. As C is empty, it cannot contain a provider of a.

If the derivation ends with the join rule, we have that C = C1, C2, and that for some Γ′,
Γ � C1 :: Γ′ and Γ′ � C2 :: ∆, (a : Am). We first apply the inductive hypothesis to this second
premise, giving us two possible cases. In the first case, C2 contains a (unique) provider of a and
Γ′ does not contain (a : Am). Since typing does not generate fresh symbols (Theorem 17) and Γ′

does not contain (a : Am), we also have that Γ and C1 cannot contain a, concluding this case.
In the second case, Γ′ contains (a : Am) (and C2 does not contain a provider of a). In this

latter case, we apply the inductive hypothesis again to the typing of C1, giving us that either C1
contains a unique provider of a, or Γ contains (a : Am), but not both In either case, we are done.

If the derivation ends with any of the other three rules, we observe that its conclusion must
have the following form:

ΓC ,Γ1,Γ2 � φ :: ΓC ,Γ2, (c : Ck),

where Γ = ΓC ,Γ1,Γ2, and ∆, (a : Am) = ΓC ,Γ2, (c : Ck). If (a : Am) occurs in Γ, then it is
an externally-visible channel, and so we need only check that φ is not a provider of a, but this
is immediate from the definition. Otherwise, it cannot occur in either ΓC or Γ2, and so it must
be the case that (a : Am) = (c : Ck), giving us the last condition needed to ensure that φ is a
provider of a.

4.3.3 Results
At this point, we are equipped with the tools to present and prove theorems about the semantics
of this language. We begin with type safety, which, as is often the case, is broken down into a
preservation-type theorem, called session fidelity, and a progress-type theorem, called deadlock-
freedom. Both resemble their standard functional counterparts, but a few unusual features arise.
In session fidelity, we may not retain exactly the same type for a configuration, as new channels
may be allocated and exposed to the outside world. However, the types of all existing channels
must remain the same, and externally visible channels cannot be destroyed, only newly created.
This ensures that it is always possible to continue to interact with a configuration without unex-
pectedly having an existing communication fail, either by the channel disappearing or changing
type.
Theorem 18 (Session fidelity (Preservation)). Suppose Γ � C :: ∆ and C 7→ C ′. Then Γ � C ′ ::
∆′ for some ∆′ ⊇ ∆.

Proof. We proceed by case analysis on the choice of rule used to step from C to C ′.
For six of the seven rules, we start with a single object proc(P) in C. Reassociate C as

(C1, proc(P)), C2.7 Now, we wish to replace proc(P) with the right-hand side Ĉ of the rule used
to step, and claim that proc(P) and Ĉ have the same type as configurations, and therefore so does
the overall configuration C ′ = (C1, Ĉ), C2. It therefore suffices for these rules to show that the
left-hand and right-hand side have the same type as configurations, ignoring any other parts of
the configuration. For the two identity rules and the send/listen rules, this is immediate, as the
typing rules for the newly created message or service make use of typing for the same process

7C1, (proc(P), C2) would work as well.

75

that creates them. Likewise, the rule for calling processes replaces a call to a named process
(which is typed using the declaration for that named process) with the definition of that process,
which, given a valid signature, must be well-typed using the type specified in its declaration, and
so the typing derivation for the right-hand side is nearly identical to that for the left-hand side of
the rule. The cut rule is slightly more involved, as it converts one object into two, but can be seen
as the following translation of proofs (where we omit side conditions on modes for space):

D
ΓC ,Γ1 ` P :: (x : Am)

E
ΓC ,∆1, (x : Am) ` Q :: (c : Cr)

ΓC ,Γ1,∆1 ` x← P ; Q :: (c : Cr)
cut

ΓC ,Γ1,∆1,Γ2 � proc(x← P ; Q) :: ΓC ,Γ2, (c : Cr)
proc

becomes the join of the following two proofs:

D
ΓC ,Γ1 ` P :: (x : Am)

ΓC ,Γ1,∆1,Γ2 � proc([a/x]P) :: ΓC ,∆1, (x : Am),Γ2

proc

and
E

ΓC ,∆1, (x : Am) ` Q :: (c : Cr)

ΓC ,∆1, (x : Am) � proc([a/x]Q) :: ΓC ,Γ2, (c : Cr)
proc

For the seventh rule, communication, we start with two objects in C, and end up with one.
This rule must be treated slightly differently depending on whether the type of the channel a
being communicated along is positive or negative, and on what exactly the type is, but all are
similar.

As an example case, we consider a : Bm ⊗ Cm.
In this case, we can write (reassociating with Theorem 16 if necessary)

C = C1, !mmsg(am, 〈b, c〉), C2, srv(am, (〈x, y〉 ⇒ P)), C3
Now, by inverting the typing derivation for C, we get that there are Γ1,Γ2,Γ3,Γ4 such that:

• Γ � C1 :: Γ1

• Γ1 � !mmsg(a, 〈b, c〉) :: Γ2

• Γ2 � C2 :: Γ3

• Γ3 � srv(am, (〈x, y〉 ⇒ P)) :: Γ4

• Γ4 � C3 :: ∆.

By inversion on the typing derivations for the message and service, respectively, we get that Γ2

and Γ3 must both contain (a : Bm ⊗ Cm). We also learn which case of the ⊗Lα rule is used
in typing the service, and note this value of α down. Let β = 1 if m admits contraction and 0
otherwise, observing that β − α ∈ {0, 1} for any possible choices of α, β.

Write Γ2 = Γ′2, (a : Bm ⊗ Cm), and let Γ′′2 = Γ′2, (a : Bm ⊗ Cm)β, (b : Bm), (c : Cm).8

Similarly, write Γ3 = Γ′3, (a : Bm ⊗ Cm), and let Γ′′3 = Γ′3, (a : Bm ⊗ Cm)β, (b : Bm), (c : Cm).
We then make the following three claims, whose proofs we defer for now:

8Note that Γ2 may already contain (b : Bm) and/or (c : Cm) in some cases. Since we have distinct symbols
attached to each assumption in our contexts here, we may treat them as sets, so adding a second copy of (b : Bm)
or (c : Cm) is just a no-op. This greatly simplifies the number of case distinctions that need to be made.

76

(1) There is some Γ̂ such that Γ1 � Cm?(!mmsg(a, 〈b, c〉)) :: Γ′′2, Γ̂, where the notationCm?(x, y)
denotes x if C ∈ σ(m) and y otherwise

(2) Γ′′2 � C2 :: Γ′′3.
(3) Γ′′3 � proc(P [b/x, c/y]) :: Γ′4 for some Γ′4 ⊇ Γ4.

Combining these and our typing information about C1 and C3 with the join rule, possibly using
type extension to handle both Γ̂ and a Γ′4 that is larger than Γ4, we get that there is some ∆′ ⊇ ∆
such that

Γ � C1, Cm?(!mmsg(a, 〈b, c〉)), C2, proc(P [b/x, c/y]), C3 :: ∆′.

As this configuration is exactly C ′, this will give the desired result, and so it suffices to prove
(1)-(3).

Claim (1) We begin by applying inversion to the typing derivation of the provider of a. In this
case, we get that the derivation has the following form:

∆C ,∆1 ≥ m C ∈ σ(∆C) ∆C ,∆1 ` a.〈b, c〉 :: (a : Bm ⊗ Cm)
⊗R0

∆C ,∆1,∆2 � !mmsg(a, 〈b, c〉) :: ∆C ,∆2, (a : Bm ⊗ Cm)
msg

We also conclude that ∆C ,∆1 contains (b : Bm) and (c : Cm). Now, we distinguish cases based
on whether m admits contraction or not.

If m admits contraction, then, taking ∆′C = ∆C , (b : Bm), (c : Cm) and ∆′1 to be the result of
removing b and c from ∆1 (if they occurred there to begin with), we get that ∆′C ,∆

′
1 = ∆C ,∆1,

and so we can construct the following typing derivation:

∆′C ,∆
′
1 ≥ m C ∈ σ(∆′C) ∆′C ,∆

′
1 ` a.〈b, c〉 :: (a : Bm ⊗ Cm)

⊗R0

∆′C ,∆
′
1,∆2 � !mmsg(a, 〈b, c〉) :: ∆′C ,∆2, (a : Bm ⊗ Cm)

msg

As m admits contraction, the condition C ∈ σ(∆′C) remains valid. The above is exactly a
derivation of Γ1 � !mmsg(a, 〈b, c〉) :: Γ′′2, and so this case is complete.

If m does not admit contraction, then we construct the following typing derivation:

∆C ,∆1,∆2 � (·) :: ∆C ,∆1,∆2

empty

Since Γ2 = ∆C ,∆2, (a : Bm ⊗ Cm), we also have that Γ′′2 = ∆C ,∆2, (B : Bm), (c : Cm),
as we are in the case where m does not admit contraction, so α must be 0. Taking Γ̂ to be the
remainder of ∆1 after (b : Bm) and (c : Cm) are removed, we also complete this case. Note that
the symbols in Γ̂ cannot occur in C2, proc(P [b/x, c/y]), C3, as they are weakened away by typing
for this message in C. As such, they are eligible for type extension.

77

Claim (2) We will prove by induction over the typing derivation that whenever

Ψ, (a : Bm ⊗ Cm) � D :: Ψ′, (a : Bm ⊗ Cm),

it is also the case that

Ψ, (a : Bm ⊗ Cm)β(b : Bm), (c : Cm) � D :: Ψ′, (a : Bm ⊗ Cm)β(b : Bm), (c : Cm),

where β is 1 if m admits contraction and 0 otherwise. For simplicity, we will write ∆a for the
context (a : Bm ⊗ Cm)β(b : Bm), (c : Cm).

If the last rule used was empty, then Ψ = Ψ′, and the result is immediate.
If the last rule used was join, then we have that D = D1,D2, and there is some Ψ′′ such that

Ψ, (a : Bm⊗Cm) � D1 :: Ψ′′ and Ψ′′ � D2 :: Ψ′, (a : Bm⊗Cm). In order to apply the inductive
hypothesis, we need to know that Ψ′′ contains (a : Bm ⊗ Cm). We get this from the fact that
every channel has a unique provider (Lemma 6) — since (a : Bm ⊗Cm) occurs on both sides of
the typing derivation for D, there can be no φ in D that provides a, so no φ in D2 can provide a
either. As such, (a : Bm ⊗ Cm) must occur in Ψ′′. Write Ψ′′ = Ψ̂, (a : Bm ⊗ Cm).

Now, applying the inductive hypothesis to both D1 and D2, we get that

Ψ,∆a � D1 :: Ψ̂,∆a and Ψ̂,∆a � D2 :: Ψ′,∆a.

Applying the join rule to these gives the desired result.
Now, if the last rule used was one of the three singleton rules, D is a single object φ, and

∆C ,∆1,∆2 � φ :: ∆C ,∆2, (d : Dk)

for some d : Dk and ∆C ,∆1,∆2 a partition of Ψ, (a : Bm ⊗ Cm). Since (a : Bm ⊗ Cm) occurs
both on the left and the right of this typing judgment, it must occur as part of ∆C ,∆2.9

If a occurs in ∆2, write ∆2 = ∆′2, (a : Bm ⊗ Cm), and let ∆′′2 = ∆′2,∆a. Then, the same
typing derivation used for φ above also shows that

∆C ,∆1,∆
′′
2 � φ :: ∆C ,∆

′′
2, (d : Dk),

since the context ∆2 may be chosen arbitrarily in each of the singleton typing rules. This is
exactly the desired result.

Otherwise, a occurs in ∆C , and so we must be in the case where m admits contraction. Let
∆′2 be the context obtained from ∆2 by adding those of (b : Bm), (c : Cm) that do not already
occur in ∆C . With this construction, ∆C ,∆1,∆

′
2 = Ψ,∆a, and ∆C ,∆

′
2, (d : Dk) = Ψ′,∆a, and

so, replacing ∆2 with ∆′2 in the above typing derivation for φ, we get the desired result.
From this general statement and the fact that Γ2 � C2 :: Γ3 (from the typing of C), we get in

particular that Γ′′2 � C2 :: Γ′′3, which is exactly claim (2).

9We can be sure that it does not occur as (d : Dk) and part of ∆1 because a well-typed process term cannot have
the same channel on both the left and right side of its type — this is easy to check by observing that this property is
preserved by all typing rules for processes.

78

Claim (3) We now apply inversion to the typing derivation of the client of a. In this case, we
get that the derivation has the following form:

∆C ,∆1 ≥ m C ∈ σ(∆C)

D
∆′C ,∆

′
1, (a : Bm ⊗ Cm)α, (x : Bm), (y : Cm) ` P :: (d : Dk)

∆C ,∆1 ` case a (〈x, y〉 ⇒ P) :: (d : Dk)
⊗Lα

∆C ,∆1,∆2 � srv(am, (〈x, y〉 ⇒ P)) :: ∆C ,∆2, (d : Dk)
srv

Here, Γ3 = ∆C ,∆1,∆2 and Γ4 = ∆C ,∆2, (d : Dk) and ∆C ,∆1 = ∆′C ,∆
′
1, (a : Bm ⊗ Cm). We

may also assume that either ∆C = ∆′C or ∆1 = ∆′1 — that is, the only difference is the removal
of a.

Let ∆′′C = ∆′C , (a : Bm ⊗ Cm)α. Now, ∆C (and hence also ∆′C and ∆′′C) may contain
(b : Bm) or (c : Cm) already. We define ∆′′1 to be the result of adding (b : Bm) and (c : Cm) to
∆′1 if they do not already occur in ∆C , and ∆′2 = ∆2, (a : Bm ⊗ Cm)β−α — that is, ∆′2 contains
(a : Bm⊗Cm) exactly whenm admits contraction, but the⊗L0 rule was used in typing the client
of a. Then, ∆′′C ,∆

′′
1 = ∆′C ,∆

′
1, (a : Bm ⊗ Cm)α, (b : Bm), (c : Cm), and so Γ′′3 = ∆′′C ,∆

′′
1,∆

′
2.

Now, we construct the following typing derivation:

∆′′C ,∆
′′
1 ≥ m C ∈ σ(∆′′C)

D[b/x, c/y]
∆′′C ,∆

′′
1 ` P [b/x, c/y] :: (d : Dk)

∆′′C ,∆
′′
1,∆

′
2 � proc(P [b/x, c/y]) :: ∆′′C ,∆

′
2, (d : Dk)

proc

This is a derivation of Γ′′3 � proc(P [b/x, c/y]) :: ∆′′C ,∆
′
2, (d : Dk), and so it will suffice to show

that ∆′′C ,∆
′
2, (d : Dk) ⊇ Γ4. By construction, ∆′′C ,∆

′
2 = ∆′C ,∆2, (a : Bm ⊗ Cm)β , and as

∆′C , (a : Bm ⊗ Cm)β ⊇ ∆C (either ∆C = ∆′C or ∆C = ∆′C , (a : Bm ⊗ Cm), but the latter case
can only occur when m admits contraction, so β = 1), we see that ∆′′C ,∆

′
2, (d : Dk) ⊇ Γ4, and

conclude the proof of (3). Note that if (a : Bm ⊗ Cm) does not occur in Γ4, the well-typedness
of C ensures that a cannot occur in C3 (in principle, some internal channel of C3 could share the
name a, but we assume that channel names are unique for well-typed configurations). As such,
it is eligible for type extension.

Other cases The other cases for the typeAm of a follow a similar structure. We first reassociate
C to isolate the two interacting objects. From inversion, we can get some typing information
about these objects — in particular, we find the channel that they communicate along in both Γ2

and Γ3, and we also find the continuation channels (in this case, b : Bm and c : Cm) that the new
process that arises from the communication will need to use. We can then construct modified
contexts Γ′′2 and Γ′′3 by adding in these channels that the new process will use, and potentially
removing the channel a, depending on which α case of a left rule is used to type the client of a.

Then, proving (suitable variants of) (1)-(3) is sufficient to give the result. (1) consists of
showing that channels that the provider of a gives to the new process will remain available
after communication, (2) shows that these channels can be “threaded through” an intervening
configuration C2 without getting lost, and (3) shows that these, along with any channels that the
client of a gives to the new process, are sufficient to type that new process.

Deadlock-freedom likewise differs slightly from its functional counterpart, more closely fol-
lowing progress or deadlock-freedom theorems in the context of other process calculi. In systems

79

derived from the π-calculus, deadlock-freedom generally states that any process can either take a
reduction step, or there is no pending communication (see, e.g., [20, 50, 70] for a few examples
of such systems and their deadlock-freedom). Our language, unlike many π-calculus systems,
supports a notion of external input/output, in the form of channels that occur free in a process
term or configuration, and so we need to also account for this external communication in our
statement of deadlock-freedom — a process waiting on external communication cannot be rea-
sonably expected to progress on its own, and so should not be considered in deadlock. We say
that a message or a service is poised if it is a message of positive type (being sent from provider
to client) or a service of negative type (listening for messages from its client). In either case,
the object is waiting for a client to interact with it. We cannot identify poised objects purely
syntactically — for instance, the message msg(a, 〈b, c〉) could be typed either with ⊗R0 or with
(L0, and is only poised in the former case. However, as we are working in a setting where
everything is well-typed, we can say that an object is poised if its typing derivation ends with
first the msg or srv rule, followed by the right rule for a connective. Configurations consisting
entirely of poised objects serve a similar role to values in a functional language, being unable to
continue computation on their own (although they may be able to continue after provided with
some external input, much like a lambda abstraction can continue to take steps once provided
with its argument).
Theorem 19 (Deadlock freedom (Progress)). Suppose (·) � C :: ∆. Then, one of the following
holds:

• There is some C ′ such that C 7→ C ′.
• C consists only of poised objects — that is, messages of positive type or services of negative

type. In particular, it contains no proc objects.

Proof. We begin by working with a typing derivation for (·) � C :: ∆ which is fully associated
to the left — that is, (presuming C is non-empty) C = C ′, φ for some object φ, and so on.

By inversion, we can then find ∆′ with (·) � C ′ :: ∆′ and ∆′ � φ :: ∆. Applying the inductive
hypothesis to C ′, either C ′ can take a step (in which case, so can the whole configuration C), or C ′
consists entirely of poised objects.

Now, we consider φ. If φ is a proc object, it can take a step on its own, and therefore C can
take this step. Otherwise, if φ is a poised msg or srv object, C consists entirely of poised objects
and we are done.

The remaining case is where C ′ consists entirely of poised objects, and φ is a non-poised
msg(a, V) or srv(a,K). We now distinguish cases based on whether φ is a message or a service,
and on what shape its value or continuation takes (or, equivalently, what type φ expects a to have).
These cases are all similar, and so we will highlight one positive and one negative example.

First, suppose φ is of the form msg(a, i(b)). Since we know (as φ is not poised) that it is a
message of negative type, this `(b) must be typed using the NL0 rule, rather than⊕R0. We apply
inversion to the typing derivation for φ, finding that it must have the form

ΓC ,Γ1 ≥ m C ∈ σ(ΓC)

(i ∈ L)

Γ′C ,Γ
′
1, a : N{` : A`m}`∈L ` a.i(b) :: (b : Aim)

NL0

ΓC ,Γ1,Γ2 � msg(am, i(b)) :: ΓC ,Γ2, (b : A`m)
msg

80

where ∆′ = ΓC ,Γ1,Γ2, ∆ = ΓC ,Γ2, (b : A`m), and ΓC ,Γ1 = Γ′C ,Γ
′
1, a : N{` : A`m}`∈L — the

particulars of whether a appears in ΓC or Γ1 are, thankfully, irrelevant here.
Now, we know that (·) � C ′ :: ∆′, and that ∆′ contains a : N{` : A`m}`∈L. Applying

Lemma 6, we get that C ′ must contain a provider ψ of a. That is, there are some Γ′,Γ′′ such that
(a : N{` : A`m}`∈L) does not occur in Γ′, and

Γ′ � ψ :: Γ′′, (a : N{` : A`m}`∈L)

Because all objects in C ′ are poised, ψ must be either a positive message or a negative service —
that is, it must be typed using a right rule. If we search through the possible right rules, we find
that the only way to type ψ such that (a : N{` : A`m}`∈L) occurs on the right, but not on the left,
is via the NR rule. As such, ψ must be of the form !msrv(am, (`(y)⇒ P`)`∈L).

We then observe that the communication rule applies to φ and ψ, as they are a compatible
service/message pair, and so the overall configuration C can take a step.

For a positive example, we suppose that φ is of the form srv(a, (shift(x) ⇒ P)). Knowing
that φ is not poised allows us to conclude that it is a service of positive type, and hence typed by
↓L, rather than by ↑R. Applying inversion to the typing derivation for φ, we find that it has the
form

ΓC ,Γ1 ≥ m C ∈ σ(ΓC)

Γ′C ,Γ
′
1, (a : ↓`mA`)α, x : A` ` P :: (c : Cr)

Γ′C ,Γ
′
1, a : ↓`mA` ` case a (shift(x)⇒ P) :: (c : Cr)

↓Lα

ΓC ,Γ1,Γ2 � srv(am, (shift(x)⇒ P)) :: ΓC ,Γ2, (c : Cr)

As in the previous case, we note that ∆′ = ΓC ,Γ1,Γ2 and ΓC ,Γ1 = Γ′C ,Γ
′
1, a : ↓`mA`. In

particular, this means that ∆′ contains a : ↓`mA`, and so we may apply Lemma 6 to the typing
derivation for C ′ to get that C ′ contains a provider ψ of a. Applying inversion to the typing
derivation for ψ, we find that it must be typed with the msg rule, followed by ↓R0, analogously
to the previous case. We may then conclude that ψ has the form !mmsg(am, shift(b)) for some b,
and that the communication rule applies to φ and ψ, allowing C to take a step.

The remaining cases follow a similar pattern — we take the object φ to have a particular
form, and use that it is not poised to determine (part of) its typing derivation. From this, we can
conclude that a occurs in ∆′ with some type Am, find a provider ψ of a in C ′, and then again
apply inversion to the typing derivation to see what shape ψ has. Typing then ensures that φ and
ψ are compatible, so we can apply the communication rule.

Combining these two theorems, we get a form of type-safety — a well-typed closed con-
figuration is either completely composed of poised objects (and therefore blocked waiting on
external communication), or it can take a step, and after that step, it remains well-typed. As
such, a well-typed configuration has two possibilities: either it takes some finite number of steps
and reaches a final configuration, where all objects are poised, or there is an infinite sequence of
steps it can take. In either case, we get a variant of the classic motto: “Well-typed configurations
do not go wrong” [61].

A natural question at this point, since the semantics do not prescribe an order in which to ap-
ply rules, is whether it is possible for some well-typed configuration to either continue infinitely
taking steps or reach a poised state, depending on the choices of rules used. We can show that in

81

fact, while there is nondeterminism in the order to apply rules, it cannot have an impact on the
final result of a computation.
Theorem 20 (Diamond Lemma). Suppose Γ � C :: ∆, C 7→ C1, and C 7→ C2. Then there exist C ′1
and C ′2 such that C1 7→ C ′1, C2 7→ C ′2, and C ′1 is equivalent to C ′2 up to a renaming of symbols.

Proof. This proof follows the same structure as the Church-Rosser theorem for the lambda cal-
culus. However, it is somewhat simpler, in that our reduction rules interfere less with each other
than those for the lambda calculus.

We observe that most of the computation rules for this language are independent — that is,
they cannot possibly operate on the same object. As such, we can apply both rules in either order,
yielding the same configuration in the end (up to choice of fresh channel name in the cut rule,
which is resolved by renaming).

The only way we can have two rule instances apply to the same object is if they are two
different instances of the communication rule, applied to the same message or service. In this
case, however, the message or service must be a provider interacting with different clients —
otherwise, we would end up with a type error from some channel having multiple providers. We
then observe that a message or service with multiple clients is persistent — it must be providing
a channel of positive or negative type, respectively, and since it has multiple clients, the mode
of that type must admit contraction. As such, we can take the two steps sequentially in either
order, and as neither destroys the persistent message or service being provided, the resulting
configurations are identical.

4.4 Shared-Memory Semantics
With only minimal changes, we can provide a system of semantics based on a limited form of
shared memory, which we will see is a form of substructural futures. [32, 39] In this system, we
interpret symbols as addresses of memory cells, each of which can be written to once, and read
from potentially many times. Processes then are able to communicate (in one direction only) by
writing data into memory, which can then be read by other processes. Unlike in the message
passing setting, where only values V could be messages, both values V and continuations K
may be stored in memory, with continuations representing a form of paused process. Because of
this, the constructs a.V and case a K each serve dual purposes, able to either read or write from
memory depending on the type of V or K, respectively. When a.V is used to write to memory,
it stores the value V in the cell at address a, but when it is used to read from memory, it loads
the stored continuation K at address a, and continues executing V . K. The construct case a K
behaves dually, either writing a continuation to memory at address a or reading a stored value V
from memory and continuing as V . K.

In order to disambiguate, we may write superscript R or W on addresses in programs to
indicate whether we are reading or writing from the address, when it is helpful to be precise.
While this can be inferred by looking at the program as a whole, and so is not part of the formal
syntax, we will use it to improve readability in examples and in some discussions of the language.
Using this notation, we describe more precisely the meanings of process terms under a shared-
memory interpretation in table 4.3

82

Process term P Meaning

cW ← aR Copy (or move) the contents of cell a to address c.

x← P ; Q Allocate a new memory cell with address a, spawn a process P [a/x],
and continue as Q[a/x]. P [a/x] may write to a, while Q[a/x] may read
from a.

cW .V Write the value V to the cell at address c.

case cRK Read a value V from cell c, then pass V to K.

cR.V Read a continuation K from cell c, then pass V to K.

case cW K Write the continuation K to the cell at address c.

a← p b Call the named process p, which may read from addresses b and write
to address a.

Table 4.3: Meanings of process terms in a shared-memory setting

We can provide a set of typing rules (which are largely similar to those for the message-
passing semantics of section 4.3) based on a semi-axiomatic presentation of ADJI . These can be
found in fig. 4.3.

The differences between message-passing and shared memory semantics become more pro-
nounced when we look at the dynamic semantics. Our shared-memory semantics use three types
of semantic object:

• thread(a, P), representing a thread of computation executing the term P with destination
a.

• cell(a,_), representing an empty memory cell at address a.
• !mcell(am, D), representing a cell at address am, with contents D, which may be either a

value V or continuation K. Here, !m denotes that the cell is persistent if C ∈ σ(m), and
ephemeral otherwise.

We require that every proc(a, P) has a corresponding empty cell cell(a,_) which it will eventu-
ally write to, and likewise, that every empty cell has a corresponding process. Because of this,
it is possible to simplify the semantics by leaving empty cells implicit, but this makes memory
allocation less clear, and so we prefer to show these empty cells explicitly. We also require that if
two objects share the same address, then they are exactly such a proc(a, P), cell(a,_) pair. This
ensures that no two memory cells share an address, that no two processes share a destination, and
that no process is attempting to write to an already filled cell, thus avoiding any possible write
conflicts. We will see later that every well-typed configuration satisfies this condition automati-
cally.

Our semantics here resemble a destination-passing style [53, 107] semantics for a functional
language, where rather than substituting values for variables, instead, values are written to mem-
ory at a given destination, and that destination is instead substituted for a variable. For in-
stance, when evaluating (λx.e1) e2 with destination d, a destination-passing system of semantics

83

(ΓC ,∆ ≥ m ≥ r) ΓC ,∆ ` P :: (x : Am) ΓC ,∆
′, x : Am ` Q :: (z : Cr)

ΓC ,∆,∆
′ ` (x← P ; Q) :: (z : Cr)

cut

ΓW , y : Am ` x← y :: (x : Am)
id

(i ∈ L)

ΓW , y : Aim ` xW .i(y) :: (x : ⊕{` : A`m}`∈L)
⊕R0

Γ, (x : ⊕{` : A`m}`∈L)α, y : A`m ` Q` :: (z : Cr) (for all ` ∈ L)

Γ, x : ⊕{` : A`m}`∈L ` casexR (`(y)⇒ Q`)`∈L :: (z : Cr)
⊕Lα

Γ ` P` :: (y : A`m) (for all ` ∈ L)

Γ ` casexW (`(y)⇒ P`)`∈L :: (x : N{` : A`m}`∈L)
NR

(i ∈ L)

ΓW , x : N{` : A`m}`∈L ` xR.i(y) :: (y : Aim)
NL0

· ` xW .〈 〉 :: (x : 1m)
1R0

Γ, (x : 1)α ` P :: (z : Cr)

Γ, x : 1 ` casexR (〈 〉 ⇒ P) :: (z : Cr)
1Lα

Γ, w : Am ` P :: (y : Bm)

Γ ` casexW (〈w, y〉 ⇒ P) :: (x : Am(Bm)
(R

ΓW , w : Am, x : Am(Bm ` xR.〈w, y〉 :: (y : Bm)
(L0

ΓW , w : Am, y : Bm ` xW .〈w, y〉 :: (x : Am ⊗Bm)
⊗R0

Γ, (x : Am ⊗Bm)α, w : Am, y : Bm ` P :: (z : Cr)

Γ, x : Am ⊗Bm ` casexR (〈w, y〉 ⇒ P) :: (z : Cr)
⊗Lα

ΓW , y : Am ` xWk .shift(ym) :: (x : ↓mk Am)
↓R0

Γ, (x : ↓mk Am)α, y : Am ` Q :: (z : Cr)

Γ, x : ↓mk Am ` casexRk (shift(ym)⇒ Q) :: (z :: Cr)
↓Lα

Γ ` P :: (y : Ak)

Γ ` casexWm (shift(yk)⇒ P) :: (x : ↑mk Ak)
↑R

ΓW , x : ↑mk Ak ` xRm.shift(yk) :: (y : Ak)
↑L0

Figure 4.3: Typing rules for shared memory. Note that other than the annotations ·R/W to indicate
which memory accesses are reads and which are writes, they are identical to those for message
passing.

84

thread(c, x← P ; Q) 7→ thread(a, P [a/x]), cell(a,_), thread(c,Q[a/x]) (a fresh) cut: allocate & spawn

!mcell(cm, D), thread(dm, dm ← cm), cell(dm,_) 7→ !mcell(dm, D) id: move or copy

thread(cm, cm.V), cell(cm,_) 7→ !mcell(cm, V) (⊕R0,⊗R0,1R0, ↓R0)
!mcell(cm, V), thread(ek, case cmK) 7→ thread(ek, V . K) (⊕L,⊗L,1L, ↓L)

thread(cm, case cmK), cell(cm,_) 7→ !mcell(cm,K) ((R,NR, ↑R)
!mcell(cm,K), thread(dk, cm.V) 7→ thread(dk, V . K) ((L0,NL0, ↑L0)

thread(a, a← p b) 7→ thread(a, P [a/x, b/y]) (x← p y = P ∈ Σ) (call)

Figure 4.4: Reduction rules for shared memory

might allocate a fresh destination d2, and evaluate e2 with destination d2, before then evaluating
[d2/x]e1 with destination d. A concurrent version of those same semantics could evaluate e2 and
[d2/x]e1 concurrently, much as a cut in our language allocates a new memory address, spawns a
new process which will write to that address (like evaluating e2 with destination d2), and contin-
ues running a process that may read from that address (as [d2/x]e1 may read from d2, if it needs
to access the value of x).

Using these objects, we can present the dynamic semantics of this shared-memory language,
using multiset rewriting rules, as in the message-passing setting. The evaluation rules are given
in fig. 4.4.

We begin by examining the left/right rules for connectives, which serve as the core means
of communication. In general, right rules write (a convenient mnemonic), although what type
of data they write (values or continuations) depends on the polarity of the type, with positive
right rules writing values to memory, while negative right rules write continuations. By contrast,
left rules read data from memory, combining that data with information provided in the process
term to determine how to continue. A positive left rule, for instance, contains a continuation, and
reads a value out of memory to pass to that continuation.

Unlike communication via channels, where messages are sent back and forth between pro-
cesses, here, a thread terminates upon writing to memory, and all communication proceeds in
a single direction. This unidirectional flow of information makes it easy to give sequential se-
mantics for this language — in fact, we will see that this can be enforced purely at the level of
scheduling, by restricting in what order we can apply the rules in fig. 4.4. As such, any program
in this language can be run sequentially, yielding the same result as if it were allowed to run
concurrently, with multiple threads active at once. 10

We now examine the remaining rules of cut and identity, which do not deal directly with
communication, but are nevertheless important.

The cut rule is quite straightforward, though it does do several things all at once. A thread
executing the process term x ← P ; Q allocates a new memory cell with address a, spawns a
new thread to run P [a/x] with destination a, and continues running Q[a/x], which is entitled to
read from the cell at address a, once it has been filled in.

10Because this language satisfies a form of confluence (see Section 4.4.1), we can guarantee that this sequential
schedule has the same result as any other scheduling of the same program.

85

In principle, the role of identity d ← c is to ensure that a future thread looking for data at
address dwill find the data at address c. There are several ways we could go about this — perhaps
the simplest would be to let the identity serve as a pointer or redirection, and when a thread
attempts to read from d, it would instead be directed to c. However, this can be inconvenient
if we have many identities, as read times can grow increasingly large due to a need to follow
long chains of identities. Instead, we treat identity as a move or copy operation, reading the data
from the cell at address c and writing it to address d. This is a move if the cell at address c is
ephemeral, as the process of reading from that cell destroys it, and a copy otherwise.

Example 10 (Map, revisited). We have already seen an intuition for how a map process executes
in the context of message-passing. Now, we will re-examine this same process in the shared-
memory setting, seeing how our interpretation changes. Note that since typing is the same in
both languages, we do not re-examine the typing of this process term, but we do annotate each
memory access to indicate whether it is a read or a write.

listAk
, ↑UkAk (Bk ` map :: listBk

ys← map xs f =
case xsR (nil(u)⇒

ysW .nil(u)
| cons(p)⇒

case pR (〈x, xs′〉 ⇒
ys′ ← (ys′W ← map xs′ f)
f ′ ← fR.shift(f ′) ;
y ← f ′R.〈x, y〉 ;
p′ ← (p′W .〈y, ys′〉)
ysW .cons(p′)

)
)

In the context of shared memory, a process may read from the cells with addresses on the left of
its typing judgment, and writes to the cell on the right of the typing judgment. For this particular
process, that means that we expect to have cells with addresses xs and f , containing the start of
a list and a (shifted) function to map over that list, and we intend to write our output list starting
at address ys. We begin by reading from xs, here matching the message-passing interpretation,
where we received a message along xs. In the nil case, we write nil(u) to ys, reusing the memory
cell at address u for our new list. In the cons case, we read out a pointer p to another cell,
which we then read from to get pointers x and xs′ to the head and tail of the list, respectively.
The recursive call is also similar to the message-passing case, except that ys′ is the address of a
newly allocated memory cell, into which the recursive call should write its result, rather than a
channel along which it will communicate. Our first major difference comes on the next line, where
we construct f ′ by reading from the cell at address f . We allocate a cell at address f ′, and then
read and execute a paused process from cell f , with destination f ′. Once this process finishes
executing, its result, of type Ak (Bk, will be stored in f ′. If k does not admit contraction,
then this memory cell with address f ′ is ephemeral, while the cell at address f is persistent. By
running the (persistent) process stored in f ′, we were able to create and fill a cell with a new
copy of the function f ′ that we plan to map over the list. We can then read this function, stored

86

as a paused process, from f ′, passing it x as an argument, and y as a destination, giving us a
cell at address y which will (once this new process terminates) contain the result of applying the
function to x. Finally, we write the pair 〈y, ys′〉 into a new cell at address p′, constructing the
body of a cons cell, which we then write into ys.

4.4.1 Configuration Typing and Results
Extending typing for processes to configurations is quite straightforward in the shared-memory
setting — we need only decide how to type cells. Since empty cells contain no information and
always accompany a process that will write to them, we assign a type to the process and its cell
together, ignoring the (invalid) cases where they occur separately. This also means, technically,
that configurations where a process and its corresponding empty cell are not adjacent to each
other are not well-typed, but in practice, this is little restriction — we can always ensure, when
allocating a new cell, that it is placed next to the corresponding process. Cells that contain data
are also easily handled: we treat a cell containing data D the same as the process that writes D to
that cell and then terminates. Taken together, we get the following rules for typing configurations:

ΓC ,∆ ≥ m C ∈ σ(ΓC) ΓC ,∆ ` P :: (a : Am)

Γ,ΓC ,∆ � thread(a, P), cell(a,_) :: Γ,ΓC , a : Am
thread

ΓC ,∆ ≥ m C ∈ σ(ΓC) ΓC ,∆ � am.V :: (am : Am)

Γ,ΓC ,∆ � !mcell(am, V) :: Γ,ΓC , (am : Am) cell+

ΓC ,∆ ≥ m C ∈ σ(ΓC) ΓC ,∆ � case amK :: (am : Am)

Γ,ΓC ,∆ � !mcell(am, K) :: Γ,ΓC , (am : Am) cell−

Γ � · :: Γ
empty

Γ1 � C1 :: Γ2 Γ2 � C2 :: Γ3

Γ1 � C1, C2 :: Γ3
join

As in the case of the message-passing semantics, because we allow an arbitrary Γ to pass
through single-object configurations unchanged, we have a type extension result for the whole
system, allowing us to pass such a Γ through any configuration. Likewise, we are also able to
reassociate configurations in this setting without affecting their types.

Now that we have defined configuration typing, we are equipped to present the type safety
result for this language, split into two parts, corresponding to progress and preservation, as is
standard.
Theorem 21 (Preservation (shared-memory)). If Γ � C :: ∆ and C 7→ C ′, then Γ � C ′ :: ∆′ for
some ∆′ ⊇ ∆.

That is, taking a computation step may add new memory addresses, but any existing address
continues to exist and retains the same type that it had before the step.

Proof. We examine several different cases, depending on which rule was used to step from C to
C ′.

For the call and cut rules, and for the right rules, the left-hand side consists of either a sin-
gle object, or a thread and its associated empty cell. In each case, we can reassociate C as
(C1, (thread(a, . . .), cell(a,))), C2, where the thread being focused on is the one that appears on

87

the left of the rule. We then replace this thread (and potentially its cell) with the right-hand side
of the rule, and so it will suffice to check that both sides of the rule (possibly with an extra empty
cell added to ensure that each thread has its corresponding cell) have the same type as configu-
rations. For both right rules, this is immediate from examining the thread and cell± typing rules.
Likewise, for the call rule, we can see that the process terms on the left and on the right have the
same type (using the call typing rule from Section 4.2.6), and therefore the threads containing
these terms have the same type as configurations. Cut is slightly more involved, as it produces
two threads from one, but as in the message-passing setting, we can use the premises of the cut
that types the initial process term x← P ; Q to show that each of the new threads is well-typed,
and that they can be joined together to give a configuration with the same type as the original
thread.

The identity rule and the left rules deal with reading memory, and so each involves both a
filled cell and a thread attempting to read from that cell. Since the typing rules enforce that the
provider of a symbol (or here, an address) must occur to the left of any of the clients of that
symbol (readers of that address), we can conclude that the cell being read from is to the left of
the thread reading it. We now follow a similar approach to that used in the message-passing
setting, beginning by reassociating C as C1, !mcell(cm, D)C2, thread(dk, P), C3. Inversion on the
typing derivation for C then gives us that there exist Γ1,Γ2,Γ3,Γ4 such that

• Γ � C1 :: Γ1

• Γ1 � !mcell(cm, D) :: Γ2

• Γ2 � C2 :: Γ3

• Γ3 � thread(dk, P) :: Γ4

• Γ4 � C2 :: ∆

Further applying inversion on the typing of the cell and thread, we get that Γ2 and Γ3 must both
contain (cm : Am) for some type Am. Since addresses are unique in a configuration, this Am
must be the same in both places.

Now, as in the shared-memory case, we define contexts Γ′′2,Γ
′′
3. Observe that there is some

minimal subset ∆D of Γ1 such that ∆D � !mcell(cm, D) :: (cm : Am), consisting exactly of the
symbols that occur free in D. Write Γ2 = Γ′2, (cm : Am), and let Γ′′2 = Γ′2, (cm : Am)β,∆D.
Likewise, write Γ3 = Γ′3, (cm : Am), and let Γ′′3 = Γ′3, (cm : Am)β,∆D.

We then make the following three claims:

(1) There is Γ̂ such that Γ1 � Cm?(!mcell(cm, D), ·) :: Γ′′2, Γ̂, where Cm?(x, y) denotes x if m
admits contraction and y otherwise.

(2) Γ′′2 � C2 :: Γ′′3
(3) Γ′′3 � thread(dk, P

′) :: Γ′4, where P ′ is the process that results from P taking a step to read
from c, and Γ′4 ⊇ Γ4.

As in the message-passing case, (1)-(3) can be used, with type extension as necessary, to give the
overall result.

We now prove (1)-(3) in the shared-memory setting, noting that each is quite similar to its
message-passing equivalent. We work through the details where they differ, and otherwise refer
back to the proof in Section 4.4.1.

88

Claim (1) By inversion, the cell must have a typing derivation of the following form:

∆C ,∆1 ≥ m C ∈ σ(∆C) ∆C ,∆1 ` PD :: (c : Am)

∆C ,∆1,∆2 � !mcell(cm, D) :: ∆C ,∆2, (c : Am) cell±

where PD is the process that writes D to c — either c.V or case c K, depending on whether D
is a value V or continuation K. We also know that ∆D ⊆ ∆C ,∆1, from our choice of ∆D. This
also means that ∆D ≥ m, and so if C ∈ σ(m), then also C ∈ σ(∆D). Now, we distinguish cases
based on whether m admits contraction or not.

If m admits contraction, then we take ∆′C = ∆C ,∆D and ∆′1 = ∆1 \∆D. We then have that
∆′C ,∆

′
1 = ∆C ,∆1, and ∆′C ,∆2, (c : Am) = Γ′′2, as it is formed by adding ∆D to Γ2, and, since

m admits contraction, we are in the case where β = 1, so Γ′′2 contains (c : Am). The following
typing derivation then gives the desired result:

∆′C ,∆
′
1 ≥ m C ∈ σ(∆′C) ∆′C ,∆

′
1 � PD :: (c : Am)

∆′C ,∆
′
1,∆2 � !mcell(cm, D) :: ∆′C ,∆2, (c : Am) cell±

If m does not admit contraction, then we observe that Γ1 = ∆C ,∆1,∆2, which already
contains ∆D, and that Γ2 = ∆C ,∆2, (c : Am), so Γ′′2 = ∆C ,∆2,∆D. Taking Γ̂ = ∆1 \∆D, we
get that Γ1 = Γ′′2, Γ̂, and so the empty rule gives the desired result.

Claim (2) As in the message-passing setting, this follows from an induction over typing deriva-
tions, allowing us to replace (c : Am) with ∆D on both sides of any typing derivation. The only
real difference that arises is that, in the shared-memory setting, no lemma is needed to get that
every address has a unique provider — this follows from our constraint on well-formedness of
configurations.

Claim (3) Now, apply inversion to the typing derivation of the thread thread(dk, P) which
reads from c. Here, there are different cases, depending on which rule P uses to read, but all
behave similarly. We will consider the case of NL0 using label i. In this case, k = m and the
typing derivation has the form

∆C ,∆1 ≥ m C ∈ σ(∆C)

(i ∈ L)

∆C ,∆1 � c.i(d) :: (d : Dm)
NL0

∆C ,∆1,∆2 � thread(dm, c.i(d)) :: ∆C ,∆2, (d : Dm)
thread

where ∆C ,∆1,∆2 = Γ3 and ∆C ,∆2, (d : Dm) = Γ4. We also have that ∆C ,∆1 contains
(c : N{` : A`m}`∈L), along with possibly some weakenable portion. In this case, we can also get,
by inversion on the typing derivation for the cell, that D = (`(x) ⇒ P`)`∈L and that ∆D ` Pi ::
(x : Aim).

Let ∆′C and ∆′1 be the result of removing c from ∆C and ∆1, respectively. Then, define
∆′′C = ∆D∩∆′C and ∆′′1 = ∆D∩∆′1 and ∆′2 = ∆2, (∆C \∆D), (∆1 \∆D), (c : N{` : A`m}`∈L)β .

Observe that ∆′′C ,∆
′′
1 = ∆D, that ∆′′C ,∆

′′
1,∆

′
2 = Γ′′3, and that ∆′′C ,∆

′
2 ⊇ ∆C ,∆2 (if c oc-

curred in ∆C , then m admits contraction, and so c also occurs in ∆′2).

89

Now, we construct the following typing derivation:

∆′′C ,∆
′′
1 ≥ m C ∈ σ(∆′′C) ∆′′C ,∆

′′
1 � Pi[d/x] :: (d : Dm)

∆′′C ,∆
′′
1,∆

′
2 � thread(dm, Pi[d/x]) :: ∆′′C ,∆

′
2, (d : Dm)

thread

where the premise of this derivation comes from substituting d for x in the typing derivation for
the corresponding cell. Since ∆′′C ⊆ ∆C and ∆′′1 ⊆ ∆1, both side conditions for this rule are also
satisfied. Now, as ∆′′C ,∆

′′
1,∆

′
2 = Γ′′3 and ∆′′C ,∆

′
2, (d : Dm) ⊇ ∆C ,∆2, (d : Dm) = Γ4, this case

is complete. To justify our use of type extension, we also note that ∆′′C ,∆
′
2 extends ∆C ,∆2 with,

at most, some weakenable portion of ∆′1 and (c : N{` : A`m}`∈L). Since these symbols do not
occur in Γ4, well-typedness of C ensures that they cannot occur in C3, and so are eligible for type
extension.

As in the message-passing setting, the remaining communication cases are similar — indeed,
here, we are able to prove them more uniformly, only needing to resort to cases to prove (3).

While this is slightly weaker than the standard preservation theorem, as a configuration may
gain new addresses that it provides via allocation, it is nevertheless strong enough to, along with
progress, give us type safety in the sense that well-typed configurations cannot get stuck —
indeed, all that we need of preservation for that result is that a well-typed configuration remains
well-typed after taking a computation step.

As in the message-passing case, our notion of progress is slightly different from the standard
functional notion — the role that values play in a functional language is taken on by filled mem-
ory cells (or, rather, by configurations consisting only of filled memory cells). Like functional
values, these configurations cannot take any further steps, and so serve as the natural end state of
computation.
Definition 3. If a configuration C consists entirely of filled memory cells (that is, objects of
the form !mcell(am, D)), we say that C is final. We will often suggestively write F for final
configurations.

Final configurations, similar to poised configurations in the message-passing setting, are un-
able to take steps on their own, though external input may enable them to be further evaluated.
In the message-passing setting, this input comes in the form of an external message or service
interacting on the same channel as some object in the configuration, while in the shared-memory
setting, it always consists of some process reading from a cell in the configuration. With the
concept of final configurations, we can give our progress theorem for shared memory, analogous
to those for message passing, or in the usual functional setting.
Theorem 22 (Progress (shared-memory)). If (·) � C :: ∆, then one of the following holds:

1. There is some C ′ such that C 7→ C ′.
2. C is a final configuration.

Proof. If C is not final, then it contains some thread(am, P). Associate C = C1, thread(am, P), C2,
where C1 is final (that is, select out the leftmost thread in C).

Now, there are several cases depending on what P is. If P ends in a cut, a call, or a right rule,
then thread(am, P) can take a step on its own (potentially also using its associated empty cell),
and so C can take a step using the same rule, applied to this thread. Otherwise, P ends in a left
rule or an identity (and so, as we will see, needs to read from some memory cell at address dk).

90

If we apply inversion to the typing derivation for C, we get that there are ∆′, ∆′′, and Am such
that (·) � C1 :: ∆′ and ∆′ � thread(a, P), cell(a,_) :: ∆′′, (a : Am).

Now, we examine exactly which rule P ends in. All of the remaining cases are similar, and
so we show the case of ⊗L as an example. In this case, the typing derivation for thread(a, P)
has the following form:

ΓC ,Γ1 ≥ m C ∈ σ(ΓC)

Γ′C ,Γ
′
1, (d : Bk ⊗ Ck)α, (b : Bk), (c : Ck) ` Q[b/x, c/y] :: (a : Am)

Γ′C ,Γ
′
1, (d : Bk ⊗ Ck) ` case c (〈x, y〉 ⇒ Q) :: (a : Am)

⊗Lα

ΓC ,Γ1,Γ2 � thread(a, P), cell(a,_) :: ΓC ,Γ2, (a : Am)
thread

Here, ∆′ = ΓC ,Γ1,Γ2 and Γ′C ,Γ
′
1, (d : Bk ⊗ Ck) = ΓC ,Γ1 — d occurs in one of ΓC and Γ1, but

not both.
We see now that P is attempting to read from address d, and we also get that ∆′ contains

(d : Bk ⊗ Ck) — inversion in the other cases will give similar results, with P attempting to read
from some address that occurs in ∆′, and whose type in ∆′ matches what P expects to read.

Now, we claim that C1 contains a corresponding !kcell(dk, D). This follows by induction on
the typing derivation of C1, in a similar manner to Lemma 6 in the message-passing case, using
the fact that C1 is final to get that the provider of dk must be a cell. In the particular case we are
considering, where d : Bk ⊗ Ck, we apply inversion to the typing derivation for this cell, seeing
that only the ⊗R0 rule can type a cell providing this type. As such, this cell must have the form
!kcell(dk, 〈b, c〉) for some b, c. This then enables us to apply the ⊗L rule to step the configuration
and make progress.

Likewise, in the other cases, once we find that a cell exists with the correct type, we can
apply inversion to get that the cell contents have the correct shape, allowing us to apply the
corresponding computation rule, either one of the left rules or the identity rule. The only major
difference is that the identity rule does not care what shape the data stored in the cell has, so we
can skip the last inversion step in the identity case.

In addition to these type-safety properties, we also have a confluence result, for which we
need to define a weak notion of equivalence on configurations to account for the fact that fresh
addresses are created by some steps, and their names are not prescribed by the semantics. We
say C1 ∼ C2 if there is a renaming ρ of addresses such that ρC1 = C2. We can then establish the
following version of the diamond property:
Theorem 23 (Diamond Property (shared-memory)). Assume ∆ ` C :: Γ. If C 7→ C1 and C 7→ C2
such that C1 6∼ C2. Then there exist C ′1 and C ′2 such that C1 7→ C ′1 and C2 7→ C ′2 with C ′1 ∼ C ′2.

Proof. As in the message-passing setting, we can see that at most one computation rule applies
to a given thread at any given time, and so there can be no interference between rules where
threads are concerned. The only way two rules can apply to the same object is if two different
threads are attempting to read from the same cell, but in this case, since C is well-typed (and,
by preservation, so are C1, C2), the mode of that cell’s address must admit contraction, since
the cell has multiple readers, and so the cell is persistent, and can be read from in either order,
yielding identical configurations. In all other cases, because the rules used to produce C1 and C2
are not acting on the same objects, we can likewise apply the rules in either order to get identical
resulting configurations.

91

In the fragment of the language without recursion, this gives a full confluence result via
standard inductions, but even with recursion, we continue to have this form of local confluence.

Finally, while not a property of the full language, we can prove termination for the recursion-
free fragment of the language. In a sequential setting, this is perhaps not so interesting, but in the
concurrent setting, this shows that not only do we avoid deadlock (as evidenced by the progress
theorem), we also avoid so-called livelock, where processes are able to take steps, but the overall
system is still stuck.

Theorem 24. Suppose · ` C :: Γ, and C is a configuration in the recursion-free fragment of
the language (formally, this can be enforced by requiring that it is well-typed with respect to an
empty signature of process and type definitions). Then, there is some final configuration F such
that C 7→∗ F . Note that by the diamond property above, this configuration F is, in fact, unique
(up to renaming of addresses, particularly to handle addresses that are freshly allocated during
the computation).

A proof of this theorem in the purely structural case can be found in [26], and extends natu-
rally to the adjoint case, with slightly more bookkeeping about which cells are persistent.

4.4.2 Sequentiality

The languages we have examined thus far are both highly concurrent — any time we want to
compose two computations, we have only one tool to do it: the cut rule, which, regardless of our
exact choice of semantics, allows the two computations to run concurrently. While this is often
convenient, and gives quite a bit of freedom to implement a scheduler for running processes, there
are several reasons that we may want to compose two computations sequentially instead. Many
existing programming languages are purely or primarily sequential, and so to model them or
their features accurately requires the ability to run programs (or parts of programs) sequentially.
Somewhat more subtly, while in theory, maximizing concurrency should be highly efficient, as
many pieces of a larger computation can run at once, in practice, there is overhead to spawning
a new process or thread, as well as overhead in scheduling whenever the number of threads
exceeds the number of processors. This inefficiency is most pronounced when the work done
by each thread is relatively small, as this means that the overhead needed to create a new thread
is a larger portion of the total work needed by the thread. Unfortunately, in the shared-memory
language we define, almost every thread is short-lived, yielding a near-worst-case scenario for
concurrency overhead.

One interesting observation is that our shared-memory language (section 4.4), while naturally
concurrent, is already easy to schedule in a sequential manner. Because the flow of information
in communication steps is unidirectional, with a process terminating after it writes to memory
(so it cannot then read from memory at a later point), we can achieve sequential computation
by ensuring that we always schedule the writer of a cell before any readers of the cell. This is
easily accomplished by running the left-hand side of a cut before the right-hand side, and will
give us a sequential computation similar to a destination-passing style [53, 107] implementation
of a functional language, where values are stored in destinations, rather than in variables.

92

Sequentiality Primitives

As a result, it is most natural for our exploration of sequentiality to begin with the shared-memory
language, where we have some intuition to fall back on for how sequential composition should
behave. However, our language is not expressive enough as is to enforce sequentiality — each of
our atomic computations is quite small, and when we compose two of them, we get no guarantee
of what order they are executed in. There are several possible additions to the language that allow
us to recover sequential composition, each of which appears to have the same expressive power
as the others. We will examine a few of these in turn, before selecting one to focus on.

Most obviously, we can implement sequential composition by creating a new primitive op-
eration for it. A sequential cut x

seq← P ; Q should be typed the same way as the ordinary cut
— we still need both P and Q to be well-typed, and for the result of P to be useable by Q at
matching types. The only difference, then, comes in the dynamic semantics, where we would
like to say that P must fully execute, storing its result in x, before Q is allowed to begin running.
Within our system of semantics, there is no clear way to do this — threads are always able to run
unless blocked on input, and without knowing more information about the type of x, we have no
way to block Q waiting for x. As such, this approach is unsuitable unless we somehow modify
our dynamic semantics, perhaps by adding additional semantic objects to represent paused or
blocked threads.

If we consider the case where x : 1 as an example, we can in this case block Q on x, by
defining

x
seq← P ; Q , x← P ; case x (〈〉 ⇒ Q).

It is likewise possible to block Q on x as long as x : A for some positive type A (1,⊗,⊕, ↓),
using much the same construction. For negative types, however, this construction is not possible,
as reading from a negatively typed x is a terminal operation. We may then consider several
possible ways to extend this construction to negative types.

One option is to force a positive type by adding an extra connective without any logical
content, such as ↓mm, to the type of x. If, for instance, x : Am, we let y : ↓mmAm, and define

x
seq← P ; Q , y ← (x← P ; y.shift(x)) ; case y (shift(x)⇒ Q).

While this does allow Q to be blocked on y, it only defers the problem, as x ← P ; y.shift(x)
can still write to y in two steps, first executing the cut and then writing to y. In order for this
approach to work, we need some way to enforce that y is only written to if x is already written
to. One means of accomplishing this is to add the ability to atomically write to multiple locations
at once. With a new construct y.shift(x.V), we atomically write V to x and shift(x) to y. Of
course, this construct only works for positively-typed x as written, but we can provide similar
constructs for negatively-typed x. With such a construct, instead of cutting together P with a
write to y, we replace all writes to x in P with atomic writes to both x and y. This substitution
operation is somewhat involved, however, which makes this approach inconvenient, despite the
relative simplicity of the new construct and the fact that its dynamic semantics do not require any
new semantic objects.

Another approach, likewise building on the example for positively-typed x, is to add a new
blocking read construct case x (y ⇒ Q), which attempts to read x, blocks until it succeeds, and

93

then binds the result of the read as y in Q. This serves the same purpose as the read from x in the
case of 1 or other positive types, but is agnostic to the type of x. We can think of this alternately
as a blocking identity — it behaves almost identically to the process y ← (y ← x) ; Q, except
that the latter allows Q to run before x has been read from and y written to. With this construct,
we can define

x
seq← P ; Q , x← P ; case x (y ⇒ Q[y/x])

This definition, finally, is implementable without needing to make any changes to the semantics,
with only a single new construct, and without the need to make any substitutions more compli-
cated than variable-for-variable, and so is the one we will focus on throughout this section.

With an intuition for the construct we wish to add to the language to model sequential com-
putation, we now need to formally define this construct. The typing rule for this blocking read
or identity is straightforward:

Γ, (x : Am)αy : Am ` Q :: (z : Ck)

Γ, x : Am ` case x (y ⇒ Q) :: (z : Ck)
id blockα

Note that as with many other rules, we use an index α to combine two versions of the same rule,
where the α = 1 case requires m to admit contraction, and allows for x to be reused. For this
particular rule, it will actually suffice to only take α = 0, as any reuse of x within Q corresponds
exactly to a use of y (since x must already have been written to in order for Q to execute), which
has the same mode, and so is reuseable if x is.

Indeed, this is the same typing that we expect from the intuition that this blocking identity
should behave the same as y ← x ; Q, which has the following typing derivation

(x : Am ≥ m ≥ k) x : Am ` y ← x :: (y : Am)
id

Γ, y : Am ` Q :: (z : Ck)

Γ, x : Am ` y ← (y ← x) ; Q
cut

in which the conditions on modes are always satisfied when the conclusion of the derivation is
well-formed. The evaluation rule of this construct is likewise straightforward:

!mcell(a,D), thread(c, case a (y ⇒ Q)) 7→ thread(c,Q[a/y])

A blocking read can only continue to execute the process within when the cell it is trying to read
from has been filled, and redirects the process to the correct address to load information from
that cell. Note that unlike an identity, this does not perform any move or copy operation, and so
does not need an extra cell.

Because this is expressed using the same system of semantics as the core concurrent lan-
guage, any reasoning tools that we develop (in particular the theory of equivalence we present
in chapter 5) apply not only to concurrent programs, but also to sequential ones, and to mixed
concurrent-sequential programs. This also allows for the possibility to prove concurrent pro-
grams equivalent to sequential ones, perhaps justifying some more efficient concurrent imple-
mentation’s correctness by reference to a simpler sequential one.

It may also be possible to restrict concurrency by mode — from a purely scheduling perspec-
tive, certainly we can choose to schedule processes of mode m sequentially, while processes of

94

mode k are scheduled concurrently, so that a cut creating a fresh address of mode k is treated
as a concurrent cut, and a cut creating a fresh address of mode m is treated sequentially. By
restricting what constructs are allowed at a given mode, we can also have mode-dependent con-
currency even without fine-grained control over scheduling (provided that we have one of the
several mentioned new constructs for implementing sequential cuts). If a mode m is restricted so
that the only cuts allowed at modem (interpreted either to mean cuts that create a fresh address of
mode m, or cuts that take place within a process whose overall mode is m) are of the form given
for sequential cuts, then a process at mode m will always run sequentially. However, by using
shifts to a different mode k, which does not have this restriction (or, if we want to enforce that
all computations at mode k are concurrent, which has the different restriction that no blocking
identities are allowed at mode k), a computation at mode m may be able to nevertheless contain
concurrent subcomputations. Depending on the relationship between m and k, we could allow
both concurrent and sequential computations to depend on each other, with m ≤ k and k ≤ m,
using the modes only to distinguish at the type level which computations are concurrent, or we
could restrict dependence by taking either m < k or k < m, giving two different systems where
either sequential computations may not depend on the result of concurrent ones, or vice versa. 11

Example 11 (Map, sequentially). As a final re-examining of our running example of map, we
will look first at a purely sequential version of map, to illustrate that (at least with the syntactic
sugar of x

seq← P ; Q), very little changes in how the program is represented, making it very
easy to go between sequential and concurrent computation. We will then see how we can write
a mixed concurrent-sequential version of map, where we get the full benefits of being able to
compute the function f on several different list elements concurrently, without needing to spawn
a new process for each small computation step.

A purely sequential map looks nearly identical to the purely concurrent version, except that
each cut has been replaced by a sequential cut:
listAk

, ↑UkAk (Bk ` map :: listBk

ys← map xs f =
case xsR (nil(u)⇒

ysW .nil(u)
| cons(p)⇒

case pR (〈x, xs′〉 ⇒
ys′

seq← (ys′W ← map xs′ f)

f ′
seq← fR.shift(f ′) ;

y
seq← f ′R.〈x, y〉 ;

p′
seq← (p′W .〈y, ys′〉)

ysW .cons(p′)
)

)

When run on a non-empty list, this first runs the recursive call on the tail of the list to completion,
builds the function f ′, calls f ′, and builds the pair p′, before finally writing to ys. As such,

11The fourth option, where k and m are incomparable, is of course also possible, but less interesting. In such a
system, we can write both purely sequential and purely concurrent programs, but neither can depend on the other,
and they can never interact.

95

any client of ys can be guaranteed that the entire list will be available as soon as a read from
ys succeeds, and we avoid the overhead of creating new threads for brief computations — in
particular, the creation of p′ is guaranteed to take only one step, but creating f ′ from f may
also take only a single step, depending on what exactly f is. This illustrates that in some cases
(creating p′), we can be assured that a given computation is short, and so is a good candidate for
a sequential cut, but for others (e.g. computing f ′ from f , or running f on x), it is less clear how
long the computation will take, and whether it is worthwhile to spawn a new thread. As such,
allowing the programmer to specify cuts as sequential if their intended use case is for a short
computation may allow for better optimization than automated methods can do, due to their lack
of knowledge about the runtime of certain parts of a process.

If our primary goal is to allow the function stored in f to be run concurrently on each element
of a list, we can achieve this by changing a single one of the sequential cuts in the above example
into a concurrent cut.
listAk

, ↑UkAk (Bk ` map :: listBk

ys← map xs f =
case xsR (nil(u)⇒

ysW .nil(u)
| cons(p)⇒

case pR (〈x, xs′〉 ⇒
ys′←(ys′W ← map xs′ f)

f ′
seq← fR.shift(f ′) ;

y
seq← f ′R.〈x, y〉 ;

p′
seq← (p′W .〈y, ys′〉)

ysW .cons(p′)
)

)

We have highlighted this cut (used to create ys′ from a recursive call on xs′) in red. If the
recursive call is allowed to make progress at the same time as the remainder of the program,
we can go on to evaluate f to give f ′, and evaluate f ′ on x to give y, while the recursive call
runs, spawning further new processes for further recursive calls, and continuing to compute f on
subsequent elements of the list. By using a mix of sequential and concurrent cuts, we can control
the concurrency behavior of a program on a fine-grained level

Call-by-Name

All of the above approaches to defining a sequential cut x
seq← P ; Q seek to evaluate the left-hand

side of the cut fully before the right-hand side, giving what is usually thought of as a sequential
composition of processes. However, we could instead take a different approach to sequential
programming, following the principles of a call-by-name semantics for functional programming.
Rather than evaluating the left-hand side of a cut before the right-hand side, we would instead
begin evaluating the right-hand side, and then, when the result of the left-hand side would be
used, pausing the current process and only then running the left-hand side to get its result. This
form of composition would not be sequential in the usual sense, but it still enforces that only one

96

thread is able to make progress at a time, which is also reasonable to call a form of sequentiality.
Interestingly, this form of “call-by-name” cut, which we will write x cbn← P ; Q, can be im-

plemented in the base language without any additional features. The first piece of implementing
x

cbn← P ; Q is to ensure that P is blocked and cannot run until some later point. We can achieve
this by putting P inside a continuation case y (shift(x) ⇒ P). The cut y ← case y (shift(x) ⇒
P) ; Q can take a single step on the left, to write the continuation to y, but P is not able to exe-
cute until y is read from. We then need to modify Q so that before reading from x, it first must
read from y, allowing P to begin running (while Q is blocked waiting for x to be written to).
For instance, if x is read via a term x.V , we can replace this with x ← y.shift(x) ; x.V . While
this uses a concurrent cut, the right-hand side of the cut is blocked waiting for x to be written
to, which can only happen after the left-hand side of the cut runs, allowing P to execute. Other
forms of read from x can be modified similarly to first require a read from y. Because y contains
a continuation that needs to be run in order to yield the result x, and y is read from each time
the original process Q would read from x, x is recomputed via P each time it is used, making
this an implementation of call-by-name, rather than call-by-need, where only the first access to
x would require P to be executed, with subsequent accesses looking up the result of this first
computation. By contrast, call-by-need, where P is only executed the first time it is needed, is
achievable via scheduling, but we cannot write a program that enforces a call-by-need schedule
without some additional language construct, allowing P to be blocked from executing without
wrapping it in a continuation that is re-executed each time it is read from. 12

We will not make significant use of this form of sequential cut, as the need to replace all reads
from x in Q means that some significant substitution is required to translate it back into the base
language, but it is nevertheless interesting that this behavior can already be expressed without
any changes to the language.

Futures

Now that we are thinking in a sequential context, it makes sense to consider how our language
relates to other approaches to mixing sequential and concurrent computation. Many approaches
exist for adding concurrency features to an otherwise sequential language, ranging from thread-
ing libraries common in C-like languages to the fork/join composition of tasks often used in
algorithm design. Futures [32, 39] (or promises) are one such approach, in which a new thread
is spawned to execute some computation, giving a reference to the original thread that can be
used to access the result of the computation once it is done. This reference, called a future, can
be passed around and treated as any other value, and may either be explicitly read from (via an
operation often called touch) or implicitly read from when its contents are accessed. This behav-
ior is almost identical to that of the standard concurrent cut in our language — a cut x← P ; Q
spawns a new thread to execute P , storing its result into x, and allows Q to continue to run up
until it needs to access x. We can therefore think of the concurrent cut as a form of future, and
the purely concurrent language as one where all computations are wrapped in futures, allowed to

12Interestingly, a call-by-need scheduling, because it only runs threads as they are needed, can terminate without
reaching a final configuration, if some thread is spawned, but its result never used. Of course, for this to happen, the
thread must be providing an address that admits weakening.

97

run concurrently.
A natural question at this point, then, is what role the sequential cut plays. If we restrict the

language so that only sequential cuts may be used, computation proceeds purely sequentially, and
we have, in essence, recreated a functional programming language. Adding concurrent cuts back
in follows the common pattern for semantics for futures (and, indeed, for many other concurrency
primitives), starting with a well-understood sequential language (e.g. some form of lambda
calculus), and then augmenting it with a new feature that enables concurrent computation. As a
result, in this usual setting, the concurrent portion of the language is often handled in an ad hoc
manner, with its own semantics that largely do not interact with the core sequential language.
Our system, while similar, follows the reverse pattern, in that our core semantics handle the
concurrent computation, and it is sequentiality that requires additions. However, no changes to
the core semantics of the language are needed — only new syntax and corresponding rules for
typing and evaluation, while the semantic objects in use stay unchanged. In the case of the call-
by-name cuts, we can achieve a form of sequentiality without even needing new syntax, other
than as a convenience. As a result, our system as a whole makes uniform reasoning about mixed
sequential-concurrent computations not only feasible, but comparably easy to reasoning about
computations in the purely concurrent base language.

In this sense, our language gives a first uniform system of semantics for futures. An inter-
esting addition is that, since a cut can be defined at any mode, we can define not only usual
futures, but various substructural futures, which can be read from exactly once (linear), at least
once (strict), or at most once (affine), none of which had been formalized prior to this work. We
are unaware of any use cases for strict or affine futures at the moment, but linear futures have
been used in algorithm design in the past (e.g. [10]), where they can lead to not only constant
gains in performance, but even asymptotic improvements.

98

Chapter 5

Program Equivalence

5.1 Introduction and Background
In addition to having a language with desirable properties as a whole (such as type safety), we
often would like to be able to reason about specific programs in a language, for a variety of dif-
ferent reasons. For instance, we might want to prove that a program satisfies some specification
with respect to its inputs and output, or that it has some particular runtime. One particular aspect
of this is program equivalence. At a basic level, we often think of this as meaning equivalence
in behavior — in the functional setting, a natural concept is extensional equivalence, wherein
we treat two programs as equivalent if they both yield the same value (or, in the presence of
recursion, if they both fail to terminate). Intuitively, equivalent programs can be substituted for
each other into some larger program without affecting the overall result.

Given a notion of equivalence for one of our languages, we can prove particular programs
equivalent to each other, such as showing that a simple (and easy to understand or prove correct)
version of some program is equivalent to a more complex (but perhaps more efficient) version.
We can also apply this more generally to various forms of optimization transformations, rather
than looking at specific programs, and so may be able to prove an optimization pass of a compiler
sound, for instance. For a concretely practical, if not extremely complex, example, Jang et al.
[47] develop a language based on a natural deduction system for adjoint logic. In the current
implementation of this language, a compilation step is performed to translate from the high-
level functional syntax, matching natural deduction, to (a variant of) the language presented in
Section 4.4. This compilation step introduces many indirections in the form of cuts where one
premise is an identity, and, from a computational perspective, these indirections cause overhead,
as each one requires a new allocation and a move or copy operation. As such, the implementation
includes an optimization pass that eliminates such cuts.1 With our system for equivalence, we
can show that this optimization pass is sound — an important result, if an unsurprising one.
This involves showing that for any process term P , the configuration thread(a, P), cell(a,_) is
equivalent to thread(a, x← P [x/a] ; a← x), cell(a,_), and a similar result for cuts in the other
direction.

In our treatment of equivalence in this chapter, we will restrict our attention to the shared-

1Information from personal communication with Frank Pfenning, 2024.

99

memory language presented in Section 4.4, and, in particular, to the recursion-free fragment
of that language. We develop a core theory of equivalence, focusing on how the more distinct
features of this language, particularly the modes and sharing of cells, affect equivalence. The
literature contains several approaches to handling equivalence for recursive programs (and re-
cursive types), beginning with approaches based on domain theory [80], which have then been
built upon to give more syntactic approaches [9], to step-indexing and its variants [1, 28, 29].
In a similar vein, the work of Somayyajula on termination and partial correctness for recursive
programs via logical relations [99, 100], while addressing a different goal than equivalence, uses
techniques that may be applicable here as well. More directly related is the work of Balzer et al.
[5], which deals with equivalence for recursive session-typed processes in a calculus similar to
the purely linear fragment of our message-passing calculus (Section 4.3). We expect an exten-
sion of equivalence to apply to recursive processes and types to be possible using some of these
techniques, but that this is orthogonal to the new issues of modes, and so treating it, because of
the technical detail involved, would obscure what features of equivalence come from the adjoint
nature of the underlying language and type system.

In what follows, we will focus in particular on three examples of equivalence: intensional or
syntactic equivalence, in which two programs are treated as the same only when they are syntacti-
cally equal (up to renaming of bound variables), extensional equivalence, in which two programs
are equivalent if they have the same communication behaviour when viewed as black boxes, and
proof-irrelevant equivalence, in which any two programs with the same type are equivalent. The
first and last of these are extreme examples of equivalence, where as little or as much as possible
is equated, while extensional equivalence is a natural concept of equivalence, focusing primarily
on the result of computation, rather than the process used to get there. Accordingly, both proof-
irrelevant equivalence and intensional equivalence are relatively easy to define, while extensional
equivalence is more difficult. However, in keeping with the theme of the rest of this work, we
would like to have a uniform way of handling different notions of equivalence, and so will en-
deavor to present the simpler equivalences using the same tools as extensional equivalence.

This uniformity will also allow us to explore mode-dependent equivalence. Just as we may
assign different structural properties to different modes, or allow different connectives or sets of
rules, it may be useful to equip modes with separate notions of equivalence. We will then explore
what conditions must be satisfied by these equivalences, analogous to independence for modes,
in order to combine them into a coherent notion of equivalence on the whole mode structure.

5.1.1 Background

In the functional setting,2 equivalence is generally first defined by observation. Intuitively, two
programs (expressions, in this setting) should be equal when they are indistinguishable, and if
we make precise what it means to observe a difference between two expressions, we can say that
two programs are equal exactly when no observation distinguishes them. Of course, for this to
work, we need to be precise about what observations are possible, or what features allow us to
distinguish two programs from each other. As previously noted, if we allow observations of the
syntax of programs, then we can distinguish between many programs that seemingly perform the

2See, e.g. Chapter 46 of [40]

100

same task, for instance the expressions 1 + 1 and 2. Likewise, if we can observe nothing but the
type, we recover a proof-irrelevant equality — any two expressions of the same type are equal.

The usual extensional equivalence is a middle ground, in which we take some basic type b
for which a distinction is easily possible (for instance, booleans, where we can distinguish true
from false, or natural numbers, where we have a clear notion of when natural numbers m and n
are equal), and use this as the basis for observations. An observation (for a program/expression
of type τ) then consists of a way to turn an expression of type τ into an expression with type
b, generally some form of an expression “with a hole”, where the hole in the expression can be
filled by another expression of type τ , yielding a well-formed expression overall. This can be
used to test if two expressions are distinct by filling the hole with each of the expressions in
turn, and evaluating the resulting expression. If they yield different elements of the type b, then
they are distinct.3 We then define equivalence as the absence of any distinguishing observations,
yielding the notion of observational equivalence.4

A key problem with observational equivalence is this need to quantify over all observations,
which makes it difficult to reason about. It is therefore useful to have a different description of
equivalence that is more feasible to work with, and which, ideally, describes the same relation,
so that we can reason easily about something which still captures the intuitive idea of observa-
tional equivalence. This is the goal of developing notions of logical equivalence, following the
method of logical relations, first named as such by Statman [101], but based on earlier work by
Tait [102], Girard [37], Plotkin [81], and Reynolds [89]. The intuition leading to this approach
is that properties of a language, including equivalence, but also, more simply, normalization, or
the Church-Rosser property in the λ-calculus, can be difficult to prove by a basic induction over
programs. A standard example of the problem is that the λ-calculus term (λx.M) N reduces
to [N/x]M , which may not be smaller than either λx.M or N , and so a syntax-driven proof of
normalization gets stuck here, unable to apply the inductive hypothesis. The method of logical
relations involves defining an auxiliary object, the logical relation, in a type-directed way, allow-
ing for proofs about logical relations to proceed by induction on the type structure. For proofs of
normalization, the relevant logical relation is a type-indexed family of predicates Pτ , defined by
induction on the structure of the type τ in such a way that Pτ (M) implies (generally by defini-
tion) that M is (strongly) normalizing. The key result, then, is to show that all well-typed terms
M satisfy some Pτ , and so all such terms are (strongly) normalizing.

Logical relations for equivalence are slightly more complex, as equivalence is a binary, rather
than unary property, but follow the same general approach — we define a binary logical relation
Rτ (·, ·) by induction over its indexing type, in such a way that Rτ reasonably captures our intu-
ition for two programs to be equivalent at type τ . For some types, this can be almost immediate
(e.g. for booleans, true and false are each equivalent only to themselves), while more complex
types may need to rely on the definition of equivalence for their subtypes (e.g. equivalence for
τ1 → τ2 may refer to equivalence for τ1 or for τ2). A first key result is then to show that these

3Leaving aside for now the issue of recursive types and non-termination
4Note, however, that this notion of observational equivalence depends on what is observable, as well as what

computation steps are possible, so while we may refer to a single “observational equivalence” for a given language
(which then fixes the possible computation steps), there may be multiple ones depending on what is chosen to be
observable. When used without further qualification, by observational equivalence, we mean an extensional form of
observational equivalence, with some limited set of directly observable types.

101

relations Rτ do indeed form (as a family) an equivalence. Transitivity and symmetry are often
built into the definition of the relation, and so this main result, often called the fundamental the-
orem of logical relations/logical equivalence, is that all well-typed programs are Rτ -related to
themselves for some appropriate τ , analogous to the unary case.

After establishing that a logical relation defines an equivalence, which we call a logical equiv-
alence, the question still remains of whether it defines a useful equivalence. For this, we aim to
show that logical equivalence agrees with another, more intuitively defined notion of equivalence,
such as a form of observational equivalence. At that point, we are able to combine the ease of
reasoning of logical equivalence with the more natural intuition of observational equivalence.

5.1.2 Outline

We will follow a similar approach to the usual functional setting, first exploring observations
and observational equivalence in the context of our language. There are several possible ways
to define observations, and several ways to extend this to a notion of observational equivalence,
depending on what points during computation we allow observation at. We will examine these,
before focusing on a choice of observation and of equivalence that are most analogous to the
usual ones. We then develop a theory of logical equivalence corresponding to this observational
equivalence, noting that both can be parameterized by our choice of computation rules and our
choices of what observations are possible. This logical equivalence will agree with observational
equivalence (provided we choose the same parameters in both cases). We also explore what
properties an equivalence needs to satisfy to be treated as a logical equivalence (and reasoned
about correspondingly). Finally, with a framework for reasoning about observations, observa-
tional equivalence, and logical equivalence, we examine non-uniform equivalence, where dif-
ferent modes may have different local notions of equivalence. There are several constraints on
how these equivalences can interact if we want to extend them conservatively to a single equiv-
alence on the whole language, analogous to the restrictions imposed by independence on the
preorder of modes, and we will see that once we find the basic necessary constraints, these are
also sufficiently strong to guarantee a coherent overall equivalence.

5.2 Quantified Types
When we examine program equivalence, it will be useful to be able to work with quantified types
— in particular, existential types, as these will allow us to provide examples where two different
implementations of some specification are equivalent, despite varying enough to have different
types. We briefly present here some rules for quantified types and the associated process terms,
so that we may make use of them later. Note that we take quantifiers, like the other non-shift
type constructors, to operate entirely at one mode. While nothing in principle prevents a cross-
mode quantifier, it is easier to work within a single mode. Our extended grammar of types, now
including type variables and quantified types, is as follows:

Am, Bm ::= Am(Bm | Am ⊗Bm | 1m | ⊕j∈JAjm | Nj∈JA
j
m | ↑mk Ak | ↓`mA`

| tm | ∃tm.Am | ∀tm.Am

102

Ξ ` Cr Ξ, tm ; Γ, (x : ∃tm.Am)α, y : Am ` Q :: (z : Cr)

Ξ ; Γ, x : ∃tm.Am ` casex (〈tm, y〉 ⇒ Q) :: (z : Cr)
∃Lα

Ξ ` Bm Ξ, tm ` Am
Ξ ; ΓW , (x : Am[Bm/tm]) ` z.〈Bm, x〉 :: (z : ∃tm.Am)

∃R0

Ξ ` Bm
Ξ ; ΓW , x : ∀tm.Am ` x.〈Bm, z〉 :: (z : Am[Bm/tm])

∀L0

Ξ, tm ; Γ ` Q :: (y : Am)

Ξ ; Γ `:: case z (〈tm, y〉 ⇒ Q) :: (z : ∀tm.Am)
∀R

Figure 5.1: Additional rules for quantified types in a semi-axiomatic presentation of ADJI .
As in the earlier rules for ADJI , α ranges over the set {0, 1}, (Am)0 denotes the empty context,
and (Am)1 denotes the singleton context Am. If α = 1, then C ∈ σ(m) should be treated as an
additional premise of the rule.

We will use a context Ξ to track type variables. In most rules, Ξ is passed upwards unchanged,
with the rules for quantifiers being the only ones that actually modify or make use of Ξ, and so
we will tend to leave it implicit in other rules when possible. The rules for quantifiers (along
with their associated process terms) can be found in Figure 5.1.

These rules also include two new process terms, z.〈Bm, x〉 and case z (〈tm, x〉 ⇒ Q), whose
syntax is analogous to the process terms for pairs and functions. The term z.〈Bm, x〉 communi-
cates the pair of a type Bm and a symbol x along the symbol z. In the shared-memory setting
that we are working in, this means writing this pair into memory at address z for existentials, and
reading a corresponding continuation out of memory (also at address z) for universals. Dually,
case z (〈tm, y〉 ⇒ Q) either reads such a pair out of the cell at address z (for existentials) or
writes a continuation waiting for such a pair into the cell at address z.

The existing reduction rules for shared memory (Figure 4.4) already cover how these new
process terms can be used to write to memory (provided we add 〈Bm, c〉 to our grammar of
values, and (〈tm, x〉 ⇒ Q) to our grammar of continuations). To address reading these new data,
we need to define a new case of the operation V . K, desbcribing how they interact. We define
〈Bm, c〉 . (〈tm, x〉 ⇒ Q) ::= Q[Bm/tm, c/x], again, following the pattern of pairs and functions.

5.3 Renaming

One technical detail that we need to address before moving on to a full treatment of equivalence is
that of renaming. Since the objects under consideration here are configurations of memory cells,
where each cell has an address a, we need to consider, for instance, if the configurations cell(a, V)
and cell(b, V) should be considered the same. There are several different notions of renaming
that we could choose to work with here. If we take a renaming to be a bijection (assigning to each
symbol a new, replacement symbol), we have a notion of renaming that preserves information
such as how many copies of a given piece of data a configuration contains. For instance, under

103

this notion of renaming, we might identify the configurations cell(a, V) and cell(b, V) (under the
renaming that maps a to b), but not cell(a, V) and cell(b, V), cell(c, V), as the former has only
one distinctly-addressed cell containing the value V , while the latter has two.

However, in a setting where memory cells may be persistent, able to be read from by more
than one reader, a reasonable alternative is to allow any number of persistent cells to relate to any
other number of persistent cells, as long as all contain the same (or at least adequately related,
in the sense of being the same up to an appropriate notion of renaming, which we will address
in this section) data. This notion of renaming does identify configurations that differ in memory
usage, something which may be useful to distinguish under some circumstances, but matches
nicely with the intuition that we should not be able to tell at what location in memory some piece
of data is stored — just whether it is stored at all and how it connects to other memory cells.

Not all relations ρ on symbols are suitable to use as renamings, however. Although it makes
sense to allow persistent cells (i.e. cells whose modes admit contraction) to be merged together
(or split apart) by renaming, with n cells containing the same data being renamed to have a
different number k of names, this should not be possible for ephemeral cells, or for running
processes which provide a symbol at a mode which does not admit contraction. We formalize
this with the following definition:
Definition 4. A relation ρ on symbols (with associated mode information, e.g. am or bk) is
well-moded if:

• ρ only relates symbols with the same mode. That is, if ρ(am, bk), then m = k.
• For each symbol am5, either C ∈ σ(m) or the sets {bm | ρ(am, bm)} and {bm | ρ(bm, am)}

are both subsingletons. Informally, this means that ρ relates am to at most one bm in each
direction, unless m admits contraction.

While it does not appear strictly necessary for our use case, it may also be convenient to
require that the relation ρ behaves well with respect to its inverse relation. In particular, it is
natural for a renaming to satisfy the property that if ρ(am, bm) and ρ(cm, bm), so am and cm may
be identified by renaming, then the sets {bm | ρ(am, bm)} and {bm | ρ(cm, bm)} should be the
same — that is, if am and cm share one possible new name, they must share all possible new
names.

There are several terms for relations satisfying this property — originally, they are called
difunctional relations [91], but they also appear in the computer science ltierature as zig-zag
complete relations or quasi-PERs6 (see, for instance, Krishnaswami and Dreyer [52]). We will
take the original definition of this property:
Definition 5 (Riguet [91]). A relation ρ from X to Y is difunctional if ρρ−1ρ ⊆ ρ, or, equiva-
lently, if ρρ−1ρ = ρ. That is, if ρ(a, b), ρ(c, b), and ρ(c, d), then also ρ(a, d) (and, conversely,
if ρ(a, d), then there exist b, c such that ρ(a, b) and ρ(c, b) and ρ(c, d), but this direction is less
interesting — just take b = d and c = a).

This definition, while concise, is not particularly illustrative, especially of the terms “zig-zag

5Technically for size reasons, we should restrict to some fixed set of symbols, but as in much of computer
science, it is convenient to assume that all symbols are drawn from some fixed countably infinite set, and to ignore
such details.

6quasi- partial equivalence relations

104

complete relation” and “quasi-PER”. We illustrate the former with the following diagram:

a

b

c

d

Difunctionality says that for every instance of the zig-zag figure shown in solid lines (where a line
indicates a ρ-relation from left to right), the dashed line must exist, hence zig-zag completeness.
Some more early results on difunctionality illustrate that a difunctional relation can be interpreted
as a heterogeneous equivalent of a (partial) equivalence relation, justifying also the term quasi-
PER. Firstly, if ρ is a difunctional relation from a set X to itself, then ρ is an equivalence relation
on the set {x | ρ(x, x)} (or a partial equivalence relation on X).
Theorem 25 (Riguet [91], Proposition 12). If ρ is a difunctional relation on a set X , and it is
quasi-reflexive in that whenever ρ(a, b), it is also true that ρ(a, a) and ρ(b, b), then ρ is a partial
equivalence relation on X (equivalently, an equivalence relation on its domain {x | ∃y.ρ(x, y)})

Secondly, every difunctional relation composes with its inverse to form an equivalence rela-
tion.
Theorem 26 (Riguet [91]). If ρ is a difunctional relation from X to Y , and for every x ∈ X
there is a y ∈ Y such that ρ(x, y), then ρρ−1 is an equivalence relation on X .

A corollary of this is that ρρ−1 is an equivalence relation on the domain of ρ (and dually,
ρ−1ρ is an equivalence relation on the codomain of ρ).

As such, just as a (partial) equivalence relation partitions its domain into equivalence classes,
a difunctional relation with domainX and codomain Y partitions bothX and Y into equivalence
classes, and, moreover, is a bijection between these sets of equivalence classes,thereby, in a sense,
partitioning the disjoint union X t Y into equivalence classes.
Lemma 7. Suppose ρ is a difunctional relation fromX to Y , and that ρρ−1(x, x′) and ρ−1ρ(y, y′).
Then, the following are equivalent:

1. ρ(x, y)

2. ρ(x, y′)

3. ρ(x′, y)

4. ρ(x′, y′).
That is, selecting an equivalence class of X under ρρ−1 uniquely determines an equivalence
class of Y under ρ−1ρ, and vice versa.

Proof. We will show the first implication from 1. to 2. — that 2. implies 3., 3. implies 4., and 4.
implies 1. are all similar.

105

Suppose ρ(x, y). Since ρ−1ρ(y, y′), we know that there exists some z ∈ X such that ρ(z, y)
and ρ(z, y′). Difunctionality then immediately gives us that ρ(x, y′) (via the zig-zag x, y, z, y′).

Now, in order to develop our theory of renamings, we begin with some basic results about
difunctional relations:
Lemma 8 (Basic Properties of Difunctional Relations). Suppose ρ is a difunctional relation from
X to Y . Then:

1. The diagonal relation on X ∆X = {(x, x) | x ∈ X} is difunctional.
2. ρ−1 is difunctional.

Proof. That ∆X is difunctional is immediate.
Suppose that ρ−1(a, b), ρ−1(c, b) and ρ−1(c, d). By definition, then, ρ(b, a), ρ(b, c), and

ρ(d, c), and so, as ρ is difunctional, we must have that ρ(d, a) (and so also ρ−1(a, d)), so ρ−1

is difunctional.

This will allow us to easily show (once we have defined which such relations are renamings)
that equality up to renaming is reflexive and symmetric — transitivity is more complex, as the
composition of two difunctional relations need not be difunctional.

We will say (in this section and the remainder of this chapter, when handling renaming) that
a relation that is both difunctional and well-moded is a potential renaming.

In order to reason about composition of (potential) renamings, we need to address the prob-
lem that the composition of difunctional relations is not, in general, difunctional. As a first step
for defining the composition of renamings, then, we need to build a difunctional relation from
the input renamings. In doing so, we will make use of the notion of the difunctional closure ρd

of a relation ρ, which is the smallest difunctional relation containing ρ. The difunctional closure
has a simpler definition in terms of ρ, due to Riguet:
Theorem 27 (Riguet 1950 [92]). Suppose ρ is a relation from X to Y . Then, ρd = ρ(ρ−1ρ)+ =
(ρρ−1)+ρ, where (·)+ denotes the transitive closure.

Equipped with this, we can compose (in a sense) potential renamings, allowing us to show
that the relation X ∼ Y if there is a potential renaming from X to Y is an equivalence relation.
Theorem 28.

• The diagonal relation ∆X is a potential renaming from X to X .
• ρ−1 is a potential renaming from Y to X whenever ρ is a potential renaming from X to Y
• Suppose ρ is a potential renaming from X to Y , and σ is a potential renaming from Y to
Z. Then, (ρσ)d is a potential renaming from X to Z.

Proof. Given any set X , we know from Lemma 8 that the diagonal relation ∆X is difunctional.
It is also easy to see that ∆X is well-moded, as every symbol has the same mode as itself, and it
relates each symbol to exactly one target in each direction. Therefore, ∆X is a potential renaming
from X to X .

We also know from Lemma 8 that if ρ is a potential renaming, then ρ−1 is difunctional, and
it is again easy to see that ρ is well-moded if and only if ρ−1 is, as the definition is symmetric.

106

Finally, we need to establish that (ρσ)d is a potential renaming from X to Z. Certainly, it
is a difunctional relation from X to Z, being the difunctional closure of a relation from X to
Z. It remains to check that (ρσ)d is well-moded. To do this, we will show that the composition
of well-moded relations is well-moded, and that the transitive closure of a quasi-reflexive7 well-
moded relation is well-moded. Using Riguet’s characterization of the difunctional closure (and
the fact that for any relation ρ, the relation ρ−1ρ is quasi-reflexive), this will suffice to show that
(ρσ)d is well-moded, provided that ρ and σ both are, which follows from both being potential
renamings.

First, consider the composition of well-moded relations. Suppose that relations R and S are
well-moded and that RS(am, ck). Then, there must be some b` such that R(am, b`) and S(b`, ck),
and since R and S are both well-moded, m = ` = k. Further, if we consider some am with
C /∈ σ(m), and examine the set {cm | RS(am, cm)}, we see that this can be rewritten as {cm |
∃bm.R(am, bm)∧S(bm, cm)}. SinceR is well-moded, there can be at most one such bm, and since
S is well-moded, there can be at most one such cm for each bm, and so this set is a subsingleton.
The sets {am | RS(am, cm)} for fixed cm can be shown similarly to be subsingletons.

Now, suppose R is quasi-reflexive and well-moded. If R+(am, ck), there is some sequence
b0m0

, . . . , bnmn
such that am = b0m0

, ck = bnmn
, and R(bimi

, bi+1
mi+1

) for each i from 0 to n − 1.
Since R is well-moded, this means that m = m0 = . . . = mn = k. Now, consider am with
C /∈ σ(m), and examine {cm | R+(am, cm)}. Again, for each cm in this set, there must be
a sequence b0m, . . . , b

n
m with am = b0m, cm = bnm, and R(bim, b

i+1
m) for each i from 0 to n − 1.

Since R is well-moded, there is at most one choice for each bi+1
m , determined by the value of bim.

However, we still need to ensure that the end result bnm is the same for all choices of n. Since R
is quasi-reflexive, in particular, if R(am, b

1
m), it must also be the case that R(am, am). This then

means that b1m = am, as otherwise we would have {bm | R(am, bm)} containing two elements,
and not being a subsingleton. We can then prove (via induction) that regardless of the choice
of n, all bim must be equal to am, and therefore so is cm, meaning that the original set is indeed
a subsingleton. As for composition, the other set we need to consider is a subsingleton via a
symmetric argument.

We therefore have that (ρσ)d is a potential renaming from X to Z.

To go from potential to actual renaming, we need to also consider the configurations we are
working with. In particular, if ρ is to be a renaming from C1 to C2, then we need to ensure
that whenever ρ(am, bm), the object providing am in C1 corresponds appropriately to the object
providing bm in C2. We also generally want to ensure that ρ is total on the set of symbols used in
C1 (and, from the other side, the symbols used in C2). This second condition is easy to express
— a relation ρ is total with respect to C1 and C2 if whenever a symbol am appears in C1, there
is some bm in C2 such that ρ(am, bm), and dually, if bm appears in C2, there is some am in C1
such that ρ(am, bm). Formally, this requires defining what it means for a symbol to appear in a
configuration, but this is sufficiently straightforward that we omit the formalism.

The first condition is more complex, requiring that we address what “appropriately corre-
sponding” semantic objects are with respect to a (potential) renaming. We begin by defining how
to extend a potential renaming on symbols to also apply to values, continuations, and process

7A relation ρ is quasi-reflexive if whenever ρ(a, b) holds, ρ(a, a) and ρ(b, b) hold as well

107

terms, as each of these types of data appear in our semantic objects. renaming on symbols to
also apply to values, continuations, and process terms.
Definition 6. Suppose ρ is a potential renaming. We can extend ρ to values, continuations,
and process terms in the usual manner for congruences, formally defined as follows. First, we
consider values:

• ρ(〈〉, 〈〉)
• ρ(`(am), `(bm)) if ρ(am, bm).
• ρ(〈am, bm〉, 〈cm, dm〉) if ρ(am, cm) and ρ(bm, dm).
• ρ(shift(am), shift(bm)) if ρ(am, bm).

Then continuations:
• ρ(〈〉 ⇒ P, 〈〉 ⇒ Q) if ρ(P,Q).
• ρ(j(xj) ⇒ P, j(xj) ⇒ Q) if ρ(P,Q). Note that since xj is a bound variable, its name

can freely vary, and it is not subject to renaming, as symbols are. Recall also that while
variables may be either free or bound, symbols are always free in a term.

• ρ(〈x, y〉 ⇒ P, 〈x, y〉 ⇒ Q) if ρ(P,Q).
• ρ(shift(x)⇒ P, shift(x)⇒ Q) if ρ(P,Q).

Then process terms:
• ρ(a← b, a′ ← b′) if ρ(a, a′) and ρ(b, b′).
• ρ(x← P ; Q, x← P ′ ; Q′) if ρ(P, P ′) and ρ(Q,Q′). As in some of the continuations, the
x here is a bound variable, which can therefore freely vary, and is not subject to renaming.

• ρ(c.V, c′.V ′) if ρ(c, c′) and ρ(V, V ′).
• ρ(case c K, case c′ K ′) if ρ(c, c′) and ρ(K,K ′).
• ρ(a ← p b, a′ ← p b′) if ρ(a, a′) and ρ(b, b′), where the relation of vectors of symbols is

interpreted pointwise.
Now, with this extension of ρ to handle the contents of configurations, we can formalize our

first condition.
Definition 7. Suppose ρ is a potential renaming. We say that ρ is content-preserving for a pair
of configurations C1, C2 if whenever ρ(am, bm),

• C1 contains !mcell(am, D1) if and only if C2 contains !mcell(bm, D2), with ρ(D1, D2).
• C1 contains thread(am, P1) if and only if C2 contains thread(bm, P2) with ρ(P1, P2).
We can then finally give our definition of renamings between configurations.

Definition 8. Suppose ρ is a potential renaming, and C1, C2 are configurations. Then, ρ is a
renaming from C1 to C2 if:

• ρ is total with respect to C1 and C2.
• ρ is content-preserving for C1 and C2.
As we have seen, existence of potential renamings forms an equivalence relation on sets of

symbols, defined by X ∼ Y if there is a potential renaming from X to Y . We would like to
extend this to an equivalence relation on configurations, capturing the notion of equality up to
renaming, given by C1 ∼ C2 if there is a renaming from C1 to C2. In order to establish this, we
need to extend our previous result on potential renamings to actual renamings.
Theorem 29 (Equality up to renaming is an equivalence). Suppose C1, C2, C3 are configurations.
Then,

108

• The diagonal relation on the set of symbols in C1 is a renaming from C1 to C1 (Renaming is
reflexive)

• The relation ρ−1 is a renaming from C2 to C1 whenever ρ is a renaming from C1 to C2
(Renaming is symmetric)

• If ρ is a renaming from C1 to C2, and σ is a renaming from C2 to C3, then the relation (ρσ)d

is a renaming from C1 to C3 (Renaming is transitive)

Proof. We already know (from Theorem 28) that each of the three mentioned relations are po-
tential renamings, and so we focus on showing that each is total and content-preserving. We
consider the three parts in turn.

That the diagonal relation on the symbols of C1 is total (with respect to C1) is immediate,
with every symbol occurring in C1 being related to itself. That it is content-preserving is equally
immediate — of course, each object !mcell(am, D) exists in C1 if and only if that same cell itself
exists in C1 (and likewise for processes), and the diagonal relation is easily seen to relate cell
contents D with themselves.

Since ρ is total with respect to C1 and C2, ρ−1 is also total with respect to C2 and C1, as
the definition of totality is symmetric. Similarly, the definition of content-preserving is also
symmetric, and so since ρ is content-preserving, ρ−1 is as well.

As for potential renamings, the bulk of the proof lies in transitivity, due to the extra compli-
cation of the difunctional closure. We will follow the same approach, showing that totality and
content-preservation are properties preserved by composition and by transitive closure (here, we
do not need that ρ−1ρ is always quasi-reflexive, as we did for well-modedness).

We first consider composition of relations. Suppose that R and S are renamings from C1 to
C2 and C2 to C3, respectively. For any symbol am in C1, since R is a renaming, there is some bm
in C2 such that R(am, bm). Then, we also have that there is some cm ∈ C3 such that S(bm, cm),
and so RS(am, cm), and so RS is total.

Suppose that RS(am, cm), so there is some bm with R(am, bm) and S(bm, cm). Then, a cell
!mcell(am, D1) exists in C1 if and only if there is !mcell(bm, D2) in C2 with R(D1, D2), which is
true if and only if there is !mcell(cm, D3) in C3 with S(D2, D3). It remains only to check that
RS(D1, D3), but this is immediate from the definition of the extension of potential renamings to
cell contents. The case for process terms is similar.

Now, we consider transitive closure. Suppose that R is a renaming from C1 to itself. Since R
is total, and R ⊆ R+, we can easily see that R+ is also total (with respect to C1). If R+(am, cm),
then there is some sequence b0m, . . . , b

n
m

8 with am = b0m, cm = bnm, and R(bim, b
i+1
m) for each

i from 0 to n − 1. Since R is content-preserving, we get that !mcell(bim, Di) exists in C1 if
and only if !mcell(bi+1

m , Di+1) with R(Di, Di+1). Following the chain of iffs (or, more formally,
going through an inductive argument), we see that !mcell(am, D1) exists in C1 if and only if
!mcell(cm, D2) exists in C1, with R+(D1, D2).

We therefore have that (ρσ)d is a renaming from C1 to C3, as desired.

We will, in general, treat configurations as equal if they differ only up to a renaming valid
under these conditions. Of course, when we work with defining other equivalences, we will need

8Technically, with n ≥ 1, but this isn’t necessary for the argument, and R is quasi-reflexive in the case we work
with in any case

109

to show that these equivalences respect renaming, in order for them to be well-formed.
One notable observation about these renamings is that equality up to renaming is not a con-

gruence. That is, it is possible to give configurations C1, C2, C ′1, C ′2 such that C1 and C ′1 are equal
up to renaming, as are C2, C ′2, but C1, C2 is not equal to C ′1, C ′2 up to renaming. For a concrete
example, we can take:

C1 = cell(a, 〈〉) C ′1 = cell(a1, 〈〉)
C2 = thread(c, case a 〈〉 ⇒ c.〈〉) C ′2 = thread(c, case a2 〈〉 ⇒ c.〈〉)

Composing the first two configurations, we have a cell at address a, and a thread that reads from
that cell. With the latter two, however, since a has been renamed to a1 in C ′1 and a2 in C ′2, these
cells are no longer connected to each other, and C1, C2 behaves differently from C ′1, C ′2. This is
somewhat to be expected, however — while some symbols (addresses, in the current shared-
memory context) are private to a configuration and can be freely renamed, others, including all
symbols for which contraction is admissible, appear in the interface of the configuration, and
affect how it composes with other configurations. Renaming these symbols that appear in the
interface is akin to renaming free variables of a term in a functional language, changing which
contexts it can be interpreted in.

5.4 Observations and Observational Equivalence
We begin by looking at how to define observations and observational equivalence in the context
of our shared-memory concurrent language. In the functional setting, generally, some collection
of values are considered to be observable, and observational equivalence can be defined from
that notion — the focus is on what final result an expression reduces to. For process calculi, a
different notion is often used, where rather than the final result of a computation, some collection
of actions taken by the computation are considered to be observable. In systems based on the
π-calculus, it is common for all interactions to be observable actions — that is, when a process
sends a message to another, that message becomes observable. This gives rise to the notion of
bisimilarity (seemingly first named as such by Park [71], building on ideas from Milner [60].
See [40] for an overview of bisimulations in a simple process calculus), under which P and Q
are equivalent if whenever P may take an action α to step to some P ′, Q can take the same action
α to step to some other Q′ such that P ′ and Q′ are also equivalent. There has been a great deal of
further work on bismilarity and bisimulations (see, e.g., barbed bisimulations [64] or branching
bisimulations [105]), addressing different notions of observability. In general, bisimulation-
based approaches are interested in the process by which a result is reached, as well as what
that result is. We will follow more closely to the functional approach, emphasizing the end
result of a computation over the process by which it is reached, although there is certainly room
for an alternate theory of equivalence for the same language, which takes the more fine-grained
approach of work on bisimulation.

Since a single process term, when executed, may result in a much larger configuration, our
analog to an expression is a configuration, rather than a process term, even if many of the con-
figurations whose equality we are interested in consist of a single thread object, running a single

110

process term. As in the functional case, we could then select some base type b (perhaps booleans,
encoded as 1 ⊕ 1) and attempt to test for equality at this type. However, selecting a particular
type for this feels somewhat artificial, and indeed we will see some examples, particularly in a
linear setting, where it takes additional work to distinguish two configurations by turning their
outputs into distinct booleans, while they are easy to distinguish by examining some output at a
different type. Moreover, unlike expressions, which have a single result by nature, configurations
provide potentially many semantic objects, each with its own associated symbol which can be
used to access it. In order to compare two configurations, we therefore either need to consider
the configuration as a whole, or specify which symbol(s) to compare. Comparing whole configu-
rations seems natural, but raises some further questions: For instance, should two configurations
where one is a subset of the other be distinguishable? Instead, we will avoid this issue altogether,
by comparing two configurations for equivalence at a particular symbol or set of symbols. In-
tuitively, we can think of this as giving some external observer access to a fixed set of memory
addresses, and allowing them to explore by following pointers, but not to read out the entire
memory space looking for differences.

Our first step in defining observational equivalence in this setting is, therefore, to start with
a function O(C, S), taking a configuration and a set of symbols to some type of object that can
be compared for syntactic equality (for our use cases, these will be a restricted form of config-
uration). This function can be thought of as defining what can be observed from a particular
configuration C by looking at the addresses in S, without being able to take any computation
steps. For a simple example, if we define Ouniv(C, S) = {}, this suggests that nothing can be
observed about a configuration, and if we use this as the basis for an observational equivalence,
we will get the universal relation, under which any two configurations are equivalent (or, with
restrictions on type to ensure that configurations of different type cannot be equivalent, we get
proof-irrelevant equivalence, where two configurations are equivalent at a set S of symbols if
they have the same type at those symbols). A more natural notion of observation,Oint, allows us
to observe data stored in cells reachable by following pointers from S. This essentially says that
computations are not observable while in progress, but all finished computations are, and will
yield a notion of equivalence corresponding to intensional equivalence, or syntactic equality up
to variable renaming. Finally, and most practical of the three examples we will examine, we can
defineOext to allow values (but not continuations) stored in cells reachable by following pointers
from S to be observed. This corresponds to the standard extensional equivalence of functional
programming, where values of some purely positive type(s) can be directly observed, but values
of negative types, in particular functions, can only be examined via experiment. In the language
of call-by-push-value, for example [54, 55], values can be observed directly, but computations
cannot.

With these intuitions in mind for several examples of observation, we now define them for-
mally. It is quite easy to define Ouniv, which returns the empty configuration on any input. The
other two are more involved, as we would like to ensure that our observation is independent of
the order of objects in C, only considering C and S as sets. To address this, we break down the
set S into smaller sets, and see what we can observe from each individual address. Of course, we
may see the same cell many times this way, but if our output object is a set, the number of times

111

we encounter a cell does not affect the output. We first define Oint:

Oint(C, {}) = {}
Oint(C, S1 ∪ S2) = Oint(C, S1) ∪ Oint(C, S2)

Oint((C, !mcell(cm, K)), {cm}) = {!mcell(cm, K)} ∪ Oint(C,FS(K))
Oint((C, !mcell(cm, 〈〉)), {cm}) = {!mcell(cm, 〈〉)}

Oint((C, !mcell(cm, `(am))), {cm}) = {!mcell(cm, `(am))} ∪ Oint(C, {am})
Oint((C, !mcell(cm, 〈am, bm〉)), {cm}) = {!mcell(cm, 〈am, bm〉)} ∪ Oint(C, {am, bm})
Oint((C, !mcell(cm, shift(am))), {cm}) = {!mcell(cm, shift(dm))} ∪ Oint(C, {am})
Oint((C, !mcell(cm, 〈Am, am〉)), {cm}) = {!mcell(cm, 〈Am, am〉)} ∪ Oint(C, {am})

Oint(C, {cm}) = {} (if C does not provide a cell at cm)

In a continuation, any free symbol is a pointer to a cell that the continuation may read from, and
so we record having seen the continuation, and further examine the cells it may read from (with
FS(K) denoting the set of free symbols in K). For values, we record the value as observed, and
then any addresses contained in the value become the new basis for further observation. The
definition of Oext is quite similar, differing in that we disallow observing continuations, with
an attempt to observe a continuation instead yielding the empty set. Note that we also disallow
observing existentials — types may not necessarily be made explicit in a real implementation,
and without the type, we do not know how to further observe under the existential either.

Oext(C, {}) = {}
Oext(C, S1 ∪ S2) = Oext(C, S1) ∪ Oext(C, S2)

Oext((C, !mcell(cm, K)), {cm}) = {}
Oext((C, !mcell(cm, 〈〉)), {cm}) = {!mcell(cm, 〈〉)}

Oext((C, !mcell(cm, `(am))), {cm}) = {!mcell(cm, `(am))} ∪ Oext(C, {am})
Oext((C, !mcell(cm, 〈am, bm〉)), {cm}) = {!mcell(cm, 〈am, bm〉)} ∪ Oext(C, {am, bm})
Oext((C, !mcell(cm, shift(am))), {cm}) = {!mcell(cm, shift(am))} ∪ Oext(C, {am})
Oext((C, !mcell(cm, 〈Am, am〉)), {cm}) = {}

Oext(C, {cm}) = {} (if C does not provide cm)

5.4.1 Observation and Renaming
Since we consider configurations which agree up to renaming to be equal, for our definitions
of observation to be well-formed, they must also agree up to renaming. This will then also
ensure that when we define observational equivalence based on these observations, that it respects
renaming.

Since the result of observation is again a configuration, we do not need an additional defini-
tion for renaming of observations — we can just reuse the definition for configurations.
Lemma 9. Suppose C1, C2 are configurations, ρ is a renaming from C1 to C2, and S1, S2 are sets
of symbols such that am ∈ S1 iff there is bm ∈ S2 with ρ(am, bm).

Then, Oint(C1, S1) and Oint(C2, S2) are related by ρ, and likewise for Ouniv and Oext.

Proof. For Ouniv, this is immediate, as the observations of C1 and C2 are both the empty config-
uration.

112

For Oint, we proceed by induction on the construction of the observation.
If the last case used was Oint(Ci, {}) = {}, so the Si are empty, the result is immediate, just

as for Ouniv.
If the last case used was Oint(Ci, Ti ∪ Ui), so Si = Ti ∪ Ui, then, applying the inductive

hypothesis, we get that Oint(Ci, Ti) are related by ρ, as are Oint(Ci, Ui). It remains to show that
taking the union of these sets preserves their ρ-relatedness. Since the ρ used is the same, we still
have that ρ only relates a non-persistent symbol to one other symbol, regardless of what config-
uration it is applied to. Now, suppose that ρ(a1m, a

2
m). Since a1m appears only in Oint(C1, T1) (or

only in Oint(C1, U1)), it is immediate that the contents of the cells at a1m and a2m are consistent,
from the inductive hypothesis.

In the remaining cases, we likewise reason about unions of configurations, in the same man-
ner (using that the sets of symbols we work with are disjoint), and use the inductive hypothesis
where applicable. Since the original configurations C1, C2 are ρ-related, any observation at some
am in C1 corresponds to an observation at bm in C2 for which ρ(am, bm), which then therefore
yields a similarly related cell.

We do note that the number of times a given related cell appears in the resulting observation
may vary (e.g. if ρ(am, bm) and ρ(am, cm), and we observe C1 at {am} but C2 at {bm, cm}), but
we nevertheless have that the observations are ρ-related.

For Oext, the argument is similar, except that the continuation and existential type cases can
be further simplified.

5.4.2 From Observations to Observational Equivalence
Now, we are able to compare two configurations for equivalence by checking if they have the
same observations. However, this only allows us to observe the results once computation is com-
plete, and so does not let us distinguish computations that produce distinct results. For this, we
again follow the approach used in the functional setting. Our observations are the analog of the
choice of a type (e.g. bool or nat) at which to observe, although the ability to observe at multiple
addresses and at arbitrary types makes them more general. To compare computations that are not
yet complete, we need to be able to run them. Moreover, as some computations will produce only
continuations, which we would like to be able to distinguish based on behavior rather than some
form of syntactic equality, we need an analog to running an expression in a testing context. Un-
like in the functional setting, where we need to define the concept of an expression with a hole,
here, configurations are already designed to interface with other configurations. The analog to an
expression with a hole is therefore just another configuration. However, if we allow for testing
with arbitrary configurations, we may allow too much freedom — often, we want to compare
two configurations, not as a whole, but from the perspective of a program that only has access
to some of their symbols. For example, two programs may each offer a range of services, stored
at different addresses, and we may want to check whether one particular service is equivalent
across the programs, without necessarily enforcing that the other services are as well. We will
therefore define a notion of observational equivalence relative to a set of symbols S, denoting the
endpoints at which testing configurations are allowed to probe.

To formalize the notion of where a testing configuration may interact with the configurations
being tested, we define here formally which addresses a configuration provides and which ones it

113

uses, as well as a notion of internal addresses, which may store details not visible to the outside
world. This may be thought of as a weak form of typing, where we are only considering the
occurrence and mode associated with symbols, not their typing information.
Definition 9. Suppose C is a configuration, in which we have assigned modes to all addresses
that appear (in many of our applications, this assignment comes from a typing derivation, but
this notion does not inherently require that C is well-typed, only well-moded). We define the
following set of rules, following the same structure as the configuration typing rules, to define
the judgment C :: (U, P), representing that C uses addresses in the set U , and provides addresses
in the set P . As in our definition of observations, we will write FS(·) to denote the set of free
symbols (addresses) in a value, continuation, or process term.

(·) :: (·, ·)
empty

thread(am, P), cell(a,_) :: (FS(P), {am})
thread

!mcell(am, V) :: (FS(V), {am}) cell+ !mcell(am, K) :: (FS(K), {am}) cell−

C1 :: (U1, P1) C2 :: (U2, P2)

C1, C2 :: (U1 ∪ (U2 \ P1), (P1 \ U2) ∪ P1|C ∪ P2)
join

The first four rules cover the base cases, which are straightforward — the empty configuration
neither uses nor provides any addresses, while threads and cells each provide the address that
they are stored at or will eventually write to. The last rule, for join, is more complex. We might
initially expect that C1, C2 uses all symbols used by either C1 or C2, and likewise for its provided
symbols, but this definition allows for some of the symbols provided by C1 to also be used by C2.
Any symbol that is provided by C1 and used by C2 is no longer needed from the environment, and
so is removed from the set of used variables of the overall configuration. Likewise, we remove
symbols that are provided by C1 but used by C2 from the overall set of provided symbols, if they
do not admit contraction. Again, these symbols are no longer externally visible, and so should
not be counted as being provided.

We can then make use of this definition to specify which test configurations are allowed,
enabling us to define observational equivalence.
Definition 10. Fix an observation function O, a set of symbols S, and a computation relation
7→ on configurations. We say that two configurations C1 and C2 satisfying Ci :: (Ui, Pi) are
observationally equivalent when observed at a set S of symbols, relative to O and 7→ if for every
configuration C ′ :: (U ′, P ′) for which:

• U ′ ∩ (P1 ∪ P2) ⊆ S — that is, the only symbols used by C ′ and provided by C1 or C2 are in
S.

• C1, C ′ and C2, C ′ are both well-formed, so C ′ does not provide any symbols that either C1 or
C2 do

• C1, C ′ 7→∗ C ′1 and C2, C ′ 7→∗ C ′2, and neither C ′1 nor C ′2 can take further steps
and for any set S ′ of symbols such that S ′ ∩ (P1 ∪ P2) ⊆ S, O(C ′1, S ′) and O(C ′2, S ′) are equal
up to renaming.

Note that this definition critically relies both on the notion of observation, specified by O,
and on the notion of computation 7→. Changing either of these may (but will not necessarily)
change the resulting equivalence.

114

For an example, we will look at an alternate observation function that defines the same equiv-
alence as Oext (provided the computation relation 7→ is the same in both cases).
Example 12 (Difficulties with bool). Suppose we define an observation functionObool(C, S) that
only allows observation of boolean values. More precisely, we will define bool = ⊕{true :
1, false : 1}, and define Obool((C, !mcell(cm, b(dm)), {x}) = {(cm, b)}, where b is either true
or false. Observing an address with something other than a boolean stored yields {}, and the
cases for observing at zero or multiple addresses remain the same as for Oext. This allows us to
observe, for any boolean whose address is in S, whether it is true or false, and nothing further.
While this is clearly a more restrictive observation, in the functional setting, observations such
as these often suffice, as whenever two values differ observably, there is often an expression
that can express this distinction as a boolean, which can then be observed. This remains true
in the substructural setting, but can be more involved, due to the need to use all linear (and
strict) addresses. Consider, for instance, the type ⊕{left : A, right : B}. If we observe in
one configuration left(a), and in another right(b), both at the same address c, we can clearly
distinguish the configurations at address c because the labels stored there differ. In order to
distinguish these configurations with Obool, however, we need to read from c, produce a bool
depending on whether we are in the left or right branch, and then still need to somehow use the
leftover A or B. While this is possible, for instance by writing this A or B to a new cell, it is an
added inconvenience when designing tests to distinguish configurations.
Lemma 10 (Adequacy ofObool). With the standard computation relation 7→ defined in Chapter 4,
observational equivalence with respect to Oext and with respect to Obool agree. That is, for any
configurations C1, C2 and any set of symbols S, C1 and C2 are observationally equivalent when
observed at S, relative to Oext and 7→ if and only if they are observationally equivalent relative
to Obool and 7→.

Proof. It is easy to see that if some C ′1, C ′2, S ′ satisfyObool(C ′1, S ′) 6= Obool(C ′2, S ′), then they also
satisfy Oext(C ′1, S ′) 6= Oext(C ′2, S ′), because any observation Obool can make can also be made
by Oext, as bool is a purely positive type.

Suppose therefore that we have some C ′ such that Ci, C ′ 7→∗ C ′i for i = 1, 2, and that neither
of these configurations can take further steps, and that we have some S ′ such that Oext(C ′1, S ′) 6=
Oext(C ′2, S ′). This means that either some address c reachable from S ′ by following pointers
contains data of typesA andB with different top-level type constructors in C ′1 and C ′2, or contains
data of ⊕ type with different labels `1 and `2.

In the former case, define C ′′ = C ′, thread(d, case c (p ⇒ x ← x.p ; e ← d.true(e) ; e.〈〉)),
where p is a pattern matching the top-level constructor of A. Then, C1, C ′′ evaluates to some C ′′1
containing cell(d, true(e)), while C2, C ′′ evaluates to some C ′′2 , in which this new thread is unable
to read from c, and so is never able to write to d. As such, no filled cell at address d exists in C ′′2 ,
and so Obool(C ′′1 , {d}) is (d, true), while Obool(C ′′2 , {d}) is {}, allowing us to distinguish C1 and
C2.

In the latter case, we can use a similar strategy. Define C ′′ to extend C ′ with a single thread
that reads from c, writes true to a cell d if c contains `1, and writes false to d if c contains `2.
Some extra bookkeeping is necessary as in the previous case to ensure that all data is used, so
that this works in the linear case as well, but this essentially consists of copying the contents of
c elsewhere, while constructing a boolean on the side. The resulting C ′′ allows us to distinguish

115

C1 and C2 after observing at {d}.

This example shows that we can make changes to our observation function and get the same
equivalence, but also highlights that our choice of observation function can make a significant
difference in how much work we need to do with our test configurations, and illustrates some of
the difficulty involved in working with observational equivalence in general.

5.4.3 Typed Equivalence
This initial definition of equivalence is very general, allowing us to talk about equivalence of
configurations that are ill-formed in various ways. However, as we begin to look at logical
equivalence in the next section (section 5.5), we will see that it makes sense to define equivalence
based on types. As such, some ill-typed configurations may be equivalent observationally, but
not logically — for a concrete example, we may consider the configuration consisting of the
single object !mcell(a, 〈a, a〉). This configuration cannot be typed without running into issues of
circularity, and even attempting to explore it following a type, as we will do in defining logical
equivalence, has the problem that we never reach an endpoint.

To resolve this issue and try to ensure that logical and observational equivalence coincide,
we will often work with a restricted form of observational equivalence, which only considers
well-typed terms.
Definition 11 (Typed Observational Equivalence). If Γ � C1 :: ∆ and Γ � C2 :: ∆, we say that C1
and C2 are observationally equivalent at the interface (Γ,∆), relative to an observationO and a
computation relation 7→, if for every configuration C ′ (the test configuration to probe C1, C2 with)
such that:

• Γ′ � Ci, C ′ :: ∆′ for i = 1, 2.
• Ci, C ′ 7→ C ′i which cannot take further steps.

O(C ′1,∆′) and O(C ′2,∆′) are equal up to renaming. We will denote this (leaving O and 7→
implicit, to be specified in the relevant context) by Γ � C1 ∼= C2 :: ∆.

This is, essentially, a version of our original definition with the additional restriction that the
configurations used must be well-typed.

5.5 Logical Equivalence
As in the functional setting, our notion of observational equivalence is difficult to work with in
practice, as it requires quantifying over a very large set — in our case, a set of configurations
with some mild constraints. Our solution to this problem is likewise similar: we develop a
notion of logical equivalence that is feasible to work with, and demonstrate that it coincides with
observational equivalence. The key idea here is that, unlike observational equivalence, which
looks at a configuration as a whole, we would like to define a more compositional equivalence,
which examines smaller pieces of configurations at a time. In particular, if we have two non-
equivalent configurations, we can generally find a single cell in which they differ observably,
and so at least in principle, there should be no need to examine the whole configuration at once.
However, trying to define this equivalence inductively over a configuration leads to difficulties,

116

as we may need to examine the same cell multiple times, if it is referenced in several different
places, and so cannot just remove a cell from consideration after examining it. Instead, we will
use types to guide our exploration of a configuration, and define logical equivalence inductively
over these types.

Our work on logical equivalence builds on existing work for logical relations in the functional
setting, indirectly from the early work on the subject [37, 81, 89, 101, 102], and more directly
from the overview given by Harper [40], the general structure of whose proofs we follow. More
directly related is the proof of termination for the semi-axiomatic sequent calculus [26], which
forms part of our prior work, and which informed the development of this more complex logical
relation for a similar language.

There are also several other prior and concurrent lines of work on logical relations in the set-
ting of session-typed process calculi. Pèrez, Caires, Pfenning, and Toninho [13, 72, 73] develop a
theory of linear logical relations, which they apply to the calculus πDILL to prove normalization
and confluence, and to reason about program equivalence. Our logical equivalence resembles
theirs notationally, although the content is quite different, both due to differences in type sys-
tem (in particular, our handling of non-linear modes, which may result in persistent semantic
objects), and in the language itself (πDILL, being a version of the π-calculus, has its semantics
defined in terms of single, large process terms, as opposed to our configurations made up of
semantically distinct objects). In a classical process calculus, whose semantics are given by con-
figurations more akin to ours, Atkey [3] makes use of logical relations in a more indirect fashion,
using them to connect a system of denotational semantics to operational semantics, making it
possible to reason about observational equivalence via the denotational semantics. This is less
closely related to our work, but, notably, does need to address non-linearity in the setting of con-
figurations, not via persistence, but by directly reasoning about duplicability or discardability of
configurations. The most closely related line of work in this direction is given by Derakhshan
et al. [22] and Balzer et al. [5], dealing with non-interference and equivalence for session-typed
process calculi similar to ours, albeit in a purely linear message-passing setting. Notably, both
handle logical relations for open configurations, allowing probes of those configurations along a
specified interface, although the exact details of the interfaces they use are slightly different, only
allowing observation at a single channel on the right of a configuration. We will reference some
of these other lines of work again, as they relate to particular aspects of our logical relation.

We now begin by addressing the inductive structure that we will use for our logical relation.
Since we are reasoning about equivalence of configurations, rather than single process terms, and
configuration typing is in terms of full contexts, rather than single types, we need an appropriate
ordering on contexts — this will be the multiset ordering over the multiset of types appearing in
the context, which we build up in a few steps. We first define an ordering on types Ak ≺ Bm

capturing that Ak is a strict subformula of Bm.
Definition 12 (Subformula ordering on types). We define the non-strict ordering Ak � Bm

inductively as follows:
• Ck � Ck — naturally, every type is a subformula of itself.
• Ck � ⊕j∈JAjm if Ck � A`m for some ` ∈ J .
• Ck � Nj∈JA

j
m if Ck � A`m for some ` ∈ J .

• Ck � Am ⊗Bm if Ck � Am or Ck � Bm.

117

• Ck � Am(Bm if Ck � Am or Ck � Bm.
• Ck � ↓rmAr if Ck � Am.
• Ck � ↑mr Ar if Ck � Am.

The first case serves as a base case, while the others allow us to recursively search through the
structure of a type, looking for instances of Bm. With this defined, we can take the strict ordering
Ak ≺ Bm to be defined by Ak � Bm and Ak 6= Bm.

Now, we extend this to multisets of types, using a general construction due to Dershowitz
and Manna [23].
Definition 13 (Multiset ordering). Suppose that ≺ is a well-founded strict partial order over a
base set S, and that M,N are multisets whose elements are drawn from S.

We say that M is smaller than N in the multiset ordering, which we will write M � N , iff
there exist finite multisets X, Y whose elements are drawn from S such that:

• X is a non-empty submultiset of M .
• N = (M \X) + Y , where + represents the union of multisets.
• For all y ∈ Y , there is some x ∈ X with y ≺ x.
That this ordering is well-founded is also a result of Dershowitz and Manna [23]. While this

allows us to very generally compare multisets of types, just as in induction over the naturals one
often only moves from n + 1 to n, we will generally rely on two particular ways to shrink a
multiset M of types to a smaller multiset N in our induction arguments. Firstly, we can remove
an element Am from M , taking N = M \ {Am}. In this case, taking X = {Am} and Y = ∅, it
is easy to see that <� N , as the first two conditions are immediate from our choices of X and
Y , and the third holds vacuously, since Y is empty. Secondly, and more importantly (as the first
example works as well under the usual subset relation), we can choose an element Am from M ,
and replace it with some finite set of its subformulae. More precisely, we take X = {Am} and
let Y be some multiset of subformulae of Am. TakingN = (M \X)+Y , the first two conditions
are again immediate, and the third follows from our choice of Y to only contain subformulae of
Am, and so this operation also yields a smaller multiset. We will generally apply this to replace
a formula with its immediate subformulae (e.g., replacing {Am(Bm} with {Am, Bm}).

Now, we will define our equivalence as a family of relations

C1 ∼ C2 :: ∆

where C1, C2 are configurations and ∆ is a context by induction over ∆, using the multiset order-
ing on its multiset of types. We can then extend this to relations

Γ � C1 ∼ C2 :: ∆

where Γ is also a context of typed symbols, allowing us to talk about the equivalence of open
configurations which depend on the symbols in Γ as well as closed configurations.

5.5.1 Equivalence at Variable Types
In order to work compositionally with quantified types ∀tm.τ and ∃tm.τ , we will need some
way to talk about equivalence at a type variable tm. A standard approach here, following from

118

Girard’s method of candidates [37], but applied in the setting of equivalence rather than termina-
tion (see, e.g., [89]), is to interpret type variables as relations: a type variable may have different
implementation types Am and Bm in configurations C1 and C2, respectively, and we determine
whether two terms of these implementation types should be equivalent based on a particular
relation R. In the case of an existential type, we say that two configurations are equivalent if
there exists a suitable relation under which the underlying implementations are equivalent, and
for universal types, we require that for any suitable choice of relation on the inputs, the resulting
outputs are equivalent.

Formally, we will work with relations R between address-configuration pairs (a, C). Intu-
itively, we think of (a1, C1)R(a2, C2) as saying that the data stored at a1 in C1 and the data stored
at a2 in C2 represent the same underlying concept in two different ways. Not all such relations
are suitable, however — if we allow arbitrary relations, then any two implementations of an ex-
istential type could be said to be equivalent, even if they can be distinguished by observation.
We will therefore work with a notion of admissible relations,9 which are chosen to ensure that
logical equivalence and observational equivalence will agree (once suitably defined). Our con-
ditions on admissible relations are, more or less, standard — in the related work of Caires et al.
[13] on parametricity for πDILL, essentially the same three conditions are given (although, as
they note, one, backwards closure, can be shown to be redundant, but is nevertheless useful to
make explicit).
Definition 14. We say that a relation R on address-configuration pairs is an admissible relation
between types A1

m and A2
m, written R : A1

m ↔ A2
m, if:

1. R only relates pairs (ai, Ci) where the configurations Ci are well-typed and provide ai : Aim.
That is, if (a1, C1) R (a2, C2), then for i ∈ {1, 2}, we have that there is some context ∆i

such that (·) � Ci :: ∆i, (ai : Aim).
2. R is closed under converse reduction (often called head expansion). That is, whenever

(a1, C1)R(a2, C2) and C ′1 7→ C1 and C ′2 7→ C2, both (a1, C ′1)R(a2, C2) and (a1, C1)R(a2, C ′2)
also hold. This property is often referred to as backwards closure.

3. R respects observational equivalence. That is, if (a1, C1)R(a2, C2) and C1 is observa-
tionally equivalent to C ′1 at a1 and C2 is observationally equivalent to C ′2 at a2, then
(a1, C ′1)R(a2, C ′2).

Note that in particular, this last item implies that if (a1, C1)R(a2, C2), then (a1, (C, C1))R(a2, (C, C2))
whenever both C, C1 and C, C2 are well-formed configurations.

One useful consequence of the definition of admissible relations is that related configurations
can be extended (almost) arbitrarily.
Lemma 11. SupposeR is an admissible relation, and (a1, C1)R(a2, C2). Given F ′1,F ′2 final such
that C1,F ′1 and C2,F ′2 are well-formed, it is also the case that (a1, (C1,F ′1))R (a2, (C2,F ′2)).

Proof. Since R respects observational equivalence, it will suffice to show that C1,F ′1 is observa-
tionally equivalent to C1 at a1 (and that a similar statement holds for C2 and F ′2).

Because R is admissible, we know that (·) � C1 :: ∆, (a1 : Am) for some ∆ and Am. Write
C1 :: (·, P1), and F ′1 :: (U ′1, P

′
1), noting that P1 contains a1. Now, fix some C ′ :: (S, T), where

S∩(P1∪P ′1) = {a1}, so the only symbol provided by C1,F ′1 and used by C ′ is a1. We require also

9Also known as candidates in some of the literature on logical relations

119

(as in the definition of observational equivalence) that T ∩ (P1 ∪ P ′1) is empty, so that C ′, C1,F ′1
is well-formed.

Let C ′, C1 7→∗ D1 such that D1 cannot take further steps. We then observe that C ′, C1,F ′1 7→∗
D1,F ′1, and, as F ′1 is final, this cannot take further steps. Write D2 = D1,F ′1.

Choose a set S ′ of symbols with S ′ ∩ (P1 ∪P ′1) = {a1}, and consider Oext(Di, S ′). We want
to show that these two observations are equal up to renaming (indeed, we claim that they are
equal).

Let {α, β} = {1, 2}, and suppose that !m0cell(c0m0
, V 0) occurs in Oext(Dα, S ′), but does not

occur in Oext(Dβ, S ′). Inverting the definition of Oext, we see that we must have attempted to
observe Dα at c0m0

. Either c0m0
is in S ′, or we previously observed some cell at address c1m1

whose value V 1 contained c0m0
as a free symbol. Iterating this reasoning, we can find a sequence

c0m0
, c1m1

, . . . , cnmn
such that:

• For each 0 ≤ j ≤ n, Dα contains !mj
cell(cjmj

, V j)

• V j contains cj−1mj−1
as a free symbol

• cnmn
∈ S ′

Now, we consider observing Dβ , starting from cnmn
. There is some smallest j such that Dβ

contains !mj
cell(cjmj

, V j), We note that the value V j observed here must be the same as in Dα,
as cells are not mutable, and the preconditions of the lemma ensure that C1 and F ′1 and C ′ never
provide the same address, so we do not find two conflicting cells, one from D1 and one from F ′1.
This means, in particular, that cj−1mj−1

is still free in Vj in Dβ , and so the observation Oext(Dβ, S ′)
must contain Oext(Dβ, cj−1mj−1

). For this to fail to contain the cell !mj−1
cell(cj−1mj−1

) that we know
exists in Dα, it must be the case that Dβ does not provide cj−1mj−1

, as we have already established
that any cell occurring in both Dα and Dβ must have the same contents in both. Since we know
that the cell exists in Dα, but not in Dβ , it must be the case that α = 2 and the cell exists in F ′1.
We will show that this is impossible, based on the constraint that C1,F ′1 is well-formed, and the
condition (given by the definition of observational equivalence) that C1,F ′1, C ′ is well-formed.

Since the cell at cjmj
occurs in D1 already, and mentions the address cj−1mj−1

, either D1 must
contain a thread providing this address, or C1, C ′ already was using this address. Since C1 uses no
addresses (being closed), and the only address that C ′ is allowed to use that C1,F ′1 provides is a1,
it must be the case that D1 contains a thread providing cj−1mj−1

. Now, this thread must be blocked
trying to read from some address d, as we know that D1 cannot step further. It may be the case
that d is an internal address of C1, C ′, not visible externally, but this just pushes us back to the
existence of another thread, blocked on some address d′. Iterating this reasoning, we find that the
only way to enable cj−1mj−1

to be written to is if some address d̂ used by C1, C ′ (and therefore not
provided by F ′1) is written to, allowing this chain of threads to make progress. Since d̂ cannot be
provided by F ′1, D2 cannot contain such a cell, and we conclude that our initial assumption that
the observations differed must have been false.

Definition 15. If Ξ is a context of type variables, we write ξ : Ξ to denote that ξ is a substitution
assigning to each type variable tm in Ξ a closed type Am.

Given ξ1, ξ2 : Ξ, we write η : ξ1 ↔ ξ2 to denote that η is a family of admissible relations, one
for each type variable tm in Ξ, such that η(tm) : ξ1(tm)↔ ξ2(tm).

120

5.5.2 Formalizing Logical Equivalence
Now that we have a way to handle type variables, and thereby also quantified types, we can begin
defining logical equivalence. Recalling that we want logical equivalence to match observational
equivalence (in this case, focusing on the extensional version of observational equivalence), it is
natural to define logical equivalence inductively over a context of types and symbols, rather than
over a single type, as is common in the functional setting. This also matches our definition of
configuration typing, which likewise focuses on contexts rather than single types. Our judgment
for logical equivalence mirrors that for typing, but with two configurations rather than one. We
write

Ξ ; · � C1 ∼ C2 :: ∆

to denote that C1 is logically equivalent to C2 when examined following ∆, using type variables
in Ξ. Note that ∆ describes what symbols or addresses we may begin examining C1 and C2 at to
look for differences, but also tells us what shape of data we should expect to find, based on the
types in ∆. It may be more natural to use two separate contexts, with some mapping between the
symbols of one and the symbols of the other, but since we consider configurations that are related
by renaming to be the same, we prefer to implicitly rename both Ci to match ∆ — we can think
of this as saying that two configurations are logically equivalent at ∆ if there exist renamings ρ1
and ρ2 such that the configurations ρiCi are equivalent under the formal rules we give.

We also note that it may seem simpler to look only at one symbol at a time, defining a
judgment

Ξ ; · � C1 ∼ C2 :: (a : Am).

However, this approach leads to problems in the substructural case, where two observationally
distinct configurations would nevertheless be treated as logically equivalent.
Definition 16 ((Extensional) Logical Equivalence). We define the logical equivalence

Ξ ; · � C1 ∼ C2 :: ∆

to hold if, for all ξ1, ξ2 : Ξ and all η : ξ1 ↔ ξ2, η ; · � C1 ∼ C2 :: ∆. That is, we fix an
interpretation η of the type variables in Ξ, and then examine C1 and C2 in this context.

Since we identify configurations that are equal up to renaming, this definition implicitly al-
lows us to rename C1 and C2 as it is convenient.

We then define η ; · � C1 ∼ C2 :: ∆ if each Ci 7→∗ Fi final (i.e. consisting only of filled cells)
such that η ; · ` F1 ∼ F2 :: ∆. That is, general configurations are compared for equivalence
by evaluating them and comparing the resulting final configurations (analogous to values in a
functional setting) for equivalence. This is analogous to the expression or term interpretation of
a type (or context, or sequent) in logical relations for functional languages, while the judgment
over final configurations is analogous to the value interpretation of a type.

We define this new judgment η ; · ` F1 ∼ F2 :: ∆ inductively over ∆, making use of η ; · �
C1 ∼ C2 :: ∆ at some points. To be precise, we define the two judgments (1) η ; · ` F1 ∼ F2 :: ∆
and (2) η ; · � C1 ∼ C2 :: ∆ by mutual induction on the pair (∆, i) ordered lexicographically,
where i is the number of the judgment being defined. That is, in defining the judgment (2) on
general configurations, we may make use of the judgment (1) on final configurations at the same
∆, and in defining (1), we may make use of (2) on strictly smaller ∆.

121

In several cases we will need to make use of different configurations depending on whether a
particular mode m admits contraction or not. We write Cm?(C1, C2) to denote C1 if C ∈ σ(m),
and C2 otherwise.

(1) If ∆ = (·), then we cannot observe anything about the configurations, and so they are
equivalent — η ; · ` F1 ∼ F2 :: (·) always holds.

(2) η ; · ` F1 ∼ F2 :: (a : tm),∆′ if we can write each Fi = F1
i ,F2

i ,F3
i such that

• F2
i = Fi|C for i = 1, 2.

• (a, (F1
1 ,F2

1)) η(tm) (a, (F1
2 ,F2

2)).

• η ; · ` F2
1 ,F3

1 ∼ F2
2 ,F3

2 :: ∆′.
That is, equivalence at a type variable tm is interpreted by the (admissible) relation η(tm).

(3) η ; · ` F1 ∼ F2 :: (a : ⊕{` : A`m}`∈L),∆′ if there is j ∈ L such that
• Fi = F ′i , !mcell(a, j(b))

• η ; · ` Cm?(F1,F ′1) ∼ Cm?(F2,F ′2) :: (b : Ajm),∆′.

(4) η ; · ` F1 ∼ F2 :: (a : Bm ⊗ Cm),∆′ if
• Fi = F ′i , !mcell(a, 〈b, c〉)
• η ; · ` Cm?(F1,F ′1) ∼ Cm?(F2,F ′2) :: (b : Bm), (c : Cm),∆′

(5) η ; · ` F1 ∼ F2 :: (a : 1m),∆′ if
• Fi = F ′i , !mcell(a, 〈〉)
• η ; · ` Cm?(F1,F ′1) ∼ Cm?(F2,F ′2) :: ∆′

(6) η ; · ` F1 ∼ F2 :: (a : ↓kmAk),∆′ if
• Fi = F ′i , !mcell(a, shift(b))

• η ; · ` Cm?(F1,F ′1) ∼ Cm?(F2,F ′2) :: (b : Ak),∆
′.

(7) η ; · ` F1 ∼ F2 :: (a : ∃tm.Bm),∆′ if
• Fi = F ′i , !mcell(a, 〈Aim, b〉)
• There exists some R : A1

m ↔ A2
m such that

η, tm ↪→ R ; · ` Cm?(F1,F ′1) ∼ Cm?(F2,F ′2) :: (b : Bm),∆′

(8) η ; · ` F1 ∼ F2 :: (a : N{` : A`m}`∈L),∆′ if
• For each j ∈ L, η ; · � F1, thread(b, a.j(b)) ∼ F2, thread(b, a.j(b)) :: (b : Ajm),∆′.

That is, the configurations resulting from taking any fixed branch of the choice and evaluating
are equivalent.

(9) η ; · ` F1 ∼ F2 :: (a : Bm(Cm),∆′ if
• Whenever η ; · ` F1|C ,F ′1 ∼ F2|C ,F ′2 :: (b : Bm), it also holds that
η ; · � F1,F ′1, thread(c, a.〈b, c〉) ∼ F2,F ′2, thread(c, a.〈b, c〉) :: (c : Cm),∆′

(10) η ; · ` F1 ∼ F2 :: (a : ↑mk Ak),∆′ if
• η ; · � F1, thread(b, a.shift(b)) ∼ F2, thread(b, a.shift(b)) :: (b : Ak),∆

′

(11) η ; · ` F1 ∼ F2 :: (a : ∀tm.Bm),∆′ if

122

• For any choice of A1
m, A

2
m, and R : A1

m ↔ A2
m, it holds that

η, tm ↪→ R ; · � F1, thread(b, a.〈A1
m, b〉) ∼ F2, thread(b, a.〈A2

m, b〉) :: (b : Bm),∆′

Interestingly, the cases other than ∃, ∀, and type variables can all be captured by two generic
rules, one for positive types and one for negative types:

• η ; · ` F1 ∼ F2 :: (a : A+
m),∆′ if Fi = F ′i , !mcell(a, V), there is some Γ such that

Γ ` !mcell(a, V) :: (a : A+
m), and η ; C?(F1,F ′1) ∼ C?(F2,F ′2) :: Γ,∆′.

• η ; · ` F1 ∼ F2 :: (a : A−m),∆′ if whenever Γ, (a : A−m) ` thread(c, a.V) :: (c : Ck) and
F ′1,F ′2 are such that η ; · ` F1|C ,F ′1 ∼ F2|C ,F ′2 :: Γ, (a : A−m), it is also the case that
η ; · ` F1,F ′1, thread(c, a.V) ∼ F2,F ′2, thread(c, a.V) :: (c : Ck),∆

′

While the compactness of this definition is convenient for presentation, for ease of use (and to
handle quantifiers), we prefer the expanded definition where each type is addressed separately.
It would, however, be an interesting item of future work to see if there is a natural way to extend
this to quantifiers as well — certainly the case for positive types has the flavor of an existential
(there is some Γ...), while the case for negative types is more universal.

This definition matches the intuition described above — at each step, we perform a one-
level observation of the configuration. For positive types, this consists of directly looking at a
cell in each configuration, comparing the values stored within, and then making some number of
recursive calls to the definition. For negative types, we instead need to add on to the configuration
in order to probe them further, and after evaluation, we are left with new final configurations to
check for equivalence.

Note that this definition, like that for observational equivalence, relies critically on the com-
putation relation 7→. Similarly, it relies on some concept of observation, though here it is more
difficult to make this generic. In the definition we give above, we have allowed values to be
observed directly, while continuations can only be observed by providing input to them and
examining the output, following the same intuition as the function Oext used in defining exten-
sional equivalence observationally. An interesting avenue of future work would be to define a
notion of observation over which logical equivalence can be parameterized, and then to relate
this to the notion of observation we used in defining observational equivalence, in order to gener-
ically prove, for example, that logical and observational equivalence coincide for a wide range
of choices of observation function and computation relation.

5.5.3 Open Configurations

Our definition for logical equivalence extends easily to open configurations, which depend on
some input, as well. We define

Ξ ; Γ � C1 ∼ C2 :: ∆

to hold if, for any F ′1,F ′2 final such that

Ξ ; · � F ′1 ∼ F ′2 :: Γ,

it also holds that
Ξ ; · � C1,F ′1 ∼ C2,F ′2 :: ∆.

123

That is, if C1, C2 are provided with related final configurations for their input Γ, they yield (after
evaluation) related final configurations at ∆. This will then allow us to consider the equivalence
(or non-equivalence) of a wider range of configurations.

5.5.4 Ill-typed configurations
An interesting observation about these definitions of equivalence is that neither requires that the
configurations under consideration are well-typed. While logical equivalence makes use of types
as a measure to ensure that the relation is well-defined, in principle, two configurations can be
equivalent at some context ∆ without actually being well-typed at ∆. This follows the general
idea of semantic typing [27], where a system of typing is defined based on correct behavior of
programs with respect to the given type. Logical equivalence is a form of semantic type, in this
sense — we might say that a configuration that is logically equivalent to itself at some type ∆
is semantically well-typed, in that, when run in a context interacting according to the protocols
specified by ∆, nothing will go wrong.

This allows for some interesting possibilities, especially in combination with modified com-
putation rules that allow some particular ill-typed configurations to maintain progress. For in-
stance, a rule which reads from a linear cell without consuming it could allow for the sharing
of such cells between multiple users despite their linearity, perhaps as a memory footprint opti-
mization.

5.5.5 Counterexample for looking at single variables
If we choose to define logical equivalence by looking at single variables rather than contexts,
some issues arise with substructurality.

Suppose we define (for this section only)

η ; · ` F1 ∼ F2 :: ∆

if η ; · ` F1 ∼ F2 :: (a : Am) for each a : Am in ∆. We can then define this single-variable
equivalence in much the same way as we defined equivalence originally — it is analogous to the
case where ∆′, the remainder of the context we are examining, is empty. However, one of our
rules, for equivalence at product types, makes use of a non-singleton context in its definition, and
so we would need to modify this case. The most natural definition in this context is to say that
η ; · ` F1 ∼ F2 :: (a : Bm ⊗ Cm) if Fi = F ′i , !mcell(a, 〈b, c〉) and η ; · ` F1 ∼ F2 :: (b : Bm)
and η ; · ` F1 ∼ F2 :: (c : Cm). The critical difference here is that we are separately comparing
F1 and F2 for equivalence at b : Bm and c : Cm, and so the same linear cell may get used
both in checking equivalence at b : Bm and at c : Cm.10 For a simple example, suppose that
we have some C[x] providing some x : Am (writing C[b] to represent [b/x](C[x])) and take
C1 = C[b], C[c], !mcell(a, 〈b, c〉) and C2 = C[d], !mcell(a, 〈d, d〉). Now, if m is linear (or affine),
these two configurations are observationally distinct. A process that attempts to read from a
and then from its two components will succeed on C1, potentially producing some output, while
when run on C2, the cell at address d will be consumed the first time it is read from, causing the

10Restricting to only well-typed configurations prevents this problem, but rules out some interesting examples.

124

process to get stuck upon trying to read from d a second time, producing no output. This process
therefore allows us to distinguish the two configurations, which would be logically equivalent
under the definition presented in this section. The definition that we take, in terms of whole
contexts, avoids this problem, because linear cells, once read from as part of the equivalence
checking threadedure, are removed from the configurations that then get tested for equivalence
at the remainder of the context.

5.5.6 Results on Logical Equivalence

The key result that we would like to show is that logical and observational equivalence coincide
for well-typed configurations.11 In particular, the formulation of logical equivalence that we
present in section 5.5 defines the same relation as extensional observational equivalence, in a way
that we will formalize in this section. We will follow a standard approach to showing this type of
result, beginning by proving what is often called the parametricity or abstraction theorem [89] for
logical equivalence — that all well-typed configurations are logically equivalent to themselves.
We then show that logical equivalence respects observational equivalence, and it follows quickly
that observational equivalence implies logical equivalence.

For the converse direction, we will define what it means for a relation to be a consistent
congruence, and then show that observational equivalence is the coarsest such congruence (rela-
tive to a choice of observation). We can then show that logical equivalence implies observational
equivalence by proving that logical equivalence is a consistent congruence, and that it is therefore
contained in the coarsest such congruence.

Since, in this section, we are working only with extensional observational equivalence, we
will write Γ � C1 ∼= C2 :: ∆ to denote extensional observational equivalence.

We will now begin by showing some general properties of logical equivalence that will be
useful throughout the proofs.

General Properties of Logical Equivalence

Our first general property, inversion, allows us to conclude from the fact that a pair of configura-
tions are equivalent at some (a : Am) that they both contain a corresponding cell at address a —
a minor detail, but which is necessary for technical reasons.
Lemma 12 (Inversion). If η ; · ` F1 ∼ F2 :: (a : Am),∆′, then Fi = F ′i , !mcell(a,Di) for
i ∈ {1, 2}.

Proof. For positive types A+
m, this is immediate from the definition of logical equivalence. For

negative types A−m, we note that equivalence requires that each Fi, augmented with a process
attempting to read from a, is able to reach a final configuration. As such, Fi must contain a filled
cell at address a — otherwise, the process attempting to read from a would block, and since no
other processes exist in this configuration, it would be unable to reach a final state.

11Ideally, we would like to have a simple condition specifying when, even for ill-typed configurations, logical
and observational equivalence coincide, but it is not entirely clear what such a condition looks like.

125

We then establish that logical equivalence is a partial equivalence relation (that is, it is sym-
metric and transitive). A limited form of reflexivity, for well-typed configurations, will come
from parametricity (Theorem 30). We also establish that logical equivalence is closed under con-
verse reduction, which will allow us to more easily connect the definitions of logical equivalence
for final and non-final configurations.
Lemma 13 (Symmetry). Suppose Ξ ; · ` C1 ∼ C2 :: ∆. Then also Ξ ; · ` C2 ∼ C1 :: ∆.

Proof. By induction on ∆. In all but the type variable case, the definition is symmetric, and in
the type variable case, we take the inverse of the given relation.

Lemma 14 (Transitivity). Suppose Ξ ; · ` C1 ∼ C2 :: ∆ and Ξ ; · ` C2 ∼ C3 :: ∆. Then also
Ξ ; · ` C1 ∼ C3 :: ∆.

Proof. By induction on ∆. In the type variable case, we compose the two given relations, while
the other cases are immediate.

Lemma 15 (Closure under Converse Reduction). Suppose Ξ ; Γ ` C1 ∼ C2 :: ∆, and that
C ′1 7→ C1 and C ′2 7→ C2. Then:

• Ξ ; Γ ` C ′1 ∼ C2 :: ∆.
• Ξ ; Γ ` C1 ∼ C ′2 :: ∆.

Proof. This is almost immediate — since reduction is confluent, the fact that C ′1 7→ C1 means
that if C1 7→∗ F1 final, then also C ′1 7→∗ F1, and likewise for C2. The comparison for logical
equivalence then takes place on these final configurations, which are the same in all three listed
equivalences of configurations.

The next several properties that we examine, Configuration Extension, Weakening, and Con-
traction, deal with adding (or removing) irrelevant parts of either the configurations being com-
pared for equivalence, or the context at which they are being compared. Naturally, if two config-
urations are equivalent, they should remain equivalent upon the addition of equal things. Like-
wise, if two configurations are equivalent at a given context, they should also be equivalent at any
sub-context, or at the same context after global renamings. The contraction lemma additionally
allows for a cell to be duplicated in the configurations and its corresponding type to be duplicated
in the contexts, while retaining equality. This can be thought of as a realization of the logical
rule of contraction in the context of equivalence.
Lemma 16 (Configuration Extension). If η ; · ` F1 ∼ F2 :: ∆, then for any F ′1, F ′2 such that
Fi,F ′i is well-formed for each i ∈ {1, 2}, it also holds that η ; · ` F1,F ′1 ∼ F2,F ′2 :: ∆.

Proof. By induction over the derivation of η ; · ` F1 ∼ F2 :: ∆. In each case other than tm and
(·), we apply the inductive hypothesis and continue. In the case of (·), the result is immediate —
any two final configurations are equivalent at the empty context. In the case of tm, we rely on
admissibility of η(tm), which, among other things, ensures that if (a, C1) η(tm) (a, C2), then also
(a, (C1,F ′1)) η(tm) (a, (C2,F ′2)) (see Lemma 11).

Lemma 17 (Weakening). Suppose η ; · ` F1 ∼ F2 :: ∆1,∆2. Then also η ; · ` F1 ∼ F2 :: ∆1.
Likewise, if η ; · � C1 ∼ C2 :: ∆1,∆2, then η ; · � C1 ∼ C2 :: ∆1.

126

Proof. By induction on ∆1.
If ∆1 is empty, then the result is immediate.
In all other cases, ∆1 = (a : Am),∆′1 for some Am, and the result follows by applying the

definition of equivalence at Am, applying the inductive hypothesis to the resulting conclusion to
remove ∆2, and then applying the definition of equivalence again to rebuild an equivalence at
∆1.

For non-final configurations, we evaluate to reach a final configuration, apply the result for
final configurations, and then use (repeated) closure under converse reduction (Lemma 15).

Lemma 18 (Contraction). Suppose η ; · ` F1 ∼ F2 :: (a : Am),∆′, so, by Inversion, for
i ∈ {1, 2}, Fi = F ′i , !mcell(a,Di). Then:

• If b is a fresh symbol and C ∈ σ(m), then also
η ; · ` F1, !mcell(b,D1) ∼ F2, !mcell(b,D2) :: (a : Am), (b : Am),∆′.

• If b is a fresh symbol and C /∈ σ(m), then
η ; · ` F ′1, !mcell(b,D1) ∼ F ′2, !mcell(b,D2) :: (b : Am),∆′.

• Additionally, if C ∈ σ(m), then
η ; · ` F1 ∼ F2 :: (a : Am),∆′ iff η ; · ` F1 ∼ F2 :: (a : Am), (a : Am),∆′.

Proof. The first point follows from lemma 16, using that C ∈ σ(m) to get that Fi, !mcell(b,Di)
is well-formed for each i ∈ {1, 2}.

For the second point, we distinguish cases for the type Am.
If Am is a positive type other than an existential, we apply the definition of equivalence at

that type to get that η ; · ` F ′1 ∼ F ′2 :: ∆V ,∆
′ for some ∆V depending on the cell contents

D1, D2. This is then exactly what we need to apply the definition of equivalence again (now at c
instead of a), giving the desired result.

If Am = ∃tm.Bm, then we have that there exists some R such that

η, tm ↪→ R ; · ` F ′1 ∼ F ′2 :: (b : Bm),∆′.

As in the other positive cases, applying the definition of equivalence again gives the result.
If Am = N{` : A`m}`∈L, then for each ` ∈ L, we have that

η ; · � F1, thread(b, a.`(b)) ∼ F2, thread(b, a.`(b)) :: (b : A`m),∆′.

Since these configurations Fi, thread(b, a.`(b)) can be evaluated to final configurations, we get
that the cells cell(a,Di) are of the form cell(a, {j(y) ⇒ P j

i }j∈L) (otherwise, the configuration
would be stuck). We then have that Fi, thread(b, a.`(b)) 7→ F ′i , thread(b, P `

i [b/y]), and (since
equivalence is closed under forwards reduction by definition) that

η ; · � F ′1, thread(b, P `
1 [b/y]) ∼ F ′2, thread(b, P `

2 [b/y]) :: (b : A`m),∆′.

Inverting these steps, using c in place of a, we get the desired result. This makes use of closure
under converse reduction and the definition of equivalence at N.

We do not show here the other cases for negative types, but they are similar, applying the
definition of equivalence at that type, noting that we must be able to take a step, so the cell data
Di has a suitable form, and then observing that after the step, the cell at address a no longer

127

appears, and so replacing a with c yields the same resulting configuration, allowing us to invert
the initial steps.

For the third point, we proceed by induction on ∆ = (a : Am), viewed as a context, under
the multiset ordering. In fact, this will show more generally that if C ∈ σ(Γ), then

η ; · ` F1 ∼ F2 :: Γ,∆′ iff η ; · ` F1 ∼ F2 :: Γ,Γ,∆′,

and similarly for general, non-final configurations as well.
If Γ = (·), then we are immediately done.
If Γ = (a : tm),Γ′, then η ; · ` F1 ∼ F2 :: Γ,∆′ if and only if we can write Fi = F1

i ,F2
i ,F3

i

such that:

1. F2
i = Fi|C

2. (a, (F1
1 ,F2

1)) η(tm) (a, (F1
2 ,F2

2))

3. η ; · ` F2
1 ,F3

1 ∼ F2
2 ,F3

2 :: Γ′,∆′.

Since C ∈ σ(Γ), in particular, C ∈ σ(m), and so F1
i must be empty and F2

i ,F3
i = Fi. We now

apply the inductive hypothesis at Γ′, giving that

η ; · ` F1 ∼ F2 :: Γ′,∆′ iff η ; · ` F1 ∼ F2 :: Γ′,Γ′,∆′.

Now, we note that the same “split” of Fi into parts remains possible, and indeed, we can do
this split twice, as equivalence at a only requires the contractible part of Fi. Tracing through
the definition of equivalence at (a : tm) twice, we get that η ; · ` F1 ∼ F2 :: Γ′,Γ′,∆′ iff
η ; · ` F1 ∼ F2 :: Γ,Γ,∆′.

We show ⊕ and (as illustrative positive and negative cases, respectively. The remaining
cases are similar to one shown.

Suppose Γ = (a : ⊕j∈JAjm),Γ′. Then, η ; · ` F1 ∼ F2 :: Γ,∆′ iff there is some ` ∈ J such
that Fi = F ′i , !mcell(a, `(b)) and η ; · ` F1 ∼ F2 :: (b : A`m),Γ′,∆′. Applying the inductive
hypothesis at (b : A`m),Γ′, we get that

η ; · ` F1 ∼ F2 :: (b : A`m),Γ′,∆′ iff η ; · ` F1 ∼ F2 :: (b : A`m), (b : A`m),Γ′,Γ′,∆′.

Applying the definition of equivalence at ⊕ types twice gives the desired result.
If Γ = (a : Bm (Cm),Γ′, then whenever η ; · ` F1|C ,F ′1 ∼ F2|C ,F ′2 :: (b : Bm), it

also holds that η ; · � F1,F ′1, thread(c, a.〈b, c〉) ∼ F2,F ′2, thread(c, a.〈b, c〉) :: (c : Cm),Γ′,∆′.
Applying the inductive hypothesis at (c : Cm),Γ′, we get that this is true if and only if

η ; · � F1,F ′1, thread(c, a.〈b, c〉) ∼ F2,F ′2, thread(c, a.〈b, c〉) :: (c : Cm), (c : Cm),Γ′,Γ′,∆′.

Again, unfolding the definition of equivalence at(types twice gives the desired result.

The next two results, on Joining and Splitting, are intuitive, but quite technical in their details.
Joining states, at a high level, that given two pairs of equivalent configurations, C1 ∼ C2 and
D1 ∼ D2 we should be able to also say that C1,D1 is equivalent to C2,D2. This is not quite true,
of course — one obvious problematic case involves Ci andDi providing the same address, so they
cannot even be joined directly. We account for this by allowing some overlap between Ci andDi,

128

but then also need to ensure that this overlap admits contraction, so that it can be used by both
Ci and Di without cells being illegally read multiple times. Splitting is an inverse to Joining, but
similarly has some technical constraints. In particular, while we can join non-final configurations,
there are such configurations that cannot be validly split — consider, for instance, a configuration
containing a cut, where the left-hand side provides some b, and the right-hand side provides c.
There is no way to split this configuration (consisting of only a single process) so that one part
provides b and the other provides c, without first evaluating it. The details of equivalence, of
course, complicate this slightly, but the core problem remains the same. It is also technically
difficult to work with an arbitrary shared portion between the two configurations when splitting
(in that it is often unclear which portion should be shared), and so we will require the entire
contractible portion of the configuration to be split should be considered shared between the
two sides, even if this is not strictly necessary. These two lemmas will be key to much of what
follows.

We will often find it useful in these lemmas to refer to the contractible and non-contractible
parts of configurations, writing C = C|C , C|¬C for this split. Here, C|C is the largest subset D of
C for which C ∈ σ(D), and C|¬C is the remainder of C, capturing the intuitive notion of what
pieces of C may or may not be duplicated.
Lemma 19 (Joining). Suppose that we have contexts ∆1,∆2, final configurations F ji for i = 1, 2
and j = 1, 2, 3, and a family η of admissible relations. Suppose also that the following conditions
hold:
(1) C ∈ σ(F2

i).
(2) η ; · ` F1

1 ,F2
1 ∼ F1

2 ,F2
2 :: ∆1.

(3) η ; · ` F2
1 ,F3

1 ∼ F2
2 ,F3

2 :: ∆2.
(4) ∆1,∆2 is well-formed — i.e., the two contexts share no symbols.
Then, η ; · ` F1

1 ,F2
1 ,F3

1 ∼ F1
2 ,F2

2 ,F3
2 :: ∆1,∆2.

Likewise, the same result holds replacing final configurations F ji everywhere with configura-
tions Cji that need not be final.

Proof. By induction on ∆1,∆2. Note that we prove the results for final configurations and
general configurations by mutual induction. The result for general configurations at a particular
∆1,∆2 relies on the result for final configurations at the same context, but the result for final
contexts invokes the result for general configurations at a smaller context, and so we are still
assured of well-foundedness of the argument. Technically, this is an induction on (∆1,∆2, j),
where j = 0 for the claim about final configurations and j = 1 for the claim about general
configurations.

We first consider general configurations.
Since η ; · � C11 , C21 ∼ C12 , C22 :: ∆1, by definition, C1i , C2i evaluate to final configurations Fai

with η ; · � Fa1 ∼ Fa2 :: ∆1. Likewise, C2i , C3i 7→∗ F bi with η ; · � F b1 ∼ F b2 :: ∆2. Since we
reach a final configuration in each case, critically, C2i cannot have read from any cell produced
by either C1i or C3i — if it did, on one side or the other we would be left with a thread blocked
waiting for a nonexistent cell.12 We may therefore step C2i to F2

i final, independently of the other

12This also relies on symbols generated by a cut always being fresh — if C1i and C3i were allowed to generate cells
with the same address, and C2i to depend on the cell at this address, this would fail.

129

Cji , and then once that is complete, step the other Cji to F ji final. Moreover, Fai = F1
i ,F2

i and
F bi = F2

i ,F3
i . Applying the inductive hypothesis (for final configurations) yields the desired

result almost immediately.
If both ∆1 and ∆2 are empty, then the result is immediate, because equivalence at an empty

context is trivial.
Otherwise, ∆1,∆2 contains at least one entry. We assume without loss of generality that this

entry is in ∆1 (as the definition is symmetric).
If ∆1 = (a : tm),∆′1 for a type variable tm, then we can conclude from (2) that we can split

F1
i ,F2

i = G1i ,G2i ,G3i such that

• G2i = F1
i |C ,F2

i (the contractible part of F1
i ,F2

i)
• (a, (G11 ,G21)) η(tm) (a, (G12 ,G22)).
• η ; · ` G21 ,G31 ∼ G22 ,G32 :: ∆′1.

Note that this means that G1i ,G3i = F1
i |¬C . Applying the inductive hypothesis to ∆′1,∆2, with

the shared portion being F2
i , we conclude that

η ; · ` F1
1 |C ,G31 ,F2

1 ,F3
1 ∼ F1

2 |C ,G32 ,F2
2 ,F3

2 :: ∆′1,∆2.

As such, we can split F1
i ,F2

i ,F3
i into G1i , (F1

i |C ,F2
i ,F3

i |C), and G3i ,F3
i |¬C . Now, using the defi-

nition of equivalence at type variables, and noting that F1
i |C ,F2

i ,F3
i |C = (F1

i ,F2
i ,F3

i)|C , it will
suffice to show that (a, (G11 ,G21 ,F3

1 |C)) η(tm) (a, (G12 ,G22 ,F3
2 |C)), the second condition in this

definition. This, however, follows immediately from Lemma 11, as G1i ,G2i ,F3
i |C is necessarily

well-formed (otherwise, ∆1,∆2 would not be well-formed).
Suppose ∆1 = (A : Bm ⊗ Cm),∆′1. Now, from (2) and the definition of equivalence at

⊗ types, we can conclude that F1
i ,F2

i contains !mcell(a, 〈b, c〉). We distinguish several cases,
depending on whether C ∈ σ(m) or not.

If C /∈ σ(m), then we know that the cell at address a must be in F1
i for i = 1, 2. Write

F1
i = G1i , !mcell(a, 〈b, c〉). We now know that η ; · ` G11 ,F2

1 ∼ G12 ,F2
2 :: (b : Bm), (c : Cm),∆′1.

Applying the inductive hypothesis to (b : Bm), (c : Cm),∆′1,∆2, we conclude that

η ; · ` G11 ,F2
1 ,F3

1 ∼ G12 ,F2
2 ,F3

2 :: (b : Bm), (c : Cm),∆′1,∆2.

We can then apply the definition of equivalence at ⊗ types to conclude the desired result.
If C ∈ σ(m), then we know that η ; · ` F1

1 ,F2
1 ∼ F1

2 ,F2
2 :: (b : Bm), (c : Cm),∆′1.

Applying the inductive hypothesis to (b : Bm), (c : Cm),∆′1,∆2, we conclude that

η ; · ` F1
1 ,F2

1 ,F3
1 ∼ F1

2 ,F2
2 ,F3

2 :: (b : Bm), (c : Cm),∆′1,∆2.

We can then apply the definition of equivalence at ⊗ types to conclude the desired result.
The other cases for ∆1 = (A : A+

m),∆′1 where A+
m is a positive type are similar.

Suppose ∆1 = (A : Bm (Cm),∆′1. Let Fi = F1
i ,F2

i ,F3
i for i = 1, 2. We wish to

show that η ; · ` F1 ∼ F2 :: (A : Bm (Cm),∆′1,∆2. Suppose we have F ′i such that
η ; · ` F1|C ,F ′1 ∼ F2|C ,F ′2 :: (b : Bm).

Let G ′i = F ′i ∪ (Fi|C ∩F3
i). Then, η ; · ` F1

1 |C ,F2
1 |C ,G ′1 ∼ F1

2 |C ,F2
2 |C ,G ′2 :: (b : Bm), since

Fi|C = F1
i |C ,F2

i |C ,F3
i |C . We therefore know by definition of equivalence at(types that

η ; · ` F1
1 ,F2

1 ,G ′1, thread(c, a.〈b, c〉) ∼ F1
2 ,F2

2 ,G ′2, thread(c, a.〈b, c〉) :: (c : Cm),∆′1.

130

Applying the inductive hypothesis (for general configurations) to (c : Cm),∆′1,∆2, taking the
shared portion to be F2

i ∪ (Fi|C ∩ F3
i), we get that

η ; · ` F1,F ′1, thread(c, a.〈b, c〉) ∼ F2,F ′2, thread(c, a.〈b, c〉) :: (c : Cm),∆′1,∆2.

The definition of equivalence at(types then gives that η ; · ` F1 ∼ F2 :: ∆1,∆2, as desired.
The remaining cases for negative types are similar (if simpler).

Lemma 20 (Splitting). If η ; · ` F1 ∼ F2 :: ∆1,∆2 then it is possible to write Fi = F1
i ,F2

i ,F3
i

for i = 1, 2, such that:
(1) F2

i = Fi|C
(2) η ; · ` F1

1 ,F2
1 ∼ F1

2 ,F2
2 :: ∆1

(3) η ; · ` F2
1 ,F3

1 ∼ F2
2 ,F3

2 :: ∆2

Proof. By induction on ∆1.
If ∆1 is empty, then the result is immediate, letting F2

i = Fi|C and F3
i the remainder of Fi.

If ∆1 = (a : tm),∆′1 for some type variable tm, then, by definition, Fi = G1i ,G2i ,G3i such that

• G2i = Gi|C
• (a, (G11 ,G21)) η(tm) (a, (G12 ,G22))
• η ; · ` G21 ,G31 ∼ G22 ,G32 :: ∆′1,∆2

Now, applying the inductive hypothesis to ∆′1,∆2, we get a split of G2i ,G3i = G4i ,G5i ,G6i . Since
G2i = Fi|C , we also know that G5i = G2i , and so this yields also a split of G3i into G4i ,G6i , satisfying
η ; · ` G41 ,G21 ∼ G42 ,G22 :: ∆′1 and η ; · ` G21 ,G61 ∼ G22 ,G62 :: ∆2.

Taking F1
i = G1i ,G4i , F2

i = G2i , and F3
i = G6i , we can easily see that the desired result holds

— to show that η ; · ` F1
1 ,F2

1 ∼ F1
2 ,F2

2 :: (a : tm),∆′1, we split this as G1i ,F2
i ,G4i .

Positive Cases Suppose ∆1 = (a : ⊕{` : A`m}`∈L),∆′1. Then, by definition, there is j ∈ L
such that Fi = G ′i, !mcell(a, j(b)). We consider two cases, depending on whether C ∈ σ(m) or
not.

If C ∈ σ(m), then we also know by definition that η ; · ` F1 ∼ F2 :: (b : Ajm),∆′1,∆2.
Applying the inductive hypothesis, we get a split of Fi = F1

i ,F2
i ,F3

i such that

(1) F2
i = Fi|C

(2) η ; · ` F1
1 ,F2

1 ∼ F1
2 ,F2

2 :: (b : Ajm),∆′1
(3) η ; · ` F2

1 ,F3
1 ∼ F2

2 ,F3
2 :: ∆2

It now will suffice to show that η ; · ` F1
1 ,F2

1 ∼ F1
2 ,F2

2 :: ∆1 as well, for which it suffices to
show that !mcell(a, j(b)) occurs in F1

i or F2
i for i = 1, 2. This is immediate, as C ∈ σ(m), so

necessarily, this cell occurs in F2
i .

If C /∈ σ(m), then we also know that η ; · ` G1 ∼ G2 :: (b : Ajm),∆′1,∆2. Again, we apply
the inductive hypothesis to get a split of Gi = G1i ,G2i ,G3i . Now, we take F1

i = G1i , !mcell(a, j(b)),
and F ji = Gji for j = 2, 3. Since C /∈ σ(m), and Fi = Gi, !mcell(a, j(b)), we can conclude that
Gi|C = G2i = F2

i = Fi|C . We can then also easily conclude that η ; · ` F2
1 ,F3

1 ∼ F2
2 ,F3

2 :: ∆2.
It remains to show that η ; · ` F1

1 ,F2
1 ∼ F1

2 ,F2
2 :: ∆1. This is almost immediate by definition —

131

we know that F1
i ,F2

i = G1i ,G2i , !mcell(a, j(b)), and the necessary equivalence at (b : Ajm) comes
from the inductive hypothesis.

The other cases for ∆1 = (a : A+
m),∆′1 are similar.

Negative Cases Suppose ∆1 = (a : N{` : A`m}`∈L),∆′1. Then, by definition, for any choice of
j ∈ L and fresh symbol b, we have that

η ; · ` F1, thread(b, a.j(b)) ∼ F2, thread(b, a.j(b)) :: (b : Ajm),∆′1,∆2.

This means that Fi, thread(b, a.j(b)) 7→∗ Gi final with η ; · ` G1 ∼ G2 :: (b : Ajm),∆′1,∆2, and
we may therefore apply the inductive hypothesis to split Gi = G1i ,G2i ,G3i such that

(1) G2i = Gi|C
(2) η ; · ` G11 ,G21 ∼ G12 ,G22 :: (b : Ajm),∆′1
(3) η ; · ` G21 ,G31 ∼ G22 ,G32 :: ∆2

Now, we note that Fi and Gi consist of three types of cells:

• Cells that occur both in Fi and Gi
• Cells that occurred in Fi, but were consumed by the running process that yields Gi. Note

that these cells necessarily are not contractible, and that they do not appear in any Gji
(because they do not appear in Gi)

• Cells newly created for Gi by the process. These cells do not occur in Fi, and may occur in
any of the Gji . However, since b is chosen fresh, and any new cells created by the process
will also be at fresh addresses, ∆2 cannot depend on them, so we may assume without loss
of generality that these cells occur only in G1i and G2i .

Choose F3
i = Fi ∩ G3i 13 and F2

i = Fi|C . We know that η ; · ` G21 ,G31 ∼ G22 ,G32 :: ∆2, and
F2
i ,F3

i is nearly the same as G2i ,G3i , differing only in that G2i may be larger than F2
i . However,

since ∆2 cannot depend on any of these new cells, we may also conclude that

η ; · ` F2
1 ,F3

1 ∼ F2
2 ,F3

2 :: ∆2.

It now only remains to define F1
i = (Fi ∩ G1i) ∪ (Fi \ Gi).14 The first term consists of

the portion of G1i that already occurred in Fi, while the second term is the portion of Fi that
was consumed to produce the remainder of G1i (and possibly some of G2i). We now claim
that η ; · ` F1

1 ,F2
1 , thread(b, a.j(b)) ∼ F1

2 ,F2
2 , thread(b, a.j(b)) :: (b : Ajm),∆′1. This

follows from closure of logical equivalence under converse reduction (Lemma 15) if we can
show that F1

i ,F2
i , thread(b, a.j(b)) 7→∗ G1i ,G2i . This is almost immediate — we need only

show that the running process can never read from any cells in F3
i , but if it were to read

from such a cell (which, not being in G2i , is necessarily not contractible), this would con-
sume the cell, preventing it from occurring in G3i , contradicting that it was in F3

i to begin
with. As such, the process only reads from cells that either occur in F1

i or F2
i , or cells that

13Based on our assumption above, this is, without loss of generality, just G3i
14This can be written more simply as Fi \ G2i \ G3i , but this obscures the meaning of the two different pieces of

F1
i .

132

it newly creates, and so indeed F1
i ,F2

i , thread(b, a.j(b)) reaches a final state, containing the
cells that occur both in F1

i ,F2
i and in Gi, as well as the cells that were newly created by the

process (and not also consumed). This gives precisely G1i ,G2i — G1i differs from F1
i only in

the addition of some new cells created by the running process, and likewise for G2i . Since
η ; · ` F1

1 ,F2
1 , thread(b, a.j(b)) ∼ F1

2 ,F2
2 , thread(b, a.j(b)) :: (b : Ajm),∆′1 holds, we also

get, by definition, that η ; · ` F1
1 ,F2

1 ∼ F1
2 ,F2

2 :: (a : N{` : A`m}`∈L),∆′1, concluding the
desired result.

Suppose ∆1 = (a : Bm (Cm),∆′1. Then, by definition, whenever we have F ′1,F ′2 such
that η ; · ` F1|C ,F ′1 ∼ F2|C ,F ′2 :: (b : Bm), it also holds that

η ; · ` F1,F ′1, thread(c, a.〈b, c〉) ∼ F2,F ′2, thread(c, a.〈b, c〉) :: (c : Cm),∆′1,∆2.

This means that Fi,F ′i , thread(b, a.j(b)) 7→∗ Gi final with η ; · ` G1 ∼ G2 :: (c : Cm),∆′1,∆2,
and we may therefore apply the inductive hypothesis to split Gi = G1i ,G2i ,G3i such that

(1) G2i = Gi|C
(2) η ; · ` G11 ,G21 ∼ G12 ,G22 :: (c : Cm),∆′1
(3) η ; · ` G21 ,G31 ∼ G22 ,G32 :: ∆2

As in the case of N, we observe that there are several types of cells in Gi and Fi, the only
difference being that some cells in Gi may have come from F ′i . We note that the cells in F ′i can,
without loss of generality, be placed in G1i ,G2i , for much the same reason that any cells generated
by the running process can be placed in this part of the configuration.

Now, take F2
i = Fi|C and F3

i = Fi ∩ G3i (or just F3
i = G3i). As in the case for N types,

we can see that any portion of G2i not in F2
i is unnecessary for ∆2, and so we still have that

η ; · ` F2
1 ,F3

1 ∼ F2
2 ,F3

2 :: ∆2.
Finally, take F1

i = (Fi ∩ G1i) ∪ (Fi \ Gi). Again, as in the case of N types, the first portion
of this consists of the part of G1i that already occurred in Fi (the remainder comes from F ′i and
new cells generated by the running process), and the second portion consists of cells that are
consumed by the running process while generating G1i . We now note that

F1
i ,F2

i ,F ′i , thread(c, a.〈b, c〉) 7→∗ G1i ,G2i ,

and closure of logical equivalence under converse reduction (Lemma 15) gives us the desired
result, using that F ′i were arbitrarily chosen and the definition of equivalence at(types.

The remaining cases for negative types are similar.

While the next two lemmas on type extension and reuse of contractible data are more similar
in spirit to the earlier results on weakening and contraction, specifying how we can modify the
context at which configurations are equivalent, they rely on joining and splitting.
Lemma 21 (Type Extension). If Ξ ; Γ � C1 ∼ C2 :: ∆, and Θ is a context which shares no
symbols with Γ, ∆, C1, or C2, then also Ξ ; Γ,Θ � C1 ∼ C2 :: ∆,Θ.

Proof. Suppose Ξ ; · ` F1 ∼ F2 :: Γ,Θ.
By Splitting (Lemma 20), we can write Fi = F1

i ,F2
i ,F3

i such that:

1. F2
i = Fi|C

133

2. Ξ ; · ` F1
1 ,F2

1 ∼ F1
2 ,F2

2 :: Γ

3. Ξ ; · ` F2
1 ,F3

1 ∼ F2
2 ,F3

2 :: Θ

Now, by assumption, this means that Ξ ; · � F1
1 ,F2

1 , C1 ∼ F1
2 ,F2

2 , C2 :: ∆. Joining (Lemma 19)
with the shared portion being F2

i , and using that ∆ and Θ share no symbols, then gives us that
Ξ ; · � F1, C1 ∼ F2, C2 :: ∆,Θ. As such, Ξ ; Γ,Θ � C1 ∼ C2 :: ∆,Θ.

Lemma 22 (Reuse). Suppose Ξ ; Γ1,Γ2 � C1 ∼ C2 :: ∆. Suppose also that C ∈ σ(Γ2) and that
∆,Γ2 is well-formed. Then, Ξ ; Γ1,Γ2 � C1 ∼ C2 :: ∆,Γ2.

Proof. Suppose Ξ ; · � F1 ∼ F2 :: Γ1,Γ2. By splitting, we can write Fi = F1
i ,F2

i ,F3
i such

that:

1. F2
i = Fi|C

2. Ξ ; · ` F1
1 ,F2

1 ∼ F1
2 ,F2

2 :: Γ1

3. Ξ ; · ` F2
1 ,F3

1 ∼ F2
2 ,F3

2 :: Γ2.

Since C ∈ σ(Γ2), we note that F2
i ,F3

i must be entirely contractible, and so, in particular, F3
i

must be empty.
By definition and our initial assumption, Ξ ; · � F1, C1 ∼ F2, C2 :: ∆. Now, applying joining

with the shared portion being F2
i , we get that Ξ ; · � F1, C1 ∼ F2, C2 :: ∆,Γ2, as desired.

The next three results are used to handle type variables, and in particular, to show that logical
equivalence itself is a sensible basis for defining equality at a type variable.
Lemma 23 (Compositionality for Closed Configurations). Suppose that for some Am, R is de-
fined by

(a, C1) R (a, C2) if and only if η ; · ` C1 ∼ C2 :: (a : Am).

Then,

η ; · ` F1 ∼ F2 :: ∆[Am/tm] if and only if η, tm ↪→ R ; · ` F1 ∼ F2 :: ∆,

and similarly,

η ; · � C1 ∼ C2 :: ∆[Am/tm] if and only if η, tm ↪→ R ; · � C1 ∼ C2 :: ∆.

Proof. We first consider the case of general (not necessarily final) configurations C. By defini-
tion, η ; · � C1 ∼ C2 :: ∆[Am/tm] if and only if there are F1,F2 final such that Ci 7→∗ Fi and
η ; · ` F1 ∼ F2 :: ∆[Am/tm]. Similarly, η, tm ↪→ R ; · � C1 ∼ C2 :: ∆ if and only if there
are F ′1,F ′2 final such that Ci 7→∗ F ′i and η, tm ↪→ R ; · ` F ′1 ∼ F ′2 :: ∆. Confluence means that
if Ci 7→∗ Fi and Ci 7→∗ F ′i final, then Fi and F ′i are equal up to renaming, and so the result for
general configurations C reduces to proving the result for final configurations F .

For final configurations F , we proceed by induction on ∆.
If ∆ = (·), then the result is immediate, as we have no proof obligation.
Suppose ∆ = (a : tm),∆′ and that η, tm ↪→ R ; · ` F1 ∼ F2 :: (a : tm),∆′. By definition,

then, we can write Fi = F1
i ,F2

i ,F3
i such that

• F2
i = Fi|C for i = 1, 2

134

• (a, (F1
1 ,F2

1)) R (a, (F1
2 ,F2

2)), or η ; · ` F1
1 ,F2

1 ∼ F1
2 ,F2

2 :: (a : Am).
• η, tm ↪→ R ; · ` F2

1 ,F3
1 ∼ F2

2 ,F3
2 :: ∆′.

Applying the induction hypothesis to ∆′, we can conclude that

η ; · ` F2
1 ,F3

1 ∼ F2
2 ,F3

2 :: ∆′[Am/tm].

Then, by Joining (Lemma 19), we get that η ; · ` F1 :: (a : Am),∆′[Am/tm], which is exactly
the desired result.

Now, suppose that ∆ = (a : tm),∆′ and that η ; · ` F1 ∼ F2 :: (a : Am),∆′[Am/tm]. By
lemma 20, we can write Fi = F1

i ,F2
i ,F3

i such that

• F2
i = Fi|C for i = 1, 2

• η ; · ` F1
1 ,F2

1 ∼ F1
2 ,F2

2 :: (a : Am), or, equivalently, (a, (F1
1 ,F2

1)) R (a, (F1
2 ,F2

2)).
• η ; · ` F2

1 ,F3
1 ∼ F2

2 ,F3
2 :: ∆′[Am/tm].

Applying the inductive hypothesis to ∆′, we get that η, tm ↪→ R ; · ` F2
1 ,F3

1 ∼ F2
2 ,F3

2 :: ∆′.
The result then follows immediately from the definition for equivalence at type variables.

In all remaining cases, we can just recurse, applying the inductive hypothesis as necessary.

Lemma 24 (Compositionality for Open Configurations). Suppose that for someAm,R is defined
by (a, C1) R (a, C2) if and only if η ; · ` C1 ∼ C2 :: (a : Am).

Then, η ; Γ[Am/tm] � C1 ∼ C2 :: ∆[Am/tm] if and only if η, tm ↪→ R ; Γ � C1 ∼ C2 :: ∆.

Proof. Suppose η ; · � C ′1 ∼ C ′2 :: Γ[Am/tm]. By Lemma 23, this is true if and only if
η, tm ↪→ R ; · ` C ′1 ∼ C ′2 :: Γ.

Now, again by Lemma 23, we have that η ; · � C1, C ′1 ∼ C2, C ′2 :: ∆[Am/tm] if and only if
η, tm ↪→ R ; · � C1, C ′1 ∼ C2, C ′2 :: ∆. Since C ′1, C ′2 were arbitrary equivalent configurations, this
gives exactly the desired result.

Lemma 25 (Extension of Type Variable Context). Suppose that tm does not occur free in ∆, and
that R : Am ↔ Bm. Then, η ; · ` F1 ∼ F2 :: ∆ if and only if η, tm ↪→ R ; · ` F1 ∼ F2 :: ∆.

Proof. Since tm does not occur free in ∆, and R is only used in cases where tm occurs free in ∆,
R is never used in such a proof of equivalence, and so can be freely removed (or added) without
affecting the correctness of such a proof.

Parametricity

We now set out to prove parametricity. Since we are given a well-typed configuration, we know
that there is a typing derivation for it. By providing a logical equivalence version of each typ-
ing rule, we can then build a derivation of equivalence with the same structure as the typing
derivation, and so we begin by proving these variants of each typing rule.

For the positive left rules, where we have several different cases to distinguish, depending
on the value of α and whether the principal formula admits contraction or not, the following

135

generic lemma will be useful. Unfortunately, existentials behave differently enough from the
other positive types15 that we cannot include them:
Lemma 26. Let A+

m be a positive type which is not an existential type, and η : Ξ. Suppose
η ; · ` F1 ∼ F2 :: Γ, (a : A+

m).
Inversion tells us that Fi = F ′i , !mcell(a, V) and that there is ∆V (dependent on A+

m) such
that Ξ ; ∆V � !mcell(a, V) :: (a : A+

m). For instance, if A+
m = ⊕j∈JAjm, then V has the form

`(b) and ∆V is b : A`m.
Then also η ; · ` Cm?(F1,F ′1) ∼ Cm?(F2,F ′2) :: Γ, (a : A+

m)α,∆V , where α may only be 1
if C ∈ σ(m).

Proof. By definition of logical equivalence (at positive types), we get that Fi = F ′i , !mcell(a, V)
and that η ; · ` Cm?(F1,F ′1) ∼ Cm?(F2,F ′2) :: Γ,∆V .

If α = 0, we note that we already have η ; · ` Cm?(F1,F ′1) ∼ Cm?(F2,F ′2) :: Γ,∆V , which
is exactly the desired result.

If α = 1, then we necessarily are in the case where C ∈ σ(m). Applying the third part of
contraction (Lemma 18) to our initial hypothesis, we also get that

η ; · ` F1 ∼ F2 :: Γ, (a : A+
m), (a : A+

m).

By the definition of equivalence at A+
m, this means that (among other things)

η ; · ` F1 ∼ F2 :: Γ, (a : A+
m),∆V ,

which is exactly the desired result when α = 1.

We now go on to prove a sample of these logical equivalence versions of our typing rules,
beginning with the judgmental rules of cut and identity, and then showing some example positive
and negative cases.
Lemma 27 (cut). Suppose Γ,∆ ≥ m ≥ r, and that C ∈ σ(Γ).

If
Ξ ; Γ,∆ � thread(a, P1) ∼ thread(a, P2) :: (a : Am)

and
Ξ ; Γ,∆′, a : Am � thread(c,Q1) ∼ thread(c,Q2) :: (c : Cr)

then it also holds that

Ξ ; Γ,∆,∆′ � thread(c, x← P1[x/a] ; Q1[x/a]) ∼ thread(c, x← P2[x/a] ; Q2[x/a]) :: (c : Cr)

Proof. Fix some ξ1, ξ2 : Ξ and η : ξ1 ↔ ξ2 (we will often write Ξ : η for this, avoiding the need
to handle ξ1 and ξ2 explicitly where they are not needed). By type extension (Lemma 21) with
∆′ applied to the first hypothesis, we get that

η ; Γ,∆,∆′ � thread(a, P1) ∼ thread(a, P2) :: ∆′, (a : Am)

15Our existentials are positive, in that their left rule is invertible, but the need to introduce a new type vari-
able/admissible relation to work with them makes them not fit into the context of this lemma

136

Now, applying reuse (Lemma 22) with Γ, we have

η ; Γ,∆,∆′ � thread(a, P1) ∼ thread(a, P2) :: Γ,∆′, (a : Am)

Let η ; · ` F1 ∼ F2 :: Γ,∆,∆′. Applying the definition of equivalence for open configura-
tions, we get that

η ; · ` F1, thread(a, P1) ∼ F2, thread(a, P2) :: Γ,∆′, (a : Am).

As such, Fi, thread(a, Pi) 7→∗ F ′i for some final F ′i with η ; · ` F ′1 ∼ F ′2 :: Γ,∆, (a : Am).
Again applying the definition of equivalence for open configurations, this time to our second

hypothesis, we get

η ; · � F ′1, thread(c,Q1) ∼ F ′2, thread(c,Q2) :: (c : Cr).

Now, we note that Fi, thread(c, x ← Pi[x/a] ; Qi[x/a]) 7→ Fi, thread(a, P1), thread(c,Qi),
and that Fi, thread(a, Pi), thread(c,Qi) 7→∗ F ′i , thread(c,Qi), and so closure of logical equiva-
lence under converse reduction gives the desired result.

Lemma 28 (id). Suppose W ∈ σ(Γ).
Then,

Ξ ; Γ, a : Am � thread(c, c← a) ∼ thread(c, c← a) :: (c : Am)

Proof. Fix some η : Ξ, and let η ; · ` F1 ∼ F2 :: Γ, a : Am. By Inversion (Lemma 12),
we can write Fi = F ′i , !mcell(a,Di) for some cell data Di. As such, we may conclude that
Fi, thread(c, c← a) 7→ Cm?(Fi,F ′i), !mcell(c,Di).

If C ∈ σ(m), then the first case of contraction (Lemma 18) gives us that

η ; · ` F1, !mcell(c,D1) ∼ F2, !mcell(c,D2) :: (a : Am), (c : Am).

After weakening (Lemma 17) to remove (a : Am), closure under converse reduction gives the
result.

If C /∈ σ(m), then the second case of contraction gives us that

η ; · ` F ′1, cell(c,D1) ∼ F ′2, cell(c,D2) :: (c : Am),

as desired.

Lemma 29 (↓Lα). Suppose m, k are modes with k ≤ m, and that α ∈ {0, 1}, and that if α = 1
then C ∈ σ(k). If

Ξ ; Γ, (b : ↓mk Am)α, a : Am � thread(c,Q1) ∼ thread(c,Q2) :: (c : Cr)

then also

Ξ ; Γ, b : ↓mk Am � thread(c, case b (y ⇒ Q1[y/a])) ∼ thread(c, case b (y ⇒ Q2[y/a])) :: (c : Cr)

137

Proof. Fix η : Ξ, and suppose that η ; · ` F1 ∼ F2 :: Γ, b : ↓mk Am.
By definition of equivalence at ↓mk Am, we can write Fi = F ′i , !kcell(b, shift(a)), and then,

applying Lemma 26, we get that

η ; · ` Cm?(F1,F ′1) ∼ Cm?(F2,F ′2) :: Γ, (b : ↓mk Am)α, (a : Am)

Applying the definition of equivalence for open configurations, we see that

η ; · � Cm?(F1,F ′1), thread(c,Q1) ∼ Cm?(F2,F ′2), thread(c,Q2) :: (c : Cr)

Now, observe that Fi, thread(c, case b (y ⇒ Qi[y/a])) 7→ Cm?(Fi,F ′i), thread(c,Qi), and
so the result follows from closure under converse reduction.

Lemma 30 (↓R0). Suppose W ∈ σ(Γ).
Then,

Ξ ; Γ, (a : Am) � thread(ck.shift(am)) ∼ thread(ck.shift(am)) :: (c : ↓mk Am).

Proof. Fix η : Ξ, and let η ; · ` F1 ∼ F2 :: Γ, (a : Am).
Observe that Fi, thread(ck.shift(am)) 7→ Fi, !kcell(ck, shift(am)), and so by closure under

converse reduction, it will suffice to show that

η ; · ` F1, !kcell(ck, shift(am)) ∼ F2, !kcell(ck, shift(am)) :: (c : ↓mk Am).

We already have that Fi, !kcell(ck, shift(am)) contains a suitable cell, and so it only remains to
show that

η ; · ` F1, Ck?(!kcell(ck, shift(am)), ·) ∼ F2, Ck?(!kcell(ck, shift(am)), ·) :: (a : Am).

By weakening (Lemma 17), we get that

η ; · ` F1 ∼ F2 :: (a : Am),

and we can then (in the case where C ∈ σ(k)) apply Lemma 16 to get the desired result.

Lemma 31 ((L0). Suppose W ∈ σ(Γ). Then,

Ξ ; Γ, w : Am, x : Am(Bm � thread(y, x.〈w, y〉) ∼ thread(y, x.〈w, y〉) :: (y : Bm)

Proof. Fix η : Ξ and suppose that η ; · ` F1 ∼ F2 :: Γ, w : Am, x : Am (Bm. Applying
Splitting (Lemma 20), we can write Fi = F1

i ,F2
i ,F3

i such that:

1. F2
i = Fi|C

2. η ; · ` F1
1 ,F2

1 ∼ F1
2 ,F2

2 :: (w : Am)

3. η ; · ` F2
1 ,F3

1 ∼ F2
2 ,F3

2 :: Γ, (x : Am(Bm)

Now, note that (F2
i ,F3

i)|C = F2
i , so, taking F ′i in the definition of equivalence at(types to

be F1
i , we can conclude that

η ; · � F1, thread(y, x.〈w, y〉) ∼ F2, thread(y, x.〈w, y〉) :: (y : Bm),Γ.

Weakening away Γ then gives the desired result.

138

Lemma 32 ((R). Suppose Ξ ; Γ, w : Am ` thread(y, P1) ∼ thread(y, P2) :: (y : Bm). Then,

Ξ ; Γ ` thread(x, case x (〈w, y〉 ⇒ P1)) ∼ thread(x, case x (〈w, y〉 ⇒ P2)) :: (x : Am(Bm)

Proof. Fix η : Ξ, and suppose that η ; · ` F1 ∼ F2 :: Γ.
Now, let η ; · ` F ′1 ∼ F ′2 :: (w : Am). By Joining (Lemma 19),

η ; · ` F1,F ′1 ∼ F2,F ′2 :: Γ, w : Am,

and so by assumption,

η ; · ` F1,F ′1, thread(y, P1) ∼ F2,F ′2, thread(y, P2) :: (y : Bm).

We then note that Ci,F ′i , thread(x, case x (〈w, y〉 ⇒ Pi)) 7→∗ Fi,F ′i , thread(y, Pi), and so the
result follows from (repeated) closure under converse reduction (Lemma 23).

Lemma 33 (∃Lα). Suppose Ξ ` Cr and

Ξ, tm ; Γ, (a : ∃tm.Am)α, b : Am ` thread(c,Q1) ∼ thread(c,Q2) :: (c : Cr),

with α = 1 only if C ∈ σ(m).
Then also

Ξ ; Γ, a : ∃tm.Am ` thread(c, case x (〈tm, y〉 ⇒ Q1[y/b])) ∼
thread(c, case x (〈tm, y〉 ⇒ Q2[y/b])) :: (c : Cr).

Proof. Fix η : Ξ, and suppose that η ; · ` F1 ∼ F2 :: Γ, a : ∃tm.Am. By definition, then, there
is some R : B1

m ↔ B2
m such that Fi = F ′i , !mcell(a, 〈Bi

m, b〉), and

η, tm ↪→ R ; · ` Cm?(F1,F ′1) ∼ Cm?(F2,F ′2) :: Γ, (b : Am).

If α = 0, using the definition of logical equivalence for open configurations and our first
hypothesis, we get that

η, tm ↪→ R ; · � Cm?(F1,F ′1), thread(c,Q1) ∼ Cm?(F2,F ′2), thread(c,Q2) :: (c : Cr)

If α = 1, then necessarily C ∈ σ(m), and so by applying the third part of contraction
(Lemma 18) to our initial supposition about the Fi, we get that

η ; · ` F1 ∼ F2 :: Γ, (a : ∃tm.Am), (a : ∃tm.Am)

Applying the definition of equivalence at ∃tm.Am, we get that there is some R′ : C1
m ↔ C2

m such
that

η, tm ↪→ R′ ; · ` F1 ∼ F2 :: Γ, (a : ∃tm.Am), (b : Am).

Again, we can combine this with our first hypothesis to get that

η, tm ↪→ R′ ; · � F1, thread(c,Q1) ∼ F2, thread(c,Q2) :: (c : Cr)

In either case, Fi, thread(c, case x (〈tm, y〉 ⇒ Qi[y/b])) 7→ Cm?(Fi,F ′i), thread(c,Qi), and
so by closure under converse reduction, we have the result.

139

Lemma 34 (∃R0). Suppose Ξ ` Bm and Ξ, tm ` Am, and that W ∈ σ(Γ). Then,

Ξ ; Γ, a : Am[Bm/tm] ` thread(c, c.〈Bm, a〉) ∼ thread(c, c.〈Bm, a〉) :: (c : ∃tm.Am)

Proof. Fix η : Ξ and let η ; · ` F1 ∼ F2 :: Γ, a : Am[Bm/tm]. By compositionality for closed
configurations (Lemma 23), ifR is defined by (a, C1) R (a, C2) when η ; · ` C1 ∼ C2 :: (a : Bm),
we get that

η, tm ↪→ R ; · ` F1,∼ F2 :: Γ, a : Am

as well.
Observe that Fi, thread(c, c.〈Bm, a〉) 7→ Fi, !mcell(c, 〈Bm, a〉), which we may therefore con-

sider instead (by closure under converse reduction). By the definition of equivalence at existential
types, we need to find R : Bm ↔ Bm such that

η, tm ↪→ R ; · ` F1, Cm?(!mcell(c, 〈Bm, a〉, ·) ∼ F2, Cm?(!mcell(c, 〈Bm, a〉, ·) :: (a : Am),

but as we have seen, with the aid of configuration extension (Lemma 16) in the case where m
admits contraction, defining R by logical equivalence at Bm gives exactly the needed condition.

Lemma 35 (∀L0). Suppose Ξ ` Bm and W ∈ σ(Γ). Then,

Ξ ; Γ, a : ∀tm.Am ` thread(c, a.〈Bm, c〉) ∼ thread(c, a.〈Bm, c〉) :: (c : Am[Bm/tm])

Proof. Fix η : Ξ and suppose that η ; · ` F1 ∼ F2 :: Γ, a : ∀tm.Am.
By definition of equivalence at universally-quantified types, then, we have that whenever

R : B1
m ↔ B2

m, it holds that

η, tm ↪→ R ; · � F1, thread(c, a.〈B1
m, c〉) ∼ F2, thread(c, a.〈B2

m, c〉) :: Γ, (c : Am)

By compositionality for closed configurations (lemma 23), we then get (using R defined by
logical equivalence at Bm, and B1

m = B2
m = Bm) that

η ; · � F1, thread(c, a.〈Bm, c〉) ∼ F2, thread(c, a.〈Bm, c〉) :: Γ, (c : Am[Bm/tm])

which is exactly the desired result.

Lemma 36 (∀R). If

Ξ, tm ; Γ ` thread(a,Q1) ∼ thread(a,Q2) :: (a : Am)

then
Ξ ; Γ ` thread(c, case c (〈tm, y〉 ⇒ Q1[y/c])) ∼

thread(c, case c (〈tm, y〉 ⇒ Q2[y/c])) :: (c : ∀tm.Am).

Proof. Fix η : Ξ and suppose that η ; · ` F1 ∼ F2 :: Γ.
We observe thatFi, thread(c, case c (〈tm, y〉 ⇒ Qi[y/c])) 7→ Fi, !mcell(c, 〈tm, y〉 ⇒ Qi[y/c]),

so by closure under converse reduction, we only need to show these final configurations to be
equivalent at (c : ∀tm.Am). Fix some R : B1

m ↔ B2
m. Using that tm does not occur free in

140

Γ (since Ξ, tm is well-formed, and η ; · ` F1 ∼ F2 :: Γ), we can extend the relation η using
Lemma 25, and get that

η, tm ↪→ R ; · ` F1 ∼ F2 :: Γ

Combining this with our hypothesis, using the definition of equivalence for open configurations,
we get that

η, tm ↪→ R ; · � F1, thread(a,Q1) ∼ F2, thread(a,Q2) :: (a : Am)

We now note that

Fi, thread(c, case c (〈tm, y〉 ⇒ Qi[y/c])), thread(a, c.〈Bi
m, a〉) 7→∗

Fi, Cm?(!mcell(c, 〈tm, y〉 ⇒ Qi[y/c]), ·), thread(a,Qi).

If m admits contraction, we can extend the configuration Fi, thread(a,Qi) by adding the cell
!mcell(c, 〈tm, y〉 ⇒ Qi[y/c]), giving us that

η, tm ↪→ R ; · � F1, Cm?(!mcell(c, 〈tm, y〉 ⇒ Q1[y/c]), ·), thread(a,Q1) ∼
F2, Cm?(!mcell(c, 〈tm, y〉 ⇒ Q2[y/c]), ·), thread(a,Q2) :: (a : Am)

Closure under converse reduction then gives us that also

η, tm ↪→ R ; · � F1, !mcell(c, 〈tm, y〉 ⇒ Q1[y/c]), thread(a,Q1) ∼
F2, !mcell(c, 〈tm, y〉 ⇒ Q2[y/c]), thread(a,Q2) :: (a : Am)

Now, since R was chosen arbitrarily, we may apply the definition of equivalence at ∀tm.Am, and
use closure under converse reduction one last time to give the result.

In addition to the rules for typing processes, we also need logical equivalence versions of
the rules for typing configurations. The empty configuration rule follows immediately from our
definitions.
Lemma 37 (Empty Configuration). For any Γ and Ξ, we have Ξ ; Γ ` (·) ∼ (·) :: Γ.

For singleton configurations, we rely on closure under converse reduction to type configura-
tions with a single cell, based on the threads that write those cells. The thread rule of configura-
tion typing becomes an identity in the setting of these rules for equivalence. Configuration join is
also straightforward, relying on the definition of equivalence for open configurations in a similar
manner to the rule for the empty configuration.
Lemma 38 (Configuration join). Suppose Ξ ; Γ1 � C1 ∼ C2 :: Γ2 and Ξ ; Γ2 � C ′1 ∼ C ′2 :: Γ3.

Then, Ξ ; Γ1 � C1, C ′1 ∼ C2, C ′2 :: Γ3.

Proof. Let Ξ ; · � D1 ∼ D2 :: Γ1.
By definition, Ξ ∼ · � D1, C1 ∼ D2, C2 :: Γ2.
Again by definition, Ξ ∼ · � D1, C1, C ′1 ∼ D2, C2, C ′2 :: Γ3, from which the result follows.

Theorem 30 (Parametricity). If Ξ ; Γ ` C :: ∆, then also Ξ ; Γ ` C ∼ C :: ∆.

Proof. By induction on the typing derivation, replacing each typing rule with the corresponding
equivalence lemma.

141

With parametricity, along with our earlier results that ∼ is transitive and symmetric, we have
that ∼ is a partial equivalence relation, and, when restricted to well-typed configurations, even
an equivalence relation. This is interesting in its own right, but also serves as a key component
of the relation between logical and observational equivalence.

We now continue towards this overall goal, first showing that logical equivalence implies
observational equivalence, and then showing the reverse direction, giving that these two equiv-
alences coincide (at least in the setting of well-typed configurations — there are some simple
counterexamples for ill-typed configurations, and some more technical work would be required
to find the weakest constraints under which the two equivalences agree).

Logical Equivalence Implies Observational Equivalence

We begin by showing that logical equivalence implies observational equivalence. We define
consistency of relations (with respect to a notion of observation, which we fix in this section to be
extensional observation, but note that other options are possible), as well as congruence. We then
demonstrate that observational equivalence is the coarsest relation satisfying these conditions,
after which it suffices to show that logical equivalence is a consistent congruence, meaning that
it must be a refinement of observational equivalence.
Definition 17. We say that a family of relations Ξ ; Γ ` C1 R C2 :: ∆ is consistent if, whenever
· ; · ` C1 R C2 :: ∆, there are F1,F2 final such that Ci 7→ Fi andO(F1,∆) is equal toO(F2,∆)
up to renaming.

We say that such a family is a congruence if, whenever Ξ ; Γ ` C1 R C2 :: ∆ and C is such
that Ξ′ ; Γ′ ` C, Ci :: ∆′ (for some Ξ′,Γ′,∆′), we also have that

Ξ′ ; Γ′ ` C, C1 R C, C2 :: ∆′.

Lemma 39. Observational equivalence ∼= is the coarsest consistent congruence.

Proof. It is immediate from its definition that observational equivalence is consistent, taking the
observation context C ′ to be empty.

Now, suppose that Ξ ; Γ ` C1 ∼= C2 :: ∆ and Ξ′ ; Γ′ ` C, Ci :: ∆′ for i = 1, 2. Let C ′ be such
that Ξ′′ ; Γ′′ � C ′, C, Ci :: ∆′′ for i = 1, 2. Then, taking the observation context C ′, C and using
the fact that Ξ ; Γ ` C1 ∼= C2 :: ∆, we conclude that observational equivalence is a congruence.

Finally, suppose that R is a consistent congruence and that Ξ ; Γ ` C1 R C2 :: ∆. Suppose
also that C is such that · ; · ` C, Ci :: ∆′. Since R is a congruence, we have that

· ; · ` C, C1 R C, C2 :: ∆′.

Since R is consistent, we can conclude that C, Ci 7→ Fi final with O(F1,∆
′) = O(F2,∆

′). This
then gives us exactly that Ξ ; Γ ` C1 ∼= C2 :: ∆.

Lemma 40 (Logical Equivalence is Consistent). Logical Equivalence is a consistent family of
relations.

Proof. Suppose that · ; · ` C1 ∼ C2 :: ∆. By definition, there are F1,F2 final such that Ci 7→ Fi
and · ; · ` F1 ∼ F2 :: ∆.

142

We now proceed by induction on ∆, using the multiset ordering of the types in ∆, seeking to
show that O(F1,∆) = O(F2,∆).

If ∆ = (·), then these observations are both empty as well, and so are equal.
As · ; · ` F1 ∼ F2 :: ∆, we cannot be in the case where ∆ = a : tm,∆

′, as there are no free
type variables in ∆.

Observable cases If ∆ = a : A+
m,∆

′ for some positive A+
m other than ∃tm.Bm, then in each

case, we can write Fi = F ′i , !mcell(a, V), and · ; · ` Cm?(F1,F ′1) ∼ Cm?(F2,F ′2) :: ∆V ,∆
′,

where ∆V is a context smaller than a : A+
m in the multiset order, consisting of the (typed)

addresses in the value V . Applying the inductive hypothesis, we get that

O(Cm?(F1,F ′1), (∆V ,∆
′)) = O(Cm?(F2,F ′2), (∆V ,∆

′)).

We now note that the observation O(Fi,∆) can be written as

{!mcell(a, V)} ∪ O(F ′i ,∆V) ∪ O(Fi,∆′).

It will therefore suffice to show that

{!mcell(a, V)} ∪ O(F ′i ,∆V) ∪ O(Fi,∆′) = {!mcell(a, V)} ∪ O(Cm?(Fi,F ′i), (∆V ,∆
′))

By definition, O(Cm?(Fi,F ′i), (∆V ,∆) = O(Cm?(Fi,F ′i),∆V)∪O(Cm?(Fi,F ′i),∆). We will
first show that

{!mcell(a, V)} ∪ O(Fi,∆V) = {!mcell(a, V)} ∪ O(F ′i ,∆V),

handling the first two terms of the left-hand side, and then that

O(Fi,∆′) = O(Cm?(Fi,F ′i),∆′),

concluding the proof.
If C /∈ σ(m), then Cm?(Fi,F ′i) = F ′i , and so O(Cm?(Fi,F ′i),∆V) = O(F ′i ,∆V) imme-

diately. Otherwise, we consider two cases for O(Fi,∆V). If this observation does not contain
!mcell(a, V), then it must be exactly the same as O(F ′i ,∆V), as the only difference between Fi
and F ′i is this single cell, which, if not observed, cannot affect the remainder of the observation.
If it does contain !mcell(a, V), there is only a single case of the definition of observation that
this cell can come from, and so we can write O(Fi,∆V) = {!mcell(a, V)} ∪ O(F ′i ,∆V) ∪ S
for some S ⊆ O(F ′i ,∆V), as the only possible differences between the observation at Fi and
F ′i must come from or after the additional observation of !mcell(a, V) — prior to observing the
cell at address a, observation of both configurations proceeds identically. This then means that
O(Fi,∆V) = {!mcell(a, V)} ∪ O(F ′i ,∆V), and so also, as desired, we have

{!mcell(a, V)} ∪ O(Fi,∆V) = {!mcell(a, V)} ∪ O(F ′i ,∆V).

If C ∈ σ(m), then Cm?(Fi,F ′i) = Fi, and so O(Cm?(Fi,F ′i),∆′) = O(Fi,∆′). Otherwise,
we need to show that O(Fi,∆′) = O(F ′i ,∆′). In this case, · ; · ` F ′1 ∼ F ′2 :: ∆V ,∆

′, and so
by weakening (Lemma 17), also · ; · ` F ′1 ∼ F ′2 :: ∆′. Since logical equivalence is a partial
equivalence relation, we can also conclude that · ; · ` F ′i ∼ F ′i :: ∆′ (for i = 1, 2). Then,
applying Lemma 16 to extend the configuration, we get that · ; · ` F ′i ∼ Fi :: ∆′. The inductive
hypothesis then gives us exactly that O(F ′i ,∆′) = O(Fi,∆′) in this case as well.

143

Non-observable cases If ∆ = a : A−m,∆
′, or ∆ = ∃tm.Bm,∆

′, we note that O(Fi,∆) =
O(Fi,∆′), as neither negative types nor existentials are observable under our definition. It will
therefore suffice to show that O(F1,∆

′) = O(F2,∆
′). By weakening (Lemma 17), we get that

· ; · ` F1 ∼ F2 :: ∆′, and applying our inductive hypothesis gives the result immediately.

Lemma 41 (Logical Equivalence is a Congruence). Logical Equivalence is a congruence.

Proof. Suppose Ξ ; Γ � C1 ∼ C2 :: ∆ and C is such that Ξ′ ; Γ′ � C, Ci :: ∆′.
Now, we note that we can write C = Ca, Cb such that Ξ′ ; Γ′ � Ca :: Γ and Ξ′ ; ∆ � Cb :: ∆′.
By parametricity, we get that Ca, Cb are each logically equivalent to themselves. We can then

use configuration join (Lemma 38) to combine Ca, Ci, Cb and conclude the desired result.

Theorem 31. If Ξ ; Γ ` C1 ∼ C2 :: ∆, then also Ξ ; Γ ` C1 ∼= C2 :: ∆.

Proof. This follows immediately from the previous three results, as observational equivalence is
the coarsest consistent congruence, and logical equivalence is a consistent congruence.

Observational Equivalence Implies Logical Equivalence

In order to show that observational equivalence implies logical equivalence, we will first need to
show that logical equivalence respects observational equivalence. We are already given a form
of this for the type variable case, from the definition of admissible relations (Definition 14), but
need to ensure that it extends to all cases of logical equivalence. This, along with parametricity,
is then sufficient to give the result almost immediately (See Theorem 32).
Lemma 42 (Logical Equivalence Respects Observational Equivalence). Suppose that:

• Ξ ; Γ ` C ′1 ∼= C1 :: ∆.
• Ξ ; Γ ` C1 ∼ C2 :: ∆.
• Ξ ; Γ ` C2 ∼= C ′2 :: ∆.

Then also Ξ ; Γ ` C ′1 ∼ C ′2 :: ∆.

Proof. Suppose Ξ ; · ` C3 ∼ C4 :: Γ. By definition, then, Ξ ; · ` C1, C3 ∼ C2, C4 :: ∆. Since ∼= is
a congruence, we also have that Ξ ; · ` C ′1, C3 ∼= C1, C3 :: ∆ and Ξ ; · ` C2, C4 ∼= C ′2, C4 :: ∆.

By definition, C1, C3 7→∗ F1 and C2, C4 7→∗ F2 final, with Ξ ; · ` F1 ∼ F2 :: ∆. Since
C1, C3 ∼= C ′1, C3, and the former reduces to F1 final, the latter must also reduce to some F ′1 final
for which F1

∼= F ′1. Since logical equivalence is closed under converse reduction, it will suffice
to show that Ξ ; · ` F ′1 ∼ F ′2 :: ∆, giving that Ξ ; · � C ′1, C3 ∼ C ′2, C4 :: ∆.

Now, choose η : Ξ, and proceed by induction on ∆.
If ∆ = (·), the result is immediate, as any two configurations are logically equivalent at the

empty context.
If ∆ = (a : tm),∆′, then, by definition, we have that Fi = F1

i ,F2
i ,F3

i with F2
i = FCi ,

(a, (F1
1 ,F2

1)) η(tm) (a, (F1
2 ,F2

2)), and η ; · ` F2
1 ,F3

1 ∼ F2
2 ,F3

2 :: ∆′.
Suppose that we can write F ′i = G1i ,G2i ,G3i such that η ; · ` G1i ,G2i ∼= F1

i ,F2
i :: ξi(tm) and

η ; · ` G2i ,G3i ∼= F2
i ,F3

i :: ∆′.
Applying the inductive hypothesis to ∆′, we get that η ; · ` G21 ,G31 ∼ G22 ,G32 :: ∆′, and

as admissible relations respect observational equivalence, (a, (G11 ,G21)) η(tm) (a, (G12 ,G22)). The

144

definition of logical equivalence at variable types then gives us that η ; · ` F ′1 ∼ F ′2 :: ∆,
concluding this case.

If ∆ = (a : A+
m),∆′ for some positive type A+

m, in each case, we write Fi = !mcell(a, V),Gi,
and similarly F ′i = !mcell(a, V),G ′i — this must be possible by the definitions of ∼ and ∼=,
respectively. We then apply the inductive hypothesis to the Gi and G ′i, at ∆V ,∆

′, where ∆V

contains some components of A+
m (e.g., in the case where Vi = 〈b, c〉, we would have that

∆V = (b : Bm), (c : Cm)). As a context, ∆V is smaller (in the multiset ordering) than (a : A+
m),

and so this use of the inductive hypothesis is allowable, giving us that η ; · ` G ′1 ∼ G ′2 :: ∆V ,∆
′.

Using the definition of ∼ at type A+
m again, we recover that η ; · ` F ′1 ∼ F ′2 :: ∆, as desired.

If ∆ = (a : A−m),∆′ for some negative typeA−m, we consider a suitable process thread(c, a.V)
which attempts to read from address a. The definition of logical equivalence gives us that
η ; · � F1, thread(c, a.V) ∼ F2, thread(c, a.V) :: (c : Cm),∆′, where Cm is some compo-
nent of A−m (e.g., in the case where V = 〈b, c〉 and A−m = Bm (Dm, Cm would be Dm).
Since η ; · ` F ′1 ∼= F1 :: ∆ and observational equivalence is a congruence, we have also that
η ; · ` F ′1, thread(c, a.V) ∼= F1, thread(c, a.V) :: (c : Cm),∆′ (and a similar result for F2

and F ′2). Applying the inductive hypothesis to Fi, thread(c, a.V) at type (c : Cm),∆′, we get
that η ; · � F ′1, thread(c, a.V) ∼ F ′2, thread(c, a.V) :: (c : Cm),∆′. This use of the inductive
hypothesis is valid, as the result for general configurations at a given ∆ relies only on the result
for final configurations at that same ∆. Finally, applying the definition of logical equivalence at
type A−m, we get that η ; · ` F ′1 ∼ F ′2 :: ∆, as desired.

Theorem 32. If Ξ ; Γ ` C1 ∼= C2 :: ∆, then also Ξ ; Γ ` C1 ∼ C2 :: ∆.

Proof. Since Ξ ; Γ ` C1 ∼= C2 :: ∆, we know in particular that Ξ ; Γ ` C1 :: ∆. By Parametricity
(Theorem 30), we then know that Ξ ; Γ ` C1 ∼ C1 :: ∆, and since observational equivalence is
reflexive, we also know that Ξ ; Γ ` C1 ∼= C1 :: ∆. The result then follows from Lemma 42,
applied to these three known equivalences.

With both directions of the relation between observational and logical equivalence, we have
demonstrated that logical equivalence, as presented in section 5.5, and (extensional) observa-
tional equivalence coincide. We also conjecture that a more general result is possible, by param-
eterizing logical equivalence also with respect to a notion of observation, and showing that the
observational and logical equivalences associated with a given observation coincide, but leave
this to future work.
Example 13 (Optimizing away indirections). As a concrete motivating example of an optimiza-
tion whose soundness would be useful to prove via our machinery of equivalence, we pointed
near the beginning of this chapter to an implementation of a natural-deduction-based adjoint
language [47], which compiles to a variant of our shared-memory language. This compi-
lation process generates unnecessary indirections of the form x ← P [x/a] ; a ← x and
x ← (x ← c) ; P [x/c], which, when run, cause an additional allocation and unnecessary
copy/move step. As an optimization, terms of this form are simplified to just P , removing the ex-
tra indirection step. Note that the soundness of this optimization is not a given — in a language
with support for comparing symbols (addresses) for equality, it may be possible to distinguish
whether an additional copy/move operation has taken place by a suitable comparison of ad-
dresses.

145

We will show now that this optimization is sound, in the sense that the unoptimized and opti-
mized programs are logically (and therefore also observationally) equivalent, in the extensional
sense. This has two parts, for the two different kinds of cuts that we can optimize out.

Suppose that P is a process term, and that Ξ ; ΓC ,Γ1 ` P :: (a : Am). This also means that
for any choice of Γ2, we have

Ξ ; ΓC ,Γ1,Γ2 � thread(a, P), cell(a,_) :: ΓC ,Γ2, (a : Am).

Write Γ = ΓC ,Γ1,Γ2 and ∆ = ΓC ,Γ2 — the details of these contexts will not be relevant in this
example, other than that they appear in the typing rule for threads. We will also leave empty
cells implicit in the remainder of this example for space reasons, and to focus attention on the
more essential details.

Now, we wish to show that thread(a, P) is logically equivalent to its indirect counterpart
thread(a, x ← P [x/a] ; a ← x). We observe that the latter reduces in one step to the con-
figuration thread(a′, P [a′/a]), thread(a, a ← a′) (with a′ a fresh symbol), and so by backwards
closure, it will suffice to show that

Ξ ; Γ � thread(a, P) ∼ thread(a′, P [a′/a]), thread(a, a← a′) :: ∆, (a : Am).

By parametricity (Theorem 30), we have that

Ξ ; Γ � thread(a, P) ∼ thread(a, P) :: ∆, (a : Am)

Suppose that Ξ ; · � F ′1 ∼ F ′2 :: Γ. Then, we may conclude that F ′i , thread(a, P) 7→∗ Fi final
for which

Ξ ; · ` F1 ∼ F2 :: ∆, (a : Am).

By inversion (Lemma 12), we can write Fi = F ′′i , !mcell(a,Di) for some data Di. Now, since
thread(a, P) and thread(a′, P [a′/a]) are equal up to renaming (in particular, the renaming that
takes a to a′ and is otherwise the identity), and we identify configurations that are renamings
of each other, we have also that F ′2, thread(a′, P [a′/a]) 7→∗ F ′′2 , !mcell(a′, D2). This also means
that

F ′2, thread(a′, P [a′/a]), thread(a, a← a′) 7→∗ F ′′2 , Cm?(!mcell(a′, D2), ·), !mcell(a,D2).

In the case where m does not admit contraction, this is exactly equal to F2. Thus, since
F ′1, thread(a, P) 7→∗ F1 and F ′2, thread(a′, P [a′/a]), thread(a, a ← a′) 7→∗ F2, and we know
that Ξ ; · ` F1 ∼ F2 :: ∆, (a : Am), we have exactly the desired result (by the definition of
equivalence for open configurations).

The case where m does admit contraction is slightly more involved — it will suffice to show
that

Ξ ; · ` F1 ∼ F ′′2 , !mcell(a′, D2), !mcell(a,D2) :: ∆, (a : Am),

at which point the same reasoning used in the case where m does not admit contraction may be
applied. Since F2 = F ′′2 , !mcell(a,D2), applying our configuration extension lemma (Lemma 16)
to add !mcell(a′, D2) gives the above.

146

For the second type of indirection, we suppose that Q is a well-typed process term, with
Ξ ; ΓC ,Γ1, (c : Ck) ` Q :: (a : Am). As in the first case, we may take any Γ2, and get that

Ξ ; ΓC ,Γ1,Γ2, (c : Ck) � thread(a,Q) :: ΓC ,Γ2, (a : Am).

We again take Γ = ΓC ,Γ1,Γ2 and ∆ = ΓC ,Γ2.
Now, our goal will be to to show that thread(a,Q) and thread(a, x← (x← c) ; Q[x/c]) are

logically equivalent. By backwards closure, it will suffice to show that

Ξ ; Γ, (c : Ck) � thread(a,Q) ∼ thread(c′, c′ ← c), thread(Q[c′/c]) :: ∆, (a : Am),

with c′ a fresh symbol.
Suppose that Ξ ; · ` F1 ∼ F2 :: Γ, (c : Ck). We wish to show that

Ξ ; · � F1, thread(a,Q) ∼ F2, thread(c′, c′ ← c), thread(Q[c′/c]) :: ∆, (a : Am).

We begin by applying parametricity to get that

Ξ ; Γ, (c : Ck) � thread(a,Q) ∼ thread(a,Q) :: ∆, (a : Am).

Applying the definition of equivalence for open configurations, using thatF1 andF2 are logically
equivalent at Γ, (c : Ck), we get that

Ξ ; · � F1, thread(a,Q) ∼ F2, thread(a,Q) :: ∆, (a : Am).

By transitivity, it will suffice to show that

Ξ ; · � F2, thread(a,Q) ∼ F2, thread(c′, c′ ← c), thread(Q[c′/c]) :: ∆, (a : Am).

We now apply inversion to Fi, getting that Fi = F ′i , !kcell(c,Di). This lets us conclude that

F2, thread(c′, c′ ← c), thread(a,Q[c′/c]) 7→ F ′2, Ck?(!kcell(c,D2), ·), !kcell(c′, D2), thread(a,Q[c′/c]).

In the case where k does not admit contraction, this is a renaming (with c renamed to c′) of
F2, thread(a,Q), using the fact that c′ was chosen fresh, and so is logically equivalent to it. If
k does admit contraction, we instead apply a renaming to F2, thread(a,Q), renaming c to c′,
and apply the configuration extension lemma to add the additional cell !kcell(c,D2) to one side,
giving us that

Ξ ; · � F2, thread(a,Q) ∼ F2, thread(c′, c′ ← c), thread(Q[c′/c]) :: ∆, (a : Am),

which then yields the desired result.
We therefore have that the optimization of eliminating cuts with identities as one premise is

sound (with respect to our notion of equivalence).

147

5.6 Mode-dependent Equivalence
Thus far, we have examined several different ways to define equivalence for (shared-memory)
programs in the adjoint setting. However, all of the equivalences we presented were uniform, in
the sense that they behave the same at all modes, other than some details surrounding whether
a given cell may be read from more than once. The fact that we can treat modes differently in
pure adjoint logic (most obviously, by giving them different structural properties, but also by
differently restricting what connectives and rules are available) suggests that we may be able
to do the same in the context of programming and equivalence. For equivalence in particular,
we might wish to say that what it means for two terms to be equivalent at mode m is not the
same as what it means for terms to be equivalent at mode k, for instance with mode k having
a proof-irrelevant notion of equivalence while mode m is extensional. Certainly if we examine
only a single mode, we can assign many different notions of equivalence to programs, but it is
less obvious how this works in a case with multiple modes. We needed to constrain structural
properties so that if k ≤ m, then σ(k) ⊆ σ(m) in order to ensure that we could eliminate cuts
in the pure logic, and so the question arises of what, if any, constraints need to be placed on
per-mode equivalences in order to have a sensible overall system, and, for that matter, what it
means to have a sensible system to begin with.

Just as in the pure logic, we wanted to ensure that we could combine rules, structural prop-
erties, and such at different modes into a coherent adjoint logic, here, we would like to combine
equivalences at different modes into a coherent equivalence defined over the whole mode struc-
ture. That is, if we have (potentially partial) equivalence relations =k at each mode k, we should
be able to combine them into some overall (partial) equivalence relation = which can compare
programs that may make use of different modes, rather than just a single one, but which is still
compatible with the =k in that if P and Q are programs entirely at mode k, then P =k Q if and
only if P = Q. Some other properties we might want = to inherit from the =k include congru-
ence, consistency (with a similarly mode-dependent notion of observation), and parametricity.
We will take the last of these as our primary guide, attempting to prove parametricity in a general
setting with potentially different equivalences per mode. As we will see, this provides some ob-
vious candidates for constraints on how the various =k relate, which we can then explore further
to find a simple set of conditions under which the =k can be coherently combined.

5.6.1 A strongly isolating equivalence
In order to extend per-mode equivalences into an overall equivalence for multi-mode programs,
we need to handle the boundary between modes. While =k may be well-defined for programs
purely at mode k, a program at mode k may still contain some components of type ↓mk Am or
↑k`A`, for which =k can say little directly. Instead, we need to transition to using =m or =` to
compare the components lying underneath these shifts.

We already have some machinery for allowing another relation to take over in determining
equivalence for some portion of a program, used for handling quantified types, which we will
seek to reuse for handling shifts as well. It is far from obvious that this is a correct choice, and
we expect that much further work could be done on exploring possible ways to combine equiv-
alences, perhaps motivated by concrete applications. However, we find this to be an interesting

148

approach to take, both because the needed machinery already exists, making it a worthwhile
avenue to explore, and because shifts, in a sense, form an abstraction boundary, similar to that
provided by quantified types. This analogy is stronger in one direction than the other (in that
lower modes may depend on higher modes, but not vice versa), but following it nevertheless
leads to an interesting system.

At a high level, our approach for checking equivalence at a type Ak will be to replace any
shift types ↓mk Am or ↑k`A` with fresh type variables tk in Ak, yielding a new type A′k, depending
on several type variables. We then will check equality using =k at A′k, instantiating each type
variable with a relation defined based on the shifted type it replaces — intuitively, these relations
should do as little as possible before checking =m for the underlying mode m of the shift.

In order for this approach to work, we need the relations =k to work not just for closed types,
but also open ones. In particular, we need to ensure that η ; · ` F1 =k F2 :: (a : tk) exactly when
(a,F1) η(tk) (a,F2), so that =k cannot do any more at type variables than query the collection
η of relations instantiating those type variables. Given this extension of =k, we can define an
overall relation = at all modes.

We say η ; · ` F1 = F2 :: (a : Ak),∆ if there are F ji for i = 1, 2 and j = 1, 2, 3 such that:
• Fi = F1

i ,F2
i ,F3

i ,
• C ∈ σ(F2

i) for i = 1, 2

• η, η̂(Ak, η) ; · ` F1
1 ,F2

1 =k F1
2 ,F2

2 :: (a : t(Ak))

• η ; · ` F2
1 ,F3

1 = F2
2 ,F3

2 :: ∆

and η ; · ` F1 = F2 :: (·) is always true.
We already have given a definition of =k, but we still need to define the type transformation

Ak 7→ t(Ak) and the mapping η̂(Ak, η) of type variables to admissible relations:

t(⊕{` : A`k}`∈L) = ⊕{` : t(A`k)}`∈L
t(N{` : A`k}`∈L) = N{` : t(A`k)}`∈L

...
t(↓mk Am) = tAm

t(↑k`A`) = tA`

where we assume that each tAm is equal to tB`
iff Am = B`, and each tAm is not equal to any

other type variables.
We can define η̂(Ak, η) similarly:

η̂(⊕{` : A`k}`∈L, η) = ⊗`∈Lη̂(A`k, η)
η̂(N{` : A`k}`∈L, η) = ⊗`∈Lη̂(A`k, η)

...
η̂(↓mk Am, η) = tAm ↪→ R↓k(Am, η)

η̂(↑k`A`, η) = tA`
↪→ R↑k(A`, η)

Note that this needs to take the original mapping η as an argument in order to properly include η
when defining the new relations R↓k and R↑k .

We define (a,F1) R↓k(Am, η) (a,F2) to be true iff Fi = F ′i , !kcell(a, shift(b)) and

η, η(Am) ; · ` Ck?(F1,F ′1) =m Ck?(F2,F ′2) :: (b : t(Am)).

149

That is, downshifts are a positive type, are directly observable, and allow for direct comparison
of the data they point to with =m.

We also define (a,F1) R↑k(A`, η) (a,F2) to be true iff

η, η(A`) ; · � F1, thread(b, a.shift(b)) =` F2, thread(b, a.shift(b)) :: (b : t(A`)).

Unlike downshifts, upshifts are negatively typed, and do not allow direct observation, instead
being compared at mode ` after queried with a shift. Note that this requires that =` can be used
to test equivalence of non-final configurations as well as final configurations. We assume for
now that equivalence of non-final configurations, as in the settings of logical and observational
equivalence, is determined by evaluating to a final configuration, where =` can be defined more
directly.

This can be extended to more general configurations and to equality at open types in the usual
way:
Definition 18. We say that η ; · � C1 = C2 :: ∆ if each Ci evaluates to a final configuration Fi
for which η ; · ` F1 = F2 :: ∆.

Similarly, we say that η ; Γ � C1 = C2 :: ∆ if whenever η ; · � F ′1 = F ′2 :: Γ for final F ′1,F ′2,
also η ; · � C1,F ′1 = C2,F ′2 :: ∆.

Parametricity for Mixed Equivalence

With this definition of =, we now would like to establish parametricity for = from parametricity
for the given =k relations, in order to show that we can lift parametricity at each base equivalence
into the result for an overall, combined equivalence. We follow the same approach as for ∼,
proving semantic typing rules based on =, which we can then use in the same structure as a
given typing derivation to prove that a well-typed configuration is equivalent to itself. Most of
these rules live entirely within a single mode, and so follow immediately from parametricity for
the =k relations. The five rules we need to establish are for certain cuts (those that are used to
prove a result at mode k using a cut formula at mode m, although our proof will work as well for
single-mode cuts), as well as the four shift rules (five, if the α = 0 and α = 1 cases of ↓Lα are
considered distinct).

In order to prove our new typing rules, we first need to establish some of the same properties
that we used for ∼.
Lemma 43 (Joining for =). Suppose that ∆1 and ∆2 are contexts such that ∆1,∆2 is well-
formed, and F ji are final configurations for i = 1, 2 and j = 1, 2, 3 such that F1

i ,F2
i ,F3

i is
well-formed. Fix some family η of admissible relations, and suppose further that the following
hold:

1. C ∈ σ(F2
i) for i = 1, 2.

2. η ; · ` F1
1 ,F2

1 = F1
2 ,F2

2 :: ∆1

3. η ; · ` F2
1 ,F3

1 = F2
2 ,F3

2 :: ∆2.
Then, η ; · ` F1

1 ,F2
1 ,F3

1 = F1
2 ,F2

2 ,F3
2 :: ∆1,∆2. Likewise, the same result holds replacing

final configurations F ji everywhere with general configurations F ji .

Proof. The result for general configurations will follow from that for final configurations by
reducing until a final configuration is reached, applying the result, and then taking the same

150

reduction steps in reverse. A key factor in this being possible is that C2i cannot ever read from a
cell provided by C1i or C3i , because if it were to do so, it would get stuck in the absence of that
portion, and one of the preconditions of the lemma would fail.

We proceed by induction on the context ∆1,∆2. If ∆1 is empty, then we can take a derivation
of η ; · ` F2

1 ,F3
1 = F2

2 ,F3
2 :: ∆2 and add the configurations F1

i to each step, always being
passed to be checked against the remaining context as an element is peeled off. Otherwise,
suppose that ∆1 = (a : Am),∆′1. Since η ; · ` F1

1 ,F2
1 = F1

2 ,F2
2 :: ∆1, we can find a split of

F1
i ,F2

i into G1i ,G2i ,G3i , where:

• C ∈ σ(G2i) for i = 1, 2
• η, η̂(Am, η) ; · ` G11 ,G21 =m G12 ,G22 :: (a : t(Am))
• η ; · ` G21 ,G31 = G22 ,G32 :: ∆′1.

Let G4i = (G2i ,G3i) ∩ F1
i , G5i = (G2i ,G3i) ∩ F2

i , and G6i = (G1i ,G2i) ∩ F2
i Applying the inductive

hypothesis to ∆′1,∆2, with the shared portion being G5i , we get that

η ; · ` G4i ,F2
1 ,F3

1 = G4i ,F2
2 ,F3

2 :: ∆′1,∆2

Now, applying the definition of =, taking the shared portion to be G6i , we get the desired result.

Lemma 44 (Splitting for =). Suppose η ; · ` F1 ∼ F2 :: ∆1,∆2. Then, it is possible to write
Fi = F1

i ,F2
i ,F3

i for i = 1, 2 such that
1. F2

i = Fi|C for i = 1, 2

2. η ; · ` F1
1 ,F2

1 = F1
2 ,F2

2 :: ∆1

3. η ; · ` F2
1 ,F3

1 = F2
2 ,F3

2 :: ∆2.

Proof. By induction on ∆1. If ∆1 is empty, then the result is immediate, taking F3
i = Fi|¬C .

If ∆1 = (a : Am),∆′1, then, by definition of =, we can write Fi = G1i ,G2i ,G3i such that

• C ∈ σ(G2i) for i = 1, 2
• η, η̂(Am, η) ; · ` G11 ,G21 =m G12 ,G22 :: (a : t(Am))
• η ; · ` G21 ,G31 = G22 ,G32 :: ∆′1,∆2.

Applying the inductive hypothesis on ∆′1, we get a split of G2i ,G3i into G4i ,G5i ,G6i such that

• C ∈ σ(G5i) for i = 1, 2
• η ; · ` G41 ,G51 = G42 ,G52 :: ∆′1
• η ; · ` G51 ,G61 = G52 ,G62 :: ∆2

Let G7i = G2i ∩ G6i and G8i = G3i ∩ G6i . Now, we apply the definition of = again, with the shared
portion being (G4i ,G5i) ∩ G2i , to get that

η ; · ` G11 ,G7i ,G41 ,G51 = G12 ,G72 ,G42 ,G52 :: ∆1.

Now, if we take:

• F1
i = G1i ,G4i

• F2
i = G5i ,G7i

151

• F3
i = G8i

we have the desired result. The latter two conditions can be checked by tracing through the
definitions of each Gji — for example, G7i ,G8i = G6i , and so F2

i ,F3
i = G5i ,G6i . For the first

condition, we are given that C ∈ σ(G5i), and G7i is a subcontext of G2i , which we are also given is
contractible.

These next two lemmas can then be proven from splitting and joining, in exactly the same
manner as their counterparts for ∼.
Lemma 45 (Type Extension for =). Suppose Ξ ; Γ ` F1 = F2 :: ∆ and that Θ is a context
which shares no symbols with Γ,∆, C1, C2. Then also Ξ ; Γ,Θ ` F1 = F2 :: ∆,Θ.
Lemma 46 (Reuse for =). Suppose Ξ ; Γ1,Γ2 � C1 = C2 :: ∆. Suppose also that C ∈ σ(Γ2),
and that ∆,Γ2 is well-formed. Then, Ξ ; Γ1,Γ2 � C1 ∼ C2 :: ∆,Γ2.

With these general results established, we can now move on to the typing rules.
Lemma 47 (Cross-mode cut). Suppose C ∈ σ(Γ2).

If
Ξ ; Γ1,Γ2 � thread(y, P1) = thread(y, P2) :: (y : Am)

and

Ξ ; Γ2,Γ3, (y : Am) � thread(z,Q1) = thread(z,Q2) :: (z : Ck)

then Ξ ; Γ1,Γ2,Γ3 � thread(x, y ← P1 ; Q1) = thread(x, y ← P2 ; Q2) :: (z : Ck).

Proof. Suppose Ξ ; · ` F1 ∼ F2 :: Γ1,Γ2,Γ3.
By Lemma 45 and our first assumption,

Ξ ; Γ1,Γ2,Γ3 � thread(y, P1) = thread(y, P2) :: Γ3, (y : Am).

Then, Lemma 46 allows us to conclude (as C ∈ σ(Γ2)) that

Ξ ; Γ1,Γ2,Γ3 � thread(y, P1) = thread(y, P2) :: Γ2,Γ3, (y : Am).

It follows that Ξ ; · � F1, thread(y, P1) = F2, thread(y, P2) :: Γ2,Γ3, (y : Am). From the
definition of equivalence, and now using our second assumption, we may conclude that

Ξ ; · � F1, thread(y, P1), thread(z,Q1) = F2, thread(y, P2), thread(z,Q2) :: (z : Ck).

Closure under converse reduction (which follows almost immediately from the definition of
= on non-final configurations, as it did for ∼) then gives the desired result.

Lemma 48 (↓R0). Suppose W ∈ σ(Γ).
Then Ξ ; Γ, (y : Am) � thread(x, x.shift(y)) = thread(x, x.shift(y)) :: (x : ↓mk Am).

Proof. Suppose Ξ ; · � F1 = F2 :: Γ, (y : Am). Then, by definition, we have that

Fi, thread(x, x.shift(y)) 7→∗ Fi, !kcell(x, shift(y)),

and we wish to show that Ξ ; · ` F1, !kcell(x, shift(y)) = F2, !kcell(x, shift(y)) :: (x : ↓mk Am).
This follows almost immediately, however, from the definitions of R↓k(Am) and =.

152

Lemma 49 (↓Lα). If

Ξ ; Γ, (x : ↓mk Am)α, y : Am � thread(z,Q1) = thread(z,Q2) :: (z : Cr),

then

Ξ ; Γ, x : ↓mk Am �thread(z, case x (shift(y)⇒ Q1)) =

thread(z, case x (shift(y)⇒ Q2)) :: (z : Cr).

Proof. Let η : Ξ be arbitrary.
Suppose η ; · ` F1 = F2 :: Γ, x : ↓mk Am. By definition, we can write Fi = F1

i ,F2
i ,F3

i with
C ∈ σ(F2

i), and

η, tAm ↪→ R↓k(Am, η) ; · ` F1
1 ,F2

1 = F1
2 ,F2

2 :: (x : tAm)

and
η ; · ` F2

1 ,F3
1 = F2

2 ,F3
2 :: Γ.

From this, we can conclude that F1
i ,F2

i = !kcell(x, shift(y)),F ′i for which

η, η(Am) ; · ` Ck?((F1
1 ,F2

1),F ′1) =m Ck?((F1
2 ,F2

2),F ′2) :: (y : t(Am)).

Combining configurations again, this means that

Fi, thread(z, case x (shift(y)⇒ Qi)) 7→ Ck?((F1
i ,F2

i),F ′i),F3
i , thread(z,Qi),

and so it will suffice to show that

η ; · ` Ck?((F1
1 ,F2

1),F ′1),F3
1 , thread(z,Qi) ∼ Ck?((F1

2 ,F2
2),F ′2), thread(z,Qi) :: (z : Cr).

If α = 0, we can apply the definition of = again to get that

η ; · ` Ck?((F1
1 ,F2

1),F ′1),F3
1 = Ck?((F1

2 ,F2
2),F ′2),F3

2 :: Γ, (y : Am),

with the shared portion being F2
i — note that if k is not contractible, then F ′i still contains all of

F2
i , as the cell that was removed from F1

i ,F2
i to give F ′i was at mode k. Combining this with

the initial hypothesis then gives the result.
If α = 1, we know that C ∈ σ(k) (and, since m ≥ k, that C ∈ σ(m), as well). We therefore

know that η, η(Am) ; · ` F1
1 ,F2

1 =m F1
2 ,F2

2 :: (y : t(Am)). By definition of =, we can conclude
that η ; · ` F1 = F2; : Γ, (y : Am). Now, since k is contractible, we may assume that F1

i was
empty, and so η, tAm ↪→ R↓k(Am, η) ; · ` F2

1 =k F2
2 :: (x : tAm). Combining this with the

above, using the definition of =, we get that η ; · ` F1 = F2 :: Γ, (x : ↓mk Am)α, (y : Am), which,
when combined with our initial hypothesis, gives the result.

Lemma 50 (↑R). If

Ξ ; Γ � thread(x, P1) = thread(x, P2) :: (x : Ak)

then

Ξ ; Γ � thread(y, case y (shift(x)⇒ P1)) = thread(y, case y (shift(x)⇒ P2)) :: (y : ↑mk Ak).

153

Proof. Suppose Ξ ; · � F1 = F2 :: Γ. Consider Fi, thread(y, case y (shift(x) ⇒ Pi)).
This configuration immediately steps to Fi, !mcell(y, (shift(x) ⇒ Pi)). On probing each such
configuration with the process thread(z, y.shift(z)), as specified by R↑k(Ak), we can step to
Fi, Cm?(!mcell(y, (shift(x) ⇒ Pi)), ·), thread(x, Pi). The result then follows from our hypothe-
sis, the definition of = at Ak, and the definition of R↑k(Ak).

Lemma 51 (↑L0). Suppose W ∈ σ(Γ).
Then,

Ξ ; Γ, (x : ↑mk Ak) � thread(y, x.shift(y)) = thread(y, x.shift(y)) :: (y : Ak).

Proof. Suppose Ξ ; · � F1 = F2 :: Γ, (x : ↑mk Ak).
By definition of =, we can write Fi = F1

i ,F2
i ,F3

i such that:

1. C ∈ σ(F2
i)

2. η, η̂(Ak, η) ; · ` F1
1 ,F2

1 =m F1
2 ,F2

2 :: (x : tAk
).

3. η ; · ` F2
1 ,F3

1 = F2
2 ,F3

2 :: Γ.

Now, by definition of =m at a type variable tAk
and the definitions of η̂ and R↑m(Ak, η), we

get that

η, η̂(Ak, η) ; · � F1
1 ,F2

1 , thread(y, x.shift(y)) =k F1
2 ,F2

2 , thread(y, x.shift(y)) :: (y : t(Ak)).

Combining this again with η ; · ` F2
1 ,F3

1 = F2
2 ,F3

2 :: Γ using the definition of = we get that
η ; · � F1, thread(y, x.shift(y)) = F2, thread(y, x.shift(y)) :: (y : Ak).

We can conclude, overall, that if we define equivalence in this way, with strong separation
at mode boundaries via transitioning from one relation =k to another =m, that the resulting
equivalence is sensible, satisfying parametricity.

A question still remains, however, of how this relates to observational equivalence. One
natural idea is that if each =k arises from a choice of observation at mode k, then the relation
= defined from these =k should similarly correspond to the notion of observation which first
checks the mode of an object, and then observes it according to its mode, with shifts being
handled extensionally. This is not something we explore in detail, but we conjecture that it
should hold, with at most minor further restrictions (notably, it is probably necessary that the =k

are admissible relations with respect to observation at mode k).

5.6.2 Upwards-Closed Sets of Modes and Erasure
While the previous section deals very generally with the idea of an equivalence that treats modes
differently, its key drawback is that the modes are, in essence, entirely separated from each other.
While modes k and m may have different notions of equivalence, all information at mode k is
treated with the mode-k equivalence, and likewise for mode m, even if that information at mode
m lies under a shift ↓mk to mode k. Intuitively, we might expect that any information that a process
at mode k can depend on — that is, which is at a mode m with m ≥ k — should somehow
be observable by the standards of mode k, and so that, for instance, if k treats equivalence

154

extensionally and m treats equivalence in a proof-irrelevant fashion, there may be configurations
which are equivalent from the perspective of modem, but which are distinct from the perspective
of mode k. A process at mode k which makes use of these m-equivalent configurations may then
nevertheless be able to perform some tests that distinguish them, and so, from the perspective
of observational equivalence, takes advantage of the observation at mode k being more precise
than that at mode m. A full exploration of this idea is beyond the scope of this thesis, but we
will look at a particularly useful example, in which modes either treat equality extensionally or
proof-irrelevantly.

For our example, we will work with a setM of modes, a subset of which, E , have extensional
equivalence, while the remainder are treated proof-irrelevantly. A reasonable notion of equiva-
lence in this setting should agree with usual extensional equivalence if E is all ofM, and should
agree with proof-irrelevant equivalence if E is empty. We would similarly expect such a notion of
equivalence to agree with extensional equivalence for any process purely at mode E . The main
question in defining such an equivalence is how to treat processes or configurations that span
multiple modes, some of which may be in E , while some are not. Our intuition above suggests
that a process at mode k, which may depend on some data at a mode m ≥ k, should be able to
use the notion of equivalence at mode k when looking at this data it depends on, capturing the
idea that a process at mode k may read data at mode m and use it to produce some (distinguish-
able) result at mode k. In other words, if we are using one type of equivalence and come across
a downshift, we should continue using the same equivalence underneath that shift. Upshifts, by
contrast, should change the type of equivalence we are using to that of the underlying mode of
the shift, reflecting that a process at mode k cannot depend on information at lower modes.

With these constraints in mind, we will set out to define such a notion of equivalence using
the techniques we have already explored, and we will observe that if E is an upwards-closed
subset of M (that is, if k ≤ m and k ∈ E , this implies that also m ∈ E), we can adapt our
existing definition of extensional equivalence to this setting as well.
Definition 19. Suppose that E is an upwards-closed subset ofM. We will define a type-indexed
family of equivalences η ; · ` F1 ∼E F2 :: ∆ in the usual way, by recursion over the type ∆.

We will also make use of the relation η ; · � C1 ∼E C2 :: ∆, which holds when Ci 7→∗ Fi final
such that η ; · ` F1 ∼E F2 :: ∆.

Note that the structure of this definition is much the same as that for (logical) extensional
equivalence in section 5.5, and will make use of the same general concepts.

(1) η ; · ` F1 ∼E F2 :: (·) always holds.

(2) If m /∈ E , then η ; · ` F1 ∼E F2 :: (a : Am),∆′ whenever we can write each Fi =
F1
i ,F2

i ,F3
i such that:

• F2
i = Fi |C for i = 1, 2.

• η ; · ` F1
i ,F2

i ∼ F1
i ,F2

i :: (a : Am) for i = 1, 2 — that is, eachF1
i ,F2

i is extensionally
equivalent to itself at (a : Am) — this ensures that these portions of the configuration
are well-formed.

• η ; · ` F2
1 ,F3

1 ∼E F2
2 ,F3

2 :: ∆′.
For the remaining cases, we will assume m ∈ E .

(3) η ; · ` F1 ∼E F2 :: (a : tm),∆′ if we can write each Fi = F1
i ,F2

i ,F3
i such that:

155

• F2
i = Fi |C for i = 1, 2.

• (a, (F1
1 ,F2

1)) η(tm) (a, (F1
2 ,F2

2)).

• η ; · ` F2
1 ,F3

1 ∼E F2
2 ,F3

2 :: ∆′.

(4) η ; · ` F1 ∼E F2 :: (a : ⊕{` : A`m}`∈L),∆′ if there is some j in L such that
• each Fi = F ′i , !mcell(a, j(b))

• η ; · ` Cm?(F1,F ′1) ∼E Cm(F2,F ′2) :: (b : Ajm),∆′

(5) η ; · ` F1 ∼E F2 :: (a : Bm ⊗ Cm),∆′ if
• Fi = F ′i , !mcell(a, 〈b, c〉)
• η ; · ` Cm?(F1,F ′1) ∼E Cm?(F2,F ′2) :: (b : Bm), (c : Cm),∆′

(6) η ; · ` F1 ∼E F2 :: (a : 1m),∆′ if
• Fi = F ′i , !mcell(a, 〈〉)
• η ; · ` Cm?(F1,F ′1) ∼E Cm?(F2,F ′2) :: ∆′.

(7) η ; · ` F1 ∼E F2 :: (a : ↓`mA`),∆′ if
• Fi = F ′i , !mcell(a, shift(b))

• η ; · ` Cm?(F1,F ′1) ∼E Cm?(F2,F ′2)
Note that because E is upwards-closed, m ∈ E , and m ≤ `, we must also have that ` ∈
E , and so this definition continues to use the same equivalence when moving through the
downshift, as desired.

(8) η ; · ` F1 ∼E F2 :: (a : ∃tm.Bm),∆′ if
• Fi = F ′i , !mcell(a, 〈Aim, b〉)
• There exists some R : A1

m ↔ A2
m such that

η, tm ↪→ R ; · ` Cm?(F1,F ′1) ∼E Cm?(F2,F ′2) :: (b : Bm),∆′

(9) η ; · ` F1 ∼E F2 :: (a : N{` : A`m}`∈L),∆′ if
• For each j ∈ L, it holds that
η ; · � F1, thread(b, a.j(b)) ∼E F2, thread(b, a.j(b)) :: (b : Ajm),∆′

(10) η ; · ` F1 ∼E F2 :: (a : Bm(Cm),∆′ if
• Whenever η ; · ` F1 |C ,F ′1 ∼E F2 |C ,F ′2 :: (b : Bm), it also holds that
η ; · � F1,F ′1, thread(c, a.〈b, c〉) ∼E F2,F ′2, thread(c, a.〈b, c〉) :: (c : Cm),∆′

(11) η ; · ` F1 ∼E F2 :: (a : ↑mk Ak),∆′ if
• η ; · � F1, thread(b, a.shift(b)) ∼E F2, thread(b, a.shift(b)) :: (b : Ak),∆

′

While we do not explicitly switch equivalences here, we have switched from trying to test
equivalence at mode m to trying to test equivalence at mode k, and so the next step that
examines Ak will first check if k ∈ E before continuing, thus switching to proof-irrelevant
equivalence if necessary.

(12) η ; · ` F1 ∼E F2 :: (a : ∀tm.Bm),∆′ if
• For any choice of A1

m, A2
m, and R : A1

m ↔ A2
m, it holds that

η, tm ↪→ R ; · � F1, thread(b, a.〈A1
m, b〉) ∼E F2, thread(b, a.〈A2

m, b〉) :: (b : Bm),∆′

156

It is easy to see by comparing this definition with that for our usual extensional equivalence
∼ that if E =M, the two agree, as they only differ in the case where m /∈ E . That it agrees with
proof-irrelevant equivalence when E is empty is somewhat less obvious — we would like to say
that η ; · ` F1 ∼∅ F2 :: ∆ if and only if η ; · ` Fi ∼ Fi :: ∆ (for i = 1, 2), but we only have that
Fi can be split up into segments where each segment is extensionally equivalent to itself at one
element of ∆. However, the joining and splitting lemmas (lemmas 19 and 20) for extensional
equivalence allow us to convert between these two different presentations and conclude that we
do indeed get a proof-irrelevant equivalence when E is empty.

We can also easily extend this definition to open configurations in the usual way, defining
Ξ ; Γ � C1 ∼E C2 :: ∆ to be true if whenever Ξ ; · � F ′1 ∼E F ′2 :: Γ, it also holds that
Ξ ; · � C1,F ′1 ∼E C2,F ′2 :: ∆.

We now would like to show that this definition satisfies parametricity, and so is a reasonable
choice of equivalence. Most of the lemmas we use in proving parametricity (including the many
general lemmas not dealing with particular typing rules) for∼ hold for∼E as well — for modes in
E , with the same proof, and for modes not in E , using the corresponding lemma for ∼ itself. The
cases we need to examine, therefore, are those involving multiple modes, which could possibly
cross into or out of E , namely the rules for shifts and that for cut.
Lemma 52 (Cross-mode cut). Suppose C ∈ σ(Γ2) and Γ1,Γ2 ≥ m ≥ k.

If
Ξ ; Γ1,Γ2 � thread(y, P1) ∼E thread(y, P2) :: (y : Am)

and

Ξ ; Γ2,Γ3, (y : Am) � thread(z,Q1) ∼E thread(z,Q2) :: (z : Ck)

then Ξ ; Γ1,Γ2,Γ3 � thread(z, y ← P1 ; Q1) ∼E thread(z, y ← P2 ; Q2) :: (z : Ck).

Proof. Suppose Ξ ; · ` F1 ∼E F2 :: Γ1,Γ2,Γ3. Then, we observe that

Fi, thread(z, y ← Pi ; Qi) 7→ Fi, thread(y, Pi), thread(z,Qi),

and so, by hypothesis and by the closure of ∼E under converse reduction, it suffices to show that

Ξ ; · � F1, thread(y, P1) ∼E F2, thread(y, P2) :: Γ2,Γ3, (y : Am).

This then follows from the initial hypothesis, applying type extension (Lemma 21) to add Γ3

to both sides, and then reuse (Lemma 22) to add Γ2 to the right-hand side.

Lemma 53 (↓R0). Suppose W ∈ σ(Γ).
Then Ξ ; Γ, (y : Am) � thread(x, x.shift(y)) ∼E thread(x, x.shift(y)) :: (x : ↓mk Am).

Proof. Suppose Ξ ; · ` F1 ∼E F2 :: Γ, (y : Am). We also see that

Fi, thread(x, x.shift(y)) 7→∗ Fi, !kcell(x, shift(y)),

and would like to show that

Ξ ; · ` F1, !kcell(x, shift(y)) ∼E F2, !kcell(x, shift(y)) :: (x : ↓mk Am).

157

If k ∈ E , then as for ∼, the result is nearly immediate from the definition of ∼E at downshift
types, potentially using an extension lemma if k admits contraction. If k /∈ E , we first note that
we can easily show Ξ ; · ` Fi ∼ Fi :: Γ, (y : Am) by transitivity and symmetry of ∼. It then
remains to show that Ξ ; · ` Fi, !kcell(x, shift(y)) ∼ Fi, !kcell(x, shift(y)) :: (x : ↓mk Am), which
is again almost immediate from the definition.

Lemma 54 (↓Lα). If

Ξ ; Γ, (x : ↓mk Am)α, y : Am � thread(z,Q1) ∼E thread(z,Q2) :: (z : Cr),

then

Ξ ; Γ, x : ↓mk Am �thread(z, case x (shift(y)⇒ Q1)) ∼E
thread(z, case x (shift(y)⇒ Q2)) :: (z : Cr).

Proof. Suppose Ξ ; · � F1 ∼E F2 :: Γ, x : ↓mk Am, and consider Fi, thread(z, case x (shift(y)⇒
Qi)).

Regardless of whether k ∈ E or not, we can conclude that Fi = F ′i , !kcell(x, shift(w)), and
that Ξ ; · ` Ck?(Fi,F ′i) ∼E Ck?(Fj,F ′j) :: Γ, (w : Am) for either i = 1 and j = 2 if k ∈ E ,
or (i, j) ∈ {(1, 1), (2, 2)} if k /∈ E . In either case, we have sufficient information to say that
Fi, thread(z, case x (shift(y) ⇒ Qi)) 7→ Ck?(Fi,F ′i), thread(z,Qi[w/y]) for both i = 1 and
i = 2.

We now consider whether r ∈ E or not. If r ∈ E , then, since E is upwards-closed, we also
have that k,m ∈ E . Using Lemma 26 (adapted to ∼E , which is possible since k,m ∈ E), we
get that Ξ ; · ` F1 ∼E F2 :: Γ, (x : ↓mk Am)α, (w : Am). Renaming w to y then gives us that
Ξ ; · ` F1, thread(z,Q1) ∼E F2, thread(z,Q2) :: (z : Cr), and closure under converse reduction
completes this case.

If r /∈ E , it will suffice to show that Ξ ; · ` Fi ∼ Fi :: Γ, (x : ↓mk Am)α, w : Am, and our
initial assumption, along with closure under converse reduction and a renaming of w to y, will
then give the desired result. We know that Ξ ; · ` Fi ∼ Fi :: Γ, (x : ↓mk Am), and applying
Lemma 26 (after fixing some η) gives us that Ξ ; · ` Fi ∼ Fi :: Γ, (x : ↓mk Am)α, (w : Am), as
desired.

Lemma 55 (↑R). If

Ξ ; Γ � thread(x, P1) ∼E thread(x, P2) :: (x : Ak)

then

Ξ ; Γ � thread(y, case y (shift(x)⇒ P1)) ∼E thread(y, case y (shift(x)⇒ P2)) :: (y : ↑mk Ak).

Proof. Suppose Ξ ; · ` F1 ∼E F2 :: Γ, and fix η : Ξ.
If k ∈ E , then also m ∈ E , and so this proof can proceed as for ∼.
Suppose therefore that k /∈ E . By definition, we can then conclude that

η ; · � Fi, thread(x, Pi) ∼ Fi, thread(x, Pi) :: (x : Ak).

158

Consider the configuration Fi, thread(y, case y (shift(x)⇒ Pi)). This reduces in one step to
Fi, !mcell(y, shift(x)⇒ Pi), and so it will suffice to show that

η ; · ` F1, !mcell(y, shift(x)⇒ P1) ∼E F2, !mcell(y, shift(x)⇒ P2) :: (y : ↑mk Ak).

If m ∈ E , so this shift crosses the boundary of E , then we need to show that

η ; · �F1, !mcell(y, shift(x)⇒ P1), thread(z, y.shift(z)) ∼E
F2, !mcell(y, shift(x)⇒ P2), thread(z, y.shift(z)) :: (z : Ak).

Observe that Fi, !mcell(y, shift(x)⇒ Pi), thread(z, y.shift(z)) reduces in one step to the config-
uration Fi, !mcell(y, shift(x)⇒ Pi), thread(z, Pi[z/x]). If we attempt to show that

η ; · `F1, !mcell(y, shift(x)⇒ P1), thread(z, P1[z/x]) ∼E
F2, !mcell(y, shift(x)⇒ P2), thread(z, P2[z/x]) :: (z : Ak)

we find that we need to have

η ; · `Fi, !mcell(y, shift(x)⇒ Pi), thread(z, Pi[z/x]) ∼
Fi, !mcell(y, shift(x)⇒ Pi), thread(z, Pi[z/x]) :: (z : Ak)

This follows from η ; · ` Fi, thread(x, Pi) ∼ Fi, thread(x, Pi) :: (x : Ak) by renaming and
configuration extension, concluding this case.

If m /∈ E , then we need to show that

η ; · ` Fi, !mcell(y, shift(x)⇒ Pi) ∼ Fi, !mcell(y, shift(x)⇒ Pi)) :: (y : ↑mk Ak).

Following the definition of ∼ at ↑mk Ak, we need to show that

η ; · �Fi, !mcell(y, shift(x)⇒ Pi), thread(z, y.shift(z)) ∼
Fi, !mcell(y, shift(x)⇒ Pi), thread(z, y.shift(z)) :: (z : Ak).

As for the case where m ∈ E , we observe that Fi, !mcell(y, shift(x) ⇒ Pi), thread(z, y.shift(z))
reduces in one step to Fi, !mcell(y, shift(x) ⇒ Pi), thread(z, Pi[z/x]). Using symmetry and
transitivity of ∼, we get that η ; · ` Fi, thread(x, Pi) ∼ Fi, thread(x, Pi) :: (x : Ak). Renaming
and configuration extension then give the desired result.

Lemma 56 (↑L0). Suppose W ∈ σ(Γ).
Then,

Ξ ; Γ, (x : ↑mk Ak) � thread(y, x.shift(y)) ∼E thread(y, x.shift(y)) :: (y : Ak).

Proof. Suppose Ξ ; · ` F1 ∼E F2 :: Γ, (x : ↑mk Ak), and fix η : Ξ.
If k ∈ E , note that m ∈ E as well, and so the proof can continue as for ∼.
If k /∈ E but m ∈ E , we have by definition of equivalence at ↑mk Ak that

η ; · � F1, thread(y, x.shift(y)) ∼E F2, thread(y, x.shift(y)) :: Γ, (y : Ak),

which is sufficient to give our result.
If neither k nor m is in E , then we can write Fi = F1

i ,F2
i ,F3

i such that:

159

1. F2
i = Fi|C

2. η ; · ` F1
i ,F2

i ∼ F1
i ,F2

i :: (x : ↑mk Ak).
3. η ; · ` F2

1 ,F3
1 ∼E F2

2 ,F3
2 :: Γ.

The definition of ∼ at ↑mk Ak tells us that

η ; · � F1
i ,F2

i , thread(y, x.shift(y)) ∼ F1
i ,F2

i , thread(y, x.shift(y)) :: (y : Ak).

As such, F1
i ,F2

i , thread(y, x.shift(y)) 7→∗ some final F1
i ,F2

i ,F ′i for which

η ; · ` F1
i ,F2

i ,F ′i ∼ F1
i ,F2

i ,F ′i :: (y : Ak).

Let G1i = F1
i ,F ′i |¬C and G2i = F2

i ,F ′i |C . By configuration extension (Lemma 16), (adapted
for ∼E), we get that η ; · ` G21 ,F3

1 ∼ G22 ,F3
2 :: Γ, and, using that k /∈ E and applying the

definition of equivalence with respect to E at Ak, we get that

η ; · ` G11 ,G21 ,F3
1 ∼ G12 ,G22 ,F3

2 :: Γ, (y : Ak).

Now, we observe that since F1
i ,F2

i , thread(y, x.shift(y)) 7→∗ F1
i ,F2

i ,F ′i , we also have that
Fi, thread(y, x.shift(y)) 7→∗ Fi,F ′i = G1i ,G2i ,F3

i , and closure under converse reduction com-
pletes this case.

We conjecture (but again do not develop fully, because it is out of scope), that this definition
of equivalence corresponds to a form of observational equivalence where configurations can only
be observed (extensionally) at modes in E .

160

Chapter 6

Conclusion

We set out to support the following claim:
Thesis Statement: Adjoint logic provides a suitably general framework for combin-
ing diverse components of deductive systems, not just in pure logic, but also when
applied to both the specification of and reasoning about programming languages.

In Chapter 2, we defined adjoint logic and the key principle of independence, and provided some
first evidence with our three calculi ADJI , ADJE , and ADJF , each of which, despite its generality,
can be reasoned about generically to prove the standard results of cut elimination and identity
expansion. The relations between these calculi also give us several ways to present logics that
can be represented in the adjoint framework, as well as a generic focusing theorem, which can
aid in proof search. All this supports that adjoint logic is not just general, but “suitably general”,
providing enough structure to get useful results, while still allowing us to model a wide range of
behavior. Several examples in this section also illustrate that we can model a variety of common
logics within the adjoint framework, but we are not limited to only these examples.

For the specification of programming languages, we turn to Chapter 4, where, based on a
semi-axiomatic presentation of ADJI , we defined two programming languages (or, technically,
language frameworks, dependent on the choice of mode structure — the uniformity of the defi-
nition of the language in modes means that the two are roughly equivalent for now). At a base
level, these languages capture two different forms of asynchronous concurrent computation, via
message-passing, or via shared-memory (where synchronous communication makes less sense,
in any case), but the use of different modes allows us to also handle communication behaviors
such as multicast and cancellation in a logically-grounded manner. As for the proof theory, here
we are again able to prove results generically over any instantiation of these languages, giving
standard type-safety results as well as a form of confluence, providing further support to the suit-
ability and generality of the adjoint approach in this different domain. We also see here that these
concurrent languages are not entirely separate from sequential computation, with sequentiality
being recoverable at least for the shared-memory language via scheduling, or via the addition of
some new language constructs for blocking, and speculate that we can make use of this, along
with the separation between modes, to work with a mixed concurrent-sequential language where
concurrent computation is only allowable at certain modes, giving one example of the range of
computational behavior that independence between modes allows us to capture.

Finally, in Chapter 5, we address reasoning about programs and programming languages.

161

Here, we explored what it means for programs to be equivalent in the language we have defined,
providing an understanding of equivalence in a setting where some, but not all data is reusable.
As with the other sections, we find again that the adjoint framework provides enough structure
that we can prove results such as parametricity. We also examine the idea of having different
equivalences at different modes, just as in the context of programming languages we speculated
about what could be accomplished if different modes have different semantics, or allow different
programs to be written, or in the context of proof theory, we allow modes to have different struc-
tural properties, or to restrict what connectives are allowed. The results of this are preliminary,
but provide support for the idea that mode-dependent equivalences are possible to define coher-
ently in several different ways, with the results depending on how we choose to combine them
— a fruitful area for future study.

In each of these applications, we see that the adjoint framework is general, suitable for mod-
eling a wide range of behavior — varied logics and combinations thereof, programming lan-
guages where the allowable computations vary by mode (even just in the basic setting where the
language is defined uniformly, some of this is given by the structural properties of modes), and
equivalences both uniform and mode-dependent. We also see that this generality is not excessive,
however, and that we are able to establish useful results generically for these varied instances.
Because of this, the different logics, programming languages, or equivalences defined within the
adjoint framework can also be combined cleanly, allowing us to work in a programming language
that mixes features of two base languages, for instance, while enjoying the benefits of a general
type-safety result.

This work is relatively general and foundational, and as such, there are many different direc-
tions that future work could take. We will examine here several of those directions, separated by
which portion of the work they correspond to: proof theory and logic, programming language
specification, and equivalence or reasoning about programs. This is by no means meant to be an
exhaustive list, but serves to illustrate some of the more interesting possible directions.

6.1 Proof Theory and Logic
In the direction of proof theory and logic, there are two main directions for future work — first,
extending adjoint logic to be able to model a wider range of logics, and second, building towards
a dependent adjoint type theory, which could serve as the basis for an adjoint logical framework,
generalizing the linear and concurrent logical frameworks LLF [15] and CLF [17, 96, 108].

Currently, adjoint logic as presented in this work only models intuitionistic logics, and in-
dependence imposes some further restrictions — for instance, any monad that we model is a
strong monad, which prevents us from modeling the modal possibility � of S4. It would be in-
teresting to explore whether we can find modifications that enable adjoint logic to model some
additional systems, without losing too much in terms of the ability to prove results generically.
For a concrete example, ecumenical logic [79, 82], which consists of a classical and an intuition-
istic portion combined into the same logic, has a distinctly similar feel to modal logics, and to
adjoint logic, and there may be a way to handle this. A study of ecumenical logic would likely
also give a better understanding of how to define a classical form of adjoint logic, which could
then be used to model a classical linear/non-linear logic, for instance. Modal logics other than S4

162

also present an interesting direction for future exploration — in particular, it would be interesting
to explore whether various sorts of temporal logics can be expressed in an adjoint fashion, with
modes representing time steps, for instance.

The goal of building a dependent adjoint type theory is fairly clear, being to extend adjoint
logic with dependent types (again, in a way that does not lose the benefits of being able to prove
results generically), although how to do it is less clear — a notion of equivalence of terms is
needed in order to reason about equivalence of dependent types, and our work on equivalence
may be a starting point for that, but it seems that further development would be necessary to get
a suitable form of equivalence, and once this is done, there remain further questions, such as
whether a type dependent on a linear term consumes that term or not, and how this should be
handled.

6.2 Programming Language Specification
A first question in this direction is to what extent we can define mixed-mode languages, and what
properties they enjoy. For instance, an ideal result would say that given two languages based on
adjoint logic with disjoint sets of modes, we can define a combined language on the union of
their sets of modes, which restricts to each base language when looking only at modes that given
language uses. We would also like to ensure that good properties of these base languages can
be “lifted” to the overall language — for instance, if each base language has progress, then so
does the overall language, and similarly for preservation, confluence, and other such properties.
One immediate question, however, is what the order relation should be between two modes from
different languages — can we arbitrarily put any language on top of any other, or is there some
condition on the semantics of the languages that restricts this further, as with the restriction of
structural properties of modes? Once this is addressed, we would also need to determine what the
interface between two languages with potentially very different semantics looks like, and what
the semantics are for programs that cross over this boundary.

A different aspect of programming languages based on adjoint logic involves providing a
more “high-level” version of the language. The two systems we present in Chapter 4 are remi-
niscent of low-level programming, dealing quite a bit with fine details of memory, sequences of
messages, process spawning, and so on. A system with higher-level syntax would be easier to
work with and use, and could be translated to this low-level syntax for reasoning or optimization
if necessary.

6.3 Program Reasoning
Program reasoning again provides several different directions for future work. Most directly
related to adjoint logic, we have yet to find a full characterization of when distinct equivalences
can be combined. The examples that we see suggest that with sufficient isolation between modes,
there are no restrictions, but that if we want equivalence at a mode k to be able to depend on
equivalence of terms at higher mode m, just as (following independence) a term at mode k
can depend on terms at mode m, we may need some constraints, such as requiring that proof-

163

irrelevant modes are strictly below extensional modes, as seen in Chapter 5. A first conjecture
might be that if k ≤ m, then equivalence at k must be coarser than equivalence at mode m, able
to distinguish fewer processes.

Another direction based on this work, although not so relevant to adjoint logic, would be
to further explore the generic definition of observational equivalence proposed in Chapter 5,
and to see if it is feasible to define a similarly generic logical equivalence which agrees with
observational equivalence, rather than restricting to the extensional case, as we do here.

164

Bibliography

[1] Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types.
In European Symposium on Programming, pages 69–83. Springer, 2006. 5.1

[2] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation, 2(3):197–347, 1992. 2, 2.2, 2.3

[3] Robert Atkey. Observed communication semantics for classical processes. In Pro-
gramming Languages and Systems: 26th European Symposium on Programming, ESOP
2017, Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2017, Uppsala, Sweden, April 22–29, 2017, Proceedings 26, pages 56–82.
Springer, 2017. 5.5

[4] Stephanie Balzer and Frank Pfenning. Manifest sharing with session types. In Interna-
tional Conference on Functional Programming (ICFP), pages 37:1–37:29. ACM, Septem-
ber 2017. Extended version available as Technical Report CMU-CS-17-106R, June 2017.
4.1

[5] Stephanie Balzer, Farzaneh Derakhshan, Robert Harper, and Yue Yao. Logical relations
for session-typed concurrency. arXiv preprint arXiv:2309.00192, 2023. 5.1, 5.5

[6] Andrew Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347,
Department of Computer Science, University of Edinburgh, September 1996. 2, 2

[7] Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. In Leszek
Pacholski and Jerzy Tiuryn, editors, Selected Papers from the 8th International Workshop
on Computer Science Logic (CLS’94), pages 121–135, Kazimierz, Poland, September
1994. Springer LNCS 933. An extended version appears as Technical Report UCAM-CL-
TR-352, University of Cambridge. 1, 2, 2, 3

[8] Yves Bertot and Pierre Castéran. Coq’Art: The Calculus of Inductive Constructions.
Springer, 2004. 2.1.1

[9] Lars Birkedal and Robert Harper. Relational interpretations of recursive types in an oper-
ational setting. Information and computation, 155(1-2):3–63, 1999. 5.1

[10] G. E. Blelloch and M. Reid-Miller. Pipeling with futures. Theory of Computing Systems,
32:213–239, 1999. 4, 4.4.2

[11] Stephen Brookes. A semantics for concurrent separation logic. Theoretical Computer
Science, 365(1–3):227–270, 2007. 1

[12] Luı́s Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In Pro-

165

http://www.cs.cmu.edu/~fp/papers/CMU-CS-17-106R.pdf

ceedings of the 21st International Conference on Concurrency Theory (CONCUR 2010),
pages 222–236, Paris, France, August 2010. Springer LNCS 6269. 1, 3, 3.1, 4, 4.1

[13] Luı́s Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Behavioral polymor-
phism and parametricity in session-based communication. In M.Felleisen and P.Gardner,
editors, Proceedings of the European Symposium on Programming (ESOP’13), pages
330–349, Rome, Italy, March 2013. Springer LNCS 7792. 5.5, 5.5.1

[14] Luı́s Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session
types. Mathematical Structures in Computer Science, 26(3):367–423, 2016. Special Issue
on Behavioural Types. 4, 4.1

[15] Iliano Cervesato and Frank Pfenning. A linear logical framework. Information and com-
putation, 179(1):19–75, 2002. 1, 6.1

[16] Iliano Cervesato and Andre Scedrov. Relating state-based and process-based concurrency
through linear logic. Information and Computation, 207(10):1044–1077, October 2009.
4.2.4

[17] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A concurrent log-
ical framework II: Examples and applications. Technical Report CMU-CS-02-102, De-
partment of Computer Science, Carnegie Mellon University, 2002. Revised May 2003. 1,
6.1

[18] Kaustuv Chaudhuri. Classical and intuitionistic subexponential logics are equally expres-
sive. In Computer Science Logic, pages 185–199. Springer LNCS 6247, August 2010. 1,
2

[19] Karl Crary. Higher-order representation of substructural logics. In P.Hudak and S.Weirich,
editors, Proceedings of the 15th International Conference on Functional Programming
(ICFP 2010), pages 131–142, Baltimore, Maryland, September 2010. ACM. 2.1.1

[20] Ornela Dardha and Jorge A Pérez. Comparing type systems for deadlock freedom. Journal
of Logical and Algebraic Methods in Programming, 124:100717, 2022. 4.3.3

[21] Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In Automated Deduction-CADE-
25: 25th International Conference on Automated Deduction, Berlin, Germany, August
1-7, 2015, Proceedings 25, pages 378–388. Springer, 2015. 2.1.1

[22] Farzaneh Derakhshan, Stephanie Balzer, and Limin Jia. Session logical relations for non-
interference. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–14. IEEE, 2021. 5.5

[23] Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings.
Communications of the ACM, 22(8):465–476, 1979. 5.5, 5.5

[24] Joëlle Despeyroux, Carlos Olarte, and Elaine Pimentel. Hybrid and subexponential linear
logics. Electronic Notes in Theoretical Computer Science, 332:95–111, 2017. 1

[25] Henry DeYoung, Luı́s Caires, Frank Pfenning, and Bernardo Toninho. Cut reduction in
linear logic as asynchronous session-typed communication. In P. Cégielski and A. Durand,
editors, Proceedings of the 21st Annual Conference on Computer Science Logic (CSL

166

2012), pages 228–242, Fontainebleau, France, September 2012. LIPIcs 16. 4.2.1

[26] Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. Semi-axiomatic sequent calculus.
In 5th International Conference on Formal Structures for Computation and Deduction
(FSCD 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. 1.1, 1.3, 3, 4.3.1,
4.4.1, 5.5

[27] Derek Dreyer. The type soundness theorem that you really want to prove (and now you
can). The 45th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL 2018), 2018. 5.5.4

[28] Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical relations. In
2009 24th Annual IEEE Symposium on Logic In Computer Science, pages 71–80. IEEE,
2009. 5.1

[29] Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical relations.
Logical Methods in Computer Science, 7, 2011. 5.1

[30] M. Fairtlough and M.V. Mendler. An intuitionistic modal logic with application to the
formal verification of hardware. In L. Pacholski and J. Tiuryn, editors, Proceedings of the
8th Workshop on Computer Science Logic (CSL’94), pages 354–368, Kazimierz, Poland,
September 1994. Springer-Verlag LNCS 933. 2

[31] M. Fairtlough and M.V. Mendler. Propositional lax logic. Information and Computation,
137(1):1–33, August 1997. 1, 5

[32] Daniel P. Friedman and David S. Wise. Aspects of applicative programming for parallel
processing. IEEE Transactions on Computers, 27(04):289–296, 1978. 4.4, 4.4.2

[33] Simon J. Gay and Malcolm Hole. Subtyping for session types in the π-calculus. Acta
Informatica, 42(2–3):191–225, 2005. 4.2.6

[34] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969. 2.1.1, 4

[35] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987. 1, 2, 2

[36] Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In H. Ehrig,
R. Kowalski, G. Levi, and U. Montanari, editors, Proceedings of the International Joint
Conference on Theory and Practice of Software Development, volume 2, pages 52–66,
Pisa, Italy, March 1987. Springer-Verlag LNCS 250. 2

[37] JY Girard. Interprétation functionelle et élimination des coupures dans l’arithmétique
d’ordre supérieure. PhD thesis, PhD thesis, Université Paris VII, 1972. 5.1.1, 5.5, 5.5.1

[38] Marco Giunti and Vasco T Vasconcelos. A linear account of session types in the pi calcu-
lus. In International Conference on Concurrency Theory, pages 432–446. Springer, 2010.
4.1

[39] Robert H. Halstead. Multilisp: A language for parallel symbolic computation. ACM
Transactions on Programming Languages and Systems, 7(4):501–539, October 1985. 1.1,
4.4, 4.4.2

167

[40] Robert Harper. Practical Foundations for Programming Languages. Cambridge Univer-
sity Press, second edition, April 2016. 2, 5.4, 5.5

[41] Charles Antony Richard Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666–677, 1978. 4.1

[42] Kohei Honda. Types for dyadic interaction. In 4th International Conference on Concur-
rency Theory, CONCUR’93, pages 509–523. Springer LNCS 715, 1993. 4

[43] Kohei Honda and Mario Tokoro. An object calculus for asynchronous communication. In
P. America, editor, Proceedings of the European Conference on Object-Oriented Program-
ming (ECOOP’91), pages 133–147, Geneva, Switzerland, July 1991. Springer-Verlag
LNCS 512. 4

[44] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type
discipline for structured communication-based programming. In 7th European Symposium
on Programming Languages and Systems (ESOP 1998), pages 122–138. Springer LNCS
1381, 1998. 4.1

[45] Jacob M. Howe. Proof Search Issues in Some Non-Classical Logics. PhD thesis, Univer-
sity of St. Andrews, Scotland, 1998. 2.3

[46] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. In Pro-
ceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 128–141, 2001. 4.1

[47] Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka. Adjoint natural
deduction (extended version). arXiv preprint arXiv:2402.01428, 2024. 5.1, 13

[48] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rustbelt: Se-
curing the foundations of the rust programming language. Proceedings of the ACM on
Programming Languages, 2(POPL):1–34, 2017. 2

[49] Max Kanovich, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov. Subexponentials
in non-commutative linear logic. Mathematical Structures in Computer Science, 29(8):
1217–1249, 2019. 1, 2, 2

[50] Naoki Kobayashi. A new type system for deadlock-free processes. In CONCUR 2006–
Concurrency Theory: 17th International Conference, CONCUR 2006, Bonn, Germany,
August 27-30, 2006. Proceedings 17, pages 233–247. Springer, 2006. 4.3.3

[51] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus.
In H.-J. Boehm and G. Steele, editors, Proceedings of the 23rd Symposium on Principles
of Programming Languages (POPL’96), pages 358–371, St. Petersburg Beach, Florida,
USA, January 1996. ACM. 4.1

[52] Neelakantan R Krishnaswami and Derek Dreyer. Internalizing relational parametricity in
the extensional calculus of constructions. In Computer Science Logic 2013 (CSL 2013).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013. 5.3

[53] James R Larus. Restructuring symbolic programs for concurrent execution on multipro-
cessors. PhD thesis, University of California at Berkeley, 1989. 4.4, 4.4.2

[54] Paul Blain Levy. Call-by-Push-Value. PhD thesis, University of London, 2001. 2.3, 5.4

168

[55] Paul Blain Levy. Call-by-push-value: Decomposing call-by-value and call-by-name.
Higher-Order and Symbolic Computation, 19(4):377–414, 2006. 2.3, 5.4

[56] Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic logic. In Inter-
national Workshop on Computer Science Logic, pages 451–465. Springer, 2007. 2.3

[57] Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic, and
classical logics. Theoretical Computer Science, 410(46):4747–4768, November 2009. 2.3

[58] Daniel R. Licata and Michael Shulman. Adjoint logic with a 2-category of modes. In
International Symposium on Logical Foundations of Computer Science (LFCS), pages
219–235. Springer LNCS 9537, January 2016. 1, 2, 2

[59] Daniel R. Licata, Michael Shulman, and Mitchell Riley. A fibrational framework for
substructural and modal logics. In Dale Miller, editor, Proceedings of the 2nd Inter-
national Conference on Formal Structures for Computation and Deduction (FSCD’17),
pages 25:1–25:22, Oxford, UK, September 2017. LIPIcs. 1, 2, 2, 4

[60] Robin Milner. An algebraic definition of simulation between programs. Citeseer, 1971.
5.4

[61] Robin Milner. A theory of type polymorphism in programming. Journal Of Computer
And System Sciences, 17:348–375, August 1978. 4.3.3

[62] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag LNCS 92, 1980.
4.1

[63] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Univer-
sity Press, 1999. 4.1

[64] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In International Colloquium
on Automata, Languages, and Programming, pages 685–695. Springer, 1992. 5.4

[65] Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge University Press,
2001. 4

[66] Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with subexponen-
tials. In Proceedings of the 11th International Conference on Principles and Practice of
Declarative Programming (PPDP), pages 129–140, Coimbra, Portugal, sep 2009. ACM.
1, 2

[67] Vivek Nigam, Elaine Pimentel, and Giselle Reis. Specifying proof systems in linear logic
with subexponentials. Electronic Notes in Theoretical Computer Science, 269:109–123,
2011. 1, 2

[68] Peter O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer Sci-
ence, 375(1–3):271–307, 2007. 1

[69] Peter W. O’Hearn. Resources, concurrency, and local reasoning. In P. Gardner and
N. Yoshida, editors, Proceedings of the 15th International Conference on Concurrency
Theory (CONCUR 2004), pages 49–67, London, England, August 2004. Springer LNCS.
1

[70] Luca Padovani. Deadlock and lock freedom in the linear π-calculus. In Proceedings of

169

the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 1–10, 2014. 4.3.3

[71] David Park. Concurrency and automata on infinite sequences. In Theoretical Computer
Science: 5th GI-Conference Karlsruhe, March 23–25, 1981, pages 167–183. Springer,
1981. 5.4

[72] Jorge A. Pérez, Luı́s Caires, Frank Pfenning, and Bernardo Toninho. Termination in
session-based concurrency via linear logical relations. In H. Seidl, editor, 22nd Euro-
pean Symposium on Programming, ESOP’12, pages 539–558, Tallinn, Estonia, March
2012. Springer LNCS 7211. 5.5

[73] Jorge A. Pérez, Luı́s Caires, Frank Pfenning, and Bernardo Toninho. Linear logical re-
lations and observational equivalences for session-based concurrency. Information and
Computation, 239:254–302, 2014. 5.5

[74] Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type theory.
Technical Report CMU-CS-01-116, Department of Computer Science, Carnegie Mellon
University, April 2001. 4

[75] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathe-
matical Structures in Computer Science, 11:511–540, 2001. Notes to an invited talk at the
Workshop on Intuitionistic Modal Logics and Applications (IMLA’99), Trento, Italy, July
1999. 1, 2, 4, 5

[76] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. ACM sigplan notices, 23
(7):199–208, 1988. 2.1.1

[77] Frank Pfenning and Dennis Griffith. Polarized substructural session types. In A. Pitts,
editor, Proceedings of the 18th International Conference on Foundations of Software Sci-
ence and Computation Structures (FoSSaCS 2015), pages 3–22, London, England, April
2015. Springer LNCS 9034. Invited talk. 1, 4

[78] Frank Pfenning and Carsten Schuermann. Twelf user’s guide. Technical report, ver-
sion 1.2. Technical Report CMU-CS-98-173, Carnegie Mellon University, 1998. URL
https://www.cs.cmu.edu/˜twelf/guide-1-4/twelf.pdf. 2.1.1

[79] Elaine Pimentel, Luiz Carlos Pereira, and Valeria de Paiva. An ecumenical notion of
entailment. Synthese, 198(Suppl 22):5391–5413, 2021. 6.1

[80] Andrew M Pitts. Relational properties of domains. Information and computation, 127(2):
66–90, 1996. 5.1

[81] Gordon Plotkin. Lambda-definability and logical relations. Edinburgh University, 1973.
5.1.1, 5.5

[82] Dag Prawitz. Classical versus intuitionistic logic. Why is this a Proof? Festschrift for Luiz
Carlos Pereira, pages 15–32, 2015. 6.1

[83] Klaas Pruiksma and Frank Pfenning. A message-passing interpretation of adjoint logic.
In F. Martins and D. Orchard, editors, Workshop on Programming Language Approaches
to Concurrency and Communication-Centric Software (PLACES), pages 60–79, Prague,

170

https://www.cs.cmu.edu/~twelf/guide-1-4/twelf.pdf

Czech Republic, April 2019. EPTCS 291. 1.1

[84] Klaas Pruiksma and Frank Pfenning. A message-passing interpretation of adjoint logic.
Journal of Logical and Algebraic Methods in Programming, 120:100637, 2021. 1.1

[85] Klaas Pruiksma and Frank Pfenning. Back to futures. Journal of Functional Program-
ming, 32:e6, 2022. 1.1

[86] Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed. Adjoint logic. Unpub-
lished manuscript, April 2018. URL http://www.cs.cmu.edu/˜fp/papers/
adjoint18b.pdf. 1.1

[87] Zesen Qian, GA Kavvos, and Lars Birkedal. Client-server sessions in linear logic. Pro-
ceedings of the ACM on Programming Languages, 5(ICFP):1–31, 2021. 4.1

[88] Jason Reed. A judgmental deconstruction of modal logic. Unpublished manuscript, May
2009. URL http://www.cs.cmu.edu/˜jcreed/papers/jdml2.pdf. 1, 2, 4

[89] John C. Reynolds. Types, abstraction, and parametric polymorphism. In R.E.A. Mason,
editor, Information Processing 83, pages 513–523. Elsevier, September 1983. 5.1.1, 5.5,
5.5.1, 5.5.6

[90] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Pro-
ceedings of the 17th Symposium on Logic in Computer Science, pages 55–74, Copen-
hagen, Denmark, July 2002. IEEE Computer Society. 1

[91] Jacques Riguet. Relations binaires, fermetures, correspondances de galois. Bulletin de la
société mathématique de France, 76:114–155, 1948. 5.3, 5, 25, 26

[92] Jacques Riguet. Quelques propriétés des relations difonctionnelles. Comptes rendus heb-
domadaires des séances de l’Académie des sciences, 230:1999–2000, 1950. 27

[93] Pedro Rocha and Luı́s Caires. Propositions-as-types and shared state. Proceedings of the
ACM on Programming Languages, 5(ICFP):1–30, 2021. 4.1

[94] Davide Sangiorgi and David Walker. The π-Calculus: A Theory of Mobile Processes.
Cambridge University Press, 2001. 4.1

[95] Chuta Sano, Ryan Kavanagh, and Brigitte Pientka. Mechanizing session-types using a
structural view: Enforcing linearity without linearity. Proceedings of the ACM on Pro-
gramming Languages, 7(OOPSLA2):374–399, 2023. 2.1.1

[96] Anders Schack-Nielsen and Carsten Schürmann. Celf - a logical framework for deductive
and concurrent systems. In A. Armando, P. Baumgartner, and G. Dowek, editors, Pro-
ceedings of the 4th International Joint Conference on Automated Reasoning (IJCAR’08),
pages 320–326, Sydney, Australia, August 2008. Springer LNCS 5195. 1, 6.1

[97] Peter Selinger and Benoıt Valiron. Quantum lambda calculus. Semantic techniques in
quantum computation, pages 135–172, 2009. 1

[98] Robert J. Simmons. Structural focalization. ACM Transactions on Computational Logic,
15(3):21:1–21:33, 2014. 2.3

[99] Siva Somayyajula and Frank Pfenning. Type-based termination for futures. In 7th Inter-
national Conference on Formal Structures for Computation and Deduction, 2022. 5.1

171

http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://www.cs.cmu.edu/~jcreed/papers/jdml2.pdf

[100] Siva Somayyajula and Frank Pfenning. Dependent type refinements for futures. Electronic
Notes in Theoretical Informatics and Computer Science, 3, 2023. 5.1

[101] Richard Statman. Logical relations and the typed λ-calculus. Information and Control,
65:85–97, 1985. 5.1.1, 5.5

[102] W. W. Tait. Intensional interpretation of functionals of finite type I. Journal Of Symbolic
Logic, 32:198–212, 1967. 5.1.1, 5.5

[103] The Coq Development Team. The Coq reference manual – release 8.19.0. https:
//coq.inria.fr/doc/V8.19.0/refman, 2024. 2.1.1

[104] Bernardo Toninho, Luı́s Caires, and Frank Pfenning. Higher-order processes, functions,
and sessions: A monadic integration. In M.Felleisen and P.Gardner, editors, Proceedings
of the European Symposium on Programming (ESOP’13), pages 350–369, Rome, Italy,
March 2013. Springer LNCS 7792. 1, 4

[105] Rob J Van Glabbeek and W Peter Weijland. Branching time and abstraction in bisimula-
tion semantics. Journal of the ACM (JACM), 43(3):555–600, 1996. 5.4

[106] André Van Tonder. A lambda calculus for quantum computation. SIAM Journal on Com-
puting, 33(5):1109–1135, 2004. 1

[107] Philip Wadler. Listlessness is better than laziness: Lazy evaluation and garbage collection
at compile-time. In Proceedings of the 1984 ACM Symposium on LISP and functional
programming, pages 45–52, 1984. 4.4, 4.4.2

[108] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent logical
framework I: Judgments and properties. Technical Report CMU-CS-02-101, Department
of Computer Science, Carnegie Mellon University, 2002. Revised May 2003. 1, 6.1

[109] Aaron Weiss, Olek Gierczak, Daniel Patterson, and Amal Ahmed. Oxide: The essence of
rust. 2019. 2

172

https://coq.inria.fr/doc/V8.19.0/refman
https://coq.inria.fr/doc/V8.19.0/refman

	1 Introduction
	1.1 Contributions
	1.2 Background on Substructural Logic
	1.3 Outline of Structure

	2 Proof Theory of Adjoint Logic
	2.1 ADJE: Adjoint Logic with Explicit Structural Rules
	2.1.1 Cut Elimination
	2.1.2 Identity expansion

	2.2 ADJI: Making Structural Rules Implicit
	2.2.1 Equivalence of ADJI and ADJE
	2.2.2 Cut elimination and identity expansion for ADJI, directly

	2.3 ADJF: Focused Adjoint Logic
	2.3.1 Soundness and Completeness

	2.4 Embeddings of example logics

	3 The Semi-Axiomatic Sequent Calculus
	3.1 Recovering Asynchrony via Cut
	3.2 The Semi-Axiomatic Sequent Calculus SAX
	3.3 Cut Elimination for SAX

	4 Languages
	4.1 Process Calculi
	4.2 Common Features
	4.2.1 Asynchronous Communication
	4.2.2 Variables, Symbols, and their Meanings
	4.2.3 Processes, Values, and Continuations
	4.2.4 Configurations and (Multi)set Rewriting
	4.2.5 Typing for Processes and Configurations
	4.2.6 Recursion

	4.3 Message-Passing Semantics
	4.3.1 Static Semantics
	4.3.2 Dynamic Semantics
	4.3.3 Results

	4.4 Shared-Memory Semantics
	4.4.1 Configuration Typing and Results
	4.4.2 Sequentiality

	5 Program Equivalence
	5.1 Introduction and Background
	5.1.1 Background
	5.1.2 Outline

	5.2 Quantified Types
	5.3 Renaming
	5.4 Observations and Observational Equivalence
	5.4.1 Observation and Renaming
	5.4.2 From Observations to Observational Equivalence
	5.4.3 Typed Equivalence

	5.5 Logical Equivalence
	5.5.1 Equivalence at Variable Types
	5.5.2 Formalizing Logical Equivalence
	5.5.3 Open Configurations
	5.5.4 Ill-typed configurations
	5.5.5 Counterexample for looking at single variables
	5.5.6 Results on Logical Equivalence

	5.6 Mode-dependent Equivalence
	5.6.1 A strongly isolating equivalence
	5.6.2 Upwards-Closed Sets of Modes and Erasure

	6 Conclusion
	6.1 Proof Theory and Logic
	6.2 Programming Language Specification
	6.3 Program Reasoning

	Bibliography

